1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-rsv.h" 6 #include "space-info.h" 7 #include "transaction.h" 8 #include "block-group.h" 9 #include "fs.h" 10 #include "accessors.h" 11 12 /* 13 * HOW DO BLOCK RESERVES WORK 14 * 15 * Think of block_rsv's as buckets for logically grouped metadata 16 * reservations. Each block_rsv has a ->size and a ->reserved. ->size is 17 * how large we want our block rsv to be, ->reserved is how much space is 18 * currently reserved for this block reserve. 19 * 20 * ->failfast exists for the truncate case, and is described below. 21 * 22 * NORMAL OPERATION 23 * 24 * -> Reserve 25 * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill 26 * 27 * We call into btrfs_reserve_metadata_bytes() with our bytes, which is 28 * accounted for in space_info->bytes_may_use, and then add the bytes to 29 * ->reserved, and ->size in the case of btrfs_block_rsv_add. 30 * 31 * ->size is an over-estimation of how much we may use for a particular 32 * operation. 33 * 34 * -> Use 35 * Entrance: btrfs_use_block_rsv 36 * 37 * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv() 38 * to determine the appropriate block_rsv to use, and then verify that 39 * ->reserved has enough space for our tree block allocation. Once 40 * successful we subtract fs_info->nodesize from ->reserved. 41 * 42 * -> Finish 43 * Entrance: btrfs_block_rsv_release 44 * 45 * We are finished with our operation, subtract our individual reservation 46 * from ->size, and then subtract ->size from ->reserved and free up the 47 * excess if there is any. 48 * 49 * There is some logic here to refill the delayed refs rsv or the global rsv 50 * as needed, otherwise the excess is subtracted from 51 * space_info->bytes_may_use. 52 * 53 * TYPES OF BLOCK RESERVES 54 * 55 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK 56 * These behave normally, as described above, just within the confines of the 57 * lifetime of their particular operation (transaction for the whole trans 58 * handle lifetime, for example). 59 * 60 * BLOCK_RSV_GLOBAL 61 * It is impossible to properly account for all the space that may be required 62 * to make our extent tree updates. This block reserve acts as an overflow 63 * buffer in case our delayed refs reserve does not reserve enough space to 64 * update the extent tree. 65 * 66 * We can steal from this in some cases as well, notably on evict() or 67 * truncate() in order to help users recover from ENOSPC conditions. 68 * 69 * BLOCK_RSV_DELALLOC 70 * The individual item sizes are determined by the per-inode size 71 * calculations, which are described with the delalloc code. This is pretty 72 * straightforward, it's just the calculation of ->size encodes a lot of 73 * different items, and thus it gets used when updating inodes, inserting file 74 * extents, and inserting checksums. 75 * 76 * BLOCK_RSV_DELREFS 77 * We keep a running tally of how many delayed refs we have on the system. 78 * We assume each one of these delayed refs are going to use a full 79 * reservation. We use the transaction items and pre-reserve space for every 80 * operation, and use this reservation to refill any gap between ->size and 81 * ->reserved that may exist. 82 * 83 * From there it's straightforward, removing a delayed ref means we remove its 84 * count from ->size and free up reservations as necessary. Since this is 85 * the most dynamic block reserve in the system, we will try to refill this 86 * block reserve first with any excess returned by any other block reserve. 87 * 88 * BLOCK_RSV_EMPTY 89 * This is the fallback block reserve to make us try to reserve space if we 90 * don't have a specific bucket for this allocation. It is mostly used for 91 * updating the device tree and such, since that is a separate pool we're 92 * content to just reserve space from the space_info on demand. 93 * 94 * BLOCK_RSV_TEMP 95 * This is used by things like truncate and iput. We will temporarily 96 * allocate a block reserve, set it to some size, and then truncate bytes 97 * until we have no space left. With ->failfast set we'll simply return 98 * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try 99 * to make a new reservation. This is because these operations are 100 * unbounded, so we want to do as much work as we can, and then back off and 101 * re-reserve. 102 */ 103 104 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 105 struct btrfs_block_rsv *block_rsv, 106 struct btrfs_block_rsv *dest, u64 num_bytes, 107 u64 *qgroup_to_release_ret) 108 { 109 struct btrfs_space_info *space_info = block_rsv->space_info; 110 u64 qgroup_to_release = 0; 111 u64 ret; 112 113 spin_lock(&block_rsv->lock); 114 if (num_bytes == (u64)-1) { 115 num_bytes = block_rsv->size; 116 qgroup_to_release = block_rsv->qgroup_rsv_size; 117 } 118 block_rsv->size -= num_bytes; 119 if (block_rsv->reserved >= block_rsv->size) { 120 num_bytes = block_rsv->reserved - block_rsv->size; 121 block_rsv->reserved = block_rsv->size; 122 block_rsv->full = true; 123 } else { 124 num_bytes = 0; 125 } 126 if (qgroup_to_release_ret && 127 block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 128 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 129 block_rsv->qgroup_rsv_size; 130 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 131 } else { 132 qgroup_to_release = 0; 133 } 134 spin_unlock(&block_rsv->lock); 135 136 ret = num_bytes; 137 if (num_bytes > 0) { 138 if (dest) { 139 spin_lock(&dest->lock); 140 if (!dest->full) { 141 u64 bytes_to_add; 142 143 bytes_to_add = dest->size - dest->reserved; 144 bytes_to_add = min(num_bytes, bytes_to_add); 145 dest->reserved += bytes_to_add; 146 if (dest->reserved >= dest->size) 147 dest->full = true; 148 num_bytes -= bytes_to_add; 149 } 150 spin_unlock(&dest->lock); 151 } 152 if (num_bytes) 153 btrfs_space_info_free_bytes_may_use(space_info, num_bytes); 154 } 155 if (qgroup_to_release_ret) 156 *qgroup_to_release_ret = qgroup_to_release; 157 return ret; 158 } 159 160 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 161 struct btrfs_block_rsv *dst, u64 num_bytes, 162 bool update_size) 163 { 164 int ret; 165 166 ret = btrfs_block_rsv_use_bytes(src, num_bytes); 167 if (ret) 168 return ret; 169 170 btrfs_block_rsv_add_bytes(dst, num_bytes, update_size); 171 return 0; 172 } 173 174 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type) 175 { 176 memset(rsv, 0, sizeof(*rsv)); 177 spin_lock_init(&rsv->lock); 178 rsv->type = type; 179 } 180 181 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 182 struct btrfs_block_rsv *rsv, 183 enum btrfs_rsv_type type) 184 { 185 btrfs_init_block_rsv(rsv, type); 186 rsv->space_info = btrfs_find_space_info(fs_info, 187 BTRFS_BLOCK_GROUP_METADATA); 188 } 189 190 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 191 enum btrfs_rsv_type type) 192 { 193 struct btrfs_block_rsv *block_rsv; 194 195 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 196 if (!block_rsv) 197 return NULL; 198 199 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 200 return block_rsv; 201 } 202 203 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 204 struct btrfs_block_rsv *rsv) 205 { 206 if (!rsv) 207 return; 208 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); 209 kfree(rsv); 210 } 211 212 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info, 213 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 214 enum btrfs_reserve_flush_enum flush) 215 { 216 int ret; 217 218 if (num_bytes == 0) 219 return 0; 220 221 ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, num_bytes, flush); 222 if (!ret) 223 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true); 224 225 return ret; 226 } 227 228 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent) 229 { 230 u64 num_bytes = 0; 231 int ret = -ENOSPC; 232 233 spin_lock(&block_rsv->lock); 234 num_bytes = mult_perc(block_rsv->size, min_percent); 235 if (block_rsv->reserved >= num_bytes) 236 ret = 0; 237 spin_unlock(&block_rsv->lock); 238 239 return ret; 240 } 241 242 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info, 243 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 244 enum btrfs_reserve_flush_enum flush) 245 { 246 int ret = -ENOSPC; 247 248 if (!block_rsv) 249 return 0; 250 251 spin_lock(&block_rsv->lock); 252 if (block_rsv->reserved >= num_bytes) 253 ret = 0; 254 else 255 num_bytes -= block_rsv->reserved; 256 spin_unlock(&block_rsv->lock); 257 258 if (!ret) 259 return 0; 260 261 ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, num_bytes, flush); 262 if (!ret) { 263 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false); 264 return 0; 265 } 266 267 return ret; 268 } 269 270 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 271 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 272 u64 *qgroup_to_release) 273 { 274 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 275 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 276 struct btrfs_block_rsv *target = NULL; 277 278 /* 279 * If we are a delayed block reserve then push to the global rsv, 280 * otherwise dump into the global delayed reserve if it is not full. 281 */ 282 if (block_rsv->type == BTRFS_BLOCK_RSV_DELOPS) 283 target = global_rsv; 284 else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv)) 285 target = delayed_rsv; 286 287 if (target && block_rsv->space_info != target->space_info) 288 target = NULL; 289 290 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, 291 qgroup_to_release); 292 } 293 294 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes) 295 { 296 int ret = -ENOSPC; 297 298 spin_lock(&block_rsv->lock); 299 if (block_rsv->reserved >= num_bytes) { 300 block_rsv->reserved -= num_bytes; 301 if (block_rsv->reserved < block_rsv->size) 302 block_rsv->full = false; 303 ret = 0; 304 } 305 spin_unlock(&block_rsv->lock); 306 return ret; 307 } 308 309 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 310 u64 num_bytes, bool update_size) 311 { 312 spin_lock(&block_rsv->lock); 313 block_rsv->reserved += num_bytes; 314 if (update_size) 315 block_rsv->size += num_bytes; 316 else if (block_rsv->reserved >= block_rsv->size) 317 block_rsv->full = true; 318 spin_unlock(&block_rsv->lock); 319 } 320 321 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info) 322 { 323 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 324 struct btrfs_space_info *sinfo = block_rsv->space_info; 325 struct btrfs_root *root, *tmp; 326 u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item); 327 unsigned int min_items = 1; 328 329 /* 330 * The global block rsv is based on the size of the extent tree, the 331 * checksum tree and the root tree. If the fs is empty we want to set 332 * it to a minimal amount for safety. 333 * 334 * We also are going to need to modify the minimum of the tree root and 335 * any global roots we could touch. 336 */ 337 read_lock(&fs_info->global_root_lock); 338 rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree, 339 rb_node) { 340 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID || 341 btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID || 342 btrfs_root_id(root) == BTRFS_FREE_SPACE_TREE_OBJECTID) { 343 num_bytes += btrfs_root_used(&root->root_item); 344 min_items++; 345 } 346 } 347 read_unlock(&fs_info->global_root_lock); 348 349 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 350 num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item); 351 min_items++; 352 } 353 354 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 355 num_bytes += btrfs_root_used(&fs_info->stripe_root->root_item); 356 min_items++; 357 } 358 359 /* 360 * But we also want to reserve enough space so we can do the fallback 361 * global reserve for an unlink, which is an additional 362 * BTRFS_UNLINK_METADATA_UNITS items. 363 * 364 * But we also need space for the delayed ref updates from the unlink, 365 * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for 366 * each unlink metadata item. 367 */ 368 min_items += BTRFS_UNLINK_METADATA_UNITS; 369 370 num_bytes = max_t(u64, num_bytes, 371 btrfs_calc_insert_metadata_size(fs_info, min_items) + 372 btrfs_calc_delayed_ref_bytes(fs_info, 373 BTRFS_UNLINK_METADATA_UNITS)); 374 375 spin_lock(&sinfo->lock); 376 spin_lock(&block_rsv->lock); 377 378 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 379 380 if (block_rsv->reserved < block_rsv->size) { 381 num_bytes = block_rsv->size - block_rsv->reserved; 382 btrfs_space_info_update_bytes_may_use(sinfo, num_bytes); 383 block_rsv->reserved = block_rsv->size; 384 } else if (block_rsv->reserved > block_rsv->size) { 385 num_bytes = block_rsv->reserved - block_rsv->size; 386 btrfs_space_info_update_bytes_may_use(sinfo, -num_bytes); 387 block_rsv->reserved = block_rsv->size; 388 btrfs_try_granting_tickets(sinfo); 389 } 390 391 block_rsv->full = (block_rsv->reserved == block_rsv->size); 392 393 if (block_rsv->size >= sinfo->total_bytes) 394 sinfo->force_alloc = CHUNK_ALLOC_FORCE; 395 spin_unlock(&block_rsv->lock); 396 spin_unlock(&sinfo->lock); 397 } 398 399 void btrfs_init_root_block_rsv(struct btrfs_root *root) 400 { 401 struct btrfs_fs_info *fs_info = root->fs_info; 402 403 switch (btrfs_root_id(root)) { 404 case BTRFS_CSUM_TREE_OBJECTID: 405 case BTRFS_EXTENT_TREE_OBJECTID: 406 case BTRFS_FREE_SPACE_TREE_OBJECTID: 407 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 408 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 409 root->block_rsv = &fs_info->delayed_refs_rsv; 410 break; 411 case BTRFS_ROOT_TREE_OBJECTID: 412 case BTRFS_DEV_TREE_OBJECTID: 413 case BTRFS_QUOTA_TREE_OBJECTID: 414 root->block_rsv = &fs_info->global_block_rsv; 415 break; 416 case BTRFS_CHUNK_TREE_OBJECTID: 417 root->block_rsv = &fs_info->chunk_block_rsv; 418 break; 419 case BTRFS_TREE_LOG_OBJECTID: 420 root->block_rsv = &fs_info->treelog_rsv; 421 break; 422 default: 423 root->block_rsv = NULL; 424 break; 425 } 426 } 427 428 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info) 429 { 430 struct btrfs_space_info *space_info; 431 432 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 433 fs_info->chunk_block_rsv.space_info = space_info; 434 435 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 436 fs_info->global_block_rsv.space_info = space_info; 437 fs_info->trans_block_rsv.space_info = space_info; 438 fs_info->empty_block_rsv.space_info = space_info; 439 fs_info->delayed_block_rsv.space_info = space_info; 440 fs_info->delayed_refs_rsv.space_info = space_info; 441 442 /* The treelog_rsv uses a dedicated space_info on the zoned mode. */ 443 if (!btrfs_is_zoned(fs_info)) { 444 fs_info->treelog_rsv.space_info = space_info; 445 } else { 446 ASSERT(space_info->sub_group[0]->subgroup_id == BTRFS_SUB_GROUP_TREELOG); 447 fs_info->treelog_rsv.space_info = space_info->sub_group[0]; 448 } 449 450 btrfs_update_global_block_rsv(fs_info); 451 } 452 453 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info) 454 { 455 btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1, 456 NULL); 457 WARN_ON(fs_info->trans_block_rsv.size > 0); 458 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 459 WARN_ON(fs_info->chunk_block_rsv.size > 0); 460 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 461 WARN_ON(fs_info->delayed_block_rsv.size > 0); 462 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 463 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); 464 WARN_ON(fs_info->delayed_refs_rsv.size > 0); 465 } 466 467 static struct btrfs_block_rsv *get_block_rsv( 468 const struct btrfs_trans_handle *trans, 469 const struct btrfs_root *root) 470 { 471 struct btrfs_fs_info *fs_info = root->fs_info; 472 struct btrfs_block_rsv *block_rsv = NULL; 473 474 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 475 (root == fs_info->uuid_root) || 476 (trans->adding_csums && btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID)) 477 block_rsv = trans->block_rsv; 478 479 if (!block_rsv) 480 block_rsv = root->block_rsv; 481 482 if (!block_rsv) 483 block_rsv = &fs_info->empty_block_rsv; 484 485 return block_rsv; 486 } 487 488 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans, 489 struct btrfs_root *root, 490 u32 blocksize) 491 { 492 struct btrfs_fs_info *fs_info = root->fs_info; 493 struct btrfs_block_rsv *block_rsv; 494 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 495 int ret; 496 bool global_updated = false; 497 498 block_rsv = get_block_rsv(trans, root); 499 500 if (unlikely(btrfs_block_rsv_size(block_rsv) == 0)) 501 goto try_reserve; 502 again: 503 ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize); 504 if (!ret) 505 return block_rsv; 506 507 if (block_rsv->failfast) 508 return ERR_PTR(ret); 509 510 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 511 global_updated = true; 512 btrfs_update_global_block_rsv(fs_info); 513 goto again; 514 } 515 516 /* 517 * The global reserve still exists to save us from ourselves, so don't 518 * warn_on if we are short on our delayed refs reserve. 519 */ 520 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && 521 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 522 static DEFINE_RATELIMIT_STATE(_rs, 523 DEFAULT_RATELIMIT_INTERVAL * 10, 524 /*DEFAULT_RATELIMIT_BURST*/ 1); 525 if (__ratelimit(&_rs)) 526 WARN(1, KERN_DEBUG 527 "BTRFS: block rsv %d returned %d\n", 528 block_rsv->type, ret); 529 } 530 try_reserve: 531 ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, blocksize, 532 BTRFS_RESERVE_NO_FLUSH); 533 if (!ret) 534 return block_rsv; 535 /* 536 * If we couldn't reserve metadata bytes try and use some from 537 * the global reserve if its space type is the same as the global 538 * reservation. 539 */ 540 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 541 block_rsv->space_info == global_rsv->space_info) { 542 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize); 543 if (!ret) 544 return global_rsv; 545 } 546 547 /* 548 * All hope is lost, but of course our reservations are overly 549 * pessimistic, so instead of possibly having an ENOSPC abort here, try 550 * one last time to force a reservation if there's enough actual space 551 * on disk to make the reservation. 552 */ 553 ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, blocksize, 554 BTRFS_RESERVE_FLUSH_EMERGENCY); 555 if (!ret) 556 return block_rsv; 557 558 return ERR_PTR(ret); 559 } 560 561 int btrfs_check_trunc_cache_free_space(const struct btrfs_fs_info *fs_info, 562 struct btrfs_block_rsv *rsv) 563 { 564 u64 needed_bytes; 565 int ret; 566 567 /* 1 for slack space, 1 for updating the inode */ 568 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 569 btrfs_calc_metadata_size(fs_info, 1); 570 571 spin_lock(&rsv->lock); 572 if (rsv->reserved < needed_bytes) 573 ret = -ENOSPC; 574 else 575 ret = 0; 576 spin_unlock(&rsv->lock); 577 return ret; 578 } 579