xref: /linux/fs/btrfs/btrfs_inode.h (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8 
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include <linux/spinlock.h>
12 #include <linux/mutex.h>
13 #include <linux/rwsem.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/compiler.h>
17 #include <linux/fscrypt.h>
18 #include <linux/lockdep.h>
19 #include <uapi/linux/btrfs_tree.h>
20 #include <trace/events/btrfs.h>
21 #include "block-rsv.h"
22 #include "extent_map.h"
23 #include "extent_io.h"
24 #include "extent-io-tree.h"
25 #include "ordered-data.h"
26 #include "delayed-inode.h"
27 
28 struct extent_state;
29 struct posix_acl;
30 struct iov_iter;
31 struct writeback_control;
32 struct btrfs_root;
33 struct btrfs_fs_info;
34 struct btrfs_trans_handle;
35 
36 /*
37  * Since we search a directory based on f_pos (struct dir_context::pos) we have
38  * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so
39  * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()).
40  */
41 #define BTRFS_DIR_START_INDEX 2
42 
43 /*
44  * ordered_data_close is set by truncate when a file that used
45  * to have good data has been truncated to zero.  When it is set
46  * the btrfs file release call will add this inode to the
47  * ordered operations list so that we make sure to flush out any
48  * new data the application may have written before commit.
49  */
50 enum {
51 	BTRFS_INODE_FLUSH_ON_CLOSE,
52 	BTRFS_INODE_DUMMY,
53 	BTRFS_INODE_IN_DEFRAG,
54 	BTRFS_INODE_HAS_ASYNC_EXTENT,
55 	 /*
56 	  * Always set under the VFS' inode lock, otherwise it can cause races
57 	  * during fsync (we start as a fast fsync and then end up in a full
58 	  * fsync racing with ordered extent completion).
59 	  */
60 	BTRFS_INODE_NEEDS_FULL_SYNC,
61 	BTRFS_INODE_COPY_EVERYTHING,
62 	BTRFS_INODE_HAS_PROPS,
63 	BTRFS_INODE_SNAPSHOT_FLUSH,
64 	/*
65 	 * Set and used when logging an inode and it serves to signal that an
66 	 * inode does not have xattrs, so subsequent fsyncs can avoid searching
67 	 * for xattrs to log. This bit must be cleared whenever a xattr is added
68 	 * to an inode.
69 	 */
70 	BTRFS_INODE_NO_XATTRS,
71 	/*
72 	 * Set when we are in a context where we need to start a transaction and
73 	 * have dirty pages with the respective file range locked. This is to
74 	 * ensure that when reserving space for the transaction, if we are low
75 	 * on available space and need to flush delalloc, we will not flush
76 	 * delalloc for this inode, because that could result in a deadlock (on
77 	 * the file range, inode's io_tree).
78 	 */
79 	BTRFS_INODE_NO_DELALLOC_FLUSH,
80 	/*
81 	 * Set when we are working on enabling verity for a file. Computing and
82 	 * writing the whole Merkle tree can take a while so we want to prevent
83 	 * races where two separate tasks attempt to simultaneously start verity
84 	 * on the same file.
85 	 */
86 	BTRFS_INODE_VERITY_IN_PROGRESS,
87 	/* Set when this inode is a free space inode. */
88 	BTRFS_INODE_FREE_SPACE_INODE,
89 	/* Set when there are no capabilities in XATTs for the inode. */
90 	BTRFS_INODE_NO_CAP_XATTR,
91 	/*
92 	 * Set if an error happened when doing a COW write before submitting a
93 	 * bio or during writeback. Used for both buffered writes and direct IO
94 	 * writes. This is to signal a fast fsync that it has to wait for
95 	 * ordered extents to complete and therefore not log extent maps that
96 	 * point to unwritten extents (when an ordered extent completes and it
97 	 * has the BTRFS_ORDERED_IOERR flag set, it drops extent maps in its
98 	 * range).
99 	 */
100 	BTRFS_INODE_COW_WRITE_ERROR,
101 	/*
102 	 * Indicate this is a directory that points to a subvolume for which
103 	 * there is no root reference item. That's a case like the following:
104 	 *
105 	 *   $ btrfs subvolume create /mnt/parent
106 	 *   $ btrfs subvolume create /mnt/parent/child
107 	 *   $ btrfs subvolume snapshot /mnt/parent /mnt/snap
108 	 *
109 	 * If subvolume "parent" is root 256, subvolume "child" is root 257 and
110 	 * snapshot "snap" is root 258, then there's no root reference item (key
111 	 * BTRFS_ROOT_REF_KEY in the root tree) for the subvolume "child"
112 	 * associated to root 258 (the snapshot) - there's only for the root
113 	 * of the "parent" subvolume (root 256). In the chunk root we have a
114 	 * (256 BTRFS_ROOT_REF_KEY 257) key but we don't have a
115 	 * (258 BTRFS_ROOT_REF_KEY 257) key - the sames goes for backrefs, we
116 	 * have a (257 BTRFS_ROOT_BACKREF_KEY 256) but we don't have a
117 	 * (257 BTRFS_ROOT_BACKREF_KEY 258) key.
118 	 *
119 	 * So when opening the "child" dentry from the snapshot's directory,
120 	 * we don't find a root ref item and we create a stub inode. This is
121 	 * done at new_simple_dir(), called from btrfs_lookup_dentry().
122 	 */
123 	BTRFS_INODE_ROOT_STUB,
124 };
125 
126 /* in memory btrfs inode */
127 struct btrfs_inode {
128 	/* which subvolume this inode belongs to */
129 	struct btrfs_root *root;
130 
131 #if BITS_PER_LONG == 32
132 	/*
133 	 * The objectid of the corresponding BTRFS_INODE_ITEM_KEY.
134 	 * On 64 bits platforms we can get it from vfs_inode.i_ino, which is an
135 	 * unsigned long and therefore 64 bits on such platforms.
136 	 */
137 	u64 objectid;
138 #endif
139 
140 	/* Cached value of inode property 'compression'. */
141 	u8 prop_compress;
142 
143 	/*
144 	 * Force compression on the file using the defrag ioctl, could be
145 	 * different from prop_compress and takes precedence if set.
146 	 */
147 	u8 defrag_compress;
148 
149 	/*
150 	 * Lock for counters and all fields used to determine if the inode is in
151 	 * the log or not (last_trans, last_sub_trans, last_log_commit,
152 	 * logged_trans), to access/update delalloc_bytes, new_delalloc_bytes,
153 	 * defrag_bytes, disk_i_size, outstanding_extents, csum_bytes and to
154 	 * update the VFS' inode number of bytes used.
155 	 */
156 	spinlock_t lock;
157 
158 	/* the extent_tree has caches of all the extent mappings to disk */
159 	struct extent_map_tree extent_tree;
160 
161 	/* the io_tree does range state (DIRTY, LOCKED etc) */
162 	struct extent_io_tree io_tree;
163 
164 	/*
165 	 * Keep track of where the inode has extent items mapped in order to
166 	 * make sure the i_size adjustments are accurate. Not required when the
167 	 * filesystem is NO_HOLES, the status can't be set while mounted as
168 	 * it's a mkfs-time feature.
169 	 */
170 	struct extent_io_tree *file_extent_tree;
171 
172 	/* held while logging the inode in tree-log.c */
173 	struct mutex log_mutex;
174 
175 	/*
176 	 * Counters to keep track of the number of extent item's we may use due
177 	 * to delalloc and such.  outstanding_extents is the number of extent
178 	 * items we think we'll end up using, and reserved_extents is the number
179 	 * of extent items we've reserved metadata for. Protected by 'lock'.
180 	 */
181 	unsigned outstanding_extents;
182 
183 	/* used to order data wrt metadata */
184 	spinlock_t ordered_tree_lock;
185 	struct rb_root ordered_tree;
186 	struct rb_node *ordered_tree_last;
187 
188 	/* list of all the delalloc inodes in the FS.  There are times we need
189 	 * to write all the delalloc pages to disk, and this list is used
190 	 * to walk them all.
191 	 */
192 	struct list_head delalloc_inodes;
193 
194 	unsigned long runtime_flags;
195 
196 	/* full 64 bit generation number, struct vfs_inode doesn't have a big
197 	 * enough field for this.
198 	 */
199 	u64 generation;
200 
201 	/*
202 	 * ID of the transaction handle that last modified this inode.
203 	 * Protected by 'lock'.
204 	 */
205 	u64 last_trans;
206 
207 	/*
208 	 * ID of the transaction that last logged this inode.
209 	 * Protected by 'lock'.
210 	 */
211 	u64 logged_trans;
212 
213 	/*
214 	 * Log transaction ID when this inode was last modified.
215 	 * Protected by 'lock'.
216 	 */
217 	int last_sub_trans;
218 
219 	/* A local copy of root's last_log_commit. Protected by 'lock'. */
220 	int last_log_commit;
221 
222 	union {
223 		/*
224 		 * Total number of bytes pending delalloc, used by stat to
225 		 * calculate the real block usage of the file. This is used
226 		 * only for files. Protected by 'lock'.
227 		 */
228 		u64 delalloc_bytes;
229 		/*
230 		 * The lowest possible index of the next dir index key which
231 		 * points to an inode that needs to be logged.
232 		 * This is used only for directories.
233 		 * Use the helpers btrfs_get_first_dir_index_to_log() and
234 		 * btrfs_set_first_dir_index_to_log() to access this field.
235 		 */
236 		u64 first_dir_index_to_log;
237 	};
238 
239 	union {
240 		/*
241 		 * Total number of bytes pending delalloc that fall within a file
242 		 * range that is either a hole or beyond EOF (and no prealloc extent
243 		 * exists in the range). This is always <= delalloc_bytes and this
244 		 * is used only for files. Protected by 'lock'.
245 		 */
246 		u64 new_delalloc_bytes;
247 		/*
248 		 * The offset of the last dir index key that was logged.
249 		 * This is used only for directories.
250 		 */
251 		u64 last_dir_index_offset;
252 	};
253 
254 	union {
255 		/*
256 		 * Total number of bytes pending defrag, used by stat to check whether
257 		 * it needs COW. Protected by 'lock'.
258 		 * Used by inodes other than the data relocation inode.
259 		 */
260 		u64 defrag_bytes;
261 
262 		/*
263 		 * Logical address of the block group being relocated.
264 		 * Used only by the data relocation inode.
265 		 */
266 		u64 reloc_block_group_start;
267 	};
268 
269 	/*
270 	 * The size of the file stored in the metadata on disk.  data=ordered
271 	 * means the in-memory i_size might be larger than the size on disk
272 	 * because not all the blocks are written yet. Protected by 'lock'.
273 	 */
274 	u64 disk_i_size;
275 
276 	union {
277 		/*
278 		 * If this is a directory then index_cnt is the counter for the
279 		 * index number for new files that are created. For an empty
280 		 * directory, this must be initialized to BTRFS_DIR_START_INDEX.
281 		 */
282 		u64 index_cnt;
283 
284 		/*
285 		 * If this is not a directory, this is the number of bytes
286 		 * outstanding that are going to need csums. This is used in
287 		 * ENOSPC accounting. Protected by 'lock'.
288 		 */
289 		u64 csum_bytes;
290 	};
291 
292 	/* Cache the directory index number to speed the dir/file remove */
293 	u64 dir_index;
294 
295 	/* the fsync log has some corner cases that mean we have to check
296 	 * directories to see if any unlinks have been done before
297 	 * the directory was logged.  See tree-log.c for all the
298 	 * details
299 	 */
300 	u64 last_unlink_trans;
301 
302 	union {
303 		/*
304 		 * The id/generation of the last transaction where this inode
305 		 * was either the source or the destination of a clone/dedupe
306 		 * operation. Used when logging an inode to know if there are
307 		 * shared extents that need special care when logging checksum
308 		 * items, to avoid duplicate checksum items in a log (which can
309 		 * lead to a corruption where we end up with missing checksum
310 		 * ranges after log replay). Protected by the VFS inode lock.
311 		 * Used for regular files only.
312 		 */
313 		u64 last_reflink_trans;
314 
315 		/*
316 		 * In case this a root stub inode (BTRFS_INODE_ROOT_STUB flag set),
317 		 * the ID of that root.
318 		 */
319 		u64 ref_root_id;
320 	};
321 
322 	/* Backwards incompatible flags, lower half of inode_item::flags  */
323 	u32 flags;
324 	/* Read-only compatibility flags, upper half of inode_item::flags */
325 	u32 ro_flags;
326 
327 	struct btrfs_block_rsv block_rsv;
328 
329 	struct btrfs_delayed_node *delayed_node;
330 
331 	/* File creation time. */
332 	u64 i_otime_sec;
333 	u32 i_otime_nsec;
334 
335 	/* Hook into fs_info->delayed_iputs */
336 	struct list_head delayed_iput;
337 
338 	struct rw_semaphore i_mmap_lock;
339 	struct inode vfs_inode;
340 };
341 
342 static inline u64 btrfs_get_first_dir_index_to_log(const struct btrfs_inode *inode)
343 {
344 	return READ_ONCE(inode->first_dir_index_to_log);
345 }
346 
347 static inline void btrfs_set_first_dir_index_to_log(struct btrfs_inode *inode,
348 						    u64 index)
349 {
350 	WRITE_ONCE(inode->first_dir_index_to_log, index);
351 }
352 
353 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
354 {
355 	return container_of(inode, struct btrfs_inode, vfs_inode);
356 }
357 
358 static inline unsigned long btrfs_inode_hash(u64 objectid,
359 					     const struct btrfs_root *root)
360 {
361 	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
362 
363 #if BITS_PER_LONG == 32
364 	h = (h >> 32) ^ (h & 0xffffffff);
365 #endif
366 
367 	return (unsigned long)h;
368 }
369 
370 #if BITS_PER_LONG == 32
371 
372 /*
373  * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so
374  * we use the inode's location objectid which is a u64 to avoid truncation.
375  */
376 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
377 {
378 	u64 ino = inode->objectid;
379 
380 	if (test_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags))
381 		ino = inode->vfs_inode.i_ino;
382 	return ino;
383 }
384 
385 #else
386 
387 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
388 {
389 	return inode->vfs_inode.i_ino;
390 }
391 
392 #endif
393 
394 static inline void btrfs_get_inode_key(const struct btrfs_inode *inode,
395 				       struct btrfs_key *key)
396 {
397 	key->objectid = btrfs_ino(inode);
398 	key->type = BTRFS_INODE_ITEM_KEY;
399 	key->offset = 0;
400 }
401 
402 static inline void btrfs_set_inode_number(struct btrfs_inode *inode, u64 ino)
403 {
404 #if BITS_PER_LONG == 32
405 	inode->objectid = ino;
406 #endif
407 	inode->vfs_inode.i_ino = ino;
408 }
409 
410 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
411 {
412 	i_size_write(&inode->vfs_inode, size);
413 	inode->disk_i_size = size;
414 }
415 
416 static inline bool btrfs_is_free_space_inode(const struct btrfs_inode *inode)
417 {
418 	return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags);
419 }
420 
421 static inline bool is_data_inode(const struct btrfs_inode *inode)
422 {
423 	return btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID;
424 }
425 
426 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
427 						 int mod)
428 {
429 	lockdep_assert_held(&inode->lock);
430 	inode->outstanding_extents += mod;
431 	if (btrfs_is_free_space_inode(inode))
432 		return;
433 	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
434 						  mod, inode->outstanding_extents);
435 }
436 
437 /*
438  * Called every time after doing a buffered, direct IO or memory mapped write.
439  *
440  * This is to ensure that if we write to a file that was previously fsynced in
441  * the current transaction, then try to fsync it again in the same transaction,
442  * we will know that there were changes in the file and that it needs to be
443  * logged.
444  */
445 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
446 {
447 	spin_lock(&inode->lock);
448 	inode->last_sub_trans = inode->root->log_transid;
449 	spin_unlock(&inode->lock);
450 }
451 
452 /*
453  * Should be called while holding the inode's VFS lock in exclusive mode, or
454  * while holding the inode's mmap lock (struct btrfs_inode::i_mmap_lock) in
455  * either shared or exclusive mode, or in a context where no one else can access
456  * the inode concurrently (during inode creation or when loading an inode from
457  * disk).
458  */
459 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode)
460 {
461 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
462 	/*
463 	 * The inode may have been part of a reflink operation in the last
464 	 * transaction that modified it, and then a fsync has reset the
465 	 * last_reflink_trans to avoid subsequent fsyncs in the same
466 	 * transaction to do unnecessary work. So update last_reflink_trans
467 	 * to the last_trans value (we have to be pessimistic and assume a
468 	 * reflink happened).
469 	 *
470 	 * The ->last_trans is protected by the inode's spinlock and we can
471 	 * have a concurrent ordered extent completion update it. Also set
472 	 * last_reflink_trans to ->last_trans only if the former is less than
473 	 * the later, because we can be called in a context where
474 	 * last_reflink_trans was set to the current transaction generation
475 	 * while ->last_trans was not yet updated in the current transaction,
476 	 * and therefore has a lower value.
477 	 */
478 	spin_lock(&inode->lock);
479 	if (inode->last_reflink_trans < inode->last_trans)
480 		inode->last_reflink_trans = inode->last_trans;
481 	spin_unlock(&inode->lock);
482 }
483 
484 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
485 {
486 	bool ret = false;
487 
488 	spin_lock(&inode->lock);
489 	if (inode->logged_trans == generation &&
490 	    inode->last_sub_trans <= inode->last_log_commit &&
491 	    inode->last_sub_trans <= btrfs_get_root_last_log_commit(inode->root))
492 		ret = true;
493 	spin_unlock(&inode->lock);
494 	return ret;
495 }
496 
497 /*
498  * Check if the inode has flags compatible with compression
499  */
500 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode)
501 {
502 	if (inode->flags & BTRFS_INODE_NODATACOW ||
503 	    inode->flags & BTRFS_INODE_NODATASUM)
504 		return false;
505 	return true;
506 }
507 
508 /* Array of bytes with variable length, hexadecimal format 0x1234 */
509 #define CSUM_FMT				"0x%*phN"
510 #define CSUM_FMT_VALUE(size, bytes)		size, bytes
511 
512 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
513 			    u32 pgoff, u8 *csum, const u8 * const csum_expected);
514 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
515 			u32 bio_offset, struct bio_vec *bv);
516 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
517 			      struct btrfs_file_extent *file_extent,
518 			      bool nowait, bool strict);
519 
520 void btrfs_del_delalloc_inode(struct btrfs_inode *inode);
521 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
522 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
523 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
524 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
525 		       const struct fscrypt_str *name);
526 int btrfs_add_link(struct btrfs_trans_handle *trans,
527 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
528 		   const struct fscrypt_str *name, int add_backref, u64 index);
529 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry);
530 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
531 			 int front);
532 
533 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
534 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
535 			       bool in_reclaim_context);
536 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
537 			      unsigned int extra_bits,
538 			      struct extent_state **cached_state);
539 
540 struct btrfs_new_inode_args {
541 	/* Input */
542 	struct inode *dir;
543 	struct dentry *dentry;
544 	struct inode *inode;
545 	bool orphan;
546 	bool subvol;
547 
548 	/* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */
549 	struct posix_acl *default_acl;
550 	struct posix_acl *acl;
551 	struct fscrypt_name fname;
552 };
553 
554 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
555 			    unsigned int *trans_num_items);
556 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
557 			   struct btrfs_new_inode_args *args);
558 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
559 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
560 				     struct inode *dir);
561  void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
562 			        u32 bits);
563 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
564 				 struct extent_state *state, u32 bits);
565 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
566 				 struct extent_state *other);
567 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
568 				 struct extent_state *orig, u64 split);
569 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
570 void btrfs_evict_inode(struct inode *inode);
571 struct inode *btrfs_alloc_inode(struct super_block *sb);
572 void btrfs_destroy_inode(struct inode *inode);
573 void btrfs_free_inode(struct inode *inode);
574 int btrfs_drop_inode(struct inode *inode);
575 int __init btrfs_init_cachep(void);
576 void __cold btrfs_destroy_cachep(void);
577 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
578 			      struct btrfs_path *path);
579 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root);
580 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
581 				    struct page *page, u64 start, u64 len);
582 int btrfs_update_inode(struct btrfs_trans_handle *trans,
583 		       struct btrfs_inode *inode);
584 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
585 				struct btrfs_inode *inode);
586 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode);
587 int btrfs_orphan_cleanup(struct btrfs_root *root);
588 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
589 void btrfs_add_delayed_iput(struct btrfs_inode *inode);
590 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
591 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
592 int btrfs_prealloc_file_range(struct inode *inode, int mode,
593 			      u64 start, u64 num_bytes, u64 min_size,
594 			      loff_t actual_len, u64 *alloc_hint);
595 int btrfs_prealloc_file_range_trans(struct inode *inode,
596 				    struct btrfs_trans_handle *trans, int mode,
597 				    u64 start, u64 num_bytes, u64 min_size,
598 				    loff_t actual_len, u64 *alloc_hint);
599 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
600 			     u64 start, u64 end, struct writeback_control *wbc);
601 int btrfs_writepage_cow_fixup(struct page *page);
602 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
603 					     int compress_type);
604 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
605 					  u64 file_offset, u64 disk_bytenr,
606 					  u64 disk_io_size,
607 					  struct page **pages);
608 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
609 			   struct btrfs_ioctl_encoded_io_args *encoded);
610 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
611 			       const struct btrfs_ioctl_encoded_io_args *encoded);
612 
613 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino);
614 
615 extern const struct dentry_operations btrfs_dentry_operations;
616 
617 /* Inode locking type flags, by default the exclusive lock is taken. */
618 enum btrfs_ilock_type {
619 	ENUM_BIT(BTRFS_ILOCK_SHARED),
620 	ENUM_BIT(BTRFS_ILOCK_TRY),
621 	ENUM_BIT(BTRFS_ILOCK_MMAP),
622 };
623 
624 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags);
625 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags);
626 void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes,
627 			      const u64 del_bytes);
628 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
629 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
630 				     u64 num_bytes);
631 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
632 				      const struct btrfs_file_extent *file_extent,
633 				      int type);
634 
635 #endif
636