1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-rsv.h" 6 #include "space-info.h" 7 #include "transaction.h" 8 #include "block-group.h" 9 #include "fs.h" 10 #include "accessors.h" 11 12 /* 13 * HOW DO BLOCK RESERVES WORK 14 * 15 * Think of block_rsv's as buckets for logically grouped metadata 16 * reservations. Each block_rsv has a ->size and a ->reserved. ->size is 17 * how large we want our block rsv to be, ->reserved is how much space is 18 * currently reserved for this block reserve. 19 * 20 * ->failfast exists for the truncate case, and is described below. 21 * 22 * NORMAL OPERATION 23 * 24 * -> Reserve 25 * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill 26 * 27 * We call into btrfs_reserve_metadata_bytes() with our bytes, which is 28 * accounted for in space_info->bytes_may_use, and then add the bytes to 29 * ->reserved, and ->size in the case of btrfs_block_rsv_add. 30 * 31 * ->size is an over-estimation of how much we may use for a particular 32 * operation. 33 * 34 * -> Use 35 * Entrance: btrfs_use_block_rsv 36 * 37 * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv() 38 * to determine the appropriate block_rsv to use, and then verify that 39 * ->reserved has enough space for our tree block allocation. Once 40 * successful we subtract fs_info->nodesize from ->reserved. 41 * 42 * -> Finish 43 * Entrance: btrfs_block_rsv_release 44 * 45 * We are finished with our operation, subtract our individual reservation 46 * from ->size, and then subtract ->size from ->reserved and free up the 47 * excess if there is any. 48 * 49 * There is some logic here to refill the delayed refs rsv or the global rsv 50 * as needed, otherwise the excess is subtracted from 51 * space_info->bytes_may_use. 52 * 53 * TYPES OF BLOCK RESERVES 54 * 55 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK 56 * These behave normally, as described above, just within the confines of the 57 * lifetime of their particular operation (transaction for the whole trans 58 * handle lifetime, for example). 59 * 60 * BLOCK_RSV_GLOBAL 61 * It is impossible to properly account for all the space that may be required 62 * to make our extent tree updates. This block reserve acts as an overflow 63 * buffer in case our delayed refs reserve does not reserve enough space to 64 * update the extent tree. 65 * 66 * We can steal from this in some cases as well, notably on evict() or 67 * truncate() in order to help users recover from ENOSPC conditions. 68 * 69 * BLOCK_RSV_DELALLOC 70 * The individual item sizes are determined by the per-inode size 71 * calculations, which are described with the delalloc code. This is pretty 72 * straightforward, it's just the calculation of ->size encodes a lot of 73 * different items, and thus it gets used when updating inodes, inserting file 74 * extents, and inserting checksums. 75 * 76 * BLOCK_RSV_DELREFS 77 * We keep a running tally of how many delayed refs we have on the system. 78 * We assume each one of these delayed refs are going to use a full 79 * reservation. We use the transaction items and pre-reserve space for every 80 * operation, and use this reservation to refill any gap between ->size and 81 * ->reserved that may exist. 82 * 83 * From there it's straightforward, removing a delayed ref means we remove its 84 * count from ->size and free up reservations as necessary. Since this is 85 * the most dynamic block reserve in the system, we will try to refill this 86 * block reserve first with any excess returned by any other block reserve. 87 * 88 * BLOCK_RSV_EMPTY 89 * This is the fallback block reserve to make us try to reserve space if we 90 * don't have a specific bucket for this allocation. It is mostly used for 91 * updating the device tree and such, since that is a separate pool we're 92 * content to just reserve space from the space_info on demand. 93 * 94 * BLOCK_RSV_TEMP 95 * This is used by things like truncate and iput. We will temporarily 96 * allocate a block reserve, set it to some size, and then truncate bytes 97 * until we have no space left. With ->failfast set we'll simply return 98 * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try 99 * to make a new reservation. This is because these operations are 100 * unbounded, so we want to do as much work as we can, and then back off and 101 * re-reserve. 102 */ 103 104 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 105 struct btrfs_block_rsv *block_rsv, 106 struct btrfs_block_rsv *dest, u64 num_bytes, 107 u64 *qgroup_to_release_ret) 108 { 109 struct btrfs_space_info *space_info = block_rsv->space_info; 110 u64 qgroup_to_release = 0; 111 u64 ret; 112 113 spin_lock(&block_rsv->lock); 114 if (num_bytes == (u64)-1) { 115 num_bytes = block_rsv->size; 116 qgroup_to_release = block_rsv->qgroup_rsv_size; 117 } 118 block_rsv->size -= num_bytes; 119 if (block_rsv->reserved >= block_rsv->size) { 120 num_bytes = block_rsv->reserved - block_rsv->size; 121 block_rsv->reserved = block_rsv->size; 122 block_rsv->full = true; 123 } else { 124 num_bytes = 0; 125 } 126 if (qgroup_to_release_ret && 127 block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 128 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 129 block_rsv->qgroup_rsv_size; 130 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 131 } else { 132 qgroup_to_release = 0; 133 } 134 spin_unlock(&block_rsv->lock); 135 136 ret = num_bytes; 137 if (num_bytes > 0) { 138 if (dest) { 139 spin_lock(&dest->lock); 140 if (!dest->full) { 141 u64 bytes_to_add; 142 143 bytes_to_add = dest->size - dest->reserved; 144 bytes_to_add = min(num_bytes, bytes_to_add); 145 dest->reserved += bytes_to_add; 146 if (dest->reserved >= dest->size) 147 dest->full = true; 148 num_bytes -= bytes_to_add; 149 } 150 spin_unlock(&dest->lock); 151 } 152 if (num_bytes) 153 btrfs_space_info_free_bytes_may_use(space_info, num_bytes); 154 } 155 if (qgroup_to_release_ret) 156 *qgroup_to_release_ret = qgroup_to_release; 157 return ret; 158 } 159 160 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 161 struct btrfs_block_rsv *dst, u64 num_bytes, 162 bool update_size) 163 { 164 int ret; 165 166 ret = btrfs_block_rsv_use_bytes(src, num_bytes); 167 if (ret) 168 return ret; 169 170 btrfs_block_rsv_add_bytes(dst, num_bytes, update_size); 171 return 0; 172 } 173 174 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type) 175 { 176 memset(rsv, 0, sizeof(*rsv)); 177 spin_lock_init(&rsv->lock); 178 rsv->type = type; 179 } 180 181 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 182 struct btrfs_block_rsv *rsv, 183 enum btrfs_rsv_type type) 184 { 185 btrfs_init_block_rsv(rsv, type); 186 rsv->space_info = btrfs_find_space_info(fs_info, 187 BTRFS_BLOCK_GROUP_METADATA); 188 } 189 190 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 191 enum btrfs_rsv_type type) 192 { 193 struct btrfs_block_rsv *block_rsv; 194 195 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 196 if (!block_rsv) 197 return NULL; 198 199 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 200 return block_rsv; 201 } 202 203 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 204 struct btrfs_block_rsv *rsv) 205 { 206 if (!rsv) 207 return; 208 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); 209 kfree(rsv); 210 } 211 212 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info, 213 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 214 enum btrfs_reserve_flush_enum flush) 215 { 216 int ret; 217 218 if (num_bytes == 0) 219 return 0; 220 221 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, 222 num_bytes, flush); 223 if (!ret) 224 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true); 225 226 return ret; 227 } 228 229 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent) 230 { 231 u64 num_bytes = 0; 232 int ret = -ENOSPC; 233 234 spin_lock(&block_rsv->lock); 235 num_bytes = mult_perc(block_rsv->size, min_percent); 236 if (block_rsv->reserved >= num_bytes) 237 ret = 0; 238 spin_unlock(&block_rsv->lock); 239 240 return ret; 241 } 242 243 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info, 244 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 245 enum btrfs_reserve_flush_enum flush) 246 { 247 int ret = -ENOSPC; 248 249 if (!block_rsv) 250 return 0; 251 252 spin_lock(&block_rsv->lock); 253 if (block_rsv->reserved >= num_bytes) 254 ret = 0; 255 else 256 num_bytes -= block_rsv->reserved; 257 spin_unlock(&block_rsv->lock); 258 259 if (!ret) 260 return 0; 261 262 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, 263 num_bytes, flush); 264 if (!ret) { 265 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false); 266 return 0; 267 } 268 269 return ret; 270 } 271 272 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 273 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 274 u64 *qgroup_to_release) 275 { 276 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 277 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 278 struct btrfs_block_rsv *target = NULL; 279 280 /* 281 * If we are a delayed block reserve then push to the global rsv, 282 * otherwise dump into the global delayed reserve if it is not full. 283 */ 284 if (block_rsv->type == BTRFS_BLOCK_RSV_DELOPS) 285 target = global_rsv; 286 else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv)) 287 target = delayed_rsv; 288 289 if (target && block_rsv->space_info != target->space_info) 290 target = NULL; 291 292 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, 293 qgroup_to_release); 294 } 295 296 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes) 297 { 298 int ret = -ENOSPC; 299 300 spin_lock(&block_rsv->lock); 301 if (block_rsv->reserved >= num_bytes) { 302 block_rsv->reserved -= num_bytes; 303 if (block_rsv->reserved < block_rsv->size) 304 block_rsv->full = false; 305 ret = 0; 306 } 307 spin_unlock(&block_rsv->lock); 308 return ret; 309 } 310 311 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 312 u64 num_bytes, bool update_size) 313 { 314 spin_lock(&block_rsv->lock); 315 block_rsv->reserved += num_bytes; 316 if (update_size) 317 block_rsv->size += num_bytes; 318 else if (block_rsv->reserved >= block_rsv->size) 319 block_rsv->full = true; 320 spin_unlock(&block_rsv->lock); 321 } 322 323 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info) 324 { 325 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 326 struct btrfs_space_info *sinfo = block_rsv->space_info; 327 struct btrfs_root *root, *tmp; 328 u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item); 329 unsigned int min_items = 1; 330 331 /* 332 * The global block rsv is based on the size of the extent tree, the 333 * checksum tree and the root tree. If the fs is empty we want to set 334 * it to a minimal amount for safety. 335 * 336 * We also are going to need to modify the minimum of the tree root and 337 * any global roots we could touch. 338 */ 339 read_lock(&fs_info->global_root_lock); 340 rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree, 341 rb_node) { 342 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID || 343 btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID || 344 btrfs_root_id(root) == BTRFS_FREE_SPACE_TREE_OBJECTID) { 345 num_bytes += btrfs_root_used(&root->root_item); 346 min_items++; 347 } 348 } 349 read_unlock(&fs_info->global_root_lock); 350 351 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 352 num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item); 353 min_items++; 354 } 355 356 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 357 num_bytes += btrfs_root_used(&fs_info->stripe_root->root_item); 358 min_items++; 359 } 360 361 /* 362 * But we also want to reserve enough space so we can do the fallback 363 * global reserve for an unlink, which is an additional 364 * BTRFS_UNLINK_METADATA_UNITS items. 365 * 366 * But we also need space for the delayed ref updates from the unlink, 367 * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for 368 * each unlink metadata item. 369 */ 370 min_items += BTRFS_UNLINK_METADATA_UNITS; 371 372 num_bytes = max_t(u64, num_bytes, 373 btrfs_calc_insert_metadata_size(fs_info, min_items) + 374 btrfs_calc_delayed_ref_bytes(fs_info, 375 BTRFS_UNLINK_METADATA_UNITS)); 376 377 spin_lock(&sinfo->lock); 378 spin_lock(&block_rsv->lock); 379 380 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 381 382 if (block_rsv->reserved < block_rsv->size) { 383 num_bytes = block_rsv->size - block_rsv->reserved; 384 btrfs_space_info_update_bytes_may_use(sinfo, num_bytes); 385 block_rsv->reserved = block_rsv->size; 386 } else if (block_rsv->reserved > block_rsv->size) { 387 num_bytes = block_rsv->reserved - block_rsv->size; 388 btrfs_space_info_update_bytes_may_use(sinfo, -num_bytes); 389 block_rsv->reserved = block_rsv->size; 390 btrfs_try_granting_tickets(fs_info, sinfo); 391 } 392 393 block_rsv->full = (block_rsv->reserved == block_rsv->size); 394 395 if (block_rsv->size >= sinfo->total_bytes) 396 sinfo->force_alloc = CHUNK_ALLOC_FORCE; 397 spin_unlock(&block_rsv->lock); 398 spin_unlock(&sinfo->lock); 399 } 400 401 void btrfs_init_root_block_rsv(struct btrfs_root *root) 402 { 403 struct btrfs_fs_info *fs_info = root->fs_info; 404 405 switch (btrfs_root_id(root)) { 406 case BTRFS_CSUM_TREE_OBJECTID: 407 case BTRFS_EXTENT_TREE_OBJECTID: 408 case BTRFS_FREE_SPACE_TREE_OBJECTID: 409 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 410 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 411 root->block_rsv = &fs_info->delayed_refs_rsv; 412 break; 413 case BTRFS_ROOT_TREE_OBJECTID: 414 case BTRFS_DEV_TREE_OBJECTID: 415 case BTRFS_QUOTA_TREE_OBJECTID: 416 root->block_rsv = &fs_info->global_block_rsv; 417 break; 418 case BTRFS_CHUNK_TREE_OBJECTID: 419 root->block_rsv = &fs_info->chunk_block_rsv; 420 break; 421 default: 422 root->block_rsv = NULL; 423 break; 424 } 425 } 426 427 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info) 428 { 429 struct btrfs_space_info *space_info; 430 431 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 432 fs_info->chunk_block_rsv.space_info = space_info; 433 434 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 435 fs_info->global_block_rsv.space_info = space_info; 436 fs_info->trans_block_rsv.space_info = space_info; 437 fs_info->empty_block_rsv.space_info = space_info; 438 fs_info->delayed_block_rsv.space_info = space_info; 439 fs_info->delayed_refs_rsv.space_info = space_info; 440 441 btrfs_update_global_block_rsv(fs_info); 442 } 443 444 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info) 445 { 446 btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1, 447 NULL); 448 WARN_ON(fs_info->trans_block_rsv.size > 0); 449 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 450 WARN_ON(fs_info->chunk_block_rsv.size > 0); 451 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 452 WARN_ON(fs_info->delayed_block_rsv.size > 0); 453 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 454 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); 455 WARN_ON(fs_info->delayed_refs_rsv.size > 0); 456 } 457 458 static struct btrfs_block_rsv *get_block_rsv( 459 const struct btrfs_trans_handle *trans, 460 const struct btrfs_root *root) 461 { 462 struct btrfs_fs_info *fs_info = root->fs_info; 463 struct btrfs_block_rsv *block_rsv = NULL; 464 465 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 466 (root == fs_info->uuid_root) || 467 (trans->adding_csums && btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID)) 468 block_rsv = trans->block_rsv; 469 470 if (!block_rsv) 471 block_rsv = root->block_rsv; 472 473 if (!block_rsv) 474 block_rsv = &fs_info->empty_block_rsv; 475 476 return block_rsv; 477 } 478 479 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans, 480 struct btrfs_root *root, 481 u32 blocksize) 482 { 483 struct btrfs_fs_info *fs_info = root->fs_info; 484 struct btrfs_block_rsv *block_rsv; 485 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 486 int ret; 487 bool global_updated = false; 488 489 block_rsv = get_block_rsv(trans, root); 490 491 if (unlikely(btrfs_block_rsv_size(block_rsv) == 0)) 492 goto try_reserve; 493 again: 494 ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize); 495 if (!ret) 496 return block_rsv; 497 498 if (block_rsv->failfast) 499 return ERR_PTR(ret); 500 501 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 502 global_updated = true; 503 btrfs_update_global_block_rsv(fs_info); 504 goto again; 505 } 506 507 /* 508 * The global reserve still exists to save us from ourselves, so don't 509 * warn_on if we are short on our delayed refs reserve. 510 */ 511 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && 512 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 513 static DEFINE_RATELIMIT_STATE(_rs, 514 DEFAULT_RATELIMIT_INTERVAL * 10, 515 /*DEFAULT_RATELIMIT_BURST*/ 1); 516 if (__ratelimit(&_rs)) 517 WARN(1, KERN_DEBUG 518 "BTRFS: block rsv %d returned %d\n", 519 block_rsv->type, ret); 520 } 521 try_reserve: 522 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, 523 blocksize, BTRFS_RESERVE_NO_FLUSH); 524 if (!ret) 525 return block_rsv; 526 /* 527 * If we couldn't reserve metadata bytes try and use some from 528 * the global reserve if its space type is the same as the global 529 * reservation. 530 */ 531 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 532 block_rsv->space_info == global_rsv->space_info) { 533 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize); 534 if (!ret) 535 return global_rsv; 536 } 537 538 /* 539 * All hope is lost, but of course our reservations are overly 540 * pessimistic, so instead of possibly having an ENOSPC abort here, try 541 * one last time to force a reservation if there's enough actual space 542 * on disk to make the reservation. 543 */ 544 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, blocksize, 545 BTRFS_RESERVE_FLUSH_EMERGENCY); 546 if (!ret) 547 return block_rsv; 548 549 return ERR_PTR(ret); 550 } 551 552 int btrfs_check_trunc_cache_free_space(const struct btrfs_fs_info *fs_info, 553 struct btrfs_block_rsv *rsv) 554 { 555 u64 needed_bytes; 556 int ret; 557 558 /* 1 for slack space, 1 for updating the inode */ 559 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 560 btrfs_calc_metadata_size(fs_info, 1); 561 562 spin_lock(&rsv->lock); 563 if (rsv->reserved < needed_bytes) 564 ret = -ENOSPC; 565 else 566 ret = 0; 567 spin_unlock(&rsv->lock); 568 return ret; 569 } 570