1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-rsv.h" 6 #include "space-info.h" 7 #include "transaction.h" 8 #include "block-group.h" 9 #include "disk-io.h" 10 #include "fs.h" 11 #include "accessors.h" 12 13 /* 14 * HOW DO BLOCK RESERVES WORK 15 * 16 * Think of block_rsv's as buckets for logically grouped metadata 17 * reservations. Each block_rsv has a ->size and a ->reserved. ->size is 18 * how large we want our block rsv to be, ->reserved is how much space is 19 * currently reserved for this block reserve. 20 * 21 * ->failfast exists for the truncate case, and is described below. 22 * 23 * NORMAL OPERATION 24 * 25 * -> Reserve 26 * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill 27 * 28 * We call into btrfs_reserve_metadata_bytes() with our bytes, which is 29 * accounted for in space_info->bytes_may_use, and then add the bytes to 30 * ->reserved, and ->size in the case of btrfs_block_rsv_add. 31 * 32 * ->size is an over-estimation of how much we may use for a particular 33 * operation. 34 * 35 * -> Use 36 * Entrance: btrfs_use_block_rsv 37 * 38 * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv() 39 * to determine the appropriate block_rsv to use, and then verify that 40 * ->reserved has enough space for our tree block allocation. Once 41 * successful we subtract fs_info->nodesize from ->reserved. 42 * 43 * -> Finish 44 * Entrance: btrfs_block_rsv_release 45 * 46 * We are finished with our operation, subtract our individual reservation 47 * from ->size, and then subtract ->size from ->reserved and free up the 48 * excess if there is any. 49 * 50 * There is some logic here to refill the delayed refs rsv or the global rsv 51 * as needed, otherwise the excess is subtracted from 52 * space_info->bytes_may_use. 53 * 54 * TYPES OF BLOCK RESERVES 55 * 56 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK 57 * These behave normally, as described above, just within the confines of the 58 * lifetime of their particular operation (transaction for the whole trans 59 * handle lifetime, for example). 60 * 61 * BLOCK_RSV_GLOBAL 62 * It is impossible to properly account for all the space that may be required 63 * to make our extent tree updates. This block reserve acts as an overflow 64 * buffer in case our delayed refs reserve does not reserve enough space to 65 * update the extent tree. 66 * 67 * We can steal from this in some cases as well, notably on evict() or 68 * truncate() in order to help users recover from ENOSPC conditions. 69 * 70 * BLOCK_RSV_DELALLOC 71 * The individual item sizes are determined by the per-inode size 72 * calculations, which are described with the delalloc code. This is pretty 73 * straightforward, it's just the calculation of ->size encodes a lot of 74 * different items, and thus it gets used when updating inodes, inserting file 75 * extents, and inserting checksums. 76 * 77 * BLOCK_RSV_DELREFS 78 * We keep a running tally of how many delayed refs we have on the system. 79 * We assume each one of these delayed refs are going to use a full 80 * reservation. We use the transaction items and pre-reserve space for every 81 * operation, and use this reservation to refill any gap between ->size and 82 * ->reserved that may exist. 83 * 84 * From there it's straightforward, removing a delayed ref means we remove its 85 * count from ->size and free up reservations as necessary. Since this is 86 * the most dynamic block reserve in the system, we will try to refill this 87 * block reserve first with any excess returned by any other block reserve. 88 * 89 * BLOCK_RSV_EMPTY 90 * This is the fallback block reserve to make us try to reserve space if we 91 * don't have a specific bucket for this allocation. It is mostly used for 92 * updating the device tree and such, since that is a separate pool we're 93 * content to just reserve space from the space_info on demand. 94 * 95 * BLOCK_RSV_TEMP 96 * This is used by things like truncate and iput. We will temporarily 97 * allocate a block reserve, set it to some size, and then truncate bytes 98 * until we have no space left. With ->failfast set we'll simply return 99 * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try 100 * to make a new reservation. This is because these operations are 101 * unbounded, so we want to do as much work as we can, and then back off and 102 * re-reserve. 103 */ 104 105 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 106 struct btrfs_block_rsv *block_rsv, 107 struct btrfs_block_rsv *dest, u64 num_bytes, 108 u64 *qgroup_to_release_ret) 109 { 110 struct btrfs_space_info *space_info = block_rsv->space_info; 111 u64 qgroup_to_release = 0; 112 u64 ret; 113 114 spin_lock(&block_rsv->lock); 115 if (num_bytes == (u64)-1) { 116 num_bytes = block_rsv->size; 117 qgroup_to_release = block_rsv->qgroup_rsv_size; 118 } 119 block_rsv->size -= num_bytes; 120 if (block_rsv->reserved >= block_rsv->size) { 121 num_bytes = block_rsv->reserved - block_rsv->size; 122 block_rsv->reserved = block_rsv->size; 123 block_rsv->full = true; 124 } else { 125 num_bytes = 0; 126 } 127 if (qgroup_to_release_ret && 128 block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 129 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 130 block_rsv->qgroup_rsv_size; 131 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 132 } else { 133 qgroup_to_release = 0; 134 } 135 spin_unlock(&block_rsv->lock); 136 137 ret = num_bytes; 138 if (num_bytes > 0) { 139 if (dest) { 140 spin_lock(&dest->lock); 141 if (!dest->full) { 142 u64 bytes_to_add; 143 144 bytes_to_add = dest->size - dest->reserved; 145 bytes_to_add = min(num_bytes, bytes_to_add); 146 dest->reserved += bytes_to_add; 147 if (dest->reserved >= dest->size) 148 dest->full = true; 149 num_bytes -= bytes_to_add; 150 } 151 spin_unlock(&dest->lock); 152 } 153 if (num_bytes) 154 btrfs_space_info_free_bytes_may_use(fs_info, 155 space_info, 156 num_bytes); 157 } 158 if (qgroup_to_release_ret) 159 *qgroup_to_release_ret = qgroup_to_release; 160 return ret; 161 } 162 163 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 164 struct btrfs_block_rsv *dst, u64 num_bytes, 165 bool update_size) 166 { 167 int ret; 168 169 ret = btrfs_block_rsv_use_bytes(src, num_bytes); 170 if (ret) 171 return ret; 172 173 btrfs_block_rsv_add_bytes(dst, num_bytes, update_size); 174 return 0; 175 } 176 177 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type) 178 { 179 memset(rsv, 0, sizeof(*rsv)); 180 spin_lock_init(&rsv->lock); 181 rsv->type = type; 182 } 183 184 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 185 struct btrfs_block_rsv *rsv, 186 enum btrfs_rsv_type type) 187 { 188 btrfs_init_block_rsv(rsv, type); 189 rsv->space_info = btrfs_find_space_info(fs_info, 190 BTRFS_BLOCK_GROUP_METADATA); 191 } 192 193 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 194 enum btrfs_rsv_type type) 195 { 196 struct btrfs_block_rsv *block_rsv; 197 198 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 199 if (!block_rsv) 200 return NULL; 201 202 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 203 return block_rsv; 204 } 205 206 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 207 struct btrfs_block_rsv *rsv) 208 { 209 if (!rsv) 210 return; 211 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); 212 kfree(rsv); 213 } 214 215 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info, 216 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 217 enum btrfs_reserve_flush_enum flush) 218 { 219 int ret; 220 221 if (num_bytes == 0) 222 return 0; 223 224 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush); 225 if (!ret) 226 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true); 227 228 return ret; 229 } 230 231 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent) 232 { 233 u64 num_bytes = 0; 234 int ret = -ENOSPC; 235 236 spin_lock(&block_rsv->lock); 237 num_bytes = mult_perc(block_rsv->size, min_percent); 238 if (block_rsv->reserved >= num_bytes) 239 ret = 0; 240 spin_unlock(&block_rsv->lock); 241 242 return ret; 243 } 244 245 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info, 246 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 247 enum btrfs_reserve_flush_enum flush) 248 { 249 int ret = -ENOSPC; 250 251 if (!block_rsv) 252 return 0; 253 254 spin_lock(&block_rsv->lock); 255 if (block_rsv->reserved >= num_bytes) 256 ret = 0; 257 else 258 num_bytes -= block_rsv->reserved; 259 spin_unlock(&block_rsv->lock); 260 261 if (!ret) 262 return 0; 263 264 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush); 265 if (!ret) { 266 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false); 267 return 0; 268 } 269 270 return ret; 271 } 272 273 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 274 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 275 u64 *qgroup_to_release) 276 { 277 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 278 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 279 struct btrfs_block_rsv *target = NULL; 280 281 /* 282 * If we are the delayed_rsv then push to the global rsv, otherwise dump 283 * into the delayed rsv if it is not full. 284 */ 285 if (block_rsv == delayed_rsv) 286 target = global_rsv; 287 else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv)) 288 target = delayed_rsv; 289 290 if (target && block_rsv->space_info != target->space_info) 291 target = NULL; 292 293 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, 294 qgroup_to_release); 295 } 296 297 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes) 298 { 299 int ret = -ENOSPC; 300 301 spin_lock(&block_rsv->lock); 302 if (block_rsv->reserved >= num_bytes) { 303 block_rsv->reserved -= num_bytes; 304 if (block_rsv->reserved < block_rsv->size) 305 block_rsv->full = false; 306 ret = 0; 307 } 308 spin_unlock(&block_rsv->lock); 309 return ret; 310 } 311 312 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 313 u64 num_bytes, bool update_size) 314 { 315 spin_lock(&block_rsv->lock); 316 block_rsv->reserved += num_bytes; 317 if (update_size) 318 block_rsv->size += num_bytes; 319 else if (block_rsv->reserved >= block_rsv->size) 320 block_rsv->full = true; 321 spin_unlock(&block_rsv->lock); 322 } 323 324 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info) 325 { 326 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 327 struct btrfs_space_info *sinfo = block_rsv->space_info; 328 struct btrfs_root *root, *tmp; 329 u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item); 330 unsigned int min_items = 1; 331 332 /* 333 * The global block rsv is based on the size of the extent tree, the 334 * checksum tree and the root tree. If the fs is empty we want to set 335 * it to a minimal amount for safety. 336 * 337 * We also are going to need to modify the minimum of the tree root and 338 * any global roots we could touch. 339 */ 340 read_lock(&fs_info->global_root_lock); 341 rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree, 342 rb_node) { 343 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID || 344 root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || 345 root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 346 num_bytes += btrfs_root_used(&root->root_item); 347 min_items++; 348 } 349 } 350 read_unlock(&fs_info->global_root_lock); 351 352 /* 353 * But we also want to reserve enough space so we can do the fallback 354 * global reserve for an unlink, which is an additional 355 * BTRFS_UNLINK_METADATA_UNITS items. 356 * 357 * But we also need space for the delayed ref updates from the unlink, 358 * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for 359 * each unlink metadata item. 360 */ 361 min_items += BTRFS_UNLINK_METADATA_UNITS; 362 363 num_bytes = max_t(u64, num_bytes, 364 btrfs_calc_insert_metadata_size(fs_info, min_items) + 365 btrfs_calc_delayed_ref_bytes(fs_info, 366 BTRFS_UNLINK_METADATA_UNITS)); 367 368 spin_lock(&sinfo->lock); 369 spin_lock(&block_rsv->lock); 370 371 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 372 373 if (block_rsv->reserved < block_rsv->size) { 374 num_bytes = block_rsv->size - block_rsv->reserved; 375 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 376 num_bytes); 377 block_rsv->reserved = block_rsv->size; 378 } else if (block_rsv->reserved > block_rsv->size) { 379 num_bytes = block_rsv->reserved - block_rsv->size; 380 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 381 -num_bytes); 382 block_rsv->reserved = block_rsv->size; 383 btrfs_try_granting_tickets(fs_info, sinfo); 384 } 385 386 block_rsv->full = (block_rsv->reserved == block_rsv->size); 387 388 if (block_rsv->size >= sinfo->total_bytes) 389 sinfo->force_alloc = CHUNK_ALLOC_FORCE; 390 spin_unlock(&block_rsv->lock); 391 spin_unlock(&sinfo->lock); 392 } 393 394 void btrfs_init_root_block_rsv(struct btrfs_root *root) 395 { 396 struct btrfs_fs_info *fs_info = root->fs_info; 397 398 switch (root->root_key.objectid) { 399 case BTRFS_CSUM_TREE_OBJECTID: 400 case BTRFS_EXTENT_TREE_OBJECTID: 401 case BTRFS_FREE_SPACE_TREE_OBJECTID: 402 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 403 root->block_rsv = &fs_info->delayed_refs_rsv; 404 break; 405 case BTRFS_ROOT_TREE_OBJECTID: 406 case BTRFS_DEV_TREE_OBJECTID: 407 case BTRFS_QUOTA_TREE_OBJECTID: 408 root->block_rsv = &fs_info->global_block_rsv; 409 break; 410 case BTRFS_CHUNK_TREE_OBJECTID: 411 root->block_rsv = &fs_info->chunk_block_rsv; 412 break; 413 default: 414 root->block_rsv = NULL; 415 break; 416 } 417 } 418 419 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info) 420 { 421 struct btrfs_space_info *space_info; 422 423 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 424 fs_info->chunk_block_rsv.space_info = space_info; 425 426 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 427 fs_info->global_block_rsv.space_info = space_info; 428 fs_info->trans_block_rsv.space_info = space_info; 429 fs_info->empty_block_rsv.space_info = space_info; 430 fs_info->delayed_block_rsv.space_info = space_info; 431 fs_info->delayed_refs_rsv.space_info = space_info; 432 433 btrfs_update_global_block_rsv(fs_info); 434 } 435 436 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info) 437 { 438 btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1, 439 NULL); 440 WARN_ON(fs_info->trans_block_rsv.size > 0); 441 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 442 WARN_ON(fs_info->chunk_block_rsv.size > 0); 443 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 444 WARN_ON(fs_info->delayed_block_rsv.size > 0); 445 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 446 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); 447 WARN_ON(fs_info->delayed_refs_rsv.size > 0); 448 } 449 450 static struct btrfs_block_rsv *get_block_rsv( 451 const struct btrfs_trans_handle *trans, 452 const struct btrfs_root *root) 453 { 454 struct btrfs_fs_info *fs_info = root->fs_info; 455 struct btrfs_block_rsv *block_rsv = NULL; 456 457 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 458 (root == fs_info->uuid_root) || 459 (trans->adding_csums && 460 root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID)) 461 block_rsv = trans->block_rsv; 462 463 if (!block_rsv) 464 block_rsv = root->block_rsv; 465 466 if (!block_rsv) 467 block_rsv = &fs_info->empty_block_rsv; 468 469 return block_rsv; 470 } 471 472 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans, 473 struct btrfs_root *root, 474 u32 blocksize) 475 { 476 struct btrfs_fs_info *fs_info = root->fs_info; 477 struct btrfs_block_rsv *block_rsv; 478 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 479 int ret; 480 bool global_updated = false; 481 482 block_rsv = get_block_rsv(trans, root); 483 484 if (unlikely(block_rsv->size == 0)) 485 goto try_reserve; 486 again: 487 ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize); 488 if (!ret) 489 return block_rsv; 490 491 if (block_rsv->failfast) 492 return ERR_PTR(ret); 493 494 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 495 global_updated = true; 496 btrfs_update_global_block_rsv(fs_info); 497 goto again; 498 } 499 500 /* 501 * The global reserve still exists to save us from ourselves, so don't 502 * warn_on if we are short on our delayed refs reserve. 503 */ 504 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && 505 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 506 static DEFINE_RATELIMIT_STATE(_rs, 507 DEFAULT_RATELIMIT_INTERVAL * 10, 508 /*DEFAULT_RATELIMIT_BURST*/ 1); 509 if (__ratelimit(&_rs)) 510 WARN(1, KERN_DEBUG 511 "BTRFS: block rsv %d returned %d\n", 512 block_rsv->type, ret); 513 } 514 try_reserve: 515 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize, 516 BTRFS_RESERVE_NO_FLUSH); 517 if (!ret) 518 return block_rsv; 519 /* 520 * If we couldn't reserve metadata bytes try and use some from 521 * the global reserve if its space type is the same as the global 522 * reservation. 523 */ 524 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 525 block_rsv->space_info == global_rsv->space_info) { 526 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize); 527 if (!ret) 528 return global_rsv; 529 } 530 531 /* 532 * All hope is lost, but of course our reservations are overly 533 * pessimistic, so instead of possibly having an ENOSPC abort here, try 534 * one last time to force a reservation if there's enough actual space 535 * on disk to make the reservation. 536 */ 537 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize, 538 BTRFS_RESERVE_FLUSH_EMERGENCY); 539 if (!ret) 540 return block_rsv; 541 542 return ERR_PTR(ret); 543 } 544 545 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 546 struct btrfs_block_rsv *rsv) 547 { 548 u64 needed_bytes; 549 int ret; 550 551 /* 1 for slack space, 1 for updating the inode */ 552 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 553 btrfs_calc_metadata_size(fs_info, 1); 554 555 spin_lock(&rsv->lock); 556 if (rsv->reserved < needed_bytes) 557 ret = -ENOSPC; 558 else 559 ret = 0; 560 spin_unlock(&rsv->lock); 561 return ret; 562 } 563