xref: /linux/fs/btrfs/btrfs_inode.h (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8 
9 #include <linux/hash.h>
10 #include "extent_map.h"
11 #include "extent_io.h"
12 #include "ordered-data.h"
13 #include "delayed-inode.h"
14 
15 /*
16  * ordered_data_close is set by truncate when a file that used
17  * to have good data has been truncated to zero.  When it is set
18  * the btrfs file release call will add this inode to the
19  * ordered operations list so that we make sure to flush out any
20  * new data the application may have written before commit.
21  */
22 enum {
23 	BTRFS_INODE_ORDERED_DATA_CLOSE,
24 	BTRFS_INODE_DUMMY,
25 	BTRFS_INODE_IN_DEFRAG,
26 	BTRFS_INODE_HAS_ASYNC_EXTENT,
27 	BTRFS_INODE_NEEDS_FULL_SYNC,
28 	BTRFS_INODE_COPY_EVERYTHING,
29 	BTRFS_INODE_IN_DELALLOC_LIST,
30 	BTRFS_INODE_READDIO_NEED_LOCK,
31 	BTRFS_INODE_HAS_PROPS,
32 	BTRFS_INODE_SNAPSHOT_FLUSH,
33 };
34 
35 /* in memory btrfs inode */
36 struct btrfs_inode {
37 	/* which subvolume this inode belongs to */
38 	struct btrfs_root *root;
39 
40 	/* key used to find this inode on disk.  This is used by the code
41 	 * to read in roots of subvolumes
42 	 */
43 	struct btrfs_key location;
44 
45 	/*
46 	 * Lock for counters and all fields used to determine if the inode is in
47 	 * the log or not (last_trans, last_sub_trans, last_log_commit,
48 	 * logged_trans).
49 	 */
50 	spinlock_t lock;
51 
52 	/* the extent_tree has caches of all the extent mappings to disk */
53 	struct extent_map_tree extent_tree;
54 
55 	/* the io_tree does range state (DIRTY, LOCKED etc) */
56 	struct extent_io_tree io_tree;
57 
58 	/* special utility tree used to record which mirrors have already been
59 	 * tried when checksums fail for a given block
60 	 */
61 	struct extent_io_tree io_failure_tree;
62 
63 	/* held while logging the inode in tree-log.c */
64 	struct mutex log_mutex;
65 
66 	/* used to order data wrt metadata */
67 	struct btrfs_ordered_inode_tree ordered_tree;
68 
69 	/* list of all the delalloc inodes in the FS.  There are times we need
70 	 * to write all the delalloc pages to disk, and this list is used
71 	 * to walk them all.
72 	 */
73 	struct list_head delalloc_inodes;
74 
75 	/* node for the red-black tree that links inodes in subvolume root */
76 	struct rb_node rb_node;
77 
78 	unsigned long runtime_flags;
79 
80 	/* Keep track of who's O_SYNC/fsyncing currently */
81 	atomic_t sync_writers;
82 
83 	/* full 64 bit generation number, struct vfs_inode doesn't have a big
84 	 * enough field for this.
85 	 */
86 	u64 generation;
87 
88 	/*
89 	 * transid of the trans_handle that last modified this inode
90 	 */
91 	u64 last_trans;
92 
93 	/*
94 	 * transid that last logged this inode
95 	 */
96 	u64 logged_trans;
97 
98 	/*
99 	 * log transid when this inode was last modified
100 	 */
101 	int last_sub_trans;
102 
103 	/* a local copy of root's last_log_commit */
104 	int last_log_commit;
105 
106 	/* total number of bytes pending delalloc, used by stat to calc the
107 	 * real block usage of the file
108 	 */
109 	u64 delalloc_bytes;
110 
111 	/*
112 	 * Total number of bytes pending delalloc that fall within a file
113 	 * range that is either a hole or beyond EOF (and no prealloc extent
114 	 * exists in the range). This is always <= delalloc_bytes.
115 	 */
116 	u64 new_delalloc_bytes;
117 
118 	/*
119 	 * total number of bytes pending defrag, used by stat to check whether
120 	 * it needs COW.
121 	 */
122 	u64 defrag_bytes;
123 
124 	/*
125 	 * the size of the file stored in the metadata on disk.  data=ordered
126 	 * means the in-memory i_size might be larger than the size on disk
127 	 * because not all the blocks are written yet.
128 	 */
129 	u64 disk_i_size;
130 
131 	/*
132 	 * if this is a directory then index_cnt is the counter for the index
133 	 * number for new files that are created
134 	 */
135 	u64 index_cnt;
136 
137 	/* Cache the directory index number to speed the dir/file remove */
138 	u64 dir_index;
139 
140 	/* the fsync log has some corner cases that mean we have to check
141 	 * directories to see if any unlinks have been done before
142 	 * the directory was logged.  See tree-log.c for all the
143 	 * details
144 	 */
145 	u64 last_unlink_trans;
146 
147 	/*
148 	 * Number of bytes outstanding that are going to need csums.  This is
149 	 * used in ENOSPC accounting.
150 	 */
151 	u64 csum_bytes;
152 
153 	/* flags field from the on disk inode */
154 	u32 flags;
155 
156 	/*
157 	 * Counters to keep track of the number of extent item's we may use due
158 	 * to delalloc and such.  outstanding_extents is the number of extent
159 	 * items we think we'll end up using, and reserved_extents is the number
160 	 * of extent items we've reserved metadata for.
161 	 */
162 	unsigned outstanding_extents;
163 
164 	struct btrfs_block_rsv block_rsv;
165 
166 	/*
167 	 * Cached values of inode properties
168 	 */
169 	unsigned prop_compress;		/* per-file compression algorithm */
170 	/*
171 	 * Force compression on the file using the defrag ioctl, could be
172 	 * different from prop_compress and takes precedence if set
173 	 */
174 	unsigned defrag_compress;
175 
176 	struct btrfs_delayed_node *delayed_node;
177 
178 	/* File creation time. */
179 	struct timespec64 i_otime;
180 
181 	/* Hook into fs_info->delayed_iputs */
182 	struct list_head delayed_iput;
183 
184 	/*
185 	 * To avoid races between lockless (i_mutex not held) direct IO writes
186 	 * and concurrent fsync requests. Direct IO writes must acquire read
187 	 * access on this semaphore for creating an extent map and its
188 	 * corresponding ordered extent. The fast fsync path must acquire write
189 	 * access on this semaphore before it collects ordered extents and
190 	 * extent maps.
191 	 */
192 	struct rw_semaphore dio_sem;
193 
194 	struct inode vfs_inode;
195 };
196 
197 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
198 {
199 	return container_of(inode, struct btrfs_inode, vfs_inode);
200 }
201 
202 static inline unsigned long btrfs_inode_hash(u64 objectid,
203 					     const struct btrfs_root *root)
204 {
205 	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
206 
207 #if BITS_PER_LONG == 32
208 	h = (h >> 32) ^ (h & 0xffffffff);
209 #endif
210 
211 	return (unsigned long)h;
212 }
213 
214 static inline void btrfs_insert_inode_hash(struct inode *inode)
215 {
216 	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
217 
218 	__insert_inode_hash(inode, h);
219 }
220 
221 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
222 {
223 	u64 ino = inode->location.objectid;
224 
225 	/*
226 	 * !ino: btree_inode
227 	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
228 	 */
229 	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
230 		ino = inode->vfs_inode.i_ino;
231 	return ino;
232 }
233 
234 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
235 {
236 	i_size_write(&inode->vfs_inode, size);
237 	inode->disk_i_size = size;
238 }
239 
240 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
241 {
242 	struct btrfs_root *root = inode->root;
243 
244 	if (root == root->fs_info->tree_root &&
245 	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
246 		return true;
247 	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
248 		return true;
249 	return false;
250 }
251 
252 static inline bool is_data_inode(struct inode *inode)
253 {
254 	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
255 }
256 
257 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
258 						 int mod)
259 {
260 	lockdep_assert_held(&inode->lock);
261 	inode->outstanding_extents += mod;
262 	if (btrfs_is_free_space_inode(inode))
263 		return;
264 	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
265 						  mod);
266 }
267 
268 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
269 {
270 	int ret = 0;
271 
272 	spin_lock(&inode->lock);
273 	if (inode->logged_trans == generation &&
274 	    inode->last_sub_trans <= inode->last_log_commit &&
275 	    inode->last_sub_trans <= inode->root->last_log_commit) {
276 		/*
277 		 * After a ranged fsync we might have left some extent maps
278 		 * (that fall outside the fsync's range). So return false
279 		 * here if the list isn't empty, to make sure btrfs_log_inode()
280 		 * will be called and process those extent maps.
281 		 */
282 		smp_mb();
283 		if (list_empty(&inode->extent_tree.modified_extents))
284 			ret = 1;
285 	}
286 	spin_unlock(&inode->lock);
287 	return ret;
288 }
289 
290 #define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
291 
292 struct btrfs_dio_private {
293 	struct inode *inode;
294 	unsigned long flags;
295 	u64 logical_offset;
296 	u64 disk_bytenr;
297 	u64 bytes;
298 	void *private;
299 
300 	/* number of bios pending for this dio */
301 	atomic_t pending_bios;
302 
303 	/* IO errors */
304 	int errors;
305 
306 	/* orig_bio is our btrfs_io_bio */
307 	struct bio *orig_bio;
308 
309 	/* dio_bio came from fs/direct-io.c */
310 	struct bio *dio_bio;
311 
312 	/*
313 	 * The original bio may be split to several sub-bios, this is
314 	 * done during endio of sub-bios
315 	 */
316 	blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
317 			blk_status_t);
318 };
319 
320 /*
321  * Disable DIO read nolock optimization, so new dio readers will be forced
322  * to grab i_mutex. It is used to avoid the endless truncate due to
323  * nonlocked dio read.
324  */
325 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
326 {
327 	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
328 	smp_mb();
329 }
330 
331 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
332 {
333 	smp_mb__before_atomic();
334 	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
335 }
336 
337 /* Array of bytes with variable length, hexadecimal format 0x1234 */
338 #define CSUM_FMT				"0x%*phN"
339 #define CSUM_FMT_VALUE(size, bytes)		size, bytes
340 
341 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
342 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
343 {
344 	struct btrfs_root *root = inode->root;
345 	struct btrfs_super_block *sb = root->fs_info->super_copy;
346 	const u16 csum_size = btrfs_super_csum_size(sb);
347 
348 	/* Output minus objectid, which is more meaningful */
349 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
350 		btrfs_warn_rl(root->fs_info,
351 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
352 			root->root_key.objectid, btrfs_ino(inode),
353 			logical_start,
354 			CSUM_FMT_VALUE(csum_size, csum),
355 			CSUM_FMT_VALUE(csum_size, csum_expected),
356 			mirror_num);
357 	else
358 		btrfs_warn_rl(root->fs_info,
359 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
360 			root->root_key.objectid, btrfs_ino(inode),
361 			logical_start,
362 			CSUM_FMT_VALUE(csum_size, csum),
363 			CSUM_FMT_VALUE(csum_size, csum_expected),
364 			mirror_num);
365 }
366 
367 #endif
368