xref: /linux/fs/btrfs/block-rsv.c (revision b61104e7a6349bd2c2b3e2fb3260d87f15eda8f4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9 #include "fs.h"
10 #include "accessors.h"
11 
12 /*
13  * HOW DO BLOCK RESERVES WORK
14  *
15  *   Think of block_rsv's as buckets for logically grouped metadata
16  *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
17  *   how large we want our block rsv to be, ->reserved is how much space is
18  *   currently reserved for this block reserve.
19  *
20  *   ->failfast exists for the truncate case, and is described below.
21  *
22  * NORMAL OPERATION
23  *
24  *   -> Reserve
25  *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
26  *
27  *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
28  *     accounted for in space_info->bytes_may_use, and then add the bytes to
29  *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
30  *
31  *     ->size is an over-estimation of how much we may use for a particular
32  *     operation.
33  *
34  *   -> Use
35  *     Entrance: btrfs_use_block_rsv
36  *
37  *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
38  *     to determine the appropriate block_rsv to use, and then verify that
39  *     ->reserved has enough space for our tree block allocation.  Once
40  *     successful we subtract fs_info->nodesize from ->reserved.
41  *
42  *   -> Finish
43  *     Entrance: btrfs_block_rsv_release
44  *
45  *     We are finished with our operation, subtract our individual reservation
46  *     from ->size, and then subtract ->size from ->reserved and free up the
47  *     excess if there is any.
48  *
49  *     There is some logic here to refill the delayed refs rsv or the global rsv
50  *     as needed, otherwise the excess is subtracted from
51  *     space_info->bytes_may_use.
52  *
53  * TYPES OF BLOCK RESERVES
54  *
55  * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
56  *   These behave normally, as described above, just within the confines of the
57  *   lifetime of their particular operation (transaction for the whole trans
58  *   handle lifetime, for example).
59  *
60  * BLOCK_RSV_GLOBAL
61  *   It is impossible to properly account for all the space that may be required
62  *   to make our extent tree updates.  This block reserve acts as an overflow
63  *   buffer in case our delayed refs reserve does not reserve enough space to
64  *   update the extent tree.
65  *
66  *   We can steal from this in some cases as well, notably on evict() or
67  *   truncate() in order to help users recover from ENOSPC conditions.
68  *
69  * BLOCK_RSV_DELALLOC
70  *   The individual item sizes are determined by the per-inode size
71  *   calculations, which are described with the delalloc code.  This is pretty
72  *   straightforward, it's just the calculation of ->size encodes a lot of
73  *   different items, and thus it gets used when updating inodes, inserting file
74  *   extents, and inserting checksums.
75  *
76  * BLOCK_RSV_DELREFS
77  *   We keep a running tally of how many delayed refs we have on the system.
78  *   We assume each one of these delayed refs are going to use a full
79  *   reservation.  We use the transaction items and pre-reserve space for every
80  *   operation, and use this reservation to refill any gap between ->size and
81  *   ->reserved that may exist.
82  *
83  *   From there it's straightforward, removing a delayed ref means we remove its
84  *   count from ->size and free up reservations as necessary.  Since this is
85  *   the most dynamic block reserve in the system, we will try to refill this
86  *   block reserve first with any excess returned by any other block reserve.
87  *
88  * BLOCK_RSV_EMPTY
89  *   This is the fallback block reserve to make us try to reserve space if we
90  *   don't have a specific bucket for this allocation.  It is mostly used for
91  *   updating the device tree and such, since that is a separate pool we're
92  *   content to just reserve space from the space_info on demand.
93  *
94  * BLOCK_RSV_TEMP
95  *   This is used by things like truncate and iput.  We will temporarily
96  *   allocate a block reserve, set it to some size, and then truncate bytes
97  *   until we have no space left.  With ->failfast set we'll simply return
98  *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
99  *   to make a new reservation.  This is because these operations are
100  *   unbounded, so we want to do as much work as we can, and then back off and
101  *   re-reserve.
102  */
103 
104 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
105 				    struct btrfs_block_rsv *block_rsv,
106 				    struct btrfs_block_rsv *dest, u64 num_bytes,
107 				    u64 *qgroup_to_release_ret)
108 {
109 	struct btrfs_space_info *space_info = block_rsv->space_info;
110 	u64 qgroup_to_release = 0;
111 	u64 ret;
112 
113 	spin_lock(&block_rsv->lock);
114 	if (num_bytes == (u64)-1) {
115 		num_bytes = block_rsv->size;
116 		qgroup_to_release = block_rsv->qgroup_rsv_size;
117 	}
118 	block_rsv->size -= num_bytes;
119 	if (block_rsv->reserved >= block_rsv->size) {
120 		num_bytes = block_rsv->reserved - block_rsv->size;
121 		block_rsv->reserved = block_rsv->size;
122 		block_rsv->full = true;
123 	} else {
124 		num_bytes = 0;
125 	}
126 	if (qgroup_to_release_ret &&
127 	    block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
128 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
129 				    block_rsv->qgroup_rsv_size;
130 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
131 	} else {
132 		qgroup_to_release = 0;
133 	}
134 	spin_unlock(&block_rsv->lock);
135 
136 	ret = num_bytes;
137 	if (num_bytes > 0) {
138 		if (dest) {
139 			spin_lock(&dest->lock);
140 			if (!dest->full) {
141 				u64 bytes_to_add;
142 
143 				bytes_to_add = dest->size - dest->reserved;
144 				bytes_to_add = min(num_bytes, bytes_to_add);
145 				dest->reserved += bytes_to_add;
146 				if (dest->reserved >= dest->size)
147 					dest->full = true;
148 				num_bytes -= bytes_to_add;
149 			}
150 			spin_unlock(&dest->lock);
151 		}
152 		if (num_bytes)
153 			btrfs_space_info_free_bytes_may_use(space_info, num_bytes);
154 	}
155 	if (qgroup_to_release_ret)
156 		*qgroup_to_release_ret = qgroup_to_release;
157 	return ret;
158 }
159 
160 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
161 			    struct btrfs_block_rsv *dst, u64 num_bytes,
162 			    bool update_size)
163 {
164 	int ret;
165 
166 	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
167 	if (ret)
168 		return ret;
169 
170 	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
171 	return 0;
172 }
173 
174 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
175 {
176 	memset(rsv, 0, sizeof(*rsv));
177 	spin_lock_init(&rsv->lock);
178 	rsv->type = type;
179 }
180 
181 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
182 				   struct btrfs_block_rsv *rsv,
183 				   enum btrfs_rsv_type type)
184 {
185 	btrfs_init_block_rsv(rsv, type);
186 	rsv->space_info = btrfs_find_space_info(fs_info,
187 					    BTRFS_BLOCK_GROUP_METADATA);
188 }
189 
190 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
191 					      enum btrfs_rsv_type type)
192 {
193 	struct btrfs_block_rsv *block_rsv;
194 
195 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
196 	if (!block_rsv)
197 		return NULL;
198 
199 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
200 	return block_rsv;
201 }
202 
203 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
204 			  struct btrfs_block_rsv *rsv)
205 {
206 	if (!rsv)
207 		return;
208 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
209 	kfree(rsv);
210 }
211 
212 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
213 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
214 			enum btrfs_reserve_flush_enum flush)
215 {
216 	int ret;
217 
218 	if (num_bytes == 0)
219 		return 0;
220 
221 	ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, num_bytes, flush);
222 	if (!ret)
223 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
224 
225 	return ret;
226 }
227 
228 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
229 {
230 	u64 num_bytes = 0;
231 	int ret = -ENOSPC;
232 
233 	spin_lock(&block_rsv->lock);
234 	num_bytes = mult_perc(block_rsv->size, min_percent);
235 	if (block_rsv->reserved >= num_bytes)
236 		ret = 0;
237 	spin_unlock(&block_rsv->lock);
238 
239 	return ret;
240 }
241 
242 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
243 			   struct btrfs_block_rsv *block_rsv, u64 num_bytes,
244 			   enum btrfs_reserve_flush_enum flush)
245 {
246 	int ret = -ENOSPC;
247 
248 	if (!block_rsv)
249 		return 0;
250 
251 	spin_lock(&block_rsv->lock);
252 	if (block_rsv->reserved >= num_bytes)
253 		ret = 0;
254 	else
255 		num_bytes -= block_rsv->reserved;
256 	spin_unlock(&block_rsv->lock);
257 
258 	if (!ret)
259 		return 0;
260 
261 	ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, num_bytes, flush);
262 	if (!ret) {
263 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
264 		return 0;
265 	}
266 
267 	return ret;
268 }
269 
270 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
271 			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
272 			    u64 *qgroup_to_release)
273 {
274 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
275 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
276 	struct btrfs_block_rsv *target = NULL;
277 
278 	/*
279 	 * If we are a delayed block reserve then push to the global rsv,
280 	 * otherwise dump into the global delayed reserve if it is not full.
281 	 */
282 	if (block_rsv->type == BTRFS_BLOCK_RSV_DELOPS)
283 		target = global_rsv;
284 	else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
285 		target = delayed_rsv;
286 
287 	if (target && block_rsv->space_info != target->space_info)
288 		target = NULL;
289 
290 	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
291 				       qgroup_to_release);
292 }
293 
294 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
295 {
296 	int ret = -ENOSPC;
297 
298 	spin_lock(&block_rsv->lock);
299 	if (block_rsv->reserved >= num_bytes) {
300 		block_rsv->reserved -= num_bytes;
301 		if (block_rsv->reserved < block_rsv->size)
302 			block_rsv->full = false;
303 		ret = 0;
304 	}
305 	spin_unlock(&block_rsv->lock);
306 	return ret;
307 }
308 
309 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
310 			       u64 num_bytes, bool update_size)
311 {
312 	spin_lock(&block_rsv->lock);
313 	block_rsv->reserved += num_bytes;
314 	if (update_size)
315 		block_rsv->size += num_bytes;
316 	else if (block_rsv->reserved >= block_rsv->size)
317 		block_rsv->full = true;
318 	spin_unlock(&block_rsv->lock);
319 }
320 
321 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
322 {
323 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
324 	struct btrfs_space_info *sinfo = block_rsv->space_info;
325 	struct btrfs_root *root, *tmp;
326 	u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
327 	unsigned int min_items = 1;
328 
329 	/*
330 	 * The global block rsv is based on the size of the extent tree, the
331 	 * checksum tree and the root tree.  If the fs is empty we want to set
332 	 * it to a minimal amount for safety.
333 	 *
334 	 * We also are going to need to modify the minimum of the tree root and
335 	 * any global roots we could touch.
336 	 */
337 	read_lock(&fs_info->global_root_lock);
338 	rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
339 					     rb_node) {
340 		if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID ||
341 		    btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
342 		    btrfs_root_id(root) == BTRFS_FREE_SPACE_TREE_OBJECTID) {
343 			num_bytes += btrfs_root_used(&root->root_item);
344 			min_items++;
345 		}
346 	}
347 	read_unlock(&fs_info->global_root_lock);
348 
349 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
350 		num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item);
351 		min_items++;
352 	}
353 
354 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
355 		num_bytes += btrfs_root_used(&fs_info->stripe_root->root_item);
356 		min_items++;
357 	}
358 
359 	/*
360 	 * But we also want to reserve enough space so we can do the fallback
361 	 * global reserve for an unlink, which is an additional
362 	 * BTRFS_UNLINK_METADATA_UNITS items.
363 	 *
364 	 * But we also need space for the delayed ref updates from the unlink,
365 	 * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for
366 	 * each unlink metadata item.
367 	 */
368 	min_items += BTRFS_UNLINK_METADATA_UNITS;
369 
370 	num_bytes = max_t(u64, num_bytes,
371 			  btrfs_calc_insert_metadata_size(fs_info, min_items) +
372 			  btrfs_calc_delayed_ref_bytes(fs_info,
373 					       BTRFS_UNLINK_METADATA_UNITS));
374 
375 	spin_lock(&sinfo->lock);
376 	spin_lock(&block_rsv->lock);
377 
378 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
379 
380 	if (block_rsv->reserved < block_rsv->size) {
381 		num_bytes = block_rsv->size - block_rsv->reserved;
382 		btrfs_space_info_update_bytes_may_use(sinfo, num_bytes);
383 		block_rsv->reserved = block_rsv->size;
384 	} else if (block_rsv->reserved > block_rsv->size) {
385 		num_bytes = block_rsv->reserved - block_rsv->size;
386 		btrfs_space_info_update_bytes_may_use(sinfo, -num_bytes);
387 		block_rsv->reserved = block_rsv->size;
388 		btrfs_try_granting_tickets(sinfo);
389 	}
390 
391 	block_rsv->full = (block_rsv->reserved == block_rsv->size);
392 
393 	if (block_rsv->size >= sinfo->total_bytes)
394 		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
395 	spin_unlock(&block_rsv->lock);
396 	spin_unlock(&sinfo->lock);
397 }
398 
399 void btrfs_init_root_block_rsv(struct btrfs_root *root)
400 {
401 	struct btrfs_fs_info *fs_info = root->fs_info;
402 
403 	switch (btrfs_root_id(root)) {
404 	case BTRFS_CSUM_TREE_OBJECTID:
405 	case BTRFS_EXTENT_TREE_OBJECTID:
406 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
407 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
408 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
409 		root->block_rsv = &fs_info->delayed_refs_rsv;
410 		break;
411 	case BTRFS_ROOT_TREE_OBJECTID:
412 	case BTRFS_DEV_TREE_OBJECTID:
413 	case BTRFS_QUOTA_TREE_OBJECTID:
414 		root->block_rsv = &fs_info->global_block_rsv;
415 		break;
416 	case BTRFS_CHUNK_TREE_OBJECTID:
417 		root->block_rsv = &fs_info->chunk_block_rsv;
418 		break;
419 	case BTRFS_TREE_LOG_OBJECTID:
420 		root->block_rsv = &fs_info->treelog_rsv;
421 		break;
422 	default:
423 		root->block_rsv = NULL;
424 		break;
425 	}
426 }
427 
428 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
429 {
430 	struct btrfs_space_info *space_info;
431 
432 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
433 	fs_info->chunk_block_rsv.space_info = space_info;
434 
435 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
436 	fs_info->global_block_rsv.space_info = space_info;
437 	fs_info->trans_block_rsv.space_info = space_info;
438 	fs_info->empty_block_rsv.space_info = space_info;
439 	fs_info->delayed_block_rsv.space_info = space_info;
440 	fs_info->delayed_refs_rsv.space_info = space_info;
441 
442 	/* The treelog_rsv uses a dedicated space_info on the zoned mode. */
443 	if (!btrfs_is_zoned(fs_info)) {
444 		fs_info->treelog_rsv.space_info = space_info;
445 	} else {
446 		ASSERT(space_info->sub_group[0]->subgroup_id == BTRFS_SUB_GROUP_TREELOG);
447 		fs_info->treelog_rsv.space_info = space_info->sub_group[0];
448 	}
449 
450 	btrfs_update_global_block_rsv(fs_info);
451 }
452 
453 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
454 {
455 	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
456 				NULL);
457 	WARN_ON(fs_info->trans_block_rsv.size > 0);
458 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
459 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
460 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
461 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
462 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
463 	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
464 	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
465 }
466 
467 static struct btrfs_block_rsv *get_block_rsv(
468 					const struct btrfs_trans_handle *trans,
469 					const struct btrfs_root *root)
470 {
471 	struct btrfs_fs_info *fs_info = root->fs_info;
472 	struct btrfs_block_rsv *block_rsv = NULL;
473 
474 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
475 	    (root == fs_info->uuid_root) ||
476 	    (trans->adding_csums && btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID))
477 		block_rsv = trans->block_rsv;
478 
479 	if (!block_rsv)
480 		block_rsv = root->block_rsv;
481 
482 	if (!block_rsv)
483 		block_rsv = &fs_info->empty_block_rsv;
484 
485 	return block_rsv;
486 }
487 
488 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
489 					    struct btrfs_root *root,
490 					    u32 blocksize)
491 {
492 	struct btrfs_fs_info *fs_info = root->fs_info;
493 	struct btrfs_block_rsv *block_rsv;
494 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
495 	int ret;
496 	bool global_updated = false;
497 
498 	block_rsv = get_block_rsv(trans, root);
499 
500 	if (unlikely(btrfs_block_rsv_size(block_rsv) == 0))
501 		goto try_reserve;
502 again:
503 	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
504 	if (!ret)
505 		return block_rsv;
506 
507 	if (block_rsv->failfast)
508 		return ERR_PTR(ret);
509 
510 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
511 		global_updated = true;
512 		btrfs_update_global_block_rsv(fs_info);
513 		goto again;
514 	}
515 
516 	/*
517 	 * The global reserve still exists to save us from ourselves, so don't
518 	 * warn_on if we are short on our delayed refs reserve.
519 	 */
520 	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
521 	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
522 		static DEFINE_RATELIMIT_STATE(_rs,
523 				DEFAULT_RATELIMIT_INTERVAL * 10,
524 				/*DEFAULT_RATELIMIT_BURST*/ 1);
525 		if (__ratelimit(&_rs))
526 			WARN(1, KERN_DEBUG
527 				"BTRFS: block rsv %d returned %d\n",
528 				block_rsv->type, ret);
529 	}
530 try_reserve:
531 	ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, blocksize,
532 					   BTRFS_RESERVE_NO_FLUSH);
533 	if (!ret)
534 		return block_rsv;
535 	/*
536 	 * If we couldn't reserve metadata bytes try and use some from
537 	 * the global reserve if its space type is the same as the global
538 	 * reservation.
539 	 */
540 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
541 	    block_rsv->space_info == global_rsv->space_info) {
542 		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
543 		if (!ret)
544 			return global_rsv;
545 	}
546 
547 	/*
548 	 * All hope is lost, but of course our reservations are overly
549 	 * pessimistic, so instead of possibly having an ENOSPC abort here, try
550 	 * one last time to force a reservation if there's enough actual space
551 	 * on disk to make the reservation.
552 	 */
553 	ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, blocksize,
554 					   BTRFS_RESERVE_FLUSH_EMERGENCY);
555 	if (!ret)
556 		return block_rsv;
557 
558 	return ERR_PTR(ret);
559 }
560 
561 int btrfs_check_trunc_cache_free_space(const struct btrfs_fs_info *fs_info,
562 				       struct btrfs_block_rsv *rsv)
563 {
564 	u64 needed_bytes;
565 	int ret;
566 
567 	/* 1 for slack space, 1 for updating the inode */
568 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
569 		btrfs_calc_metadata_size(fs_info, 1);
570 
571 	spin_lock(&rsv->lock);
572 	if (rsv->reserved < needed_bytes)
573 		ret = -ENOSPC;
574 	else
575 		ret = 0;
576 	spin_unlock(&rsv->lock);
577 	return ret;
578 }
579