xref: /linux/fs/btrfs/compression.c (revision 0a94608f0f7de9b1135ffea3546afe68eafef57f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/kthread.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sched/mm.h>
20 #include <linux/log2.h>
21 #include <crypto/hash.h>
22 #include "misc.h"
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "ordered-data.h"
29 #include "compression.h"
30 #include "extent_io.h"
31 #include "extent_map.h"
32 #include "subpage.h"
33 #include "zoned.h"
34 
35 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
36 
37 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
38 {
39 	switch (type) {
40 	case BTRFS_COMPRESS_ZLIB:
41 	case BTRFS_COMPRESS_LZO:
42 	case BTRFS_COMPRESS_ZSTD:
43 	case BTRFS_COMPRESS_NONE:
44 		return btrfs_compress_types[type];
45 	default:
46 		break;
47 	}
48 
49 	return NULL;
50 }
51 
52 bool btrfs_compress_is_valid_type(const char *str, size_t len)
53 {
54 	int i;
55 
56 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
57 		size_t comp_len = strlen(btrfs_compress_types[i]);
58 
59 		if (len < comp_len)
60 			continue;
61 
62 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
63 			return true;
64 	}
65 	return false;
66 }
67 
68 static int compression_compress_pages(int type, struct list_head *ws,
69                struct address_space *mapping, u64 start, struct page **pages,
70                unsigned long *out_pages, unsigned long *total_in,
71                unsigned long *total_out)
72 {
73 	switch (type) {
74 	case BTRFS_COMPRESS_ZLIB:
75 		return zlib_compress_pages(ws, mapping, start, pages,
76 				out_pages, total_in, total_out);
77 	case BTRFS_COMPRESS_LZO:
78 		return lzo_compress_pages(ws, mapping, start, pages,
79 				out_pages, total_in, total_out);
80 	case BTRFS_COMPRESS_ZSTD:
81 		return zstd_compress_pages(ws, mapping, start, pages,
82 				out_pages, total_in, total_out);
83 	case BTRFS_COMPRESS_NONE:
84 	default:
85 		/*
86 		 * This can happen when compression races with remount setting
87 		 * it to 'no compress', while caller doesn't call
88 		 * inode_need_compress() to check if we really need to
89 		 * compress.
90 		 *
91 		 * Not a big deal, just need to inform caller that we
92 		 * haven't allocated any pages yet.
93 		 */
94 		*out_pages = 0;
95 		return -E2BIG;
96 	}
97 }
98 
99 static int compression_decompress_bio(struct list_head *ws,
100 				      struct compressed_bio *cb)
101 {
102 	switch (cb->compress_type) {
103 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
104 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
105 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
106 	case BTRFS_COMPRESS_NONE:
107 	default:
108 		/*
109 		 * This can't happen, the type is validated several times
110 		 * before we get here.
111 		 */
112 		BUG();
113 	}
114 }
115 
116 static int compression_decompress(int type, struct list_head *ws,
117                unsigned char *data_in, struct page *dest_page,
118                unsigned long start_byte, size_t srclen, size_t destlen)
119 {
120 	switch (type) {
121 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
122 						start_byte, srclen, destlen);
123 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
124 						start_byte, srclen, destlen);
125 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
126 						start_byte, srclen, destlen);
127 	case BTRFS_COMPRESS_NONE:
128 	default:
129 		/*
130 		 * This can't happen, the type is validated several times
131 		 * before we get here.
132 		 */
133 		BUG();
134 	}
135 }
136 
137 static int btrfs_decompress_bio(struct compressed_bio *cb);
138 
139 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 				      unsigned long disk_size)
141 {
142 	return sizeof(struct compressed_bio) +
143 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
144 }
145 
146 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
147 				 u64 disk_start)
148 {
149 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
150 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
151 	const u32 csum_size = fs_info->csum_size;
152 	const u32 sectorsize = fs_info->sectorsize;
153 	struct page *page;
154 	unsigned int i;
155 	char *kaddr;
156 	u8 csum[BTRFS_CSUM_SIZE];
157 	struct compressed_bio *cb = bio->bi_private;
158 	u8 *cb_sum = cb->sums;
159 
160 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
161 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
162 		return 0;
163 
164 	shash->tfm = fs_info->csum_shash;
165 
166 	for (i = 0; i < cb->nr_pages; i++) {
167 		u32 pg_offset;
168 		u32 bytes_left = PAGE_SIZE;
169 		page = cb->compressed_pages[i];
170 
171 		/* Determine the remaining bytes inside the page first */
172 		if (i == cb->nr_pages - 1)
173 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
174 
175 		/* Hash through the page sector by sector */
176 		for (pg_offset = 0; pg_offset < bytes_left;
177 		     pg_offset += sectorsize) {
178 			kaddr = kmap_atomic(page);
179 			crypto_shash_digest(shash, kaddr + pg_offset,
180 					    sectorsize, csum);
181 			kunmap_atomic(kaddr);
182 
183 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
184 				btrfs_print_data_csum_error(inode, disk_start,
185 						csum, cb_sum, cb->mirror_num);
186 				if (btrfs_bio(bio)->device)
187 					btrfs_dev_stat_inc_and_print(
188 						btrfs_bio(bio)->device,
189 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
190 				return -EIO;
191 			}
192 			cb_sum += csum_size;
193 			disk_start += sectorsize;
194 		}
195 	}
196 	return 0;
197 }
198 
199 /*
200  * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
201  *
202  * Return true if there is no pending bio nor io.
203  * Return false otherwise.
204  */
205 static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
206 {
207 	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
208 	unsigned int bi_size = 0;
209 	bool last_io = false;
210 	struct bio_vec *bvec;
211 	struct bvec_iter_all iter_all;
212 
213 	/*
214 	 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
215 	 * Thus here we have to iterate through all segments to grab correct
216 	 * bio size.
217 	 */
218 	bio_for_each_segment_all(bvec, bio, iter_all)
219 		bi_size += bvec->bv_len;
220 
221 	if (bio->bi_status)
222 		cb->status = bio->bi_status;
223 
224 	ASSERT(bi_size && bi_size <= cb->compressed_len);
225 	last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
226 					&cb->pending_sectors);
227 	/*
228 	 * Here we must wake up the possible error handler after all other
229 	 * operations on @cb finished, or we can race with
230 	 * finish_compressed_bio_*() which may free @cb.
231 	 */
232 	wake_up_var(cb);
233 
234 	return last_io;
235 }
236 
237 static void finish_compressed_bio_read(struct compressed_bio *cb)
238 {
239 	unsigned int index;
240 	struct page *page;
241 
242 	/* Release the compressed pages */
243 	for (index = 0; index < cb->nr_pages; index++) {
244 		page = cb->compressed_pages[index];
245 		page->mapping = NULL;
246 		put_page(page);
247 	}
248 
249 	/* Do io completion on the original bio */
250 	if (cb->status != BLK_STS_OK) {
251 		cb->orig_bio->bi_status = cb->status;
252 		bio_endio(cb->orig_bio);
253 	} else {
254 		struct bio_vec *bvec;
255 		struct bvec_iter_all iter_all;
256 
257 		/*
258 		 * We have verified the checksum already, set page checked so
259 		 * the end_io handlers know about it
260 		 */
261 		ASSERT(!bio_flagged(cb->orig_bio, BIO_CLONED));
262 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
263 			u64 bvec_start = page_offset(bvec->bv_page) +
264 					 bvec->bv_offset;
265 
266 			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
267 					bvec->bv_page, bvec_start,
268 					bvec->bv_len);
269 		}
270 
271 		bio_endio(cb->orig_bio);
272 	}
273 
274 	/* Finally free the cb struct */
275 	kfree(cb->compressed_pages);
276 	kfree(cb);
277 }
278 
279 /* when we finish reading compressed pages from the disk, we
280  * decompress them and then run the bio end_io routines on the
281  * decompressed pages (in the inode address space).
282  *
283  * This allows the checksumming and other IO error handling routines
284  * to work normally
285  *
286  * The compressed pages are freed here, and it must be run
287  * in process context
288  */
289 static void end_compressed_bio_read(struct bio *bio)
290 {
291 	struct compressed_bio *cb = bio->bi_private;
292 	struct inode *inode;
293 	unsigned int mirror = btrfs_bio(bio)->mirror_num;
294 	int ret = 0;
295 
296 	if (!dec_and_test_compressed_bio(cb, bio))
297 		goto out;
298 
299 	/*
300 	 * Record the correct mirror_num in cb->orig_bio so that
301 	 * read-repair can work properly.
302 	 */
303 	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
304 	cb->mirror_num = mirror;
305 
306 	/*
307 	 * Some IO in this cb have failed, just skip checksum as there
308 	 * is no way it could be correct.
309 	 */
310 	if (cb->status != BLK_STS_OK)
311 		goto csum_failed;
312 
313 	inode = cb->inode;
314 	ret = check_compressed_csum(BTRFS_I(inode), bio,
315 				    bio->bi_iter.bi_sector << 9);
316 	if (ret)
317 		goto csum_failed;
318 
319 	/* ok, we're the last bio for this extent, lets start
320 	 * the decompression.
321 	 */
322 	ret = btrfs_decompress_bio(cb);
323 
324 csum_failed:
325 	if (ret)
326 		cb->status = errno_to_blk_status(ret);
327 	finish_compressed_bio_read(cb);
328 out:
329 	bio_put(bio);
330 }
331 
332 /*
333  * Clear the writeback bits on all of the file
334  * pages for a compressed write
335  */
336 static noinline void end_compressed_writeback(struct inode *inode,
337 					      const struct compressed_bio *cb)
338 {
339 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
340 	unsigned long index = cb->start >> PAGE_SHIFT;
341 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
342 	struct page *pages[16];
343 	unsigned long nr_pages = end_index - index + 1;
344 	const int errno = blk_status_to_errno(cb->status);
345 	int i;
346 	int ret;
347 
348 	if (errno)
349 		mapping_set_error(inode->i_mapping, errno);
350 
351 	while (nr_pages > 0) {
352 		ret = find_get_pages_contig(inode->i_mapping, index,
353 				     min_t(unsigned long,
354 				     nr_pages, ARRAY_SIZE(pages)), pages);
355 		if (ret == 0) {
356 			nr_pages -= 1;
357 			index += 1;
358 			continue;
359 		}
360 		for (i = 0; i < ret; i++) {
361 			if (errno)
362 				SetPageError(pages[i]);
363 			btrfs_page_clamp_clear_writeback(fs_info, pages[i],
364 							 cb->start, cb->len);
365 			put_page(pages[i]);
366 		}
367 		nr_pages -= ret;
368 		index += ret;
369 	}
370 	/* the inode may be gone now */
371 }
372 
373 static void finish_compressed_bio_write(struct compressed_bio *cb)
374 {
375 	struct inode *inode = cb->inode;
376 	unsigned int index;
377 
378 	/*
379 	 * Ok, we're the last bio for this extent, step one is to call back
380 	 * into the FS and do all the end_io operations.
381 	 */
382 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
383 			cb->start, cb->start + cb->len - 1,
384 			cb->status == BLK_STS_OK);
385 
386 	if (cb->writeback)
387 		end_compressed_writeback(inode, cb);
388 	/* Note, our inode could be gone now */
389 
390 	/*
391 	 * Release the compressed pages, these came from alloc_page and
392 	 * are not attached to the inode at all
393 	 */
394 	for (index = 0; index < cb->nr_pages; index++) {
395 		struct page *page = cb->compressed_pages[index];
396 
397 		page->mapping = NULL;
398 		put_page(page);
399 	}
400 
401 	/* Finally free the cb struct */
402 	kfree(cb->compressed_pages);
403 	kfree(cb);
404 }
405 
406 /*
407  * Do the cleanup once all the compressed pages hit the disk.  This will clear
408  * writeback on the file pages and free the compressed pages.
409  *
410  * This also calls the writeback end hooks for the file pages so that metadata
411  * and checksums can be updated in the file.
412  */
413 static void end_compressed_bio_write(struct bio *bio)
414 {
415 	struct compressed_bio *cb = bio->bi_private;
416 
417 	if (!dec_and_test_compressed_bio(cb, bio))
418 		goto out;
419 
420 	btrfs_record_physical_zoned(cb->inode, cb->start, bio);
421 
422 	finish_compressed_bio_write(cb);
423 out:
424 	bio_put(bio);
425 }
426 
427 static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
428 					  struct compressed_bio *cb,
429 					  struct bio *bio, int mirror_num)
430 {
431 	blk_status_t ret;
432 
433 	ASSERT(bio->bi_iter.bi_size);
434 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
435 	if (ret)
436 		return ret;
437 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
438 	return ret;
439 }
440 
441 /*
442  * Allocate a compressed_bio, which will be used to read/write on-disk
443  * (aka, compressed) * data.
444  *
445  * @cb:                 The compressed_bio structure, which records all the needed
446  *                      information to bind the compressed data to the uncompressed
447  *                      page cache.
448  * @disk_byten:         The logical bytenr where the compressed data will be read
449  *                      from or written to.
450  * @endio_func:         The endio function to call after the IO for compressed data
451  *                      is finished.
452  * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
453  *                      Let the caller know to only fill the bio up to the stripe
454  *                      boundary.
455  */
456 
457 
458 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
459 					unsigned int opf, bio_end_io_t endio_func,
460 					u64 *next_stripe_start)
461 {
462 	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
463 	struct btrfs_io_geometry geom;
464 	struct extent_map *em;
465 	struct bio *bio;
466 	int ret;
467 
468 	bio = btrfs_bio_alloc(BIO_MAX_VECS);
469 
470 	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
471 	bio->bi_opf = opf;
472 	bio->bi_private = cb;
473 	bio->bi_end_io = endio_func;
474 
475 	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
476 	if (IS_ERR(em)) {
477 		bio_put(bio);
478 		return ERR_CAST(em);
479 	}
480 
481 	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
482 		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
483 
484 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
485 	free_extent_map(em);
486 	if (ret < 0) {
487 		bio_put(bio);
488 		return ERR_PTR(ret);
489 	}
490 	*next_stripe_start = disk_bytenr + geom.len;
491 
492 	return bio;
493 }
494 
495 /*
496  * worker function to build and submit bios for previously compressed pages.
497  * The corresponding pages in the inode should be marked for writeback
498  * and the compressed pages should have a reference on them for dropping
499  * when the IO is complete.
500  *
501  * This also checksums the file bytes and gets things ready for
502  * the end io hooks.
503  */
504 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
505 				 unsigned int len, u64 disk_start,
506 				 unsigned int compressed_len,
507 				 struct page **compressed_pages,
508 				 unsigned int nr_pages,
509 				 unsigned int write_flags,
510 				 struct cgroup_subsys_state *blkcg_css,
511 				 bool writeback)
512 {
513 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
514 	struct bio *bio = NULL;
515 	struct compressed_bio *cb;
516 	u64 cur_disk_bytenr = disk_start;
517 	u64 next_stripe_start;
518 	blk_status_t ret;
519 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
520 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
521 	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
522 
523 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
524 	       IS_ALIGNED(len, fs_info->sectorsize));
525 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
526 	if (!cb)
527 		return BLK_STS_RESOURCE;
528 	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
529 	cb->status = BLK_STS_OK;
530 	cb->inode = &inode->vfs_inode;
531 	cb->start = start;
532 	cb->len = len;
533 	cb->mirror_num = 0;
534 	cb->compressed_pages = compressed_pages;
535 	cb->compressed_len = compressed_len;
536 	cb->writeback = writeback;
537 	cb->orig_bio = NULL;
538 	cb->nr_pages = nr_pages;
539 
540 	if (blkcg_css)
541 		kthread_associate_blkcg(blkcg_css);
542 
543 	while (cur_disk_bytenr < disk_start + compressed_len) {
544 		u64 offset = cur_disk_bytenr - disk_start;
545 		unsigned int index = offset >> PAGE_SHIFT;
546 		unsigned int real_size;
547 		unsigned int added;
548 		struct page *page = compressed_pages[index];
549 		bool submit = false;
550 
551 		/* Allocate new bio if submitted or not yet allocated */
552 		if (!bio) {
553 			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
554 				bio_op | write_flags, end_compressed_bio_write,
555 				&next_stripe_start);
556 			if (IS_ERR(bio)) {
557 				ret = errno_to_blk_status(PTR_ERR(bio));
558 				bio = NULL;
559 				goto finish_cb;
560 			}
561 			if (blkcg_css)
562 				bio->bi_opf |= REQ_CGROUP_PUNT;
563 		}
564 		/*
565 		 * We should never reach next_stripe_start start as we will
566 		 * submit comp_bio when reach the boundary immediately.
567 		 */
568 		ASSERT(cur_disk_bytenr != next_stripe_start);
569 
570 		/*
571 		 * We have various limits on the real read size:
572 		 * - stripe boundary
573 		 * - page boundary
574 		 * - compressed length boundary
575 		 */
576 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
577 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
578 		real_size = min_t(u64, real_size, compressed_len - offset);
579 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
580 
581 		if (use_append)
582 			added = bio_add_zone_append_page(bio, page, real_size,
583 					offset_in_page(offset));
584 		else
585 			added = bio_add_page(bio, page, real_size,
586 					offset_in_page(offset));
587 		/* Reached zoned boundary */
588 		if (added == 0)
589 			submit = true;
590 
591 		cur_disk_bytenr += added;
592 		/* Reached stripe boundary */
593 		if (cur_disk_bytenr == next_stripe_start)
594 			submit = true;
595 
596 		/* Finished the range */
597 		if (cur_disk_bytenr == disk_start + compressed_len)
598 			submit = true;
599 
600 		if (submit) {
601 			if (!skip_sum) {
602 				ret = btrfs_csum_one_bio(inode, bio, start, true);
603 				if (ret)
604 					goto finish_cb;
605 			}
606 
607 			ret = submit_compressed_bio(fs_info, cb, bio, 0);
608 			if (ret)
609 				goto finish_cb;
610 			bio = NULL;
611 		}
612 		cond_resched();
613 	}
614 	if (blkcg_css)
615 		kthread_associate_blkcg(NULL);
616 
617 	return 0;
618 
619 finish_cb:
620 	if (blkcg_css)
621 		kthread_associate_blkcg(NULL);
622 
623 	if (bio) {
624 		bio->bi_status = ret;
625 		bio_endio(bio);
626 	}
627 	/* Last byte of @cb is submitted, endio will free @cb */
628 	if (cur_disk_bytenr == disk_start + compressed_len)
629 		return ret;
630 
631 	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
632 			   (disk_start + compressed_len - cur_disk_bytenr) >>
633 			   fs_info->sectorsize_bits);
634 	/*
635 	 * Even with previous bio ended, we should still have io not yet
636 	 * submitted, thus need to finish manually.
637 	 */
638 	ASSERT(refcount_read(&cb->pending_sectors));
639 	/* Now we are the only one referring @cb, can finish it safely. */
640 	finish_compressed_bio_write(cb);
641 	return ret;
642 }
643 
644 static u64 bio_end_offset(struct bio *bio)
645 {
646 	struct bio_vec *last = bio_last_bvec_all(bio);
647 
648 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
649 }
650 
651 /*
652  * Add extra pages in the same compressed file extent so that we don't need to
653  * re-read the same extent again and again.
654  *
655  * NOTE: this won't work well for subpage, as for subpage read, we lock the
656  * full page then submit bio for each compressed/regular extents.
657  *
658  * This means, if we have several sectors in the same page points to the same
659  * on-disk compressed data, we will re-read the same extent many times and
660  * this function can only help for the next page.
661  */
662 static noinline int add_ra_bio_pages(struct inode *inode,
663 				     u64 compressed_end,
664 				     struct compressed_bio *cb)
665 {
666 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
667 	unsigned long end_index;
668 	u64 cur = bio_end_offset(cb->orig_bio);
669 	u64 isize = i_size_read(inode);
670 	int ret;
671 	struct page *page;
672 	struct extent_map *em;
673 	struct address_space *mapping = inode->i_mapping;
674 	struct extent_map_tree *em_tree;
675 	struct extent_io_tree *tree;
676 	int sectors_missed = 0;
677 
678 	em_tree = &BTRFS_I(inode)->extent_tree;
679 	tree = &BTRFS_I(inode)->io_tree;
680 
681 	if (isize == 0)
682 		return 0;
683 
684 	/*
685 	 * For current subpage support, we only support 64K page size,
686 	 * which means maximum compressed extent size (128K) is just 2x page
687 	 * size.
688 	 * This makes readahead less effective, so here disable readahead for
689 	 * subpage for now, until full compressed write is supported.
690 	 */
691 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
692 		return 0;
693 
694 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
695 
696 	while (cur < compressed_end) {
697 		u64 page_end;
698 		u64 pg_index = cur >> PAGE_SHIFT;
699 		u32 add_size;
700 
701 		if (pg_index > end_index)
702 			break;
703 
704 		page = xa_load(&mapping->i_pages, pg_index);
705 		if (page && !xa_is_value(page)) {
706 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
707 					  fs_info->sectorsize_bits;
708 
709 			/* Beyond threshold, no need to continue */
710 			if (sectors_missed > 4)
711 				break;
712 
713 			/*
714 			 * Jump to next page start as we already have page for
715 			 * current offset.
716 			 */
717 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
718 			continue;
719 		}
720 
721 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
722 								 ~__GFP_FS));
723 		if (!page)
724 			break;
725 
726 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
727 			put_page(page);
728 			/* There is already a page, skip to page end */
729 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
730 			continue;
731 		}
732 
733 		ret = set_page_extent_mapped(page);
734 		if (ret < 0) {
735 			unlock_page(page);
736 			put_page(page);
737 			break;
738 		}
739 
740 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
741 		lock_extent(tree, cur, page_end);
742 		read_lock(&em_tree->lock);
743 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
744 		read_unlock(&em_tree->lock);
745 
746 		/*
747 		 * At this point, we have a locked page in the page cache for
748 		 * these bytes in the file.  But, we have to make sure they map
749 		 * to this compressed extent on disk.
750 		 */
751 		if (!em || cur < em->start ||
752 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
753 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
754 			free_extent_map(em);
755 			unlock_extent(tree, cur, page_end);
756 			unlock_page(page);
757 			put_page(page);
758 			break;
759 		}
760 		free_extent_map(em);
761 
762 		if (page->index == end_index) {
763 			size_t zero_offset = offset_in_page(isize);
764 
765 			if (zero_offset) {
766 				int zeros;
767 				zeros = PAGE_SIZE - zero_offset;
768 				memzero_page(page, zero_offset, zeros);
769 				flush_dcache_page(page);
770 			}
771 		}
772 
773 		add_size = min(em->start + em->len, page_end + 1) - cur;
774 		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
775 		if (ret != add_size) {
776 			unlock_extent(tree, cur, page_end);
777 			unlock_page(page);
778 			put_page(page);
779 			break;
780 		}
781 		/*
782 		 * If it's subpage, we also need to increase its
783 		 * subpage::readers number, as at endio we will decrease
784 		 * subpage::readers and to unlock the page.
785 		 */
786 		if (fs_info->sectorsize < PAGE_SIZE)
787 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
788 		put_page(page);
789 		cur += add_size;
790 	}
791 	return 0;
792 }
793 
794 /*
795  * for a compressed read, the bio we get passed has all the inode pages
796  * in it.  We don't actually do IO on those pages but allocate new ones
797  * to hold the compressed pages on disk.
798  *
799  * bio->bi_iter.bi_sector points to the compressed extent on disk
800  * bio->bi_io_vec points to all of the inode pages
801  *
802  * After the compressed pages are read, we copy the bytes into the
803  * bio we were passed and then call the bio end_io calls
804  */
805 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
806 				 int mirror_num, unsigned long bio_flags)
807 {
808 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
809 	struct extent_map_tree *em_tree;
810 	struct compressed_bio *cb;
811 	unsigned int compressed_len;
812 	unsigned int nr_pages;
813 	unsigned int pg_index;
814 	struct bio *comp_bio = NULL;
815 	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
816 	u64 cur_disk_byte = disk_bytenr;
817 	u64 next_stripe_start;
818 	u64 file_offset;
819 	u64 em_len;
820 	u64 em_start;
821 	struct extent_map *em;
822 	blk_status_t ret;
823 	int faili = 0;
824 	u8 *sums;
825 
826 	em_tree = &BTRFS_I(inode)->extent_tree;
827 
828 	file_offset = bio_first_bvec_all(bio)->bv_offset +
829 		      page_offset(bio_first_page_all(bio));
830 
831 	/* we need the actual starting offset of this extent in the file */
832 	read_lock(&em_tree->lock);
833 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
834 	read_unlock(&em_tree->lock);
835 	if (!em) {
836 		ret = BLK_STS_IOERR;
837 		goto out;
838 	}
839 
840 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
841 	compressed_len = em->block_len;
842 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
843 	if (!cb) {
844 		ret = BLK_STS_RESOURCE;
845 		goto out;
846 	}
847 
848 	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
849 	cb->status = BLK_STS_OK;
850 	cb->inode = inode;
851 	cb->mirror_num = mirror_num;
852 	sums = cb->sums;
853 
854 	cb->start = em->orig_start;
855 	em_len = em->len;
856 	em_start = em->start;
857 
858 	free_extent_map(em);
859 	em = NULL;
860 
861 	cb->len = bio->bi_iter.bi_size;
862 	cb->compressed_len = compressed_len;
863 	cb->compress_type = extent_compress_type(bio_flags);
864 	cb->orig_bio = bio;
865 
866 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
867 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
868 				       GFP_NOFS);
869 	if (!cb->compressed_pages) {
870 		ret = BLK_STS_RESOURCE;
871 		goto fail1;
872 	}
873 
874 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
875 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
876 		if (!cb->compressed_pages[pg_index]) {
877 			faili = pg_index - 1;
878 			ret = BLK_STS_RESOURCE;
879 			goto fail2;
880 		}
881 	}
882 	faili = nr_pages - 1;
883 	cb->nr_pages = nr_pages;
884 
885 	add_ra_bio_pages(inode, em_start + em_len, cb);
886 
887 	/* include any pages we added in add_ra-bio_pages */
888 	cb->len = bio->bi_iter.bi_size;
889 
890 	while (cur_disk_byte < disk_bytenr + compressed_len) {
891 		u64 offset = cur_disk_byte - disk_bytenr;
892 		unsigned int index = offset >> PAGE_SHIFT;
893 		unsigned int real_size;
894 		unsigned int added;
895 		struct page *page = cb->compressed_pages[index];
896 		bool submit = false;
897 
898 		/* Allocate new bio if submitted or not yet allocated */
899 		if (!comp_bio) {
900 			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
901 					REQ_OP_READ, end_compressed_bio_read,
902 					&next_stripe_start);
903 			if (IS_ERR(comp_bio)) {
904 				ret = errno_to_blk_status(PTR_ERR(comp_bio));
905 				comp_bio = NULL;
906 				goto finish_cb;
907 			}
908 		}
909 		/*
910 		 * We should never reach next_stripe_start start as we will
911 		 * submit comp_bio when reach the boundary immediately.
912 		 */
913 		ASSERT(cur_disk_byte != next_stripe_start);
914 		/*
915 		 * We have various limit on the real read size:
916 		 * - stripe boundary
917 		 * - page boundary
918 		 * - compressed length boundary
919 		 */
920 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
921 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
922 		real_size = min_t(u64, real_size, compressed_len - offset);
923 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
924 
925 		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
926 		/*
927 		 * Maximum compressed extent is smaller than bio size limit,
928 		 * thus bio_add_page() should always success.
929 		 */
930 		ASSERT(added == real_size);
931 		cur_disk_byte += added;
932 
933 		/* Reached stripe boundary, need to submit */
934 		if (cur_disk_byte == next_stripe_start)
935 			submit = true;
936 
937 		/* Has finished the range, need to submit */
938 		if (cur_disk_byte == disk_bytenr + compressed_len)
939 			submit = true;
940 
941 		if (submit) {
942 			unsigned int nr_sectors;
943 
944 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
945 			if (ret)
946 				goto finish_cb;
947 
948 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
949 						  fs_info->sectorsize);
950 			sums += fs_info->csum_size * nr_sectors;
951 
952 			ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num);
953 			if (ret)
954 				goto finish_cb;
955 			comp_bio = NULL;
956 		}
957 	}
958 	return BLK_STS_OK;
959 
960 fail2:
961 	while (faili >= 0) {
962 		__free_page(cb->compressed_pages[faili]);
963 		faili--;
964 	}
965 
966 	kfree(cb->compressed_pages);
967 fail1:
968 	kfree(cb);
969 out:
970 	free_extent_map(em);
971 	bio->bi_status = ret;
972 	bio_endio(bio);
973 	return ret;
974 finish_cb:
975 	if (comp_bio) {
976 		comp_bio->bi_status = ret;
977 		bio_endio(comp_bio);
978 	}
979 	/* All bytes of @cb is submitted, endio will free @cb */
980 	if (cur_disk_byte == disk_bytenr + compressed_len)
981 		return ret;
982 
983 	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
984 			   (disk_bytenr + compressed_len - cur_disk_byte) >>
985 			   fs_info->sectorsize_bits);
986 	/*
987 	 * Even with previous bio ended, we should still have io not yet
988 	 * submitted, thus need to finish @cb manually.
989 	 */
990 	ASSERT(refcount_read(&cb->pending_sectors));
991 	/* Now we are the only one referring @cb, can finish it safely. */
992 	finish_compressed_bio_read(cb);
993 	return ret;
994 }
995 
996 /*
997  * Heuristic uses systematic sampling to collect data from the input data
998  * range, the logic can be tuned by the following constants:
999  *
1000  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
1001  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
1002  */
1003 #define SAMPLING_READ_SIZE	(16)
1004 #define SAMPLING_INTERVAL	(256)
1005 
1006 /*
1007  * For statistical analysis of the input data we consider bytes that form a
1008  * Galois Field of 256 objects. Each object has an attribute count, ie. how
1009  * many times the object appeared in the sample.
1010  */
1011 #define BUCKET_SIZE		(256)
1012 
1013 /*
1014  * The size of the sample is based on a statistical sampling rule of thumb.
1015  * The common way is to perform sampling tests as long as the number of
1016  * elements in each cell is at least 5.
1017  *
1018  * Instead of 5, we choose 32 to obtain more accurate results.
1019  * If the data contain the maximum number of symbols, which is 256, we obtain a
1020  * sample size bound by 8192.
1021  *
1022  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
1023  * from up to 512 locations.
1024  */
1025 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
1026 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
1027 
1028 struct bucket_item {
1029 	u32 count;
1030 };
1031 
1032 struct heuristic_ws {
1033 	/* Partial copy of input data */
1034 	u8 *sample;
1035 	u32 sample_size;
1036 	/* Buckets store counters for each byte value */
1037 	struct bucket_item *bucket;
1038 	/* Sorting buffer */
1039 	struct bucket_item *bucket_b;
1040 	struct list_head list;
1041 };
1042 
1043 static struct workspace_manager heuristic_wsm;
1044 
1045 static void free_heuristic_ws(struct list_head *ws)
1046 {
1047 	struct heuristic_ws *workspace;
1048 
1049 	workspace = list_entry(ws, struct heuristic_ws, list);
1050 
1051 	kvfree(workspace->sample);
1052 	kfree(workspace->bucket);
1053 	kfree(workspace->bucket_b);
1054 	kfree(workspace);
1055 }
1056 
1057 static struct list_head *alloc_heuristic_ws(unsigned int level)
1058 {
1059 	struct heuristic_ws *ws;
1060 
1061 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
1062 	if (!ws)
1063 		return ERR_PTR(-ENOMEM);
1064 
1065 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
1066 	if (!ws->sample)
1067 		goto fail;
1068 
1069 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
1070 	if (!ws->bucket)
1071 		goto fail;
1072 
1073 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
1074 	if (!ws->bucket_b)
1075 		goto fail;
1076 
1077 	INIT_LIST_HEAD(&ws->list);
1078 	return &ws->list;
1079 fail:
1080 	free_heuristic_ws(&ws->list);
1081 	return ERR_PTR(-ENOMEM);
1082 }
1083 
1084 const struct btrfs_compress_op btrfs_heuristic_compress = {
1085 	.workspace_manager = &heuristic_wsm,
1086 };
1087 
1088 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1089 	/* The heuristic is represented as compression type 0 */
1090 	&btrfs_heuristic_compress,
1091 	&btrfs_zlib_compress,
1092 	&btrfs_lzo_compress,
1093 	&btrfs_zstd_compress,
1094 };
1095 
1096 static struct list_head *alloc_workspace(int type, unsigned int level)
1097 {
1098 	switch (type) {
1099 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
1100 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
1101 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
1102 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
1103 	default:
1104 		/*
1105 		 * This can't happen, the type is validated several times
1106 		 * before we get here.
1107 		 */
1108 		BUG();
1109 	}
1110 }
1111 
1112 static void free_workspace(int type, struct list_head *ws)
1113 {
1114 	switch (type) {
1115 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
1116 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
1117 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
1118 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
1119 	default:
1120 		/*
1121 		 * This can't happen, the type is validated several times
1122 		 * before we get here.
1123 		 */
1124 		BUG();
1125 	}
1126 }
1127 
1128 static void btrfs_init_workspace_manager(int type)
1129 {
1130 	struct workspace_manager *wsm;
1131 	struct list_head *workspace;
1132 
1133 	wsm = btrfs_compress_op[type]->workspace_manager;
1134 	INIT_LIST_HEAD(&wsm->idle_ws);
1135 	spin_lock_init(&wsm->ws_lock);
1136 	atomic_set(&wsm->total_ws, 0);
1137 	init_waitqueue_head(&wsm->ws_wait);
1138 
1139 	/*
1140 	 * Preallocate one workspace for each compression type so we can
1141 	 * guarantee forward progress in the worst case
1142 	 */
1143 	workspace = alloc_workspace(type, 0);
1144 	if (IS_ERR(workspace)) {
1145 		pr_warn(
1146 	"BTRFS: cannot preallocate compression workspace, will try later\n");
1147 	} else {
1148 		atomic_set(&wsm->total_ws, 1);
1149 		wsm->free_ws = 1;
1150 		list_add(workspace, &wsm->idle_ws);
1151 	}
1152 }
1153 
1154 static void btrfs_cleanup_workspace_manager(int type)
1155 {
1156 	struct workspace_manager *wsman;
1157 	struct list_head *ws;
1158 
1159 	wsman = btrfs_compress_op[type]->workspace_manager;
1160 	while (!list_empty(&wsman->idle_ws)) {
1161 		ws = wsman->idle_ws.next;
1162 		list_del(ws);
1163 		free_workspace(type, ws);
1164 		atomic_dec(&wsman->total_ws);
1165 	}
1166 }
1167 
1168 /*
1169  * This finds an available workspace or allocates a new one.
1170  * If it's not possible to allocate a new one, waits until there's one.
1171  * Preallocation makes a forward progress guarantees and we do not return
1172  * errors.
1173  */
1174 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1175 {
1176 	struct workspace_manager *wsm;
1177 	struct list_head *workspace;
1178 	int cpus = num_online_cpus();
1179 	unsigned nofs_flag;
1180 	struct list_head *idle_ws;
1181 	spinlock_t *ws_lock;
1182 	atomic_t *total_ws;
1183 	wait_queue_head_t *ws_wait;
1184 	int *free_ws;
1185 
1186 	wsm = btrfs_compress_op[type]->workspace_manager;
1187 	idle_ws	 = &wsm->idle_ws;
1188 	ws_lock	 = &wsm->ws_lock;
1189 	total_ws = &wsm->total_ws;
1190 	ws_wait	 = &wsm->ws_wait;
1191 	free_ws	 = &wsm->free_ws;
1192 
1193 again:
1194 	spin_lock(ws_lock);
1195 	if (!list_empty(idle_ws)) {
1196 		workspace = idle_ws->next;
1197 		list_del(workspace);
1198 		(*free_ws)--;
1199 		spin_unlock(ws_lock);
1200 		return workspace;
1201 
1202 	}
1203 	if (atomic_read(total_ws) > cpus) {
1204 		DEFINE_WAIT(wait);
1205 
1206 		spin_unlock(ws_lock);
1207 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1208 		if (atomic_read(total_ws) > cpus && !*free_ws)
1209 			schedule();
1210 		finish_wait(ws_wait, &wait);
1211 		goto again;
1212 	}
1213 	atomic_inc(total_ws);
1214 	spin_unlock(ws_lock);
1215 
1216 	/*
1217 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1218 	 * to turn it off here because we might get called from the restricted
1219 	 * context of btrfs_compress_bio/btrfs_compress_pages
1220 	 */
1221 	nofs_flag = memalloc_nofs_save();
1222 	workspace = alloc_workspace(type, level);
1223 	memalloc_nofs_restore(nofs_flag);
1224 
1225 	if (IS_ERR(workspace)) {
1226 		atomic_dec(total_ws);
1227 		wake_up(ws_wait);
1228 
1229 		/*
1230 		 * Do not return the error but go back to waiting. There's a
1231 		 * workspace preallocated for each type and the compression
1232 		 * time is bounded so we get to a workspace eventually. This
1233 		 * makes our caller's life easier.
1234 		 *
1235 		 * To prevent silent and low-probability deadlocks (when the
1236 		 * initial preallocation fails), check if there are any
1237 		 * workspaces at all.
1238 		 */
1239 		if (atomic_read(total_ws) == 0) {
1240 			static DEFINE_RATELIMIT_STATE(_rs,
1241 					/* once per minute */ 60 * HZ,
1242 					/* no burst */ 1);
1243 
1244 			if (__ratelimit(&_rs)) {
1245 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1246 			}
1247 		}
1248 		goto again;
1249 	}
1250 	return workspace;
1251 }
1252 
1253 static struct list_head *get_workspace(int type, int level)
1254 {
1255 	switch (type) {
1256 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1257 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1258 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1259 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1260 	default:
1261 		/*
1262 		 * This can't happen, the type is validated several times
1263 		 * before we get here.
1264 		 */
1265 		BUG();
1266 	}
1267 }
1268 
1269 /*
1270  * put a workspace struct back on the list or free it if we have enough
1271  * idle ones sitting around
1272  */
1273 void btrfs_put_workspace(int type, struct list_head *ws)
1274 {
1275 	struct workspace_manager *wsm;
1276 	struct list_head *idle_ws;
1277 	spinlock_t *ws_lock;
1278 	atomic_t *total_ws;
1279 	wait_queue_head_t *ws_wait;
1280 	int *free_ws;
1281 
1282 	wsm = btrfs_compress_op[type]->workspace_manager;
1283 	idle_ws	 = &wsm->idle_ws;
1284 	ws_lock	 = &wsm->ws_lock;
1285 	total_ws = &wsm->total_ws;
1286 	ws_wait	 = &wsm->ws_wait;
1287 	free_ws	 = &wsm->free_ws;
1288 
1289 	spin_lock(ws_lock);
1290 	if (*free_ws <= num_online_cpus()) {
1291 		list_add(ws, idle_ws);
1292 		(*free_ws)++;
1293 		spin_unlock(ws_lock);
1294 		goto wake;
1295 	}
1296 	spin_unlock(ws_lock);
1297 
1298 	free_workspace(type, ws);
1299 	atomic_dec(total_ws);
1300 wake:
1301 	cond_wake_up(ws_wait);
1302 }
1303 
1304 static void put_workspace(int type, struct list_head *ws)
1305 {
1306 	switch (type) {
1307 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1308 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1309 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1310 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1311 	default:
1312 		/*
1313 		 * This can't happen, the type is validated several times
1314 		 * before we get here.
1315 		 */
1316 		BUG();
1317 	}
1318 }
1319 
1320 /*
1321  * Adjust @level according to the limits of the compression algorithm or
1322  * fallback to default
1323  */
1324 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1325 {
1326 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1327 
1328 	if (level == 0)
1329 		level = ops->default_level;
1330 	else
1331 		level = min(level, ops->max_level);
1332 
1333 	return level;
1334 }
1335 
1336 /*
1337  * Given an address space and start and length, compress the bytes into @pages
1338  * that are allocated on demand.
1339  *
1340  * @type_level is encoded algorithm and level, where level 0 means whatever
1341  * default the algorithm chooses and is opaque here;
1342  * - compression algo are 0-3
1343  * - the level are bits 4-7
1344  *
1345  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1346  * and returns number of actually allocated pages
1347  *
1348  * @total_in is used to return the number of bytes actually read.  It
1349  * may be smaller than the input length if we had to exit early because we
1350  * ran out of room in the pages array or because we cross the
1351  * max_out threshold.
1352  *
1353  * @total_out is an in/out parameter, must be set to the input length and will
1354  * be also used to return the total number of compressed bytes
1355  */
1356 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1357 			 u64 start, struct page **pages,
1358 			 unsigned long *out_pages,
1359 			 unsigned long *total_in,
1360 			 unsigned long *total_out)
1361 {
1362 	int type = btrfs_compress_type(type_level);
1363 	int level = btrfs_compress_level(type_level);
1364 	struct list_head *workspace;
1365 	int ret;
1366 
1367 	level = btrfs_compress_set_level(type, level);
1368 	workspace = get_workspace(type, level);
1369 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1370 					 out_pages, total_in, total_out);
1371 	put_workspace(type, workspace);
1372 	return ret;
1373 }
1374 
1375 static int btrfs_decompress_bio(struct compressed_bio *cb)
1376 {
1377 	struct list_head *workspace;
1378 	int ret;
1379 	int type = cb->compress_type;
1380 
1381 	workspace = get_workspace(type, 0);
1382 	ret = compression_decompress_bio(workspace, cb);
1383 	put_workspace(type, workspace);
1384 
1385 	return ret;
1386 }
1387 
1388 /*
1389  * a less complex decompression routine.  Our compressed data fits in a
1390  * single page, and we want to read a single page out of it.
1391  * start_byte tells us the offset into the compressed data we're interested in
1392  */
1393 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1394 		     unsigned long start_byte, size_t srclen, size_t destlen)
1395 {
1396 	struct list_head *workspace;
1397 	int ret;
1398 
1399 	workspace = get_workspace(type, 0);
1400 	ret = compression_decompress(type, workspace, data_in, dest_page,
1401 				     start_byte, srclen, destlen);
1402 	put_workspace(type, workspace);
1403 
1404 	return ret;
1405 }
1406 
1407 void __init btrfs_init_compress(void)
1408 {
1409 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1410 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1411 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1412 	zstd_init_workspace_manager();
1413 }
1414 
1415 void __cold btrfs_exit_compress(void)
1416 {
1417 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1418 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1419 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1420 	zstd_cleanup_workspace_manager();
1421 }
1422 
1423 /*
1424  * Copy decompressed data from working buffer to pages.
1425  *
1426  * @buf:		The decompressed data buffer
1427  * @buf_len:		The decompressed data length
1428  * @decompressed:	Number of bytes that are already decompressed inside the
1429  * 			compressed extent
1430  * @cb:			The compressed extent descriptor
1431  * @orig_bio:		The original bio that the caller wants to read for
1432  *
1433  * An easier to understand graph is like below:
1434  *
1435  * 		|<- orig_bio ->|     |<- orig_bio->|
1436  * 	|<-------      full decompressed extent      ----->|
1437  * 	|<-----------    @cb range   ---->|
1438  * 	|			|<-- @buf_len -->|
1439  * 	|<--- @decompressed --->|
1440  *
1441  * Note that, @cb can be a subpage of the full decompressed extent, but
1442  * @cb->start always has the same as the orig_file_offset value of the full
1443  * decompressed extent.
1444  *
1445  * When reading compressed extent, we have to read the full compressed extent,
1446  * while @orig_bio may only want part of the range.
1447  * Thus this function will ensure only data covered by @orig_bio will be copied
1448  * to.
1449  *
1450  * Return 0 if we have copied all needed contents for @orig_bio.
1451  * Return >0 if we need continue decompress.
1452  */
1453 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1454 			      struct compressed_bio *cb, u32 decompressed)
1455 {
1456 	struct bio *orig_bio = cb->orig_bio;
1457 	/* Offset inside the full decompressed extent */
1458 	u32 cur_offset;
1459 
1460 	cur_offset = decompressed;
1461 	/* The main loop to do the copy */
1462 	while (cur_offset < decompressed + buf_len) {
1463 		struct bio_vec bvec;
1464 		size_t copy_len;
1465 		u32 copy_start;
1466 		/* Offset inside the full decompressed extent */
1467 		u32 bvec_offset;
1468 
1469 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1470 		/*
1471 		 * cb->start may underflow, but subtracting that value can still
1472 		 * give us correct offset inside the full decompressed extent.
1473 		 */
1474 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1475 
1476 		/* Haven't reached the bvec range, exit */
1477 		if (decompressed + buf_len <= bvec_offset)
1478 			return 1;
1479 
1480 		copy_start = max(cur_offset, bvec_offset);
1481 		copy_len = min(bvec_offset + bvec.bv_len,
1482 			       decompressed + buf_len) - copy_start;
1483 		ASSERT(copy_len);
1484 
1485 		/*
1486 		 * Extra range check to ensure we didn't go beyond
1487 		 * @buf + @buf_len.
1488 		 */
1489 		ASSERT(copy_start - decompressed < buf_len);
1490 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1491 			       buf + copy_start - decompressed, copy_len);
1492 		flush_dcache_page(bvec.bv_page);
1493 		cur_offset += copy_len;
1494 
1495 		bio_advance(orig_bio, copy_len);
1496 		/* Finished the bio */
1497 		if (!orig_bio->bi_iter.bi_size)
1498 			return 0;
1499 	}
1500 	return 1;
1501 }
1502 
1503 /*
1504  * Shannon Entropy calculation
1505  *
1506  * Pure byte distribution analysis fails to determine compressibility of data.
1507  * Try calculating entropy to estimate the average minimum number of bits
1508  * needed to encode the sampled data.
1509  *
1510  * For convenience, return the percentage of needed bits, instead of amount of
1511  * bits directly.
1512  *
1513  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1514  *			    and can be compressible with high probability
1515  *
1516  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1517  *
1518  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1519  */
1520 #define ENTROPY_LVL_ACEPTABLE		(65)
1521 #define ENTROPY_LVL_HIGH		(80)
1522 
1523 /*
1524  * For increasead precision in shannon_entropy calculation,
1525  * let's do pow(n, M) to save more digits after comma:
1526  *
1527  * - maximum int bit length is 64
1528  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1529  * - 13 * 4 = 52 < 64		-> M = 4
1530  *
1531  * So use pow(n, 4).
1532  */
1533 static inline u32 ilog2_w(u64 n)
1534 {
1535 	return ilog2(n * n * n * n);
1536 }
1537 
1538 static u32 shannon_entropy(struct heuristic_ws *ws)
1539 {
1540 	const u32 entropy_max = 8 * ilog2_w(2);
1541 	u32 entropy_sum = 0;
1542 	u32 p, p_base, sz_base;
1543 	u32 i;
1544 
1545 	sz_base = ilog2_w(ws->sample_size);
1546 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1547 		p = ws->bucket[i].count;
1548 		p_base = ilog2_w(p);
1549 		entropy_sum += p * (sz_base - p_base);
1550 	}
1551 
1552 	entropy_sum /= ws->sample_size;
1553 	return entropy_sum * 100 / entropy_max;
1554 }
1555 
1556 #define RADIX_BASE		4U
1557 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1558 
1559 static u8 get4bits(u64 num, int shift) {
1560 	u8 low4bits;
1561 
1562 	num >>= shift;
1563 	/* Reverse order */
1564 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1565 	return low4bits;
1566 }
1567 
1568 /*
1569  * Use 4 bits as radix base
1570  * Use 16 u32 counters for calculating new position in buf array
1571  *
1572  * @array     - array that will be sorted
1573  * @array_buf - buffer array to store sorting results
1574  *              must be equal in size to @array
1575  * @num       - array size
1576  */
1577 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1578 		       int num)
1579 {
1580 	u64 max_num;
1581 	u64 buf_num;
1582 	u32 counters[COUNTERS_SIZE];
1583 	u32 new_addr;
1584 	u32 addr;
1585 	int bitlen;
1586 	int shift;
1587 	int i;
1588 
1589 	/*
1590 	 * Try avoid useless loop iterations for small numbers stored in big
1591 	 * counters.  Example: 48 33 4 ... in 64bit array
1592 	 */
1593 	max_num = array[0].count;
1594 	for (i = 1; i < num; i++) {
1595 		buf_num = array[i].count;
1596 		if (buf_num > max_num)
1597 			max_num = buf_num;
1598 	}
1599 
1600 	buf_num = ilog2(max_num);
1601 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1602 
1603 	shift = 0;
1604 	while (shift < bitlen) {
1605 		memset(counters, 0, sizeof(counters));
1606 
1607 		for (i = 0; i < num; i++) {
1608 			buf_num = array[i].count;
1609 			addr = get4bits(buf_num, shift);
1610 			counters[addr]++;
1611 		}
1612 
1613 		for (i = 1; i < COUNTERS_SIZE; i++)
1614 			counters[i] += counters[i - 1];
1615 
1616 		for (i = num - 1; i >= 0; i--) {
1617 			buf_num = array[i].count;
1618 			addr = get4bits(buf_num, shift);
1619 			counters[addr]--;
1620 			new_addr = counters[addr];
1621 			array_buf[new_addr] = array[i];
1622 		}
1623 
1624 		shift += RADIX_BASE;
1625 
1626 		/*
1627 		 * Normal radix expects to move data from a temporary array, to
1628 		 * the main one.  But that requires some CPU time. Avoid that
1629 		 * by doing another sort iteration to original array instead of
1630 		 * memcpy()
1631 		 */
1632 		memset(counters, 0, sizeof(counters));
1633 
1634 		for (i = 0; i < num; i ++) {
1635 			buf_num = array_buf[i].count;
1636 			addr = get4bits(buf_num, shift);
1637 			counters[addr]++;
1638 		}
1639 
1640 		for (i = 1; i < COUNTERS_SIZE; i++)
1641 			counters[i] += counters[i - 1];
1642 
1643 		for (i = num - 1; i >= 0; i--) {
1644 			buf_num = array_buf[i].count;
1645 			addr = get4bits(buf_num, shift);
1646 			counters[addr]--;
1647 			new_addr = counters[addr];
1648 			array[new_addr] = array_buf[i];
1649 		}
1650 
1651 		shift += RADIX_BASE;
1652 	}
1653 }
1654 
1655 /*
1656  * Size of the core byte set - how many bytes cover 90% of the sample
1657  *
1658  * There are several types of structured binary data that use nearly all byte
1659  * values. The distribution can be uniform and counts in all buckets will be
1660  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1661  *
1662  * Other possibility is normal (Gaussian) distribution, where the data could
1663  * be potentially compressible, but we have to take a few more steps to decide
1664  * how much.
1665  *
1666  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1667  *                       compression algo can easy fix that
1668  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1669  *                       probability is not compressible
1670  */
1671 #define BYTE_CORE_SET_LOW		(64)
1672 #define BYTE_CORE_SET_HIGH		(200)
1673 
1674 static int byte_core_set_size(struct heuristic_ws *ws)
1675 {
1676 	u32 i;
1677 	u32 coreset_sum = 0;
1678 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1679 	struct bucket_item *bucket = ws->bucket;
1680 
1681 	/* Sort in reverse order */
1682 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1683 
1684 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1685 		coreset_sum += bucket[i].count;
1686 
1687 	if (coreset_sum > core_set_threshold)
1688 		return i;
1689 
1690 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1691 		coreset_sum += bucket[i].count;
1692 		if (coreset_sum > core_set_threshold)
1693 			break;
1694 	}
1695 
1696 	return i;
1697 }
1698 
1699 /*
1700  * Count byte values in buckets.
1701  * This heuristic can detect textual data (configs, xml, json, html, etc).
1702  * Because in most text-like data byte set is restricted to limited number of
1703  * possible characters, and that restriction in most cases makes data easy to
1704  * compress.
1705  *
1706  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1707  *	less - compressible
1708  *	more - need additional analysis
1709  */
1710 #define BYTE_SET_THRESHOLD		(64)
1711 
1712 static u32 byte_set_size(const struct heuristic_ws *ws)
1713 {
1714 	u32 i;
1715 	u32 byte_set_size = 0;
1716 
1717 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1718 		if (ws->bucket[i].count > 0)
1719 			byte_set_size++;
1720 	}
1721 
1722 	/*
1723 	 * Continue collecting count of byte values in buckets.  If the byte
1724 	 * set size is bigger then the threshold, it's pointless to continue,
1725 	 * the detection technique would fail for this type of data.
1726 	 */
1727 	for (; i < BUCKET_SIZE; i++) {
1728 		if (ws->bucket[i].count > 0) {
1729 			byte_set_size++;
1730 			if (byte_set_size > BYTE_SET_THRESHOLD)
1731 				return byte_set_size;
1732 		}
1733 	}
1734 
1735 	return byte_set_size;
1736 }
1737 
1738 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1739 {
1740 	const u32 half_of_sample = ws->sample_size / 2;
1741 	const u8 *data = ws->sample;
1742 
1743 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1744 }
1745 
1746 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1747 				     struct heuristic_ws *ws)
1748 {
1749 	struct page *page;
1750 	u64 index, index_end;
1751 	u32 i, curr_sample_pos;
1752 	u8 *in_data;
1753 
1754 	/*
1755 	 * Compression handles the input data by chunks of 128KiB
1756 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1757 	 *
1758 	 * We do the same for the heuristic and loop over the whole range.
1759 	 *
1760 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1761 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1762 	 */
1763 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1764 		end = start + BTRFS_MAX_UNCOMPRESSED;
1765 
1766 	index = start >> PAGE_SHIFT;
1767 	index_end = end >> PAGE_SHIFT;
1768 
1769 	/* Don't miss unaligned end */
1770 	if (!IS_ALIGNED(end, PAGE_SIZE))
1771 		index_end++;
1772 
1773 	curr_sample_pos = 0;
1774 	while (index < index_end) {
1775 		page = find_get_page(inode->i_mapping, index);
1776 		in_data = kmap_local_page(page);
1777 		/* Handle case where the start is not aligned to PAGE_SIZE */
1778 		i = start % PAGE_SIZE;
1779 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1780 			/* Don't sample any garbage from the last page */
1781 			if (start > end - SAMPLING_READ_SIZE)
1782 				break;
1783 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1784 					SAMPLING_READ_SIZE);
1785 			i += SAMPLING_INTERVAL;
1786 			start += SAMPLING_INTERVAL;
1787 			curr_sample_pos += SAMPLING_READ_SIZE;
1788 		}
1789 		kunmap_local(in_data);
1790 		put_page(page);
1791 
1792 		index++;
1793 	}
1794 
1795 	ws->sample_size = curr_sample_pos;
1796 }
1797 
1798 /*
1799  * Compression heuristic.
1800  *
1801  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1802  * quickly (compared to direct compression) detect data characteristics
1803  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1804  * data.
1805  *
1806  * The following types of analysis can be performed:
1807  * - detect mostly zero data
1808  * - detect data with low "byte set" size (text, etc)
1809  * - detect data with low/high "core byte" set
1810  *
1811  * Return non-zero if the compression should be done, 0 otherwise.
1812  */
1813 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1814 {
1815 	struct list_head *ws_list = get_workspace(0, 0);
1816 	struct heuristic_ws *ws;
1817 	u32 i;
1818 	u8 byte;
1819 	int ret = 0;
1820 
1821 	ws = list_entry(ws_list, struct heuristic_ws, list);
1822 
1823 	heuristic_collect_sample(inode, start, end, ws);
1824 
1825 	if (sample_repeated_patterns(ws)) {
1826 		ret = 1;
1827 		goto out;
1828 	}
1829 
1830 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1831 
1832 	for (i = 0; i < ws->sample_size; i++) {
1833 		byte = ws->sample[i];
1834 		ws->bucket[byte].count++;
1835 	}
1836 
1837 	i = byte_set_size(ws);
1838 	if (i < BYTE_SET_THRESHOLD) {
1839 		ret = 2;
1840 		goto out;
1841 	}
1842 
1843 	i = byte_core_set_size(ws);
1844 	if (i <= BYTE_CORE_SET_LOW) {
1845 		ret = 3;
1846 		goto out;
1847 	}
1848 
1849 	if (i >= BYTE_CORE_SET_HIGH) {
1850 		ret = 0;
1851 		goto out;
1852 	}
1853 
1854 	i = shannon_entropy(ws);
1855 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1856 		ret = 4;
1857 		goto out;
1858 	}
1859 
1860 	/*
1861 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1862 	 * needed to give green light to compression.
1863 	 *
1864 	 * For now just assume that compression at that level is not worth the
1865 	 * resources because:
1866 	 *
1867 	 * 1. it is possible to defrag the data later
1868 	 *
1869 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1870 	 * values, every bucket has counter at level ~54. The heuristic would
1871 	 * be confused. This can happen when data have some internal repeated
1872 	 * patterns like "abbacbbc...". This can be detected by analyzing
1873 	 * pairs of bytes, which is too costly.
1874 	 */
1875 	if (i < ENTROPY_LVL_HIGH) {
1876 		ret = 5;
1877 		goto out;
1878 	} else {
1879 		ret = 0;
1880 		goto out;
1881 	}
1882 
1883 out:
1884 	put_workspace(0, ws_list);
1885 	return ret;
1886 }
1887 
1888 /*
1889  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1890  * level, unrecognized string will set the default level
1891  */
1892 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1893 {
1894 	unsigned int level = 0;
1895 	int ret;
1896 
1897 	if (!type)
1898 		return 0;
1899 
1900 	if (str[0] == ':') {
1901 		ret = kstrtouint(str + 1, 10, &level);
1902 		if (ret)
1903 			level = 0;
1904 	}
1905 
1906 	level = btrfs_compress_set_level(type, level);
1907 
1908 	return level;
1909 }
1910