1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/list_sort.h> 4 #include "misc.h" 5 #include "ctree.h" 6 #include "block-group.h" 7 #include "space-info.h" 8 #include "disk-io.h" 9 #include "free-space-cache.h" 10 #include "free-space-tree.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 #include "discard.h" 18 #include "raid56.h" 19 #include "zoned.h" 20 21 /* 22 * Return target flags in extended format or 0 if restripe for this chunk_type 23 * is not in progress 24 * 25 * Should be called with balance_lock held 26 */ 27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 28 { 29 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 30 u64 target = 0; 31 32 if (!bctl) 33 return 0; 34 35 if (flags & BTRFS_BLOCK_GROUP_DATA && 36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 44 } 45 46 return target; 47 } 48 49 /* 50 * @flags: available profiles in extended format (see ctree.h) 51 * 52 * Return reduced profile in chunk format. If profile changing is in progress 53 * (either running or paused) picks the target profile (if it's already 54 * available), otherwise falls back to plain reducing. 55 */ 56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 57 { 58 u64 num_devices = fs_info->fs_devices->rw_devices; 59 u64 target; 60 u64 raid_type; 61 u64 allowed = 0; 62 63 /* 64 * See if restripe for this chunk_type is in progress, if so try to 65 * reduce to the target profile 66 */ 67 spin_lock(&fs_info->balance_lock); 68 target = get_restripe_target(fs_info, flags); 69 if (target) { 70 spin_unlock(&fs_info->balance_lock); 71 return extended_to_chunk(target); 72 } 73 spin_unlock(&fs_info->balance_lock); 74 75 /* First, mask out the RAID levels which aren't possible */ 76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 77 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 78 allowed |= btrfs_raid_array[raid_type].bg_flag; 79 } 80 allowed &= flags; 81 82 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 83 allowed = BTRFS_BLOCK_GROUP_RAID6; 84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 85 allowed = BTRFS_BLOCK_GROUP_RAID5; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 87 allowed = BTRFS_BLOCK_GROUP_RAID10; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 89 allowed = BTRFS_BLOCK_GROUP_RAID1; 90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 91 allowed = BTRFS_BLOCK_GROUP_RAID0; 92 93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 94 95 return extended_to_chunk(flags | allowed); 96 } 97 98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 99 { 100 unsigned seq; 101 u64 flags; 102 103 do { 104 flags = orig_flags; 105 seq = read_seqbegin(&fs_info->profiles_lock); 106 107 if (flags & BTRFS_BLOCK_GROUP_DATA) 108 flags |= fs_info->avail_data_alloc_bits; 109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 110 flags |= fs_info->avail_system_alloc_bits; 111 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 112 flags |= fs_info->avail_metadata_alloc_bits; 113 } while (read_seqretry(&fs_info->profiles_lock, seq)); 114 115 return btrfs_reduce_alloc_profile(fs_info, flags); 116 } 117 118 void btrfs_get_block_group(struct btrfs_block_group *cache) 119 { 120 refcount_inc(&cache->refs); 121 } 122 123 void btrfs_put_block_group(struct btrfs_block_group *cache) 124 { 125 if (refcount_dec_and_test(&cache->refs)) { 126 WARN_ON(cache->pinned > 0); 127 /* 128 * If there was a failure to cleanup a log tree, very likely due 129 * to an IO failure on a writeback attempt of one or more of its 130 * extent buffers, we could not do proper (and cheap) unaccounting 131 * of their reserved space, so don't warn on reserved > 0 in that 132 * case. 133 */ 134 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 135 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 136 WARN_ON(cache->reserved > 0); 137 138 /* 139 * A block_group shouldn't be on the discard_list anymore. 140 * Remove the block_group from the discard_list to prevent us 141 * from causing a panic due to NULL pointer dereference. 142 */ 143 if (WARN_ON(!list_empty(&cache->discard_list))) 144 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 145 cache); 146 147 /* 148 * If not empty, someone is still holding mutex of 149 * full_stripe_lock, which can only be released by caller. 150 * And it will definitely cause use-after-free when caller 151 * tries to release full stripe lock. 152 * 153 * No better way to resolve, but only to warn. 154 */ 155 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 156 kfree(cache->free_space_ctl); 157 kfree(cache->physical_map); 158 kfree(cache); 159 } 160 } 161 162 /* 163 * This adds the block group to the fs_info rb tree for the block group cache 164 */ 165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 166 struct btrfs_block_group *block_group) 167 { 168 struct rb_node **p; 169 struct rb_node *parent = NULL; 170 struct btrfs_block_group *cache; 171 172 ASSERT(block_group->length != 0); 173 174 spin_lock(&info->block_group_cache_lock); 175 p = &info->block_group_cache_tree.rb_node; 176 177 while (*p) { 178 parent = *p; 179 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 180 if (block_group->start < cache->start) { 181 p = &(*p)->rb_left; 182 } else if (block_group->start > cache->start) { 183 p = &(*p)->rb_right; 184 } else { 185 spin_unlock(&info->block_group_cache_lock); 186 return -EEXIST; 187 } 188 } 189 190 rb_link_node(&block_group->cache_node, parent, p); 191 rb_insert_color(&block_group->cache_node, 192 &info->block_group_cache_tree); 193 194 if (info->first_logical_byte > block_group->start) 195 info->first_logical_byte = block_group->start; 196 197 spin_unlock(&info->block_group_cache_lock); 198 199 return 0; 200 } 201 202 /* 203 * This will return the block group at or after bytenr if contains is 0, else 204 * it will return the block group that contains the bytenr 205 */ 206 static struct btrfs_block_group *block_group_cache_tree_search( 207 struct btrfs_fs_info *info, u64 bytenr, int contains) 208 { 209 struct btrfs_block_group *cache, *ret = NULL; 210 struct rb_node *n; 211 u64 end, start; 212 213 spin_lock(&info->block_group_cache_lock); 214 n = info->block_group_cache_tree.rb_node; 215 216 while (n) { 217 cache = rb_entry(n, struct btrfs_block_group, cache_node); 218 end = cache->start + cache->length - 1; 219 start = cache->start; 220 221 if (bytenr < start) { 222 if (!contains && (!ret || start < ret->start)) 223 ret = cache; 224 n = n->rb_left; 225 } else if (bytenr > start) { 226 if (contains && bytenr <= end) { 227 ret = cache; 228 break; 229 } 230 n = n->rb_right; 231 } else { 232 ret = cache; 233 break; 234 } 235 } 236 if (ret) { 237 btrfs_get_block_group(ret); 238 if (bytenr == 0 && info->first_logical_byte > ret->start) 239 info->first_logical_byte = ret->start; 240 } 241 spin_unlock(&info->block_group_cache_lock); 242 243 return ret; 244 } 245 246 /* 247 * Return the block group that starts at or after bytenr 248 */ 249 struct btrfs_block_group *btrfs_lookup_first_block_group( 250 struct btrfs_fs_info *info, u64 bytenr) 251 { 252 return block_group_cache_tree_search(info, bytenr, 0); 253 } 254 255 /* 256 * Return the block group that contains the given bytenr 257 */ 258 struct btrfs_block_group *btrfs_lookup_block_group( 259 struct btrfs_fs_info *info, u64 bytenr) 260 { 261 return block_group_cache_tree_search(info, bytenr, 1); 262 } 263 264 struct btrfs_block_group *btrfs_next_block_group( 265 struct btrfs_block_group *cache) 266 { 267 struct btrfs_fs_info *fs_info = cache->fs_info; 268 struct rb_node *node; 269 270 spin_lock(&fs_info->block_group_cache_lock); 271 272 /* If our block group was removed, we need a full search. */ 273 if (RB_EMPTY_NODE(&cache->cache_node)) { 274 const u64 next_bytenr = cache->start + cache->length; 275 276 spin_unlock(&fs_info->block_group_cache_lock); 277 btrfs_put_block_group(cache); 278 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 279 } 280 node = rb_next(&cache->cache_node); 281 btrfs_put_block_group(cache); 282 if (node) { 283 cache = rb_entry(node, struct btrfs_block_group, cache_node); 284 btrfs_get_block_group(cache); 285 } else 286 cache = NULL; 287 spin_unlock(&fs_info->block_group_cache_lock); 288 return cache; 289 } 290 291 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 292 { 293 struct btrfs_block_group *bg; 294 bool ret = true; 295 296 bg = btrfs_lookup_block_group(fs_info, bytenr); 297 if (!bg) 298 return false; 299 300 spin_lock(&bg->lock); 301 if (bg->ro) 302 ret = false; 303 else 304 atomic_inc(&bg->nocow_writers); 305 spin_unlock(&bg->lock); 306 307 /* No put on block group, done by btrfs_dec_nocow_writers */ 308 if (!ret) 309 btrfs_put_block_group(bg); 310 311 return ret; 312 } 313 314 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 315 { 316 struct btrfs_block_group *bg; 317 318 bg = btrfs_lookup_block_group(fs_info, bytenr); 319 ASSERT(bg); 320 if (atomic_dec_and_test(&bg->nocow_writers)) 321 wake_up_var(&bg->nocow_writers); 322 /* 323 * Once for our lookup and once for the lookup done by a previous call 324 * to btrfs_inc_nocow_writers() 325 */ 326 btrfs_put_block_group(bg); 327 btrfs_put_block_group(bg); 328 } 329 330 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 331 { 332 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 333 } 334 335 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 336 const u64 start) 337 { 338 struct btrfs_block_group *bg; 339 340 bg = btrfs_lookup_block_group(fs_info, start); 341 ASSERT(bg); 342 if (atomic_dec_and_test(&bg->reservations)) 343 wake_up_var(&bg->reservations); 344 btrfs_put_block_group(bg); 345 } 346 347 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 348 { 349 struct btrfs_space_info *space_info = bg->space_info; 350 351 ASSERT(bg->ro); 352 353 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 354 return; 355 356 /* 357 * Our block group is read only but before we set it to read only, 358 * some task might have had allocated an extent from it already, but it 359 * has not yet created a respective ordered extent (and added it to a 360 * root's list of ordered extents). 361 * Therefore wait for any task currently allocating extents, since the 362 * block group's reservations counter is incremented while a read lock 363 * on the groups' semaphore is held and decremented after releasing 364 * the read access on that semaphore and creating the ordered extent. 365 */ 366 down_write(&space_info->groups_sem); 367 up_write(&space_info->groups_sem); 368 369 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 370 } 371 372 struct btrfs_caching_control *btrfs_get_caching_control( 373 struct btrfs_block_group *cache) 374 { 375 struct btrfs_caching_control *ctl; 376 377 spin_lock(&cache->lock); 378 if (!cache->caching_ctl) { 379 spin_unlock(&cache->lock); 380 return NULL; 381 } 382 383 ctl = cache->caching_ctl; 384 refcount_inc(&ctl->count); 385 spin_unlock(&cache->lock); 386 return ctl; 387 } 388 389 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 390 { 391 if (refcount_dec_and_test(&ctl->count)) 392 kfree(ctl); 393 } 394 395 /* 396 * When we wait for progress in the block group caching, its because our 397 * allocation attempt failed at least once. So, we must sleep and let some 398 * progress happen before we try again. 399 * 400 * This function will sleep at least once waiting for new free space to show 401 * up, and then it will check the block group free space numbers for our min 402 * num_bytes. Another option is to have it go ahead and look in the rbtree for 403 * a free extent of a given size, but this is a good start. 404 * 405 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 406 * any of the information in this block group. 407 */ 408 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 409 u64 num_bytes) 410 { 411 struct btrfs_caching_control *caching_ctl; 412 413 caching_ctl = btrfs_get_caching_control(cache); 414 if (!caching_ctl) 415 return; 416 417 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 418 (cache->free_space_ctl->free_space >= num_bytes)); 419 420 btrfs_put_caching_control(caching_ctl); 421 } 422 423 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 424 { 425 struct btrfs_caching_control *caching_ctl; 426 int ret = 0; 427 428 caching_ctl = btrfs_get_caching_control(cache); 429 if (!caching_ctl) 430 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 431 432 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 433 if (cache->cached == BTRFS_CACHE_ERROR) 434 ret = -EIO; 435 btrfs_put_caching_control(caching_ctl); 436 return ret; 437 } 438 439 static bool space_cache_v1_done(struct btrfs_block_group *cache) 440 { 441 bool ret; 442 443 spin_lock(&cache->lock); 444 ret = cache->cached != BTRFS_CACHE_FAST; 445 spin_unlock(&cache->lock); 446 447 return ret; 448 } 449 450 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache, 451 struct btrfs_caching_control *caching_ctl) 452 { 453 wait_event(caching_ctl->wait, space_cache_v1_done(cache)); 454 } 455 456 #ifdef CONFIG_BTRFS_DEBUG 457 static void fragment_free_space(struct btrfs_block_group *block_group) 458 { 459 struct btrfs_fs_info *fs_info = block_group->fs_info; 460 u64 start = block_group->start; 461 u64 len = block_group->length; 462 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 463 fs_info->nodesize : fs_info->sectorsize; 464 u64 step = chunk << 1; 465 466 while (len > chunk) { 467 btrfs_remove_free_space(block_group, start, chunk); 468 start += step; 469 if (len < step) 470 len = 0; 471 else 472 len -= step; 473 } 474 } 475 #endif 476 477 /* 478 * This is only called by btrfs_cache_block_group, since we could have freed 479 * extents we need to check the pinned_extents for any extents that can't be 480 * used yet since their free space will be released as soon as the transaction 481 * commits. 482 */ 483 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 484 { 485 struct btrfs_fs_info *info = block_group->fs_info; 486 u64 extent_start, extent_end, size, total_added = 0; 487 int ret; 488 489 while (start < end) { 490 ret = find_first_extent_bit(&info->excluded_extents, start, 491 &extent_start, &extent_end, 492 EXTENT_DIRTY | EXTENT_UPTODATE, 493 NULL); 494 if (ret) 495 break; 496 497 if (extent_start <= start) { 498 start = extent_end + 1; 499 } else if (extent_start > start && extent_start < end) { 500 size = extent_start - start; 501 total_added += size; 502 ret = btrfs_add_free_space_async_trimmed(block_group, 503 start, size); 504 BUG_ON(ret); /* -ENOMEM or logic error */ 505 start = extent_end + 1; 506 } else { 507 break; 508 } 509 } 510 511 if (start < end) { 512 size = end - start; 513 total_added += size; 514 ret = btrfs_add_free_space_async_trimmed(block_group, start, 515 size); 516 BUG_ON(ret); /* -ENOMEM or logic error */ 517 } 518 519 return total_added; 520 } 521 522 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 523 { 524 struct btrfs_block_group *block_group = caching_ctl->block_group; 525 struct btrfs_fs_info *fs_info = block_group->fs_info; 526 struct btrfs_root *extent_root; 527 struct btrfs_path *path; 528 struct extent_buffer *leaf; 529 struct btrfs_key key; 530 u64 total_found = 0; 531 u64 last = 0; 532 u32 nritems; 533 int ret; 534 bool wakeup = true; 535 536 path = btrfs_alloc_path(); 537 if (!path) 538 return -ENOMEM; 539 540 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 541 extent_root = btrfs_extent_root(fs_info, last); 542 543 #ifdef CONFIG_BTRFS_DEBUG 544 /* 545 * If we're fragmenting we don't want to make anybody think we can 546 * allocate from this block group until we've had a chance to fragment 547 * the free space. 548 */ 549 if (btrfs_should_fragment_free_space(block_group)) 550 wakeup = false; 551 #endif 552 /* 553 * We don't want to deadlock with somebody trying to allocate a new 554 * extent for the extent root while also trying to search the extent 555 * root to add free space. So we skip locking and search the commit 556 * root, since its read-only 557 */ 558 path->skip_locking = 1; 559 path->search_commit_root = 1; 560 path->reada = READA_FORWARD; 561 562 key.objectid = last; 563 key.offset = 0; 564 key.type = BTRFS_EXTENT_ITEM_KEY; 565 566 next: 567 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 568 if (ret < 0) 569 goto out; 570 571 leaf = path->nodes[0]; 572 nritems = btrfs_header_nritems(leaf); 573 574 while (1) { 575 if (btrfs_fs_closing(fs_info) > 1) { 576 last = (u64)-1; 577 break; 578 } 579 580 if (path->slots[0] < nritems) { 581 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 582 } else { 583 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 584 if (ret) 585 break; 586 587 if (need_resched() || 588 rwsem_is_contended(&fs_info->commit_root_sem)) { 589 if (wakeup) 590 caching_ctl->progress = last; 591 btrfs_release_path(path); 592 up_read(&fs_info->commit_root_sem); 593 mutex_unlock(&caching_ctl->mutex); 594 cond_resched(); 595 mutex_lock(&caching_ctl->mutex); 596 down_read(&fs_info->commit_root_sem); 597 goto next; 598 } 599 600 ret = btrfs_next_leaf(extent_root, path); 601 if (ret < 0) 602 goto out; 603 if (ret) 604 break; 605 leaf = path->nodes[0]; 606 nritems = btrfs_header_nritems(leaf); 607 continue; 608 } 609 610 if (key.objectid < last) { 611 key.objectid = last; 612 key.offset = 0; 613 key.type = BTRFS_EXTENT_ITEM_KEY; 614 615 if (wakeup) 616 caching_ctl->progress = last; 617 btrfs_release_path(path); 618 goto next; 619 } 620 621 if (key.objectid < block_group->start) { 622 path->slots[0]++; 623 continue; 624 } 625 626 if (key.objectid >= block_group->start + block_group->length) 627 break; 628 629 if (key.type == BTRFS_EXTENT_ITEM_KEY || 630 key.type == BTRFS_METADATA_ITEM_KEY) { 631 total_found += add_new_free_space(block_group, last, 632 key.objectid); 633 if (key.type == BTRFS_METADATA_ITEM_KEY) 634 last = key.objectid + 635 fs_info->nodesize; 636 else 637 last = key.objectid + key.offset; 638 639 if (total_found > CACHING_CTL_WAKE_UP) { 640 total_found = 0; 641 if (wakeup) 642 wake_up(&caching_ctl->wait); 643 } 644 } 645 path->slots[0]++; 646 } 647 ret = 0; 648 649 total_found += add_new_free_space(block_group, last, 650 block_group->start + block_group->length); 651 caching_ctl->progress = (u64)-1; 652 653 out: 654 btrfs_free_path(path); 655 return ret; 656 } 657 658 static noinline void caching_thread(struct btrfs_work *work) 659 { 660 struct btrfs_block_group *block_group; 661 struct btrfs_fs_info *fs_info; 662 struct btrfs_caching_control *caching_ctl; 663 int ret; 664 665 caching_ctl = container_of(work, struct btrfs_caching_control, work); 666 block_group = caching_ctl->block_group; 667 fs_info = block_group->fs_info; 668 669 mutex_lock(&caching_ctl->mutex); 670 down_read(&fs_info->commit_root_sem); 671 672 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 673 ret = load_free_space_cache(block_group); 674 if (ret == 1) { 675 ret = 0; 676 goto done; 677 } 678 679 /* 680 * We failed to load the space cache, set ourselves to 681 * CACHE_STARTED and carry on. 682 */ 683 spin_lock(&block_group->lock); 684 block_group->cached = BTRFS_CACHE_STARTED; 685 spin_unlock(&block_group->lock); 686 wake_up(&caching_ctl->wait); 687 } 688 689 /* 690 * If we are in the transaction that populated the free space tree we 691 * can't actually cache from the free space tree as our commit root and 692 * real root are the same, so we could change the contents of the blocks 693 * while caching. Instead do the slow caching in this case, and after 694 * the transaction has committed we will be safe. 695 */ 696 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 697 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 698 ret = load_free_space_tree(caching_ctl); 699 else 700 ret = load_extent_tree_free(caching_ctl); 701 done: 702 spin_lock(&block_group->lock); 703 block_group->caching_ctl = NULL; 704 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 705 spin_unlock(&block_group->lock); 706 707 #ifdef CONFIG_BTRFS_DEBUG 708 if (btrfs_should_fragment_free_space(block_group)) { 709 u64 bytes_used; 710 711 spin_lock(&block_group->space_info->lock); 712 spin_lock(&block_group->lock); 713 bytes_used = block_group->length - block_group->used; 714 block_group->space_info->bytes_used += bytes_used >> 1; 715 spin_unlock(&block_group->lock); 716 spin_unlock(&block_group->space_info->lock); 717 fragment_free_space(block_group); 718 } 719 #endif 720 721 caching_ctl->progress = (u64)-1; 722 723 up_read(&fs_info->commit_root_sem); 724 btrfs_free_excluded_extents(block_group); 725 mutex_unlock(&caching_ctl->mutex); 726 727 wake_up(&caching_ctl->wait); 728 729 btrfs_put_caching_control(caching_ctl); 730 btrfs_put_block_group(block_group); 731 } 732 733 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 734 { 735 DEFINE_WAIT(wait); 736 struct btrfs_fs_info *fs_info = cache->fs_info; 737 struct btrfs_caching_control *caching_ctl = NULL; 738 int ret = 0; 739 740 /* Allocator for zoned filesystems does not use the cache at all */ 741 if (btrfs_is_zoned(fs_info)) 742 return 0; 743 744 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 745 if (!caching_ctl) 746 return -ENOMEM; 747 748 INIT_LIST_HEAD(&caching_ctl->list); 749 mutex_init(&caching_ctl->mutex); 750 init_waitqueue_head(&caching_ctl->wait); 751 caching_ctl->block_group = cache; 752 caching_ctl->progress = cache->start; 753 refcount_set(&caching_ctl->count, 2); 754 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 755 756 spin_lock(&cache->lock); 757 if (cache->cached != BTRFS_CACHE_NO) { 758 kfree(caching_ctl); 759 760 caching_ctl = cache->caching_ctl; 761 if (caching_ctl) 762 refcount_inc(&caching_ctl->count); 763 spin_unlock(&cache->lock); 764 goto out; 765 } 766 WARN_ON(cache->caching_ctl); 767 cache->caching_ctl = caching_ctl; 768 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 769 cache->cached = BTRFS_CACHE_FAST; 770 else 771 cache->cached = BTRFS_CACHE_STARTED; 772 cache->has_caching_ctl = 1; 773 spin_unlock(&cache->lock); 774 775 spin_lock(&fs_info->block_group_cache_lock); 776 refcount_inc(&caching_ctl->count); 777 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 778 spin_unlock(&fs_info->block_group_cache_lock); 779 780 btrfs_get_block_group(cache); 781 782 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 783 out: 784 if (load_cache_only && caching_ctl) 785 btrfs_wait_space_cache_v1_finished(cache, caching_ctl); 786 if (caching_ctl) 787 btrfs_put_caching_control(caching_ctl); 788 789 return ret; 790 } 791 792 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 793 { 794 u64 extra_flags = chunk_to_extended(flags) & 795 BTRFS_EXTENDED_PROFILE_MASK; 796 797 write_seqlock(&fs_info->profiles_lock); 798 if (flags & BTRFS_BLOCK_GROUP_DATA) 799 fs_info->avail_data_alloc_bits &= ~extra_flags; 800 if (flags & BTRFS_BLOCK_GROUP_METADATA) 801 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 802 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 803 fs_info->avail_system_alloc_bits &= ~extra_flags; 804 write_sequnlock(&fs_info->profiles_lock); 805 } 806 807 /* 808 * Clear incompat bits for the following feature(s): 809 * 810 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 811 * in the whole filesystem 812 * 813 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 814 */ 815 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 816 { 817 bool found_raid56 = false; 818 bool found_raid1c34 = false; 819 820 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 821 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 822 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 823 struct list_head *head = &fs_info->space_info; 824 struct btrfs_space_info *sinfo; 825 826 list_for_each_entry_rcu(sinfo, head, list) { 827 down_read(&sinfo->groups_sem); 828 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 829 found_raid56 = true; 830 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 831 found_raid56 = true; 832 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 833 found_raid1c34 = true; 834 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 835 found_raid1c34 = true; 836 up_read(&sinfo->groups_sem); 837 } 838 if (!found_raid56) 839 btrfs_clear_fs_incompat(fs_info, RAID56); 840 if (!found_raid1c34) 841 btrfs_clear_fs_incompat(fs_info, RAID1C34); 842 } 843 } 844 845 static int remove_block_group_item(struct btrfs_trans_handle *trans, 846 struct btrfs_path *path, 847 struct btrfs_block_group *block_group) 848 { 849 struct btrfs_fs_info *fs_info = trans->fs_info; 850 struct btrfs_root *root; 851 struct btrfs_key key; 852 int ret; 853 854 root = btrfs_block_group_root(fs_info); 855 key.objectid = block_group->start; 856 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 857 key.offset = block_group->length; 858 859 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 860 if (ret > 0) 861 ret = -ENOENT; 862 if (ret < 0) 863 return ret; 864 865 ret = btrfs_del_item(trans, root, path); 866 return ret; 867 } 868 869 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 870 u64 group_start, struct extent_map *em) 871 { 872 struct btrfs_fs_info *fs_info = trans->fs_info; 873 struct btrfs_path *path; 874 struct btrfs_block_group *block_group; 875 struct btrfs_free_cluster *cluster; 876 struct inode *inode; 877 struct kobject *kobj = NULL; 878 int ret; 879 int index; 880 int factor; 881 struct btrfs_caching_control *caching_ctl = NULL; 882 bool remove_em; 883 bool remove_rsv = false; 884 885 block_group = btrfs_lookup_block_group(fs_info, group_start); 886 BUG_ON(!block_group); 887 BUG_ON(!block_group->ro); 888 889 trace_btrfs_remove_block_group(block_group); 890 /* 891 * Free the reserved super bytes from this block group before 892 * remove it. 893 */ 894 btrfs_free_excluded_extents(block_group); 895 btrfs_free_ref_tree_range(fs_info, block_group->start, 896 block_group->length); 897 898 index = btrfs_bg_flags_to_raid_index(block_group->flags); 899 factor = btrfs_bg_type_to_factor(block_group->flags); 900 901 /* make sure this block group isn't part of an allocation cluster */ 902 cluster = &fs_info->data_alloc_cluster; 903 spin_lock(&cluster->refill_lock); 904 btrfs_return_cluster_to_free_space(block_group, cluster); 905 spin_unlock(&cluster->refill_lock); 906 907 /* 908 * make sure this block group isn't part of a metadata 909 * allocation cluster 910 */ 911 cluster = &fs_info->meta_alloc_cluster; 912 spin_lock(&cluster->refill_lock); 913 btrfs_return_cluster_to_free_space(block_group, cluster); 914 spin_unlock(&cluster->refill_lock); 915 916 btrfs_clear_treelog_bg(block_group); 917 btrfs_clear_data_reloc_bg(block_group); 918 919 path = btrfs_alloc_path(); 920 if (!path) { 921 ret = -ENOMEM; 922 goto out; 923 } 924 925 /* 926 * get the inode first so any iput calls done for the io_list 927 * aren't the final iput (no unlinks allowed now) 928 */ 929 inode = lookup_free_space_inode(block_group, path); 930 931 mutex_lock(&trans->transaction->cache_write_mutex); 932 /* 933 * Make sure our free space cache IO is done before removing the 934 * free space inode 935 */ 936 spin_lock(&trans->transaction->dirty_bgs_lock); 937 if (!list_empty(&block_group->io_list)) { 938 list_del_init(&block_group->io_list); 939 940 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 941 942 spin_unlock(&trans->transaction->dirty_bgs_lock); 943 btrfs_wait_cache_io(trans, block_group, path); 944 btrfs_put_block_group(block_group); 945 spin_lock(&trans->transaction->dirty_bgs_lock); 946 } 947 948 if (!list_empty(&block_group->dirty_list)) { 949 list_del_init(&block_group->dirty_list); 950 remove_rsv = true; 951 btrfs_put_block_group(block_group); 952 } 953 spin_unlock(&trans->transaction->dirty_bgs_lock); 954 mutex_unlock(&trans->transaction->cache_write_mutex); 955 956 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 957 if (ret) 958 goto out; 959 960 spin_lock(&fs_info->block_group_cache_lock); 961 rb_erase(&block_group->cache_node, 962 &fs_info->block_group_cache_tree); 963 RB_CLEAR_NODE(&block_group->cache_node); 964 965 /* Once for the block groups rbtree */ 966 btrfs_put_block_group(block_group); 967 968 if (fs_info->first_logical_byte == block_group->start) 969 fs_info->first_logical_byte = (u64)-1; 970 spin_unlock(&fs_info->block_group_cache_lock); 971 972 down_write(&block_group->space_info->groups_sem); 973 /* 974 * we must use list_del_init so people can check to see if they 975 * are still on the list after taking the semaphore 976 */ 977 list_del_init(&block_group->list); 978 if (list_empty(&block_group->space_info->block_groups[index])) { 979 kobj = block_group->space_info->block_group_kobjs[index]; 980 block_group->space_info->block_group_kobjs[index] = NULL; 981 clear_avail_alloc_bits(fs_info, block_group->flags); 982 } 983 up_write(&block_group->space_info->groups_sem); 984 clear_incompat_bg_bits(fs_info, block_group->flags); 985 if (kobj) { 986 kobject_del(kobj); 987 kobject_put(kobj); 988 } 989 990 if (block_group->has_caching_ctl) 991 caching_ctl = btrfs_get_caching_control(block_group); 992 if (block_group->cached == BTRFS_CACHE_STARTED) 993 btrfs_wait_block_group_cache_done(block_group); 994 if (block_group->has_caching_ctl) { 995 spin_lock(&fs_info->block_group_cache_lock); 996 if (!caching_ctl) { 997 struct btrfs_caching_control *ctl; 998 999 list_for_each_entry(ctl, 1000 &fs_info->caching_block_groups, list) 1001 if (ctl->block_group == block_group) { 1002 caching_ctl = ctl; 1003 refcount_inc(&caching_ctl->count); 1004 break; 1005 } 1006 } 1007 if (caching_ctl) 1008 list_del_init(&caching_ctl->list); 1009 spin_unlock(&fs_info->block_group_cache_lock); 1010 if (caching_ctl) { 1011 /* Once for the caching bgs list and once for us. */ 1012 btrfs_put_caching_control(caching_ctl); 1013 btrfs_put_caching_control(caching_ctl); 1014 } 1015 } 1016 1017 spin_lock(&trans->transaction->dirty_bgs_lock); 1018 WARN_ON(!list_empty(&block_group->dirty_list)); 1019 WARN_ON(!list_empty(&block_group->io_list)); 1020 spin_unlock(&trans->transaction->dirty_bgs_lock); 1021 1022 btrfs_remove_free_space_cache(block_group); 1023 1024 spin_lock(&block_group->space_info->lock); 1025 list_del_init(&block_group->ro_list); 1026 1027 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1028 WARN_ON(block_group->space_info->total_bytes 1029 < block_group->length); 1030 WARN_ON(block_group->space_info->bytes_readonly 1031 < block_group->length - block_group->zone_unusable); 1032 WARN_ON(block_group->space_info->bytes_zone_unusable 1033 < block_group->zone_unusable); 1034 WARN_ON(block_group->space_info->disk_total 1035 < block_group->length * factor); 1036 } 1037 block_group->space_info->total_bytes -= block_group->length; 1038 block_group->space_info->bytes_readonly -= 1039 (block_group->length - block_group->zone_unusable); 1040 block_group->space_info->bytes_zone_unusable -= 1041 block_group->zone_unusable; 1042 block_group->space_info->disk_total -= block_group->length * factor; 1043 1044 spin_unlock(&block_group->space_info->lock); 1045 1046 /* 1047 * Remove the free space for the block group from the free space tree 1048 * and the block group's item from the extent tree before marking the 1049 * block group as removed. This is to prevent races with tasks that 1050 * freeze and unfreeze a block group, this task and another task 1051 * allocating a new block group - the unfreeze task ends up removing 1052 * the block group's extent map before the task calling this function 1053 * deletes the block group item from the extent tree, allowing for 1054 * another task to attempt to create another block group with the same 1055 * item key (and failing with -EEXIST and a transaction abort). 1056 */ 1057 ret = remove_block_group_free_space(trans, block_group); 1058 if (ret) 1059 goto out; 1060 1061 ret = remove_block_group_item(trans, path, block_group); 1062 if (ret < 0) 1063 goto out; 1064 1065 spin_lock(&block_group->lock); 1066 block_group->removed = 1; 1067 /* 1068 * At this point trimming or scrub can't start on this block group, 1069 * because we removed the block group from the rbtree 1070 * fs_info->block_group_cache_tree so no one can't find it anymore and 1071 * even if someone already got this block group before we removed it 1072 * from the rbtree, they have already incremented block_group->frozen - 1073 * if they didn't, for the trimming case they won't find any free space 1074 * entries because we already removed them all when we called 1075 * btrfs_remove_free_space_cache(). 1076 * 1077 * And we must not remove the extent map from the fs_info->mapping_tree 1078 * to prevent the same logical address range and physical device space 1079 * ranges from being reused for a new block group. This is needed to 1080 * avoid races with trimming and scrub. 1081 * 1082 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1083 * completely transactionless, so while it is trimming a range the 1084 * currently running transaction might finish and a new one start, 1085 * allowing for new block groups to be created that can reuse the same 1086 * physical device locations unless we take this special care. 1087 * 1088 * There may also be an implicit trim operation if the file system 1089 * is mounted with -odiscard. The same protections must remain 1090 * in place until the extents have been discarded completely when 1091 * the transaction commit has completed. 1092 */ 1093 remove_em = (atomic_read(&block_group->frozen) == 0); 1094 spin_unlock(&block_group->lock); 1095 1096 if (remove_em) { 1097 struct extent_map_tree *em_tree; 1098 1099 em_tree = &fs_info->mapping_tree; 1100 write_lock(&em_tree->lock); 1101 remove_extent_mapping(em_tree, em); 1102 write_unlock(&em_tree->lock); 1103 /* once for the tree */ 1104 free_extent_map(em); 1105 } 1106 1107 out: 1108 /* Once for the lookup reference */ 1109 btrfs_put_block_group(block_group); 1110 if (remove_rsv) 1111 btrfs_delayed_refs_rsv_release(fs_info, 1); 1112 btrfs_free_path(path); 1113 return ret; 1114 } 1115 1116 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1117 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1118 { 1119 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1120 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1121 struct extent_map *em; 1122 struct map_lookup *map; 1123 unsigned int num_items; 1124 1125 read_lock(&em_tree->lock); 1126 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1127 read_unlock(&em_tree->lock); 1128 ASSERT(em && em->start == chunk_offset); 1129 1130 /* 1131 * We need to reserve 3 + N units from the metadata space info in order 1132 * to remove a block group (done at btrfs_remove_chunk() and at 1133 * btrfs_remove_block_group()), which are used for: 1134 * 1135 * 1 unit for adding the free space inode's orphan (located in the tree 1136 * of tree roots). 1137 * 1 unit for deleting the block group item (located in the extent 1138 * tree). 1139 * 1 unit for deleting the free space item (located in tree of tree 1140 * roots). 1141 * N units for deleting N device extent items corresponding to each 1142 * stripe (located in the device tree). 1143 * 1144 * In order to remove a block group we also need to reserve units in the 1145 * system space info in order to update the chunk tree (update one or 1146 * more device items and remove one chunk item), but this is done at 1147 * btrfs_remove_chunk() through a call to check_system_chunk(). 1148 */ 1149 map = em->map_lookup; 1150 num_items = 3 + map->num_stripes; 1151 free_extent_map(em); 1152 1153 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1154 } 1155 1156 /* 1157 * Mark block group @cache read-only, so later write won't happen to block 1158 * group @cache. 1159 * 1160 * If @force is not set, this function will only mark the block group readonly 1161 * if we have enough free space (1M) in other metadata/system block groups. 1162 * If @force is not set, this function will mark the block group readonly 1163 * without checking free space. 1164 * 1165 * NOTE: This function doesn't care if other block groups can contain all the 1166 * data in this block group. That check should be done by relocation routine, 1167 * not this function. 1168 */ 1169 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1170 { 1171 struct btrfs_space_info *sinfo = cache->space_info; 1172 u64 num_bytes; 1173 int ret = -ENOSPC; 1174 1175 spin_lock(&sinfo->lock); 1176 spin_lock(&cache->lock); 1177 1178 if (cache->swap_extents) { 1179 ret = -ETXTBSY; 1180 goto out; 1181 } 1182 1183 if (cache->ro) { 1184 cache->ro++; 1185 ret = 0; 1186 goto out; 1187 } 1188 1189 num_bytes = cache->length - cache->reserved - cache->pinned - 1190 cache->bytes_super - cache->zone_unusable - cache->used; 1191 1192 /* 1193 * Data never overcommits, even in mixed mode, so do just the straight 1194 * check of left over space in how much we have allocated. 1195 */ 1196 if (force) { 1197 ret = 0; 1198 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1199 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1200 1201 /* 1202 * Here we make sure if we mark this bg RO, we still have enough 1203 * free space as buffer. 1204 */ 1205 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1206 ret = 0; 1207 } else { 1208 /* 1209 * We overcommit metadata, so we need to do the 1210 * btrfs_can_overcommit check here, and we need to pass in 1211 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1212 * leeway to allow us to mark this block group as read only. 1213 */ 1214 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1215 BTRFS_RESERVE_NO_FLUSH)) 1216 ret = 0; 1217 } 1218 1219 if (!ret) { 1220 sinfo->bytes_readonly += num_bytes; 1221 if (btrfs_is_zoned(cache->fs_info)) { 1222 /* Migrate zone_unusable bytes to readonly */ 1223 sinfo->bytes_readonly += cache->zone_unusable; 1224 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1225 cache->zone_unusable = 0; 1226 } 1227 cache->ro++; 1228 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1229 } 1230 out: 1231 spin_unlock(&cache->lock); 1232 spin_unlock(&sinfo->lock); 1233 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1234 btrfs_info(cache->fs_info, 1235 "unable to make block group %llu ro", cache->start); 1236 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1237 } 1238 return ret; 1239 } 1240 1241 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1242 struct btrfs_block_group *bg) 1243 { 1244 struct btrfs_fs_info *fs_info = bg->fs_info; 1245 struct btrfs_transaction *prev_trans = NULL; 1246 const u64 start = bg->start; 1247 const u64 end = start + bg->length - 1; 1248 int ret; 1249 1250 spin_lock(&fs_info->trans_lock); 1251 if (trans->transaction->list.prev != &fs_info->trans_list) { 1252 prev_trans = list_last_entry(&trans->transaction->list, 1253 struct btrfs_transaction, list); 1254 refcount_inc(&prev_trans->use_count); 1255 } 1256 spin_unlock(&fs_info->trans_lock); 1257 1258 /* 1259 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1260 * btrfs_finish_extent_commit(). If we are at transaction N, another 1261 * task might be running finish_extent_commit() for the previous 1262 * transaction N - 1, and have seen a range belonging to the block 1263 * group in pinned_extents before we were able to clear the whole block 1264 * group range from pinned_extents. This means that task can lookup for 1265 * the block group after we unpinned it from pinned_extents and removed 1266 * it, leading to a BUG_ON() at unpin_extent_range(). 1267 */ 1268 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1269 if (prev_trans) { 1270 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1271 EXTENT_DIRTY); 1272 if (ret) 1273 goto out; 1274 } 1275 1276 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1277 EXTENT_DIRTY); 1278 out: 1279 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1280 if (prev_trans) 1281 btrfs_put_transaction(prev_trans); 1282 1283 return ret == 0; 1284 } 1285 1286 /* 1287 * Process the unused_bgs list and remove any that don't have any allocated 1288 * space inside of them. 1289 */ 1290 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1291 { 1292 struct btrfs_block_group *block_group; 1293 struct btrfs_space_info *space_info; 1294 struct btrfs_trans_handle *trans; 1295 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1296 int ret = 0; 1297 1298 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1299 return; 1300 1301 /* 1302 * Long running balances can keep us blocked here for eternity, so 1303 * simply skip deletion if we're unable to get the mutex. 1304 */ 1305 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1306 return; 1307 1308 spin_lock(&fs_info->unused_bgs_lock); 1309 while (!list_empty(&fs_info->unused_bgs)) { 1310 int trimming; 1311 1312 block_group = list_first_entry(&fs_info->unused_bgs, 1313 struct btrfs_block_group, 1314 bg_list); 1315 list_del_init(&block_group->bg_list); 1316 1317 space_info = block_group->space_info; 1318 1319 if (ret || btrfs_mixed_space_info(space_info)) { 1320 btrfs_put_block_group(block_group); 1321 continue; 1322 } 1323 spin_unlock(&fs_info->unused_bgs_lock); 1324 1325 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1326 1327 /* Don't want to race with allocators so take the groups_sem */ 1328 down_write(&space_info->groups_sem); 1329 1330 /* 1331 * Async discard moves the final block group discard to be prior 1332 * to the unused_bgs code path. Therefore, if it's not fully 1333 * trimmed, punt it back to the async discard lists. 1334 */ 1335 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1336 !btrfs_is_free_space_trimmed(block_group)) { 1337 trace_btrfs_skip_unused_block_group(block_group); 1338 up_write(&space_info->groups_sem); 1339 /* Requeue if we failed because of async discard */ 1340 btrfs_discard_queue_work(&fs_info->discard_ctl, 1341 block_group); 1342 goto next; 1343 } 1344 1345 spin_lock(&block_group->lock); 1346 if (block_group->reserved || block_group->pinned || 1347 block_group->used || block_group->ro || 1348 list_is_singular(&block_group->list)) { 1349 /* 1350 * We want to bail if we made new allocations or have 1351 * outstanding allocations in this block group. We do 1352 * the ro check in case balance is currently acting on 1353 * this block group. 1354 */ 1355 trace_btrfs_skip_unused_block_group(block_group); 1356 spin_unlock(&block_group->lock); 1357 up_write(&space_info->groups_sem); 1358 goto next; 1359 } 1360 spin_unlock(&block_group->lock); 1361 1362 /* We don't want to force the issue, only flip if it's ok. */ 1363 ret = inc_block_group_ro(block_group, 0); 1364 up_write(&space_info->groups_sem); 1365 if (ret < 0) { 1366 ret = 0; 1367 goto next; 1368 } 1369 1370 /* 1371 * Want to do this before we do anything else so we can recover 1372 * properly if we fail to join the transaction. 1373 */ 1374 trans = btrfs_start_trans_remove_block_group(fs_info, 1375 block_group->start); 1376 if (IS_ERR(trans)) { 1377 btrfs_dec_block_group_ro(block_group); 1378 ret = PTR_ERR(trans); 1379 goto next; 1380 } 1381 1382 /* 1383 * We could have pending pinned extents for this block group, 1384 * just delete them, we don't care about them anymore. 1385 */ 1386 if (!clean_pinned_extents(trans, block_group)) { 1387 btrfs_dec_block_group_ro(block_group); 1388 goto end_trans; 1389 } 1390 1391 /* 1392 * At this point, the block_group is read only and should fail 1393 * new allocations. However, btrfs_finish_extent_commit() can 1394 * cause this block_group to be placed back on the discard 1395 * lists because now the block_group isn't fully discarded. 1396 * Bail here and try again later after discarding everything. 1397 */ 1398 spin_lock(&fs_info->discard_ctl.lock); 1399 if (!list_empty(&block_group->discard_list)) { 1400 spin_unlock(&fs_info->discard_ctl.lock); 1401 btrfs_dec_block_group_ro(block_group); 1402 btrfs_discard_queue_work(&fs_info->discard_ctl, 1403 block_group); 1404 goto end_trans; 1405 } 1406 spin_unlock(&fs_info->discard_ctl.lock); 1407 1408 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1409 spin_lock(&space_info->lock); 1410 spin_lock(&block_group->lock); 1411 1412 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1413 -block_group->pinned); 1414 space_info->bytes_readonly += block_group->pinned; 1415 block_group->pinned = 0; 1416 1417 spin_unlock(&block_group->lock); 1418 spin_unlock(&space_info->lock); 1419 1420 /* 1421 * The normal path here is an unused block group is passed here, 1422 * then trimming is handled in the transaction commit path. 1423 * Async discard interposes before this to do the trimming 1424 * before coming down the unused block group path as trimming 1425 * will no longer be done later in the transaction commit path. 1426 */ 1427 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1428 goto flip_async; 1429 1430 /* 1431 * DISCARD can flip during remount. On zoned filesystems, we 1432 * need to reset sequential-required zones. 1433 */ 1434 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1435 btrfs_is_zoned(fs_info); 1436 1437 /* Implicit trim during transaction commit. */ 1438 if (trimming) 1439 btrfs_freeze_block_group(block_group); 1440 1441 /* 1442 * Btrfs_remove_chunk will abort the transaction if things go 1443 * horribly wrong. 1444 */ 1445 ret = btrfs_remove_chunk(trans, block_group->start); 1446 1447 if (ret) { 1448 if (trimming) 1449 btrfs_unfreeze_block_group(block_group); 1450 goto end_trans; 1451 } 1452 1453 /* 1454 * If we're not mounted with -odiscard, we can just forget 1455 * about this block group. Otherwise we'll need to wait 1456 * until transaction commit to do the actual discard. 1457 */ 1458 if (trimming) { 1459 spin_lock(&fs_info->unused_bgs_lock); 1460 /* 1461 * A concurrent scrub might have added us to the list 1462 * fs_info->unused_bgs, so use a list_move operation 1463 * to add the block group to the deleted_bgs list. 1464 */ 1465 list_move(&block_group->bg_list, 1466 &trans->transaction->deleted_bgs); 1467 spin_unlock(&fs_info->unused_bgs_lock); 1468 btrfs_get_block_group(block_group); 1469 } 1470 end_trans: 1471 btrfs_end_transaction(trans); 1472 next: 1473 btrfs_put_block_group(block_group); 1474 spin_lock(&fs_info->unused_bgs_lock); 1475 } 1476 spin_unlock(&fs_info->unused_bgs_lock); 1477 mutex_unlock(&fs_info->reclaim_bgs_lock); 1478 return; 1479 1480 flip_async: 1481 btrfs_end_transaction(trans); 1482 mutex_unlock(&fs_info->reclaim_bgs_lock); 1483 btrfs_put_block_group(block_group); 1484 btrfs_discard_punt_unused_bgs_list(fs_info); 1485 } 1486 1487 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1488 { 1489 struct btrfs_fs_info *fs_info = bg->fs_info; 1490 1491 spin_lock(&fs_info->unused_bgs_lock); 1492 if (list_empty(&bg->bg_list)) { 1493 btrfs_get_block_group(bg); 1494 trace_btrfs_add_unused_block_group(bg); 1495 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1496 } 1497 spin_unlock(&fs_info->unused_bgs_lock); 1498 } 1499 1500 /* 1501 * We want block groups with a low number of used bytes to be in the beginning 1502 * of the list, so they will get reclaimed first. 1503 */ 1504 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1505 const struct list_head *b) 1506 { 1507 const struct btrfs_block_group *bg1, *bg2; 1508 1509 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1510 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1511 1512 return bg1->used > bg2->used; 1513 } 1514 1515 void btrfs_reclaim_bgs_work(struct work_struct *work) 1516 { 1517 struct btrfs_fs_info *fs_info = 1518 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1519 struct btrfs_block_group *bg; 1520 struct btrfs_space_info *space_info; 1521 1522 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1523 return; 1524 1525 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 1526 return; 1527 1528 /* 1529 * Long running balances can keep us blocked here for eternity, so 1530 * simply skip reclaim if we're unable to get the mutex. 1531 */ 1532 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1533 btrfs_exclop_finish(fs_info); 1534 return; 1535 } 1536 1537 spin_lock(&fs_info->unused_bgs_lock); 1538 /* 1539 * Sort happens under lock because we can't simply splice it and sort. 1540 * The block groups might still be in use and reachable via bg_list, 1541 * and their presence in the reclaim_bgs list must be preserved. 1542 */ 1543 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1544 while (!list_empty(&fs_info->reclaim_bgs)) { 1545 u64 zone_unusable; 1546 int ret = 0; 1547 1548 bg = list_first_entry(&fs_info->reclaim_bgs, 1549 struct btrfs_block_group, 1550 bg_list); 1551 list_del_init(&bg->bg_list); 1552 1553 space_info = bg->space_info; 1554 spin_unlock(&fs_info->unused_bgs_lock); 1555 1556 /* Don't race with allocators so take the groups_sem */ 1557 down_write(&space_info->groups_sem); 1558 1559 spin_lock(&bg->lock); 1560 if (bg->reserved || bg->pinned || bg->ro) { 1561 /* 1562 * We want to bail if we made new allocations or have 1563 * outstanding allocations in this block group. We do 1564 * the ro check in case balance is currently acting on 1565 * this block group. 1566 */ 1567 spin_unlock(&bg->lock); 1568 up_write(&space_info->groups_sem); 1569 goto next; 1570 } 1571 spin_unlock(&bg->lock); 1572 1573 /* Get out fast, in case we're unmounting the filesystem */ 1574 if (btrfs_fs_closing(fs_info)) { 1575 up_write(&space_info->groups_sem); 1576 goto next; 1577 } 1578 1579 /* 1580 * Cache the zone_unusable value before turning the block group 1581 * to read only. As soon as the blog group is read only it's 1582 * zone_unusable value gets moved to the block group's read-only 1583 * bytes and isn't available for calculations anymore. 1584 */ 1585 zone_unusable = bg->zone_unusable; 1586 ret = inc_block_group_ro(bg, 0); 1587 up_write(&space_info->groups_sem); 1588 if (ret < 0) 1589 goto next; 1590 1591 btrfs_info(fs_info, 1592 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1593 bg->start, div_u64(bg->used * 100, bg->length), 1594 div64_u64(zone_unusable * 100, bg->length)); 1595 trace_btrfs_reclaim_block_group(bg); 1596 ret = btrfs_relocate_chunk(fs_info, bg->start); 1597 if (ret) 1598 btrfs_err(fs_info, "error relocating chunk %llu", 1599 bg->start); 1600 1601 next: 1602 btrfs_put_block_group(bg); 1603 spin_lock(&fs_info->unused_bgs_lock); 1604 } 1605 spin_unlock(&fs_info->unused_bgs_lock); 1606 mutex_unlock(&fs_info->reclaim_bgs_lock); 1607 btrfs_exclop_finish(fs_info); 1608 } 1609 1610 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1611 { 1612 spin_lock(&fs_info->unused_bgs_lock); 1613 if (!list_empty(&fs_info->reclaim_bgs)) 1614 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1615 spin_unlock(&fs_info->unused_bgs_lock); 1616 } 1617 1618 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1619 { 1620 struct btrfs_fs_info *fs_info = bg->fs_info; 1621 1622 spin_lock(&fs_info->unused_bgs_lock); 1623 if (list_empty(&bg->bg_list)) { 1624 btrfs_get_block_group(bg); 1625 trace_btrfs_add_reclaim_block_group(bg); 1626 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1627 } 1628 spin_unlock(&fs_info->unused_bgs_lock); 1629 } 1630 1631 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1632 struct btrfs_path *path) 1633 { 1634 struct extent_map_tree *em_tree; 1635 struct extent_map *em; 1636 struct btrfs_block_group_item bg; 1637 struct extent_buffer *leaf; 1638 int slot; 1639 u64 flags; 1640 int ret = 0; 1641 1642 slot = path->slots[0]; 1643 leaf = path->nodes[0]; 1644 1645 em_tree = &fs_info->mapping_tree; 1646 read_lock(&em_tree->lock); 1647 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1648 read_unlock(&em_tree->lock); 1649 if (!em) { 1650 btrfs_err(fs_info, 1651 "logical %llu len %llu found bg but no related chunk", 1652 key->objectid, key->offset); 1653 return -ENOENT; 1654 } 1655 1656 if (em->start != key->objectid || em->len != key->offset) { 1657 btrfs_err(fs_info, 1658 "block group %llu len %llu mismatch with chunk %llu len %llu", 1659 key->objectid, key->offset, em->start, em->len); 1660 ret = -EUCLEAN; 1661 goto out_free_em; 1662 } 1663 1664 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1665 sizeof(bg)); 1666 flags = btrfs_stack_block_group_flags(&bg) & 1667 BTRFS_BLOCK_GROUP_TYPE_MASK; 1668 1669 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1670 btrfs_err(fs_info, 1671 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1672 key->objectid, key->offset, flags, 1673 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1674 ret = -EUCLEAN; 1675 } 1676 1677 out_free_em: 1678 free_extent_map(em); 1679 return ret; 1680 } 1681 1682 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1683 struct btrfs_path *path, 1684 struct btrfs_key *key) 1685 { 1686 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1687 int ret; 1688 struct btrfs_key found_key; 1689 struct extent_buffer *leaf; 1690 int slot; 1691 1692 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1693 if (ret < 0) 1694 return ret; 1695 1696 while (1) { 1697 slot = path->slots[0]; 1698 leaf = path->nodes[0]; 1699 if (slot >= btrfs_header_nritems(leaf)) { 1700 ret = btrfs_next_leaf(root, path); 1701 if (ret == 0) 1702 continue; 1703 if (ret < 0) 1704 goto out; 1705 break; 1706 } 1707 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1708 1709 if (found_key.objectid >= key->objectid && 1710 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1711 ret = read_bg_from_eb(fs_info, &found_key, path); 1712 break; 1713 } 1714 1715 path->slots[0]++; 1716 } 1717 out: 1718 return ret; 1719 } 1720 1721 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1722 { 1723 u64 extra_flags = chunk_to_extended(flags) & 1724 BTRFS_EXTENDED_PROFILE_MASK; 1725 1726 write_seqlock(&fs_info->profiles_lock); 1727 if (flags & BTRFS_BLOCK_GROUP_DATA) 1728 fs_info->avail_data_alloc_bits |= extra_flags; 1729 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1730 fs_info->avail_metadata_alloc_bits |= extra_flags; 1731 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1732 fs_info->avail_system_alloc_bits |= extra_flags; 1733 write_sequnlock(&fs_info->profiles_lock); 1734 } 1735 1736 /** 1737 * Map a physical disk address to a list of logical addresses 1738 * 1739 * @fs_info: the filesystem 1740 * @chunk_start: logical address of block group 1741 * @bdev: physical device to resolve, can be NULL to indicate any device 1742 * @physical: physical address to map to logical addresses 1743 * @logical: return array of logical addresses which map to @physical 1744 * @naddrs: length of @logical 1745 * @stripe_len: size of IO stripe for the given block group 1746 * 1747 * Maps a particular @physical disk address to a list of @logical addresses. 1748 * Used primarily to exclude those portions of a block group that contain super 1749 * block copies. 1750 */ 1751 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1752 struct block_device *bdev, u64 physical, u64 **logical, 1753 int *naddrs, int *stripe_len) 1754 { 1755 struct extent_map *em; 1756 struct map_lookup *map; 1757 u64 *buf; 1758 u64 bytenr; 1759 u64 data_stripe_length; 1760 u64 io_stripe_size; 1761 int i, nr = 0; 1762 int ret = 0; 1763 1764 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1765 if (IS_ERR(em)) 1766 return -EIO; 1767 1768 map = em->map_lookup; 1769 data_stripe_length = em->orig_block_len; 1770 io_stripe_size = map->stripe_len; 1771 chunk_start = em->start; 1772 1773 /* For RAID5/6 adjust to a full IO stripe length */ 1774 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1775 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1776 1777 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1778 if (!buf) { 1779 ret = -ENOMEM; 1780 goto out; 1781 } 1782 1783 for (i = 0; i < map->num_stripes; i++) { 1784 bool already_inserted = false; 1785 u64 stripe_nr; 1786 u64 offset; 1787 int j; 1788 1789 if (!in_range(physical, map->stripes[i].physical, 1790 data_stripe_length)) 1791 continue; 1792 1793 if (bdev && map->stripes[i].dev->bdev != bdev) 1794 continue; 1795 1796 stripe_nr = physical - map->stripes[i].physical; 1797 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 1798 1799 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1800 stripe_nr = stripe_nr * map->num_stripes + i; 1801 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1802 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1803 stripe_nr = stripe_nr * map->num_stripes + i; 1804 } 1805 /* 1806 * The remaining case would be for RAID56, multiply by 1807 * nr_data_stripes(). Alternatively, just use rmap_len below 1808 * instead of map->stripe_len 1809 */ 1810 1811 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 1812 1813 /* Ensure we don't add duplicate addresses */ 1814 for (j = 0; j < nr; j++) { 1815 if (buf[j] == bytenr) { 1816 already_inserted = true; 1817 break; 1818 } 1819 } 1820 1821 if (!already_inserted) 1822 buf[nr++] = bytenr; 1823 } 1824 1825 *logical = buf; 1826 *naddrs = nr; 1827 *stripe_len = io_stripe_size; 1828 out: 1829 free_extent_map(em); 1830 return ret; 1831 } 1832 1833 static int exclude_super_stripes(struct btrfs_block_group *cache) 1834 { 1835 struct btrfs_fs_info *fs_info = cache->fs_info; 1836 const bool zoned = btrfs_is_zoned(fs_info); 1837 u64 bytenr; 1838 u64 *logical; 1839 int stripe_len; 1840 int i, nr, ret; 1841 1842 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1843 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1844 cache->bytes_super += stripe_len; 1845 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1846 stripe_len); 1847 if (ret) 1848 return ret; 1849 } 1850 1851 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1852 bytenr = btrfs_sb_offset(i); 1853 ret = btrfs_rmap_block(fs_info, cache->start, NULL, 1854 bytenr, &logical, &nr, &stripe_len); 1855 if (ret) 1856 return ret; 1857 1858 /* Shouldn't have super stripes in sequential zones */ 1859 if (zoned && nr) { 1860 btrfs_err(fs_info, 1861 "zoned: block group %llu must not contain super block", 1862 cache->start); 1863 return -EUCLEAN; 1864 } 1865 1866 while (nr--) { 1867 u64 len = min_t(u64, stripe_len, 1868 cache->start + cache->length - logical[nr]); 1869 1870 cache->bytes_super += len; 1871 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1872 len); 1873 if (ret) { 1874 kfree(logical); 1875 return ret; 1876 } 1877 } 1878 1879 kfree(logical); 1880 } 1881 return 0; 1882 } 1883 1884 static void link_block_group(struct btrfs_block_group *cache) 1885 { 1886 struct btrfs_space_info *space_info = cache->space_info; 1887 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1888 1889 down_write(&space_info->groups_sem); 1890 list_add_tail(&cache->list, &space_info->block_groups[index]); 1891 up_write(&space_info->groups_sem); 1892 } 1893 1894 static struct btrfs_block_group *btrfs_create_block_group_cache( 1895 struct btrfs_fs_info *fs_info, u64 start) 1896 { 1897 struct btrfs_block_group *cache; 1898 1899 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1900 if (!cache) 1901 return NULL; 1902 1903 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1904 GFP_NOFS); 1905 if (!cache->free_space_ctl) { 1906 kfree(cache); 1907 return NULL; 1908 } 1909 1910 cache->start = start; 1911 1912 cache->fs_info = fs_info; 1913 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1914 1915 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1916 1917 refcount_set(&cache->refs, 1); 1918 spin_lock_init(&cache->lock); 1919 init_rwsem(&cache->data_rwsem); 1920 INIT_LIST_HEAD(&cache->list); 1921 INIT_LIST_HEAD(&cache->cluster_list); 1922 INIT_LIST_HEAD(&cache->bg_list); 1923 INIT_LIST_HEAD(&cache->ro_list); 1924 INIT_LIST_HEAD(&cache->discard_list); 1925 INIT_LIST_HEAD(&cache->dirty_list); 1926 INIT_LIST_HEAD(&cache->io_list); 1927 INIT_LIST_HEAD(&cache->active_bg_list); 1928 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 1929 atomic_set(&cache->frozen, 0); 1930 mutex_init(&cache->free_space_lock); 1931 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1932 1933 return cache; 1934 } 1935 1936 /* 1937 * Iterate all chunks and verify that each of them has the corresponding block 1938 * group 1939 */ 1940 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1941 { 1942 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1943 struct extent_map *em; 1944 struct btrfs_block_group *bg; 1945 u64 start = 0; 1946 int ret = 0; 1947 1948 while (1) { 1949 read_lock(&map_tree->lock); 1950 /* 1951 * lookup_extent_mapping will return the first extent map 1952 * intersecting the range, so setting @len to 1 is enough to 1953 * get the first chunk. 1954 */ 1955 em = lookup_extent_mapping(map_tree, start, 1); 1956 read_unlock(&map_tree->lock); 1957 if (!em) 1958 break; 1959 1960 bg = btrfs_lookup_block_group(fs_info, em->start); 1961 if (!bg) { 1962 btrfs_err(fs_info, 1963 "chunk start=%llu len=%llu doesn't have corresponding block group", 1964 em->start, em->len); 1965 ret = -EUCLEAN; 1966 free_extent_map(em); 1967 break; 1968 } 1969 if (bg->start != em->start || bg->length != em->len || 1970 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1971 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1972 btrfs_err(fs_info, 1973 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1974 em->start, em->len, 1975 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1976 bg->start, bg->length, 1977 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1978 ret = -EUCLEAN; 1979 free_extent_map(em); 1980 btrfs_put_block_group(bg); 1981 break; 1982 } 1983 start = em->start + em->len; 1984 free_extent_map(em); 1985 btrfs_put_block_group(bg); 1986 } 1987 return ret; 1988 } 1989 1990 static int read_one_block_group(struct btrfs_fs_info *info, 1991 struct btrfs_block_group_item *bgi, 1992 const struct btrfs_key *key, 1993 int need_clear) 1994 { 1995 struct btrfs_block_group *cache; 1996 struct btrfs_space_info *space_info; 1997 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1998 int ret; 1999 2000 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2001 2002 cache = btrfs_create_block_group_cache(info, key->objectid); 2003 if (!cache) 2004 return -ENOMEM; 2005 2006 cache->length = key->offset; 2007 cache->used = btrfs_stack_block_group_used(bgi); 2008 cache->flags = btrfs_stack_block_group_flags(bgi); 2009 2010 set_free_space_tree_thresholds(cache); 2011 2012 if (need_clear) { 2013 /* 2014 * When we mount with old space cache, we need to 2015 * set BTRFS_DC_CLEAR and set dirty flag. 2016 * 2017 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2018 * truncate the old free space cache inode and 2019 * setup a new one. 2020 * b) Setting 'dirty flag' makes sure that we flush 2021 * the new space cache info onto disk. 2022 */ 2023 if (btrfs_test_opt(info, SPACE_CACHE)) 2024 cache->disk_cache_state = BTRFS_DC_CLEAR; 2025 } 2026 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2027 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2028 btrfs_err(info, 2029 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2030 cache->start); 2031 ret = -EINVAL; 2032 goto error; 2033 } 2034 2035 ret = btrfs_load_block_group_zone_info(cache, false); 2036 if (ret) { 2037 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2038 cache->start); 2039 goto error; 2040 } 2041 2042 /* 2043 * We need to exclude the super stripes now so that the space info has 2044 * super bytes accounted for, otherwise we'll think we have more space 2045 * than we actually do. 2046 */ 2047 ret = exclude_super_stripes(cache); 2048 if (ret) { 2049 /* We may have excluded something, so call this just in case. */ 2050 btrfs_free_excluded_extents(cache); 2051 goto error; 2052 } 2053 2054 /* 2055 * For zoned filesystem, space after the allocation offset is the only 2056 * free space for a block group. So, we don't need any caching work. 2057 * btrfs_calc_zone_unusable() will set the amount of free space and 2058 * zone_unusable space. 2059 * 2060 * For regular filesystem, check for two cases, either we are full, and 2061 * therefore don't need to bother with the caching work since we won't 2062 * find any space, or we are empty, and we can just add all the space 2063 * in and be done with it. This saves us _a_lot_ of time, particularly 2064 * in the full case. 2065 */ 2066 if (btrfs_is_zoned(info)) { 2067 btrfs_calc_zone_unusable(cache); 2068 /* Should not have any excluded extents. Just in case, though. */ 2069 btrfs_free_excluded_extents(cache); 2070 } else if (cache->length == cache->used) { 2071 cache->last_byte_to_unpin = (u64)-1; 2072 cache->cached = BTRFS_CACHE_FINISHED; 2073 btrfs_free_excluded_extents(cache); 2074 } else if (cache->used == 0) { 2075 cache->last_byte_to_unpin = (u64)-1; 2076 cache->cached = BTRFS_CACHE_FINISHED; 2077 add_new_free_space(cache, cache->start, 2078 cache->start + cache->length); 2079 btrfs_free_excluded_extents(cache); 2080 } 2081 2082 ret = btrfs_add_block_group_cache(info, cache); 2083 if (ret) { 2084 btrfs_remove_free_space_cache(cache); 2085 goto error; 2086 } 2087 trace_btrfs_add_block_group(info, cache, 0); 2088 btrfs_update_space_info(info, cache->flags, cache->length, 2089 cache->used, cache->bytes_super, 2090 cache->zone_unusable, &space_info); 2091 2092 cache->space_info = space_info; 2093 2094 link_block_group(cache); 2095 2096 set_avail_alloc_bits(info, cache->flags); 2097 if (btrfs_chunk_writeable(info, cache->start)) { 2098 if (cache->used == 0) { 2099 ASSERT(list_empty(&cache->bg_list)); 2100 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2101 btrfs_discard_queue_work(&info->discard_ctl, cache); 2102 else 2103 btrfs_mark_bg_unused(cache); 2104 } 2105 } else { 2106 inc_block_group_ro(cache, 1); 2107 } 2108 2109 return 0; 2110 error: 2111 btrfs_put_block_group(cache); 2112 return ret; 2113 } 2114 2115 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2116 { 2117 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2118 struct btrfs_space_info *space_info; 2119 struct rb_node *node; 2120 int ret = 0; 2121 2122 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2123 struct extent_map *em; 2124 struct map_lookup *map; 2125 struct btrfs_block_group *bg; 2126 2127 em = rb_entry(node, struct extent_map, rb_node); 2128 map = em->map_lookup; 2129 bg = btrfs_create_block_group_cache(fs_info, em->start); 2130 if (!bg) { 2131 ret = -ENOMEM; 2132 break; 2133 } 2134 2135 /* Fill dummy cache as FULL */ 2136 bg->length = em->len; 2137 bg->flags = map->type; 2138 bg->last_byte_to_unpin = (u64)-1; 2139 bg->cached = BTRFS_CACHE_FINISHED; 2140 bg->used = em->len; 2141 bg->flags = map->type; 2142 ret = btrfs_add_block_group_cache(fs_info, bg); 2143 /* 2144 * We may have some valid block group cache added already, in 2145 * that case we skip to the next one. 2146 */ 2147 if (ret == -EEXIST) { 2148 ret = 0; 2149 btrfs_put_block_group(bg); 2150 continue; 2151 } 2152 2153 if (ret) { 2154 btrfs_remove_free_space_cache(bg); 2155 btrfs_put_block_group(bg); 2156 break; 2157 } 2158 2159 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len, 2160 0, 0, &space_info); 2161 bg->space_info = space_info; 2162 link_block_group(bg); 2163 2164 set_avail_alloc_bits(fs_info, bg->flags); 2165 } 2166 if (!ret) 2167 btrfs_init_global_block_rsv(fs_info); 2168 return ret; 2169 } 2170 2171 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2172 { 2173 struct btrfs_root *root = btrfs_block_group_root(info); 2174 struct btrfs_path *path; 2175 int ret; 2176 struct btrfs_block_group *cache; 2177 struct btrfs_space_info *space_info; 2178 struct btrfs_key key; 2179 int need_clear = 0; 2180 u64 cache_gen; 2181 2182 if (!root) 2183 return fill_dummy_bgs(info); 2184 2185 key.objectid = 0; 2186 key.offset = 0; 2187 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2188 path = btrfs_alloc_path(); 2189 if (!path) 2190 return -ENOMEM; 2191 2192 cache_gen = btrfs_super_cache_generation(info->super_copy); 2193 if (btrfs_test_opt(info, SPACE_CACHE) && 2194 btrfs_super_generation(info->super_copy) != cache_gen) 2195 need_clear = 1; 2196 if (btrfs_test_opt(info, CLEAR_CACHE)) 2197 need_clear = 1; 2198 2199 while (1) { 2200 struct btrfs_block_group_item bgi; 2201 struct extent_buffer *leaf; 2202 int slot; 2203 2204 ret = find_first_block_group(info, path, &key); 2205 if (ret > 0) 2206 break; 2207 if (ret != 0) 2208 goto error; 2209 2210 leaf = path->nodes[0]; 2211 slot = path->slots[0]; 2212 2213 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2214 sizeof(bgi)); 2215 2216 btrfs_item_key_to_cpu(leaf, &key, slot); 2217 btrfs_release_path(path); 2218 ret = read_one_block_group(info, &bgi, &key, need_clear); 2219 if (ret < 0) 2220 goto error; 2221 key.objectid += key.offset; 2222 key.offset = 0; 2223 } 2224 btrfs_release_path(path); 2225 2226 list_for_each_entry(space_info, &info->space_info, list) { 2227 int i; 2228 2229 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2230 if (list_empty(&space_info->block_groups[i])) 2231 continue; 2232 cache = list_first_entry(&space_info->block_groups[i], 2233 struct btrfs_block_group, 2234 list); 2235 btrfs_sysfs_add_block_group_type(cache); 2236 } 2237 2238 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2239 (BTRFS_BLOCK_GROUP_RAID10 | 2240 BTRFS_BLOCK_GROUP_RAID1_MASK | 2241 BTRFS_BLOCK_GROUP_RAID56_MASK | 2242 BTRFS_BLOCK_GROUP_DUP))) 2243 continue; 2244 /* 2245 * Avoid allocating from un-mirrored block group if there are 2246 * mirrored block groups. 2247 */ 2248 list_for_each_entry(cache, 2249 &space_info->block_groups[BTRFS_RAID_RAID0], 2250 list) 2251 inc_block_group_ro(cache, 1); 2252 list_for_each_entry(cache, 2253 &space_info->block_groups[BTRFS_RAID_SINGLE], 2254 list) 2255 inc_block_group_ro(cache, 1); 2256 } 2257 2258 btrfs_init_global_block_rsv(info); 2259 ret = check_chunk_block_group_mappings(info); 2260 error: 2261 btrfs_free_path(path); 2262 /* 2263 * We've hit some error while reading the extent tree, and have 2264 * rescue=ibadroots mount option. 2265 * Try to fill the tree using dummy block groups so that the user can 2266 * continue to mount and grab their data. 2267 */ 2268 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2269 ret = fill_dummy_bgs(info); 2270 return ret; 2271 } 2272 2273 /* 2274 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2275 * allocation. 2276 * 2277 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2278 * phases. 2279 */ 2280 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2281 struct btrfs_block_group *block_group) 2282 { 2283 struct btrfs_fs_info *fs_info = trans->fs_info; 2284 struct btrfs_block_group_item bgi; 2285 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2286 struct btrfs_key key; 2287 2288 spin_lock(&block_group->lock); 2289 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2290 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2291 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2292 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2293 key.objectid = block_group->start; 2294 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2295 key.offset = block_group->length; 2296 spin_unlock(&block_group->lock); 2297 2298 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2299 } 2300 2301 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2302 struct btrfs_device *device, u64 chunk_offset, 2303 u64 start, u64 num_bytes) 2304 { 2305 struct btrfs_fs_info *fs_info = device->fs_info; 2306 struct btrfs_root *root = fs_info->dev_root; 2307 struct btrfs_path *path; 2308 struct btrfs_dev_extent *extent; 2309 struct extent_buffer *leaf; 2310 struct btrfs_key key; 2311 int ret; 2312 2313 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2314 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2315 path = btrfs_alloc_path(); 2316 if (!path) 2317 return -ENOMEM; 2318 2319 key.objectid = device->devid; 2320 key.type = BTRFS_DEV_EXTENT_KEY; 2321 key.offset = start; 2322 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2323 if (ret) 2324 goto out; 2325 2326 leaf = path->nodes[0]; 2327 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2328 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2329 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2330 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2331 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2332 2333 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2334 btrfs_mark_buffer_dirty(leaf); 2335 out: 2336 btrfs_free_path(path); 2337 return ret; 2338 } 2339 2340 /* 2341 * This function belongs to phase 2. 2342 * 2343 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2344 * phases. 2345 */ 2346 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2347 u64 chunk_offset, u64 chunk_size) 2348 { 2349 struct btrfs_fs_info *fs_info = trans->fs_info; 2350 struct btrfs_device *device; 2351 struct extent_map *em; 2352 struct map_lookup *map; 2353 u64 dev_offset; 2354 u64 stripe_size; 2355 int i; 2356 int ret = 0; 2357 2358 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2359 if (IS_ERR(em)) 2360 return PTR_ERR(em); 2361 2362 map = em->map_lookup; 2363 stripe_size = em->orig_block_len; 2364 2365 /* 2366 * Take the device list mutex to prevent races with the final phase of 2367 * a device replace operation that replaces the device object associated 2368 * with the map's stripes, because the device object's id can change 2369 * at any time during that final phase of the device replace operation 2370 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2371 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2372 * resulting in persisting a device extent item with such ID. 2373 */ 2374 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2375 for (i = 0; i < map->num_stripes; i++) { 2376 device = map->stripes[i].dev; 2377 dev_offset = map->stripes[i].physical; 2378 2379 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2380 stripe_size); 2381 if (ret) 2382 break; 2383 } 2384 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2385 2386 free_extent_map(em); 2387 return ret; 2388 } 2389 2390 /* 2391 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2392 * chunk allocation. 2393 * 2394 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2395 * phases. 2396 */ 2397 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2398 { 2399 struct btrfs_fs_info *fs_info = trans->fs_info; 2400 struct btrfs_block_group *block_group; 2401 int ret = 0; 2402 2403 while (!list_empty(&trans->new_bgs)) { 2404 int index; 2405 2406 block_group = list_first_entry(&trans->new_bgs, 2407 struct btrfs_block_group, 2408 bg_list); 2409 if (ret) 2410 goto next; 2411 2412 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2413 2414 ret = insert_block_group_item(trans, block_group); 2415 if (ret) 2416 btrfs_abort_transaction(trans, ret); 2417 if (!block_group->chunk_item_inserted) { 2418 mutex_lock(&fs_info->chunk_mutex); 2419 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2420 mutex_unlock(&fs_info->chunk_mutex); 2421 if (ret) 2422 btrfs_abort_transaction(trans, ret); 2423 } 2424 ret = insert_dev_extents(trans, block_group->start, 2425 block_group->length); 2426 if (ret) 2427 btrfs_abort_transaction(trans, ret); 2428 add_block_group_free_space(trans, block_group); 2429 2430 /* 2431 * If we restriped during balance, we may have added a new raid 2432 * type, so now add the sysfs entries when it is safe to do so. 2433 * We don't have to worry about locking here as it's handled in 2434 * btrfs_sysfs_add_block_group_type. 2435 */ 2436 if (block_group->space_info->block_group_kobjs[index] == NULL) 2437 btrfs_sysfs_add_block_group_type(block_group); 2438 2439 /* Already aborted the transaction if it failed. */ 2440 next: 2441 btrfs_delayed_refs_rsv_release(fs_info, 1); 2442 list_del_init(&block_group->bg_list); 2443 } 2444 btrfs_trans_release_chunk_metadata(trans); 2445 } 2446 2447 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2448 u64 bytes_used, u64 type, 2449 u64 chunk_offset, u64 size) 2450 { 2451 struct btrfs_fs_info *fs_info = trans->fs_info; 2452 struct btrfs_block_group *cache; 2453 int ret; 2454 2455 btrfs_set_log_full_commit(trans); 2456 2457 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2458 if (!cache) 2459 return ERR_PTR(-ENOMEM); 2460 2461 cache->length = size; 2462 set_free_space_tree_thresholds(cache); 2463 cache->used = bytes_used; 2464 cache->flags = type; 2465 cache->last_byte_to_unpin = (u64)-1; 2466 cache->cached = BTRFS_CACHE_FINISHED; 2467 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2468 cache->needs_free_space = 1; 2469 2470 ret = btrfs_load_block_group_zone_info(cache, true); 2471 if (ret) { 2472 btrfs_put_block_group(cache); 2473 return ERR_PTR(ret); 2474 } 2475 2476 /* 2477 * New block group is likely to be used soon. Try to activate it now. 2478 * Failure is OK for now. 2479 */ 2480 btrfs_zone_activate(cache); 2481 2482 ret = exclude_super_stripes(cache); 2483 if (ret) { 2484 /* We may have excluded something, so call this just in case */ 2485 btrfs_free_excluded_extents(cache); 2486 btrfs_put_block_group(cache); 2487 return ERR_PTR(ret); 2488 } 2489 2490 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2491 2492 btrfs_free_excluded_extents(cache); 2493 2494 #ifdef CONFIG_BTRFS_DEBUG 2495 if (btrfs_should_fragment_free_space(cache)) { 2496 u64 new_bytes_used = size - bytes_used; 2497 2498 bytes_used += new_bytes_used >> 1; 2499 fragment_free_space(cache); 2500 } 2501 #endif 2502 /* 2503 * Ensure the corresponding space_info object is created and 2504 * assigned to our block group. We want our bg to be added to the rbtree 2505 * with its ->space_info set. 2506 */ 2507 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2508 ASSERT(cache->space_info); 2509 2510 ret = btrfs_add_block_group_cache(fs_info, cache); 2511 if (ret) { 2512 btrfs_remove_free_space_cache(cache); 2513 btrfs_put_block_group(cache); 2514 return ERR_PTR(ret); 2515 } 2516 2517 /* 2518 * Now that our block group has its ->space_info set and is inserted in 2519 * the rbtree, update the space info's counters. 2520 */ 2521 trace_btrfs_add_block_group(fs_info, cache, 1); 2522 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2523 cache->bytes_super, cache->zone_unusable, 2524 &cache->space_info); 2525 btrfs_update_global_block_rsv(fs_info); 2526 2527 link_block_group(cache); 2528 2529 list_add_tail(&cache->bg_list, &trans->new_bgs); 2530 trans->delayed_ref_updates++; 2531 btrfs_update_delayed_refs_rsv(trans); 2532 2533 set_avail_alloc_bits(fs_info, type); 2534 return cache; 2535 } 2536 2537 /* 2538 * Mark one block group RO, can be called several times for the same block 2539 * group. 2540 * 2541 * @cache: the destination block group 2542 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2543 * ensure we still have some free space after marking this 2544 * block group RO. 2545 */ 2546 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2547 bool do_chunk_alloc) 2548 { 2549 struct btrfs_fs_info *fs_info = cache->fs_info; 2550 struct btrfs_trans_handle *trans; 2551 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2552 u64 alloc_flags; 2553 int ret; 2554 bool dirty_bg_running; 2555 2556 /* 2557 * This can only happen when we are doing read-only scrub on read-only 2558 * mount. 2559 * In that case we should not start a new transaction on read-only fs. 2560 * Thus here we skip all chunk allocations. 2561 */ 2562 if (sb_rdonly(fs_info->sb)) { 2563 mutex_lock(&fs_info->ro_block_group_mutex); 2564 ret = inc_block_group_ro(cache, 0); 2565 mutex_unlock(&fs_info->ro_block_group_mutex); 2566 return ret; 2567 } 2568 2569 do { 2570 trans = btrfs_join_transaction(root); 2571 if (IS_ERR(trans)) 2572 return PTR_ERR(trans); 2573 2574 dirty_bg_running = false; 2575 2576 /* 2577 * We're not allowed to set block groups readonly after the dirty 2578 * block group cache has started writing. If it already started, 2579 * back off and let this transaction commit. 2580 */ 2581 mutex_lock(&fs_info->ro_block_group_mutex); 2582 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2583 u64 transid = trans->transid; 2584 2585 mutex_unlock(&fs_info->ro_block_group_mutex); 2586 btrfs_end_transaction(trans); 2587 2588 ret = btrfs_wait_for_commit(fs_info, transid); 2589 if (ret) 2590 return ret; 2591 dirty_bg_running = true; 2592 } 2593 } while (dirty_bg_running); 2594 2595 if (do_chunk_alloc) { 2596 /* 2597 * If we are changing raid levels, try to allocate a 2598 * corresponding block group with the new raid level. 2599 */ 2600 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2601 if (alloc_flags != cache->flags) { 2602 ret = btrfs_chunk_alloc(trans, alloc_flags, 2603 CHUNK_ALLOC_FORCE); 2604 /* 2605 * ENOSPC is allowed here, we may have enough space 2606 * already allocated at the new raid level to carry on 2607 */ 2608 if (ret == -ENOSPC) 2609 ret = 0; 2610 if (ret < 0) 2611 goto out; 2612 } 2613 } 2614 2615 ret = inc_block_group_ro(cache, 0); 2616 if (!do_chunk_alloc || ret == -ETXTBSY) 2617 goto unlock_out; 2618 if (!ret) 2619 goto out; 2620 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2621 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2622 if (ret < 0) 2623 goto out; 2624 ret = inc_block_group_ro(cache, 0); 2625 if (ret == -ETXTBSY) 2626 goto unlock_out; 2627 out: 2628 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2629 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2630 mutex_lock(&fs_info->chunk_mutex); 2631 check_system_chunk(trans, alloc_flags); 2632 mutex_unlock(&fs_info->chunk_mutex); 2633 } 2634 unlock_out: 2635 mutex_unlock(&fs_info->ro_block_group_mutex); 2636 2637 btrfs_end_transaction(trans); 2638 return ret; 2639 } 2640 2641 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2642 { 2643 struct btrfs_space_info *sinfo = cache->space_info; 2644 u64 num_bytes; 2645 2646 BUG_ON(!cache->ro); 2647 2648 spin_lock(&sinfo->lock); 2649 spin_lock(&cache->lock); 2650 if (!--cache->ro) { 2651 if (btrfs_is_zoned(cache->fs_info)) { 2652 /* Migrate zone_unusable bytes back */ 2653 cache->zone_unusable = 2654 (cache->alloc_offset - cache->used) + 2655 (cache->length - cache->zone_capacity); 2656 sinfo->bytes_zone_unusable += cache->zone_unusable; 2657 sinfo->bytes_readonly -= cache->zone_unusable; 2658 } 2659 num_bytes = cache->length - cache->reserved - 2660 cache->pinned - cache->bytes_super - 2661 cache->zone_unusable - cache->used; 2662 sinfo->bytes_readonly -= num_bytes; 2663 list_del_init(&cache->ro_list); 2664 } 2665 spin_unlock(&cache->lock); 2666 spin_unlock(&sinfo->lock); 2667 } 2668 2669 static int update_block_group_item(struct btrfs_trans_handle *trans, 2670 struct btrfs_path *path, 2671 struct btrfs_block_group *cache) 2672 { 2673 struct btrfs_fs_info *fs_info = trans->fs_info; 2674 int ret; 2675 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2676 unsigned long bi; 2677 struct extent_buffer *leaf; 2678 struct btrfs_block_group_item bgi; 2679 struct btrfs_key key; 2680 2681 key.objectid = cache->start; 2682 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2683 key.offset = cache->length; 2684 2685 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2686 if (ret) { 2687 if (ret > 0) 2688 ret = -ENOENT; 2689 goto fail; 2690 } 2691 2692 leaf = path->nodes[0]; 2693 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2694 btrfs_set_stack_block_group_used(&bgi, cache->used); 2695 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2696 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2697 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2698 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2699 btrfs_mark_buffer_dirty(leaf); 2700 fail: 2701 btrfs_release_path(path); 2702 return ret; 2703 2704 } 2705 2706 static int cache_save_setup(struct btrfs_block_group *block_group, 2707 struct btrfs_trans_handle *trans, 2708 struct btrfs_path *path) 2709 { 2710 struct btrfs_fs_info *fs_info = block_group->fs_info; 2711 struct btrfs_root *root = fs_info->tree_root; 2712 struct inode *inode = NULL; 2713 struct extent_changeset *data_reserved = NULL; 2714 u64 alloc_hint = 0; 2715 int dcs = BTRFS_DC_ERROR; 2716 u64 cache_size = 0; 2717 int retries = 0; 2718 int ret = 0; 2719 2720 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2721 return 0; 2722 2723 /* 2724 * If this block group is smaller than 100 megs don't bother caching the 2725 * block group. 2726 */ 2727 if (block_group->length < (100 * SZ_1M)) { 2728 spin_lock(&block_group->lock); 2729 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2730 spin_unlock(&block_group->lock); 2731 return 0; 2732 } 2733 2734 if (TRANS_ABORTED(trans)) 2735 return 0; 2736 again: 2737 inode = lookup_free_space_inode(block_group, path); 2738 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2739 ret = PTR_ERR(inode); 2740 btrfs_release_path(path); 2741 goto out; 2742 } 2743 2744 if (IS_ERR(inode)) { 2745 BUG_ON(retries); 2746 retries++; 2747 2748 if (block_group->ro) 2749 goto out_free; 2750 2751 ret = create_free_space_inode(trans, block_group, path); 2752 if (ret) 2753 goto out_free; 2754 goto again; 2755 } 2756 2757 /* 2758 * We want to set the generation to 0, that way if anything goes wrong 2759 * from here on out we know not to trust this cache when we load up next 2760 * time. 2761 */ 2762 BTRFS_I(inode)->generation = 0; 2763 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2764 if (ret) { 2765 /* 2766 * So theoretically we could recover from this, simply set the 2767 * super cache generation to 0 so we know to invalidate the 2768 * cache, but then we'd have to keep track of the block groups 2769 * that fail this way so we know we _have_ to reset this cache 2770 * before the next commit or risk reading stale cache. So to 2771 * limit our exposure to horrible edge cases lets just abort the 2772 * transaction, this only happens in really bad situations 2773 * anyway. 2774 */ 2775 btrfs_abort_transaction(trans, ret); 2776 goto out_put; 2777 } 2778 WARN_ON(ret); 2779 2780 /* We've already setup this transaction, go ahead and exit */ 2781 if (block_group->cache_generation == trans->transid && 2782 i_size_read(inode)) { 2783 dcs = BTRFS_DC_SETUP; 2784 goto out_put; 2785 } 2786 2787 if (i_size_read(inode) > 0) { 2788 ret = btrfs_check_trunc_cache_free_space(fs_info, 2789 &fs_info->global_block_rsv); 2790 if (ret) 2791 goto out_put; 2792 2793 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2794 if (ret) 2795 goto out_put; 2796 } 2797 2798 spin_lock(&block_group->lock); 2799 if (block_group->cached != BTRFS_CACHE_FINISHED || 2800 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2801 /* 2802 * don't bother trying to write stuff out _if_ 2803 * a) we're not cached, 2804 * b) we're with nospace_cache mount option, 2805 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2806 */ 2807 dcs = BTRFS_DC_WRITTEN; 2808 spin_unlock(&block_group->lock); 2809 goto out_put; 2810 } 2811 spin_unlock(&block_group->lock); 2812 2813 /* 2814 * We hit an ENOSPC when setting up the cache in this transaction, just 2815 * skip doing the setup, we've already cleared the cache so we're safe. 2816 */ 2817 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2818 ret = -ENOSPC; 2819 goto out_put; 2820 } 2821 2822 /* 2823 * Try to preallocate enough space based on how big the block group is. 2824 * Keep in mind this has to include any pinned space which could end up 2825 * taking up quite a bit since it's not folded into the other space 2826 * cache. 2827 */ 2828 cache_size = div_u64(block_group->length, SZ_256M); 2829 if (!cache_size) 2830 cache_size = 1; 2831 2832 cache_size *= 16; 2833 cache_size *= fs_info->sectorsize; 2834 2835 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2836 cache_size); 2837 if (ret) 2838 goto out_put; 2839 2840 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 2841 cache_size, cache_size, 2842 &alloc_hint); 2843 /* 2844 * Our cache requires contiguous chunks so that we don't modify a bunch 2845 * of metadata or split extents when writing the cache out, which means 2846 * we can enospc if we are heavily fragmented in addition to just normal 2847 * out of space conditions. So if we hit this just skip setting up any 2848 * other block groups for this transaction, maybe we'll unpin enough 2849 * space the next time around. 2850 */ 2851 if (!ret) 2852 dcs = BTRFS_DC_SETUP; 2853 else if (ret == -ENOSPC) 2854 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2855 2856 out_put: 2857 iput(inode); 2858 out_free: 2859 btrfs_release_path(path); 2860 out: 2861 spin_lock(&block_group->lock); 2862 if (!ret && dcs == BTRFS_DC_SETUP) 2863 block_group->cache_generation = trans->transid; 2864 block_group->disk_cache_state = dcs; 2865 spin_unlock(&block_group->lock); 2866 2867 extent_changeset_free(data_reserved); 2868 return ret; 2869 } 2870 2871 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2872 { 2873 struct btrfs_fs_info *fs_info = trans->fs_info; 2874 struct btrfs_block_group *cache, *tmp; 2875 struct btrfs_transaction *cur_trans = trans->transaction; 2876 struct btrfs_path *path; 2877 2878 if (list_empty(&cur_trans->dirty_bgs) || 2879 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2880 return 0; 2881 2882 path = btrfs_alloc_path(); 2883 if (!path) 2884 return -ENOMEM; 2885 2886 /* Could add new block groups, use _safe just in case */ 2887 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2888 dirty_list) { 2889 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2890 cache_save_setup(cache, trans, path); 2891 } 2892 2893 btrfs_free_path(path); 2894 return 0; 2895 } 2896 2897 /* 2898 * Transaction commit does final block group cache writeback during a critical 2899 * section where nothing is allowed to change the FS. This is required in 2900 * order for the cache to actually match the block group, but can introduce a 2901 * lot of latency into the commit. 2902 * 2903 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2904 * There's a chance we'll have to redo some of it if the block group changes 2905 * again during the commit, but it greatly reduces the commit latency by 2906 * getting rid of the easy block groups while we're still allowing others to 2907 * join the commit. 2908 */ 2909 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2910 { 2911 struct btrfs_fs_info *fs_info = trans->fs_info; 2912 struct btrfs_block_group *cache; 2913 struct btrfs_transaction *cur_trans = trans->transaction; 2914 int ret = 0; 2915 int should_put; 2916 struct btrfs_path *path = NULL; 2917 LIST_HEAD(dirty); 2918 struct list_head *io = &cur_trans->io_bgs; 2919 int num_started = 0; 2920 int loops = 0; 2921 2922 spin_lock(&cur_trans->dirty_bgs_lock); 2923 if (list_empty(&cur_trans->dirty_bgs)) { 2924 spin_unlock(&cur_trans->dirty_bgs_lock); 2925 return 0; 2926 } 2927 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2928 spin_unlock(&cur_trans->dirty_bgs_lock); 2929 2930 again: 2931 /* Make sure all the block groups on our dirty list actually exist */ 2932 btrfs_create_pending_block_groups(trans); 2933 2934 if (!path) { 2935 path = btrfs_alloc_path(); 2936 if (!path) { 2937 ret = -ENOMEM; 2938 goto out; 2939 } 2940 } 2941 2942 /* 2943 * cache_write_mutex is here only to save us from balance or automatic 2944 * removal of empty block groups deleting this block group while we are 2945 * writing out the cache 2946 */ 2947 mutex_lock(&trans->transaction->cache_write_mutex); 2948 while (!list_empty(&dirty)) { 2949 bool drop_reserve = true; 2950 2951 cache = list_first_entry(&dirty, struct btrfs_block_group, 2952 dirty_list); 2953 /* 2954 * This can happen if something re-dirties a block group that 2955 * is already under IO. Just wait for it to finish and then do 2956 * it all again 2957 */ 2958 if (!list_empty(&cache->io_list)) { 2959 list_del_init(&cache->io_list); 2960 btrfs_wait_cache_io(trans, cache, path); 2961 btrfs_put_block_group(cache); 2962 } 2963 2964 2965 /* 2966 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2967 * it should update the cache_state. Don't delete until after 2968 * we wait. 2969 * 2970 * Since we're not running in the commit critical section 2971 * we need the dirty_bgs_lock to protect from update_block_group 2972 */ 2973 spin_lock(&cur_trans->dirty_bgs_lock); 2974 list_del_init(&cache->dirty_list); 2975 spin_unlock(&cur_trans->dirty_bgs_lock); 2976 2977 should_put = 1; 2978 2979 cache_save_setup(cache, trans, path); 2980 2981 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2982 cache->io_ctl.inode = NULL; 2983 ret = btrfs_write_out_cache(trans, cache, path); 2984 if (ret == 0 && cache->io_ctl.inode) { 2985 num_started++; 2986 should_put = 0; 2987 2988 /* 2989 * The cache_write_mutex is protecting the 2990 * io_list, also refer to the definition of 2991 * btrfs_transaction::io_bgs for more details 2992 */ 2993 list_add_tail(&cache->io_list, io); 2994 } else { 2995 /* 2996 * If we failed to write the cache, the 2997 * generation will be bad and life goes on 2998 */ 2999 ret = 0; 3000 } 3001 } 3002 if (!ret) { 3003 ret = update_block_group_item(trans, path, cache); 3004 /* 3005 * Our block group might still be attached to the list 3006 * of new block groups in the transaction handle of some 3007 * other task (struct btrfs_trans_handle->new_bgs). This 3008 * means its block group item isn't yet in the extent 3009 * tree. If this happens ignore the error, as we will 3010 * try again later in the critical section of the 3011 * transaction commit. 3012 */ 3013 if (ret == -ENOENT) { 3014 ret = 0; 3015 spin_lock(&cur_trans->dirty_bgs_lock); 3016 if (list_empty(&cache->dirty_list)) { 3017 list_add_tail(&cache->dirty_list, 3018 &cur_trans->dirty_bgs); 3019 btrfs_get_block_group(cache); 3020 drop_reserve = false; 3021 } 3022 spin_unlock(&cur_trans->dirty_bgs_lock); 3023 } else if (ret) { 3024 btrfs_abort_transaction(trans, ret); 3025 } 3026 } 3027 3028 /* If it's not on the io list, we need to put the block group */ 3029 if (should_put) 3030 btrfs_put_block_group(cache); 3031 if (drop_reserve) 3032 btrfs_delayed_refs_rsv_release(fs_info, 1); 3033 /* 3034 * Avoid blocking other tasks for too long. It might even save 3035 * us from writing caches for block groups that are going to be 3036 * removed. 3037 */ 3038 mutex_unlock(&trans->transaction->cache_write_mutex); 3039 if (ret) 3040 goto out; 3041 mutex_lock(&trans->transaction->cache_write_mutex); 3042 } 3043 mutex_unlock(&trans->transaction->cache_write_mutex); 3044 3045 /* 3046 * Go through delayed refs for all the stuff we've just kicked off 3047 * and then loop back (just once) 3048 */ 3049 if (!ret) 3050 ret = btrfs_run_delayed_refs(trans, 0); 3051 if (!ret && loops == 0) { 3052 loops++; 3053 spin_lock(&cur_trans->dirty_bgs_lock); 3054 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3055 /* 3056 * dirty_bgs_lock protects us from concurrent block group 3057 * deletes too (not just cache_write_mutex). 3058 */ 3059 if (!list_empty(&dirty)) { 3060 spin_unlock(&cur_trans->dirty_bgs_lock); 3061 goto again; 3062 } 3063 spin_unlock(&cur_trans->dirty_bgs_lock); 3064 } 3065 out: 3066 if (ret < 0) { 3067 spin_lock(&cur_trans->dirty_bgs_lock); 3068 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3069 spin_unlock(&cur_trans->dirty_bgs_lock); 3070 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3071 } 3072 3073 btrfs_free_path(path); 3074 return ret; 3075 } 3076 3077 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3078 { 3079 struct btrfs_fs_info *fs_info = trans->fs_info; 3080 struct btrfs_block_group *cache; 3081 struct btrfs_transaction *cur_trans = trans->transaction; 3082 int ret = 0; 3083 int should_put; 3084 struct btrfs_path *path; 3085 struct list_head *io = &cur_trans->io_bgs; 3086 int num_started = 0; 3087 3088 path = btrfs_alloc_path(); 3089 if (!path) 3090 return -ENOMEM; 3091 3092 /* 3093 * Even though we are in the critical section of the transaction commit, 3094 * we can still have concurrent tasks adding elements to this 3095 * transaction's list of dirty block groups. These tasks correspond to 3096 * endio free space workers started when writeback finishes for a 3097 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3098 * allocate new block groups as a result of COWing nodes of the root 3099 * tree when updating the free space inode. The writeback for the space 3100 * caches is triggered by an earlier call to 3101 * btrfs_start_dirty_block_groups() and iterations of the following 3102 * loop. 3103 * Also we want to do the cache_save_setup first and then run the 3104 * delayed refs to make sure we have the best chance at doing this all 3105 * in one shot. 3106 */ 3107 spin_lock(&cur_trans->dirty_bgs_lock); 3108 while (!list_empty(&cur_trans->dirty_bgs)) { 3109 cache = list_first_entry(&cur_trans->dirty_bgs, 3110 struct btrfs_block_group, 3111 dirty_list); 3112 3113 /* 3114 * This can happen if cache_save_setup re-dirties a block group 3115 * that is already under IO. Just wait for it to finish and 3116 * then do it all again 3117 */ 3118 if (!list_empty(&cache->io_list)) { 3119 spin_unlock(&cur_trans->dirty_bgs_lock); 3120 list_del_init(&cache->io_list); 3121 btrfs_wait_cache_io(trans, cache, path); 3122 btrfs_put_block_group(cache); 3123 spin_lock(&cur_trans->dirty_bgs_lock); 3124 } 3125 3126 /* 3127 * Don't remove from the dirty list until after we've waited on 3128 * any pending IO 3129 */ 3130 list_del_init(&cache->dirty_list); 3131 spin_unlock(&cur_trans->dirty_bgs_lock); 3132 should_put = 1; 3133 3134 cache_save_setup(cache, trans, path); 3135 3136 if (!ret) 3137 ret = btrfs_run_delayed_refs(trans, 3138 (unsigned long) -1); 3139 3140 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3141 cache->io_ctl.inode = NULL; 3142 ret = btrfs_write_out_cache(trans, cache, path); 3143 if (ret == 0 && cache->io_ctl.inode) { 3144 num_started++; 3145 should_put = 0; 3146 list_add_tail(&cache->io_list, io); 3147 } else { 3148 /* 3149 * If we failed to write the cache, the 3150 * generation will be bad and life goes on 3151 */ 3152 ret = 0; 3153 } 3154 } 3155 if (!ret) { 3156 ret = update_block_group_item(trans, path, cache); 3157 /* 3158 * One of the free space endio workers might have 3159 * created a new block group while updating a free space 3160 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3161 * and hasn't released its transaction handle yet, in 3162 * which case the new block group is still attached to 3163 * its transaction handle and its creation has not 3164 * finished yet (no block group item in the extent tree 3165 * yet, etc). If this is the case, wait for all free 3166 * space endio workers to finish and retry. This is a 3167 * very rare case so no need for a more efficient and 3168 * complex approach. 3169 */ 3170 if (ret == -ENOENT) { 3171 wait_event(cur_trans->writer_wait, 3172 atomic_read(&cur_trans->num_writers) == 1); 3173 ret = update_block_group_item(trans, path, cache); 3174 } 3175 if (ret) 3176 btrfs_abort_transaction(trans, ret); 3177 } 3178 3179 /* If its not on the io list, we need to put the block group */ 3180 if (should_put) 3181 btrfs_put_block_group(cache); 3182 btrfs_delayed_refs_rsv_release(fs_info, 1); 3183 spin_lock(&cur_trans->dirty_bgs_lock); 3184 } 3185 spin_unlock(&cur_trans->dirty_bgs_lock); 3186 3187 /* 3188 * Refer to the definition of io_bgs member for details why it's safe 3189 * to use it without any locking 3190 */ 3191 while (!list_empty(io)) { 3192 cache = list_first_entry(io, struct btrfs_block_group, 3193 io_list); 3194 list_del_init(&cache->io_list); 3195 btrfs_wait_cache_io(trans, cache, path); 3196 btrfs_put_block_group(cache); 3197 } 3198 3199 btrfs_free_path(path); 3200 return ret; 3201 } 3202 3203 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3204 u64 bytenr, u64 num_bytes, bool alloc) 3205 { 3206 struct btrfs_fs_info *info = trans->fs_info; 3207 struct btrfs_block_group *cache = NULL; 3208 u64 total = num_bytes; 3209 u64 old_val; 3210 u64 byte_in_group; 3211 int factor; 3212 int ret = 0; 3213 3214 /* Block accounting for super block */ 3215 spin_lock(&info->delalloc_root_lock); 3216 old_val = btrfs_super_bytes_used(info->super_copy); 3217 if (alloc) 3218 old_val += num_bytes; 3219 else 3220 old_val -= num_bytes; 3221 btrfs_set_super_bytes_used(info->super_copy, old_val); 3222 spin_unlock(&info->delalloc_root_lock); 3223 3224 while (total) { 3225 cache = btrfs_lookup_block_group(info, bytenr); 3226 if (!cache) { 3227 ret = -ENOENT; 3228 break; 3229 } 3230 factor = btrfs_bg_type_to_factor(cache->flags); 3231 3232 /* 3233 * If this block group has free space cache written out, we 3234 * need to make sure to load it if we are removing space. This 3235 * is because we need the unpinning stage to actually add the 3236 * space back to the block group, otherwise we will leak space. 3237 */ 3238 if (!alloc && !btrfs_block_group_done(cache)) 3239 btrfs_cache_block_group(cache, 1); 3240 3241 byte_in_group = bytenr - cache->start; 3242 WARN_ON(byte_in_group > cache->length); 3243 3244 spin_lock(&cache->space_info->lock); 3245 spin_lock(&cache->lock); 3246 3247 if (btrfs_test_opt(info, SPACE_CACHE) && 3248 cache->disk_cache_state < BTRFS_DC_CLEAR) 3249 cache->disk_cache_state = BTRFS_DC_CLEAR; 3250 3251 old_val = cache->used; 3252 num_bytes = min(total, cache->length - byte_in_group); 3253 if (alloc) { 3254 old_val += num_bytes; 3255 cache->used = old_val; 3256 cache->reserved -= num_bytes; 3257 cache->space_info->bytes_reserved -= num_bytes; 3258 cache->space_info->bytes_used += num_bytes; 3259 cache->space_info->disk_used += num_bytes * factor; 3260 spin_unlock(&cache->lock); 3261 spin_unlock(&cache->space_info->lock); 3262 } else { 3263 old_val -= num_bytes; 3264 cache->used = old_val; 3265 cache->pinned += num_bytes; 3266 btrfs_space_info_update_bytes_pinned(info, 3267 cache->space_info, num_bytes); 3268 cache->space_info->bytes_used -= num_bytes; 3269 cache->space_info->disk_used -= num_bytes * factor; 3270 spin_unlock(&cache->lock); 3271 spin_unlock(&cache->space_info->lock); 3272 3273 set_extent_dirty(&trans->transaction->pinned_extents, 3274 bytenr, bytenr + num_bytes - 1, 3275 GFP_NOFS | __GFP_NOFAIL); 3276 } 3277 3278 spin_lock(&trans->transaction->dirty_bgs_lock); 3279 if (list_empty(&cache->dirty_list)) { 3280 list_add_tail(&cache->dirty_list, 3281 &trans->transaction->dirty_bgs); 3282 trans->delayed_ref_updates++; 3283 btrfs_get_block_group(cache); 3284 } 3285 spin_unlock(&trans->transaction->dirty_bgs_lock); 3286 3287 /* 3288 * No longer have used bytes in this block group, queue it for 3289 * deletion. We do this after adding the block group to the 3290 * dirty list to avoid races between cleaner kthread and space 3291 * cache writeout. 3292 */ 3293 if (!alloc && old_val == 0) { 3294 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3295 btrfs_mark_bg_unused(cache); 3296 } 3297 3298 btrfs_put_block_group(cache); 3299 total -= num_bytes; 3300 bytenr += num_bytes; 3301 } 3302 3303 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3304 btrfs_update_delayed_refs_rsv(trans); 3305 return ret; 3306 } 3307 3308 /** 3309 * btrfs_add_reserved_bytes - update the block_group and space info counters 3310 * @cache: The cache we are manipulating 3311 * @ram_bytes: The number of bytes of file content, and will be same to 3312 * @num_bytes except for the compress path. 3313 * @num_bytes: The number of bytes in question 3314 * @delalloc: The blocks are allocated for the delalloc write 3315 * 3316 * This is called by the allocator when it reserves space. If this is a 3317 * reservation and the block group has become read only we cannot make the 3318 * reservation and return -EAGAIN, otherwise this function always succeeds. 3319 */ 3320 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3321 u64 ram_bytes, u64 num_bytes, int delalloc) 3322 { 3323 struct btrfs_space_info *space_info = cache->space_info; 3324 int ret = 0; 3325 3326 spin_lock(&space_info->lock); 3327 spin_lock(&cache->lock); 3328 if (cache->ro) { 3329 ret = -EAGAIN; 3330 } else { 3331 cache->reserved += num_bytes; 3332 space_info->bytes_reserved += num_bytes; 3333 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3334 space_info->flags, num_bytes, 1); 3335 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3336 space_info, -ram_bytes); 3337 if (delalloc) 3338 cache->delalloc_bytes += num_bytes; 3339 3340 /* 3341 * Compression can use less space than we reserved, so wake 3342 * tickets if that happens 3343 */ 3344 if (num_bytes < ram_bytes) 3345 btrfs_try_granting_tickets(cache->fs_info, space_info); 3346 } 3347 spin_unlock(&cache->lock); 3348 spin_unlock(&space_info->lock); 3349 return ret; 3350 } 3351 3352 /** 3353 * btrfs_free_reserved_bytes - update the block_group and space info counters 3354 * @cache: The cache we are manipulating 3355 * @num_bytes: The number of bytes in question 3356 * @delalloc: The blocks are allocated for the delalloc write 3357 * 3358 * This is called by somebody who is freeing space that was never actually used 3359 * on disk. For example if you reserve some space for a new leaf in transaction 3360 * A and before transaction A commits you free that leaf, you call this with 3361 * reserve set to 0 in order to clear the reservation. 3362 */ 3363 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3364 u64 num_bytes, int delalloc) 3365 { 3366 struct btrfs_space_info *space_info = cache->space_info; 3367 3368 spin_lock(&space_info->lock); 3369 spin_lock(&cache->lock); 3370 if (cache->ro) 3371 space_info->bytes_readonly += num_bytes; 3372 cache->reserved -= num_bytes; 3373 space_info->bytes_reserved -= num_bytes; 3374 space_info->max_extent_size = 0; 3375 3376 if (delalloc) 3377 cache->delalloc_bytes -= num_bytes; 3378 spin_unlock(&cache->lock); 3379 3380 btrfs_try_granting_tickets(cache->fs_info, space_info); 3381 spin_unlock(&space_info->lock); 3382 } 3383 3384 static void force_metadata_allocation(struct btrfs_fs_info *info) 3385 { 3386 struct list_head *head = &info->space_info; 3387 struct btrfs_space_info *found; 3388 3389 list_for_each_entry(found, head, list) { 3390 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3391 found->force_alloc = CHUNK_ALLOC_FORCE; 3392 } 3393 } 3394 3395 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3396 struct btrfs_space_info *sinfo, int force) 3397 { 3398 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3399 u64 thresh; 3400 3401 if (force == CHUNK_ALLOC_FORCE) 3402 return 1; 3403 3404 /* 3405 * in limited mode, we want to have some free space up to 3406 * about 1% of the FS size. 3407 */ 3408 if (force == CHUNK_ALLOC_LIMITED) { 3409 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3410 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3411 3412 if (sinfo->total_bytes - bytes_used < thresh) 3413 return 1; 3414 } 3415 3416 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3417 return 0; 3418 return 1; 3419 } 3420 3421 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3422 { 3423 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3424 3425 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3426 } 3427 3428 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3429 { 3430 struct btrfs_block_group *bg; 3431 int ret; 3432 3433 /* 3434 * Check if we have enough space in the system space info because we 3435 * will need to update device items in the chunk btree and insert a new 3436 * chunk item in the chunk btree as well. This will allocate a new 3437 * system block group if needed. 3438 */ 3439 check_system_chunk(trans, flags); 3440 3441 bg = btrfs_create_chunk(trans, flags); 3442 if (IS_ERR(bg)) { 3443 ret = PTR_ERR(bg); 3444 goto out; 3445 } 3446 3447 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3448 /* 3449 * Normally we are not expected to fail with -ENOSPC here, since we have 3450 * previously reserved space in the system space_info and allocated one 3451 * new system chunk if necessary. However there are three exceptions: 3452 * 3453 * 1) We may have enough free space in the system space_info but all the 3454 * existing system block groups have a profile which can not be used 3455 * for extent allocation. 3456 * 3457 * This happens when mounting in degraded mode. For example we have a 3458 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3459 * using the other device in degraded mode. If we then allocate a chunk, 3460 * we may have enough free space in the existing system space_info, but 3461 * none of the block groups can be used for extent allocation since they 3462 * have a RAID1 profile, and because we are in degraded mode with a 3463 * single device, we are forced to allocate a new system chunk with a 3464 * SINGLE profile. Making check_system_chunk() iterate over all system 3465 * block groups and check if they have a usable profile and enough space 3466 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3467 * try again after forcing allocation of a new system chunk. Like this 3468 * we avoid paying the cost of that search in normal circumstances, when 3469 * we were not mounted in degraded mode; 3470 * 3471 * 2) We had enough free space info the system space_info, and one suitable 3472 * block group to allocate from when we called check_system_chunk() 3473 * above. However right after we called it, the only system block group 3474 * with enough free space got turned into RO mode by a running scrub, 3475 * and in this case we have to allocate a new one and retry. We only 3476 * need do this allocate and retry once, since we have a transaction 3477 * handle and scrub uses the commit root to search for block groups; 3478 * 3479 * 3) We had one system block group with enough free space when we called 3480 * check_system_chunk(), but after that, right before we tried to 3481 * allocate the last extent buffer we needed, a discard operation came 3482 * in and it temporarily removed the last free space entry from the 3483 * block group (discard removes a free space entry, discards it, and 3484 * then adds back the entry to the block group cache). 3485 */ 3486 if (ret == -ENOSPC) { 3487 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3488 struct btrfs_block_group *sys_bg; 3489 3490 sys_bg = btrfs_create_chunk(trans, sys_flags); 3491 if (IS_ERR(sys_bg)) { 3492 ret = PTR_ERR(sys_bg); 3493 btrfs_abort_transaction(trans, ret); 3494 goto out; 3495 } 3496 3497 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3498 if (ret) { 3499 btrfs_abort_transaction(trans, ret); 3500 goto out; 3501 } 3502 3503 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3504 if (ret) { 3505 btrfs_abort_transaction(trans, ret); 3506 goto out; 3507 } 3508 } else if (ret) { 3509 btrfs_abort_transaction(trans, ret); 3510 goto out; 3511 } 3512 out: 3513 btrfs_trans_release_chunk_metadata(trans); 3514 3515 return ret; 3516 } 3517 3518 /* 3519 * Chunk allocation is done in 2 phases: 3520 * 3521 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3522 * the chunk, the chunk mapping, create its block group and add the items 3523 * that belong in the chunk btree to it - more specifically, we need to 3524 * update device items in the chunk btree and add a new chunk item to it. 3525 * 3526 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3527 * group item to the extent btree and the device extent items to the devices 3528 * btree. 3529 * 3530 * This is done to prevent deadlocks. For example when COWing a node from the 3531 * extent btree we are holding a write lock on the node's parent and if we 3532 * trigger chunk allocation and attempted to insert the new block group item 3533 * in the extent btree right way, we could deadlock because the path for the 3534 * insertion can include that parent node. At first glance it seems impossible 3535 * to trigger chunk allocation after starting a transaction since tasks should 3536 * reserve enough transaction units (metadata space), however while that is true 3537 * most of the time, chunk allocation may still be triggered for several reasons: 3538 * 3539 * 1) When reserving metadata, we check if there is enough free space in the 3540 * metadata space_info and therefore don't trigger allocation of a new chunk. 3541 * However later when the task actually tries to COW an extent buffer from 3542 * the extent btree or from the device btree for example, it is forced to 3543 * allocate a new block group (chunk) because the only one that had enough 3544 * free space was just turned to RO mode by a running scrub for example (or 3545 * device replace, block group reclaim thread, etc), so we can not use it 3546 * for allocating an extent and end up being forced to allocate a new one; 3547 * 3548 * 2) Because we only check that the metadata space_info has enough free bytes, 3549 * we end up not allocating a new metadata chunk in that case. However if 3550 * the filesystem was mounted in degraded mode, none of the existing block 3551 * groups might be suitable for extent allocation due to their incompatible 3552 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3553 * use a RAID1 profile, in degraded mode using a single device). In this case 3554 * when the task attempts to COW some extent buffer of the extent btree for 3555 * example, it will trigger allocation of a new metadata block group with a 3556 * suitable profile (SINGLE profile in the example of the degraded mount of 3557 * the RAID1 filesystem); 3558 * 3559 * 3) The task has reserved enough transaction units / metadata space, but when 3560 * it attempts to COW an extent buffer from the extent or device btree for 3561 * example, it does not find any free extent in any metadata block group, 3562 * therefore forced to try to allocate a new metadata block group. 3563 * This is because some other task allocated all available extents in the 3564 * meanwhile - this typically happens with tasks that don't reserve space 3565 * properly, either intentionally or as a bug. One example where this is 3566 * done intentionally is fsync, as it does not reserve any transaction units 3567 * and ends up allocating a variable number of metadata extents for log 3568 * tree extent buffers; 3569 * 3570 * 4) The task has reserved enough transaction units / metadata space, but right 3571 * before it tries to allocate the last extent buffer it needs, a discard 3572 * operation comes in and, temporarily, removes the last free space entry from 3573 * the only metadata block group that had free space (discard starts by 3574 * removing a free space entry from a block group, then does the discard 3575 * operation and, once it's done, it adds back the free space entry to the 3576 * block group). 3577 * 3578 * We also need this 2 phases setup when adding a device to a filesystem with 3579 * a seed device - we must create new metadata and system chunks without adding 3580 * any of the block group items to the chunk, extent and device btrees. If we 3581 * did not do it this way, we would get ENOSPC when attempting to update those 3582 * btrees, since all the chunks from the seed device are read-only. 3583 * 3584 * Phase 1 does the updates and insertions to the chunk btree because if we had 3585 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3586 * parallel, we risk having too many system chunks allocated by many tasks if 3587 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3588 * extreme case this leads to exhaustion of the system chunk array in the 3589 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3590 * and with RAID filesystems (so we have more device items in the chunk btree). 3591 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3592 * the system chunk array due to concurrent allocations") provides more details. 3593 * 3594 * Allocation of system chunks does not happen through this function. A task that 3595 * needs to update the chunk btree (the only btree that uses system chunks), must 3596 * preallocate chunk space by calling either check_system_chunk() or 3597 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3598 * metadata chunk or when removing a chunk, while the later is used before doing 3599 * a modification to the chunk btree - use cases for the later are adding, 3600 * removing and resizing a device as well as relocation of a system chunk. 3601 * See the comment below for more details. 3602 * 3603 * The reservation of system space, done through check_system_chunk(), as well 3604 * as all the updates and insertions into the chunk btree must be done while 3605 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3606 * an extent buffer from the chunks btree we never trigger allocation of a new 3607 * system chunk, which would result in a deadlock (trying to lock twice an 3608 * extent buffer of the chunk btree, first time before triggering the chunk 3609 * allocation and the second time during chunk allocation while attempting to 3610 * update the chunks btree). The system chunk array is also updated while holding 3611 * that mutex. The same logic applies to removing chunks - we must reserve system 3612 * space, update the chunk btree and the system chunk array in the superblock 3613 * while holding fs_info->chunk_mutex. 3614 * 3615 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3616 * 3617 * If @force is CHUNK_ALLOC_FORCE: 3618 * - return 1 if it successfully allocates a chunk, 3619 * - return errors including -ENOSPC otherwise. 3620 * If @force is NOT CHUNK_ALLOC_FORCE: 3621 * - return 0 if it doesn't need to allocate a new chunk, 3622 * - return 1 if it successfully allocates a chunk, 3623 * - return errors including -ENOSPC otherwise. 3624 */ 3625 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3626 enum btrfs_chunk_alloc_enum force) 3627 { 3628 struct btrfs_fs_info *fs_info = trans->fs_info; 3629 struct btrfs_space_info *space_info; 3630 bool wait_for_alloc = false; 3631 bool should_alloc = false; 3632 int ret = 0; 3633 3634 /* Don't re-enter if we're already allocating a chunk */ 3635 if (trans->allocating_chunk) 3636 return -ENOSPC; 3637 /* 3638 * Allocation of system chunks can not happen through this path, as we 3639 * could end up in a deadlock if we are allocating a data or metadata 3640 * chunk and there is another task modifying the chunk btree. 3641 * 3642 * This is because while we are holding the chunk mutex, we will attempt 3643 * to add the new chunk item to the chunk btree or update an existing 3644 * device item in the chunk btree, while the other task that is modifying 3645 * the chunk btree is attempting to COW an extent buffer while holding a 3646 * lock on it and on its parent - if the COW operation triggers a system 3647 * chunk allocation, then we can deadlock because we are holding the 3648 * chunk mutex and we may need to access that extent buffer or its parent 3649 * in order to add the chunk item or update a device item. 3650 * 3651 * Tasks that want to modify the chunk tree should reserve system space 3652 * before updating the chunk btree, by calling either 3653 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 3654 * It's possible that after a task reserves the space, it still ends up 3655 * here - this happens in the cases described above at do_chunk_alloc(). 3656 * The task will have to either retry or fail. 3657 */ 3658 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3659 return -ENOSPC; 3660 3661 space_info = btrfs_find_space_info(fs_info, flags); 3662 ASSERT(space_info); 3663 3664 do { 3665 spin_lock(&space_info->lock); 3666 if (force < space_info->force_alloc) 3667 force = space_info->force_alloc; 3668 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3669 if (space_info->full) { 3670 /* No more free physical space */ 3671 if (should_alloc) 3672 ret = -ENOSPC; 3673 else 3674 ret = 0; 3675 spin_unlock(&space_info->lock); 3676 return ret; 3677 } else if (!should_alloc) { 3678 spin_unlock(&space_info->lock); 3679 return 0; 3680 } else if (space_info->chunk_alloc) { 3681 /* 3682 * Someone is already allocating, so we need to block 3683 * until this someone is finished and then loop to 3684 * recheck if we should continue with our allocation 3685 * attempt. 3686 */ 3687 wait_for_alloc = true; 3688 spin_unlock(&space_info->lock); 3689 mutex_lock(&fs_info->chunk_mutex); 3690 mutex_unlock(&fs_info->chunk_mutex); 3691 } else { 3692 /* Proceed with allocation */ 3693 space_info->chunk_alloc = 1; 3694 wait_for_alloc = false; 3695 spin_unlock(&space_info->lock); 3696 } 3697 3698 cond_resched(); 3699 } while (wait_for_alloc); 3700 3701 mutex_lock(&fs_info->chunk_mutex); 3702 trans->allocating_chunk = true; 3703 3704 /* 3705 * If we have mixed data/metadata chunks we want to make sure we keep 3706 * allocating mixed chunks instead of individual chunks. 3707 */ 3708 if (btrfs_mixed_space_info(space_info)) 3709 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3710 3711 /* 3712 * if we're doing a data chunk, go ahead and make sure that 3713 * we keep a reasonable number of metadata chunks allocated in the 3714 * FS as well. 3715 */ 3716 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3717 fs_info->data_chunk_allocations++; 3718 if (!(fs_info->data_chunk_allocations % 3719 fs_info->metadata_ratio)) 3720 force_metadata_allocation(fs_info); 3721 } 3722 3723 ret = do_chunk_alloc(trans, flags); 3724 trans->allocating_chunk = false; 3725 3726 spin_lock(&space_info->lock); 3727 if (ret < 0) { 3728 if (ret == -ENOSPC) 3729 space_info->full = 1; 3730 else 3731 goto out; 3732 } else { 3733 ret = 1; 3734 space_info->max_extent_size = 0; 3735 } 3736 3737 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3738 out: 3739 space_info->chunk_alloc = 0; 3740 spin_unlock(&space_info->lock); 3741 mutex_unlock(&fs_info->chunk_mutex); 3742 3743 return ret; 3744 } 3745 3746 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3747 { 3748 u64 num_dev; 3749 3750 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3751 if (!num_dev) 3752 num_dev = fs_info->fs_devices->rw_devices; 3753 3754 return num_dev; 3755 } 3756 3757 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 3758 u64 bytes, 3759 u64 type) 3760 { 3761 struct btrfs_fs_info *fs_info = trans->fs_info; 3762 struct btrfs_space_info *info; 3763 u64 left; 3764 int ret = 0; 3765 3766 /* 3767 * Needed because we can end up allocating a system chunk and for an 3768 * atomic and race free space reservation in the chunk block reserve. 3769 */ 3770 lockdep_assert_held(&fs_info->chunk_mutex); 3771 3772 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3773 spin_lock(&info->lock); 3774 left = info->total_bytes - btrfs_space_info_used(info, true); 3775 spin_unlock(&info->lock); 3776 3777 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3778 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3779 left, bytes, type); 3780 btrfs_dump_space_info(fs_info, info, 0, 0); 3781 } 3782 3783 if (left < bytes) { 3784 u64 flags = btrfs_system_alloc_profile(fs_info); 3785 struct btrfs_block_group *bg; 3786 3787 /* 3788 * Ignore failure to create system chunk. We might end up not 3789 * needing it, as we might not need to COW all nodes/leafs from 3790 * the paths we visit in the chunk tree (they were already COWed 3791 * or created in the current transaction for example). 3792 */ 3793 bg = btrfs_create_chunk(trans, flags); 3794 if (IS_ERR(bg)) { 3795 ret = PTR_ERR(bg); 3796 } else { 3797 /* 3798 * If we fail to add the chunk item here, we end up 3799 * trying again at phase 2 of chunk allocation, at 3800 * btrfs_create_pending_block_groups(). So ignore 3801 * any error here. An ENOSPC here could happen, due to 3802 * the cases described at do_chunk_alloc() - the system 3803 * block group we just created was just turned into RO 3804 * mode by a scrub for example, or a running discard 3805 * temporarily removed its free space entries, etc. 3806 */ 3807 btrfs_chunk_alloc_add_chunk_item(trans, bg); 3808 } 3809 } 3810 3811 if (!ret) { 3812 ret = btrfs_block_rsv_add(fs_info, 3813 &fs_info->chunk_block_rsv, 3814 bytes, BTRFS_RESERVE_NO_FLUSH); 3815 if (!ret) 3816 trans->chunk_bytes_reserved += bytes; 3817 } 3818 } 3819 3820 /* 3821 * Reserve space in the system space for allocating or removing a chunk. 3822 * The caller must be holding fs_info->chunk_mutex. 3823 */ 3824 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3825 { 3826 struct btrfs_fs_info *fs_info = trans->fs_info; 3827 const u64 num_devs = get_profile_num_devs(fs_info, type); 3828 u64 bytes; 3829 3830 /* num_devs device items to update and 1 chunk item to add or remove. */ 3831 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 3832 btrfs_calc_insert_metadata_size(fs_info, 1); 3833 3834 reserve_chunk_space(trans, bytes, type); 3835 } 3836 3837 /* 3838 * Reserve space in the system space, if needed, for doing a modification to the 3839 * chunk btree. 3840 * 3841 * @trans: A transaction handle. 3842 * @is_item_insertion: Indicate if the modification is for inserting a new item 3843 * in the chunk btree or if it's for the deletion or update 3844 * of an existing item. 3845 * 3846 * This is used in a context where we need to update the chunk btree outside 3847 * block group allocation and removal, to avoid a deadlock with a concurrent 3848 * task that is allocating a metadata or data block group and therefore needs to 3849 * update the chunk btree while holding the chunk mutex. After the update to the 3850 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 3851 * 3852 */ 3853 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 3854 bool is_item_insertion) 3855 { 3856 struct btrfs_fs_info *fs_info = trans->fs_info; 3857 u64 bytes; 3858 3859 if (is_item_insertion) 3860 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 3861 else 3862 bytes = btrfs_calc_metadata_size(fs_info, 1); 3863 3864 mutex_lock(&fs_info->chunk_mutex); 3865 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 3866 mutex_unlock(&fs_info->chunk_mutex); 3867 } 3868 3869 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3870 { 3871 struct btrfs_block_group *block_group; 3872 u64 last = 0; 3873 3874 while (1) { 3875 struct inode *inode; 3876 3877 block_group = btrfs_lookup_first_block_group(info, last); 3878 while (block_group) { 3879 btrfs_wait_block_group_cache_done(block_group); 3880 spin_lock(&block_group->lock); 3881 if (block_group->iref) 3882 break; 3883 spin_unlock(&block_group->lock); 3884 block_group = btrfs_next_block_group(block_group); 3885 } 3886 if (!block_group) { 3887 if (last == 0) 3888 break; 3889 last = 0; 3890 continue; 3891 } 3892 3893 inode = block_group->inode; 3894 block_group->iref = 0; 3895 block_group->inode = NULL; 3896 spin_unlock(&block_group->lock); 3897 ASSERT(block_group->io_ctl.inode == NULL); 3898 iput(inode); 3899 last = block_group->start + block_group->length; 3900 btrfs_put_block_group(block_group); 3901 } 3902 } 3903 3904 /* 3905 * Must be called only after stopping all workers, since we could have block 3906 * group caching kthreads running, and therefore they could race with us if we 3907 * freed the block groups before stopping them. 3908 */ 3909 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3910 { 3911 struct btrfs_block_group *block_group; 3912 struct btrfs_space_info *space_info; 3913 struct btrfs_caching_control *caching_ctl; 3914 struct rb_node *n; 3915 3916 spin_lock(&info->block_group_cache_lock); 3917 while (!list_empty(&info->caching_block_groups)) { 3918 caching_ctl = list_entry(info->caching_block_groups.next, 3919 struct btrfs_caching_control, list); 3920 list_del(&caching_ctl->list); 3921 btrfs_put_caching_control(caching_ctl); 3922 } 3923 spin_unlock(&info->block_group_cache_lock); 3924 3925 spin_lock(&info->unused_bgs_lock); 3926 while (!list_empty(&info->unused_bgs)) { 3927 block_group = list_first_entry(&info->unused_bgs, 3928 struct btrfs_block_group, 3929 bg_list); 3930 list_del_init(&block_group->bg_list); 3931 btrfs_put_block_group(block_group); 3932 } 3933 3934 while (!list_empty(&info->reclaim_bgs)) { 3935 block_group = list_first_entry(&info->reclaim_bgs, 3936 struct btrfs_block_group, 3937 bg_list); 3938 list_del_init(&block_group->bg_list); 3939 btrfs_put_block_group(block_group); 3940 } 3941 spin_unlock(&info->unused_bgs_lock); 3942 3943 spin_lock(&info->zone_active_bgs_lock); 3944 while (!list_empty(&info->zone_active_bgs)) { 3945 block_group = list_first_entry(&info->zone_active_bgs, 3946 struct btrfs_block_group, 3947 active_bg_list); 3948 list_del_init(&block_group->active_bg_list); 3949 btrfs_put_block_group(block_group); 3950 } 3951 spin_unlock(&info->zone_active_bgs_lock); 3952 3953 spin_lock(&info->block_group_cache_lock); 3954 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3955 block_group = rb_entry(n, struct btrfs_block_group, 3956 cache_node); 3957 rb_erase(&block_group->cache_node, 3958 &info->block_group_cache_tree); 3959 RB_CLEAR_NODE(&block_group->cache_node); 3960 spin_unlock(&info->block_group_cache_lock); 3961 3962 down_write(&block_group->space_info->groups_sem); 3963 list_del(&block_group->list); 3964 up_write(&block_group->space_info->groups_sem); 3965 3966 /* 3967 * We haven't cached this block group, which means we could 3968 * possibly have excluded extents on this block group. 3969 */ 3970 if (block_group->cached == BTRFS_CACHE_NO || 3971 block_group->cached == BTRFS_CACHE_ERROR) 3972 btrfs_free_excluded_extents(block_group); 3973 3974 btrfs_remove_free_space_cache(block_group); 3975 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3976 ASSERT(list_empty(&block_group->dirty_list)); 3977 ASSERT(list_empty(&block_group->io_list)); 3978 ASSERT(list_empty(&block_group->bg_list)); 3979 ASSERT(refcount_read(&block_group->refs) == 1); 3980 ASSERT(block_group->swap_extents == 0); 3981 btrfs_put_block_group(block_group); 3982 3983 spin_lock(&info->block_group_cache_lock); 3984 } 3985 spin_unlock(&info->block_group_cache_lock); 3986 3987 btrfs_release_global_block_rsv(info); 3988 3989 while (!list_empty(&info->space_info)) { 3990 space_info = list_entry(info->space_info.next, 3991 struct btrfs_space_info, 3992 list); 3993 3994 /* 3995 * Do not hide this behind enospc_debug, this is actually 3996 * important and indicates a real bug if this happens. 3997 */ 3998 if (WARN_ON(space_info->bytes_pinned > 0 || 3999 space_info->bytes_may_use > 0)) 4000 btrfs_dump_space_info(info, space_info, 0, 0); 4001 4002 /* 4003 * If there was a failure to cleanup a log tree, very likely due 4004 * to an IO failure on a writeback attempt of one or more of its 4005 * extent buffers, we could not do proper (and cheap) unaccounting 4006 * of their reserved space, so don't warn on bytes_reserved > 0 in 4007 * that case. 4008 */ 4009 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4010 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4011 if (WARN_ON(space_info->bytes_reserved > 0)) 4012 btrfs_dump_space_info(info, space_info, 0, 0); 4013 } 4014 4015 WARN_ON(space_info->reclaim_size > 0); 4016 list_del(&space_info->list); 4017 btrfs_sysfs_remove_space_info(space_info); 4018 } 4019 return 0; 4020 } 4021 4022 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4023 { 4024 atomic_inc(&cache->frozen); 4025 } 4026 4027 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4028 { 4029 struct btrfs_fs_info *fs_info = block_group->fs_info; 4030 struct extent_map_tree *em_tree; 4031 struct extent_map *em; 4032 bool cleanup; 4033 4034 spin_lock(&block_group->lock); 4035 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4036 block_group->removed); 4037 spin_unlock(&block_group->lock); 4038 4039 if (cleanup) { 4040 em_tree = &fs_info->mapping_tree; 4041 write_lock(&em_tree->lock); 4042 em = lookup_extent_mapping(em_tree, block_group->start, 4043 1); 4044 BUG_ON(!em); /* logic error, can't happen */ 4045 remove_extent_mapping(em_tree, em); 4046 write_unlock(&em_tree->lock); 4047 4048 /* once for us and once for the tree */ 4049 free_extent_map(em); 4050 free_extent_map(em); 4051 4052 /* 4053 * We may have left one free space entry and other possible 4054 * tasks trimming this block group have left 1 entry each one. 4055 * Free them if any. 4056 */ 4057 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 4058 } 4059 } 4060 4061 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4062 { 4063 bool ret = true; 4064 4065 spin_lock(&bg->lock); 4066 if (bg->ro) 4067 ret = false; 4068 else 4069 bg->swap_extents++; 4070 spin_unlock(&bg->lock); 4071 4072 return ret; 4073 } 4074 4075 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4076 { 4077 spin_lock(&bg->lock); 4078 ASSERT(!bg->ro); 4079 ASSERT(bg->swap_extents >= amount); 4080 bg->swap_extents -= amount; 4081 spin_unlock(&bg->lock); 4082 } 4083