xref: /linux/fs/btrfs/btrfs_inode.h (revision 95298d63c67673c654c08952672d016212b26054)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8 
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include "extent_map.h"
12 #include "extent_io.h"
13 #include "ordered-data.h"
14 #include "delayed-inode.h"
15 
16 /*
17  * ordered_data_close is set by truncate when a file that used
18  * to have good data has been truncated to zero.  When it is set
19  * the btrfs file release call will add this inode to the
20  * ordered operations list so that we make sure to flush out any
21  * new data the application may have written before commit.
22  */
23 enum {
24 	BTRFS_INODE_ORDERED_DATA_CLOSE,
25 	BTRFS_INODE_DUMMY,
26 	BTRFS_INODE_IN_DEFRAG,
27 	BTRFS_INODE_HAS_ASYNC_EXTENT,
28 	BTRFS_INODE_NEEDS_FULL_SYNC,
29 	BTRFS_INODE_COPY_EVERYTHING,
30 	BTRFS_INODE_IN_DELALLOC_LIST,
31 	BTRFS_INODE_READDIO_NEED_LOCK,
32 	BTRFS_INODE_HAS_PROPS,
33 	BTRFS_INODE_SNAPSHOT_FLUSH,
34 };
35 
36 /* in memory btrfs inode */
37 struct btrfs_inode {
38 	/* which subvolume this inode belongs to */
39 	struct btrfs_root *root;
40 
41 	/* key used to find this inode on disk.  This is used by the code
42 	 * to read in roots of subvolumes
43 	 */
44 	struct btrfs_key location;
45 
46 	/*
47 	 * Lock for counters and all fields used to determine if the inode is in
48 	 * the log or not (last_trans, last_sub_trans, last_log_commit,
49 	 * logged_trans).
50 	 */
51 	spinlock_t lock;
52 
53 	/* the extent_tree has caches of all the extent mappings to disk */
54 	struct extent_map_tree extent_tree;
55 
56 	/* the io_tree does range state (DIRTY, LOCKED etc) */
57 	struct extent_io_tree io_tree;
58 
59 	/* special utility tree used to record which mirrors have already been
60 	 * tried when checksums fail for a given block
61 	 */
62 	struct extent_io_tree io_failure_tree;
63 
64 	/*
65 	 * Keep track of where the inode has extent items mapped in order to
66 	 * make sure the i_size adjustments are accurate
67 	 */
68 	struct extent_io_tree file_extent_tree;
69 
70 	/* held while logging the inode in tree-log.c */
71 	struct mutex log_mutex;
72 
73 	/* used to order data wrt metadata */
74 	struct btrfs_ordered_inode_tree ordered_tree;
75 
76 	/* list of all the delalloc inodes in the FS.  There are times we need
77 	 * to write all the delalloc pages to disk, and this list is used
78 	 * to walk them all.
79 	 */
80 	struct list_head delalloc_inodes;
81 
82 	/* node for the red-black tree that links inodes in subvolume root */
83 	struct rb_node rb_node;
84 
85 	unsigned long runtime_flags;
86 
87 	/* Keep track of who's O_SYNC/fsyncing currently */
88 	atomic_t sync_writers;
89 
90 	/* full 64 bit generation number, struct vfs_inode doesn't have a big
91 	 * enough field for this.
92 	 */
93 	u64 generation;
94 
95 	/*
96 	 * transid of the trans_handle that last modified this inode
97 	 */
98 	u64 last_trans;
99 
100 	/*
101 	 * transid that last logged this inode
102 	 */
103 	u64 logged_trans;
104 
105 	/*
106 	 * log transid when this inode was last modified
107 	 */
108 	int last_sub_trans;
109 
110 	/* a local copy of root's last_log_commit */
111 	int last_log_commit;
112 
113 	/* total number of bytes pending delalloc, used by stat to calc the
114 	 * real block usage of the file
115 	 */
116 	u64 delalloc_bytes;
117 
118 	/*
119 	 * Total number of bytes pending delalloc that fall within a file
120 	 * range that is either a hole or beyond EOF (and no prealloc extent
121 	 * exists in the range). This is always <= delalloc_bytes.
122 	 */
123 	u64 new_delalloc_bytes;
124 
125 	/*
126 	 * total number of bytes pending defrag, used by stat to check whether
127 	 * it needs COW.
128 	 */
129 	u64 defrag_bytes;
130 
131 	/*
132 	 * the size of the file stored in the metadata on disk.  data=ordered
133 	 * means the in-memory i_size might be larger than the size on disk
134 	 * because not all the blocks are written yet.
135 	 */
136 	u64 disk_i_size;
137 
138 	/*
139 	 * if this is a directory then index_cnt is the counter for the index
140 	 * number for new files that are created
141 	 */
142 	u64 index_cnt;
143 
144 	/* Cache the directory index number to speed the dir/file remove */
145 	u64 dir_index;
146 
147 	/* the fsync log has some corner cases that mean we have to check
148 	 * directories to see if any unlinks have been done before
149 	 * the directory was logged.  See tree-log.c for all the
150 	 * details
151 	 */
152 	u64 last_unlink_trans;
153 
154 	/*
155 	 * Number of bytes outstanding that are going to need csums.  This is
156 	 * used in ENOSPC accounting.
157 	 */
158 	u64 csum_bytes;
159 
160 	/* flags field from the on disk inode */
161 	u32 flags;
162 
163 	/*
164 	 * Counters to keep track of the number of extent item's we may use due
165 	 * to delalloc and such.  outstanding_extents is the number of extent
166 	 * items we think we'll end up using, and reserved_extents is the number
167 	 * of extent items we've reserved metadata for.
168 	 */
169 	unsigned outstanding_extents;
170 
171 	struct btrfs_block_rsv block_rsv;
172 
173 	/*
174 	 * Cached values of inode properties
175 	 */
176 	unsigned prop_compress;		/* per-file compression algorithm */
177 	/*
178 	 * Force compression on the file using the defrag ioctl, could be
179 	 * different from prop_compress and takes precedence if set
180 	 */
181 	unsigned defrag_compress;
182 
183 	struct btrfs_delayed_node *delayed_node;
184 
185 	/* File creation time. */
186 	struct timespec64 i_otime;
187 
188 	/* Hook into fs_info->delayed_iputs */
189 	struct list_head delayed_iput;
190 
191 	/*
192 	 * To avoid races between lockless (i_mutex not held) direct IO writes
193 	 * and concurrent fsync requests. Direct IO writes must acquire read
194 	 * access on this semaphore for creating an extent map and its
195 	 * corresponding ordered extent. The fast fsync path must acquire write
196 	 * access on this semaphore before it collects ordered extents and
197 	 * extent maps.
198 	 */
199 	struct rw_semaphore dio_sem;
200 
201 	struct inode vfs_inode;
202 };
203 
204 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
205 {
206 	return container_of(inode, struct btrfs_inode, vfs_inode);
207 }
208 
209 static inline unsigned long btrfs_inode_hash(u64 objectid,
210 					     const struct btrfs_root *root)
211 {
212 	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
213 
214 #if BITS_PER_LONG == 32
215 	h = (h >> 32) ^ (h & 0xffffffff);
216 #endif
217 
218 	return (unsigned long)h;
219 }
220 
221 static inline void btrfs_insert_inode_hash(struct inode *inode)
222 {
223 	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
224 
225 	__insert_inode_hash(inode, h);
226 }
227 
228 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
229 {
230 	u64 ino = inode->location.objectid;
231 
232 	/*
233 	 * !ino: btree_inode
234 	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
235 	 */
236 	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
237 		ino = inode->vfs_inode.i_ino;
238 	return ino;
239 }
240 
241 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
242 {
243 	i_size_write(&inode->vfs_inode, size);
244 	inode->disk_i_size = size;
245 }
246 
247 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
248 {
249 	struct btrfs_root *root = inode->root;
250 
251 	if (root == root->fs_info->tree_root &&
252 	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
253 		return true;
254 	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
255 		return true;
256 	return false;
257 }
258 
259 static inline bool is_data_inode(struct inode *inode)
260 {
261 	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
262 }
263 
264 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
265 						 int mod)
266 {
267 	lockdep_assert_held(&inode->lock);
268 	inode->outstanding_extents += mod;
269 	if (btrfs_is_free_space_inode(inode))
270 		return;
271 	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
272 						  mod);
273 }
274 
275 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
276 {
277 	int ret = 0;
278 
279 	spin_lock(&inode->lock);
280 	if (inode->logged_trans == generation &&
281 	    inode->last_sub_trans <= inode->last_log_commit &&
282 	    inode->last_sub_trans <= inode->root->last_log_commit) {
283 		/*
284 		 * After a ranged fsync we might have left some extent maps
285 		 * (that fall outside the fsync's range). So return false
286 		 * here if the list isn't empty, to make sure btrfs_log_inode()
287 		 * will be called and process those extent maps.
288 		 */
289 		smp_mb();
290 		if (list_empty(&inode->extent_tree.modified_extents))
291 			ret = 1;
292 	}
293 	spin_unlock(&inode->lock);
294 	return ret;
295 }
296 
297 struct btrfs_dio_private {
298 	struct inode *inode;
299 	u64 logical_offset;
300 	u64 disk_bytenr;
301 	u64 bytes;
302 
303 	/*
304 	 * References to this structure. There is one reference per in-flight
305 	 * bio plus one while we're still setting up.
306 	 */
307 	refcount_t refs;
308 
309 	/* dio_bio came from fs/direct-io.c */
310 	struct bio *dio_bio;
311 
312 	/* Array of checksums */
313 	u8 csums[];
314 };
315 
316 /*
317  * Disable DIO read nolock optimization, so new dio readers will be forced
318  * to grab i_mutex. It is used to avoid the endless truncate due to
319  * nonlocked dio read.
320  */
321 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
322 {
323 	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
324 	smp_mb();
325 }
326 
327 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
328 {
329 	smp_mb__before_atomic();
330 	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
331 }
332 
333 /* Array of bytes with variable length, hexadecimal format 0x1234 */
334 #define CSUM_FMT				"0x%*phN"
335 #define CSUM_FMT_VALUE(size, bytes)		size, bytes
336 
337 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
338 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
339 {
340 	struct btrfs_root *root = inode->root;
341 	struct btrfs_super_block *sb = root->fs_info->super_copy;
342 	const u16 csum_size = btrfs_super_csum_size(sb);
343 
344 	/* Output minus objectid, which is more meaningful */
345 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
346 		btrfs_warn_rl(root->fs_info,
347 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
348 			root->root_key.objectid, btrfs_ino(inode),
349 			logical_start,
350 			CSUM_FMT_VALUE(csum_size, csum),
351 			CSUM_FMT_VALUE(csum_size, csum_expected),
352 			mirror_num);
353 	else
354 		btrfs_warn_rl(root->fs_info,
355 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
356 			root->root_key.objectid, btrfs_ino(inode),
357 			logical_start,
358 			CSUM_FMT_VALUE(csum_size, csum),
359 			CSUM_FMT_VALUE(csum_size, csum_expected),
360 			mirror_num);
361 }
362 
363 #endif
364