xref: /linux/fs/btrfs/compression.c (revision 127ef6274a682d8ce88fd9e6614c0b30c7f8ef34)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45 
46 struct compressed_bio {
47 	/* number of bios pending for this compressed extent */
48 	atomic_t pending_bios;
49 
50 	/* the pages with the compressed data on them */
51 	struct page **compressed_pages;
52 
53 	/* inode that owns this data */
54 	struct inode *inode;
55 
56 	/* starting offset in the inode for our pages */
57 	u64 start;
58 
59 	/* number of bytes in the inode we're working on */
60 	unsigned long len;
61 
62 	/* number of bytes on disk */
63 	unsigned long compressed_len;
64 
65 	/* the compression algorithm for this bio */
66 	int compress_type;
67 
68 	/* number of compressed pages in the array */
69 	unsigned long nr_pages;
70 
71 	/* IO errors */
72 	int errors;
73 	int mirror_num;
74 
75 	/* for reads, this is the bio we are copying the data into */
76 	struct bio *orig_bio;
77 
78 	/*
79 	 * the start of a variable length array of checksums only
80 	 * used by reads
81 	 */
82 	u32 sums;
83 };
84 
85 static inline int compressed_bio_size(struct btrfs_root *root,
86 				      unsigned long disk_size)
87 {
88 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
89 
90 	return sizeof(struct compressed_bio) +
91 		((disk_size + root->sectorsize - 1) / root->sectorsize) *
92 		csum_size;
93 }
94 
95 static struct bio *compressed_bio_alloc(struct block_device *bdev,
96 					u64 first_byte, gfp_t gfp_flags)
97 {
98 	int nr_vecs;
99 
100 	nr_vecs = bio_get_nr_vecs(bdev);
101 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
102 }
103 
104 static int check_compressed_csum(struct inode *inode,
105 				 struct compressed_bio *cb,
106 				 u64 disk_start)
107 {
108 	int ret;
109 	struct btrfs_root *root = BTRFS_I(inode)->root;
110 	struct page *page;
111 	unsigned long i;
112 	char *kaddr;
113 	u32 csum;
114 	u32 *cb_sum = &cb->sums;
115 
116 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
117 		return 0;
118 
119 	for (i = 0; i < cb->nr_pages; i++) {
120 		page = cb->compressed_pages[i];
121 		csum = ~(u32)0;
122 
123 		kaddr = kmap_atomic(page);
124 		csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
125 		btrfs_csum_final(csum, (char *)&csum);
126 		kunmap_atomic(kaddr);
127 
128 		if (csum != *cb_sum) {
129 			printk(KERN_INFO "btrfs csum failed ino %llu "
130 			       "extent %llu csum %u "
131 			       "wanted %u mirror %d\n",
132 			       (unsigned long long)btrfs_ino(inode),
133 			       (unsigned long long)disk_start,
134 			       csum, *cb_sum, cb->mirror_num);
135 			ret = -EIO;
136 			goto fail;
137 		}
138 		cb_sum++;
139 
140 	}
141 	ret = 0;
142 fail:
143 	return ret;
144 }
145 
146 /* when we finish reading compressed pages from the disk, we
147  * decompress them and then run the bio end_io routines on the
148  * decompressed pages (in the inode address space).
149  *
150  * This allows the checksumming and other IO error handling routines
151  * to work normally
152  *
153  * The compressed pages are freed here, and it must be run
154  * in process context
155  */
156 static void end_compressed_bio_read(struct bio *bio, int err)
157 {
158 	struct compressed_bio *cb = bio->bi_private;
159 	struct inode *inode;
160 	struct page *page;
161 	unsigned long index;
162 	int ret;
163 
164 	if (err)
165 		cb->errors = 1;
166 
167 	/* if there are more bios still pending for this compressed
168 	 * extent, just exit
169 	 */
170 	if (!atomic_dec_and_test(&cb->pending_bios))
171 		goto out;
172 
173 	inode = cb->inode;
174 	ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
175 	if (ret)
176 		goto csum_failed;
177 
178 	/* ok, we're the last bio for this extent, lets start
179 	 * the decompression.
180 	 */
181 	ret = btrfs_decompress_biovec(cb->compress_type,
182 				      cb->compressed_pages,
183 				      cb->start,
184 				      cb->orig_bio->bi_io_vec,
185 				      cb->orig_bio->bi_vcnt,
186 				      cb->compressed_len);
187 csum_failed:
188 	if (ret)
189 		cb->errors = 1;
190 
191 	/* release the compressed pages */
192 	index = 0;
193 	for (index = 0; index < cb->nr_pages; index++) {
194 		page = cb->compressed_pages[index];
195 		page->mapping = NULL;
196 		page_cache_release(page);
197 	}
198 
199 	/* do io completion on the original bio */
200 	if (cb->errors) {
201 		bio_io_error(cb->orig_bio);
202 	} else {
203 		int bio_index = 0;
204 		struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
205 
206 		/*
207 		 * we have verified the checksum already, set page
208 		 * checked so the end_io handlers know about it
209 		 */
210 		while (bio_index < cb->orig_bio->bi_vcnt) {
211 			SetPageChecked(bvec->bv_page);
212 			bvec++;
213 			bio_index++;
214 		}
215 		bio_endio(cb->orig_bio, 0);
216 	}
217 
218 	/* finally free the cb struct */
219 	kfree(cb->compressed_pages);
220 	kfree(cb);
221 out:
222 	bio_put(bio);
223 }
224 
225 /*
226  * Clear the writeback bits on all of the file
227  * pages for a compressed write
228  */
229 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
230 					      unsigned long ram_size)
231 {
232 	unsigned long index = start >> PAGE_CACHE_SHIFT;
233 	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
234 	struct page *pages[16];
235 	unsigned long nr_pages = end_index - index + 1;
236 	int i;
237 	int ret;
238 
239 	while (nr_pages > 0) {
240 		ret = find_get_pages_contig(inode->i_mapping, index,
241 				     min_t(unsigned long,
242 				     nr_pages, ARRAY_SIZE(pages)), pages);
243 		if (ret == 0) {
244 			nr_pages -= 1;
245 			index += 1;
246 			continue;
247 		}
248 		for (i = 0; i < ret; i++) {
249 			end_page_writeback(pages[i]);
250 			page_cache_release(pages[i]);
251 		}
252 		nr_pages -= ret;
253 		index += ret;
254 	}
255 	/* the inode may be gone now */
256 }
257 
258 /*
259  * do the cleanup once all the compressed pages hit the disk.
260  * This will clear writeback on the file pages and free the compressed
261  * pages.
262  *
263  * This also calls the writeback end hooks for the file pages so that
264  * metadata and checksums can be updated in the file.
265  */
266 static void end_compressed_bio_write(struct bio *bio, int err)
267 {
268 	struct extent_io_tree *tree;
269 	struct compressed_bio *cb = bio->bi_private;
270 	struct inode *inode;
271 	struct page *page;
272 	unsigned long index;
273 
274 	if (err)
275 		cb->errors = 1;
276 
277 	/* if there are more bios still pending for this compressed
278 	 * extent, just exit
279 	 */
280 	if (!atomic_dec_and_test(&cb->pending_bios))
281 		goto out;
282 
283 	/* ok, we're the last bio for this extent, step one is to
284 	 * call back into the FS and do all the end_io operations
285 	 */
286 	inode = cb->inode;
287 	tree = &BTRFS_I(inode)->io_tree;
288 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290 					 cb->start,
291 					 cb->start + cb->len - 1,
292 					 NULL, 1);
293 	cb->compressed_pages[0]->mapping = NULL;
294 
295 	end_compressed_writeback(inode, cb->start, cb->len);
296 	/* note, our inode could be gone now */
297 
298 	/*
299 	 * release the compressed pages, these came from alloc_page and
300 	 * are not attached to the inode at all
301 	 */
302 	index = 0;
303 	for (index = 0; index < cb->nr_pages; index++) {
304 		page = cb->compressed_pages[index];
305 		page->mapping = NULL;
306 		page_cache_release(page);
307 	}
308 
309 	/* finally free the cb struct */
310 	kfree(cb->compressed_pages);
311 	kfree(cb);
312 out:
313 	bio_put(bio);
314 }
315 
316 /*
317  * worker function to build and submit bios for previously compressed pages.
318  * The corresponding pages in the inode should be marked for writeback
319  * and the compressed pages should have a reference on them for dropping
320  * when the IO is complete.
321  *
322  * This also checksums the file bytes and gets things ready for
323  * the end io hooks.
324  */
325 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326 				 unsigned long len, u64 disk_start,
327 				 unsigned long compressed_len,
328 				 struct page **compressed_pages,
329 				 unsigned long nr_pages)
330 {
331 	struct bio *bio = NULL;
332 	struct btrfs_root *root = BTRFS_I(inode)->root;
333 	struct compressed_bio *cb;
334 	unsigned long bytes_left;
335 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
336 	int pg_index = 0;
337 	struct page *page;
338 	u64 first_byte = disk_start;
339 	struct block_device *bdev;
340 	int ret;
341 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
342 
343 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
344 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
345 	if (!cb)
346 		return -ENOMEM;
347 	atomic_set(&cb->pending_bios, 0);
348 	cb->errors = 0;
349 	cb->inode = inode;
350 	cb->start = start;
351 	cb->len = len;
352 	cb->mirror_num = 0;
353 	cb->compressed_pages = compressed_pages;
354 	cb->compressed_len = compressed_len;
355 	cb->orig_bio = NULL;
356 	cb->nr_pages = nr_pages;
357 
358 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
359 
360 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
361 	if(!bio) {
362 		kfree(cb);
363 		return -ENOMEM;
364 	}
365 	bio->bi_private = cb;
366 	bio->bi_end_io = end_compressed_bio_write;
367 	atomic_inc(&cb->pending_bios);
368 
369 	/* create and submit bios for the compressed pages */
370 	bytes_left = compressed_len;
371 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
372 		page = compressed_pages[pg_index];
373 		page->mapping = inode->i_mapping;
374 		if (bio->bi_size)
375 			ret = io_tree->ops->merge_bio_hook(page, 0,
376 							   PAGE_CACHE_SIZE,
377 							   bio, 0);
378 		else
379 			ret = 0;
380 
381 		page->mapping = NULL;
382 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
383 		    PAGE_CACHE_SIZE) {
384 			bio_get(bio);
385 
386 			/*
387 			 * inc the count before we submit the bio so
388 			 * we know the end IO handler won't happen before
389 			 * we inc the count.  Otherwise, the cb might get
390 			 * freed before we're done setting it up
391 			 */
392 			atomic_inc(&cb->pending_bios);
393 			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
394 			BUG_ON(ret); /* -ENOMEM */
395 
396 			if (!skip_sum) {
397 				ret = btrfs_csum_one_bio(root, inode, bio,
398 							 start, 1);
399 				BUG_ON(ret); /* -ENOMEM */
400 			}
401 
402 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
403 			BUG_ON(ret); /* -ENOMEM */
404 
405 			bio_put(bio);
406 
407 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
408 			bio->bi_private = cb;
409 			bio->bi_end_io = end_compressed_bio_write;
410 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
411 		}
412 		if (bytes_left < PAGE_CACHE_SIZE) {
413 			printk("bytes left %lu compress len %lu nr %lu\n",
414 			       bytes_left, cb->compressed_len, cb->nr_pages);
415 		}
416 		bytes_left -= PAGE_CACHE_SIZE;
417 		first_byte += PAGE_CACHE_SIZE;
418 		cond_resched();
419 	}
420 	bio_get(bio);
421 
422 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
423 	BUG_ON(ret); /* -ENOMEM */
424 
425 	if (!skip_sum) {
426 		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
427 		BUG_ON(ret); /* -ENOMEM */
428 	}
429 
430 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
431 	BUG_ON(ret); /* -ENOMEM */
432 
433 	bio_put(bio);
434 	return 0;
435 }
436 
437 static noinline int add_ra_bio_pages(struct inode *inode,
438 				     u64 compressed_end,
439 				     struct compressed_bio *cb)
440 {
441 	unsigned long end_index;
442 	unsigned long pg_index;
443 	u64 last_offset;
444 	u64 isize = i_size_read(inode);
445 	int ret;
446 	struct page *page;
447 	unsigned long nr_pages = 0;
448 	struct extent_map *em;
449 	struct address_space *mapping = inode->i_mapping;
450 	struct extent_map_tree *em_tree;
451 	struct extent_io_tree *tree;
452 	u64 end;
453 	int misses = 0;
454 
455 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
456 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
457 	em_tree = &BTRFS_I(inode)->extent_tree;
458 	tree = &BTRFS_I(inode)->io_tree;
459 
460 	if (isize == 0)
461 		return 0;
462 
463 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
464 
465 	while (last_offset < compressed_end) {
466 		pg_index = last_offset >> PAGE_CACHE_SHIFT;
467 
468 		if (pg_index > end_index)
469 			break;
470 
471 		rcu_read_lock();
472 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
473 		rcu_read_unlock();
474 		if (page) {
475 			misses++;
476 			if (misses > 4)
477 				break;
478 			goto next;
479 		}
480 
481 		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
482 								~__GFP_FS);
483 		if (!page)
484 			break;
485 
486 		if (add_to_page_cache_lru(page, mapping, pg_index,
487 								GFP_NOFS)) {
488 			page_cache_release(page);
489 			goto next;
490 		}
491 
492 		end = last_offset + PAGE_CACHE_SIZE - 1;
493 		/*
494 		 * at this point, we have a locked page in the page cache
495 		 * for these bytes in the file.  But, we have to make
496 		 * sure they map to this compressed extent on disk.
497 		 */
498 		set_page_extent_mapped(page);
499 		lock_extent(tree, last_offset, end);
500 		read_lock(&em_tree->lock);
501 		em = lookup_extent_mapping(em_tree, last_offset,
502 					   PAGE_CACHE_SIZE);
503 		read_unlock(&em_tree->lock);
504 
505 		if (!em || last_offset < em->start ||
506 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
507 		    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
508 			free_extent_map(em);
509 			unlock_extent(tree, last_offset, end);
510 			unlock_page(page);
511 			page_cache_release(page);
512 			break;
513 		}
514 		free_extent_map(em);
515 
516 		if (page->index == end_index) {
517 			char *userpage;
518 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
519 
520 			if (zero_offset) {
521 				int zeros;
522 				zeros = PAGE_CACHE_SIZE - zero_offset;
523 				userpage = kmap_atomic(page);
524 				memset(userpage + zero_offset, 0, zeros);
525 				flush_dcache_page(page);
526 				kunmap_atomic(userpage);
527 			}
528 		}
529 
530 		ret = bio_add_page(cb->orig_bio, page,
531 				   PAGE_CACHE_SIZE, 0);
532 
533 		if (ret == PAGE_CACHE_SIZE) {
534 			nr_pages++;
535 			page_cache_release(page);
536 		} else {
537 			unlock_extent(tree, last_offset, end);
538 			unlock_page(page);
539 			page_cache_release(page);
540 			break;
541 		}
542 next:
543 		last_offset += PAGE_CACHE_SIZE;
544 	}
545 	return 0;
546 }
547 
548 /*
549  * for a compressed read, the bio we get passed has all the inode pages
550  * in it.  We don't actually do IO on those pages but allocate new ones
551  * to hold the compressed pages on disk.
552  *
553  * bio->bi_sector points to the compressed extent on disk
554  * bio->bi_io_vec points to all of the inode pages
555  * bio->bi_vcnt is a count of pages
556  *
557  * After the compressed pages are read, we copy the bytes into the
558  * bio we were passed and then call the bio end_io calls
559  */
560 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
561 				 int mirror_num, unsigned long bio_flags)
562 {
563 	struct extent_io_tree *tree;
564 	struct extent_map_tree *em_tree;
565 	struct compressed_bio *cb;
566 	struct btrfs_root *root = BTRFS_I(inode)->root;
567 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
568 	unsigned long compressed_len;
569 	unsigned long nr_pages;
570 	unsigned long pg_index;
571 	struct page *page;
572 	struct block_device *bdev;
573 	struct bio *comp_bio;
574 	u64 cur_disk_byte = (u64)bio->bi_sector << 9;
575 	u64 em_len;
576 	u64 em_start;
577 	struct extent_map *em;
578 	int ret = -ENOMEM;
579 	u32 *sums;
580 
581 	tree = &BTRFS_I(inode)->io_tree;
582 	em_tree = &BTRFS_I(inode)->extent_tree;
583 
584 	/* we need the actual starting offset of this extent in the file */
585 	read_lock(&em_tree->lock);
586 	em = lookup_extent_mapping(em_tree,
587 				   page_offset(bio->bi_io_vec->bv_page),
588 				   PAGE_CACHE_SIZE);
589 	read_unlock(&em_tree->lock);
590 	if (!em)
591 		return -EIO;
592 
593 	compressed_len = em->block_len;
594 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
595 	if (!cb)
596 		goto out;
597 
598 	atomic_set(&cb->pending_bios, 0);
599 	cb->errors = 0;
600 	cb->inode = inode;
601 	cb->mirror_num = mirror_num;
602 	sums = &cb->sums;
603 
604 	cb->start = em->orig_start;
605 	em_len = em->len;
606 	em_start = em->start;
607 
608 	free_extent_map(em);
609 	em = NULL;
610 
611 	cb->len = uncompressed_len;
612 	cb->compressed_len = compressed_len;
613 	cb->compress_type = extent_compress_type(bio_flags);
614 	cb->orig_bio = bio;
615 
616 	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
617 				 PAGE_CACHE_SIZE;
618 	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
619 				       GFP_NOFS);
620 	if (!cb->compressed_pages)
621 		goto fail1;
622 
623 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
624 
625 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
626 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
627 							      __GFP_HIGHMEM);
628 		if (!cb->compressed_pages[pg_index])
629 			goto fail2;
630 	}
631 	cb->nr_pages = nr_pages;
632 
633 	add_ra_bio_pages(inode, em_start + em_len, cb);
634 
635 	/* include any pages we added in add_ra-bio_pages */
636 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
637 	cb->len = uncompressed_len;
638 
639 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
640 	if (!comp_bio)
641 		goto fail2;
642 	comp_bio->bi_private = cb;
643 	comp_bio->bi_end_io = end_compressed_bio_read;
644 	atomic_inc(&cb->pending_bios);
645 
646 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
647 		page = cb->compressed_pages[pg_index];
648 		page->mapping = inode->i_mapping;
649 		page->index = em_start >> PAGE_CACHE_SHIFT;
650 
651 		if (comp_bio->bi_size)
652 			ret = tree->ops->merge_bio_hook(page, 0,
653 							PAGE_CACHE_SIZE,
654 							comp_bio, 0);
655 		else
656 			ret = 0;
657 
658 		page->mapping = NULL;
659 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
660 		    PAGE_CACHE_SIZE) {
661 			bio_get(comp_bio);
662 
663 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
664 			BUG_ON(ret); /* -ENOMEM */
665 
666 			/*
667 			 * inc the count before we submit the bio so
668 			 * we know the end IO handler won't happen before
669 			 * we inc the count.  Otherwise, the cb might get
670 			 * freed before we're done setting it up
671 			 */
672 			atomic_inc(&cb->pending_bios);
673 
674 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
675 				ret = btrfs_lookup_bio_sums(root, inode,
676 							comp_bio, sums);
677 				BUG_ON(ret); /* -ENOMEM */
678 			}
679 			sums += (comp_bio->bi_size + root->sectorsize - 1) /
680 				root->sectorsize;
681 
682 			ret = btrfs_map_bio(root, READ, comp_bio,
683 					    mirror_num, 0);
684 			BUG_ON(ret); /* -ENOMEM */
685 
686 			bio_put(comp_bio);
687 
688 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
689 							GFP_NOFS);
690 			comp_bio->bi_private = cb;
691 			comp_bio->bi_end_io = end_compressed_bio_read;
692 
693 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
694 		}
695 		cur_disk_byte += PAGE_CACHE_SIZE;
696 	}
697 	bio_get(comp_bio);
698 
699 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
700 	BUG_ON(ret); /* -ENOMEM */
701 
702 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
703 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
704 		BUG_ON(ret); /* -ENOMEM */
705 	}
706 
707 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
708 	BUG_ON(ret); /* -ENOMEM */
709 
710 	bio_put(comp_bio);
711 	return 0;
712 
713 fail2:
714 	for (pg_index = 0; pg_index < nr_pages; pg_index++)
715 		free_page((unsigned long)cb->compressed_pages[pg_index]);
716 
717 	kfree(cb->compressed_pages);
718 fail1:
719 	kfree(cb);
720 out:
721 	free_extent_map(em);
722 	return ret;
723 }
724 
725 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
726 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
727 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
728 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
729 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
730 
731 struct btrfs_compress_op *btrfs_compress_op[] = {
732 	&btrfs_zlib_compress,
733 	&btrfs_lzo_compress,
734 };
735 
736 void __init btrfs_init_compress(void)
737 {
738 	int i;
739 
740 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
741 		INIT_LIST_HEAD(&comp_idle_workspace[i]);
742 		spin_lock_init(&comp_workspace_lock[i]);
743 		atomic_set(&comp_alloc_workspace[i], 0);
744 		init_waitqueue_head(&comp_workspace_wait[i]);
745 	}
746 }
747 
748 /*
749  * this finds an available workspace or allocates a new one
750  * ERR_PTR is returned if things go bad.
751  */
752 static struct list_head *find_workspace(int type)
753 {
754 	struct list_head *workspace;
755 	int cpus = num_online_cpus();
756 	int idx = type - 1;
757 
758 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
759 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
760 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
761 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
762 	int *num_workspace			= &comp_num_workspace[idx];
763 again:
764 	spin_lock(workspace_lock);
765 	if (!list_empty(idle_workspace)) {
766 		workspace = idle_workspace->next;
767 		list_del(workspace);
768 		(*num_workspace)--;
769 		spin_unlock(workspace_lock);
770 		return workspace;
771 
772 	}
773 	if (atomic_read(alloc_workspace) > cpus) {
774 		DEFINE_WAIT(wait);
775 
776 		spin_unlock(workspace_lock);
777 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
778 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
779 			schedule();
780 		finish_wait(workspace_wait, &wait);
781 		goto again;
782 	}
783 	atomic_inc(alloc_workspace);
784 	spin_unlock(workspace_lock);
785 
786 	workspace = btrfs_compress_op[idx]->alloc_workspace();
787 	if (IS_ERR(workspace)) {
788 		atomic_dec(alloc_workspace);
789 		wake_up(workspace_wait);
790 	}
791 	return workspace;
792 }
793 
794 /*
795  * put a workspace struct back on the list or free it if we have enough
796  * idle ones sitting around
797  */
798 static void free_workspace(int type, struct list_head *workspace)
799 {
800 	int idx = type - 1;
801 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
802 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
803 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
804 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
805 	int *num_workspace			= &comp_num_workspace[idx];
806 
807 	spin_lock(workspace_lock);
808 	if (*num_workspace < num_online_cpus()) {
809 		list_add_tail(workspace, idle_workspace);
810 		(*num_workspace)++;
811 		spin_unlock(workspace_lock);
812 		goto wake;
813 	}
814 	spin_unlock(workspace_lock);
815 
816 	btrfs_compress_op[idx]->free_workspace(workspace);
817 	atomic_dec(alloc_workspace);
818 wake:
819 	if (waitqueue_active(workspace_wait))
820 		wake_up(workspace_wait);
821 }
822 
823 /*
824  * cleanup function for module exit
825  */
826 static void free_workspaces(void)
827 {
828 	struct list_head *workspace;
829 	int i;
830 
831 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
832 		while (!list_empty(&comp_idle_workspace[i])) {
833 			workspace = comp_idle_workspace[i].next;
834 			list_del(workspace);
835 			btrfs_compress_op[i]->free_workspace(workspace);
836 			atomic_dec(&comp_alloc_workspace[i]);
837 		}
838 	}
839 }
840 
841 /*
842  * given an address space and start/len, compress the bytes.
843  *
844  * pages are allocated to hold the compressed result and stored
845  * in 'pages'
846  *
847  * out_pages is used to return the number of pages allocated.  There
848  * may be pages allocated even if we return an error
849  *
850  * total_in is used to return the number of bytes actually read.  It
851  * may be smaller then len if we had to exit early because we
852  * ran out of room in the pages array or because we cross the
853  * max_out threshold.
854  *
855  * total_out is used to return the total number of compressed bytes
856  *
857  * max_out tells us the max number of bytes that we're allowed to
858  * stuff into pages
859  */
860 int btrfs_compress_pages(int type, struct address_space *mapping,
861 			 u64 start, unsigned long len,
862 			 struct page **pages,
863 			 unsigned long nr_dest_pages,
864 			 unsigned long *out_pages,
865 			 unsigned long *total_in,
866 			 unsigned long *total_out,
867 			 unsigned long max_out)
868 {
869 	struct list_head *workspace;
870 	int ret;
871 
872 	workspace = find_workspace(type);
873 	if (IS_ERR(workspace))
874 		return -1;
875 
876 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
877 						      start, len, pages,
878 						      nr_dest_pages, out_pages,
879 						      total_in, total_out,
880 						      max_out);
881 	free_workspace(type, workspace);
882 	return ret;
883 }
884 
885 /*
886  * pages_in is an array of pages with compressed data.
887  *
888  * disk_start is the starting logical offset of this array in the file
889  *
890  * bvec is a bio_vec of pages from the file that we want to decompress into
891  *
892  * vcnt is the count of pages in the biovec
893  *
894  * srclen is the number of bytes in pages_in
895  *
896  * The basic idea is that we have a bio that was created by readpages.
897  * The pages in the bio are for the uncompressed data, and they may not
898  * be contiguous.  They all correspond to the range of bytes covered by
899  * the compressed extent.
900  */
901 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
902 			    struct bio_vec *bvec, int vcnt, size_t srclen)
903 {
904 	struct list_head *workspace;
905 	int ret;
906 
907 	workspace = find_workspace(type);
908 	if (IS_ERR(workspace))
909 		return -ENOMEM;
910 
911 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
912 							 disk_start,
913 							 bvec, vcnt, srclen);
914 	free_workspace(type, workspace);
915 	return ret;
916 }
917 
918 /*
919  * a less complex decompression routine.  Our compressed data fits in a
920  * single page, and we want to read a single page out of it.
921  * start_byte tells us the offset into the compressed data we're interested in
922  */
923 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
924 		     unsigned long start_byte, size_t srclen, size_t destlen)
925 {
926 	struct list_head *workspace;
927 	int ret;
928 
929 	workspace = find_workspace(type);
930 	if (IS_ERR(workspace))
931 		return -ENOMEM;
932 
933 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
934 						  dest_page, start_byte,
935 						  srclen, destlen);
936 
937 	free_workspace(type, workspace);
938 	return ret;
939 }
940 
941 void btrfs_exit_compress(void)
942 {
943 	free_workspaces();
944 }
945 
946 /*
947  * Copy uncompressed data from working buffer to pages.
948  *
949  * buf_start is the byte offset we're of the start of our workspace buffer.
950  *
951  * total_out is the last byte of the buffer
952  */
953 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
954 			      unsigned long total_out, u64 disk_start,
955 			      struct bio_vec *bvec, int vcnt,
956 			      unsigned long *pg_index,
957 			      unsigned long *pg_offset)
958 {
959 	unsigned long buf_offset;
960 	unsigned long current_buf_start;
961 	unsigned long start_byte;
962 	unsigned long working_bytes = total_out - buf_start;
963 	unsigned long bytes;
964 	char *kaddr;
965 	struct page *page_out = bvec[*pg_index].bv_page;
966 
967 	/*
968 	 * start byte is the first byte of the page we're currently
969 	 * copying into relative to the start of the compressed data.
970 	 */
971 	start_byte = page_offset(page_out) - disk_start;
972 
973 	/* we haven't yet hit data corresponding to this page */
974 	if (total_out <= start_byte)
975 		return 1;
976 
977 	/*
978 	 * the start of the data we care about is offset into
979 	 * the middle of our working buffer
980 	 */
981 	if (total_out > start_byte && buf_start < start_byte) {
982 		buf_offset = start_byte - buf_start;
983 		working_bytes -= buf_offset;
984 	} else {
985 		buf_offset = 0;
986 	}
987 	current_buf_start = buf_start;
988 
989 	/* copy bytes from the working buffer into the pages */
990 	while (working_bytes > 0) {
991 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
992 			    PAGE_CACHE_SIZE - buf_offset);
993 		bytes = min(bytes, working_bytes);
994 		kaddr = kmap_atomic(page_out);
995 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
996 		kunmap_atomic(kaddr);
997 		flush_dcache_page(page_out);
998 
999 		*pg_offset += bytes;
1000 		buf_offset += bytes;
1001 		working_bytes -= bytes;
1002 		current_buf_start += bytes;
1003 
1004 		/* check if we need to pick another page */
1005 		if (*pg_offset == PAGE_CACHE_SIZE) {
1006 			(*pg_index)++;
1007 			if (*pg_index >= vcnt)
1008 				return 0;
1009 
1010 			page_out = bvec[*pg_index].bv_page;
1011 			*pg_offset = 0;
1012 			start_byte = page_offset(page_out) - disk_start;
1013 
1014 			/*
1015 			 * make sure our new page is covered by this
1016 			 * working buffer
1017 			 */
1018 			if (total_out <= start_byte)
1019 				return 1;
1020 
1021 			/*
1022 			 * the next page in the biovec might not be adjacent
1023 			 * to the last page, but it might still be found
1024 			 * inside this working buffer. bump our offset pointer
1025 			 */
1026 			if (total_out > start_byte &&
1027 			    current_buf_start < start_byte) {
1028 				buf_offset = start_byte - buf_start;
1029 				working_bytes = total_out - start_byte;
1030 				current_buf_start = buf_start + buf_offset;
1031 			}
1032 		}
1033 	}
1034 
1035 	return 1;
1036 }
1037