1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_INODE_H 7 #define BTRFS_INODE_H 8 9 #include <linux/hash.h> 10 #include <linux/refcount.h> 11 #include "extent_map.h" 12 #include "extent_io.h" 13 #include "ordered-data.h" 14 #include "delayed-inode.h" 15 16 /* 17 * Since we search a directory based on f_pos (struct dir_context::pos) we have 18 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so 19 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()). 20 */ 21 #define BTRFS_DIR_START_INDEX 2 22 23 /* 24 * ordered_data_close is set by truncate when a file that used 25 * to have good data has been truncated to zero. When it is set 26 * the btrfs file release call will add this inode to the 27 * ordered operations list so that we make sure to flush out any 28 * new data the application may have written before commit. 29 */ 30 enum { 31 BTRFS_INODE_FLUSH_ON_CLOSE, 32 BTRFS_INODE_DUMMY, 33 BTRFS_INODE_IN_DEFRAG, 34 BTRFS_INODE_HAS_ASYNC_EXTENT, 35 /* 36 * Always set under the VFS' inode lock, otherwise it can cause races 37 * during fsync (we start as a fast fsync and then end up in a full 38 * fsync racing with ordered extent completion). 39 */ 40 BTRFS_INODE_NEEDS_FULL_SYNC, 41 BTRFS_INODE_COPY_EVERYTHING, 42 BTRFS_INODE_IN_DELALLOC_LIST, 43 BTRFS_INODE_HAS_PROPS, 44 BTRFS_INODE_SNAPSHOT_FLUSH, 45 /* 46 * Set and used when logging an inode and it serves to signal that an 47 * inode does not have xattrs, so subsequent fsyncs can avoid searching 48 * for xattrs to log. This bit must be cleared whenever a xattr is added 49 * to an inode. 50 */ 51 BTRFS_INODE_NO_XATTRS, 52 /* 53 * Set when we are in a context where we need to start a transaction and 54 * have dirty pages with the respective file range locked. This is to 55 * ensure that when reserving space for the transaction, if we are low 56 * on available space and need to flush delalloc, we will not flush 57 * delalloc for this inode, because that could result in a deadlock (on 58 * the file range, inode's io_tree). 59 */ 60 BTRFS_INODE_NO_DELALLOC_FLUSH, 61 /* 62 * Set when we are working on enabling verity for a file. Computing and 63 * writing the whole Merkle tree can take a while so we want to prevent 64 * races where two separate tasks attempt to simultaneously start verity 65 * on the same file. 66 */ 67 BTRFS_INODE_VERITY_IN_PROGRESS, 68 /* Set when this inode is a free space inode. */ 69 BTRFS_INODE_FREE_SPACE_INODE, 70 }; 71 72 /* in memory btrfs inode */ 73 struct btrfs_inode { 74 /* which subvolume this inode belongs to */ 75 struct btrfs_root *root; 76 77 /* key used to find this inode on disk. This is used by the code 78 * to read in roots of subvolumes 79 */ 80 struct btrfs_key location; 81 82 /* 83 * Lock for counters and all fields used to determine if the inode is in 84 * the log or not (last_trans, last_sub_trans, last_log_commit, 85 * logged_trans), to access/update new_delalloc_bytes and to update the 86 * VFS' inode number of bytes used. 87 */ 88 spinlock_t lock; 89 90 /* the extent_tree has caches of all the extent mappings to disk */ 91 struct extent_map_tree extent_tree; 92 93 /* the io_tree does range state (DIRTY, LOCKED etc) */ 94 struct extent_io_tree io_tree; 95 96 /* 97 * Keep track of where the inode has extent items mapped in order to 98 * make sure the i_size adjustments are accurate 99 */ 100 struct extent_io_tree file_extent_tree; 101 102 /* held while logging the inode in tree-log.c */ 103 struct mutex log_mutex; 104 105 /* used to order data wrt metadata */ 106 struct btrfs_ordered_inode_tree ordered_tree; 107 108 /* list of all the delalloc inodes in the FS. There are times we need 109 * to write all the delalloc pages to disk, and this list is used 110 * to walk them all. 111 */ 112 struct list_head delalloc_inodes; 113 114 /* node for the red-black tree that links inodes in subvolume root */ 115 struct rb_node rb_node; 116 117 unsigned long runtime_flags; 118 119 /* Keep track of who's O_SYNC/fsyncing currently */ 120 atomic_t sync_writers; 121 122 /* full 64 bit generation number, struct vfs_inode doesn't have a big 123 * enough field for this. 124 */ 125 u64 generation; 126 127 /* 128 * transid of the trans_handle that last modified this inode 129 */ 130 u64 last_trans; 131 132 /* 133 * transid that last logged this inode 134 */ 135 u64 logged_trans; 136 137 /* 138 * log transid when this inode was last modified 139 */ 140 int last_sub_trans; 141 142 /* a local copy of root's last_log_commit */ 143 int last_log_commit; 144 145 union { 146 /* 147 * Total number of bytes pending delalloc, used by stat to 148 * calculate the real block usage of the file. This is used 149 * only for files. 150 */ 151 u64 delalloc_bytes; 152 /* 153 * The lowest possible index of the next dir index key which 154 * points to an inode that needs to be logged. 155 * This is used only for directories. 156 * Use the helpers btrfs_get_first_dir_index_to_log() and 157 * btrfs_set_first_dir_index_to_log() to access this field. 158 */ 159 u64 first_dir_index_to_log; 160 }; 161 162 union { 163 /* 164 * Total number of bytes pending delalloc that fall within a file 165 * range that is either a hole or beyond EOF (and no prealloc extent 166 * exists in the range). This is always <= delalloc_bytes and this 167 * is used only for files. 168 */ 169 u64 new_delalloc_bytes; 170 /* 171 * The offset of the last dir index key that was logged. 172 * This is used only for directories. 173 */ 174 u64 last_dir_index_offset; 175 }; 176 177 /* 178 * total number of bytes pending defrag, used by stat to check whether 179 * it needs COW. 180 */ 181 u64 defrag_bytes; 182 183 /* 184 * the size of the file stored in the metadata on disk. data=ordered 185 * means the in-memory i_size might be larger than the size on disk 186 * because not all the blocks are written yet. 187 */ 188 u64 disk_i_size; 189 190 /* 191 * If this is a directory then index_cnt is the counter for the index 192 * number for new files that are created. For an empty directory, this 193 * must be initialized to BTRFS_DIR_START_INDEX. 194 */ 195 u64 index_cnt; 196 197 /* Cache the directory index number to speed the dir/file remove */ 198 u64 dir_index; 199 200 /* the fsync log has some corner cases that mean we have to check 201 * directories to see if any unlinks have been done before 202 * the directory was logged. See tree-log.c for all the 203 * details 204 */ 205 u64 last_unlink_trans; 206 207 /* 208 * The id/generation of the last transaction where this inode was 209 * either the source or the destination of a clone/dedupe operation. 210 * Used when logging an inode to know if there are shared extents that 211 * need special care when logging checksum items, to avoid duplicate 212 * checksum items in a log (which can lead to a corruption where we end 213 * up with missing checksum ranges after log replay). 214 * Protected by the vfs inode lock. 215 */ 216 u64 last_reflink_trans; 217 218 /* 219 * Number of bytes outstanding that are going to need csums. This is 220 * used in ENOSPC accounting. 221 */ 222 u64 csum_bytes; 223 224 /* Backwards incompatible flags, lower half of inode_item::flags */ 225 u32 flags; 226 /* Read-only compatibility flags, upper half of inode_item::flags */ 227 u32 ro_flags; 228 229 /* 230 * Counters to keep track of the number of extent item's we may use due 231 * to delalloc and such. outstanding_extents is the number of extent 232 * items we think we'll end up using, and reserved_extents is the number 233 * of extent items we've reserved metadata for. 234 */ 235 unsigned outstanding_extents; 236 237 struct btrfs_block_rsv block_rsv; 238 239 /* 240 * Cached values of inode properties 241 */ 242 unsigned prop_compress; /* per-file compression algorithm */ 243 /* 244 * Force compression on the file using the defrag ioctl, could be 245 * different from prop_compress and takes precedence if set 246 */ 247 unsigned defrag_compress; 248 249 struct btrfs_delayed_node *delayed_node; 250 251 /* File creation time. */ 252 struct timespec64 i_otime; 253 254 /* Hook into fs_info->delayed_iputs */ 255 struct list_head delayed_iput; 256 257 struct rw_semaphore i_mmap_lock; 258 struct inode vfs_inode; 259 }; 260 261 static inline u64 btrfs_get_first_dir_index_to_log(const struct btrfs_inode *inode) 262 { 263 return READ_ONCE(inode->first_dir_index_to_log); 264 } 265 266 static inline void btrfs_set_first_dir_index_to_log(struct btrfs_inode *inode, 267 u64 index) 268 { 269 WRITE_ONCE(inode->first_dir_index_to_log, index); 270 } 271 272 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode) 273 { 274 return container_of(inode, struct btrfs_inode, vfs_inode); 275 } 276 277 static inline unsigned long btrfs_inode_hash(u64 objectid, 278 const struct btrfs_root *root) 279 { 280 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); 281 282 #if BITS_PER_LONG == 32 283 h = (h >> 32) ^ (h & 0xffffffff); 284 #endif 285 286 return (unsigned long)h; 287 } 288 289 #if BITS_PER_LONG == 32 290 291 /* 292 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so 293 * we use the inode's location objectid which is a u64 to avoid truncation. 294 */ 295 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 296 { 297 u64 ino = inode->location.objectid; 298 299 /* type == BTRFS_ROOT_ITEM_KEY: subvol dir */ 300 if (inode->location.type == BTRFS_ROOT_ITEM_KEY) 301 ino = inode->vfs_inode.i_ino; 302 return ino; 303 } 304 305 #else 306 307 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 308 { 309 return inode->vfs_inode.i_ino; 310 } 311 312 #endif 313 314 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) 315 { 316 i_size_write(&inode->vfs_inode, size); 317 inode->disk_i_size = size; 318 } 319 320 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode) 321 { 322 return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags); 323 } 324 325 static inline bool is_data_inode(struct inode *inode) 326 { 327 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID; 328 } 329 330 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, 331 int mod) 332 { 333 lockdep_assert_held(&inode->lock); 334 inode->outstanding_extents += mod; 335 if (btrfs_is_free_space_inode(inode)) 336 return; 337 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), 338 mod); 339 } 340 341 /* 342 * Called every time after doing a buffered, direct IO or memory mapped write. 343 * 344 * This is to ensure that if we write to a file that was previously fsynced in 345 * the current transaction, then try to fsync it again in the same transaction, 346 * we will know that there were changes in the file and that it needs to be 347 * logged. 348 */ 349 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode) 350 { 351 spin_lock(&inode->lock); 352 inode->last_sub_trans = inode->root->log_transid; 353 spin_unlock(&inode->lock); 354 } 355 356 /* 357 * Should be called while holding the inode's VFS lock in exclusive mode or in a 358 * context where no one else can access the inode concurrently (during inode 359 * creation or when loading an inode from disk). 360 */ 361 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode) 362 { 363 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 364 /* 365 * The inode may have been part of a reflink operation in the last 366 * transaction that modified it, and then a fsync has reset the 367 * last_reflink_trans to avoid subsequent fsyncs in the same 368 * transaction to do unnecessary work. So update last_reflink_trans 369 * to the last_trans value (we have to be pessimistic and assume a 370 * reflink happened). 371 * 372 * The ->last_trans is protected by the inode's spinlock and we can 373 * have a concurrent ordered extent completion update it. Also set 374 * last_reflink_trans to ->last_trans only if the former is less than 375 * the later, because we can be called in a context where 376 * last_reflink_trans was set to the current transaction generation 377 * while ->last_trans was not yet updated in the current transaction, 378 * and therefore has a lower value. 379 */ 380 spin_lock(&inode->lock); 381 if (inode->last_reflink_trans < inode->last_trans) 382 inode->last_reflink_trans = inode->last_trans; 383 spin_unlock(&inode->lock); 384 } 385 386 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) 387 { 388 bool ret = false; 389 390 spin_lock(&inode->lock); 391 if (inode->logged_trans == generation && 392 inode->last_sub_trans <= inode->last_log_commit && 393 inode->last_sub_trans <= inode->root->last_log_commit) 394 ret = true; 395 spin_unlock(&inode->lock); 396 return ret; 397 } 398 399 /* 400 * Check if the inode has flags compatible with compression 401 */ 402 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode) 403 { 404 if (inode->flags & BTRFS_INODE_NODATACOW || 405 inode->flags & BTRFS_INODE_NODATASUM) 406 return false; 407 return true; 408 } 409 410 /* 411 * btrfs_inode_item stores flags in a u64, btrfs_inode stores them in two 412 * separate u32s. These two functions convert between the two representations. 413 */ 414 static inline u64 btrfs_inode_combine_flags(u32 flags, u32 ro_flags) 415 { 416 return (flags | ((u64)ro_flags << 32)); 417 } 418 419 static inline void btrfs_inode_split_flags(u64 inode_item_flags, 420 u32 *flags, u32 *ro_flags) 421 { 422 *flags = (u32)inode_item_flags; 423 *ro_flags = (u32)(inode_item_flags >> 32); 424 } 425 426 /* Array of bytes with variable length, hexadecimal format 0x1234 */ 427 #define CSUM_FMT "0x%*phN" 428 #define CSUM_FMT_VALUE(size, bytes) size, bytes 429 430 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 431 u32 pgoff, u8 *csum, const u8 * const csum_expected); 432 int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 433 struct btrfs_ordered_extent *ordered); 434 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 435 u32 bio_offset, struct bio_vec *bv); 436 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 437 u64 *orig_start, u64 *orig_block_len, 438 u64 *ram_bytes, bool nowait, bool strict); 439 440 void __btrfs_del_delalloc_inode(struct btrfs_root *root, struct btrfs_inode *inode); 441 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 442 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 443 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 444 struct btrfs_inode *dir, struct btrfs_inode *inode, 445 const struct fscrypt_str *name); 446 int btrfs_add_link(struct btrfs_trans_handle *trans, 447 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 448 const struct fscrypt_str *name, int add_backref, u64 index); 449 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry); 450 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 451 int front); 452 453 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 454 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 455 bool in_reclaim_context); 456 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 457 unsigned int extra_bits, 458 struct extent_state **cached_state); 459 460 struct btrfs_new_inode_args { 461 /* Input */ 462 struct inode *dir; 463 struct dentry *dentry; 464 struct inode *inode; 465 bool orphan; 466 bool subvol; 467 468 /* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */ 469 struct posix_acl *default_acl; 470 struct posix_acl *acl; 471 struct fscrypt_name fname; 472 }; 473 474 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 475 unsigned int *trans_num_items); 476 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 477 struct btrfs_new_inode_args *args); 478 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 479 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 480 struct inode *dir); 481 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 482 u32 bits); 483 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 484 struct extent_state *state, u32 bits); 485 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 486 struct extent_state *other); 487 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 488 struct extent_state *orig, u64 split); 489 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 490 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 491 void btrfs_evict_inode(struct inode *inode); 492 struct inode *btrfs_alloc_inode(struct super_block *sb); 493 void btrfs_destroy_inode(struct inode *inode); 494 void btrfs_free_inode(struct inode *inode); 495 int btrfs_drop_inode(struct inode *inode); 496 int __init btrfs_init_cachep(void); 497 void __cold btrfs_destroy_cachep(void); 498 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 499 struct btrfs_root *root, struct btrfs_path *path); 500 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 501 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 502 struct page *page, size_t pg_offset, 503 u64 start, u64 end); 504 int btrfs_update_inode(struct btrfs_trans_handle *trans, 505 struct btrfs_root *root, struct btrfs_inode *inode); 506 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 507 struct btrfs_root *root, struct btrfs_inode *inode); 508 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode); 509 int btrfs_orphan_cleanup(struct btrfs_root *root); 510 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 511 void btrfs_add_delayed_iput(struct btrfs_inode *inode); 512 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 513 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 514 int btrfs_prealloc_file_range(struct inode *inode, int mode, 515 u64 start, u64 num_bytes, u64 min_size, 516 loff_t actual_len, u64 *alloc_hint); 517 int btrfs_prealloc_file_range_trans(struct inode *inode, 518 struct btrfs_trans_handle *trans, int mode, 519 u64 start, u64 num_bytes, u64 min_size, 520 loff_t actual_len, u64 *alloc_hint); 521 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 522 u64 start, u64 end, int *page_started, 523 unsigned long *nr_written, struct writeback_control *wbc); 524 int btrfs_writepage_cow_fixup(struct page *page); 525 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 526 struct page *page, u64 start, 527 u64 end, bool uptodate); 528 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 529 int compress_type); 530 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 531 u64 file_offset, u64 disk_bytenr, 532 u64 disk_io_size, 533 struct page **pages); 534 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 535 struct btrfs_ioctl_encoded_io_args *encoded); 536 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 537 const struct btrfs_ioctl_encoded_io_args *encoded); 538 539 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, 540 size_t done_before); 541 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 542 size_t done_before); 543 544 extern const struct dentry_operations btrfs_dentry_operations; 545 546 /* Inode locking type flags, by default the exclusive lock is taken. */ 547 enum btrfs_ilock_type { 548 ENUM_BIT(BTRFS_ILOCK_SHARED), 549 ENUM_BIT(BTRFS_ILOCK_TRY), 550 ENUM_BIT(BTRFS_ILOCK_MMAP), 551 }; 552 553 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags); 554 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags); 555 void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes, 556 const u64 del_bytes); 557 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 558 559 #endif 560