1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 #ifndef BTRFS_BLOCK_GROUP_H 4 #define BTRFS_BLOCK_GROUP_H 5 6 #include "free-space-cache.h" 7 8 struct btrfs_chunk_map; 9 10 enum btrfs_disk_cache_state { 11 BTRFS_DC_WRITTEN, 12 BTRFS_DC_ERROR, 13 BTRFS_DC_CLEAR, 14 BTRFS_DC_SETUP, 15 }; 16 17 enum btrfs_block_group_size_class { 18 /* Unset */ 19 BTRFS_BG_SZ_NONE, 20 /* 0 < size <= 128K */ 21 BTRFS_BG_SZ_SMALL, 22 /* 128K < size <= 8M */ 23 BTRFS_BG_SZ_MEDIUM, 24 /* 8M < size < BG_LENGTH */ 25 BTRFS_BG_SZ_LARGE, 26 }; 27 28 /* 29 * This describes the state of the block_group for async discard. This is due 30 * to the two pass nature of it where extent discarding is prioritized over 31 * bitmap discarding. BTRFS_DISCARD_RESET_CURSOR is set when we are resetting 32 * between lists to prevent contention for discard state variables 33 * (eg. discard_cursor). 34 */ 35 enum btrfs_discard_state { 36 BTRFS_DISCARD_EXTENTS, 37 BTRFS_DISCARD_BITMAPS, 38 BTRFS_DISCARD_RESET_CURSOR, 39 }; 40 41 /* 42 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to 43 * only allocate a chunk if we really need one. 44 * 45 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few 46 * chunks already allocated. This is used as part of the clustering code to 47 * help make sure we have a good pool of storage to cluster in, without filling 48 * the FS with empty chunks 49 * 50 * CHUNK_ALLOC_FORCE means it must try to allocate one 51 * 52 * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from 53 * find_free_extent() that also activaes the zone 54 */ 55 enum btrfs_chunk_alloc_enum { 56 CHUNK_ALLOC_NO_FORCE, 57 CHUNK_ALLOC_LIMITED, 58 CHUNK_ALLOC_FORCE, 59 CHUNK_ALLOC_FORCE_FOR_EXTENT, 60 }; 61 62 /* Block group flags set at runtime */ 63 enum btrfs_block_group_flags { 64 BLOCK_GROUP_FLAG_IREF, 65 BLOCK_GROUP_FLAG_REMOVED, 66 BLOCK_GROUP_FLAG_TO_COPY, 67 BLOCK_GROUP_FLAG_RELOCATING_REPAIR, 68 BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 69 BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 70 BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 71 /* Does the block group need to be added to the free space tree? */ 72 BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, 73 /* Indicate that the block group is placed on a sequential zone */ 74 BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, 75 /* 76 * Indicate that block group is in the list of new block groups of a 77 * transaction. 78 */ 79 BLOCK_GROUP_FLAG_NEW, 80 }; 81 82 enum btrfs_caching_type { 83 BTRFS_CACHE_NO, 84 BTRFS_CACHE_STARTED, 85 BTRFS_CACHE_FINISHED, 86 BTRFS_CACHE_ERROR, 87 }; 88 89 struct btrfs_caching_control { 90 struct list_head list; 91 struct mutex mutex; 92 wait_queue_head_t wait; 93 struct btrfs_work work; 94 struct btrfs_block_group *block_group; 95 /* Track progress of caching during allocation. */ 96 atomic_t progress; 97 refcount_t count; 98 }; 99 100 /* Once caching_thread() finds this much free space, it will wake up waiters. */ 101 #define CACHING_CTL_WAKE_UP SZ_2M 102 103 struct btrfs_block_group { 104 struct btrfs_fs_info *fs_info; 105 struct inode *inode; 106 spinlock_t lock; 107 u64 start; 108 u64 length; 109 u64 pinned; 110 u64 reserved; 111 u64 used; 112 u64 delalloc_bytes; 113 u64 bytes_super; 114 u64 flags; 115 u64 cache_generation; 116 u64 global_root_id; 117 118 /* 119 * The last committed used bytes of this block group, if the above @used 120 * is still the same as @commit_used, we don't need to update block 121 * group item of this block group. 122 */ 123 u64 commit_used; 124 /* 125 * If the free space extent count exceeds this number, convert the block 126 * group to bitmaps. 127 */ 128 u32 bitmap_high_thresh; 129 130 /* 131 * If the free space extent count drops below this number, convert the 132 * block group back to extents. 133 */ 134 u32 bitmap_low_thresh; 135 136 /* 137 * It is just used for the delayed data space allocation because 138 * only the data space allocation and the relative metadata update 139 * can be done cross the transaction. 140 */ 141 struct rw_semaphore data_rwsem; 142 143 /* For raid56, this is a full stripe, without parity */ 144 unsigned long full_stripe_len; 145 unsigned long runtime_flags; 146 147 unsigned int ro; 148 149 int disk_cache_state; 150 151 /* Cache tracking stuff */ 152 int cached; 153 struct btrfs_caching_control *caching_ctl; 154 155 struct btrfs_space_info *space_info; 156 157 /* Free space cache stuff */ 158 struct btrfs_free_space_ctl *free_space_ctl; 159 160 /* Block group cache stuff */ 161 struct rb_node cache_node; 162 163 /* For block groups in the same raid type */ 164 struct list_head list; 165 166 refcount_t refs; 167 168 /* 169 * List of struct btrfs_free_clusters for this block group. 170 * Today it will only have one thing on it, but that may change 171 */ 172 struct list_head cluster_list; 173 174 /* 175 * Used for several lists: 176 * 177 * 1) struct btrfs_fs_info::unused_bgs 178 * 2) struct btrfs_fs_info::reclaim_bgs 179 * 3) struct btrfs_transaction::deleted_bgs 180 * 4) struct btrfs_trans_handle::new_bgs 181 */ 182 struct list_head bg_list; 183 184 /* For read-only block groups */ 185 struct list_head ro_list; 186 187 /* 188 * When non-zero it means the block group's logical address and its 189 * device extents can not be reused for future block group allocations 190 * until the counter goes down to 0. This is to prevent them from being 191 * reused while some task is still using the block group after it was 192 * deleted - we want to make sure they can only be reused for new block 193 * groups after that task is done with the deleted block group. 194 */ 195 atomic_t frozen; 196 197 /* For discard operations */ 198 struct list_head discard_list; 199 int discard_index; 200 u64 discard_eligible_time; 201 u64 discard_cursor; 202 enum btrfs_discard_state discard_state; 203 204 /* For dirty block groups */ 205 struct list_head dirty_list; 206 struct list_head io_list; 207 208 struct btrfs_io_ctl io_ctl; 209 210 /* 211 * Incremented when doing extent allocations and holding a read lock 212 * on the space_info's groups_sem semaphore. 213 * Decremented when an ordered extent that represents an IO against this 214 * block group's range is created (after it's added to its inode's 215 * root's list of ordered extents) or immediately after the allocation 216 * if it's a metadata extent or fallocate extent (for these cases we 217 * don't create ordered extents). 218 */ 219 atomic_t reservations; 220 221 /* 222 * Incremented while holding the spinlock *lock* by a task checking if 223 * it can perform a nocow write (incremented if the value for the *ro* 224 * field is 0). Decremented by such tasks once they create an ordered 225 * extent or before that if some error happens before reaching that step. 226 * This is to prevent races between block group relocation and nocow 227 * writes through direct IO. 228 */ 229 atomic_t nocow_writers; 230 231 /* Lock for free space tree operations. */ 232 struct mutex free_space_lock; 233 234 /* 235 * Number of extents in this block group used for swap files. 236 * All accesses protected by the spinlock 'lock'. 237 */ 238 int swap_extents; 239 240 /* 241 * Allocation offset for the block group to implement sequential 242 * allocation. This is used only on a zoned filesystem. 243 */ 244 u64 alloc_offset; 245 u64 zone_unusable; 246 u64 zone_capacity; 247 u64 meta_write_pointer; 248 struct btrfs_chunk_map *physical_map; 249 struct list_head active_bg_list; 250 struct work_struct zone_finish_work; 251 struct extent_buffer *last_eb; 252 enum btrfs_block_group_size_class size_class; 253 }; 254 255 static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group) 256 { 257 return (block_group->start + block_group->length); 258 } 259 260 static inline bool btrfs_is_block_group_used(const struct btrfs_block_group *bg) 261 { 262 lockdep_assert_held(&bg->lock); 263 264 return (bg->used > 0 || bg->reserved > 0 || bg->pinned > 0); 265 } 266 267 static inline bool btrfs_is_block_group_data_only( 268 struct btrfs_block_group *block_group) 269 { 270 /* 271 * In mixed mode the fragmentation is expected to be high, lowering the 272 * efficiency, so only proper data block groups are considered. 273 */ 274 return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 275 !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA); 276 } 277 278 #ifdef CONFIG_BTRFS_DEBUG 279 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group); 280 #endif 281 282 struct btrfs_block_group *btrfs_lookup_first_block_group( 283 struct btrfs_fs_info *info, u64 bytenr); 284 struct btrfs_block_group *btrfs_lookup_block_group( 285 struct btrfs_fs_info *info, u64 bytenr); 286 struct btrfs_block_group *btrfs_next_block_group( 287 struct btrfs_block_group *cache); 288 void btrfs_get_block_group(struct btrfs_block_group *cache); 289 void btrfs_put_block_group(struct btrfs_block_group *cache); 290 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 291 const u64 start); 292 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg); 293 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 294 u64 bytenr); 295 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg); 296 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg); 297 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 298 u64 num_bytes); 299 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait); 300 void btrfs_put_caching_control(struct btrfs_caching_control *ctl); 301 struct btrfs_caching_control *btrfs_get_caching_control( 302 struct btrfs_block_group *cache); 303 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, 304 u64 start, u64 end, u64 *total_added_ret); 305 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 306 struct btrfs_fs_info *fs_info, 307 const u64 chunk_offset); 308 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 309 struct btrfs_chunk_map *map); 310 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info); 311 void btrfs_mark_bg_unused(struct btrfs_block_group *bg); 312 void btrfs_reclaim_bgs_work(struct work_struct *work); 313 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info); 314 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg); 315 int btrfs_read_block_groups(struct btrfs_fs_info *info); 316 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 317 u64 type, 318 u64 chunk_offset, u64 size); 319 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans); 320 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 321 bool do_chunk_alloc); 322 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache); 323 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans); 324 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans); 325 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans); 326 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 327 u64 bytenr, u64 num_bytes, bool alloc); 328 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 329 u64 ram_bytes, u64 num_bytes, int delalloc, 330 bool force_wrong_size_class); 331 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 332 u64 num_bytes, int delalloc); 333 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 334 enum btrfs_chunk_alloc_enum force); 335 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type); 336 void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type); 337 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 338 bool is_item_insertion); 339 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags); 340 void btrfs_put_block_group_cache(struct btrfs_fs_info *info); 341 int btrfs_free_block_groups(struct btrfs_fs_info *info); 342 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 343 u64 physical, u64 **logical, int *naddrs, int *stripe_len); 344 345 static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 346 { 347 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 348 } 349 350 static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 351 { 352 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 353 } 354 355 static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 356 { 357 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 358 } 359 360 static inline int btrfs_block_group_done(struct btrfs_block_group *cache) 361 { 362 smp_mb(); 363 return cache->cached == BTRFS_CACHE_FINISHED || 364 cache->cached == BTRFS_CACHE_ERROR; 365 } 366 367 void btrfs_freeze_block_group(struct btrfs_block_group *cache); 368 void btrfs_unfreeze_block_group(struct btrfs_block_group *cache); 369 370 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg); 371 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount); 372 373 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size); 374 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 375 enum btrfs_block_group_size_class size_class, 376 bool force_wrong_size_class); 377 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg); 378 379 #endif /* BTRFS_BLOCK_GROUP_H */ 380