xref: /linux/fs/btrfs/block-rsv.c (revision 70ab9ec9166db90ab8980aff4f7083512ecddd1f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9 #include "disk-io.h"
10 #include "fs.h"
11 #include "accessors.h"
12 
13 /*
14  * HOW DO BLOCK RESERVES WORK
15  *
16  *   Think of block_rsv's as buckets for logically grouped metadata
17  *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
18  *   how large we want our block rsv to be, ->reserved is how much space is
19  *   currently reserved for this block reserve.
20  *
21  *   ->failfast exists for the truncate case, and is described below.
22  *
23  * NORMAL OPERATION
24  *
25  *   -> Reserve
26  *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
27  *
28  *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
29  *     accounted for in space_info->bytes_may_use, and then add the bytes to
30  *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
31  *
32  *     ->size is an over-estimation of how much we may use for a particular
33  *     operation.
34  *
35  *   -> Use
36  *     Entrance: btrfs_use_block_rsv
37  *
38  *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
39  *     to determine the appropriate block_rsv to use, and then verify that
40  *     ->reserved has enough space for our tree block allocation.  Once
41  *     successful we subtract fs_info->nodesize from ->reserved.
42  *
43  *   -> Finish
44  *     Entrance: btrfs_block_rsv_release
45  *
46  *     We are finished with our operation, subtract our individual reservation
47  *     from ->size, and then subtract ->size from ->reserved and free up the
48  *     excess if there is any.
49  *
50  *     There is some logic here to refill the delayed refs rsv or the global rsv
51  *     as needed, otherwise the excess is subtracted from
52  *     space_info->bytes_may_use.
53  *
54  * TYPES OF BLOCK RESERVES
55  *
56  * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
57  *   These behave normally, as described above, just within the confines of the
58  *   lifetime of their particular operation (transaction for the whole trans
59  *   handle lifetime, for example).
60  *
61  * BLOCK_RSV_GLOBAL
62  *   It is impossible to properly account for all the space that may be required
63  *   to make our extent tree updates.  This block reserve acts as an overflow
64  *   buffer in case our delayed refs reserve does not reserve enough space to
65  *   update the extent tree.
66  *
67  *   We can steal from this in some cases as well, notably on evict() or
68  *   truncate() in order to help users recover from ENOSPC conditions.
69  *
70  * BLOCK_RSV_DELALLOC
71  *   The individual item sizes are determined by the per-inode size
72  *   calculations, which are described with the delalloc code.  This is pretty
73  *   straightforward, it's just the calculation of ->size encodes a lot of
74  *   different items, and thus it gets used when updating inodes, inserting file
75  *   extents, and inserting checksums.
76  *
77  * BLOCK_RSV_DELREFS
78  *   We keep a running tally of how many delayed refs we have on the system.
79  *   We assume each one of these delayed refs are going to use a full
80  *   reservation.  We use the transaction items and pre-reserve space for every
81  *   operation, and use this reservation to refill any gap between ->size and
82  *   ->reserved that may exist.
83  *
84  *   From there it's straightforward, removing a delayed ref means we remove its
85  *   count from ->size and free up reservations as necessary.  Since this is
86  *   the most dynamic block reserve in the system, we will try to refill this
87  *   block reserve first with any excess returned by any other block reserve.
88  *
89  * BLOCK_RSV_EMPTY
90  *   This is the fallback block reserve to make us try to reserve space if we
91  *   don't have a specific bucket for this allocation.  It is mostly used for
92  *   updating the device tree and such, since that is a separate pool we're
93  *   content to just reserve space from the space_info on demand.
94  *
95  * BLOCK_RSV_TEMP
96  *   This is used by things like truncate and iput.  We will temporarily
97  *   allocate a block reserve, set it to some size, and then truncate bytes
98  *   until we have no space left.  With ->failfast set we'll simply return
99  *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
100  *   to make a new reservation.  This is because these operations are
101  *   unbounded, so we want to do as much work as we can, and then back off and
102  *   re-reserve.
103  */
104 
105 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
106 				    struct btrfs_block_rsv *block_rsv,
107 				    struct btrfs_block_rsv *dest, u64 num_bytes,
108 				    u64 *qgroup_to_release_ret)
109 {
110 	struct btrfs_space_info *space_info = block_rsv->space_info;
111 	u64 qgroup_to_release = 0;
112 	u64 ret;
113 
114 	spin_lock(&block_rsv->lock);
115 	if (num_bytes == (u64)-1) {
116 		num_bytes = block_rsv->size;
117 		qgroup_to_release = block_rsv->qgroup_rsv_size;
118 	}
119 	block_rsv->size -= num_bytes;
120 	if (block_rsv->reserved >= block_rsv->size) {
121 		num_bytes = block_rsv->reserved - block_rsv->size;
122 		block_rsv->reserved = block_rsv->size;
123 		block_rsv->full = true;
124 	} else {
125 		num_bytes = 0;
126 	}
127 	if (qgroup_to_release_ret &&
128 	    block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
129 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
130 				    block_rsv->qgroup_rsv_size;
131 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
132 	} else {
133 		qgroup_to_release = 0;
134 	}
135 	spin_unlock(&block_rsv->lock);
136 
137 	ret = num_bytes;
138 	if (num_bytes > 0) {
139 		if (dest) {
140 			spin_lock(&dest->lock);
141 			if (!dest->full) {
142 				u64 bytes_to_add;
143 
144 				bytes_to_add = dest->size - dest->reserved;
145 				bytes_to_add = min(num_bytes, bytes_to_add);
146 				dest->reserved += bytes_to_add;
147 				if (dest->reserved >= dest->size)
148 					dest->full = true;
149 				num_bytes -= bytes_to_add;
150 			}
151 			spin_unlock(&dest->lock);
152 		}
153 		if (num_bytes)
154 			btrfs_space_info_free_bytes_may_use(fs_info,
155 							    space_info,
156 							    num_bytes);
157 	}
158 	if (qgroup_to_release_ret)
159 		*qgroup_to_release_ret = qgroup_to_release;
160 	return ret;
161 }
162 
163 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
164 			    struct btrfs_block_rsv *dst, u64 num_bytes,
165 			    bool update_size)
166 {
167 	int ret;
168 
169 	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
170 	if (ret)
171 		return ret;
172 
173 	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
174 	return 0;
175 }
176 
177 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
178 {
179 	memset(rsv, 0, sizeof(*rsv));
180 	spin_lock_init(&rsv->lock);
181 	rsv->type = type;
182 }
183 
184 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
185 				   struct btrfs_block_rsv *rsv,
186 				   enum btrfs_rsv_type type)
187 {
188 	btrfs_init_block_rsv(rsv, type);
189 	rsv->space_info = btrfs_find_space_info(fs_info,
190 					    BTRFS_BLOCK_GROUP_METADATA);
191 }
192 
193 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
194 					      enum btrfs_rsv_type type)
195 {
196 	struct btrfs_block_rsv *block_rsv;
197 
198 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
199 	if (!block_rsv)
200 		return NULL;
201 
202 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
203 	return block_rsv;
204 }
205 
206 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
207 			  struct btrfs_block_rsv *rsv)
208 {
209 	if (!rsv)
210 		return;
211 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
212 	kfree(rsv);
213 }
214 
215 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
216 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
217 			enum btrfs_reserve_flush_enum flush)
218 {
219 	int ret;
220 
221 	if (num_bytes == 0)
222 		return 0;
223 
224 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
225 					   num_bytes, flush);
226 	if (!ret)
227 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
228 
229 	return ret;
230 }
231 
232 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
233 {
234 	u64 num_bytes = 0;
235 	int ret = -ENOSPC;
236 
237 	spin_lock(&block_rsv->lock);
238 	num_bytes = mult_perc(block_rsv->size, min_percent);
239 	if (block_rsv->reserved >= num_bytes)
240 		ret = 0;
241 	spin_unlock(&block_rsv->lock);
242 
243 	return ret;
244 }
245 
246 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
247 			   struct btrfs_block_rsv *block_rsv, u64 num_bytes,
248 			   enum btrfs_reserve_flush_enum flush)
249 {
250 	int ret = -ENOSPC;
251 
252 	if (!block_rsv)
253 		return 0;
254 
255 	spin_lock(&block_rsv->lock);
256 	if (block_rsv->reserved >= num_bytes)
257 		ret = 0;
258 	else
259 		num_bytes -= block_rsv->reserved;
260 	spin_unlock(&block_rsv->lock);
261 
262 	if (!ret)
263 		return 0;
264 
265 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
266 					   num_bytes, flush);
267 	if (!ret) {
268 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
269 		return 0;
270 	}
271 
272 	return ret;
273 }
274 
275 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
276 			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
277 			    u64 *qgroup_to_release)
278 {
279 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
280 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
281 	struct btrfs_block_rsv *target = NULL;
282 
283 	/*
284 	 * If we are a delayed block reserve then push to the global rsv,
285 	 * otherwise dump into the global delayed reserve if it is not full.
286 	 */
287 	if (block_rsv->type == BTRFS_BLOCK_RSV_DELOPS)
288 		target = global_rsv;
289 	else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
290 		target = delayed_rsv;
291 
292 	if (target && block_rsv->space_info != target->space_info)
293 		target = NULL;
294 
295 	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
296 				       qgroup_to_release);
297 }
298 
299 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
300 {
301 	int ret = -ENOSPC;
302 
303 	spin_lock(&block_rsv->lock);
304 	if (block_rsv->reserved >= num_bytes) {
305 		block_rsv->reserved -= num_bytes;
306 		if (block_rsv->reserved < block_rsv->size)
307 			block_rsv->full = false;
308 		ret = 0;
309 	}
310 	spin_unlock(&block_rsv->lock);
311 	return ret;
312 }
313 
314 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
315 			       u64 num_bytes, bool update_size)
316 {
317 	spin_lock(&block_rsv->lock);
318 	block_rsv->reserved += num_bytes;
319 	if (update_size)
320 		block_rsv->size += num_bytes;
321 	else if (block_rsv->reserved >= block_rsv->size)
322 		block_rsv->full = true;
323 	spin_unlock(&block_rsv->lock);
324 }
325 
326 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
327 {
328 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
329 	struct btrfs_space_info *sinfo = block_rsv->space_info;
330 	struct btrfs_root *root, *tmp;
331 	u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
332 	unsigned int min_items = 1;
333 
334 	/*
335 	 * The global block rsv is based on the size of the extent tree, the
336 	 * checksum tree and the root tree.  If the fs is empty we want to set
337 	 * it to a minimal amount for safety.
338 	 *
339 	 * We also are going to need to modify the minimum of the tree root and
340 	 * any global roots we could touch.
341 	 */
342 	read_lock(&fs_info->global_root_lock);
343 	rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
344 					     rb_node) {
345 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
346 		    root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
347 		    root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
348 			num_bytes += btrfs_root_used(&root->root_item);
349 			min_items++;
350 		}
351 	}
352 	read_unlock(&fs_info->global_root_lock);
353 
354 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
355 		num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item);
356 		min_items++;
357 	}
358 
359 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
360 		num_bytes += btrfs_root_used(&fs_info->stripe_root->root_item);
361 		min_items++;
362 	}
363 
364 	/*
365 	 * But we also want to reserve enough space so we can do the fallback
366 	 * global reserve for an unlink, which is an additional
367 	 * BTRFS_UNLINK_METADATA_UNITS items.
368 	 *
369 	 * But we also need space for the delayed ref updates from the unlink,
370 	 * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for
371 	 * each unlink metadata item.
372 	 */
373 	min_items += BTRFS_UNLINK_METADATA_UNITS;
374 
375 	num_bytes = max_t(u64, num_bytes,
376 			  btrfs_calc_insert_metadata_size(fs_info, min_items) +
377 			  btrfs_calc_delayed_ref_bytes(fs_info,
378 					       BTRFS_UNLINK_METADATA_UNITS));
379 
380 	spin_lock(&sinfo->lock);
381 	spin_lock(&block_rsv->lock);
382 
383 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
384 
385 	if (block_rsv->reserved < block_rsv->size) {
386 		num_bytes = block_rsv->size - block_rsv->reserved;
387 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
388 						      num_bytes);
389 		block_rsv->reserved = block_rsv->size;
390 	} else if (block_rsv->reserved > block_rsv->size) {
391 		num_bytes = block_rsv->reserved - block_rsv->size;
392 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
393 						      -num_bytes);
394 		block_rsv->reserved = block_rsv->size;
395 		btrfs_try_granting_tickets(fs_info, sinfo);
396 	}
397 
398 	block_rsv->full = (block_rsv->reserved == block_rsv->size);
399 
400 	if (block_rsv->size >= sinfo->total_bytes)
401 		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
402 	spin_unlock(&block_rsv->lock);
403 	spin_unlock(&sinfo->lock);
404 }
405 
406 void btrfs_init_root_block_rsv(struct btrfs_root *root)
407 {
408 	struct btrfs_fs_info *fs_info = root->fs_info;
409 
410 	switch (root->root_key.objectid) {
411 	case BTRFS_CSUM_TREE_OBJECTID:
412 	case BTRFS_EXTENT_TREE_OBJECTID:
413 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
414 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
415 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
416 		root->block_rsv = &fs_info->delayed_refs_rsv;
417 		break;
418 	case BTRFS_ROOT_TREE_OBJECTID:
419 	case BTRFS_DEV_TREE_OBJECTID:
420 	case BTRFS_QUOTA_TREE_OBJECTID:
421 		root->block_rsv = &fs_info->global_block_rsv;
422 		break;
423 	case BTRFS_CHUNK_TREE_OBJECTID:
424 		root->block_rsv = &fs_info->chunk_block_rsv;
425 		break;
426 	default:
427 		root->block_rsv = NULL;
428 		break;
429 	}
430 }
431 
432 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
433 {
434 	struct btrfs_space_info *space_info;
435 
436 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
437 	fs_info->chunk_block_rsv.space_info = space_info;
438 
439 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
440 	fs_info->global_block_rsv.space_info = space_info;
441 	fs_info->trans_block_rsv.space_info = space_info;
442 	fs_info->empty_block_rsv.space_info = space_info;
443 	fs_info->delayed_block_rsv.space_info = space_info;
444 	fs_info->delayed_refs_rsv.space_info = space_info;
445 
446 	btrfs_update_global_block_rsv(fs_info);
447 }
448 
449 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
450 {
451 	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
452 				NULL);
453 	WARN_ON(fs_info->trans_block_rsv.size > 0);
454 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
455 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
456 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
457 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
458 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
459 	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
460 	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
461 }
462 
463 static struct btrfs_block_rsv *get_block_rsv(
464 					const struct btrfs_trans_handle *trans,
465 					const struct btrfs_root *root)
466 {
467 	struct btrfs_fs_info *fs_info = root->fs_info;
468 	struct btrfs_block_rsv *block_rsv = NULL;
469 
470 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
471 	    (root == fs_info->uuid_root) ||
472 	    (trans->adding_csums &&
473 	     root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
474 		block_rsv = trans->block_rsv;
475 
476 	if (!block_rsv)
477 		block_rsv = root->block_rsv;
478 
479 	if (!block_rsv)
480 		block_rsv = &fs_info->empty_block_rsv;
481 
482 	return block_rsv;
483 }
484 
485 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
486 					    struct btrfs_root *root,
487 					    u32 blocksize)
488 {
489 	struct btrfs_fs_info *fs_info = root->fs_info;
490 	struct btrfs_block_rsv *block_rsv;
491 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
492 	int ret;
493 	bool global_updated = false;
494 
495 	block_rsv = get_block_rsv(trans, root);
496 
497 	if (unlikely(block_rsv->size == 0))
498 		goto try_reserve;
499 again:
500 	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
501 	if (!ret)
502 		return block_rsv;
503 
504 	if (block_rsv->failfast)
505 		return ERR_PTR(ret);
506 
507 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
508 		global_updated = true;
509 		btrfs_update_global_block_rsv(fs_info);
510 		goto again;
511 	}
512 
513 	/*
514 	 * The global reserve still exists to save us from ourselves, so don't
515 	 * warn_on if we are short on our delayed refs reserve.
516 	 */
517 	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
518 	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
519 		static DEFINE_RATELIMIT_STATE(_rs,
520 				DEFAULT_RATELIMIT_INTERVAL * 10,
521 				/*DEFAULT_RATELIMIT_BURST*/ 1);
522 		if (__ratelimit(&_rs))
523 			WARN(1, KERN_DEBUG
524 				"BTRFS: block rsv %d returned %d\n",
525 				block_rsv->type, ret);
526 	}
527 try_reserve:
528 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
529 					   blocksize, BTRFS_RESERVE_NO_FLUSH);
530 	if (!ret)
531 		return block_rsv;
532 	/*
533 	 * If we couldn't reserve metadata bytes try and use some from
534 	 * the global reserve if its space type is the same as the global
535 	 * reservation.
536 	 */
537 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
538 	    block_rsv->space_info == global_rsv->space_info) {
539 		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
540 		if (!ret)
541 			return global_rsv;
542 	}
543 
544 	/*
545 	 * All hope is lost, but of course our reservations are overly
546 	 * pessimistic, so instead of possibly having an ENOSPC abort here, try
547 	 * one last time to force a reservation if there's enough actual space
548 	 * on disk to make the reservation.
549 	 */
550 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, blocksize,
551 					   BTRFS_RESERVE_FLUSH_EMERGENCY);
552 	if (!ret)
553 		return block_rsv;
554 
555 	return ERR_PTR(ret);
556 }
557 
558 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
559 				       struct btrfs_block_rsv *rsv)
560 {
561 	u64 needed_bytes;
562 	int ret;
563 
564 	/* 1 for slack space, 1 for updating the inode */
565 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
566 		btrfs_calc_metadata_size(fs_info, 1);
567 
568 	spin_lock(&rsv->lock);
569 	if (rsv->reserved < needed_bytes)
570 		ret = -ENOSPC;
571 	else
572 		ret = 0;
573 	spin_unlock(&rsv->lock);
574 	return ret;
575 }
576