1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_INODE_H 7 #define BTRFS_INODE_H 8 9 #include <linux/hash.h> 10 #include <linux/refcount.h> 11 #include <linux/spinlock.h> 12 #include <linux/mutex.h> 13 #include <linux/rwsem.h> 14 #include <linux/fs.h> 15 #include <linux/mm.h> 16 #include <linux/compiler.h> 17 #include <linux/fscrypt.h> 18 #include <linux/lockdep.h> 19 #include <uapi/linux/btrfs_tree.h> 20 #include <trace/events/btrfs.h> 21 #include "block-rsv.h" 22 #include "extent_map.h" 23 #include "extent_io.h" 24 #include "extent-io-tree.h" 25 #include "ordered-data.h" 26 #include "delayed-inode.h" 27 28 struct extent_state; 29 struct posix_acl; 30 struct iov_iter; 31 struct writeback_control; 32 struct btrfs_root; 33 struct btrfs_fs_info; 34 struct btrfs_trans_handle; 35 36 /* 37 * Since we search a directory based on f_pos (struct dir_context::pos) we have 38 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so 39 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()). 40 */ 41 #define BTRFS_DIR_START_INDEX 2 42 43 /* 44 * ordered_data_close is set by truncate when a file that used 45 * to have good data has been truncated to zero. When it is set 46 * the btrfs file release call will add this inode to the 47 * ordered operations list so that we make sure to flush out any 48 * new data the application may have written before commit. 49 */ 50 enum { 51 BTRFS_INODE_FLUSH_ON_CLOSE, 52 BTRFS_INODE_DUMMY, 53 BTRFS_INODE_IN_DEFRAG, 54 BTRFS_INODE_HAS_ASYNC_EXTENT, 55 /* 56 * Always set under the VFS' inode lock, otherwise it can cause races 57 * during fsync (we start as a fast fsync and then end up in a full 58 * fsync racing with ordered extent completion). 59 */ 60 BTRFS_INODE_NEEDS_FULL_SYNC, 61 BTRFS_INODE_COPY_EVERYTHING, 62 BTRFS_INODE_HAS_PROPS, 63 BTRFS_INODE_SNAPSHOT_FLUSH, 64 /* 65 * Set and used when logging an inode and it serves to signal that an 66 * inode does not have xattrs, so subsequent fsyncs can avoid searching 67 * for xattrs to log. This bit must be cleared whenever a xattr is added 68 * to an inode. 69 */ 70 BTRFS_INODE_NO_XATTRS, 71 /* 72 * Set when we are in a context where we need to start a transaction and 73 * have dirty pages with the respective file range locked. This is to 74 * ensure that when reserving space for the transaction, if we are low 75 * on available space and need to flush delalloc, we will not flush 76 * delalloc for this inode, because that could result in a deadlock (on 77 * the file range, inode's io_tree). 78 */ 79 BTRFS_INODE_NO_DELALLOC_FLUSH, 80 /* 81 * Set when we are working on enabling verity for a file. Computing and 82 * writing the whole Merkle tree can take a while so we want to prevent 83 * races where two separate tasks attempt to simultaneously start verity 84 * on the same file. 85 */ 86 BTRFS_INODE_VERITY_IN_PROGRESS, 87 /* Set when this inode is a free space inode. */ 88 BTRFS_INODE_FREE_SPACE_INODE, 89 /* Set when there are no capabilities in XATTs for the inode. */ 90 BTRFS_INODE_NO_CAP_XATTR, 91 /* 92 * Set if an error happened when doing a COW write before submitting a 93 * bio or during writeback. Used for both buffered writes and direct IO 94 * writes. This is to signal a fast fsync that it has to wait for 95 * ordered extents to complete and therefore not log extent maps that 96 * point to unwritten extents (when an ordered extent completes and it 97 * has the BTRFS_ORDERED_IOERR flag set, it drops extent maps in its 98 * range). 99 */ 100 BTRFS_INODE_COW_WRITE_ERROR, 101 /* 102 * Indicate this is a directory that points to a subvolume for which 103 * there is no root reference item. That's a case like the following: 104 * 105 * $ btrfs subvolume create /mnt/parent 106 * $ btrfs subvolume create /mnt/parent/child 107 * $ btrfs subvolume snapshot /mnt/parent /mnt/snap 108 * 109 * If subvolume "parent" is root 256, subvolume "child" is root 257 and 110 * snapshot "snap" is root 258, then there's no root reference item (key 111 * BTRFS_ROOT_REF_KEY in the root tree) for the subvolume "child" 112 * associated to root 258 (the snapshot) - there's only for the root 113 * of the "parent" subvolume (root 256). In the chunk root we have a 114 * (256 BTRFS_ROOT_REF_KEY 257) key but we don't have a 115 * (258 BTRFS_ROOT_REF_KEY 257) key - the sames goes for backrefs, we 116 * have a (257 BTRFS_ROOT_BACKREF_KEY 256) but we don't have a 117 * (257 BTRFS_ROOT_BACKREF_KEY 258) key. 118 * 119 * So when opening the "child" dentry from the snapshot's directory, 120 * we don't find a root ref item and we create a stub inode. This is 121 * done at new_simple_dir(), called from btrfs_lookup_dentry(). 122 */ 123 BTRFS_INODE_ROOT_STUB, 124 }; 125 126 /* in memory btrfs inode */ 127 struct btrfs_inode { 128 /* which subvolume this inode belongs to */ 129 struct btrfs_root *root; 130 131 #if BITS_PER_LONG == 32 132 /* 133 * The objectid of the corresponding BTRFS_INODE_ITEM_KEY. 134 * On 64 bits platforms we can get it from vfs_inode.i_ino, which is an 135 * unsigned long and therefore 64 bits on such platforms. 136 */ 137 u64 objectid; 138 #endif 139 140 /* Cached value of inode property 'compression'. */ 141 u8 prop_compress; 142 143 /* 144 * Force compression on the file using the defrag ioctl, could be 145 * different from prop_compress and takes precedence if set. 146 */ 147 u8 defrag_compress; 148 149 /* 150 * Lock for counters and all fields used to determine if the inode is in 151 * the log or not (last_trans, last_sub_trans, last_log_commit, 152 * logged_trans), to access/update delalloc_bytes, new_delalloc_bytes, 153 * defrag_bytes, disk_i_size, outstanding_extents, csum_bytes and to 154 * update the VFS' inode number of bytes used. 155 * Also protects setting struct file::private_data. 156 */ 157 spinlock_t lock; 158 159 /* the extent_tree has caches of all the extent mappings to disk */ 160 struct extent_map_tree extent_tree; 161 162 /* the io_tree does range state (DIRTY, LOCKED etc) */ 163 struct extent_io_tree io_tree; 164 165 /* 166 * Keep track of where the inode has extent items mapped in order to 167 * make sure the i_size adjustments are accurate. Not required when the 168 * filesystem is NO_HOLES, the status can't be set while mounted as 169 * it's a mkfs-time feature. 170 */ 171 struct extent_io_tree *file_extent_tree; 172 173 /* held while logging the inode in tree-log.c */ 174 struct mutex log_mutex; 175 176 /* 177 * Counters to keep track of the number of extent item's we may use due 178 * to delalloc and such. outstanding_extents is the number of extent 179 * items we think we'll end up using, and reserved_extents is the number 180 * of extent items we've reserved metadata for. Protected by 'lock'. 181 */ 182 unsigned outstanding_extents; 183 184 /* used to order data wrt metadata */ 185 spinlock_t ordered_tree_lock; 186 struct rb_root ordered_tree; 187 struct rb_node *ordered_tree_last; 188 189 /* list of all the delalloc inodes in the FS. There are times we need 190 * to write all the delalloc pages to disk, and this list is used 191 * to walk them all. 192 */ 193 struct list_head delalloc_inodes; 194 195 unsigned long runtime_flags; 196 197 /* full 64 bit generation number, struct vfs_inode doesn't have a big 198 * enough field for this. 199 */ 200 u64 generation; 201 202 /* 203 * ID of the transaction handle that last modified this inode. 204 * Protected by 'lock'. 205 */ 206 u64 last_trans; 207 208 /* 209 * ID of the transaction that last logged this inode. 210 * Protected by 'lock'. 211 */ 212 u64 logged_trans; 213 214 /* 215 * Log transaction ID when this inode was last modified. 216 * Protected by 'lock'. 217 */ 218 int last_sub_trans; 219 220 /* A local copy of root's last_log_commit. Protected by 'lock'. */ 221 int last_log_commit; 222 223 union { 224 /* 225 * Total number of bytes pending delalloc, used by stat to 226 * calculate the real block usage of the file. This is used 227 * only for files. Protected by 'lock'. 228 */ 229 u64 delalloc_bytes; 230 /* 231 * The lowest possible index of the next dir index key which 232 * points to an inode that needs to be logged. 233 * This is used only for directories. 234 * Use the helpers btrfs_get_first_dir_index_to_log() and 235 * btrfs_set_first_dir_index_to_log() to access this field. 236 */ 237 u64 first_dir_index_to_log; 238 }; 239 240 union { 241 /* 242 * Total number of bytes pending delalloc that fall within a file 243 * range that is either a hole or beyond EOF (and no prealloc extent 244 * exists in the range). This is always <= delalloc_bytes and this 245 * is used only for files. Protected by 'lock'. 246 */ 247 u64 new_delalloc_bytes; 248 /* 249 * The offset of the last dir index key that was logged. 250 * This is used only for directories. 251 */ 252 u64 last_dir_index_offset; 253 }; 254 255 union { 256 /* 257 * Total number of bytes pending defrag, used by stat to check whether 258 * it needs COW. Protected by 'lock'. 259 * Used by inodes other than the data relocation inode. 260 */ 261 u64 defrag_bytes; 262 263 /* 264 * Logical address of the block group being relocated. 265 * Used only by the data relocation inode. 266 */ 267 u64 reloc_block_group_start; 268 }; 269 270 /* 271 * The size of the file stored in the metadata on disk. data=ordered 272 * means the in-memory i_size might be larger than the size on disk 273 * because not all the blocks are written yet. Protected by 'lock'. 274 */ 275 u64 disk_i_size; 276 277 union { 278 /* 279 * If this is a directory then index_cnt is the counter for the 280 * index number for new files that are created. For an empty 281 * directory, this must be initialized to BTRFS_DIR_START_INDEX. 282 */ 283 u64 index_cnt; 284 285 /* 286 * If this is not a directory, this is the number of bytes 287 * outstanding that are going to need csums. This is used in 288 * ENOSPC accounting. Protected by 'lock'. 289 */ 290 u64 csum_bytes; 291 }; 292 293 /* Cache the directory index number to speed the dir/file remove */ 294 u64 dir_index; 295 296 /* the fsync log has some corner cases that mean we have to check 297 * directories to see if any unlinks have been done before 298 * the directory was logged. See tree-log.c for all the 299 * details 300 */ 301 u64 last_unlink_trans; 302 303 union { 304 /* 305 * The id/generation of the last transaction where this inode 306 * was either the source or the destination of a clone/dedupe 307 * operation. Used when logging an inode to know if there are 308 * shared extents that need special care when logging checksum 309 * items, to avoid duplicate checksum items in a log (which can 310 * lead to a corruption where we end up with missing checksum 311 * ranges after log replay). Protected by the VFS inode lock. 312 * Used for regular files only. 313 */ 314 u64 last_reflink_trans; 315 316 /* 317 * In case this a root stub inode (BTRFS_INODE_ROOT_STUB flag set), 318 * the ID of that root. 319 */ 320 u64 ref_root_id; 321 }; 322 323 /* Backwards incompatible flags, lower half of inode_item::flags */ 324 u32 flags; 325 /* Read-only compatibility flags, upper half of inode_item::flags */ 326 u32 ro_flags; 327 328 struct btrfs_block_rsv block_rsv; 329 330 struct btrfs_delayed_node *delayed_node; 331 332 /* File creation time. */ 333 u64 i_otime_sec; 334 u32 i_otime_nsec; 335 336 /* Hook into fs_info->delayed_iputs */ 337 struct list_head delayed_iput; 338 339 struct rw_semaphore i_mmap_lock; 340 struct inode vfs_inode; 341 }; 342 343 static inline u64 btrfs_get_first_dir_index_to_log(const struct btrfs_inode *inode) 344 { 345 return READ_ONCE(inode->first_dir_index_to_log); 346 } 347 348 static inline void btrfs_set_first_dir_index_to_log(struct btrfs_inode *inode, 349 u64 index) 350 { 351 WRITE_ONCE(inode->first_dir_index_to_log, index); 352 } 353 354 /* Type checked and const-preserving VFS inode -> btrfs inode. */ 355 #define BTRFS_I(_inode) \ 356 _Generic(_inode, \ 357 struct inode *: container_of(_inode, struct btrfs_inode, vfs_inode), \ 358 const struct inode *: (const struct btrfs_inode *)container_of( \ 359 _inode, const struct btrfs_inode, vfs_inode)) 360 361 static inline unsigned long btrfs_inode_hash(u64 objectid, 362 const struct btrfs_root *root) 363 { 364 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); 365 366 #if BITS_PER_LONG == 32 367 h = (h >> 32) ^ (h & 0xffffffff); 368 #endif 369 370 return (unsigned long)h; 371 } 372 373 #if BITS_PER_LONG == 32 374 375 /* 376 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so 377 * we use the inode's location objectid which is a u64 to avoid truncation. 378 */ 379 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 380 { 381 u64 ino = inode->objectid; 382 383 if (test_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags)) 384 ino = inode->vfs_inode.i_ino; 385 return ino; 386 } 387 388 #else 389 390 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 391 { 392 return inode->vfs_inode.i_ino; 393 } 394 395 #endif 396 397 static inline void btrfs_get_inode_key(const struct btrfs_inode *inode, 398 struct btrfs_key *key) 399 { 400 key->objectid = btrfs_ino(inode); 401 key->type = BTRFS_INODE_ITEM_KEY; 402 key->offset = 0; 403 } 404 405 static inline void btrfs_set_inode_number(struct btrfs_inode *inode, u64 ino) 406 { 407 #if BITS_PER_LONG == 32 408 inode->objectid = ino; 409 #endif 410 inode->vfs_inode.i_ino = ino; 411 } 412 413 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) 414 { 415 i_size_write(&inode->vfs_inode, size); 416 inode->disk_i_size = size; 417 } 418 419 static inline bool btrfs_is_free_space_inode(const struct btrfs_inode *inode) 420 { 421 return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags); 422 } 423 424 static inline bool is_data_inode(const struct btrfs_inode *inode) 425 { 426 return btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID; 427 } 428 429 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, 430 int mod) 431 { 432 lockdep_assert_held(&inode->lock); 433 inode->outstanding_extents += mod; 434 if (btrfs_is_free_space_inode(inode)) 435 return; 436 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), 437 mod, inode->outstanding_extents); 438 } 439 440 /* 441 * Called every time after doing a buffered, direct IO or memory mapped write. 442 * 443 * This is to ensure that if we write to a file that was previously fsynced in 444 * the current transaction, then try to fsync it again in the same transaction, 445 * we will know that there were changes in the file and that it needs to be 446 * logged. 447 */ 448 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode) 449 { 450 spin_lock(&inode->lock); 451 inode->last_sub_trans = inode->root->log_transid; 452 spin_unlock(&inode->lock); 453 } 454 455 /* 456 * Should be called while holding the inode's VFS lock in exclusive mode, or 457 * while holding the inode's mmap lock (struct btrfs_inode::i_mmap_lock) in 458 * either shared or exclusive mode, or in a context where no one else can access 459 * the inode concurrently (during inode creation or when loading an inode from 460 * disk). 461 */ 462 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode) 463 { 464 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 465 /* 466 * The inode may have been part of a reflink operation in the last 467 * transaction that modified it, and then a fsync has reset the 468 * last_reflink_trans to avoid subsequent fsyncs in the same 469 * transaction to do unnecessary work. So update last_reflink_trans 470 * to the last_trans value (we have to be pessimistic and assume a 471 * reflink happened). 472 * 473 * The ->last_trans is protected by the inode's spinlock and we can 474 * have a concurrent ordered extent completion update it. Also set 475 * last_reflink_trans to ->last_trans only if the former is less than 476 * the later, because we can be called in a context where 477 * last_reflink_trans was set to the current transaction generation 478 * while ->last_trans was not yet updated in the current transaction, 479 * and therefore has a lower value. 480 */ 481 spin_lock(&inode->lock); 482 if (inode->last_reflink_trans < inode->last_trans) 483 inode->last_reflink_trans = inode->last_trans; 484 spin_unlock(&inode->lock); 485 } 486 487 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) 488 { 489 bool ret = false; 490 491 spin_lock(&inode->lock); 492 if (inode->logged_trans == generation && 493 inode->last_sub_trans <= inode->last_log_commit && 494 inode->last_sub_trans <= btrfs_get_root_last_log_commit(inode->root)) 495 ret = true; 496 spin_unlock(&inode->lock); 497 return ret; 498 } 499 500 /* 501 * Check if the inode has flags compatible with compression 502 */ 503 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode) 504 { 505 if (inode->flags & BTRFS_INODE_NODATACOW || 506 inode->flags & BTRFS_INODE_NODATASUM) 507 return false; 508 return true; 509 } 510 511 static inline void btrfs_assert_inode_locked(struct btrfs_inode *inode) 512 { 513 /* Immediately trigger a crash if the inode is not locked. */ 514 ASSERT(inode_is_locked(&inode->vfs_inode)); 515 /* Trigger a splat in dmesg if this task is not holding the lock. */ 516 lockdep_assert_held(&inode->vfs_inode.i_rwsem); 517 } 518 519 /* Array of bytes with variable length, hexadecimal format 0x1234 */ 520 #define CSUM_FMT "0x%*phN" 521 #define CSUM_FMT_VALUE(size, bytes) size, bytes 522 523 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 524 u32 pgoff, u8 *csum, const u8 * const csum_expected); 525 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 526 u32 bio_offset, struct bio_vec *bv); 527 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 528 struct btrfs_file_extent *file_extent, 529 bool nowait, bool strict); 530 531 void btrfs_del_delalloc_inode(struct btrfs_inode *inode); 532 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 533 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 534 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 535 struct btrfs_inode *dir, struct btrfs_inode *inode, 536 const struct fscrypt_str *name); 537 int btrfs_add_link(struct btrfs_trans_handle *trans, 538 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 539 const struct fscrypt_str *name, int add_backref, u64 index); 540 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry); 541 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 542 int front); 543 544 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 545 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 546 bool in_reclaim_context); 547 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 548 unsigned int extra_bits, 549 struct extent_state **cached_state); 550 551 struct btrfs_new_inode_args { 552 /* Input */ 553 struct inode *dir; 554 struct dentry *dentry; 555 struct inode *inode; 556 bool orphan; 557 bool subvol; 558 559 /* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */ 560 struct posix_acl *default_acl; 561 struct posix_acl *acl; 562 struct fscrypt_name fname; 563 }; 564 565 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 566 unsigned int *trans_num_items); 567 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 568 struct btrfs_new_inode_args *args); 569 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 570 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 571 struct inode *dir); 572 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 573 u32 bits); 574 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 575 struct extent_state *state, u32 bits); 576 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 577 struct extent_state *other); 578 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 579 struct extent_state *orig, u64 split); 580 void btrfs_evict_inode(struct inode *inode); 581 struct inode *btrfs_alloc_inode(struct super_block *sb); 582 void btrfs_destroy_inode(struct inode *inode); 583 void btrfs_free_inode(struct inode *inode); 584 int btrfs_drop_inode(struct inode *inode); 585 int __init btrfs_init_cachep(void); 586 void __cold btrfs_destroy_cachep(void); 587 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 588 struct btrfs_path *path); 589 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root); 590 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 591 struct folio *folio, u64 start, u64 len); 592 int btrfs_update_inode(struct btrfs_trans_handle *trans, 593 struct btrfs_inode *inode); 594 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 595 struct btrfs_inode *inode); 596 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode); 597 int btrfs_orphan_cleanup(struct btrfs_root *root); 598 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 599 void btrfs_add_delayed_iput(struct btrfs_inode *inode); 600 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 601 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 602 int btrfs_prealloc_file_range(struct inode *inode, int mode, 603 u64 start, u64 num_bytes, u64 min_size, 604 loff_t actual_len, u64 *alloc_hint); 605 int btrfs_prealloc_file_range_trans(struct inode *inode, 606 struct btrfs_trans_handle *trans, int mode, 607 u64 start, u64 num_bytes, u64 min_size, 608 loff_t actual_len, u64 *alloc_hint); 609 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 610 u64 start, u64 end, struct writeback_control *wbc); 611 int btrfs_writepage_cow_fixup(struct folio *folio); 612 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 613 int compress_type); 614 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 615 u64 disk_bytenr, u64 disk_io_size, 616 struct page **pages, void *uring_ctx); 617 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 618 struct btrfs_ioctl_encoded_io_args *encoded, 619 struct extent_state **cached_state, 620 u64 *disk_bytenr, u64 *disk_io_size); 621 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 622 u64 start, u64 lockend, 623 struct extent_state **cached_state, 624 u64 disk_bytenr, u64 disk_io_size, 625 size_t count, bool compressed, bool *unlocked); 626 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 627 const struct btrfs_ioctl_encoded_io_args *encoded); 628 629 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino); 630 631 extern const struct dentry_operations btrfs_dentry_operations; 632 633 /* Inode locking type flags, by default the exclusive lock is taken. */ 634 enum btrfs_ilock_type { 635 ENUM_BIT(BTRFS_ILOCK_SHARED), 636 ENUM_BIT(BTRFS_ILOCK_TRY), 637 ENUM_BIT(BTRFS_ILOCK_MMAP), 638 }; 639 640 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags); 641 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags); 642 void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes, 643 const u64 del_bytes); 644 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 645 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 646 u64 num_bytes); 647 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 648 const struct btrfs_file_extent *file_extent, 649 int type); 650 651 #endif 652