xref: /linux/fs/btrfs/compression.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44 
45 struct compressed_bio {
46 	/* number of bios pending for this compressed extent */
47 	atomic_t pending_bios;
48 
49 	/* the pages with the compressed data on them */
50 	struct page **compressed_pages;
51 
52 	/* inode that owns this data */
53 	struct inode *inode;
54 
55 	/* starting offset in the inode for our pages */
56 	u64 start;
57 
58 	/* number of bytes in the inode we're working on */
59 	unsigned long len;
60 
61 	/* number of bytes on disk */
62 	unsigned long compressed_len;
63 
64 	/* the compression algorithm for this bio */
65 	int compress_type;
66 
67 	/* number of compressed pages in the array */
68 	unsigned long nr_pages;
69 
70 	/* IO errors */
71 	int errors;
72 	int mirror_num;
73 
74 	/* for reads, this is the bio we are copying the data into */
75 	struct bio *orig_bio;
76 
77 	/*
78 	 * the start of a variable length array of checksums only
79 	 * used by reads
80 	 */
81 	u32 sums;
82 };
83 
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 				   u64 disk_start, struct bio_vec *bvec,
86 				   int vcnt, size_t srclen);
87 
88 static inline int compressed_bio_size(struct btrfs_root *root,
89 				      unsigned long disk_size)
90 {
91 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92 
93 	return sizeof(struct compressed_bio) +
94 		(DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
95 }
96 
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 					u64 first_byte, gfp_t gfp_flags)
99 {
100 	return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
101 }
102 
103 static int check_compressed_csum(struct inode *inode,
104 				 struct compressed_bio *cb,
105 				 u64 disk_start)
106 {
107 	int ret;
108 	struct page *page;
109 	unsigned long i;
110 	char *kaddr;
111 	u32 csum;
112 	u32 *cb_sum = &cb->sums;
113 
114 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
115 		return 0;
116 
117 	for (i = 0; i < cb->nr_pages; i++) {
118 		page = cb->compressed_pages[i];
119 		csum = ~(u32)0;
120 
121 		kaddr = kmap_atomic(page);
122 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
123 		btrfs_csum_final(csum, (char *)&csum);
124 		kunmap_atomic(kaddr);
125 
126 		if (csum != *cb_sum) {
127 			btrfs_info(BTRFS_I(inode)->root->fs_info,
128 			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
129 			   btrfs_ino(inode), disk_start, csum, *cb_sum,
130 			   cb->mirror_num);
131 			ret = -EIO;
132 			goto fail;
133 		}
134 		cb_sum++;
135 
136 	}
137 	ret = 0;
138 fail:
139 	return ret;
140 }
141 
142 /* when we finish reading compressed pages from the disk, we
143  * decompress them and then run the bio end_io routines on the
144  * decompressed pages (in the inode address space).
145  *
146  * This allows the checksumming and other IO error handling routines
147  * to work normally
148  *
149  * The compressed pages are freed here, and it must be run
150  * in process context
151  */
152 static void end_compressed_bio_read(struct bio *bio)
153 {
154 	struct compressed_bio *cb = bio->bi_private;
155 	struct inode *inode;
156 	struct page *page;
157 	unsigned long index;
158 	int ret;
159 
160 	if (bio->bi_error)
161 		cb->errors = 1;
162 
163 	/* if there are more bios still pending for this compressed
164 	 * extent, just exit
165 	 */
166 	if (!atomic_dec_and_test(&cb->pending_bios))
167 		goto out;
168 
169 	inode = cb->inode;
170 	ret = check_compressed_csum(inode, cb,
171 				    (u64)bio->bi_iter.bi_sector << 9);
172 	if (ret)
173 		goto csum_failed;
174 
175 	/* ok, we're the last bio for this extent, lets start
176 	 * the decompression.
177 	 */
178 	ret = btrfs_decompress_biovec(cb->compress_type,
179 				      cb->compressed_pages,
180 				      cb->start,
181 				      cb->orig_bio->bi_io_vec,
182 				      cb->orig_bio->bi_vcnt,
183 				      cb->compressed_len);
184 csum_failed:
185 	if (ret)
186 		cb->errors = 1;
187 
188 	/* release the compressed pages */
189 	index = 0;
190 	for (index = 0; index < cb->nr_pages; index++) {
191 		page = cb->compressed_pages[index];
192 		page->mapping = NULL;
193 		put_page(page);
194 	}
195 
196 	/* do io completion on the original bio */
197 	if (cb->errors) {
198 		bio_io_error(cb->orig_bio);
199 	} else {
200 		int i;
201 		struct bio_vec *bvec;
202 
203 		/*
204 		 * we have verified the checksum already, set page
205 		 * checked so the end_io handlers know about it
206 		 */
207 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
208 			SetPageChecked(bvec->bv_page);
209 
210 		bio_endio(cb->orig_bio);
211 	}
212 
213 	/* finally free the cb struct */
214 	kfree(cb->compressed_pages);
215 	kfree(cb);
216 out:
217 	bio_put(bio);
218 }
219 
220 /*
221  * Clear the writeback bits on all of the file
222  * pages for a compressed write
223  */
224 static noinline void end_compressed_writeback(struct inode *inode,
225 					      const struct compressed_bio *cb)
226 {
227 	unsigned long index = cb->start >> PAGE_SHIFT;
228 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
229 	struct page *pages[16];
230 	unsigned long nr_pages = end_index - index + 1;
231 	int i;
232 	int ret;
233 
234 	if (cb->errors)
235 		mapping_set_error(inode->i_mapping, -EIO);
236 
237 	while (nr_pages > 0) {
238 		ret = find_get_pages_contig(inode->i_mapping, index,
239 				     min_t(unsigned long,
240 				     nr_pages, ARRAY_SIZE(pages)), pages);
241 		if (ret == 0) {
242 			nr_pages -= 1;
243 			index += 1;
244 			continue;
245 		}
246 		for (i = 0; i < ret; i++) {
247 			if (cb->errors)
248 				SetPageError(pages[i]);
249 			end_page_writeback(pages[i]);
250 			put_page(pages[i]);
251 		}
252 		nr_pages -= ret;
253 		index += ret;
254 	}
255 	/* the inode may be gone now */
256 }
257 
258 /*
259  * do the cleanup once all the compressed pages hit the disk.
260  * This will clear writeback on the file pages and free the compressed
261  * pages.
262  *
263  * This also calls the writeback end hooks for the file pages so that
264  * metadata and checksums can be updated in the file.
265  */
266 static void end_compressed_bio_write(struct bio *bio)
267 {
268 	struct extent_io_tree *tree;
269 	struct compressed_bio *cb = bio->bi_private;
270 	struct inode *inode;
271 	struct page *page;
272 	unsigned long index;
273 
274 	if (bio->bi_error)
275 		cb->errors = 1;
276 
277 	/* if there are more bios still pending for this compressed
278 	 * extent, just exit
279 	 */
280 	if (!atomic_dec_and_test(&cb->pending_bios))
281 		goto out;
282 
283 	/* ok, we're the last bio for this extent, step one is to
284 	 * call back into the FS and do all the end_io operations
285 	 */
286 	inode = cb->inode;
287 	tree = &BTRFS_I(inode)->io_tree;
288 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290 					 cb->start,
291 					 cb->start + cb->len - 1,
292 					 NULL,
293 					 bio->bi_error ? 0 : 1);
294 	cb->compressed_pages[0]->mapping = NULL;
295 
296 	end_compressed_writeback(inode, cb);
297 	/* note, our inode could be gone now */
298 
299 	/*
300 	 * release the compressed pages, these came from alloc_page and
301 	 * are not attached to the inode at all
302 	 */
303 	index = 0;
304 	for (index = 0; index < cb->nr_pages; index++) {
305 		page = cb->compressed_pages[index];
306 		page->mapping = NULL;
307 		put_page(page);
308 	}
309 
310 	/* finally free the cb struct */
311 	kfree(cb->compressed_pages);
312 	kfree(cb);
313 out:
314 	bio_put(bio);
315 }
316 
317 /*
318  * worker function to build and submit bios for previously compressed pages.
319  * The corresponding pages in the inode should be marked for writeback
320  * and the compressed pages should have a reference on them for dropping
321  * when the IO is complete.
322  *
323  * This also checksums the file bytes and gets things ready for
324  * the end io hooks.
325  */
326 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
327 				 unsigned long len, u64 disk_start,
328 				 unsigned long compressed_len,
329 				 struct page **compressed_pages,
330 				 unsigned long nr_pages)
331 {
332 	struct bio *bio = NULL;
333 	struct btrfs_root *root = BTRFS_I(inode)->root;
334 	struct compressed_bio *cb;
335 	unsigned long bytes_left;
336 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
337 	int pg_index = 0;
338 	struct page *page;
339 	u64 first_byte = disk_start;
340 	struct block_device *bdev;
341 	int ret;
342 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
343 
344 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
345 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
346 	if (!cb)
347 		return -ENOMEM;
348 	atomic_set(&cb->pending_bios, 0);
349 	cb->errors = 0;
350 	cb->inode = inode;
351 	cb->start = start;
352 	cb->len = len;
353 	cb->mirror_num = 0;
354 	cb->compressed_pages = compressed_pages;
355 	cb->compressed_len = compressed_len;
356 	cb->orig_bio = NULL;
357 	cb->nr_pages = nr_pages;
358 
359 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
360 
361 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
362 	if (!bio) {
363 		kfree(cb);
364 		return -ENOMEM;
365 	}
366 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
367 	bio->bi_private = cb;
368 	bio->bi_end_io = end_compressed_bio_write;
369 	atomic_inc(&cb->pending_bios);
370 
371 	/* create and submit bios for the compressed pages */
372 	bytes_left = compressed_len;
373 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
374 		page = compressed_pages[pg_index];
375 		page->mapping = inode->i_mapping;
376 		if (bio->bi_iter.bi_size)
377 			ret = io_tree->ops->merge_bio_hook(page, 0,
378 							   PAGE_SIZE,
379 							   bio, 0);
380 		else
381 			ret = 0;
382 
383 		page->mapping = NULL;
384 		if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
385 		    PAGE_SIZE) {
386 			bio_get(bio);
387 
388 			/*
389 			 * inc the count before we submit the bio so
390 			 * we know the end IO handler won't happen before
391 			 * we inc the count.  Otherwise, the cb might get
392 			 * freed before we're done setting it up
393 			 */
394 			atomic_inc(&cb->pending_bios);
395 			ret = btrfs_bio_wq_end_io(root->fs_info, bio,
396 					BTRFS_WQ_ENDIO_DATA);
397 			BUG_ON(ret); /* -ENOMEM */
398 
399 			if (!skip_sum) {
400 				ret = btrfs_csum_one_bio(root, inode, bio,
401 							 start, 1);
402 				BUG_ON(ret); /* -ENOMEM */
403 			}
404 
405 			ret = btrfs_map_bio(root, bio, 0, 1);
406 			if (ret) {
407 				bio->bi_error = ret;
408 				bio_endio(bio);
409 			}
410 
411 			bio_put(bio);
412 
413 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
414 			BUG_ON(!bio);
415 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
416 			bio->bi_private = cb;
417 			bio->bi_end_io = end_compressed_bio_write;
418 			bio_add_page(bio, page, PAGE_SIZE, 0);
419 		}
420 		if (bytes_left < PAGE_SIZE) {
421 			btrfs_info(BTRFS_I(inode)->root->fs_info,
422 					"bytes left %lu compress len %lu nr %lu",
423 			       bytes_left, cb->compressed_len, cb->nr_pages);
424 		}
425 		bytes_left -= PAGE_SIZE;
426 		first_byte += PAGE_SIZE;
427 		cond_resched();
428 	}
429 	bio_get(bio);
430 
431 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
432 	BUG_ON(ret); /* -ENOMEM */
433 
434 	if (!skip_sum) {
435 		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
436 		BUG_ON(ret); /* -ENOMEM */
437 	}
438 
439 	ret = btrfs_map_bio(root, bio, 0, 1);
440 	if (ret) {
441 		bio->bi_error = ret;
442 		bio_endio(bio);
443 	}
444 
445 	bio_put(bio);
446 	return 0;
447 }
448 
449 static noinline int add_ra_bio_pages(struct inode *inode,
450 				     u64 compressed_end,
451 				     struct compressed_bio *cb)
452 {
453 	unsigned long end_index;
454 	unsigned long pg_index;
455 	u64 last_offset;
456 	u64 isize = i_size_read(inode);
457 	int ret;
458 	struct page *page;
459 	unsigned long nr_pages = 0;
460 	struct extent_map *em;
461 	struct address_space *mapping = inode->i_mapping;
462 	struct extent_map_tree *em_tree;
463 	struct extent_io_tree *tree;
464 	u64 end;
465 	int misses = 0;
466 
467 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
468 	last_offset = (page_offset(page) + PAGE_SIZE);
469 	em_tree = &BTRFS_I(inode)->extent_tree;
470 	tree = &BTRFS_I(inode)->io_tree;
471 
472 	if (isize == 0)
473 		return 0;
474 
475 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
476 
477 	while (last_offset < compressed_end) {
478 		pg_index = last_offset >> PAGE_SHIFT;
479 
480 		if (pg_index > end_index)
481 			break;
482 
483 		rcu_read_lock();
484 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
485 		rcu_read_unlock();
486 		if (page && !radix_tree_exceptional_entry(page)) {
487 			misses++;
488 			if (misses > 4)
489 				break;
490 			goto next;
491 		}
492 
493 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
494 								 ~__GFP_FS));
495 		if (!page)
496 			break;
497 
498 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
499 			put_page(page);
500 			goto next;
501 		}
502 
503 		end = last_offset + PAGE_SIZE - 1;
504 		/*
505 		 * at this point, we have a locked page in the page cache
506 		 * for these bytes in the file.  But, we have to make
507 		 * sure they map to this compressed extent on disk.
508 		 */
509 		set_page_extent_mapped(page);
510 		lock_extent(tree, last_offset, end);
511 		read_lock(&em_tree->lock);
512 		em = lookup_extent_mapping(em_tree, last_offset,
513 					   PAGE_SIZE);
514 		read_unlock(&em_tree->lock);
515 
516 		if (!em || last_offset < em->start ||
517 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
518 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
519 			free_extent_map(em);
520 			unlock_extent(tree, last_offset, end);
521 			unlock_page(page);
522 			put_page(page);
523 			break;
524 		}
525 		free_extent_map(em);
526 
527 		if (page->index == end_index) {
528 			char *userpage;
529 			size_t zero_offset = isize & (PAGE_SIZE - 1);
530 
531 			if (zero_offset) {
532 				int zeros;
533 				zeros = PAGE_SIZE - zero_offset;
534 				userpage = kmap_atomic(page);
535 				memset(userpage + zero_offset, 0, zeros);
536 				flush_dcache_page(page);
537 				kunmap_atomic(userpage);
538 			}
539 		}
540 
541 		ret = bio_add_page(cb->orig_bio, page,
542 				   PAGE_SIZE, 0);
543 
544 		if (ret == PAGE_SIZE) {
545 			nr_pages++;
546 			put_page(page);
547 		} else {
548 			unlock_extent(tree, last_offset, end);
549 			unlock_page(page);
550 			put_page(page);
551 			break;
552 		}
553 next:
554 		last_offset += PAGE_SIZE;
555 	}
556 	return 0;
557 }
558 
559 /*
560  * for a compressed read, the bio we get passed has all the inode pages
561  * in it.  We don't actually do IO on those pages but allocate new ones
562  * to hold the compressed pages on disk.
563  *
564  * bio->bi_iter.bi_sector points to the compressed extent on disk
565  * bio->bi_io_vec points to all of the inode pages
566  * bio->bi_vcnt is a count of pages
567  *
568  * After the compressed pages are read, we copy the bytes into the
569  * bio we were passed and then call the bio end_io calls
570  */
571 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
572 				 int mirror_num, unsigned long bio_flags)
573 {
574 	struct extent_io_tree *tree;
575 	struct extent_map_tree *em_tree;
576 	struct compressed_bio *cb;
577 	struct btrfs_root *root = BTRFS_I(inode)->root;
578 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
579 	unsigned long compressed_len;
580 	unsigned long nr_pages;
581 	unsigned long pg_index;
582 	struct page *page;
583 	struct block_device *bdev;
584 	struct bio *comp_bio;
585 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
586 	u64 em_len;
587 	u64 em_start;
588 	struct extent_map *em;
589 	int ret = -ENOMEM;
590 	int faili = 0;
591 	u32 *sums;
592 
593 	tree = &BTRFS_I(inode)->io_tree;
594 	em_tree = &BTRFS_I(inode)->extent_tree;
595 
596 	/* we need the actual starting offset of this extent in the file */
597 	read_lock(&em_tree->lock);
598 	em = lookup_extent_mapping(em_tree,
599 				   page_offset(bio->bi_io_vec->bv_page),
600 				   PAGE_SIZE);
601 	read_unlock(&em_tree->lock);
602 	if (!em)
603 		return -EIO;
604 
605 	compressed_len = em->block_len;
606 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
607 	if (!cb)
608 		goto out;
609 
610 	atomic_set(&cb->pending_bios, 0);
611 	cb->errors = 0;
612 	cb->inode = inode;
613 	cb->mirror_num = mirror_num;
614 	sums = &cb->sums;
615 
616 	cb->start = em->orig_start;
617 	em_len = em->len;
618 	em_start = em->start;
619 
620 	free_extent_map(em);
621 	em = NULL;
622 
623 	cb->len = uncompressed_len;
624 	cb->compressed_len = compressed_len;
625 	cb->compress_type = extent_compress_type(bio_flags);
626 	cb->orig_bio = bio;
627 
628 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
629 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
630 				       GFP_NOFS);
631 	if (!cb->compressed_pages)
632 		goto fail1;
633 
634 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
635 
636 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
637 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
638 							      __GFP_HIGHMEM);
639 		if (!cb->compressed_pages[pg_index]) {
640 			faili = pg_index - 1;
641 			ret = -ENOMEM;
642 			goto fail2;
643 		}
644 	}
645 	faili = nr_pages - 1;
646 	cb->nr_pages = nr_pages;
647 
648 	add_ra_bio_pages(inode, em_start + em_len, cb);
649 
650 	/* include any pages we added in add_ra-bio_pages */
651 	uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
652 	cb->len = uncompressed_len;
653 
654 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
655 	if (!comp_bio)
656 		goto fail2;
657 	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
658 	comp_bio->bi_private = cb;
659 	comp_bio->bi_end_io = end_compressed_bio_read;
660 	atomic_inc(&cb->pending_bios);
661 
662 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
663 		page = cb->compressed_pages[pg_index];
664 		page->mapping = inode->i_mapping;
665 		page->index = em_start >> PAGE_SHIFT;
666 
667 		if (comp_bio->bi_iter.bi_size)
668 			ret = tree->ops->merge_bio_hook(page, 0,
669 							PAGE_SIZE,
670 							comp_bio, 0);
671 		else
672 			ret = 0;
673 
674 		page->mapping = NULL;
675 		if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
676 		    PAGE_SIZE) {
677 			bio_get(comp_bio);
678 
679 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
680 					BTRFS_WQ_ENDIO_DATA);
681 			BUG_ON(ret); /* -ENOMEM */
682 
683 			/*
684 			 * inc the count before we submit the bio so
685 			 * we know the end IO handler won't happen before
686 			 * we inc the count.  Otherwise, the cb might get
687 			 * freed before we're done setting it up
688 			 */
689 			atomic_inc(&cb->pending_bios);
690 
691 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
692 				ret = btrfs_lookup_bio_sums(root, inode,
693 							comp_bio, sums);
694 				BUG_ON(ret); /* -ENOMEM */
695 			}
696 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
697 					     root->sectorsize);
698 
699 			ret = btrfs_map_bio(root, comp_bio, mirror_num, 0);
700 			if (ret) {
701 				bio->bi_error = ret;
702 				bio_endio(comp_bio);
703 			}
704 
705 			bio_put(comp_bio);
706 
707 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
708 							GFP_NOFS);
709 			BUG_ON(!comp_bio);
710 			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
711 			comp_bio->bi_private = cb;
712 			comp_bio->bi_end_io = end_compressed_bio_read;
713 
714 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
715 		}
716 		cur_disk_byte += PAGE_SIZE;
717 	}
718 	bio_get(comp_bio);
719 
720 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
721 			BTRFS_WQ_ENDIO_DATA);
722 	BUG_ON(ret); /* -ENOMEM */
723 
724 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
725 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
726 		BUG_ON(ret); /* -ENOMEM */
727 	}
728 
729 	ret = btrfs_map_bio(root, comp_bio, mirror_num, 0);
730 	if (ret) {
731 		bio->bi_error = ret;
732 		bio_endio(comp_bio);
733 	}
734 
735 	bio_put(comp_bio);
736 	return 0;
737 
738 fail2:
739 	while (faili >= 0) {
740 		__free_page(cb->compressed_pages[faili]);
741 		faili--;
742 	}
743 
744 	kfree(cb->compressed_pages);
745 fail1:
746 	kfree(cb);
747 out:
748 	free_extent_map(em);
749 	return ret;
750 }
751 
752 static struct {
753 	struct list_head idle_ws;
754 	spinlock_t ws_lock;
755 	/* Number of free workspaces */
756 	int free_ws;
757 	/* Total number of allocated workspaces */
758 	atomic_t total_ws;
759 	/* Waiters for a free workspace */
760 	wait_queue_head_t ws_wait;
761 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
762 
763 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
764 	&btrfs_zlib_compress,
765 	&btrfs_lzo_compress,
766 };
767 
768 void __init btrfs_init_compress(void)
769 {
770 	int i;
771 
772 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
773 		struct list_head *workspace;
774 
775 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
776 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
777 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
778 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
779 
780 		/*
781 		 * Preallocate one workspace for each compression type so
782 		 * we can guarantee forward progress in the worst case
783 		 */
784 		workspace = btrfs_compress_op[i]->alloc_workspace();
785 		if (IS_ERR(workspace)) {
786 			printk(KERN_WARNING
787 	"BTRFS: cannot preallocate compression workspace, will try later");
788 		} else {
789 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
790 			btrfs_comp_ws[i].free_ws = 1;
791 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
792 		}
793 	}
794 }
795 
796 /*
797  * This finds an available workspace or allocates a new one.
798  * If it's not possible to allocate a new one, waits until there's one.
799  * Preallocation makes a forward progress guarantees and we do not return
800  * errors.
801  */
802 static struct list_head *find_workspace(int type)
803 {
804 	struct list_head *workspace;
805 	int cpus = num_online_cpus();
806 	int idx = type - 1;
807 
808 	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
809 	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
810 	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
811 	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
812 	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
813 again:
814 	spin_lock(ws_lock);
815 	if (!list_empty(idle_ws)) {
816 		workspace = idle_ws->next;
817 		list_del(workspace);
818 		(*free_ws)--;
819 		spin_unlock(ws_lock);
820 		return workspace;
821 
822 	}
823 	if (atomic_read(total_ws) > cpus) {
824 		DEFINE_WAIT(wait);
825 
826 		spin_unlock(ws_lock);
827 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
828 		if (atomic_read(total_ws) > cpus && !*free_ws)
829 			schedule();
830 		finish_wait(ws_wait, &wait);
831 		goto again;
832 	}
833 	atomic_inc(total_ws);
834 	spin_unlock(ws_lock);
835 
836 	workspace = btrfs_compress_op[idx]->alloc_workspace();
837 	if (IS_ERR(workspace)) {
838 		atomic_dec(total_ws);
839 		wake_up(ws_wait);
840 
841 		/*
842 		 * Do not return the error but go back to waiting. There's a
843 		 * workspace preallocated for each type and the compression
844 		 * time is bounded so we get to a workspace eventually. This
845 		 * makes our caller's life easier.
846 		 *
847 		 * To prevent silent and low-probability deadlocks (when the
848 		 * initial preallocation fails), check if there are any
849 		 * workspaces at all.
850 		 */
851 		if (atomic_read(total_ws) == 0) {
852 			static DEFINE_RATELIMIT_STATE(_rs,
853 					/* once per minute */ 60 * HZ,
854 					/* no burst */ 1);
855 
856 			if (__ratelimit(&_rs)) {
857 				printk(KERN_WARNING
858 			    "no compression workspaces, low memory, retrying");
859 			}
860 		}
861 		goto again;
862 	}
863 	return workspace;
864 }
865 
866 /*
867  * put a workspace struct back on the list or free it if we have enough
868  * idle ones sitting around
869  */
870 static void free_workspace(int type, struct list_head *workspace)
871 {
872 	int idx = type - 1;
873 	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
874 	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
875 	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
876 	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
877 	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
878 
879 	spin_lock(ws_lock);
880 	if (*free_ws < num_online_cpus()) {
881 		list_add(workspace, idle_ws);
882 		(*free_ws)++;
883 		spin_unlock(ws_lock);
884 		goto wake;
885 	}
886 	spin_unlock(ws_lock);
887 
888 	btrfs_compress_op[idx]->free_workspace(workspace);
889 	atomic_dec(total_ws);
890 wake:
891 	/*
892 	 * Make sure counter is updated before we wake up waiters.
893 	 */
894 	smp_mb();
895 	if (waitqueue_active(ws_wait))
896 		wake_up(ws_wait);
897 }
898 
899 /*
900  * cleanup function for module exit
901  */
902 static void free_workspaces(void)
903 {
904 	struct list_head *workspace;
905 	int i;
906 
907 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
908 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
909 			workspace = btrfs_comp_ws[i].idle_ws.next;
910 			list_del(workspace);
911 			btrfs_compress_op[i]->free_workspace(workspace);
912 			atomic_dec(&btrfs_comp_ws[i].total_ws);
913 		}
914 	}
915 }
916 
917 /*
918  * given an address space and start/len, compress the bytes.
919  *
920  * pages are allocated to hold the compressed result and stored
921  * in 'pages'
922  *
923  * out_pages is used to return the number of pages allocated.  There
924  * may be pages allocated even if we return an error
925  *
926  * total_in is used to return the number of bytes actually read.  It
927  * may be smaller then len if we had to exit early because we
928  * ran out of room in the pages array or because we cross the
929  * max_out threshold.
930  *
931  * total_out is used to return the total number of compressed bytes
932  *
933  * max_out tells us the max number of bytes that we're allowed to
934  * stuff into pages
935  */
936 int btrfs_compress_pages(int type, struct address_space *mapping,
937 			 u64 start, unsigned long len,
938 			 struct page **pages,
939 			 unsigned long nr_dest_pages,
940 			 unsigned long *out_pages,
941 			 unsigned long *total_in,
942 			 unsigned long *total_out,
943 			 unsigned long max_out)
944 {
945 	struct list_head *workspace;
946 	int ret;
947 
948 	workspace = find_workspace(type);
949 
950 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
951 						      start, len, pages,
952 						      nr_dest_pages, out_pages,
953 						      total_in, total_out,
954 						      max_out);
955 	free_workspace(type, workspace);
956 	return ret;
957 }
958 
959 /*
960  * pages_in is an array of pages with compressed data.
961  *
962  * disk_start is the starting logical offset of this array in the file
963  *
964  * bvec is a bio_vec of pages from the file that we want to decompress into
965  *
966  * vcnt is the count of pages in the biovec
967  *
968  * srclen is the number of bytes in pages_in
969  *
970  * The basic idea is that we have a bio that was created by readpages.
971  * The pages in the bio are for the uncompressed data, and they may not
972  * be contiguous.  They all correspond to the range of bytes covered by
973  * the compressed extent.
974  */
975 static int btrfs_decompress_biovec(int type, struct page **pages_in,
976 				   u64 disk_start, struct bio_vec *bvec,
977 				   int vcnt, size_t srclen)
978 {
979 	struct list_head *workspace;
980 	int ret;
981 
982 	workspace = find_workspace(type);
983 
984 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
985 							 disk_start,
986 							 bvec, vcnt, srclen);
987 	free_workspace(type, workspace);
988 	return ret;
989 }
990 
991 /*
992  * a less complex decompression routine.  Our compressed data fits in a
993  * single page, and we want to read a single page out of it.
994  * start_byte tells us the offset into the compressed data we're interested in
995  */
996 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
997 		     unsigned long start_byte, size_t srclen, size_t destlen)
998 {
999 	struct list_head *workspace;
1000 	int ret;
1001 
1002 	workspace = find_workspace(type);
1003 
1004 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1005 						  dest_page, start_byte,
1006 						  srclen, destlen);
1007 
1008 	free_workspace(type, workspace);
1009 	return ret;
1010 }
1011 
1012 void btrfs_exit_compress(void)
1013 {
1014 	free_workspaces();
1015 }
1016 
1017 /*
1018  * Copy uncompressed data from working buffer to pages.
1019  *
1020  * buf_start is the byte offset we're of the start of our workspace buffer.
1021  *
1022  * total_out is the last byte of the buffer
1023  */
1024 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
1025 			      unsigned long total_out, u64 disk_start,
1026 			      struct bio_vec *bvec, int vcnt,
1027 			      unsigned long *pg_index,
1028 			      unsigned long *pg_offset)
1029 {
1030 	unsigned long buf_offset;
1031 	unsigned long current_buf_start;
1032 	unsigned long start_byte;
1033 	unsigned long working_bytes = total_out - buf_start;
1034 	unsigned long bytes;
1035 	char *kaddr;
1036 	struct page *page_out = bvec[*pg_index].bv_page;
1037 
1038 	/*
1039 	 * start byte is the first byte of the page we're currently
1040 	 * copying into relative to the start of the compressed data.
1041 	 */
1042 	start_byte = page_offset(page_out) - disk_start;
1043 
1044 	/* we haven't yet hit data corresponding to this page */
1045 	if (total_out <= start_byte)
1046 		return 1;
1047 
1048 	/*
1049 	 * the start of the data we care about is offset into
1050 	 * the middle of our working buffer
1051 	 */
1052 	if (total_out > start_byte && buf_start < start_byte) {
1053 		buf_offset = start_byte - buf_start;
1054 		working_bytes -= buf_offset;
1055 	} else {
1056 		buf_offset = 0;
1057 	}
1058 	current_buf_start = buf_start;
1059 
1060 	/* copy bytes from the working buffer into the pages */
1061 	while (working_bytes > 0) {
1062 		bytes = min(PAGE_SIZE - *pg_offset,
1063 			    PAGE_SIZE - buf_offset);
1064 		bytes = min(bytes, working_bytes);
1065 		kaddr = kmap_atomic(page_out);
1066 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1067 		kunmap_atomic(kaddr);
1068 		flush_dcache_page(page_out);
1069 
1070 		*pg_offset += bytes;
1071 		buf_offset += bytes;
1072 		working_bytes -= bytes;
1073 		current_buf_start += bytes;
1074 
1075 		/* check if we need to pick another page */
1076 		if (*pg_offset == PAGE_SIZE) {
1077 			(*pg_index)++;
1078 			if (*pg_index >= vcnt)
1079 				return 0;
1080 
1081 			page_out = bvec[*pg_index].bv_page;
1082 			*pg_offset = 0;
1083 			start_byte = page_offset(page_out) - disk_start;
1084 
1085 			/*
1086 			 * make sure our new page is covered by this
1087 			 * working buffer
1088 			 */
1089 			if (total_out <= start_byte)
1090 				return 1;
1091 
1092 			/*
1093 			 * the next page in the biovec might not be adjacent
1094 			 * to the last page, but it might still be found
1095 			 * inside this working buffer. bump our offset pointer
1096 			 */
1097 			if (total_out > start_byte &&
1098 			    current_buf_start < start_byte) {
1099 				buf_offset = start_byte - buf_start;
1100 				working_bytes = total_out - start_byte;
1101 				current_buf_start = buf_start + buf_offset;
1102 			}
1103 		}
1104 	}
1105 
1106 	return 1;
1107 }
1108 
1109 /*
1110  * When uncompressing data, we need to make sure and zero any parts of
1111  * the biovec that were not filled in by the decompression code.  pg_index
1112  * and pg_offset indicate the last page and the last offset of that page
1113  * that have been filled in.  This will zero everything remaining in the
1114  * biovec.
1115  */
1116 void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1117 				   unsigned long pg_index,
1118 				   unsigned long pg_offset)
1119 {
1120 	while (pg_index < vcnt) {
1121 		struct page *page = bvec[pg_index].bv_page;
1122 		unsigned long off = bvec[pg_index].bv_offset;
1123 		unsigned long len = bvec[pg_index].bv_len;
1124 
1125 		if (pg_offset < off)
1126 			pg_offset = off;
1127 		if (pg_offset < off + len) {
1128 			unsigned long bytes = off + len - pg_offset;
1129 			char *kaddr;
1130 
1131 			kaddr = kmap_atomic(page);
1132 			memset(kaddr + pg_offset, 0, bytes);
1133 			kunmap_atomic(kaddr);
1134 		}
1135 		pg_index++;
1136 		pg_offset = 0;
1137 	}
1138 }
1139