1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_INODE_H 7 #define BTRFS_INODE_H 8 9 #include <linux/hash.h> 10 #include "extent_map.h" 11 #include "extent_io.h" 12 #include "ordered-data.h" 13 #include "delayed-inode.h" 14 15 /* 16 * ordered_data_close is set by truncate when a file that used 17 * to have good data has been truncated to zero. When it is set 18 * the btrfs file release call will add this inode to the 19 * ordered operations list so that we make sure to flush out any 20 * new data the application may have written before commit. 21 */ 22 enum { 23 BTRFS_INODE_ORDERED_DATA_CLOSE, 24 BTRFS_INODE_DUMMY, 25 BTRFS_INODE_IN_DEFRAG, 26 BTRFS_INODE_HAS_ASYNC_EXTENT, 27 BTRFS_INODE_NEEDS_FULL_SYNC, 28 BTRFS_INODE_COPY_EVERYTHING, 29 BTRFS_INODE_IN_DELALLOC_LIST, 30 BTRFS_INODE_READDIO_NEED_LOCK, 31 BTRFS_INODE_HAS_PROPS, 32 BTRFS_INODE_SNAPSHOT_FLUSH, 33 }; 34 35 /* in memory btrfs inode */ 36 struct btrfs_inode { 37 /* which subvolume this inode belongs to */ 38 struct btrfs_root *root; 39 40 /* key used to find this inode on disk. This is used by the code 41 * to read in roots of subvolumes 42 */ 43 struct btrfs_key location; 44 45 /* 46 * Lock for counters and all fields used to determine if the inode is in 47 * the log or not (last_trans, last_sub_trans, last_log_commit, 48 * logged_trans). 49 */ 50 spinlock_t lock; 51 52 /* the extent_tree has caches of all the extent mappings to disk */ 53 struct extent_map_tree extent_tree; 54 55 /* the io_tree does range state (DIRTY, LOCKED etc) */ 56 struct extent_io_tree io_tree; 57 58 /* special utility tree used to record which mirrors have already been 59 * tried when checksums fail for a given block 60 */ 61 struct extent_io_tree io_failure_tree; 62 63 /* 64 * Keep track of where the inode has extent items mapped in order to 65 * make sure the i_size adjustments are accurate 66 */ 67 struct extent_io_tree file_extent_tree; 68 69 /* held while logging the inode in tree-log.c */ 70 struct mutex log_mutex; 71 72 /* used to order data wrt metadata */ 73 struct btrfs_ordered_inode_tree ordered_tree; 74 75 /* list of all the delalloc inodes in the FS. There are times we need 76 * to write all the delalloc pages to disk, and this list is used 77 * to walk them all. 78 */ 79 struct list_head delalloc_inodes; 80 81 /* node for the red-black tree that links inodes in subvolume root */ 82 struct rb_node rb_node; 83 84 unsigned long runtime_flags; 85 86 /* Keep track of who's O_SYNC/fsyncing currently */ 87 atomic_t sync_writers; 88 89 /* full 64 bit generation number, struct vfs_inode doesn't have a big 90 * enough field for this. 91 */ 92 u64 generation; 93 94 /* 95 * transid of the trans_handle that last modified this inode 96 */ 97 u64 last_trans; 98 99 /* 100 * transid that last logged this inode 101 */ 102 u64 logged_trans; 103 104 /* 105 * log transid when this inode was last modified 106 */ 107 int last_sub_trans; 108 109 /* a local copy of root's last_log_commit */ 110 int last_log_commit; 111 112 /* total number of bytes pending delalloc, used by stat to calc the 113 * real block usage of the file 114 */ 115 u64 delalloc_bytes; 116 117 /* 118 * Total number of bytes pending delalloc that fall within a file 119 * range that is either a hole or beyond EOF (and no prealloc extent 120 * exists in the range). This is always <= delalloc_bytes. 121 */ 122 u64 new_delalloc_bytes; 123 124 /* 125 * total number of bytes pending defrag, used by stat to check whether 126 * it needs COW. 127 */ 128 u64 defrag_bytes; 129 130 /* 131 * the size of the file stored in the metadata on disk. data=ordered 132 * means the in-memory i_size might be larger than the size on disk 133 * because not all the blocks are written yet. 134 */ 135 u64 disk_i_size; 136 137 /* 138 * if this is a directory then index_cnt is the counter for the index 139 * number for new files that are created 140 */ 141 u64 index_cnt; 142 143 /* Cache the directory index number to speed the dir/file remove */ 144 u64 dir_index; 145 146 /* the fsync log has some corner cases that mean we have to check 147 * directories to see if any unlinks have been done before 148 * the directory was logged. See tree-log.c for all the 149 * details 150 */ 151 u64 last_unlink_trans; 152 153 /* 154 * Number of bytes outstanding that are going to need csums. This is 155 * used in ENOSPC accounting. 156 */ 157 u64 csum_bytes; 158 159 /* flags field from the on disk inode */ 160 u32 flags; 161 162 /* 163 * Counters to keep track of the number of extent item's we may use due 164 * to delalloc and such. outstanding_extents is the number of extent 165 * items we think we'll end up using, and reserved_extents is the number 166 * of extent items we've reserved metadata for. 167 */ 168 unsigned outstanding_extents; 169 170 struct btrfs_block_rsv block_rsv; 171 172 /* 173 * Cached values of inode properties 174 */ 175 unsigned prop_compress; /* per-file compression algorithm */ 176 /* 177 * Force compression on the file using the defrag ioctl, could be 178 * different from prop_compress and takes precedence if set 179 */ 180 unsigned defrag_compress; 181 182 struct btrfs_delayed_node *delayed_node; 183 184 /* File creation time. */ 185 struct timespec64 i_otime; 186 187 /* Hook into fs_info->delayed_iputs */ 188 struct list_head delayed_iput; 189 190 /* 191 * To avoid races between lockless (i_mutex not held) direct IO writes 192 * and concurrent fsync requests. Direct IO writes must acquire read 193 * access on this semaphore for creating an extent map and its 194 * corresponding ordered extent. The fast fsync path must acquire write 195 * access on this semaphore before it collects ordered extents and 196 * extent maps. 197 */ 198 struct rw_semaphore dio_sem; 199 200 struct inode vfs_inode; 201 }; 202 203 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode) 204 { 205 return container_of(inode, struct btrfs_inode, vfs_inode); 206 } 207 208 static inline unsigned long btrfs_inode_hash(u64 objectid, 209 const struct btrfs_root *root) 210 { 211 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); 212 213 #if BITS_PER_LONG == 32 214 h = (h >> 32) ^ (h & 0xffffffff); 215 #endif 216 217 return (unsigned long)h; 218 } 219 220 static inline void btrfs_insert_inode_hash(struct inode *inode) 221 { 222 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root); 223 224 __insert_inode_hash(inode, h); 225 } 226 227 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 228 { 229 u64 ino = inode->location.objectid; 230 231 /* 232 * !ino: btree_inode 233 * type == BTRFS_ROOT_ITEM_KEY: subvol dir 234 */ 235 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY) 236 ino = inode->vfs_inode.i_ino; 237 return ino; 238 } 239 240 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) 241 { 242 i_size_write(&inode->vfs_inode, size); 243 inode->disk_i_size = size; 244 } 245 246 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode) 247 { 248 struct btrfs_root *root = inode->root; 249 250 if (root == root->fs_info->tree_root && 251 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID) 252 return true; 253 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID) 254 return true; 255 return false; 256 } 257 258 static inline bool is_data_inode(struct inode *inode) 259 { 260 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID; 261 } 262 263 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, 264 int mod) 265 { 266 lockdep_assert_held(&inode->lock); 267 inode->outstanding_extents += mod; 268 if (btrfs_is_free_space_inode(inode)) 269 return; 270 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), 271 mod); 272 } 273 274 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) 275 { 276 int ret = 0; 277 278 spin_lock(&inode->lock); 279 if (inode->logged_trans == generation && 280 inode->last_sub_trans <= inode->last_log_commit && 281 inode->last_sub_trans <= inode->root->last_log_commit) { 282 /* 283 * After a ranged fsync we might have left some extent maps 284 * (that fall outside the fsync's range). So return false 285 * here if the list isn't empty, to make sure btrfs_log_inode() 286 * will be called and process those extent maps. 287 */ 288 smp_mb(); 289 if (list_empty(&inode->extent_tree.modified_extents)) 290 ret = 1; 291 } 292 spin_unlock(&inode->lock); 293 return ret; 294 } 295 296 #define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1 297 298 struct btrfs_dio_private { 299 struct inode *inode; 300 unsigned long flags; 301 u64 logical_offset; 302 u64 disk_bytenr; 303 u64 bytes; 304 void *private; 305 306 /* number of bios pending for this dio */ 307 atomic_t pending_bios; 308 309 /* IO errors */ 310 int errors; 311 312 /* orig_bio is our btrfs_io_bio */ 313 struct bio *orig_bio; 314 315 /* dio_bio came from fs/direct-io.c */ 316 struct bio *dio_bio; 317 318 /* 319 * The original bio may be split to several sub-bios, this is 320 * done during endio of sub-bios 321 */ 322 blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *, 323 blk_status_t); 324 }; 325 326 /* 327 * Disable DIO read nolock optimization, so new dio readers will be forced 328 * to grab i_mutex. It is used to avoid the endless truncate due to 329 * nonlocked dio read. 330 */ 331 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode) 332 { 333 set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags); 334 smp_mb(); 335 } 336 337 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode) 338 { 339 smp_mb__before_atomic(); 340 clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags); 341 } 342 343 /* Array of bytes with variable length, hexadecimal format 0x1234 */ 344 #define CSUM_FMT "0x%*phN" 345 #define CSUM_FMT_VALUE(size, bytes) size, bytes 346 347 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode, 348 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 349 { 350 struct btrfs_root *root = inode->root; 351 struct btrfs_super_block *sb = root->fs_info->super_copy; 352 const u16 csum_size = btrfs_super_csum_size(sb); 353 354 /* Output minus objectid, which is more meaningful */ 355 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) 356 btrfs_warn_rl(root->fs_info, 357 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 358 root->root_key.objectid, btrfs_ino(inode), 359 logical_start, 360 CSUM_FMT_VALUE(csum_size, csum), 361 CSUM_FMT_VALUE(csum_size, csum_expected), 362 mirror_num); 363 else 364 btrfs_warn_rl(root->fs_info, 365 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 366 root->root_key.objectid, btrfs_ino(inode), 367 logical_start, 368 CSUM_FMT_VALUE(csum_size, csum), 369 CSUM_FMT_VALUE(csum_size, csum_expected), 370 mirror_num); 371 } 372 373 #endif 374