1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-rsv.h" 6 #include "space-info.h" 7 #include "transaction.h" 8 #include "block-group.h" 9 #include "disk-io.h" 10 11 /* 12 * HOW DO BLOCK RESERVES WORK 13 * 14 * Think of block_rsv's as buckets for logically grouped metadata 15 * reservations. Each block_rsv has a ->size and a ->reserved. ->size is 16 * how large we want our block rsv to be, ->reserved is how much space is 17 * currently reserved for this block reserve. 18 * 19 * ->failfast exists for the truncate case, and is described below. 20 * 21 * NORMAL OPERATION 22 * 23 * -> Reserve 24 * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill 25 * 26 * We call into btrfs_reserve_metadata_bytes() with our bytes, which is 27 * accounted for in space_info->bytes_may_use, and then add the bytes to 28 * ->reserved, and ->size in the case of btrfs_block_rsv_add. 29 * 30 * ->size is an over-estimation of how much we may use for a particular 31 * operation. 32 * 33 * -> Use 34 * Entrance: btrfs_use_block_rsv 35 * 36 * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv() 37 * to determine the appropriate block_rsv to use, and then verify that 38 * ->reserved has enough space for our tree block allocation. Once 39 * successful we subtract fs_info->nodesize from ->reserved. 40 * 41 * -> Finish 42 * Entrance: btrfs_block_rsv_release 43 * 44 * We are finished with our operation, subtract our individual reservation 45 * from ->size, and then subtract ->size from ->reserved and free up the 46 * excess if there is any. 47 * 48 * There is some logic here to refill the delayed refs rsv or the global rsv 49 * as needed, otherwise the excess is subtracted from 50 * space_info->bytes_may_use. 51 * 52 * TYPES OF BLOCK RESERVES 53 * 54 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK 55 * These behave normally, as described above, just within the confines of the 56 * lifetime of their particular operation (transaction for the whole trans 57 * handle lifetime, for example). 58 * 59 * BLOCK_RSV_GLOBAL 60 * It is impossible to properly account for all the space that may be required 61 * to make our extent tree updates. This block reserve acts as an overflow 62 * buffer in case our delayed refs reserve does not reserve enough space to 63 * update the extent tree. 64 * 65 * We can steal from this in some cases as well, notably on evict() or 66 * truncate() in order to help users recover from ENOSPC conditions. 67 * 68 * BLOCK_RSV_DELALLOC 69 * The individual item sizes are determined by the per-inode size 70 * calculations, which are described with the delalloc code. This is pretty 71 * straightforward, it's just the calculation of ->size encodes a lot of 72 * different items, and thus it gets used when updating inodes, inserting file 73 * extents, and inserting checksums. 74 * 75 * BLOCK_RSV_DELREFS 76 * We keep a running tally of how many delayed refs we have on the system. 77 * We assume each one of these delayed refs are going to use a full 78 * reservation. We use the transaction items and pre-reserve space for every 79 * operation, and use this reservation to refill any gap between ->size and 80 * ->reserved that may exist. 81 * 82 * From there it's straightforward, removing a delayed ref means we remove its 83 * count from ->size and free up reservations as necessary. Since this is 84 * the most dynamic block reserve in the system, we will try to refill this 85 * block reserve first with any excess returned by any other block reserve. 86 * 87 * BLOCK_RSV_EMPTY 88 * This is the fallback block reserve to make us try to reserve space if we 89 * don't have a specific bucket for this allocation. It is mostly used for 90 * updating the device tree and such, since that is a separate pool we're 91 * content to just reserve space from the space_info on demand. 92 * 93 * BLOCK_RSV_TEMP 94 * This is used by things like truncate and iput. We will temporarily 95 * allocate a block reserve, set it to some size, and then truncate bytes 96 * until we have no space left. With ->failfast set we'll simply return 97 * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try 98 * to make a new reservation. This is because these operations are 99 * unbounded, so we want to do as much work as we can, and then back off and 100 * re-reserve. 101 */ 102 103 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 104 struct btrfs_block_rsv *block_rsv, 105 struct btrfs_block_rsv *dest, u64 num_bytes, 106 u64 *qgroup_to_release_ret) 107 { 108 struct btrfs_space_info *space_info = block_rsv->space_info; 109 u64 qgroup_to_release = 0; 110 u64 ret; 111 112 spin_lock(&block_rsv->lock); 113 if (num_bytes == (u64)-1) { 114 num_bytes = block_rsv->size; 115 qgroup_to_release = block_rsv->qgroup_rsv_size; 116 } 117 block_rsv->size -= num_bytes; 118 if (block_rsv->reserved >= block_rsv->size) { 119 num_bytes = block_rsv->reserved - block_rsv->size; 120 block_rsv->reserved = block_rsv->size; 121 block_rsv->full = true; 122 } else { 123 num_bytes = 0; 124 } 125 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 126 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 127 block_rsv->qgroup_rsv_size; 128 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 129 } else { 130 qgroup_to_release = 0; 131 } 132 spin_unlock(&block_rsv->lock); 133 134 ret = num_bytes; 135 if (num_bytes > 0) { 136 if (dest) { 137 spin_lock(&dest->lock); 138 if (!dest->full) { 139 u64 bytes_to_add; 140 141 bytes_to_add = dest->size - dest->reserved; 142 bytes_to_add = min(num_bytes, bytes_to_add); 143 dest->reserved += bytes_to_add; 144 if (dest->reserved >= dest->size) 145 dest->full = true; 146 num_bytes -= bytes_to_add; 147 } 148 spin_unlock(&dest->lock); 149 } 150 if (num_bytes) 151 btrfs_space_info_free_bytes_may_use(fs_info, 152 space_info, 153 num_bytes); 154 } 155 if (qgroup_to_release_ret) 156 *qgroup_to_release_ret = qgroup_to_release; 157 return ret; 158 } 159 160 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 161 struct btrfs_block_rsv *dst, u64 num_bytes, 162 bool update_size) 163 { 164 int ret; 165 166 ret = btrfs_block_rsv_use_bytes(src, num_bytes); 167 if (ret) 168 return ret; 169 170 btrfs_block_rsv_add_bytes(dst, num_bytes, update_size); 171 return 0; 172 } 173 174 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type) 175 { 176 memset(rsv, 0, sizeof(*rsv)); 177 spin_lock_init(&rsv->lock); 178 rsv->type = type; 179 } 180 181 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 182 struct btrfs_block_rsv *rsv, 183 enum btrfs_rsv_type type) 184 { 185 btrfs_init_block_rsv(rsv, type); 186 rsv->space_info = btrfs_find_space_info(fs_info, 187 BTRFS_BLOCK_GROUP_METADATA); 188 } 189 190 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 191 enum btrfs_rsv_type type) 192 { 193 struct btrfs_block_rsv *block_rsv; 194 195 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 196 if (!block_rsv) 197 return NULL; 198 199 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 200 return block_rsv; 201 } 202 203 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 204 struct btrfs_block_rsv *rsv) 205 { 206 if (!rsv) 207 return; 208 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); 209 kfree(rsv); 210 } 211 212 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info, 213 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 214 enum btrfs_reserve_flush_enum flush) 215 { 216 int ret; 217 218 if (num_bytes == 0) 219 return 0; 220 221 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush); 222 if (!ret) 223 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true); 224 225 return ret; 226 } 227 228 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 229 { 230 u64 num_bytes = 0; 231 int ret = -ENOSPC; 232 233 if (!block_rsv) 234 return 0; 235 236 spin_lock(&block_rsv->lock); 237 num_bytes = div_factor(block_rsv->size, min_factor); 238 if (block_rsv->reserved >= num_bytes) 239 ret = 0; 240 spin_unlock(&block_rsv->lock); 241 242 return ret; 243 } 244 245 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info, 246 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 247 enum btrfs_reserve_flush_enum flush) 248 { 249 u64 num_bytes = 0; 250 int ret = -ENOSPC; 251 252 if (!block_rsv) 253 return 0; 254 255 spin_lock(&block_rsv->lock); 256 num_bytes = min_reserved; 257 if (block_rsv->reserved >= num_bytes) 258 ret = 0; 259 else 260 num_bytes -= block_rsv->reserved; 261 spin_unlock(&block_rsv->lock); 262 263 if (!ret) 264 return 0; 265 266 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush); 267 if (!ret) { 268 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false); 269 return 0; 270 } 271 272 return ret; 273 } 274 275 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 276 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 277 u64 *qgroup_to_release) 278 { 279 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 280 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 281 struct btrfs_block_rsv *target = NULL; 282 283 /* 284 * If we are the delayed_rsv then push to the global rsv, otherwise dump 285 * into the delayed rsv if it is not full. 286 */ 287 if (block_rsv == delayed_rsv) 288 target = global_rsv; 289 else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv)) 290 target = delayed_rsv; 291 292 if (target && block_rsv->space_info != target->space_info) 293 target = NULL; 294 295 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, 296 qgroup_to_release); 297 } 298 299 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes) 300 { 301 int ret = -ENOSPC; 302 303 spin_lock(&block_rsv->lock); 304 if (block_rsv->reserved >= num_bytes) { 305 block_rsv->reserved -= num_bytes; 306 if (block_rsv->reserved < block_rsv->size) 307 block_rsv->full = false; 308 ret = 0; 309 } 310 spin_unlock(&block_rsv->lock); 311 return ret; 312 } 313 314 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 315 u64 num_bytes, bool update_size) 316 { 317 spin_lock(&block_rsv->lock); 318 block_rsv->reserved += num_bytes; 319 if (update_size) 320 block_rsv->size += num_bytes; 321 else if (block_rsv->reserved >= block_rsv->size) 322 block_rsv->full = true; 323 spin_unlock(&block_rsv->lock); 324 } 325 326 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 327 struct btrfs_block_rsv *dest, u64 num_bytes, 328 int min_factor) 329 { 330 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 331 u64 min_bytes; 332 333 if (global_rsv->space_info != dest->space_info) 334 return -ENOSPC; 335 336 spin_lock(&global_rsv->lock); 337 min_bytes = div_factor(global_rsv->size, min_factor); 338 if (global_rsv->reserved < min_bytes + num_bytes) { 339 spin_unlock(&global_rsv->lock); 340 return -ENOSPC; 341 } 342 global_rsv->reserved -= num_bytes; 343 if (global_rsv->reserved < global_rsv->size) 344 global_rsv->full = false; 345 spin_unlock(&global_rsv->lock); 346 347 btrfs_block_rsv_add_bytes(dest, num_bytes, true); 348 return 0; 349 } 350 351 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info) 352 { 353 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 354 struct btrfs_space_info *sinfo = block_rsv->space_info; 355 struct btrfs_root *root, *tmp; 356 u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item); 357 unsigned int min_items = 1; 358 359 /* 360 * The global block rsv is based on the size of the extent tree, the 361 * checksum tree and the root tree. If the fs is empty we want to set 362 * it to a minimal amount for safety. 363 * 364 * We also are going to need to modify the minimum of the tree root and 365 * any global roots we could touch. 366 */ 367 read_lock(&fs_info->global_root_lock); 368 rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree, 369 rb_node) { 370 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID || 371 root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || 372 root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 373 num_bytes += btrfs_root_used(&root->root_item); 374 min_items++; 375 } 376 } 377 read_unlock(&fs_info->global_root_lock); 378 379 /* 380 * But we also want to reserve enough space so we can do the fallback 381 * global reserve for an unlink, which is an additional 5 items (see the 382 * comment in __unlink_start_trans for what we're modifying.) 383 * 384 * But we also need space for the delayed ref updates from the unlink, 385 * so its 10, 5 for the actual operation, and 5 for the delayed ref 386 * updates. 387 */ 388 min_items += 10; 389 390 num_bytes = max_t(u64, num_bytes, 391 btrfs_calc_insert_metadata_size(fs_info, min_items)); 392 393 spin_lock(&sinfo->lock); 394 spin_lock(&block_rsv->lock); 395 396 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 397 398 if (block_rsv->reserved < block_rsv->size) { 399 num_bytes = block_rsv->size - block_rsv->reserved; 400 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 401 num_bytes); 402 block_rsv->reserved = block_rsv->size; 403 } else if (block_rsv->reserved > block_rsv->size) { 404 num_bytes = block_rsv->reserved - block_rsv->size; 405 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 406 -num_bytes); 407 block_rsv->reserved = block_rsv->size; 408 btrfs_try_granting_tickets(fs_info, sinfo); 409 } 410 411 block_rsv->full = (block_rsv->reserved == block_rsv->size); 412 413 if (block_rsv->size >= sinfo->total_bytes) 414 sinfo->force_alloc = CHUNK_ALLOC_FORCE; 415 spin_unlock(&block_rsv->lock); 416 spin_unlock(&sinfo->lock); 417 } 418 419 void btrfs_init_root_block_rsv(struct btrfs_root *root) 420 { 421 struct btrfs_fs_info *fs_info = root->fs_info; 422 423 switch (root->root_key.objectid) { 424 case BTRFS_CSUM_TREE_OBJECTID: 425 case BTRFS_EXTENT_TREE_OBJECTID: 426 case BTRFS_FREE_SPACE_TREE_OBJECTID: 427 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 428 root->block_rsv = &fs_info->delayed_refs_rsv; 429 break; 430 case BTRFS_ROOT_TREE_OBJECTID: 431 case BTRFS_DEV_TREE_OBJECTID: 432 case BTRFS_QUOTA_TREE_OBJECTID: 433 root->block_rsv = &fs_info->global_block_rsv; 434 break; 435 case BTRFS_CHUNK_TREE_OBJECTID: 436 root->block_rsv = &fs_info->chunk_block_rsv; 437 break; 438 default: 439 root->block_rsv = NULL; 440 break; 441 } 442 } 443 444 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info) 445 { 446 struct btrfs_space_info *space_info; 447 448 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 449 fs_info->chunk_block_rsv.space_info = space_info; 450 451 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 452 fs_info->global_block_rsv.space_info = space_info; 453 fs_info->trans_block_rsv.space_info = space_info; 454 fs_info->empty_block_rsv.space_info = space_info; 455 fs_info->delayed_block_rsv.space_info = space_info; 456 fs_info->delayed_refs_rsv.space_info = space_info; 457 458 btrfs_update_global_block_rsv(fs_info); 459 } 460 461 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info) 462 { 463 btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1, 464 NULL); 465 WARN_ON(fs_info->trans_block_rsv.size > 0); 466 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 467 WARN_ON(fs_info->chunk_block_rsv.size > 0); 468 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 469 WARN_ON(fs_info->delayed_block_rsv.size > 0); 470 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 471 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); 472 WARN_ON(fs_info->delayed_refs_rsv.size > 0); 473 } 474 475 static struct btrfs_block_rsv *get_block_rsv( 476 const struct btrfs_trans_handle *trans, 477 const struct btrfs_root *root) 478 { 479 struct btrfs_fs_info *fs_info = root->fs_info; 480 struct btrfs_block_rsv *block_rsv = NULL; 481 482 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 483 (root == fs_info->uuid_root) || 484 (trans->adding_csums && 485 root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID)) 486 block_rsv = trans->block_rsv; 487 488 if (!block_rsv) 489 block_rsv = root->block_rsv; 490 491 if (!block_rsv) 492 block_rsv = &fs_info->empty_block_rsv; 493 494 return block_rsv; 495 } 496 497 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans, 498 struct btrfs_root *root, 499 u32 blocksize) 500 { 501 struct btrfs_fs_info *fs_info = root->fs_info; 502 struct btrfs_block_rsv *block_rsv; 503 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 504 int ret; 505 bool global_updated = false; 506 507 block_rsv = get_block_rsv(trans, root); 508 509 if (unlikely(block_rsv->size == 0)) 510 goto try_reserve; 511 again: 512 ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize); 513 if (!ret) 514 return block_rsv; 515 516 if (block_rsv->failfast) 517 return ERR_PTR(ret); 518 519 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 520 global_updated = true; 521 btrfs_update_global_block_rsv(fs_info); 522 goto again; 523 } 524 525 /* 526 * The global reserve still exists to save us from ourselves, so don't 527 * warn_on if we are short on our delayed refs reserve. 528 */ 529 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && 530 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 531 static DEFINE_RATELIMIT_STATE(_rs, 532 DEFAULT_RATELIMIT_INTERVAL * 10, 533 /*DEFAULT_RATELIMIT_BURST*/ 1); 534 if (__ratelimit(&_rs)) 535 WARN(1, KERN_DEBUG 536 "BTRFS: block rsv %d returned %d\n", 537 block_rsv->type, ret); 538 } 539 try_reserve: 540 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize, 541 BTRFS_RESERVE_NO_FLUSH); 542 if (!ret) 543 return block_rsv; 544 /* 545 * If we couldn't reserve metadata bytes try and use some from 546 * the global reserve if its space type is the same as the global 547 * reservation. 548 */ 549 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 550 block_rsv->space_info == global_rsv->space_info) { 551 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize); 552 if (!ret) 553 return global_rsv; 554 } 555 return ERR_PTR(ret); 556 } 557