xref: /linux/fs/btrfs/btrfs_inode.h (revision 8fc4e4aa2bfca8d32e8bc2a01526ea2da450e6cb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8 
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include "extent_map.h"
12 #include "extent_io.h"
13 #include "ordered-data.h"
14 #include "delayed-inode.h"
15 
16 /*
17  * ordered_data_close is set by truncate when a file that used
18  * to have good data has been truncated to zero.  When it is set
19  * the btrfs file release call will add this inode to the
20  * ordered operations list so that we make sure to flush out any
21  * new data the application may have written before commit.
22  */
23 enum {
24 	BTRFS_INODE_FLUSH_ON_CLOSE,
25 	BTRFS_INODE_DUMMY,
26 	BTRFS_INODE_IN_DEFRAG,
27 	BTRFS_INODE_HAS_ASYNC_EXTENT,
28 	 /*
29 	  * Always set under the VFS' inode lock, otherwise it can cause races
30 	  * during fsync (we start as a fast fsync and then end up in a full
31 	  * fsync racing with ordered extent completion).
32 	  */
33 	BTRFS_INODE_NEEDS_FULL_SYNC,
34 	BTRFS_INODE_COPY_EVERYTHING,
35 	BTRFS_INODE_IN_DELALLOC_LIST,
36 	BTRFS_INODE_HAS_PROPS,
37 	BTRFS_INODE_SNAPSHOT_FLUSH,
38 	/*
39 	 * Set and used when logging an inode and it serves to signal that an
40 	 * inode does not have xattrs, so subsequent fsyncs can avoid searching
41 	 * for xattrs to log. This bit must be cleared whenever a xattr is added
42 	 * to an inode.
43 	 */
44 	BTRFS_INODE_NO_XATTRS,
45 	/*
46 	 * Set when we are in a context where we need to start a transaction and
47 	 * have dirty pages with the respective file range locked. This is to
48 	 * ensure that when reserving space for the transaction, if we are low
49 	 * on available space and need to flush delalloc, we will not flush
50 	 * delalloc for this inode, because that could result in a deadlock (on
51 	 * the file range, inode's io_tree).
52 	 */
53 	BTRFS_INODE_NO_DELALLOC_FLUSH,
54 };
55 
56 /* in memory btrfs inode */
57 struct btrfs_inode {
58 	/* which subvolume this inode belongs to */
59 	struct btrfs_root *root;
60 
61 	/* key used to find this inode on disk.  This is used by the code
62 	 * to read in roots of subvolumes
63 	 */
64 	struct btrfs_key location;
65 
66 	/*
67 	 * Lock for counters and all fields used to determine if the inode is in
68 	 * the log or not (last_trans, last_sub_trans, last_log_commit,
69 	 * logged_trans), to access/update new_delalloc_bytes and to update the
70 	 * VFS' inode number of bytes used.
71 	 */
72 	spinlock_t lock;
73 
74 	/* the extent_tree has caches of all the extent mappings to disk */
75 	struct extent_map_tree extent_tree;
76 
77 	/* the io_tree does range state (DIRTY, LOCKED etc) */
78 	struct extent_io_tree io_tree;
79 
80 	/* special utility tree used to record which mirrors have already been
81 	 * tried when checksums fail for a given block
82 	 */
83 	struct extent_io_tree io_failure_tree;
84 
85 	/*
86 	 * Keep track of where the inode has extent items mapped in order to
87 	 * make sure the i_size adjustments are accurate
88 	 */
89 	struct extent_io_tree file_extent_tree;
90 
91 	/* held while logging the inode in tree-log.c */
92 	struct mutex log_mutex;
93 
94 	/* used to order data wrt metadata */
95 	struct btrfs_ordered_inode_tree ordered_tree;
96 
97 	/* list of all the delalloc inodes in the FS.  There are times we need
98 	 * to write all the delalloc pages to disk, and this list is used
99 	 * to walk them all.
100 	 */
101 	struct list_head delalloc_inodes;
102 
103 	/* node for the red-black tree that links inodes in subvolume root */
104 	struct rb_node rb_node;
105 
106 	unsigned long runtime_flags;
107 
108 	/* Keep track of who's O_SYNC/fsyncing currently */
109 	atomic_t sync_writers;
110 
111 	/* full 64 bit generation number, struct vfs_inode doesn't have a big
112 	 * enough field for this.
113 	 */
114 	u64 generation;
115 
116 	/*
117 	 * transid of the trans_handle that last modified this inode
118 	 */
119 	u64 last_trans;
120 
121 	/*
122 	 * transid that last logged this inode
123 	 */
124 	u64 logged_trans;
125 
126 	/*
127 	 * log transid when this inode was last modified
128 	 */
129 	int last_sub_trans;
130 
131 	/* a local copy of root's last_log_commit */
132 	int last_log_commit;
133 
134 	/* total number of bytes pending delalloc, used by stat to calc the
135 	 * real block usage of the file
136 	 */
137 	u64 delalloc_bytes;
138 
139 	/*
140 	 * Total number of bytes pending delalloc that fall within a file
141 	 * range that is either a hole or beyond EOF (and no prealloc extent
142 	 * exists in the range). This is always <= delalloc_bytes.
143 	 */
144 	u64 new_delalloc_bytes;
145 
146 	/*
147 	 * total number of bytes pending defrag, used by stat to check whether
148 	 * it needs COW.
149 	 */
150 	u64 defrag_bytes;
151 
152 	/*
153 	 * the size of the file stored in the metadata on disk.  data=ordered
154 	 * means the in-memory i_size might be larger than the size on disk
155 	 * because not all the blocks are written yet.
156 	 */
157 	u64 disk_i_size;
158 
159 	/*
160 	 * if this is a directory then index_cnt is the counter for the index
161 	 * number for new files that are created
162 	 */
163 	u64 index_cnt;
164 
165 	/* Cache the directory index number to speed the dir/file remove */
166 	u64 dir_index;
167 
168 	/* the fsync log has some corner cases that mean we have to check
169 	 * directories to see if any unlinks have been done before
170 	 * the directory was logged.  See tree-log.c for all the
171 	 * details
172 	 */
173 	u64 last_unlink_trans;
174 
175 	/*
176 	 * The id/generation of the last transaction where this inode was
177 	 * either the source or the destination of a clone/dedupe operation.
178 	 * Used when logging an inode to know if there are shared extents that
179 	 * need special care when logging checksum items, to avoid duplicate
180 	 * checksum items in a log (which can lead to a corruption where we end
181 	 * up with missing checksum ranges after log replay).
182 	 * Protected by the vfs inode lock.
183 	 */
184 	u64 last_reflink_trans;
185 
186 	/*
187 	 * Number of bytes outstanding that are going to need csums.  This is
188 	 * used in ENOSPC accounting.
189 	 */
190 	u64 csum_bytes;
191 
192 	/* flags field from the on disk inode */
193 	u32 flags;
194 
195 	/*
196 	 * Counters to keep track of the number of extent item's we may use due
197 	 * to delalloc and such.  outstanding_extents is the number of extent
198 	 * items we think we'll end up using, and reserved_extents is the number
199 	 * of extent items we've reserved metadata for.
200 	 */
201 	unsigned outstanding_extents;
202 
203 	struct btrfs_block_rsv block_rsv;
204 
205 	/*
206 	 * Cached values of inode properties
207 	 */
208 	unsigned prop_compress;		/* per-file compression algorithm */
209 	/*
210 	 * Force compression on the file using the defrag ioctl, could be
211 	 * different from prop_compress and takes precedence if set
212 	 */
213 	unsigned defrag_compress;
214 
215 	struct btrfs_delayed_node *delayed_node;
216 
217 	/* File creation time. */
218 	struct timespec64 i_otime;
219 
220 	/* Hook into fs_info->delayed_iputs */
221 	struct list_head delayed_iput;
222 
223 	struct rw_semaphore i_mmap_lock;
224 	struct inode vfs_inode;
225 };
226 
227 static inline u32 btrfs_inode_sectorsize(const struct btrfs_inode *inode)
228 {
229 	return inode->root->fs_info->sectorsize;
230 }
231 
232 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
233 {
234 	return container_of(inode, struct btrfs_inode, vfs_inode);
235 }
236 
237 static inline unsigned long btrfs_inode_hash(u64 objectid,
238 					     const struct btrfs_root *root)
239 {
240 	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
241 
242 #if BITS_PER_LONG == 32
243 	h = (h >> 32) ^ (h & 0xffffffff);
244 #endif
245 
246 	return (unsigned long)h;
247 }
248 
249 static inline void btrfs_insert_inode_hash(struct inode *inode)
250 {
251 	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
252 
253 	__insert_inode_hash(inode, h);
254 }
255 
256 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
257 {
258 	u64 ino = inode->location.objectid;
259 
260 	/*
261 	 * !ino: btree_inode
262 	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
263 	 */
264 	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
265 		ino = inode->vfs_inode.i_ino;
266 	return ino;
267 }
268 
269 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
270 {
271 	i_size_write(&inode->vfs_inode, size);
272 	inode->disk_i_size = size;
273 }
274 
275 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
276 {
277 	struct btrfs_root *root = inode->root;
278 
279 	if (root == root->fs_info->tree_root &&
280 	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
281 		return true;
282 	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
283 		return true;
284 	return false;
285 }
286 
287 static inline bool is_data_inode(struct inode *inode)
288 {
289 	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
290 }
291 
292 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
293 						 int mod)
294 {
295 	lockdep_assert_held(&inode->lock);
296 	inode->outstanding_extents += mod;
297 	if (btrfs_is_free_space_inode(inode))
298 		return;
299 	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
300 						  mod);
301 }
302 
303 /*
304  * Called every time after doing a buffered, direct IO or memory mapped write.
305  *
306  * This is to ensure that if we write to a file that was previously fsynced in
307  * the current transaction, then try to fsync it again in the same transaction,
308  * we will know that there were changes in the file and that it needs to be
309  * logged.
310  */
311 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
312 {
313 	spin_lock(&inode->lock);
314 	inode->last_sub_trans = inode->root->log_transid;
315 	spin_unlock(&inode->lock);
316 }
317 
318 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
319 {
320 	bool ret = false;
321 
322 	spin_lock(&inode->lock);
323 	if (inode->logged_trans == generation &&
324 	    inode->last_sub_trans <= inode->last_log_commit &&
325 	    inode->last_sub_trans <= inode->root->last_log_commit)
326 		ret = true;
327 	spin_unlock(&inode->lock);
328 	return ret;
329 }
330 
331 struct btrfs_dio_private {
332 	struct inode *inode;
333 	u64 logical_offset;
334 	u64 disk_bytenr;
335 	/* Used for bio::bi_size */
336 	u32 bytes;
337 
338 	/*
339 	 * References to this structure. There is one reference per in-flight
340 	 * bio plus one while we're still setting up.
341 	 */
342 	refcount_t refs;
343 
344 	/* dio_bio came from fs/direct-io.c */
345 	struct bio *dio_bio;
346 
347 	/* Array of checksums */
348 	u8 csums[];
349 };
350 
351 /* Array of bytes with variable length, hexadecimal format 0x1234 */
352 #define CSUM_FMT				"0x%*phN"
353 #define CSUM_FMT_VALUE(size, bytes)		size, bytes
354 
355 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
356 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
357 {
358 	struct btrfs_root *root = inode->root;
359 	const u32 csum_size = root->fs_info->csum_size;
360 
361 	/* Output minus objectid, which is more meaningful */
362 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
363 		btrfs_warn_rl(root->fs_info,
364 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
365 			root->root_key.objectid, btrfs_ino(inode),
366 			logical_start,
367 			CSUM_FMT_VALUE(csum_size, csum),
368 			CSUM_FMT_VALUE(csum_size, csum_expected),
369 			mirror_num);
370 	else
371 		btrfs_warn_rl(root->fs_info,
372 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
373 			root->root_key.objectid, btrfs_ino(inode),
374 			logical_start,
375 			CSUM_FMT_VALUE(csum_size, csum),
376 			CSUM_FMT_VALUE(csum_size, csum_expected),
377 			mirror_num);
378 }
379 
380 #endif
381