1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_INODE_H 7 #define BTRFS_INODE_H 8 9 #include <linux/hash.h> 10 #include <linux/refcount.h> 11 #include "extent_map.h" 12 #include "extent_io.h" 13 #include "ordered-data.h" 14 #include "delayed-inode.h" 15 16 /* 17 * Since we search a directory based on f_pos (struct dir_context::pos) we have 18 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so 19 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()). 20 */ 21 #define BTRFS_DIR_START_INDEX 2 22 23 /* 24 * ordered_data_close is set by truncate when a file that used 25 * to have good data has been truncated to zero. When it is set 26 * the btrfs file release call will add this inode to the 27 * ordered operations list so that we make sure to flush out any 28 * new data the application may have written before commit. 29 */ 30 enum { 31 BTRFS_INODE_FLUSH_ON_CLOSE, 32 BTRFS_INODE_DUMMY, 33 BTRFS_INODE_IN_DEFRAG, 34 BTRFS_INODE_HAS_ASYNC_EXTENT, 35 /* 36 * Always set under the VFS' inode lock, otherwise it can cause races 37 * during fsync (we start as a fast fsync and then end up in a full 38 * fsync racing with ordered extent completion). 39 */ 40 BTRFS_INODE_NEEDS_FULL_SYNC, 41 BTRFS_INODE_COPY_EVERYTHING, 42 BTRFS_INODE_IN_DELALLOC_LIST, 43 BTRFS_INODE_HAS_PROPS, 44 BTRFS_INODE_SNAPSHOT_FLUSH, 45 /* 46 * Set and used when logging an inode and it serves to signal that an 47 * inode does not have xattrs, so subsequent fsyncs can avoid searching 48 * for xattrs to log. This bit must be cleared whenever a xattr is added 49 * to an inode. 50 */ 51 BTRFS_INODE_NO_XATTRS, 52 /* 53 * Set when we are in a context where we need to start a transaction and 54 * have dirty pages with the respective file range locked. This is to 55 * ensure that when reserving space for the transaction, if we are low 56 * on available space and need to flush delalloc, we will not flush 57 * delalloc for this inode, because that could result in a deadlock (on 58 * the file range, inode's io_tree). 59 */ 60 BTRFS_INODE_NO_DELALLOC_FLUSH, 61 /* 62 * Set when we are working on enabling verity for a file. Computing and 63 * writing the whole Merkle tree can take a while so we want to prevent 64 * races where two separate tasks attempt to simultaneously start verity 65 * on the same file. 66 */ 67 BTRFS_INODE_VERITY_IN_PROGRESS, 68 /* Set when this inode is a free space inode. */ 69 BTRFS_INODE_FREE_SPACE_INODE, 70 }; 71 72 /* in memory btrfs inode */ 73 struct btrfs_inode { 74 /* which subvolume this inode belongs to */ 75 struct btrfs_root *root; 76 77 /* key used to find this inode on disk. This is used by the code 78 * to read in roots of subvolumes 79 */ 80 struct btrfs_key location; 81 82 /* 83 * Lock for counters and all fields used to determine if the inode is in 84 * the log or not (last_trans, last_sub_trans, last_log_commit, 85 * logged_trans), to access/update new_delalloc_bytes and to update the 86 * VFS' inode number of bytes used. 87 */ 88 spinlock_t lock; 89 90 /* the extent_tree has caches of all the extent mappings to disk */ 91 struct extent_map_tree extent_tree; 92 93 /* the io_tree does range state (DIRTY, LOCKED etc) */ 94 struct extent_io_tree io_tree; 95 96 /* 97 * Keep track of where the inode has extent items mapped in order to 98 * make sure the i_size adjustments are accurate 99 */ 100 struct extent_io_tree file_extent_tree; 101 102 /* held while logging the inode in tree-log.c */ 103 struct mutex log_mutex; 104 105 /* used to order data wrt metadata */ 106 struct btrfs_ordered_inode_tree ordered_tree; 107 108 /* list of all the delalloc inodes in the FS. There are times we need 109 * to write all the delalloc pages to disk, and this list is used 110 * to walk them all. 111 */ 112 struct list_head delalloc_inodes; 113 114 /* node for the red-black tree that links inodes in subvolume root */ 115 struct rb_node rb_node; 116 117 unsigned long runtime_flags; 118 119 /* full 64 bit generation number, struct vfs_inode doesn't have a big 120 * enough field for this. 121 */ 122 u64 generation; 123 124 /* 125 * transid of the trans_handle that last modified this inode 126 */ 127 u64 last_trans; 128 129 /* 130 * transid that last logged this inode 131 */ 132 u64 logged_trans; 133 134 /* 135 * log transid when this inode was last modified 136 */ 137 int last_sub_trans; 138 139 /* a local copy of root's last_log_commit */ 140 int last_log_commit; 141 142 union { 143 /* 144 * Total number of bytes pending delalloc, used by stat to 145 * calculate the real block usage of the file. This is used 146 * only for files. 147 */ 148 u64 delalloc_bytes; 149 /* 150 * The lowest possible index of the next dir index key which 151 * points to an inode that needs to be logged. 152 * This is used only for directories. 153 * Use the helpers btrfs_get_first_dir_index_to_log() and 154 * btrfs_set_first_dir_index_to_log() to access this field. 155 */ 156 u64 first_dir_index_to_log; 157 }; 158 159 union { 160 /* 161 * Total number of bytes pending delalloc that fall within a file 162 * range that is either a hole or beyond EOF (and no prealloc extent 163 * exists in the range). This is always <= delalloc_bytes and this 164 * is used only for files. 165 */ 166 u64 new_delalloc_bytes; 167 /* 168 * The offset of the last dir index key that was logged. 169 * This is used only for directories. 170 */ 171 u64 last_dir_index_offset; 172 }; 173 174 /* 175 * total number of bytes pending defrag, used by stat to check whether 176 * it needs COW. 177 */ 178 u64 defrag_bytes; 179 180 /* 181 * the size of the file stored in the metadata on disk. data=ordered 182 * means the in-memory i_size might be larger than the size on disk 183 * because not all the blocks are written yet. 184 */ 185 u64 disk_i_size; 186 187 /* 188 * If this is a directory then index_cnt is the counter for the index 189 * number for new files that are created. For an empty directory, this 190 * must be initialized to BTRFS_DIR_START_INDEX. 191 */ 192 u64 index_cnt; 193 194 /* Cache the directory index number to speed the dir/file remove */ 195 u64 dir_index; 196 197 /* the fsync log has some corner cases that mean we have to check 198 * directories to see if any unlinks have been done before 199 * the directory was logged. See tree-log.c for all the 200 * details 201 */ 202 u64 last_unlink_trans; 203 204 /* 205 * The id/generation of the last transaction where this inode was 206 * either the source or the destination of a clone/dedupe operation. 207 * Used when logging an inode to know if there are shared extents that 208 * need special care when logging checksum items, to avoid duplicate 209 * checksum items in a log (which can lead to a corruption where we end 210 * up with missing checksum ranges after log replay). 211 * Protected by the vfs inode lock. 212 */ 213 u64 last_reflink_trans; 214 215 /* 216 * Number of bytes outstanding that are going to need csums. This is 217 * used in ENOSPC accounting. 218 */ 219 u64 csum_bytes; 220 221 /* Backwards incompatible flags, lower half of inode_item::flags */ 222 u32 flags; 223 /* Read-only compatibility flags, upper half of inode_item::flags */ 224 u32 ro_flags; 225 226 /* 227 * Counters to keep track of the number of extent item's we may use due 228 * to delalloc and such. outstanding_extents is the number of extent 229 * items we think we'll end up using, and reserved_extents is the number 230 * of extent items we've reserved metadata for. 231 */ 232 unsigned outstanding_extents; 233 234 struct btrfs_block_rsv block_rsv; 235 236 /* 237 * Cached values of inode properties 238 */ 239 unsigned prop_compress; /* per-file compression algorithm */ 240 /* 241 * Force compression on the file using the defrag ioctl, could be 242 * different from prop_compress and takes precedence if set 243 */ 244 unsigned defrag_compress; 245 246 struct btrfs_delayed_node *delayed_node; 247 248 /* File creation time. */ 249 struct timespec64 i_otime; 250 251 /* Hook into fs_info->delayed_iputs */ 252 struct list_head delayed_iput; 253 254 struct rw_semaphore i_mmap_lock; 255 struct inode vfs_inode; 256 }; 257 258 static inline u64 btrfs_get_first_dir_index_to_log(const struct btrfs_inode *inode) 259 { 260 return READ_ONCE(inode->first_dir_index_to_log); 261 } 262 263 static inline void btrfs_set_first_dir_index_to_log(struct btrfs_inode *inode, 264 u64 index) 265 { 266 WRITE_ONCE(inode->first_dir_index_to_log, index); 267 } 268 269 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode) 270 { 271 return container_of(inode, struct btrfs_inode, vfs_inode); 272 } 273 274 static inline unsigned long btrfs_inode_hash(u64 objectid, 275 const struct btrfs_root *root) 276 { 277 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); 278 279 #if BITS_PER_LONG == 32 280 h = (h >> 32) ^ (h & 0xffffffff); 281 #endif 282 283 return (unsigned long)h; 284 } 285 286 #if BITS_PER_LONG == 32 287 288 /* 289 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so 290 * we use the inode's location objectid which is a u64 to avoid truncation. 291 */ 292 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 293 { 294 u64 ino = inode->location.objectid; 295 296 /* type == BTRFS_ROOT_ITEM_KEY: subvol dir */ 297 if (inode->location.type == BTRFS_ROOT_ITEM_KEY) 298 ino = inode->vfs_inode.i_ino; 299 return ino; 300 } 301 302 #else 303 304 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 305 { 306 return inode->vfs_inode.i_ino; 307 } 308 309 #endif 310 311 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) 312 { 313 i_size_write(&inode->vfs_inode, size); 314 inode->disk_i_size = size; 315 } 316 317 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode) 318 { 319 return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags); 320 } 321 322 static inline bool is_data_inode(struct inode *inode) 323 { 324 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID; 325 } 326 327 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, 328 int mod) 329 { 330 lockdep_assert_held(&inode->lock); 331 inode->outstanding_extents += mod; 332 if (btrfs_is_free_space_inode(inode)) 333 return; 334 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), 335 mod, inode->outstanding_extents); 336 } 337 338 /* 339 * Called every time after doing a buffered, direct IO or memory mapped write. 340 * 341 * This is to ensure that if we write to a file that was previously fsynced in 342 * the current transaction, then try to fsync it again in the same transaction, 343 * we will know that there were changes in the file and that it needs to be 344 * logged. 345 */ 346 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode) 347 { 348 spin_lock(&inode->lock); 349 inode->last_sub_trans = inode->root->log_transid; 350 spin_unlock(&inode->lock); 351 } 352 353 /* 354 * Should be called while holding the inode's VFS lock in exclusive mode or in a 355 * context where no one else can access the inode concurrently (during inode 356 * creation or when loading an inode from disk). 357 */ 358 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode) 359 { 360 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 361 /* 362 * The inode may have been part of a reflink operation in the last 363 * transaction that modified it, and then a fsync has reset the 364 * last_reflink_trans to avoid subsequent fsyncs in the same 365 * transaction to do unnecessary work. So update last_reflink_trans 366 * to the last_trans value (we have to be pessimistic and assume a 367 * reflink happened). 368 * 369 * The ->last_trans is protected by the inode's spinlock and we can 370 * have a concurrent ordered extent completion update it. Also set 371 * last_reflink_trans to ->last_trans only if the former is less than 372 * the later, because we can be called in a context where 373 * last_reflink_trans was set to the current transaction generation 374 * while ->last_trans was not yet updated in the current transaction, 375 * and therefore has a lower value. 376 */ 377 spin_lock(&inode->lock); 378 if (inode->last_reflink_trans < inode->last_trans) 379 inode->last_reflink_trans = inode->last_trans; 380 spin_unlock(&inode->lock); 381 } 382 383 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) 384 { 385 bool ret = false; 386 387 spin_lock(&inode->lock); 388 if (inode->logged_trans == generation && 389 inode->last_sub_trans <= inode->last_log_commit && 390 inode->last_sub_trans <= inode->root->last_log_commit) 391 ret = true; 392 spin_unlock(&inode->lock); 393 return ret; 394 } 395 396 /* 397 * Check if the inode has flags compatible with compression 398 */ 399 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode) 400 { 401 if (inode->flags & BTRFS_INODE_NODATACOW || 402 inode->flags & BTRFS_INODE_NODATASUM) 403 return false; 404 return true; 405 } 406 407 /* Array of bytes with variable length, hexadecimal format 0x1234 */ 408 #define CSUM_FMT "0x%*phN" 409 #define CSUM_FMT_VALUE(size, bytes) size, bytes 410 411 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 412 u32 pgoff, u8 *csum, const u8 * const csum_expected); 413 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 414 u32 bio_offset, struct bio_vec *bv); 415 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 416 u64 *orig_start, u64 *orig_block_len, 417 u64 *ram_bytes, bool nowait, bool strict); 418 419 void __btrfs_del_delalloc_inode(struct btrfs_root *root, struct btrfs_inode *inode); 420 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 421 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 422 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 423 struct btrfs_inode *dir, struct btrfs_inode *inode, 424 const struct fscrypt_str *name); 425 int btrfs_add_link(struct btrfs_trans_handle *trans, 426 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 427 const struct fscrypt_str *name, int add_backref, u64 index); 428 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry); 429 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 430 int front); 431 432 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 433 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 434 bool in_reclaim_context); 435 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 436 unsigned int extra_bits, 437 struct extent_state **cached_state); 438 439 struct btrfs_new_inode_args { 440 /* Input */ 441 struct inode *dir; 442 struct dentry *dentry; 443 struct inode *inode; 444 bool orphan; 445 bool subvol; 446 447 /* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */ 448 struct posix_acl *default_acl; 449 struct posix_acl *acl; 450 struct fscrypt_name fname; 451 }; 452 453 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 454 unsigned int *trans_num_items); 455 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 456 struct btrfs_new_inode_args *args); 457 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 458 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 459 struct inode *dir); 460 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 461 u32 bits); 462 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 463 struct extent_state *state, u32 bits); 464 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 465 struct extent_state *other); 466 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 467 struct extent_state *orig, u64 split); 468 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 469 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 470 void btrfs_evict_inode(struct inode *inode); 471 struct inode *btrfs_alloc_inode(struct super_block *sb); 472 void btrfs_destroy_inode(struct inode *inode); 473 void btrfs_free_inode(struct inode *inode); 474 int btrfs_drop_inode(struct inode *inode); 475 int __init btrfs_init_cachep(void); 476 void __cold btrfs_destroy_cachep(void); 477 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 478 struct btrfs_root *root, struct btrfs_path *path); 479 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 480 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 481 struct page *page, size_t pg_offset, 482 u64 start, u64 end); 483 int btrfs_update_inode(struct btrfs_trans_handle *trans, 484 struct btrfs_root *root, struct btrfs_inode *inode); 485 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 486 struct btrfs_root *root, struct btrfs_inode *inode); 487 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode); 488 int btrfs_orphan_cleanup(struct btrfs_root *root); 489 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 490 void btrfs_add_delayed_iput(struct btrfs_inode *inode); 491 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 492 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 493 int btrfs_prealloc_file_range(struct inode *inode, int mode, 494 u64 start, u64 num_bytes, u64 min_size, 495 loff_t actual_len, u64 *alloc_hint); 496 int btrfs_prealloc_file_range_trans(struct inode *inode, 497 struct btrfs_trans_handle *trans, int mode, 498 u64 start, u64 num_bytes, u64 min_size, 499 loff_t actual_len, u64 *alloc_hint); 500 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 501 u64 start, u64 end, int *page_started, 502 unsigned long *nr_written, struct writeback_control *wbc); 503 int btrfs_writepage_cow_fixup(struct page *page); 504 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 505 struct page *page, u64 start, 506 u64 end, bool uptodate); 507 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 508 int compress_type); 509 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 510 u64 file_offset, u64 disk_bytenr, 511 u64 disk_io_size, 512 struct page **pages); 513 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 514 struct btrfs_ioctl_encoded_io_args *encoded); 515 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 516 const struct btrfs_ioctl_encoded_io_args *encoded); 517 518 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, 519 size_t done_before); 520 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 521 size_t done_before); 522 523 extern const struct dentry_operations btrfs_dentry_operations; 524 525 /* Inode locking type flags, by default the exclusive lock is taken. */ 526 enum btrfs_ilock_type { 527 ENUM_BIT(BTRFS_ILOCK_SHARED), 528 ENUM_BIT(BTRFS_ILOCK_TRY), 529 ENUM_BIT(BTRFS_ILOCK_MMAP), 530 }; 531 532 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags); 533 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags); 534 void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes, 535 const u64 del_bytes); 536 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 537 538 #endif 539