1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/pagevec.h> 12 #include <linux/highmem.h> 13 #include <linux/kthread.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/psi.h> 20 #include <linux/slab.h> 21 #include <linux/sched/mm.h> 22 #include <linux/log2.h> 23 #include <linux/shrinker.h> 24 #include <crypto/hash.h> 25 #include "misc.h" 26 #include "ctree.h" 27 #include "fs.h" 28 #include "btrfs_inode.h" 29 #include "bio.h" 30 #include "ordered-data.h" 31 #include "compression.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "subpage.h" 35 #include "messages.h" 36 #include "super.h" 37 38 static struct bio_set btrfs_compressed_bioset; 39 40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 41 42 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 43 { 44 switch (type) { 45 case BTRFS_COMPRESS_ZLIB: 46 case BTRFS_COMPRESS_LZO: 47 case BTRFS_COMPRESS_ZSTD: 48 case BTRFS_COMPRESS_NONE: 49 return btrfs_compress_types[type]; 50 default: 51 break; 52 } 53 54 return NULL; 55 } 56 57 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio) 58 { 59 return container_of(bbio, struct compressed_bio, bbio); 60 } 61 62 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode, 63 u64 start, blk_opf_t op, 64 btrfs_bio_end_io_t end_io) 65 { 66 struct btrfs_bio *bbio; 67 68 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op, 69 GFP_NOFS, &btrfs_compressed_bioset)); 70 btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL); 71 bbio->inode = inode; 72 bbio->file_offset = start; 73 return to_compressed_bio(bbio); 74 } 75 76 bool btrfs_compress_is_valid_type(const char *str, size_t len) 77 { 78 int i; 79 80 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 81 size_t comp_len = strlen(btrfs_compress_types[i]); 82 83 if (len < comp_len) 84 continue; 85 86 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 87 return true; 88 } 89 return false; 90 } 91 92 static int compression_compress_pages(int type, struct list_head *ws, 93 struct address_space *mapping, u64 start, 94 struct folio **folios, unsigned long *out_folios, 95 unsigned long *total_in, unsigned long *total_out) 96 { 97 switch (type) { 98 case BTRFS_COMPRESS_ZLIB: 99 return zlib_compress_folios(ws, mapping, start, folios, 100 out_folios, total_in, total_out); 101 case BTRFS_COMPRESS_LZO: 102 return lzo_compress_folios(ws, mapping, start, folios, 103 out_folios, total_in, total_out); 104 case BTRFS_COMPRESS_ZSTD: 105 return zstd_compress_folios(ws, mapping, start, folios, 106 out_folios, total_in, total_out); 107 case BTRFS_COMPRESS_NONE: 108 default: 109 /* 110 * This can happen when compression races with remount setting 111 * it to 'no compress', while caller doesn't call 112 * inode_need_compress() to check if we really need to 113 * compress. 114 * 115 * Not a big deal, just need to inform caller that we 116 * haven't allocated any pages yet. 117 */ 118 *out_folios = 0; 119 return -E2BIG; 120 } 121 } 122 123 static int compression_decompress_bio(struct list_head *ws, 124 struct compressed_bio *cb) 125 { 126 switch (cb->compress_type) { 127 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 128 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 129 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 130 case BTRFS_COMPRESS_NONE: 131 default: 132 /* 133 * This can't happen, the type is validated several times 134 * before we get here. 135 */ 136 BUG(); 137 } 138 } 139 140 static int compression_decompress(int type, struct list_head *ws, 141 const u8 *data_in, struct folio *dest_folio, 142 unsigned long dest_pgoff, size_t srclen, size_t destlen) 143 { 144 switch (type) { 145 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio, 146 dest_pgoff, srclen, destlen); 147 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_folio, 148 dest_pgoff, srclen, destlen); 149 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio, 150 dest_pgoff, srclen, destlen); 151 case BTRFS_COMPRESS_NONE: 152 default: 153 /* 154 * This can't happen, the type is validated several times 155 * before we get here. 156 */ 157 BUG(); 158 } 159 } 160 161 static void btrfs_free_compressed_folios(struct compressed_bio *cb) 162 { 163 for (unsigned int i = 0; i < cb->nr_folios; i++) 164 btrfs_free_compr_folio(cb->compressed_folios[i]); 165 kfree(cb->compressed_folios); 166 } 167 168 static int btrfs_decompress_bio(struct compressed_bio *cb); 169 170 /* 171 * Global cache of last unused pages for compression/decompression. 172 */ 173 static struct btrfs_compr_pool { 174 struct shrinker *shrinker; 175 spinlock_t lock; 176 struct list_head list; 177 int count; 178 int thresh; 179 } compr_pool; 180 181 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc) 182 { 183 int ret; 184 185 /* 186 * We must not read the values more than once if 'ret' gets expanded in 187 * the return statement so we don't accidentally return a negative 188 * number, even if the first condition finds it positive. 189 */ 190 ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh); 191 192 return ret > 0 ? ret : 0; 193 } 194 195 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc) 196 { 197 struct list_head remove; 198 struct list_head *tmp, *next; 199 int freed; 200 201 if (compr_pool.count == 0) 202 return SHRINK_STOP; 203 204 INIT_LIST_HEAD(&remove); 205 206 /* For now, just simply drain the whole list. */ 207 spin_lock(&compr_pool.lock); 208 list_splice_init(&compr_pool.list, &remove); 209 freed = compr_pool.count; 210 compr_pool.count = 0; 211 spin_unlock(&compr_pool.lock); 212 213 list_for_each_safe(tmp, next, &remove) { 214 struct page *page = list_entry(tmp, struct page, lru); 215 216 ASSERT(page_ref_count(page) == 1); 217 put_page(page); 218 } 219 220 return freed; 221 } 222 223 /* 224 * Common wrappers for page allocation from compression wrappers 225 */ 226 struct folio *btrfs_alloc_compr_folio(void) 227 { 228 struct folio *folio = NULL; 229 230 spin_lock(&compr_pool.lock); 231 if (compr_pool.count > 0) { 232 folio = list_first_entry(&compr_pool.list, struct folio, lru); 233 list_del_init(&folio->lru); 234 compr_pool.count--; 235 } 236 spin_unlock(&compr_pool.lock); 237 238 if (folio) 239 return folio; 240 241 return folio_alloc(GFP_NOFS, 0); 242 } 243 244 void btrfs_free_compr_folio(struct folio *folio) 245 { 246 bool do_free = false; 247 248 spin_lock(&compr_pool.lock); 249 if (compr_pool.count > compr_pool.thresh) { 250 do_free = true; 251 } else { 252 list_add(&folio->lru, &compr_pool.list); 253 compr_pool.count++; 254 } 255 spin_unlock(&compr_pool.lock); 256 257 if (!do_free) 258 return; 259 260 ASSERT(folio_ref_count(folio) == 1); 261 folio_put(folio); 262 } 263 264 static void end_bbio_compressed_read(struct btrfs_bio *bbio) 265 { 266 struct compressed_bio *cb = to_compressed_bio(bbio); 267 blk_status_t status = bbio->bio.bi_status; 268 269 if (!status) 270 status = errno_to_blk_status(btrfs_decompress_bio(cb)); 271 272 btrfs_free_compressed_folios(cb); 273 btrfs_bio_end_io(cb->orig_bbio, status); 274 bio_put(&bbio->bio); 275 } 276 277 /* 278 * Clear the writeback bits on all of the file 279 * pages for a compressed write 280 */ 281 static noinline void end_compressed_writeback(const struct compressed_bio *cb) 282 { 283 struct inode *inode = &cb->bbio.inode->vfs_inode; 284 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 285 unsigned long index = cb->start >> PAGE_SHIFT; 286 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 287 struct folio_batch fbatch; 288 const int error = blk_status_to_errno(cb->bbio.bio.bi_status); 289 int i; 290 int ret; 291 292 if (error) 293 mapping_set_error(inode->i_mapping, error); 294 295 folio_batch_init(&fbatch); 296 while (index <= end_index) { 297 ret = filemap_get_folios(inode->i_mapping, &index, end_index, 298 &fbatch); 299 300 if (ret == 0) 301 return; 302 303 for (i = 0; i < ret; i++) { 304 struct folio *folio = fbatch.folios[i]; 305 306 btrfs_folio_clamp_clear_writeback(fs_info, folio, 307 cb->start, cb->len); 308 } 309 folio_batch_release(&fbatch); 310 } 311 /* the inode may be gone now */ 312 } 313 314 static void btrfs_finish_compressed_write_work(struct work_struct *work) 315 { 316 struct compressed_bio *cb = 317 container_of(work, struct compressed_bio, write_end_work); 318 319 btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len, 320 cb->bbio.bio.bi_status == BLK_STS_OK); 321 322 if (cb->writeback) 323 end_compressed_writeback(cb); 324 /* Note, our inode could be gone now */ 325 326 btrfs_free_compressed_folios(cb); 327 bio_put(&cb->bbio.bio); 328 } 329 330 /* 331 * Do the cleanup once all the compressed pages hit the disk. This will clear 332 * writeback on the file pages and free the compressed pages. 333 * 334 * This also calls the writeback end hooks for the file pages so that metadata 335 * and checksums can be updated in the file. 336 */ 337 static void end_bbio_compressed_write(struct btrfs_bio *bbio) 338 { 339 struct compressed_bio *cb = to_compressed_bio(bbio); 340 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 341 342 queue_work(fs_info->compressed_write_workers, &cb->write_end_work); 343 } 344 345 static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb) 346 { 347 struct bio *bio = &cb->bbio.bio; 348 u32 offset = 0; 349 350 while (offset < cb->compressed_len) { 351 int ret; 352 u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE); 353 354 /* Maximum compressed extent is smaller than bio size limit. */ 355 ret = bio_add_folio(bio, cb->compressed_folios[offset >> PAGE_SHIFT], 356 len, 0); 357 ASSERT(ret); 358 offset += len; 359 } 360 } 361 362 /* 363 * worker function to build and submit bios for previously compressed pages. 364 * The corresponding pages in the inode should be marked for writeback 365 * and the compressed pages should have a reference on them for dropping 366 * when the IO is complete. 367 * 368 * This also checksums the file bytes and gets things ready for 369 * the end io hooks. 370 */ 371 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered, 372 struct folio **compressed_folios, 373 unsigned int nr_folios, 374 blk_opf_t write_flags, 375 bool writeback) 376 { 377 struct btrfs_inode *inode = ordered->inode; 378 struct btrfs_fs_info *fs_info = inode->root->fs_info; 379 struct compressed_bio *cb; 380 381 ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize)); 382 ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize)); 383 384 cb = alloc_compressed_bio(inode, ordered->file_offset, 385 REQ_OP_WRITE | write_flags, 386 end_bbio_compressed_write); 387 cb->start = ordered->file_offset; 388 cb->len = ordered->num_bytes; 389 cb->compressed_folios = compressed_folios; 390 cb->compressed_len = ordered->disk_num_bytes; 391 cb->writeback = writeback; 392 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work); 393 cb->nr_folios = nr_folios; 394 cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT; 395 cb->bbio.ordered = ordered; 396 btrfs_add_compressed_bio_folios(cb); 397 398 btrfs_submit_bbio(&cb->bbio, 0); 399 } 400 401 /* 402 * Add extra pages in the same compressed file extent so that we don't need to 403 * re-read the same extent again and again. 404 * 405 * NOTE: this won't work well for subpage, as for subpage read, we lock the 406 * full page then submit bio for each compressed/regular extents. 407 * 408 * This means, if we have several sectors in the same page points to the same 409 * on-disk compressed data, we will re-read the same extent many times and 410 * this function can only help for the next page. 411 */ 412 static noinline int add_ra_bio_pages(struct inode *inode, 413 u64 compressed_end, 414 struct compressed_bio *cb, 415 int *memstall, unsigned long *pflags) 416 { 417 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 418 unsigned long end_index; 419 struct bio *orig_bio = &cb->orig_bbio->bio; 420 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size; 421 u64 isize = i_size_read(inode); 422 int ret; 423 struct folio *folio; 424 struct extent_map *em; 425 struct address_space *mapping = inode->i_mapping; 426 struct extent_map_tree *em_tree; 427 struct extent_io_tree *tree; 428 int sectors_missed = 0; 429 430 em_tree = &BTRFS_I(inode)->extent_tree; 431 tree = &BTRFS_I(inode)->io_tree; 432 433 if (isize == 0) 434 return 0; 435 436 /* 437 * For current subpage support, we only support 64K page size, 438 * which means maximum compressed extent size (128K) is just 2x page 439 * size. 440 * This makes readahead less effective, so here disable readahead for 441 * subpage for now, until full compressed write is supported. 442 */ 443 if (fs_info->sectorsize < PAGE_SIZE) 444 return 0; 445 446 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 447 448 while (cur < compressed_end) { 449 u64 page_end; 450 u64 pg_index = cur >> PAGE_SHIFT; 451 u32 add_size; 452 453 if (pg_index > end_index) 454 break; 455 456 folio = filemap_get_folio(mapping, pg_index); 457 if (!IS_ERR(folio)) { 458 u64 folio_sz = folio_size(folio); 459 u64 offset = offset_in_folio(folio, cur); 460 461 folio_put(folio); 462 sectors_missed += (folio_sz - offset) >> 463 fs_info->sectorsize_bits; 464 465 /* Beyond threshold, no need to continue */ 466 if (sectors_missed > 4) 467 break; 468 469 /* 470 * Jump to next page start as we already have page for 471 * current offset. 472 */ 473 cur += (folio_sz - offset); 474 continue; 475 } 476 477 folio = filemap_alloc_folio(mapping_gfp_constraint(mapping, 478 ~__GFP_FS), 0); 479 if (!folio) 480 break; 481 482 if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) { 483 /* There is already a page, skip to page end */ 484 cur += folio_size(folio); 485 folio_put(folio); 486 continue; 487 } 488 489 if (!*memstall && folio_test_workingset(folio)) { 490 psi_memstall_enter(pflags); 491 *memstall = 1; 492 } 493 494 ret = set_folio_extent_mapped(folio); 495 if (ret < 0) { 496 folio_unlock(folio); 497 folio_put(folio); 498 break; 499 } 500 501 page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1; 502 lock_extent(tree, cur, page_end, NULL); 503 read_lock(&em_tree->lock); 504 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 505 read_unlock(&em_tree->lock); 506 507 /* 508 * At this point, we have a locked page in the page cache for 509 * these bytes in the file. But, we have to make sure they map 510 * to this compressed extent on disk. 511 */ 512 if (!em || cur < em->start || 513 (cur + fs_info->sectorsize > extent_map_end(em)) || 514 (extent_map_block_start(em) >> SECTOR_SHIFT) != 515 orig_bio->bi_iter.bi_sector) { 516 free_extent_map(em); 517 unlock_extent(tree, cur, page_end, NULL); 518 folio_unlock(folio); 519 folio_put(folio); 520 break; 521 } 522 add_size = min(em->start + em->len, page_end + 1) - cur; 523 free_extent_map(em); 524 unlock_extent(tree, cur, page_end, NULL); 525 526 if (folio->index == end_index) { 527 size_t zero_offset = offset_in_folio(folio, isize); 528 529 if (zero_offset) { 530 int zeros; 531 zeros = folio_size(folio) - zero_offset; 532 folio_zero_range(folio, zero_offset, zeros); 533 } 534 } 535 536 if (!bio_add_folio(orig_bio, folio, add_size, 537 offset_in_folio(folio, cur))) { 538 folio_unlock(folio); 539 folio_put(folio); 540 break; 541 } 542 /* 543 * If it's subpage, we also need to increase its 544 * subpage::readers number, as at endio we will decrease 545 * subpage::readers and to unlock the page. 546 */ 547 if (fs_info->sectorsize < PAGE_SIZE) 548 btrfs_folio_set_lock(fs_info, folio, cur, add_size); 549 folio_put(folio); 550 cur += add_size; 551 } 552 return 0; 553 } 554 555 /* 556 * for a compressed read, the bio we get passed has all the inode pages 557 * in it. We don't actually do IO on those pages but allocate new ones 558 * to hold the compressed pages on disk. 559 * 560 * bio->bi_iter.bi_sector points to the compressed extent on disk 561 * bio->bi_io_vec points to all of the inode pages 562 * 563 * After the compressed pages are read, we copy the bytes into the 564 * bio we were passed and then call the bio end_io calls 565 */ 566 void btrfs_submit_compressed_read(struct btrfs_bio *bbio) 567 { 568 struct btrfs_inode *inode = bbio->inode; 569 struct btrfs_fs_info *fs_info = inode->root->fs_info; 570 struct extent_map_tree *em_tree = &inode->extent_tree; 571 struct compressed_bio *cb; 572 unsigned int compressed_len; 573 u64 file_offset = bbio->file_offset; 574 u64 em_len; 575 u64 em_start; 576 struct extent_map *em; 577 unsigned long pflags; 578 int memstall = 0; 579 blk_status_t ret; 580 int ret2; 581 582 /* we need the actual starting offset of this extent in the file */ 583 read_lock(&em_tree->lock); 584 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 585 read_unlock(&em_tree->lock); 586 if (!em) { 587 ret = BLK_STS_IOERR; 588 goto out; 589 } 590 591 ASSERT(extent_map_is_compressed(em)); 592 compressed_len = em->disk_num_bytes; 593 594 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ, 595 end_bbio_compressed_read); 596 597 cb->start = em->start - em->offset; 598 em_len = em->len; 599 em_start = em->start; 600 601 cb->len = bbio->bio.bi_iter.bi_size; 602 cb->compressed_len = compressed_len; 603 cb->compress_type = extent_map_compression(em); 604 cb->orig_bbio = bbio; 605 606 free_extent_map(em); 607 608 cb->nr_folios = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 609 cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct page *), GFP_NOFS); 610 if (!cb->compressed_folios) { 611 ret = BLK_STS_RESOURCE; 612 goto out_free_bio; 613 } 614 615 ret2 = btrfs_alloc_folio_array(cb->nr_folios, cb->compressed_folios); 616 if (ret2) { 617 ret = BLK_STS_RESOURCE; 618 goto out_free_compressed_pages; 619 } 620 621 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall, 622 &pflags); 623 624 /* include any pages we added in add_ra-bio_pages */ 625 cb->len = bbio->bio.bi_iter.bi_size; 626 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector; 627 btrfs_add_compressed_bio_folios(cb); 628 629 if (memstall) 630 psi_memstall_leave(&pflags); 631 632 btrfs_submit_bbio(&cb->bbio, 0); 633 return; 634 635 out_free_compressed_pages: 636 kfree(cb->compressed_folios); 637 out_free_bio: 638 bio_put(&cb->bbio.bio); 639 out: 640 btrfs_bio_end_io(bbio, ret); 641 } 642 643 /* 644 * Heuristic uses systematic sampling to collect data from the input data 645 * range, the logic can be tuned by the following constants: 646 * 647 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 648 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 649 */ 650 #define SAMPLING_READ_SIZE (16) 651 #define SAMPLING_INTERVAL (256) 652 653 /* 654 * For statistical analysis of the input data we consider bytes that form a 655 * Galois Field of 256 objects. Each object has an attribute count, ie. how 656 * many times the object appeared in the sample. 657 */ 658 #define BUCKET_SIZE (256) 659 660 /* 661 * The size of the sample is based on a statistical sampling rule of thumb. 662 * The common way is to perform sampling tests as long as the number of 663 * elements in each cell is at least 5. 664 * 665 * Instead of 5, we choose 32 to obtain more accurate results. 666 * If the data contain the maximum number of symbols, which is 256, we obtain a 667 * sample size bound by 8192. 668 * 669 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 670 * from up to 512 locations. 671 */ 672 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 673 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 674 675 struct bucket_item { 676 u32 count; 677 }; 678 679 struct heuristic_ws { 680 /* Partial copy of input data */ 681 u8 *sample; 682 u32 sample_size; 683 /* Buckets store counters for each byte value */ 684 struct bucket_item *bucket; 685 /* Sorting buffer */ 686 struct bucket_item *bucket_b; 687 struct list_head list; 688 }; 689 690 static struct workspace_manager heuristic_wsm; 691 692 static void free_heuristic_ws(struct list_head *ws) 693 { 694 struct heuristic_ws *workspace; 695 696 workspace = list_entry(ws, struct heuristic_ws, list); 697 698 kvfree(workspace->sample); 699 kfree(workspace->bucket); 700 kfree(workspace->bucket_b); 701 kfree(workspace); 702 } 703 704 static struct list_head *alloc_heuristic_ws(void) 705 { 706 struct heuristic_ws *ws; 707 708 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 709 if (!ws) 710 return ERR_PTR(-ENOMEM); 711 712 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 713 if (!ws->sample) 714 goto fail; 715 716 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 717 if (!ws->bucket) 718 goto fail; 719 720 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 721 if (!ws->bucket_b) 722 goto fail; 723 724 INIT_LIST_HEAD(&ws->list); 725 return &ws->list; 726 fail: 727 free_heuristic_ws(&ws->list); 728 return ERR_PTR(-ENOMEM); 729 } 730 731 const struct btrfs_compress_op btrfs_heuristic_compress = { 732 .workspace_manager = &heuristic_wsm, 733 }; 734 735 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 736 /* The heuristic is represented as compression type 0 */ 737 &btrfs_heuristic_compress, 738 &btrfs_zlib_compress, 739 &btrfs_lzo_compress, 740 &btrfs_zstd_compress, 741 }; 742 743 static struct list_head *alloc_workspace(int type, int level) 744 { 745 switch (type) { 746 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(); 747 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 748 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(); 749 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 750 default: 751 /* 752 * This can't happen, the type is validated several times 753 * before we get here. 754 */ 755 BUG(); 756 } 757 } 758 759 static void free_workspace(int type, struct list_head *ws) 760 { 761 switch (type) { 762 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 763 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 764 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 765 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 766 default: 767 /* 768 * This can't happen, the type is validated several times 769 * before we get here. 770 */ 771 BUG(); 772 } 773 } 774 775 static void btrfs_init_workspace_manager(int type) 776 { 777 struct workspace_manager *wsm; 778 struct list_head *workspace; 779 780 wsm = btrfs_compress_op[type]->workspace_manager; 781 INIT_LIST_HEAD(&wsm->idle_ws); 782 spin_lock_init(&wsm->ws_lock); 783 atomic_set(&wsm->total_ws, 0); 784 init_waitqueue_head(&wsm->ws_wait); 785 786 /* 787 * Preallocate one workspace for each compression type so we can 788 * guarantee forward progress in the worst case 789 */ 790 workspace = alloc_workspace(type, 0); 791 if (IS_ERR(workspace)) { 792 pr_warn( 793 "BTRFS: cannot preallocate compression workspace, will try later\n"); 794 } else { 795 atomic_set(&wsm->total_ws, 1); 796 wsm->free_ws = 1; 797 list_add(workspace, &wsm->idle_ws); 798 } 799 } 800 801 static void btrfs_cleanup_workspace_manager(int type) 802 { 803 struct workspace_manager *wsman; 804 struct list_head *ws; 805 806 wsman = btrfs_compress_op[type]->workspace_manager; 807 while (!list_empty(&wsman->idle_ws)) { 808 ws = wsman->idle_ws.next; 809 list_del(ws); 810 free_workspace(type, ws); 811 atomic_dec(&wsman->total_ws); 812 } 813 } 814 815 /* 816 * This finds an available workspace or allocates a new one. 817 * If it's not possible to allocate a new one, waits until there's one. 818 * Preallocation makes a forward progress guarantees and we do not return 819 * errors. 820 */ 821 struct list_head *btrfs_get_workspace(int type, int level) 822 { 823 struct workspace_manager *wsm; 824 struct list_head *workspace; 825 int cpus = num_online_cpus(); 826 unsigned nofs_flag; 827 struct list_head *idle_ws; 828 spinlock_t *ws_lock; 829 atomic_t *total_ws; 830 wait_queue_head_t *ws_wait; 831 int *free_ws; 832 833 wsm = btrfs_compress_op[type]->workspace_manager; 834 idle_ws = &wsm->idle_ws; 835 ws_lock = &wsm->ws_lock; 836 total_ws = &wsm->total_ws; 837 ws_wait = &wsm->ws_wait; 838 free_ws = &wsm->free_ws; 839 840 again: 841 spin_lock(ws_lock); 842 if (!list_empty(idle_ws)) { 843 workspace = idle_ws->next; 844 list_del(workspace); 845 (*free_ws)--; 846 spin_unlock(ws_lock); 847 return workspace; 848 849 } 850 if (atomic_read(total_ws) > cpus) { 851 DEFINE_WAIT(wait); 852 853 spin_unlock(ws_lock); 854 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 855 if (atomic_read(total_ws) > cpus && !*free_ws) 856 schedule(); 857 finish_wait(ws_wait, &wait); 858 goto again; 859 } 860 atomic_inc(total_ws); 861 spin_unlock(ws_lock); 862 863 /* 864 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 865 * to turn it off here because we might get called from the restricted 866 * context of btrfs_compress_bio/btrfs_compress_pages 867 */ 868 nofs_flag = memalloc_nofs_save(); 869 workspace = alloc_workspace(type, level); 870 memalloc_nofs_restore(nofs_flag); 871 872 if (IS_ERR(workspace)) { 873 atomic_dec(total_ws); 874 wake_up(ws_wait); 875 876 /* 877 * Do not return the error but go back to waiting. There's a 878 * workspace preallocated for each type and the compression 879 * time is bounded so we get to a workspace eventually. This 880 * makes our caller's life easier. 881 * 882 * To prevent silent and low-probability deadlocks (when the 883 * initial preallocation fails), check if there are any 884 * workspaces at all. 885 */ 886 if (atomic_read(total_ws) == 0) { 887 static DEFINE_RATELIMIT_STATE(_rs, 888 /* once per minute */ 60 * HZ, 889 /* no burst */ 1); 890 891 if (__ratelimit(&_rs)) { 892 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 893 } 894 } 895 goto again; 896 } 897 return workspace; 898 } 899 900 static struct list_head *get_workspace(int type, int level) 901 { 902 switch (type) { 903 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 904 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 905 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 906 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 907 default: 908 /* 909 * This can't happen, the type is validated several times 910 * before we get here. 911 */ 912 BUG(); 913 } 914 } 915 916 /* 917 * put a workspace struct back on the list or free it if we have enough 918 * idle ones sitting around 919 */ 920 void btrfs_put_workspace(int type, struct list_head *ws) 921 { 922 struct workspace_manager *wsm; 923 struct list_head *idle_ws; 924 spinlock_t *ws_lock; 925 atomic_t *total_ws; 926 wait_queue_head_t *ws_wait; 927 int *free_ws; 928 929 wsm = btrfs_compress_op[type]->workspace_manager; 930 idle_ws = &wsm->idle_ws; 931 ws_lock = &wsm->ws_lock; 932 total_ws = &wsm->total_ws; 933 ws_wait = &wsm->ws_wait; 934 free_ws = &wsm->free_ws; 935 936 spin_lock(ws_lock); 937 if (*free_ws <= num_online_cpus()) { 938 list_add(ws, idle_ws); 939 (*free_ws)++; 940 spin_unlock(ws_lock); 941 goto wake; 942 } 943 spin_unlock(ws_lock); 944 945 free_workspace(type, ws); 946 atomic_dec(total_ws); 947 wake: 948 cond_wake_up(ws_wait); 949 } 950 951 static void put_workspace(int type, struct list_head *ws) 952 { 953 switch (type) { 954 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 955 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 956 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 957 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 958 default: 959 /* 960 * This can't happen, the type is validated several times 961 * before we get here. 962 */ 963 BUG(); 964 } 965 } 966 967 /* 968 * Adjust @level according to the limits of the compression algorithm or 969 * fallback to default 970 */ 971 static int btrfs_compress_set_level(unsigned int type, int level) 972 { 973 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 974 975 if (level == 0) 976 level = ops->default_level; 977 else 978 level = min(max(level, ops->min_level), ops->max_level); 979 980 return level; 981 } 982 983 /* 984 * Check whether the @level is within the valid range for the given type. 985 */ 986 bool btrfs_compress_level_valid(unsigned int type, int level) 987 { 988 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 989 990 return ops->min_level <= level && level <= ops->max_level; 991 } 992 993 /* Wrapper around find_get_page(), with extra error message. */ 994 int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start, 995 struct folio **in_folio_ret) 996 { 997 struct folio *in_folio; 998 999 /* 1000 * The compressed write path should have the folio locked already, thus 1001 * we only need to grab one reference. 1002 */ 1003 in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT); 1004 if (IS_ERR(in_folio)) { 1005 struct btrfs_inode *inode = BTRFS_I(mapping->host); 1006 1007 btrfs_crit(inode->root->fs_info, 1008 "failed to get page cache, root %lld ino %llu file offset %llu", 1009 btrfs_root_id(inode->root), btrfs_ino(inode), start); 1010 return -ENOENT; 1011 } 1012 *in_folio_ret = in_folio; 1013 return 0; 1014 } 1015 1016 /* 1017 * Given an address space and start and length, compress the bytes into @pages 1018 * that are allocated on demand. 1019 * 1020 * @type_level is encoded algorithm and level, where level 0 means whatever 1021 * default the algorithm chooses and is opaque here; 1022 * - compression algo are 0-3 1023 * - the level are bits 4-7 1024 * 1025 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1026 * and returns number of actually allocated pages 1027 * 1028 * @total_in is used to return the number of bytes actually read. It 1029 * may be smaller than the input length if we had to exit early because we 1030 * ran out of room in the pages array or because we cross the 1031 * max_out threshold. 1032 * 1033 * @total_out is an in/out parameter, must be set to the input length and will 1034 * be also used to return the total number of compressed bytes 1035 */ 1036 int btrfs_compress_folios(unsigned int type, int level, struct address_space *mapping, 1037 u64 start, struct folio **folios, unsigned long *out_folios, 1038 unsigned long *total_in, unsigned long *total_out) 1039 { 1040 const unsigned long orig_len = *total_out; 1041 struct list_head *workspace; 1042 int ret; 1043 1044 level = btrfs_compress_set_level(type, level); 1045 workspace = get_workspace(type, level); 1046 ret = compression_compress_pages(type, workspace, mapping, start, folios, 1047 out_folios, total_in, total_out); 1048 /* The total read-in bytes should be no larger than the input. */ 1049 ASSERT(*total_in <= orig_len); 1050 put_workspace(type, workspace); 1051 return ret; 1052 } 1053 1054 static int btrfs_decompress_bio(struct compressed_bio *cb) 1055 { 1056 struct list_head *workspace; 1057 int ret; 1058 int type = cb->compress_type; 1059 1060 workspace = get_workspace(type, 0); 1061 ret = compression_decompress_bio(workspace, cb); 1062 put_workspace(type, workspace); 1063 1064 if (!ret) 1065 zero_fill_bio(&cb->orig_bbio->bio); 1066 return ret; 1067 } 1068 1069 /* 1070 * a less complex decompression routine. Our compressed data fits in a 1071 * single page, and we want to read a single page out of it. 1072 * start_byte tells us the offset into the compressed data we're interested in 1073 */ 1074 int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio, 1075 unsigned long dest_pgoff, size_t srclen, size_t destlen) 1076 { 1077 struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio); 1078 struct list_head *workspace; 1079 const u32 sectorsize = fs_info->sectorsize; 1080 int ret; 1081 1082 /* 1083 * The full destination page range should not exceed the page size. 1084 * And the @destlen should not exceed sectorsize, as this is only called for 1085 * inline file extents, which should not exceed sectorsize. 1086 */ 1087 ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize); 1088 1089 workspace = get_workspace(type, 0); 1090 ret = compression_decompress(type, workspace, data_in, dest_folio, 1091 dest_pgoff, srclen, destlen); 1092 put_workspace(type, workspace); 1093 1094 return ret; 1095 } 1096 1097 int __init btrfs_init_compress(void) 1098 { 1099 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE, 1100 offsetof(struct compressed_bio, bbio.bio), 1101 BIOSET_NEED_BVECS)) 1102 return -ENOMEM; 1103 1104 compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages"); 1105 if (!compr_pool.shrinker) 1106 return -ENOMEM; 1107 1108 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1109 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1110 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1111 zstd_init_workspace_manager(); 1112 1113 spin_lock_init(&compr_pool.lock); 1114 INIT_LIST_HEAD(&compr_pool.list); 1115 compr_pool.count = 0; 1116 /* 128K / 4K = 32, for 8 threads is 256 pages. */ 1117 compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8; 1118 compr_pool.shrinker->count_objects = btrfs_compr_pool_count; 1119 compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan; 1120 compr_pool.shrinker->batch = 32; 1121 compr_pool.shrinker->seeks = DEFAULT_SEEKS; 1122 shrinker_register(compr_pool.shrinker); 1123 1124 return 0; 1125 } 1126 1127 void __cold btrfs_exit_compress(void) 1128 { 1129 /* For now scan drains all pages and does not touch the parameters. */ 1130 btrfs_compr_pool_scan(NULL, NULL); 1131 shrinker_free(compr_pool.shrinker); 1132 1133 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1134 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1135 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1136 zstd_cleanup_workspace_manager(); 1137 bioset_exit(&btrfs_compressed_bioset); 1138 } 1139 1140 /* 1141 * Copy decompressed data from working buffer to pages. 1142 * 1143 * @buf: The decompressed data buffer 1144 * @buf_len: The decompressed data length 1145 * @decompressed: Number of bytes that are already decompressed inside the 1146 * compressed extent 1147 * @cb: The compressed extent descriptor 1148 * @orig_bio: The original bio that the caller wants to read for 1149 * 1150 * An easier to understand graph is like below: 1151 * 1152 * |<- orig_bio ->| |<- orig_bio->| 1153 * |<------- full decompressed extent ----->| 1154 * |<----------- @cb range ---->| 1155 * | |<-- @buf_len -->| 1156 * |<--- @decompressed --->| 1157 * 1158 * Note that, @cb can be a subpage of the full decompressed extent, but 1159 * @cb->start always has the same as the orig_file_offset value of the full 1160 * decompressed extent. 1161 * 1162 * When reading compressed extent, we have to read the full compressed extent, 1163 * while @orig_bio may only want part of the range. 1164 * Thus this function will ensure only data covered by @orig_bio will be copied 1165 * to. 1166 * 1167 * Return 0 if we have copied all needed contents for @orig_bio. 1168 * Return >0 if we need continue decompress. 1169 */ 1170 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1171 struct compressed_bio *cb, u32 decompressed) 1172 { 1173 struct bio *orig_bio = &cb->orig_bbio->bio; 1174 /* Offset inside the full decompressed extent */ 1175 u32 cur_offset; 1176 1177 cur_offset = decompressed; 1178 /* The main loop to do the copy */ 1179 while (cur_offset < decompressed + buf_len) { 1180 struct bio_vec bvec; 1181 size_t copy_len; 1182 u32 copy_start; 1183 /* Offset inside the full decompressed extent */ 1184 u32 bvec_offset; 1185 1186 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1187 /* 1188 * cb->start may underflow, but subtracting that value can still 1189 * give us correct offset inside the full decompressed extent. 1190 */ 1191 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1192 1193 /* Haven't reached the bvec range, exit */ 1194 if (decompressed + buf_len <= bvec_offset) 1195 return 1; 1196 1197 copy_start = max(cur_offset, bvec_offset); 1198 copy_len = min(bvec_offset + bvec.bv_len, 1199 decompressed + buf_len) - copy_start; 1200 ASSERT(copy_len); 1201 1202 /* 1203 * Extra range check to ensure we didn't go beyond 1204 * @buf + @buf_len. 1205 */ 1206 ASSERT(copy_start - decompressed < buf_len); 1207 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1208 buf + copy_start - decompressed, copy_len); 1209 cur_offset += copy_len; 1210 1211 bio_advance(orig_bio, copy_len); 1212 /* Finished the bio */ 1213 if (!orig_bio->bi_iter.bi_size) 1214 return 0; 1215 } 1216 return 1; 1217 } 1218 1219 /* 1220 * Shannon Entropy calculation 1221 * 1222 * Pure byte distribution analysis fails to determine compressibility of data. 1223 * Try calculating entropy to estimate the average minimum number of bits 1224 * needed to encode the sampled data. 1225 * 1226 * For convenience, return the percentage of needed bits, instead of amount of 1227 * bits directly. 1228 * 1229 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1230 * and can be compressible with high probability 1231 * 1232 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1233 * 1234 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1235 */ 1236 #define ENTROPY_LVL_ACEPTABLE (65) 1237 #define ENTROPY_LVL_HIGH (80) 1238 1239 /* 1240 * For increasead precision in shannon_entropy calculation, 1241 * let's do pow(n, M) to save more digits after comma: 1242 * 1243 * - maximum int bit length is 64 1244 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1245 * - 13 * 4 = 52 < 64 -> M = 4 1246 * 1247 * So use pow(n, 4). 1248 */ 1249 static inline u32 ilog2_w(u64 n) 1250 { 1251 return ilog2(n * n * n * n); 1252 } 1253 1254 static u32 shannon_entropy(struct heuristic_ws *ws) 1255 { 1256 const u32 entropy_max = 8 * ilog2_w(2); 1257 u32 entropy_sum = 0; 1258 u32 p, p_base, sz_base; 1259 u32 i; 1260 1261 sz_base = ilog2_w(ws->sample_size); 1262 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1263 p = ws->bucket[i].count; 1264 p_base = ilog2_w(p); 1265 entropy_sum += p * (sz_base - p_base); 1266 } 1267 1268 entropy_sum /= ws->sample_size; 1269 return entropy_sum * 100 / entropy_max; 1270 } 1271 1272 #define RADIX_BASE 4U 1273 #define COUNTERS_SIZE (1U << RADIX_BASE) 1274 1275 static u8 get4bits(u64 num, int shift) { 1276 u8 low4bits; 1277 1278 num >>= shift; 1279 /* Reverse order */ 1280 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1281 return low4bits; 1282 } 1283 1284 /* 1285 * Use 4 bits as radix base 1286 * Use 16 u32 counters for calculating new position in buf array 1287 * 1288 * @array - array that will be sorted 1289 * @array_buf - buffer array to store sorting results 1290 * must be equal in size to @array 1291 * @num - array size 1292 */ 1293 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1294 int num) 1295 { 1296 u64 max_num; 1297 u64 buf_num; 1298 u32 counters[COUNTERS_SIZE]; 1299 u32 new_addr; 1300 u32 addr; 1301 int bitlen; 1302 int shift; 1303 int i; 1304 1305 /* 1306 * Try avoid useless loop iterations for small numbers stored in big 1307 * counters. Example: 48 33 4 ... in 64bit array 1308 */ 1309 max_num = array[0].count; 1310 for (i = 1; i < num; i++) { 1311 buf_num = array[i].count; 1312 if (buf_num > max_num) 1313 max_num = buf_num; 1314 } 1315 1316 buf_num = ilog2(max_num); 1317 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1318 1319 shift = 0; 1320 while (shift < bitlen) { 1321 memset(counters, 0, sizeof(counters)); 1322 1323 for (i = 0; i < num; i++) { 1324 buf_num = array[i].count; 1325 addr = get4bits(buf_num, shift); 1326 counters[addr]++; 1327 } 1328 1329 for (i = 1; i < COUNTERS_SIZE; i++) 1330 counters[i] += counters[i - 1]; 1331 1332 for (i = num - 1; i >= 0; i--) { 1333 buf_num = array[i].count; 1334 addr = get4bits(buf_num, shift); 1335 counters[addr]--; 1336 new_addr = counters[addr]; 1337 array_buf[new_addr] = array[i]; 1338 } 1339 1340 shift += RADIX_BASE; 1341 1342 /* 1343 * Normal radix expects to move data from a temporary array, to 1344 * the main one. But that requires some CPU time. Avoid that 1345 * by doing another sort iteration to original array instead of 1346 * memcpy() 1347 */ 1348 memset(counters, 0, sizeof(counters)); 1349 1350 for (i = 0; i < num; i ++) { 1351 buf_num = array_buf[i].count; 1352 addr = get4bits(buf_num, shift); 1353 counters[addr]++; 1354 } 1355 1356 for (i = 1; i < COUNTERS_SIZE; i++) 1357 counters[i] += counters[i - 1]; 1358 1359 for (i = num - 1; i >= 0; i--) { 1360 buf_num = array_buf[i].count; 1361 addr = get4bits(buf_num, shift); 1362 counters[addr]--; 1363 new_addr = counters[addr]; 1364 array[new_addr] = array_buf[i]; 1365 } 1366 1367 shift += RADIX_BASE; 1368 } 1369 } 1370 1371 /* 1372 * Size of the core byte set - how many bytes cover 90% of the sample 1373 * 1374 * There are several types of structured binary data that use nearly all byte 1375 * values. The distribution can be uniform and counts in all buckets will be 1376 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1377 * 1378 * Other possibility is normal (Gaussian) distribution, where the data could 1379 * be potentially compressible, but we have to take a few more steps to decide 1380 * how much. 1381 * 1382 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1383 * compression algo can easy fix that 1384 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1385 * probability is not compressible 1386 */ 1387 #define BYTE_CORE_SET_LOW (64) 1388 #define BYTE_CORE_SET_HIGH (200) 1389 1390 static int byte_core_set_size(struct heuristic_ws *ws) 1391 { 1392 u32 i; 1393 u32 coreset_sum = 0; 1394 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1395 struct bucket_item *bucket = ws->bucket; 1396 1397 /* Sort in reverse order */ 1398 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1399 1400 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1401 coreset_sum += bucket[i].count; 1402 1403 if (coreset_sum > core_set_threshold) 1404 return i; 1405 1406 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1407 coreset_sum += bucket[i].count; 1408 if (coreset_sum > core_set_threshold) 1409 break; 1410 } 1411 1412 return i; 1413 } 1414 1415 /* 1416 * Count byte values in buckets. 1417 * This heuristic can detect textual data (configs, xml, json, html, etc). 1418 * Because in most text-like data byte set is restricted to limited number of 1419 * possible characters, and that restriction in most cases makes data easy to 1420 * compress. 1421 * 1422 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1423 * less - compressible 1424 * more - need additional analysis 1425 */ 1426 #define BYTE_SET_THRESHOLD (64) 1427 1428 static u32 byte_set_size(const struct heuristic_ws *ws) 1429 { 1430 u32 i; 1431 u32 byte_set_size = 0; 1432 1433 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1434 if (ws->bucket[i].count > 0) 1435 byte_set_size++; 1436 } 1437 1438 /* 1439 * Continue collecting count of byte values in buckets. If the byte 1440 * set size is bigger then the threshold, it's pointless to continue, 1441 * the detection technique would fail for this type of data. 1442 */ 1443 for (; i < BUCKET_SIZE; i++) { 1444 if (ws->bucket[i].count > 0) { 1445 byte_set_size++; 1446 if (byte_set_size > BYTE_SET_THRESHOLD) 1447 return byte_set_size; 1448 } 1449 } 1450 1451 return byte_set_size; 1452 } 1453 1454 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1455 { 1456 const u32 half_of_sample = ws->sample_size / 2; 1457 const u8 *data = ws->sample; 1458 1459 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1460 } 1461 1462 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1463 struct heuristic_ws *ws) 1464 { 1465 struct page *page; 1466 u64 index, index_end; 1467 u32 i, curr_sample_pos; 1468 u8 *in_data; 1469 1470 /* 1471 * Compression handles the input data by chunks of 128KiB 1472 * (defined by BTRFS_MAX_UNCOMPRESSED) 1473 * 1474 * We do the same for the heuristic and loop over the whole range. 1475 * 1476 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1477 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1478 */ 1479 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1480 end = start + BTRFS_MAX_UNCOMPRESSED; 1481 1482 index = start >> PAGE_SHIFT; 1483 index_end = end >> PAGE_SHIFT; 1484 1485 /* Don't miss unaligned end */ 1486 if (!PAGE_ALIGNED(end)) 1487 index_end++; 1488 1489 curr_sample_pos = 0; 1490 while (index < index_end) { 1491 page = find_get_page(inode->i_mapping, index); 1492 in_data = kmap_local_page(page); 1493 /* Handle case where the start is not aligned to PAGE_SIZE */ 1494 i = start % PAGE_SIZE; 1495 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1496 /* Don't sample any garbage from the last page */ 1497 if (start > end - SAMPLING_READ_SIZE) 1498 break; 1499 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1500 SAMPLING_READ_SIZE); 1501 i += SAMPLING_INTERVAL; 1502 start += SAMPLING_INTERVAL; 1503 curr_sample_pos += SAMPLING_READ_SIZE; 1504 } 1505 kunmap_local(in_data); 1506 put_page(page); 1507 1508 index++; 1509 } 1510 1511 ws->sample_size = curr_sample_pos; 1512 } 1513 1514 /* 1515 * Compression heuristic. 1516 * 1517 * The following types of analysis can be performed: 1518 * - detect mostly zero data 1519 * - detect data with low "byte set" size (text, etc) 1520 * - detect data with low/high "core byte" set 1521 * 1522 * Return non-zero if the compression should be done, 0 otherwise. 1523 */ 1524 int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end) 1525 { 1526 struct list_head *ws_list = get_workspace(0, 0); 1527 struct heuristic_ws *ws; 1528 u32 i; 1529 u8 byte; 1530 int ret = 0; 1531 1532 ws = list_entry(ws_list, struct heuristic_ws, list); 1533 1534 heuristic_collect_sample(&inode->vfs_inode, start, end, ws); 1535 1536 if (sample_repeated_patterns(ws)) { 1537 ret = 1; 1538 goto out; 1539 } 1540 1541 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1542 1543 for (i = 0; i < ws->sample_size; i++) { 1544 byte = ws->sample[i]; 1545 ws->bucket[byte].count++; 1546 } 1547 1548 i = byte_set_size(ws); 1549 if (i < BYTE_SET_THRESHOLD) { 1550 ret = 2; 1551 goto out; 1552 } 1553 1554 i = byte_core_set_size(ws); 1555 if (i <= BYTE_CORE_SET_LOW) { 1556 ret = 3; 1557 goto out; 1558 } 1559 1560 if (i >= BYTE_CORE_SET_HIGH) { 1561 ret = 0; 1562 goto out; 1563 } 1564 1565 i = shannon_entropy(ws); 1566 if (i <= ENTROPY_LVL_ACEPTABLE) { 1567 ret = 4; 1568 goto out; 1569 } 1570 1571 /* 1572 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1573 * needed to give green light to compression. 1574 * 1575 * For now just assume that compression at that level is not worth the 1576 * resources because: 1577 * 1578 * 1. it is possible to defrag the data later 1579 * 1580 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1581 * values, every bucket has counter at level ~54. The heuristic would 1582 * be confused. This can happen when data have some internal repeated 1583 * patterns like "abbacbbc...". This can be detected by analyzing 1584 * pairs of bytes, which is too costly. 1585 */ 1586 if (i < ENTROPY_LVL_HIGH) { 1587 ret = 5; 1588 goto out; 1589 } else { 1590 ret = 0; 1591 goto out; 1592 } 1593 1594 out: 1595 put_workspace(0, ws_list); 1596 return ret; 1597 } 1598 1599 /* 1600 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1601 * level, unrecognized string will set the default level. Negative level 1602 * numbers are allowed. 1603 */ 1604 int btrfs_compress_str2level(unsigned int type, const char *str) 1605 { 1606 int level = 0; 1607 int ret; 1608 1609 if (!type) 1610 return 0; 1611 1612 if (str[0] == ':') { 1613 ret = kstrtoint(str + 1, 10, &level); 1614 if (ret) 1615 level = 0; 1616 } 1617 1618 level = btrfs_compress_set_level(type, level); 1619 1620 return level; 1621 } 1622