xref: /linux/fs/btrfs/compression.c (revision 04eeb606a8383b306f4bc6991da8231b5f3924b0)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44 
45 struct compressed_bio {
46 	/* number of bios pending for this compressed extent */
47 	atomic_t pending_bios;
48 
49 	/* the pages with the compressed data on them */
50 	struct page **compressed_pages;
51 
52 	/* inode that owns this data */
53 	struct inode *inode;
54 
55 	/* starting offset in the inode for our pages */
56 	u64 start;
57 
58 	/* number of bytes in the inode we're working on */
59 	unsigned long len;
60 
61 	/* number of bytes on disk */
62 	unsigned long compressed_len;
63 
64 	/* the compression algorithm for this bio */
65 	int compress_type;
66 
67 	/* number of compressed pages in the array */
68 	unsigned long nr_pages;
69 
70 	/* IO errors */
71 	int errors;
72 	int mirror_num;
73 
74 	/* for reads, this is the bio we are copying the data into */
75 	struct bio *orig_bio;
76 
77 	/*
78 	 * the start of a variable length array of checksums only
79 	 * used by reads
80 	 */
81 	u32 sums;
82 };
83 
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 				   u64 disk_start, struct bio_vec *bvec,
86 				   int vcnt, size_t srclen);
87 
88 static inline int compressed_bio_size(struct btrfs_root *root,
89 				      unsigned long disk_size)
90 {
91 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92 
93 	return sizeof(struct compressed_bio) +
94 		(DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
95 }
96 
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 					u64 first_byte, gfp_t gfp_flags)
99 {
100 	int nr_vecs;
101 
102 	nr_vecs = bio_get_nr_vecs(bdev);
103 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
104 }
105 
106 static int check_compressed_csum(struct inode *inode,
107 				 struct compressed_bio *cb,
108 				 u64 disk_start)
109 {
110 	int ret;
111 	struct page *page;
112 	unsigned long i;
113 	char *kaddr;
114 	u32 csum;
115 	u32 *cb_sum = &cb->sums;
116 
117 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
118 		return 0;
119 
120 	for (i = 0; i < cb->nr_pages; i++) {
121 		page = cb->compressed_pages[i];
122 		csum = ~(u32)0;
123 
124 		kaddr = kmap_atomic(page);
125 		csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
126 		btrfs_csum_final(csum, (char *)&csum);
127 		kunmap_atomic(kaddr);
128 
129 		if (csum != *cb_sum) {
130 			btrfs_info(BTRFS_I(inode)->root->fs_info,
131 			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
132 			   btrfs_ino(inode), disk_start, csum, *cb_sum,
133 			   cb->mirror_num);
134 			ret = -EIO;
135 			goto fail;
136 		}
137 		cb_sum++;
138 
139 	}
140 	ret = 0;
141 fail:
142 	return ret;
143 }
144 
145 /* when we finish reading compressed pages from the disk, we
146  * decompress them and then run the bio end_io routines on the
147  * decompressed pages (in the inode address space).
148  *
149  * This allows the checksumming and other IO error handling routines
150  * to work normally
151  *
152  * The compressed pages are freed here, and it must be run
153  * in process context
154  */
155 static void end_compressed_bio_read(struct bio *bio, int err)
156 {
157 	struct compressed_bio *cb = bio->bi_private;
158 	struct inode *inode;
159 	struct page *page;
160 	unsigned long index;
161 	int ret;
162 
163 	if (err)
164 		cb->errors = 1;
165 
166 	/* if there are more bios still pending for this compressed
167 	 * extent, just exit
168 	 */
169 	if (!atomic_dec_and_test(&cb->pending_bios))
170 		goto out;
171 
172 	inode = cb->inode;
173 	ret = check_compressed_csum(inode, cb,
174 				    (u64)bio->bi_iter.bi_sector << 9);
175 	if (ret)
176 		goto csum_failed;
177 
178 	/* ok, we're the last bio for this extent, lets start
179 	 * the decompression.
180 	 */
181 	ret = btrfs_decompress_biovec(cb->compress_type,
182 				      cb->compressed_pages,
183 				      cb->start,
184 				      cb->orig_bio->bi_io_vec,
185 				      cb->orig_bio->bi_vcnt,
186 				      cb->compressed_len);
187 csum_failed:
188 	if (ret)
189 		cb->errors = 1;
190 
191 	/* release the compressed pages */
192 	index = 0;
193 	for (index = 0; index < cb->nr_pages; index++) {
194 		page = cb->compressed_pages[index];
195 		page->mapping = NULL;
196 		page_cache_release(page);
197 	}
198 
199 	/* do io completion on the original bio */
200 	if (cb->errors) {
201 		bio_io_error(cb->orig_bio);
202 	} else {
203 		int i;
204 		struct bio_vec *bvec;
205 
206 		/*
207 		 * we have verified the checksum already, set page
208 		 * checked so the end_io handlers know about it
209 		 */
210 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
211 			SetPageChecked(bvec->bv_page);
212 
213 		bio_endio(cb->orig_bio, 0);
214 	}
215 
216 	/* finally free the cb struct */
217 	kfree(cb->compressed_pages);
218 	kfree(cb);
219 out:
220 	bio_put(bio);
221 }
222 
223 /*
224  * Clear the writeback bits on all of the file
225  * pages for a compressed write
226  */
227 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
228 					      unsigned long ram_size)
229 {
230 	unsigned long index = start >> PAGE_CACHE_SHIFT;
231 	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
232 	struct page *pages[16];
233 	unsigned long nr_pages = end_index - index + 1;
234 	int i;
235 	int ret;
236 
237 	while (nr_pages > 0) {
238 		ret = find_get_pages_contig(inode->i_mapping, index,
239 				     min_t(unsigned long,
240 				     nr_pages, ARRAY_SIZE(pages)), pages);
241 		if (ret == 0) {
242 			nr_pages -= 1;
243 			index += 1;
244 			continue;
245 		}
246 		for (i = 0; i < ret; i++) {
247 			end_page_writeback(pages[i]);
248 			page_cache_release(pages[i]);
249 		}
250 		nr_pages -= ret;
251 		index += ret;
252 	}
253 	/* the inode may be gone now */
254 }
255 
256 /*
257  * do the cleanup once all the compressed pages hit the disk.
258  * This will clear writeback on the file pages and free the compressed
259  * pages.
260  *
261  * This also calls the writeback end hooks for the file pages so that
262  * metadata and checksums can be updated in the file.
263  */
264 static void end_compressed_bio_write(struct bio *bio, int err)
265 {
266 	struct extent_io_tree *tree;
267 	struct compressed_bio *cb = bio->bi_private;
268 	struct inode *inode;
269 	struct page *page;
270 	unsigned long index;
271 
272 	if (err)
273 		cb->errors = 1;
274 
275 	/* if there are more bios still pending for this compressed
276 	 * extent, just exit
277 	 */
278 	if (!atomic_dec_and_test(&cb->pending_bios))
279 		goto out;
280 
281 	/* ok, we're the last bio for this extent, step one is to
282 	 * call back into the FS and do all the end_io operations
283 	 */
284 	inode = cb->inode;
285 	tree = &BTRFS_I(inode)->io_tree;
286 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
287 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
288 					 cb->start,
289 					 cb->start + cb->len - 1,
290 					 NULL, 1);
291 	cb->compressed_pages[0]->mapping = NULL;
292 
293 	end_compressed_writeback(inode, cb->start, cb->len);
294 	/* note, our inode could be gone now */
295 
296 	/*
297 	 * release the compressed pages, these came from alloc_page and
298 	 * are not attached to the inode at all
299 	 */
300 	index = 0;
301 	for (index = 0; index < cb->nr_pages; index++) {
302 		page = cb->compressed_pages[index];
303 		page->mapping = NULL;
304 		page_cache_release(page);
305 	}
306 
307 	/* finally free the cb struct */
308 	kfree(cb->compressed_pages);
309 	kfree(cb);
310 out:
311 	bio_put(bio);
312 }
313 
314 /*
315  * worker function to build and submit bios for previously compressed pages.
316  * The corresponding pages in the inode should be marked for writeback
317  * and the compressed pages should have a reference on them for dropping
318  * when the IO is complete.
319  *
320  * This also checksums the file bytes and gets things ready for
321  * the end io hooks.
322  */
323 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
324 				 unsigned long len, u64 disk_start,
325 				 unsigned long compressed_len,
326 				 struct page **compressed_pages,
327 				 unsigned long nr_pages)
328 {
329 	struct bio *bio = NULL;
330 	struct btrfs_root *root = BTRFS_I(inode)->root;
331 	struct compressed_bio *cb;
332 	unsigned long bytes_left;
333 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
334 	int pg_index = 0;
335 	struct page *page;
336 	u64 first_byte = disk_start;
337 	struct block_device *bdev;
338 	int ret;
339 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
340 
341 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
342 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
343 	if (!cb)
344 		return -ENOMEM;
345 	atomic_set(&cb->pending_bios, 0);
346 	cb->errors = 0;
347 	cb->inode = inode;
348 	cb->start = start;
349 	cb->len = len;
350 	cb->mirror_num = 0;
351 	cb->compressed_pages = compressed_pages;
352 	cb->compressed_len = compressed_len;
353 	cb->orig_bio = NULL;
354 	cb->nr_pages = nr_pages;
355 
356 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
357 
358 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
359 	if (!bio) {
360 		kfree(cb);
361 		return -ENOMEM;
362 	}
363 	bio->bi_private = cb;
364 	bio->bi_end_io = end_compressed_bio_write;
365 	atomic_inc(&cb->pending_bios);
366 
367 	/* create and submit bios for the compressed pages */
368 	bytes_left = compressed_len;
369 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
370 		page = compressed_pages[pg_index];
371 		page->mapping = inode->i_mapping;
372 		if (bio->bi_iter.bi_size)
373 			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
374 							   PAGE_CACHE_SIZE,
375 							   bio, 0);
376 		else
377 			ret = 0;
378 
379 		page->mapping = NULL;
380 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
381 		    PAGE_CACHE_SIZE) {
382 			bio_get(bio);
383 
384 			/*
385 			 * inc the count before we submit the bio so
386 			 * we know the end IO handler won't happen before
387 			 * we inc the count.  Otherwise, the cb might get
388 			 * freed before we're done setting it up
389 			 */
390 			atomic_inc(&cb->pending_bios);
391 			ret = btrfs_bio_wq_end_io(root->fs_info, bio,
392 					BTRFS_WQ_ENDIO_DATA);
393 			BUG_ON(ret); /* -ENOMEM */
394 
395 			if (!skip_sum) {
396 				ret = btrfs_csum_one_bio(root, inode, bio,
397 							 start, 1);
398 				BUG_ON(ret); /* -ENOMEM */
399 			}
400 
401 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
402 			BUG_ON(ret); /* -ENOMEM */
403 
404 			bio_put(bio);
405 
406 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
407 			BUG_ON(!bio);
408 			bio->bi_private = cb;
409 			bio->bi_end_io = end_compressed_bio_write;
410 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
411 		}
412 		if (bytes_left < PAGE_CACHE_SIZE) {
413 			btrfs_info(BTRFS_I(inode)->root->fs_info,
414 					"bytes left %lu compress len %lu nr %lu",
415 			       bytes_left, cb->compressed_len, cb->nr_pages);
416 		}
417 		bytes_left -= PAGE_CACHE_SIZE;
418 		first_byte += PAGE_CACHE_SIZE;
419 		cond_resched();
420 	}
421 	bio_get(bio);
422 
423 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
424 	BUG_ON(ret); /* -ENOMEM */
425 
426 	if (!skip_sum) {
427 		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
428 		BUG_ON(ret); /* -ENOMEM */
429 	}
430 
431 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
432 	BUG_ON(ret); /* -ENOMEM */
433 
434 	bio_put(bio);
435 	return 0;
436 }
437 
438 static noinline int add_ra_bio_pages(struct inode *inode,
439 				     u64 compressed_end,
440 				     struct compressed_bio *cb)
441 {
442 	unsigned long end_index;
443 	unsigned long pg_index;
444 	u64 last_offset;
445 	u64 isize = i_size_read(inode);
446 	int ret;
447 	struct page *page;
448 	unsigned long nr_pages = 0;
449 	struct extent_map *em;
450 	struct address_space *mapping = inode->i_mapping;
451 	struct extent_map_tree *em_tree;
452 	struct extent_io_tree *tree;
453 	u64 end;
454 	int misses = 0;
455 
456 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
457 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
458 	em_tree = &BTRFS_I(inode)->extent_tree;
459 	tree = &BTRFS_I(inode)->io_tree;
460 
461 	if (isize == 0)
462 		return 0;
463 
464 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
465 
466 	while (last_offset < compressed_end) {
467 		pg_index = last_offset >> PAGE_CACHE_SHIFT;
468 
469 		if (pg_index > end_index)
470 			break;
471 
472 		rcu_read_lock();
473 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
474 		rcu_read_unlock();
475 		if (page && !radix_tree_exceptional_entry(page)) {
476 			misses++;
477 			if (misses > 4)
478 				break;
479 			goto next;
480 		}
481 
482 		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
483 								~__GFP_FS);
484 		if (!page)
485 			break;
486 
487 		if (add_to_page_cache_lru(page, mapping, pg_index,
488 								GFP_NOFS)) {
489 			page_cache_release(page);
490 			goto next;
491 		}
492 
493 		end = last_offset + PAGE_CACHE_SIZE - 1;
494 		/*
495 		 * at this point, we have a locked page in the page cache
496 		 * for these bytes in the file.  But, we have to make
497 		 * sure they map to this compressed extent on disk.
498 		 */
499 		set_page_extent_mapped(page);
500 		lock_extent(tree, last_offset, end);
501 		read_lock(&em_tree->lock);
502 		em = lookup_extent_mapping(em_tree, last_offset,
503 					   PAGE_CACHE_SIZE);
504 		read_unlock(&em_tree->lock);
505 
506 		if (!em || last_offset < em->start ||
507 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
508 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
509 			free_extent_map(em);
510 			unlock_extent(tree, last_offset, end);
511 			unlock_page(page);
512 			page_cache_release(page);
513 			break;
514 		}
515 		free_extent_map(em);
516 
517 		if (page->index == end_index) {
518 			char *userpage;
519 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
520 
521 			if (zero_offset) {
522 				int zeros;
523 				zeros = PAGE_CACHE_SIZE - zero_offset;
524 				userpage = kmap_atomic(page);
525 				memset(userpage + zero_offset, 0, zeros);
526 				flush_dcache_page(page);
527 				kunmap_atomic(userpage);
528 			}
529 		}
530 
531 		ret = bio_add_page(cb->orig_bio, page,
532 				   PAGE_CACHE_SIZE, 0);
533 
534 		if (ret == PAGE_CACHE_SIZE) {
535 			nr_pages++;
536 			page_cache_release(page);
537 		} else {
538 			unlock_extent(tree, last_offset, end);
539 			unlock_page(page);
540 			page_cache_release(page);
541 			break;
542 		}
543 next:
544 		last_offset += PAGE_CACHE_SIZE;
545 	}
546 	return 0;
547 }
548 
549 /*
550  * for a compressed read, the bio we get passed has all the inode pages
551  * in it.  We don't actually do IO on those pages but allocate new ones
552  * to hold the compressed pages on disk.
553  *
554  * bio->bi_iter.bi_sector points to the compressed extent on disk
555  * bio->bi_io_vec points to all of the inode pages
556  * bio->bi_vcnt is a count of pages
557  *
558  * After the compressed pages are read, we copy the bytes into the
559  * bio we were passed and then call the bio end_io calls
560  */
561 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
562 				 int mirror_num, unsigned long bio_flags)
563 {
564 	struct extent_io_tree *tree;
565 	struct extent_map_tree *em_tree;
566 	struct compressed_bio *cb;
567 	struct btrfs_root *root = BTRFS_I(inode)->root;
568 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
569 	unsigned long compressed_len;
570 	unsigned long nr_pages;
571 	unsigned long pg_index;
572 	struct page *page;
573 	struct block_device *bdev;
574 	struct bio *comp_bio;
575 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
576 	u64 em_len;
577 	u64 em_start;
578 	struct extent_map *em;
579 	int ret = -ENOMEM;
580 	int faili = 0;
581 	u32 *sums;
582 
583 	tree = &BTRFS_I(inode)->io_tree;
584 	em_tree = &BTRFS_I(inode)->extent_tree;
585 
586 	/* we need the actual starting offset of this extent in the file */
587 	read_lock(&em_tree->lock);
588 	em = lookup_extent_mapping(em_tree,
589 				   page_offset(bio->bi_io_vec->bv_page),
590 				   PAGE_CACHE_SIZE);
591 	read_unlock(&em_tree->lock);
592 	if (!em)
593 		return -EIO;
594 
595 	compressed_len = em->block_len;
596 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
597 	if (!cb)
598 		goto out;
599 
600 	atomic_set(&cb->pending_bios, 0);
601 	cb->errors = 0;
602 	cb->inode = inode;
603 	cb->mirror_num = mirror_num;
604 	sums = &cb->sums;
605 
606 	cb->start = em->orig_start;
607 	em_len = em->len;
608 	em_start = em->start;
609 
610 	free_extent_map(em);
611 	em = NULL;
612 
613 	cb->len = uncompressed_len;
614 	cb->compressed_len = compressed_len;
615 	cb->compress_type = extent_compress_type(bio_flags);
616 	cb->orig_bio = bio;
617 
618 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
619 	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
620 				       GFP_NOFS);
621 	if (!cb->compressed_pages)
622 		goto fail1;
623 
624 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
625 
626 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
627 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
628 							      __GFP_HIGHMEM);
629 		if (!cb->compressed_pages[pg_index]) {
630 			faili = pg_index - 1;
631 			ret = -ENOMEM;
632 			goto fail2;
633 		}
634 	}
635 	faili = nr_pages - 1;
636 	cb->nr_pages = nr_pages;
637 
638 	/* In the parent-locked case, we only locked the range we are
639 	 * interested in.  In all other cases, we can opportunistically
640 	 * cache decompressed data that goes beyond the requested range. */
641 	if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
642 		add_ra_bio_pages(inode, em_start + em_len, cb);
643 
644 	/* include any pages we added in add_ra-bio_pages */
645 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
646 	cb->len = uncompressed_len;
647 
648 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
649 	if (!comp_bio)
650 		goto fail2;
651 	comp_bio->bi_private = cb;
652 	comp_bio->bi_end_io = end_compressed_bio_read;
653 	atomic_inc(&cb->pending_bios);
654 
655 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
656 		page = cb->compressed_pages[pg_index];
657 		page->mapping = inode->i_mapping;
658 		page->index = em_start >> PAGE_CACHE_SHIFT;
659 
660 		if (comp_bio->bi_iter.bi_size)
661 			ret = tree->ops->merge_bio_hook(READ, page, 0,
662 							PAGE_CACHE_SIZE,
663 							comp_bio, 0);
664 		else
665 			ret = 0;
666 
667 		page->mapping = NULL;
668 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
669 		    PAGE_CACHE_SIZE) {
670 			bio_get(comp_bio);
671 
672 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
673 					BTRFS_WQ_ENDIO_DATA);
674 			BUG_ON(ret); /* -ENOMEM */
675 
676 			/*
677 			 * inc the count before we submit the bio so
678 			 * we know the end IO handler won't happen before
679 			 * we inc the count.  Otherwise, the cb might get
680 			 * freed before we're done setting it up
681 			 */
682 			atomic_inc(&cb->pending_bios);
683 
684 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
685 				ret = btrfs_lookup_bio_sums(root, inode,
686 							comp_bio, sums);
687 				BUG_ON(ret); /* -ENOMEM */
688 			}
689 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
690 					     root->sectorsize);
691 
692 			ret = btrfs_map_bio(root, READ, comp_bio,
693 					    mirror_num, 0);
694 			if (ret)
695 				bio_endio(comp_bio, ret);
696 
697 			bio_put(comp_bio);
698 
699 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
700 							GFP_NOFS);
701 			BUG_ON(!comp_bio);
702 			comp_bio->bi_private = cb;
703 			comp_bio->bi_end_io = end_compressed_bio_read;
704 
705 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
706 		}
707 		cur_disk_byte += PAGE_CACHE_SIZE;
708 	}
709 	bio_get(comp_bio);
710 
711 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
712 			BTRFS_WQ_ENDIO_DATA);
713 	BUG_ON(ret); /* -ENOMEM */
714 
715 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
716 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
717 		BUG_ON(ret); /* -ENOMEM */
718 	}
719 
720 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
721 	if (ret)
722 		bio_endio(comp_bio, ret);
723 
724 	bio_put(comp_bio);
725 	return 0;
726 
727 fail2:
728 	while (faili >= 0) {
729 		__free_page(cb->compressed_pages[faili]);
730 		faili--;
731 	}
732 
733 	kfree(cb->compressed_pages);
734 fail1:
735 	kfree(cb);
736 out:
737 	free_extent_map(em);
738 	return ret;
739 }
740 
741 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
742 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
743 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
744 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
745 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
746 
747 static struct btrfs_compress_op *btrfs_compress_op[] = {
748 	&btrfs_zlib_compress,
749 	&btrfs_lzo_compress,
750 };
751 
752 void __init btrfs_init_compress(void)
753 {
754 	int i;
755 
756 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
757 		INIT_LIST_HEAD(&comp_idle_workspace[i]);
758 		spin_lock_init(&comp_workspace_lock[i]);
759 		atomic_set(&comp_alloc_workspace[i], 0);
760 		init_waitqueue_head(&comp_workspace_wait[i]);
761 	}
762 }
763 
764 /*
765  * this finds an available workspace or allocates a new one
766  * ERR_PTR is returned if things go bad.
767  */
768 static struct list_head *find_workspace(int type)
769 {
770 	struct list_head *workspace;
771 	int cpus = num_online_cpus();
772 	int idx = type - 1;
773 
774 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
775 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
776 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
777 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
778 	int *num_workspace			= &comp_num_workspace[idx];
779 again:
780 	spin_lock(workspace_lock);
781 	if (!list_empty(idle_workspace)) {
782 		workspace = idle_workspace->next;
783 		list_del(workspace);
784 		(*num_workspace)--;
785 		spin_unlock(workspace_lock);
786 		return workspace;
787 
788 	}
789 	if (atomic_read(alloc_workspace) > cpus) {
790 		DEFINE_WAIT(wait);
791 
792 		spin_unlock(workspace_lock);
793 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
794 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
795 			schedule();
796 		finish_wait(workspace_wait, &wait);
797 		goto again;
798 	}
799 	atomic_inc(alloc_workspace);
800 	spin_unlock(workspace_lock);
801 
802 	workspace = btrfs_compress_op[idx]->alloc_workspace();
803 	if (IS_ERR(workspace)) {
804 		atomic_dec(alloc_workspace);
805 		wake_up(workspace_wait);
806 	}
807 	return workspace;
808 }
809 
810 /*
811  * put a workspace struct back on the list or free it if we have enough
812  * idle ones sitting around
813  */
814 static void free_workspace(int type, struct list_head *workspace)
815 {
816 	int idx = type - 1;
817 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
818 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
819 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
820 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
821 	int *num_workspace			= &comp_num_workspace[idx];
822 
823 	spin_lock(workspace_lock);
824 	if (*num_workspace < num_online_cpus()) {
825 		list_add(workspace, idle_workspace);
826 		(*num_workspace)++;
827 		spin_unlock(workspace_lock);
828 		goto wake;
829 	}
830 	spin_unlock(workspace_lock);
831 
832 	btrfs_compress_op[idx]->free_workspace(workspace);
833 	atomic_dec(alloc_workspace);
834 wake:
835 	smp_mb();
836 	if (waitqueue_active(workspace_wait))
837 		wake_up(workspace_wait);
838 }
839 
840 /*
841  * cleanup function for module exit
842  */
843 static void free_workspaces(void)
844 {
845 	struct list_head *workspace;
846 	int i;
847 
848 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
849 		while (!list_empty(&comp_idle_workspace[i])) {
850 			workspace = comp_idle_workspace[i].next;
851 			list_del(workspace);
852 			btrfs_compress_op[i]->free_workspace(workspace);
853 			atomic_dec(&comp_alloc_workspace[i]);
854 		}
855 	}
856 }
857 
858 /*
859  * given an address space and start/len, compress the bytes.
860  *
861  * pages are allocated to hold the compressed result and stored
862  * in 'pages'
863  *
864  * out_pages is used to return the number of pages allocated.  There
865  * may be pages allocated even if we return an error
866  *
867  * total_in is used to return the number of bytes actually read.  It
868  * may be smaller then len if we had to exit early because we
869  * ran out of room in the pages array or because we cross the
870  * max_out threshold.
871  *
872  * total_out is used to return the total number of compressed bytes
873  *
874  * max_out tells us the max number of bytes that we're allowed to
875  * stuff into pages
876  */
877 int btrfs_compress_pages(int type, struct address_space *mapping,
878 			 u64 start, unsigned long len,
879 			 struct page **pages,
880 			 unsigned long nr_dest_pages,
881 			 unsigned long *out_pages,
882 			 unsigned long *total_in,
883 			 unsigned long *total_out,
884 			 unsigned long max_out)
885 {
886 	struct list_head *workspace;
887 	int ret;
888 
889 	workspace = find_workspace(type);
890 	if (IS_ERR(workspace))
891 		return PTR_ERR(workspace);
892 
893 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
894 						      start, len, pages,
895 						      nr_dest_pages, out_pages,
896 						      total_in, total_out,
897 						      max_out);
898 	free_workspace(type, workspace);
899 	return ret;
900 }
901 
902 /*
903  * pages_in is an array of pages with compressed data.
904  *
905  * disk_start is the starting logical offset of this array in the file
906  *
907  * bvec is a bio_vec of pages from the file that we want to decompress into
908  *
909  * vcnt is the count of pages in the biovec
910  *
911  * srclen is the number of bytes in pages_in
912  *
913  * The basic idea is that we have a bio that was created by readpages.
914  * The pages in the bio are for the uncompressed data, and they may not
915  * be contiguous.  They all correspond to the range of bytes covered by
916  * the compressed extent.
917  */
918 static int btrfs_decompress_biovec(int type, struct page **pages_in,
919 				   u64 disk_start, struct bio_vec *bvec,
920 				   int vcnt, size_t srclen)
921 {
922 	struct list_head *workspace;
923 	int ret;
924 
925 	workspace = find_workspace(type);
926 	if (IS_ERR(workspace))
927 		return PTR_ERR(workspace);
928 
929 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
930 							 disk_start,
931 							 bvec, vcnt, srclen);
932 	free_workspace(type, workspace);
933 	return ret;
934 }
935 
936 /*
937  * a less complex decompression routine.  Our compressed data fits in a
938  * single page, and we want to read a single page out of it.
939  * start_byte tells us the offset into the compressed data we're interested in
940  */
941 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
942 		     unsigned long start_byte, size_t srclen, size_t destlen)
943 {
944 	struct list_head *workspace;
945 	int ret;
946 
947 	workspace = find_workspace(type);
948 	if (IS_ERR(workspace))
949 		return PTR_ERR(workspace);
950 
951 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
952 						  dest_page, start_byte,
953 						  srclen, destlen);
954 
955 	free_workspace(type, workspace);
956 	return ret;
957 }
958 
959 void btrfs_exit_compress(void)
960 {
961 	free_workspaces();
962 }
963 
964 /*
965  * Copy uncompressed data from working buffer to pages.
966  *
967  * buf_start is the byte offset we're of the start of our workspace buffer.
968  *
969  * total_out is the last byte of the buffer
970  */
971 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
972 			      unsigned long total_out, u64 disk_start,
973 			      struct bio_vec *bvec, int vcnt,
974 			      unsigned long *pg_index,
975 			      unsigned long *pg_offset)
976 {
977 	unsigned long buf_offset;
978 	unsigned long current_buf_start;
979 	unsigned long start_byte;
980 	unsigned long working_bytes = total_out - buf_start;
981 	unsigned long bytes;
982 	char *kaddr;
983 	struct page *page_out = bvec[*pg_index].bv_page;
984 
985 	/*
986 	 * start byte is the first byte of the page we're currently
987 	 * copying into relative to the start of the compressed data.
988 	 */
989 	start_byte = page_offset(page_out) - disk_start;
990 
991 	/* we haven't yet hit data corresponding to this page */
992 	if (total_out <= start_byte)
993 		return 1;
994 
995 	/*
996 	 * the start of the data we care about is offset into
997 	 * the middle of our working buffer
998 	 */
999 	if (total_out > start_byte && buf_start < start_byte) {
1000 		buf_offset = start_byte - buf_start;
1001 		working_bytes -= buf_offset;
1002 	} else {
1003 		buf_offset = 0;
1004 	}
1005 	current_buf_start = buf_start;
1006 
1007 	/* copy bytes from the working buffer into the pages */
1008 	while (working_bytes > 0) {
1009 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1010 			    PAGE_CACHE_SIZE - buf_offset);
1011 		bytes = min(bytes, working_bytes);
1012 		kaddr = kmap_atomic(page_out);
1013 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1014 		if (*pg_index == (vcnt - 1) && *pg_offset == 0)
1015 			memset(kaddr + bytes, 0, PAGE_CACHE_SIZE - bytes);
1016 		kunmap_atomic(kaddr);
1017 		flush_dcache_page(page_out);
1018 
1019 		*pg_offset += bytes;
1020 		buf_offset += bytes;
1021 		working_bytes -= bytes;
1022 		current_buf_start += bytes;
1023 
1024 		/* check if we need to pick another page */
1025 		if (*pg_offset == PAGE_CACHE_SIZE) {
1026 			(*pg_index)++;
1027 			if (*pg_index >= vcnt)
1028 				return 0;
1029 
1030 			page_out = bvec[*pg_index].bv_page;
1031 			*pg_offset = 0;
1032 			start_byte = page_offset(page_out) - disk_start;
1033 
1034 			/*
1035 			 * make sure our new page is covered by this
1036 			 * working buffer
1037 			 */
1038 			if (total_out <= start_byte)
1039 				return 1;
1040 
1041 			/*
1042 			 * the next page in the biovec might not be adjacent
1043 			 * to the last page, but it might still be found
1044 			 * inside this working buffer. bump our offset pointer
1045 			 */
1046 			if (total_out > start_byte &&
1047 			    current_buf_start < start_byte) {
1048 				buf_offset = start_byte - buf_start;
1049 				working_bytes = total_out - start_byte;
1050 				current_buf_start = buf_start + buf_offset;
1051 			}
1052 		}
1053 	}
1054 
1055 	return 1;
1056 }
1057