1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_INODE_H 7 #define BTRFS_INODE_H 8 9 #include <linux/hash.h> 10 #include <linux/refcount.h> 11 #include <linux/spinlock.h> 12 #include <linux/mutex.h> 13 #include <linux/rwsem.h> 14 #include <linux/fs.h> 15 #include <linux/mm.h> 16 #include <linux/compiler.h> 17 #include <linux/fscrypt.h> 18 #include <linux/lockdep.h> 19 #include <uapi/linux/btrfs_tree.h> 20 #include <trace/events/btrfs.h> 21 #include "block-rsv.h" 22 #include "extent_map.h" 23 #include "extent_io.h" 24 #include "extent-io-tree.h" 25 #include "ordered-data.h" 26 #include "delayed-inode.h" 27 28 struct extent_state; 29 struct posix_acl; 30 struct iov_iter; 31 struct writeback_control; 32 struct btrfs_root; 33 struct btrfs_fs_info; 34 struct btrfs_trans_handle; 35 36 /* 37 * Since we search a directory based on f_pos (struct dir_context::pos) we have 38 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so 39 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()). 40 */ 41 #define BTRFS_DIR_START_INDEX 2 42 43 /* 44 * ordered_data_close is set by truncate when a file that used 45 * to have good data has been truncated to zero. When it is set 46 * the btrfs file release call will add this inode to the 47 * ordered operations list so that we make sure to flush out any 48 * new data the application may have written before commit. 49 */ 50 enum { 51 BTRFS_INODE_FLUSH_ON_CLOSE, 52 BTRFS_INODE_DUMMY, 53 BTRFS_INODE_IN_DEFRAG, 54 BTRFS_INODE_HAS_ASYNC_EXTENT, 55 /* 56 * Always set under the VFS' inode lock, otherwise it can cause races 57 * during fsync (we start as a fast fsync and then end up in a full 58 * fsync racing with ordered extent completion). 59 */ 60 BTRFS_INODE_NEEDS_FULL_SYNC, 61 BTRFS_INODE_COPY_EVERYTHING, 62 BTRFS_INODE_HAS_PROPS, 63 BTRFS_INODE_SNAPSHOT_FLUSH, 64 /* 65 * Set and used when logging an inode and it serves to signal that an 66 * inode does not have xattrs, so subsequent fsyncs can avoid searching 67 * for xattrs to log. This bit must be cleared whenever a xattr is added 68 * to an inode. 69 */ 70 BTRFS_INODE_NO_XATTRS, 71 /* 72 * Set when we are in a context where we need to start a transaction and 73 * have dirty pages with the respective file range locked. This is to 74 * ensure that when reserving space for the transaction, if we are low 75 * on available space and need to flush delalloc, we will not flush 76 * delalloc for this inode, because that could result in a deadlock (on 77 * the file range, inode's io_tree). 78 */ 79 BTRFS_INODE_NO_DELALLOC_FLUSH, 80 /* 81 * Set when we are working on enabling verity for a file. Computing and 82 * writing the whole Merkle tree can take a while so we want to prevent 83 * races where two separate tasks attempt to simultaneously start verity 84 * on the same file. 85 */ 86 BTRFS_INODE_VERITY_IN_PROGRESS, 87 /* Set when this inode is a free space inode. */ 88 BTRFS_INODE_FREE_SPACE_INODE, 89 /* Set when there are no capabilities in XATTs for the inode. */ 90 BTRFS_INODE_NO_CAP_XATTR, 91 /* 92 * Set if an error happened when doing a COW write before submitting a 93 * bio or during writeback. Used for both buffered writes and direct IO 94 * writes. This is to signal a fast fsync that it has to wait for 95 * ordered extents to complete and therefore not log extent maps that 96 * point to unwritten extents (when an ordered extent completes and it 97 * has the BTRFS_ORDERED_IOERR flag set, it drops extent maps in its 98 * range). 99 */ 100 BTRFS_INODE_COW_WRITE_ERROR, 101 /* 102 * Indicate this is a directory that points to a subvolume for which 103 * there is no root reference item. That's a case like the following: 104 * 105 * $ btrfs subvolume create /mnt/parent 106 * $ btrfs subvolume create /mnt/parent/child 107 * $ btrfs subvolume snapshot /mnt/parent /mnt/snap 108 * 109 * If subvolume "parent" is root 256, subvolume "child" is root 257 and 110 * snapshot "snap" is root 258, then there's no root reference item (key 111 * BTRFS_ROOT_REF_KEY in the root tree) for the subvolume "child" 112 * associated to root 258 (the snapshot) - there's only for the root 113 * of the "parent" subvolume (root 256). In the chunk root we have a 114 * (256 BTRFS_ROOT_REF_KEY 257) key but we don't have a 115 * (258 BTRFS_ROOT_REF_KEY 257) key - the sames goes for backrefs, we 116 * have a (257 BTRFS_ROOT_BACKREF_KEY 256) but we don't have a 117 * (257 BTRFS_ROOT_BACKREF_KEY 258) key. 118 * 119 * So when opening the "child" dentry from the snapshot's directory, 120 * we don't find a root ref item and we create a stub inode. This is 121 * done at new_simple_dir(), called from btrfs_lookup_dentry(). 122 */ 123 BTRFS_INODE_ROOT_STUB, 124 }; 125 126 /* in memory btrfs inode */ 127 struct btrfs_inode { 128 /* which subvolume this inode belongs to */ 129 struct btrfs_root *root; 130 131 #if BITS_PER_LONG == 32 132 /* 133 * The objectid of the corresponding BTRFS_INODE_ITEM_KEY. 134 * On 64 bits platforms we can get it from vfs_inode.i_ino, which is an 135 * unsigned long and therefore 64 bits on such platforms. 136 */ 137 u64 objectid; 138 #endif 139 140 /* Cached value of inode property 'compression'. */ 141 u8 prop_compress; 142 143 /* 144 * Force compression on the file using the defrag ioctl, could be 145 * different from prop_compress and takes precedence if set. 146 */ 147 u8 defrag_compress; 148 149 /* 150 * Lock for counters and all fields used to determine if the inode is in 151 * the log or not (last_trans, last_sub_trans, last_log_commit, 152 * logged_trans), to access/update delalloc_bytes, new_delalloc_bytes, 153 * defrag_bytes, disk_i_size, outstanding_extents, csum_bytes and to 154 * update the VFS' inode number of bytes used. 155 */ 156 spinlock_t lock; 157 158 /* the extent_tree has caches of all the extent mappings to disk */ 159 struct extent_map_tree extent_tree; 160 161 /* the io_tree does range state (DIRTY, LOCKED etc) */ 162 struct extent_io_tree io_tree; 163 164 /* 165 * Keep track of where the inode has extent items mapped in order to 166 * make sure the i_size adjustments are accurate. Not required when the 167 * filesystem is NO_HOLES, the status can't be set while mounted as 168 * it's a mkfs-time feature. 169 */ 170 struct extent_io_tree *file_extent_tree; 171 172 /* held while logging the inode in tree-log.c */ 173 struct mutex log_mutex; 174 175 /* 176 * Counters to keep track of the number of extent item's we may use due 177 * to delalloc and such. outstanding_extents is the number of extent 178 * items we think we'll end up using, and reserved_extents is the number 179 * of extent items we've reserved metadata for. Protected by 'lock'. 180 */ 181 unsigned outstanding_extents; 182 183 /* used to order data wrt metadata */ 184 spinlock_t ordered_tree_lock; 185 struct rb_root ordered_tree; 186 struct rb_node *ordered_tree_last; 187 188 /* list of all the delalloc inodes in the FS. There are times we need 189 * to write all the delalloc pages to disk, and this list is used 190 * to walk them all. 191 */ 192 struct list_head delalloc_inodes; 193 194 unsigned long runtime_flags; 195 196 /* full 64 bit generation number, struct vfs_inode doesn't have a big 197 * enough field for this. 198 */ 199 u64 generation; 200 201 /* 202 * ID of the transaction handle that last modified this inode. 203 * Protected by 'lock'. 204 */ 205 u64 last_trans; 206 207 /* 208 * ID of the transaction that last logged this inode. 209 * Protected by 'lock'. 210 */ 211 u64 logged_trans; 212 213 /* 214 * Log transaction ID when this inode was last modified. 215 * Protected by 'lock'. 216 */ 217 int last_sub_trans; 218 219 /* A local copy of root's last_log_commit. Protected by 'lock'. */ 220 int last_log_commit; 221 222 union { 223 /* 224 * Total number of bytes pending delalloc, used by stat to 225 * calculate the real block usage of the file. This is used 226 * only for files. Protected by 'lock'. 227 */ 228 u64 delalloc_bytes; 229 /* 230 * The lowest possible index of the next dir index key which 231 * points to an inode that needs to be logged. 232 * This is used only for directories. 233 * Use the helpers btrfs_get_first_dir_index_to_log() and 234 * btrfs_set_first_dir_index_to_log() to access this field. 235 */ 236 u64 first_dir_index_to_log; 237 }; 238 239 union { 240 /* 241 * Total number of bytes pending delalloc that fall within a file 242 * range that is either a hole or beyond EOF (and no prealloc extent 243 * exists in the range). This is always <= delalloc_bytes and this 244 * is used only for files. Protected by 'lock'. 245 */ 246 u64 new_delalloc_bytes; 247 /* 248 * The offset of the last dir index key that was logged. 249 * This is used only for directories. 250 */ 251 u64 last_dir_index_offset; 252 }; 253 254 union { 255 /* 256 * Total number of bytes pending defrag, used by stat to check whether 257 * it needs COW. Protected by 'lock'. 258 * Used by inodes other than the data relocation inode. 259 */ 260 u64 defrag_bytes; 261 262 /* 263 * Logical address of the block group being relocated. 264 * Used only by the data relocation inode. 265 */ 266 u64 reloc_block_group_start; 267 }; 268 269 /* 270 * The size of the file stored in the metadata on disk. data=ordered 271 * means the in-memory i_size might be larger than the size on disk 272 * because not all the blocks are written yet. Protected by 'lock'. 273 */ 274 u64 disk_i_size; 275 276 union { 277 /* 278 * If this is a directory then index_cnt is the counter for the 279 * index number for new files that are created. For an empty 280 * directory, this must be initialized to BTRFS_DIR_START_INDEX. 281 */ 282 u64 index_cnt; 283 284 /* 285 * If this is not a directory, this is the number of bytes 286 * outstanding that are going to need csums. This is used in 287 * ENOSPC accounting. Protected by 'lock'. 288 */ 289 u64 csum_bytes; 290 }; 291 292 /* Cache the directory index number to speed the dir/file remove */ 293 u64 dir_index; 294 295 /* the fsync log has some corner cases that mean we have to check 296 * directories to see if any unlinks have been done before 297 * the directory was logged. See tree-log.c for all the 298 * details 299 */ 300 u64 last_unlink_trans; 301 302 union { 303 /* 304 * The id/generation of the last transaction where this inode 305 * was either the source or the destination of a clone/dedupe 306 * operation. Used when logging an inode to know if there are 307 * shared extents that need special care when logging checksum 308 * items, to avoid duplicate checksum items in a log (which can 309 * lead to a corruption where we end up with missing checksum 310 * ranges after log replay). Protected by the VFS inode lock. 311 * Used for regular files only. 312 */ 313 u64 last_reflink_trans; 314 315 /* 316 * In case this a root stub inode (BTRFS_INODE_ROOT_STUB flag set), 317 * the ID of that root. 318 */ 319 u64 ref_root_id; 320 }; 321 322 /* Backwards incompatible flags, lower half of inode_item::flags */ 323 u32 flags; 324 /* Read-only compatibility flags, upper half of inode_item::flags */ 325 u32 ro_flags; 326 327 struct btrfs_block_rsv block_rsv; 328 329 struct btrfs_delayed_node *delayed_node; 330 331 /* File creation time. */ 332 u64 i_otime_sec; 333 u32 i_otime_nsec; 334 335 /* Hook into fs_info->delayed_iputs */ 336 struct list_head delayed_iput; 337 338 struct rw_semaphore i_mmap_lock; 339 struct inode vfs_inode; 340 }; 341 342 static inline u64 btrfs_get_first_dir_index_to_log(const struct btrfs_inode *inode) 343 { 344 return READ_ONCE(inode->first_dir_index_to_log); 345 } 346 347 static inline void btrfs_set_first_dir_index_to_log(struct btrfs_inode *inode, 348 u64 index) 349 { 350 WRITE_ONCE(inode->first_dir_index_to_log, index); 351 } 352 353 /* Type checked and const-preserving VFS inode -> btrfs inode. */ 354 #define BTRFS_I(_inode) \ 355 _Generic(_inode, \ 356 struct inode *: container_of(_inode, struct btrfs_inode, vfs_inode), \ 357 const struct inode *: (const struct btrfs_inode *)container_of( \ 358 _inode, const struct btrfs_inode, vfs_inode)) 359 360 static inline unsigned long btrfs_inode_hash(u64 objectid, 361 const struct btrfs_root *root) 362 { 363 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); 364 365 #if BITS_PER_LONG == 32 366 h = (h >> 32) ^ (h & 0xffffffff); 367 #endif 368 369 return (unsigned long)h; 370 } 371 372 #if BITS_PER_LONG == 32 373 374 /* 375 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so 376 * we use the inode's location objectid which is a u64 to avoid truncation. 377 */ 378 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 379 { 380 u64 ino = inode->objectid; 381 382 if (test_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags)) 383 ino = inode->vfs_inode.i_ino; 384 return ino; 385 } 386 387 #else 388 389 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 390 { 391 return inode->vfs_inode.i_ino; 392 } 393 394 #endif 395 396 static inline void btrfs_get_inode_key(const struct btrfs_inode *inode, 397 struct btrfs_key *key) 398 { 399 key->objectid = btrfs_ino(inode); 400 key->type = BTRFS_INODE_ITEM_KEY; 401 key->offset = 0; 402 } 403 404 static inline void btrfs_set_inode_number(struct btrfs_inode *inode, u64 ino) 405 { 406 #if BITS_PER_LONG == 32 407 inode->objectid = ino; 408 #endif 409 inode->vfs_inode.i_ino = ino; 410 } 411 412 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) 413 { 414 i_size_write(&inode->vfs_inode, size); 415 inode->disk_i_size = size; 416 } 417 418 static inline bool btrfs_is_free_space_inode(const struct btrfs_inode *inode) 419 { 420 return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags); 421 } 422 423 static inline bool is_data_inode(const struct btrfs_inode *inode) 424 { 425 return btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID; 426 } 427 428 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, 429 int mod) 430 { 431 lockdep_assert_held(&inode->lock); 432 inode->outstanding_extents += mod; 433 if (btrfs_is_free_space_inode(inode)) 434 return; 435 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), 436 mod, inode->outstanding_extents); 437 } 438 439 /* 440 * Called every time after doing a buffered, direct IO or memory mapped write. 441 * 442 * This is to ensure that if we write to a file that was previously fsynced in 443 * the current transaction, then try to fsync it again in the same transaction, 444 * we will know that there were changes in the file and that it needs to be 445 * logged. 446 */ 447 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode) 448 { 449 spin_lock(&inode->lock); 450 inode->last_sub_trans = inode->root->log_transid; 451 spin_unlock(&inode->lock); 452 } 453 454 /* 455 * Should be called while holding the inode's VFS lock in exclusive mode, or 456 * while holding the inode's mmap lock (struct btrfs_inode::i_mmap_lock) in 457 * either shared or exclusive mode, or in a context where no one else can access 458 * the inode concurrently (during inode creation or when loading an inode from 459 * disk). 460 */ 461 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode) 462 { 463 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 464 /* 465 * The inode may have been part of a reflink operation in the last 466 * transaction that modified it, and then a fsync has reset the 467 * last_reflink_trans to avoid subsequent fsyncs in the same 468 * transaction to do unnecessary work. So update last_reflink_trans 469 * to the last_trans value (we have to be pessimistic and assume a 470 * reflink happened). 471 * 472 * The ->last_trans is protected by the inode's spinlock and we can 473 * have a concurrent ordered extent completion update it. Also set 474 * last_reflink_trans to ->last_trans only if the former is less than 475 * the later, because we can be called in a context where 476 * last_reflink_trans was set to the current transaction generation 477 * while ->last_trans was not yet updated in the current transaction, 478 * and therefore has a lower value. 479 */ 480 spin_lock(&inode->lock); 481 if (inode->last_reflink_trans < inode->last_trans) 482 inode->last_reflink_trans = inode->last_trans; 483 spin_unlock(&inode->lock); 484 } 485 486 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) 487 { 488 bool ret = false; 489 490 spin_lock(&inode->lock); 491 if (inode->logged_trans == generation && 492 inode->last_sub_trans <= inode->last_log_commit && 493 inode->last_sub_trans <= btrfs_get_root_last_log_commit(inode->root)) 494 ret = true; 495 spin_unlock(&inode->lock); 496 return ret; 497 } 498 499 /* 500 * Check if the inode has flags compatible with compression 501 */ 502 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode) 503 { 504 if (inode->flags & BTRFS_INODE_NODATACOW || 505 inode->flags & BTRFS_INODE_NODATASUM) 506 return false; 507 return true; 508 } 509 510 static inline void btrfs_assert_inode_locked(struct btrfs_inode *inode) 511 { 512 /* Immediately trigger a crash if the inode is not locked. */ 513 ASSERT(inode_is_locked(&inode->vfs_inode)); 514 /* Trigger a splat in dmesg if this task is not holding the lock. */ 515 lockdep_assert_held(&inode->vfs_inode.i_rwsem); 516 } 517 518 /* Array of bytes with variable length, hexadecimal format 0x1234 */ 519 #define CSUM_FMT "0x%*phN" 520 #define CSUM_FMT_VALUE(size, bytes) size, bytes 521 522 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 523 u32 pgoff, u8 *csum, const u8 * const csum_expected); 524 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 525 u32 bio_offset, struct bio_vec *bv); 526 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 527 struct btrfs_file_extent *file_extent, 528 bool nowait, bool strict); 529 530 void btrfs_del_delalloc_inode(struct btrfs_inode *inode); 531 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 532 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 533 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 534 struct btrfs_inode *dir, struct btrfs_inode *inode, 535 const struct fscrypt_str *name); 536 int btrfs_add_link(struct btrfs_trans_handle *trans, 537 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 538 const struct fscrypt_str *name, int add_backref, u64 index); 539 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry); 540 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 541 int front); 542 543 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 544 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 545 bool in_reclaim_context); 546 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 547 unsigned int extra_bits, 548 struct extent_state **cached_state); 549 550 struct btrfs_new_inode_args { 551 /* Input */ 552 struct inode *dir; 553 struct dentry *dentry; 554 struct inode *inode; 555 bool orphan; 556 bool subvol; 557 558 /* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */ 559 struct posix_acl *default_acl; 560 struct posix_acl *acl; 561 struct fscrypt_name fname; 562 }; 563 564 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 565 unsigned int *trans_num_items); 566 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 567 struct btrfs_new_inode_args *args); 568 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 569 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 570 struct inode *dir); 571 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 572 u32 bits); 573 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 574 struct extent_state *state, u32 bits); 575 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 576 struct extent_state *other); 577 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 578 struct extent_state *orig, u64 split); 579 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 580 void btrfs_evict_inode(struct inode *inode); 581 struct inode *btrfs_alloc_inode(struct super_block *sb); 582 void btrfs_destroy_inode(struct inode *inode); 583 void btrfs_free_inode(struct inode *inode); 584 int btrfs_drop_inode(struct inode *inode); 585 int __init btrfs_init_cachep(void); 586 void __cold btrfs_destroy_cachep(void); 587 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 588 struct btrfs_path *path); 589 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root); 590 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 591 struct folio *folio, u64 start, u64 len); 592 int btrfs_update_inode(struct btrfs_trans_handle *trans, 593 struct btrfs_inode *inode); 594 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 595 struct btrfs_inode *inode); 596 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode); 597 int btrfs_orphan_cleanup(struct btrfs_root *root); 598 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 599 void btrfs_add_delayed_iput(struct btrfs_inode *inode); 600 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 601 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 602 int btrfs_prealloc_file_range(struct inode *inode, int mode, 603 u64 start, u64 num_bytes, u64 min_size, 604 loff_t actual_len, u64 *alloc_hint); 605 int btrfs_prealloc_file_range_trans(struct inode *inode, 606 struct btrfs_trans_handle *trans, int mode, 607 u64 start, u64 num_bytes, u64 min_size, 608 loff_t actual_len, u64 *alloc_hint); 609 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 610 u64 start, u64 end, struct writeback_control *wbc); 611 int btrfs_writepage_cow_fixup(struct folio *folio); 612 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 613 int compress_type); 614 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 615 u64 file_offset, u64 disk_bytenr, 616 u64 disk_io_size, 617 struct page **pages); 618 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 619 struct btrfs_ioctl_encoded_io_args *encoded); 620 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 621 const struct btrfs_ioctl_encoded_io_args *encoded); 622 623 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino); 624 625 extern const struct dentry_operations btrfs_dentry_operations; 626 627 /* Inode locking type flags, by default the exclusive lock is taken. */ 628 enum btrfs_ilock_type { 629 ENUM_BIT(BTRFS_ILOCK_SHARED), 630 ENUM_BIT(BTRFS_ILOCK_TRY), 631 ENUM_BIT(BTRFS_ILOCK_MMAP), 632 }; 633 634 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags); 635 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags); 636 void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes, 637 const u64 del_bytes); 638 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 639 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 640 u64 num_bytes); 641 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 642 const struct btrfs_file_extent *file_extent, 643 int type); 644 645 #endif 646