xref: /linux/fs/btrfs/compression.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <linux/shrinker.h>
24 #include <crypto/hash.h>
25 #include "misc.h"
26 #include "ctree.h"
27 #include "fs.h"
28 #include "btrfs_inode.h"
29 #include "bio.h"
30 #include "ordered-data.h"
31 #include "compression.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "subpage.h"
35 #include "messages.h"
36 #include "super.h"
37 
38 static struct bio_set btrfs_compressed_bioset;
39 
40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
41 
42 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
43 {
44 	switch (type) {
45 	case BTRFS_COMPRESS_ZLIB:
46 	case BTRFS_COMPRESS_LZO:
47 	case BTRFS_COMPRESS_ZSTD:
48 	case BTRFS_COMPRESS_NONE:
49 		return btrfs_compress_types[type];
50 	default:
51 		break;
52 	}
53 
54 	return NULL;
55 }
56 
57 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
58 {
59 	return container_of(bbio, struct compressed_bio, bbio);
60 }
61 
62 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
63 						   u64 start, blk_opf_t op,
64 						   btrfs_bio_end_io_t end_io)
65 {
66 	struct btrfs_bio *bbio;
67 
68 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
69 					  GFP_NOFS, &btrfs_compressed_bioset));
70 	btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
71 	bbio->inode = inode;
72 	bbio->file_offset = start;
73 	return to_compressed_bio(bbio);
74 }
75 
76 bool btrfs_compress_is_valid_type(const char *str, size_t len)
77 {
78 	int i;
79 
80 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
81 		size_t comp_len = strlen(btrfs_compress_types[i]);
82 
83 		if (len < comp_len)
84 			continue;
85 
86 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
87 			return true;
88 	}
89 	return false;
90 }
91 
92 static int compression_compress_pages(int type, struct list_head *ws,
93 				      struct address_space *mapping, u64 start,
94 				      struct folio **folios, unsigned long *out_folios,
95 				      unsigned long *total_in, unsigned long *total_out)
96 {
97 	switch (type) {
98 	case BTRFS_COMPRESS_ZLIB:
99 		return zlib_compress_folios(ws, mapping, start, folios,
100 					    out_folios, total_in, total_out);
101 	case BTRFS_COMPRESS_LZO:
102 		return lzo_compress_folios(ws, mapping, start, folios,
103 					   out_folios, total_in, total_out);
104 	case BTRFS_COMPRESS_ZSTD:
105 		return zstd_compress_folios(ws, mapping, start, folios,
106 					    out_folios, total_in, total_out);
107 	case BTRFS_COMPRESS_NONE:
108 	default:
109 		/*
110 		 * This can happen when compression races with remount setting
111 		 * it to 'no compress', while caller doesn't call
112 		 * inode_need_compress() to check if we really need to
113 		 * compress.
114 		 *
115 		 * Not a big deal, just need to inform caller that we
116 		 * haven't allocated any pages yet.
117 		 */
118 		*out_folios = 0;
119 		return -E2BIG;
120 	}
121 }
122 
123 static int compression_decompress_bio(struct list_head *ws,
124 				      struct compressed_bio *cb)
125 {
126 	switch (cb->compress_type) {
127 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
128 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
129 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
130 	case BTRFS_COMPRESS_NONE:
131 	default:
132 		/*
133 		 * This can't happen, the type is validated several times
134 		 * before we get here.
135 		 */
136 		BUG();
137 	}
138 }
139 
140 static int compression_decompress(int type, struct list_head *ws,
141 		const u8 *data_in, struct page *dest_page,
142 		unsigned long dest_pgoff, size_t srclen, size_t destlen)
143 {
144 	switch (type) {
145 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
146 						dest_pgoff, srclen, destlen);
147 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
148 						dest_pgoff, srclen, destlen);
149 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
150 						dest_pgoff, srclen, destlen);
151 	case BTRFS_COMPRESS_NONE:
152 	default:
153 		/*
154 		 * This can't happen, the type is validated several times
155 		 * before we get here.
156 		 */
157 		BUG();
158 	}
159 }
160 
161 static void btrfs_free_compressed_folios(struct compressed_bio *cb)
162 {
163 	for (unsigned int i = 0; i < cb->nr_folios; i++)
164 		btrfs_free_compr_folio(cb->compressed_folios[i]);
165 	kfree(cb->compressed_folios);
166 }
167 
168 static int btrfs_decompress_bio(struct compressed_bio *cb);
169 
170 /*
171  * Global cache of last unused pages for compression/decompression.
172  */
173 static struct btrfs_compr_pool {
174 	struct shrinker *shrinker;
175 	spinlock_t lock;
176 	struct list_head list;
177 	int count;
178 	int thresh;
179 } compr_pool;
180 
181 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
182 {
183 	int ret;
184 
185 	/*
186 	 * We must not read the values more than once if 'ret' gets expanded in
187 	 * the return statement so we don't accidentally return a negative
188 	 * number, even if the first condition finds it positive.
189 	 */
190 	ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
191 
192 	return ret > 0 ? ret : 0;
193 }
194 
195 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
196 {
197 	struct list_head remove;
198 	struct list_head *tmp, *next;
199 	int freed;
200 
201 	if (compr_pool.count == 0)
202 		return SHRINK_STOP;
203 
204 	INIT_LIST_HEAD(&remove);
205 
206 	/* For now, just simply drain the whole list. */
207 	spin_lock(&compr_pool.lock);
208 	list_splice_init(&compr_pool.list, &remove);
209 	freed = compr_pool.count;
210 	compr_pool.count = 0;
211 	spin_unlock(&compr_pool.lock);
212 
213 	list_for_each_safe(tmp, next, &remove) {
214 		struct page *page = list_entry(tmp, struct page, lru);
215 
216 		ASSERT(page_ref_count(page) == 1);
217 		put_page(page);
218 	}
219 
220 	return freed;
221 }
222 
223 /*
224  * Common wrappers for page allocation from compression wrappers
225  */
226 struct folio *btrfs_alloc_compr_folio(void)
227 {
228 	struct folio *folio = NULL;
229 
230 	spin_lock(&compr_pool.lock);
231 	if (compr_pool.count > 0) {
232 		folio = list_first_entry(&compr_pool.list, struct folio, lru);
233 		list_del_init(&folio->lru);
234 		compr_pool.count--;
235 	}
236 	spin_unlock(&compr_pool.lock);
237 
238 	if (folio)
239 		return folio;
240 
241 	return folio_alloc(GFP_NOFS, 0);
242 }
243 
244 void btrfs_free_compr_folio(struct folio *folio)
245 {
246 	bool do_free = false;
247 
248 	spin_lock(&compr_pool.lock);
249 	if (compr_pool.count > compr_pool.thresh) {
250 		do_free = true;
251 	} else {
252 		list_add(&folio->lru, &compr_pool.list);
253 		compr_pool.count++;
254 	}
255 	spin_unlock(&compr_pool.lock);
256 
257 	if (!do_free)
258 		return;
259 
260 	ASSERT(folio_ref_count(folio) == 1);
261 	folio_put(folio);
262 }
263 
264 static void end_bbio_comprssed_read(struct btrfs_bio *bbio)
265 {
266 	struct compressed_bio *cb = to_compressed_bio(bbio);
267 	blk_status_t status = bbio->bio.bi_status;
268 
269 	if (!status)
270 		status = errno_to_blk_status(btrfs_decompress_bio(cb));
271 
272 	btrfs_free_compressed_folios(cb);
273 	btrfs_bio_end_io(cb->orig_bbio, status);
274 	bio_put(&bbio->bio);
275 }
276 
277 /*
278  * Clear the writeback bits on all of the file
279  * pages for a compressed write
280  */
281 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
282 {
283 	struct inode *inode = &cb->bbio.inode->vfs_inode;
284 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
285 	unsigned long index = cb->start >> PAGE_SHIFT;
286 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
287 	struct folio_batch fbatch;
288 	const int error = blk_status_to_errno(cb->bbio.bio.bi_status);
289 	int i;
290 	int ret;
291 
292 	if (error)
293 		mapping_set_error(inode->i_mapping, error);
294 
295 	folio_batch_init(&fbatch);
296 	while (index <= end_index) {
297 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
298 				&fbatch);
299 
300 		if (ret == 0)
301 			return;
302 
303 		for (i = 0; i < ret; i++) {
304 			struct folio *folio = fbatch.folios[i];
305 
306 			btrfs_folio_clamp_clear_writeback(fs_info, folio,
307 							  cb->start, cb->len);
308 		}
309 		folio_batch_release(&fbatch);
310 	}
311 	/* the inode may be gone now */
312 }
313 
314 static void btrfs_finish_compressed_write_work(struct work_struct *work)
315 {
316 	struct compressed_bio *cb =
317 		container_of(work, struct compressed_bio, write_end_work);
318 
319 	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
320 				    cb->bbio.bio.bi_status == BLK_STS_OK);
321 
322 	if (cb->writeback)
323 		end_compressed_writeback(cb);
324 	/* Note, our inode could be gone now */
325 
326 	btrfs_free_compressed_folios(cb);
327 	bio_put(&cb->bbio.bio);
328 }
329 
330 /*
331  * Do the cleanup once all the compressed pages hit the disk.  This will clear
332  * writeback on the file pages and free the compressed pages.
333  *
334  * This also calls the writeback end hooks for the file pages so that metadata
335  * and checksums can be updated in the file.
336  */
337 static void end_bbio_comprssed_write(struct btrfs_bio *bbio)
338 {
339 	struct compressed_bio *cb = to_compressed_bio(bbio);
340 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
341 
342 	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
343 }
344 
345 static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb)
346 {
347 	struct bio *bio = &cb->bbio.bio;
348 	u32 offset = 0;
349 
350 	while (offset < cb->compressed_len) {
351 		int ret;
352 		u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
353 
354 		/* Maximum compressed extent is smaller than bio size limit. */
355 		ret = bio_add_folio(bio, cb->compressed_folios[offset >> PAGE_SHIFT],
356 				    len, 0);
357 		ASSERT(ret);
358 		offset += len;
359 	}
360 }
361 
362 /*
363  * worker function to build and submit bios for previously compressed pages.
364  * The corresponding pages in the inode should be marked for writeback
365  * and the compressed pages should have a reference on them for dropping
366  * when the IO is complete.
367  *
368  * This also checksums the file bytes and gets things ready for
369  * the end io hooks.
370  */
371 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
372 				   struct folio **compressed_folios,
373 				   unsigned int nr_folios,
374 				   blk_opf_t write_flags,
375 				   bool writeback)
376 {
377 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
378 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
379 	struct compressed_bio *cb;
380 
381 	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
382 	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
383 
384 	cb = alloc_compressed_bio(inode, ordered->file_offset,
385 				  REQ_OP_WRITE | write_flags,
386 				  end_bbio_comprssed_write);
387 	cb->start = ordered->file_offset;
388 	cb->len = ordered->num_bytes;
389 	cb->compressed_folios = compressed_folios;
390 	cb->compressed_len = ordered->disk_num_bytes;
391 	cb->writeback = writeback;
392 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
393 	cb->nr_folios = nr_folios;
394 	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
395 	cb->bbio.ordered = ordered;
396 	btrfs_add_compressed_bio_folios(cb);
397 
398 	btrfs_submit_bio(&cb->bbio, 0);
399 }
400 
401 /*
402  * Add extra pages in the same compressed file extent so that we don't need to
403  * re-read the same extent again and again.
404  *
405  * NOTE: this won't work well for subpage, as for subpage read, we lock the
406  * full page then submit bio for each compressed/regular extents.
407  *
408  * This means, if we have several sectors in the same page points to the same
409  * on-disk compressed data, we will re-read the same extent many times and
410  * this function can only help for the next page.
411  */
412 static noinline int add_ra_bio_pages(struct inode *inode,
413 				     u64 compressed_end,
414 				     struct compressed_bio *cb,
415 				     int *memstall, unsigned long *pflags)
416 {
417 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
418 	unsigned long end_index;
419 	struct bio *orig_bio = &cb->orig_bbio->bio;
420 	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
421 	u64 isize = i_size_read(inode);
422 	int ret;
423 	struct page *page;
424 	struct extent_map *em;
425 	struct address_space *mapping = inode->i_mapping;
426 	struct extent_map_tree *em_tree;
427 	struct extent_io_tree *tree;
428 	int sectors_missed = 0;
429 
430 	em_tree = &BTRFS_I(inode)->extent_tree;
431 	tree = &BTRFS_I(inode)->io_tree;
432 
433 	if (isize == 0)
434 		return 0;
435 
436 	/*
437 	 * For current subpage support, we only support 64K page size,
438 	 * which means maximum compressed extent size (128K) is just 2x page
439 	 * size.
440 	 * This makes readahead less effective, so here disable readahead for
441 	 * subpage for now, until full compressed write is supported.
442 	 */
443 	if (fs_info->sectorsize < PAGE_SIZE)
444 		return 0;
445 
446 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
447 
448 	while (cur < compressed_end) {
449 		u64 page_end;
450 		u64 pg_index = cur >> PAGE_SHIFT;
451 		u32 add_size;
452 
453 		if (pg_index > end_index)
454 			break;
455 
456 		page = xa_load(&mapping->i_pages, pg_index);
457 		if (page && !xa_is_value(page)) {
458 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
459 					  fs_info->sectorsize_bits;
460 
461 			/* Beyond threshold, no need to continue */
462 			if (sectors_missed > 4)
463 				break;
464 
465 			/*
466 			 * Jump to next page start as we already have page for
467 			 * current offset.
468 			 */
469 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
470 			continue;
471 		}
472 
473 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
474 								 ~__GFP_FS));
475 		if (!page)
476 			break;
477 
478 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
479 			put_page(page);
480 			/* There is already a page, skip to page end */
481 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
482 			continue;
483 		}
484 
485 		if (!*memstall && PageWorkingset(page)) {
486 			psi_memstall_enter(pflags);
487 			*memstall = 1;
488 		}
489 
490 		ret = set_page_extent_mapped(page);
491 		if (ret < 0) {
492 			unlock_page(page);
493 			put_page(page);
494 			break;
495 		}
496 
497 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
498 		lock_extent(tree, cur, page_end, NULL);
499 		read_lock(&em_tree->lock);
500 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
501 		read_unlock(&em_tree->lock);
502 
503 		/*
504 		 * At this point, we have a locked page in the page cache for
505 		 * these bytes in the file.  But, we have to make sure they map
506 		 * to this compressed extent on disk.
507 		 */
508 		if (!em || cur < em->start ||
509 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
510 		    (em->block_start >> SECTOR_SHIFT) != orig_bio->bi_iter.bi_sector) {
511 			free_extent_map(em);
512 			unlock_extent(tree, cur, page_end, NULL);
513 			unlock_page(page);
514 			put_page(page);
515 			break;
516 		}
517 		free_extent_map(em);
518 
519 		if (page->index == end_index) {
520 			size_t zero_offset = offset_in_page(isize);
521 
522 			if (zero_offset) {
523 				int zeros;
524 				zeros = PAGE_SIZE - zero_offset;
525 				memzero_page(page, zero_offset, zeros);
526 			}
527 		}
528 
529 		add_size = min(em->start + em->len, page_end + 1) - cur;
530 		ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur));
531 		if (ret != add_size) {
532 			unlock_extent(tree, cur, page_end, NULL);
533 			unlock_page(page);
534 			put_page(page);
535 			break;
536 		}
537 		/*
538 		 * If it's subpage, we also need to increase its
539 		 * subpage::readers number, as at endio we will decrease
540 		 * subpage::readers and to unlock the page.
541 		 */
542 		if (fs_info->sectorsize < PAGE_SIZE)
543 			btrfs_subpage_start_reader(fs_info, page_folio(page),
544 						   cur, add_size);
545 		put_page(page);
546 		cur += add_size;
547 	}
548 	return 0;
549 }
550 
551 /*
552  * for a compressed read, the bio we get passed has all the inode pages
553  * in it.  We don't actually do IO on those pages but allocate new ones
554  * to hold the compressed pages on disk.
555  *
556  * bio->bi_iter.bi_sector points to the compressed extent on disk
557  * bio->bi_io_vec points to all of the inode pages
558  *
559  * After the compressed pages are read, we copy the bytes into the
560  * bio we were passed and then call the bio end_io calls
561  */
562 void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
563 {
564 	struct btrfs_inode *inode = bbio->inode;
565 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
566 	struct extent_map_tree *em_tree = &inode->extent_tree;
567 	struct compressed_bio *cb;
568 	unsigned int compressed_len;
569 	u64 file_offset = bbio->file_offset;
570 	u64 em_len;
571 	u64 em_start;
572 	struct extent_map *em;
573 	unsigned long pflags;
574 	int memstall = 0;
575 	blk_status_t ret;
576 	int ret2;
577 
578 	/* we need the actual starting offset of this extent in the file */
579 	read_lock(&em_tree->lock);
580 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
581 	read_unlock(&em_tree->lock);
582 	if (!em) {
583 		ret = BLK_STS_IOERR;
584 		goto out;
585 	}
586 
587 	ASSERT(extent_map_is_compressed(em));
588 	compressed_len = em->block_len;
589 
590 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
591 				  end_bbio_comprssed_read);
592 
593 	cb->start = em->orig_start;
594 	em_len = em->len;
595 	em_start = em->start;
596 
597 	cb->len = bbio->bio.bi_iter.bi_size;
598 	cb->compressed_len = compressed_len;
599 	cb->compress_type = extent_map_compression(em);
600 	cb->orig_bbio = bbio;
601 
602 	free_extent_map(em);
603 
604 	cb->nr_folios = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
605 	cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct page *), GFP_NOFS);
606 	if (!cb->compressed_folios) {
607 		ret = BLK_STS_RESOURCE;
608 		goto out_free_bio;
609 	}
610 
611 	ret2 = btrfs_alloc_folio_array(cb->nr_folios, cb->compressed_folios, 0);
612 	if (ret2) {
613 		ret = BLK_STS_RESOURCE;
614 		goto out_free_compressed_pages;
615 	}
616 
617 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
618 			 &pflags);
619 
620 	/* include any pages we added in add_ra-bio_pages */
621 	cb->len = bbio->bio.bi_iter.bi_size;
622 	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
623 	btrfs_add_compressed_bio_folios(cb);
624 
625 	if (memstall)
626 		psi_memstall_leave(&pflags);
627 
628 	btrfs_submit_bio(&cb->bbio, 0);
629 	return;
630 
631 out_free_compressed_pages:
632 	kfree(cb->compressed_folios);
633 out_free_bio:
634 	bio_put(&cb->bbio.bio);
635 out:
636 	btrfs_bio_end_io(bbio, ret);
637 }
638 
639 /*
640  * Heuristic uses systematic sampling to collect data from the input data
641  * range, the logic can be tuned by the following constants:
642  *
643  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
644  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
645  */
646 #define SAMPLING_READ_SIZE	(16)
647 #define SAMPLING_INTERVAL	(256)
648 
649 /*
650  * For statistical analysis of the input data we consider bytes that form a
651  * Galois Field of 256 objects. Each object has an attribute count, ie. how
652  * many times the object appeared in the sample.
653  */
654 #define BUCKET_SIZE		(256)
655 
656 /*
657  * The size of the sample is based on a statistical sampling rule of thumb.
658  * The common way is to perform sampling tests as long as the number of
659  * elements in each cell is at least 5.
660  *
661  * Instead of 5, we choose 32 to obtain more accurate results.
662  * If the data contain the maximum number of symbols, which is 256, we obtain a
663  * sample size bound by 8192.
664  *
665  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
666  * from up to 512 locations.
667  */
668 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
669 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
670 
671 struct bucket_item {
672 	u32 count;
673 };
674 
675 struct heuristic_ws {
676 	/* Partial copy of input data */
677 	u8 *sample;
678 	u32 sample_size;
679 	/* Buckets store counters for each byte value */
680 	struct bucket_item *bucket;
681 	/* Sorting buffer */
682 	struct bucket_item *bucket_b;
683 	struct list_head list;
684 };
685 
686 static struct workspace_manager heuristic_wsm;
687 
688 static void free_heuristic_ws(struct list_head *ws)
689 {
690 	struct heuristic_ws *workspace;
691 
692 	workspace = list_entry(ws, struct heuristic_ws, list);
693 
694 	kvfree(workspace->sample);
695 	kfree(workspace->bucket);
696 	kfree(workspace->bucket_b);
697 	kfree(workspace);
698 }
699 
700 static struct list_head *alloc_heuristic_ws(unsigned int level)
701 {
702 	struct heuristic_ws *ws;
703 
704 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
705 	if (!ws)
706 		return ERR_PTR(-ENOMEM);
707 
708 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
709 	if (!ws->sample)
710 		goto fail;
711 
712 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
713 	if (!ws->bucket)
714 		goto fail;
715 
716 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
717 	if (!ws->bucket_b)
718 		goto fail;
719 
720 	INIT_LIST_HEAD(&ws->list);
721 	return &ws->list;
722 fail:
723 	free_heuristic_ws(&ws->list);
724 	return ERR_PTR(-ENOMEM);
725 }
726 
727 const struct btrfs_compress_op btrfs_heuristic_compress = {
728 	.workspace_manager = &heuristic_wsm,
729 };
730 
731 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
732 	/* The heuristic is represented as compression type 0 */
733 	&btrfs_heuristic_compress,
734 	&btrfs_zlib_compress,
735 	&btrfs_lzo_compress,
736 	&btrfs_zstd_compress,
737 };
738 
739 static struct list_head *alloc_workspace(int type, unsigned int level)
740 {
741 	switch (type) {
742 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
743 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
744 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
745 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
746 	default:
747 		/*
748 		 * This can't happen, the type is validated several times
749 		 * before we get here.
750 		 */
751 		BUG();
752 	}
753 }
754 
755 static void free_workspace(int type, struct list_head *ws)
756 {
757 	switch (type) {
758 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
759 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
760 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
761 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
762 	default:
763 		/*
764 		 * This can't happen, the type is validated several times
765 		 * before we get here.
766 		 */
767 		BUG();
768 	}
769 }
770 
771 static void btrfs_init_workspace_manager(int type)
772 {
773 	struct workspace_manager *wsm;
774 	struct list_head *workspace;
775 
776 	wsm = btrfs_compress_op[type]->workspace_manager;
777 	INIT_LIST_HEAD(&wsm->idle_ws);
778 	spin_lock_init(&wsm->ws_lock);
779 	atomic_set(&wsm->total_ws, 0);
780 	init_waitqueue_head(&wsm->ws_wait);
781 
782 	/*
783 	 * Preallocate one workspace for each compression type so we can
784 	 * guarantee forward progress in the worst case
785 	 */
786 	workspace = alloc_workspace(type, 0);
787 	if (IS_ERR(workspace)) {
788 		pr_warn(
789 	"BTRFS: cannot preallocate compression workspace, will try later\n");
790 	} else {
791 		atomic_set(&wsm->total_ws, 1);
792 		wsm->free_ws = 1;
793 		list_add(workspace, &wsm->idle_ws);
794 	}
795 }
796 
797 static void btrfs_cleanup_workspace_manager(int type)
798 {
799 	struct workspace_manager *wsman;
800 	struct list_head *ws;
801 
802 	wsman = btrfs_compress_op[type]->workspace_manager;
803 	while (!list_empty(&wsman->idle_ws)) {
804 		ws = wsman->idle_ws.next;
805 		list_del(ws);
806 		free_workspace(type, ws);
807 		atomic_dec(&wsman->total_ws);
808 	}
809 }
810 
811 /*
812  * This finds an available workspace or allocates a new one.
813  * If it's not possible to allocate a new one, waits until there's one.
814  * Preallocation makes a forward progress guarantees and we do not return
815  * errors.
816  */
817 struct list_head *btrfs_get_workspace(int type, unsigned int level)
818 {
819 	struct workspace_manager *wsm;
820 	struct list_head *workspace;
821 	int cpus = num_online_cpus();
822 	unsigned nofs_flag;
823 	struct list_head *idle_ws;
824 	spinlock_t *ws_lock;
825 	atomic_t *total_ws;
826 	wait_queue_head_t *ws_wait;
827 	int *free_ws;
828 
829 	wsm = btrfs_compress_op[type]->workspace_manager;
830 	idle_ws	 = &wsm->idle_ws;
831 	ws_lock	 = &wsm->ws_lock;
832 	total_ws = &wsm->total_ws;
833 	ws_wait	 = &wsm->ws_wait;
834 	free_ws	 = &wsm->free_ws;
835 
836 again:
837 	spin_lock(ws_lock);
838 	if (!list_empty(idle_ws)) {
839 		workspace = idle_ws->next;
840 		list_del(workspace);
841 		(*free_ws)--;
842 		spin_unlock(ws_lock);
843 		return workspace;
844 
845 	}
846 	if (atomic_read(total_ws) > cpus) {
847 		DEFINE_WAIT(wait);
848 
849 		spin_unlock(ws_lock);
850 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
851 		if (atomic_read(total_ws) > cpus && !*free_ws)
852 			schedule();
853 		finish_wait(ws_wait, &wait);
854 		goto again;
855 	}
856 	atomic_inc(total_ws);
857 	spin_unlock(ws_lock);
858 
859 	/*
860 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
861 	 * to turn it off here because we might get called from the restricted
862 	 * context of btrfs_compress_bio/btrfs_compress_pages
863 	 */
864 	nofs_flag = memalloc_nofs_save();
865 	workspace = alloc_workspace(type, level);
866 	memalloc_nofs_restore(nofs_flag);
867 
868 	if (IS_ERR(workspace)) {
869 		atomic_dec(total_ws);
870 		wake_up(ws_wait);
871 
872 		/*
873 		 * Do not return the error but go back to waiting. There's a
874 		 * workspace preallocated for each type and the compression
875 		 * time is bounded so we get to a workspace eventually. This
876 		 * makes our caller's life easier.
877 		 *
878 		 * To prevent silent and low-probability deadlocks (when the
879 		 * initial preallocation fails), check if there are any
880 		 * workspaces at all.
881 		 */
882 		if (atomic_read(total_ws) == 0) {
883 			static DEFINE_RATELIMIT_STATE(_rs,
884 					/* once per minute */ 60 * HZ,
885 					/* no burst */ 1);
886 
887 			if (__ratelimit(&_rs)) {
888 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
889 			}
890 		}
891 		goto again;
892 	}
893 	return workspace;
894 }
895 
896 static struct list_head *get_workspace(int type, int level)
897 {
898 	switch (type) {
899 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
900 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
901 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
902 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
903 	default:
904 		/*
905 		 * This can't happen, the type is validated several times
906 		 * before we get here.
907 		 */
908 		BUG();
909 	}
910 }
911 
912 /*
913  * put a workspace struct back on the list or free it if we have enough
914  * idle ones sitting around
915  */
916 void btrfs_put_workspace(int type, struct list_head *ws)
917 {
918 	struct workspace_manager *wsm;
919 	struct list_head *idle_ws;
920 	spinlock_t *ws_lock;
921 	atomic_t *total_ws;
922 	wait_queue_head_t *ws_wait;
923 	int *free_ws;
924 
925 	wsm = btrfs_compress_op[type]->workspace_manager;
926 	idle_ws	 = &wsm->idle_ws;
927 	ws_lock	 = &wsm->ws_lock;
928 	total_ws = &wsm->total_ws;
929 	ws_wait	 = &wsm->ws_wait;
930 	free_ws	 = &wsm->free_ws;
931 
932 	spin_lock(ws_lock);
933 	if (*free_ws <= num_online_cpus()) {
934 		list_add(ws, idle_ws);
935 		(*free_ws)++;
936 		spin_unlock(ws_lock);
937 		goto wake;
938 	}
939 	spin_unlock(ws_lock);
940 
941 	free_workspace(type, ws);
942 	atomic_dec(total_ws);
943 wake:
944 	cond_wake_up(ws_wait);
945 }
946 
947 static void put_workspace(int type, struct list_head *ws)
948 {
949 	switch (type) {
950 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
951 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
952 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
953 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
954 	default:
955 		/*
956 		 * This can't happen, the type is validated several times
957 		 * before we get here.
958 		 */
959 		BUG();
960 	}
961 }
962 
963 /*
964  * Adjust @level according to the limits of the compression algorithm or
965  * fallback to default
966  */
967 static unsigned int btrfs_compress_set_level(int type, unsigned level)
968 {
969 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
970 
971 	if (level == 0)
972 		level = ops->default_level;
973 	else
974 		level = min(level, ops->max_level);
975 
976 	return level;
977 }
978 
979 /* Wrapper around find_get_page(), with extra error message. */
980 int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start,
981 				     struct folio **in_folio_ret)
982 {
983 	struct folio *in_folio;
984 
985 	/*
986 	 * The compressed write path should have the folio locked already, thus
987 	 * we only need to grab one reference.
988 	 */
989 	in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT);
990 	if (IS_ERR(in_folio)) {
991 		struct btrfs_inode *inode = BTRFS_I(mapping->host);
992 
993 		btrfs_crit(inode->root->fs_info,
994 		"failed to get page cache, root %lld ino %llu file offset %llu",
995 			   btrfs_root_id(inode->root), btrfs_ino(inode), start);
996 		return -ENOENT;
997 	}
998 	*in_folio_ret = in_folio;
999 	return 0;
1000 }
1001 
1002 /*
1003  * Given an address space and start and length, compress the bytes into @pages
1004  * that are allocated on demand.
1005  *
1006  * @type_level is encoded algorithm and level, where level 0 means whatever
1007  * default the algorithm chooses and is opaque here;
1008  * - compression algo are 0-3
1009  * - the level are bits 4-7
1010  *
1011  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1012  * and returns number of actually allocated pages
1013  *
1014  * @total_in is used to return the number of bytes actually read.  It
1015  * may be smaller than the input length if we had to exit early because we
1016  * ran out of room in the pages array or because we cross the
1017  * max_out threshold.
1018  *
1019  * @total_out is an in/out parameter, must be set to the input length and will
1020  * be also used to return the total number of compressed bytes
1021  */
1022 int btrfs_compress_folios(unsigned int type_level, struct address_space *mapping,
1023 			 u64 start, struct folio **folios, unsigned long *out_folios,
1024 			 unsigned long *total_in, unsigned long *total_out)
1025 {
1026 	int type = btrfs_compress_type(type_level);
1027 	int level = btrfs_compress_level(type_level);
1028 	struct list_head *workspace;
1029 	int ret;
1030 
1031 	level = btrfs_compress_set_level(type, level);
1032 	workspace = get_workspace(type, level);
1033 	ret = compression_compress_pages(type, workspace, mapping, start, folios,
1034 					 out_folios, total_in, total_out);
1035 	put_workspace(type, workspace);
1036 	return ret;
1037 }
1038 
1039 static int btrfs_decompress_bio(struct compressed_bio *cb)
1040 {
1041 	struct list_head *workspace;
1042 	int ret;
1043 	int type = cb->compress_type;
1044 
1045 	workspace = get_workspace(type, 0);
1046 	ret = compression_decompress_bio(workspace, cb);
1047 	put_workspace(type, workspace);
1048 
1049 	if (!ret)
1050 		zero_fill_bio(&cb->orig_bbio->bio);
1051 	return ret;
1052 }
1053 
1054 /*
1055  * a less complex decompression routine.  Our compressed data fits in a
1056  * single page, and we want to read a single page out of it.
1057  * start_byte tells us the offset into the compressed data we're interested in
1058  */
1059 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
1060 		     unsigned long dest_pgoff, size_t srclen, size_t destlen)
1061 {
1062 	struct btrfs_fs_info *fs_info = page_to_fs_info(dest_page);
1063 	struct list_head *workspace;
1064 	const u32 sectorsize = fs_info->sectorsize;
1065 	int ret;
1066 
1067 	/*
1068 	 * The full destination page range should not exceed the page size.
1069 	 * And the @destlen should not exceed sectorsize, as this is only called for
1070 	 * inline file extents, which should not exceed sectorsize.
1071 	 */
1072 	ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize);
1073 
1074 	workspace = get_workspace(type, 0);
1075 	ret = compression_decompress(type, workspace, data_in, dest_page,
1076 				     dest_pgoff, srclen, destlen);
1077 	put_workspace(type, workspace);
1078 
1079 	return ret;
1080 }
1081 
1082 int __init btrfs_init_compress(void)
1083 {
1084 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1085 			offsetof(struct compressed_bio, bbio.bio),
1086 			BIOSET_NEED_BVECS))
1087 		return -ENOMEM;
1088 
1089 	compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1090 	if (!compr_pool.shrinker)
1091 		return -ENOMEM;
1092 
1093 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1094 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1095 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1096 	zstd_init_workspace_manager();
1097 
1098 	spin_lock_init(&compr_pool.lock);
1099 	INIT_LIST_HEAD(&compr_pool.list);
1100 	compr_pool.count = 0;
1101 	/* 128K / 4K = 32, for 8 threads is 256 pages. */
1102 	compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1103 	compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1104 	compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1105 	compr_pool.shrinker->batch = 32;
1106 	compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1107 	shrinker_register(compr_pool.shrinker);
1108 
1109 	return 0;
1110 }
1111 
1112 void __cold btrfs_exit_compress(void)
1113 {
1114 	/* For now scan drains all pages and does not touch the parameters. */
1115 	btrfs_compr_pool_scan(NULL, NULL);
1116 	shrinker_free(compr_pool.shrinker);
1117 
1118 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1119 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1120 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1121 	zstd_cleanup_workspace_manager();
1122 	bioset_exit(&btrfs_compressed_bioset);
1123 }
1124 
1125 /*
1126  * Copy decompressed data from working buffer to pages.
1127  *
1128  * @buf:		The decompressed data buffer
1129  * @buf_len:		The decompressed data length
1130  * @decompressed:	Number of bytes that are already decompressed inside the
1131  * 			compressed extent
1132  * @cb:			The compressed extent descriptor
1133  * @orig_bio:		The original bio that the caller wants to read for
1134  *
1135  * An easier to understand graph is like below:
1136  *
1137  * 		|<- orig_bio ->|     |<- orig_bio->|
1138  * 	|<-------      full decompressed extent      ----->|
1139  * 	|<-----------    @cb range   ---->|
1140  * 	|			|<-- @buf_len -->|
1141  * 	|<--- @decompressed --->|
1142  *
1143  * Note that, @cb can be a subpage of the full decompressed extent, but
1144  * @cb->start always has the same as the orig_file_offset value of the full
1145  * decompressed extent.
1146  *
1147  * When reading compressed extent, we have to read the full compressed extent,
1148  * while @orig_bio may only want part of the range.
1149  * Thus this function will ensure only data covered by @orig_bio will be copied
1150  * to.
1151  *
1152  * Return 0 if we have copied all needed contents for @orig_bio.
1153  * Return >0 if we need continue decompress.
1154  */
1155 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1156 			      struct compressed_bio *cb, u32 decompressed)
1157 {
1158 	struct bio *orig_bio = &cb->orig_bbio->bio;
1159 	/* Offset inside the full decompressed extent */
1160 	u32 cur_offset;
1161 
1162 	cur_offset = decompressed;
1163 	/* The main loop to do the copy */
1164 	while (cur_offset < decompressed + buf_len) {
1165 		struct bio_vec bvec;
1166 		size_t copy_len;
1167 		u32 copy_start;
1168 		/* Offset inside the full decompressed extent */
1169 		u32 bvec_offset;
1170 
1171 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1172 		/*
1173 		 * cb->start may underflow, but subtracting that value can still
1174 		 * give us correct offset inside the full decompressed extent.
1175 		 */
1176 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1177 
1178 		/* Haven't reached the bvec range, exit */
1179 		if (decompressed + buf_len <= bvec_offset)
1180 			return 1;
1181 
1182 		copy_start = max(cur_offset, bvec_offset);
1183 		copy_len = min(bvec_offset + bvec.bv_len,
1184 			       decompressed + buf_len) - copy_start;
1185 		ASSERT(copy_len);
1186 
1187 		/*
1188 		 * Extra range check to ensure we didn't go beyond
1189 		 * @buf + @buf_len.
1190 		 */
1191 		ASSERT(copy_start - decompressed < buf_len);
1192 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1193 			       buf + copy_start - decompressed, copy_len);
1194 		cur_offset += copy_len;
1195 
1196 		bio_advance(orig_bio, copy_len);
1197 		/* Finished the bio */
1198 		if (!orig_bio->bi_iter.bi_size)
1199 			return 0;
1200 	}
1201 	return 1;
1202 }
1203 
1204 /*
1205  * Shannon Entropy calculation
1206  *
1207  * Pure byte distribution analysis fails to determine compressibility of data.
1208  * Try calculating entropy to estimate the average minimum number of bits
1209  * needed to encode the sampled data.
1210  *
1211  * For convenience, return the percentage of needed bits, instead of amount of
1212  * bits directly.
1213  *
1214  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1215  *			    and can be compressible with high probability
1216  *
1217  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1218  *
1219  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1220  */
1221 #define ENTROPY_LVL_ACEPTABLE		(65)
1222 #define ENTROPY_LVL_HIGH		(80)
1223 
1224 /*
1225  * For increasead precision in shannon_entropy calculation,
1226  * let's do pow(n, M) to save more digits after comma:
1227  *
1228  * - maximum int bit length is 64
1229  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1230  * - 13 * 4 = 52 < 64		-> M = 4
1231  *
1232  * So use pow(n, 4).
1233  */
1234 static inline u32 ilog2_w(u64 n)
1235 {
1236 	return ilog2(n * n * n * n);
1237 }
1238 
1239 static u32 shannon_entropy(struct heuristic_ws *ws)
1240 {
1241 	const u32 entropy_max = 8 * ilog2_w(2);
1242 	u32 entropy_sum = 0;
1243 	u32 p, p_base, sz_base;
1244 	u32 i;
1245 
1246 	sz_base = ilog2_w(ws->sample_size);
1247 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1248 		p = ws->bucket[i].count;
1249 		p_base = ilog2_w(p);
1250 		entropy_sum += p * (sz_base - p_base);
1251 	}
1252 
1253 	entropy_sum /= ws->sample_size;
1254 	return entropy_sum * 100 / entropy_max;
1255 }
1256 
1257 #define RADIX_BASE		4U
1258 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1259 
1260 static u8 get4bits(u64 num, int shift) {
1261 	u8 low4bits;
1262 
1263 	num >>= shift;
1264 	/* Reverse order */
1265 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1266 	return low4bits;
1267 }
1268 
1269 /*
1270  * Use 4 bits as radix base
1271  * Use 16 u32 counters for calculating new position in buf array
1272  *
1273  * @array     - array that will be sorted
1274  * @array_buf - buffer array to store sorting results
1275  *              must be equal in size to @array
1276  * @num       - array size
1277  */
1278 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1279 		       int num)
1280 {
1281 	u64 max_num;
1282 	u64 buf_num;
1283 	u32 counters[COUNTERS_SIZE];
1284 	u32 new_addr;
1285 	u32 addr;
1286 	int bitlen;
1287 	int shift;
1288 	int i;
1289 
1290 	/*
1291 	 * Try avoid useless loop iterations for small numbers stored in big
1292 	 * counters.  Example: 48 33 4 ... in 64bit array
1293 	 */
1294 	max_num = array[0].count;
1295 	for (i = 1; i < num; i++) {
1296 		buf_num = array[i].count;
1297 		if (buf_num > max_num)
1298 			max_num = buf_num;
1299 	}
1300 
1301 	buf_num = ilog2(max_num);
1302 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1303 
1304 	shift = 0;
1305 	while (shift < bitlen) {
1306 		memset(counters, 0, sizeof(counters));
1307 
1308 		for (i = 0; i < num; i++) {
1309 			buf_num = array[i].count;
1310 			addr = get4bits(buf_num, shift);
1311 			counters[addr]++;
1312 		}
1313 
1314 		for (i = 1; i < COUNTERS_SIZE; i++)
1315 			counters[i] += counters[i - 1];
1316 
1317 		for (i = num - 1; i >= 0; i--) {
1318 			buf_num = array[i].count;
1319 			addr = get4bits(buf_num, shift);
1320 			counters[addr]--;
1321 			new_addr = counters[addr];
1322 			array_buf[new_addr] = array[i];
1323 		}
1324 
1325 		shift += RADIX_BASE;
1326 
1327 		/*
1328 		 * Normal radix expects to move data from a temporary array, to
1329 		 * the main one.  But that requires some CPU time. Avoid that
1330 		 * by doing another sort iteration to original array instead of
1331 		 * memcpy()
1332 		 */
1333 		memset(counters, 0, sizeof(counters));
1334 
1335 		for (i = 0; i < num; i ++) {
1336 			buf_num = array_buf[i].count;
1337 			addr = get4bits(buf_num, shift);
1338 			counters[addr]++;
1339 		}
1340 
1341 		for (i = 1; i < COUNTERS_SIZE; i++)
1342 			counters[i] += counters[i - 1];
1343 
1344 		for (i = num - 1; i >= 0; i--) {
1345 			buf_num = array_buf[i].count;
1346 			addr = get4bits(buf_num, shift);
1347 			counters[addr]--;
1348 			new_addr = counters[addr];
1349 			array[new_addr] = array_buf[i];
1350 		}
1351 
1352 		shift += RADIX_BASE;
1353 	}
1354 }
1355 
1356 /*
1357  * Size of the core byte set - how many bytes cover 90% of the sample
1358  *
1359  * There are several types of structured binary data that use nearly all byte
1360  * values. The distribution can be uniform and counts in all buckets will be
1361  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1362  *
1363  * Other possibility is normal (Gaussian) distribution, where the data could
1364  * be potentially compressible, but we have to take a few more steps to decide
1365  * how much.
1366  *
1367  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1368  *                       compression algo can easy fix that
1369  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1370  *                       probability is not compressible
1371  */
1372 #define BYTE_CORE_SET_LOW		(64)
1373 #define BYTE_CORE_SET_HIGH		(200)
1374 
1375 static int byte_core_set_size(struct heuristic_ws *ws)
1376 {
1377 	u32 i;
1378 	u32 coreset_sum = 0;
1379 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1380 	struct bucket_item *bucket = ws->bucket;
1381 
1382 	/* Sort in reverse order */
1383 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1384 
1385 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1386 		coreset_sum += bucket[i].count;
1387 
1388 	if (coreset_sum > core_set_threshold)
1389 		return i;
1390 
1391 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1392 		coreset_sum += bucket[i].count;
1393 		if (coreset_sum > core_set_threshold)
1394 			break;
1395 	}
1396 
1397 	return i;
1398 }
1399 
1400 /*
1401  * Count byte values in buckets.
1402  * This heuristic can detect textual data (configs, xml, json, html, etc).
1403  * Because in most text-like data byte set is restricted to limited number of
1404  * possible characters, and that restriction in most cases makes data easy to
1405  * compress.
1406  *
1407  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1408  *	less - compressible
1409  *	more - need additional analysis
1410  */
1411 #define BYTE_SET_THRESHOLD		(64)
1412 
1413 static u32 byte_set_size(const struct heuristic_ws *ws)
1414 {
1415 	u32 i;
1416 	u32 byte_set_size = 0;
1417 
1418 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1419 		if (ws->bucket[i].count > 0)
1420 			byte_set_size++;
1421 	}
1422 
1423 	/*
1424 	 * Continue collecting count of byte values in buckets.  If the byte
1425 	 * set size is bigger then the threshold, it's pointless to continue,
1426 	 * the detection technique would fail for this type of data.
1427 	 */
1428 	for (; i < BUCKET_SIZE; i++) {
1429 		if (ws->bucket[i].count > 0) {
1430 			byte_set_size++;
1431 			if (byte_set_size > BYTE_SET_THRESHOLD)
1432 				return byte_set_size;
1433 		}
1434 	}
1435 
1436 	return byte_set_size;
1437 }
1438 
1439 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1440 {
1441 	const u32 half_of_sample = ws->sample_size / 2;
1442 	const u8 *data = ws->sample;
1443 
1444 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1445 }
1446 
1447 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1448 				     struct heuristic_ws *ws)
1449 {
1450 	struct page *page;
1451 	u64 index, index_end;
1452 	u32 i, curr_sample_pos;
1453 	u8 *in_data;
1454 
1455 	/*
1456 	 * Compression handles the input data by chunks of 128KiB
1457 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1458 	 *
1459 	 * We do the same for the heuristic and loop over the whole range.
1460 	 *
1461 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1462 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1463 	 */
1464 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1465 		end = start + BTRFS_MAX_UNCOMPRESSED;
1466 
1467 	index = start >> PAGE_SHIFT;
1468 	index_end = end >> PAGE_SHIFT;
1469 
1470 	/* Don't miss unaligned end */
1471 	if (!PAGE_ALIGNED(end))
1472 		index_end++;
1473 
1474 	curr_sample_pos = 0;
1475 	while (index < index_end) {
1476 		page = find_get_page(inode->i_mapping, index);
1477 		in_data = kmap_local_page(page);
1478 		/* Handle case where the start is not aligned to PAGE_SIZE */
1479 		i = start % PAGE_SIZE;
1480 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1481 			/* Don't sample any garbage from the last page */
1482 			if (start > end - SAMPLING_READ_SIZE)
1483 				break;
1484 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1485 					SAMPLING_READ_SIZE);
1486 			i += SAMPLING_INTERVAL;
1487 			start += SAMPLING_INTERVAL;
1488 			curr_sample_pos += SAMPLING_READ_SIZE;
1489 		}
1490 		kunmap_local(in_data);
1491 		put_page(page);
1492 
1493 		index++;
1494 	}
1495 
1496 	ws->sample_size = curr_sample_pos;
1497 }
1498 
1499 /*
1500  * Compression heuristic.
1501  *
1502  * The following types of analysis can be performed:
1503  * - detect mostly zero data
1504  * - detect data with low "byte set" size (text, etc)
1505  * - detect data with low/high "core byte" set
1506  *
1507  * Return non-zero if the compression should be done, 0 otherwise.
1508  */
1509 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1510 {
1511 	struct list_head *ws_list = get_workspace(0, 0);
1512 	struct heuristic_ws *ws;
1513 	u32 i;
1514 	u8 byte;
1515 	int ret = 0;
1516 
1517 	ws = list_entry(ws_list, struct heuristic_ws, list);
1518 
1519 	heuristic_collect_sample(inode, start, end, ws);
1520 
1521 	if (sample_repeated_patterns(ws)) {
1522 		ret = 1;
1523 		goto out;
1524 	}
1525 
1526 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1527 
1528 	for (i = 0; i < ws->sample_size; i++) {
1529 		byte = ws->sample[i];
1530 		ws->bucket[byte].count++;
1531 	}
1532 
1533 	i = byte_set_size(ws);
1534 	if (i < BYTE_SET_THRESHOLD) {
1535 		ret = 2;
1536 		goto out;
1537 	}
1538 
1539 	i = byte_core_set_size(ws);
1540 	if (i <= BYTE_CORE_SET_LOW) {
1541 		ret = 3;
1542 		goto out;
1543 	}
1544 
1545 	if (i >= BYTE_CORE_SET_HIGH) {
1546 		ret = 0;
1547 		goto out;
1548 	}
1549 
1550 	i = shannon_entropy(ws);
1551 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1552 		ret = 4;
1553 		goto out;
1554 	}
1555 
1556 	/*
1557 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1558 	 * needed to give green light to compression.
1559 	 *
1560 	 * For now just assume that compression at that level is not worth the
1561 	 * resources because:
1562 	 *
1563 	 * 1. it is possible to defrag the data later
1564 	 *
1565 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1566 	 * values, every bucket has counter at level ~54. The heuristic would
1567 	 * be confused. This can happen when data have some internal repeated
1568 	 * patterns like "abbacbbc...". This can be detected by analyzing
1569 	 * pairs of bytes, which is too costly.
1570 	 */
1571 	if (i < ENTROPY_LVL_HIGH) {
1572 		ret = 5;
1573 		goto out;
1574 	} else {
1575 		ret = 0;
1576 		goto out;
1577 	}
1578 
1579 out:
1580 	put_workspace(0, ws_list);
1581 	return ret;
1582 }
1583 
1584 /*
1585  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1586  * level, unrecognized string will set the default level
1587  */
1588 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1589 {
1590 	unsigned int level = 0;
1591 	int ret;
1592 
1593 	if (!type)
1594 		return 0;
1595 
1596 	if (str[0] == ':') {
1597 		ret = kstrtouint(str + 1, 10, &level);
1598 		if (ret)
1599 			level = 0;
1600 	}
1601 
1602 	level = btrfs_compress_set_level(type, level);
1603 
1604 	return level;
1605 }
1606