xref: /linux/fs/btrfs/block-group.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 
19 /*
20  * Return target flags in extended format or 0 if restripe for this chunk_type
21  * is not in progress
22  *
23  * Should be called with balance_lock held
24  */
25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
26 {
27 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
28 	u64 target = 0;
29 
30 	if (!bctl)
31 		return 0;
32 
33 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
34 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
35 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
36 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
37 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
38 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
39 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
40 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
41 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
42 	}
43 
44 	return target;
45 }
46 
47 /*
48  * @flags: available profiles in extended format (see ctree.h)
49  *
50  * Return reduced profile in chunk format.  If profile changing is in progress
51  * (either running or paused) picks the target profile (if it's already
52  * available), otherwise falls back to plain reducing.
53  */
54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
55 {
56 	u64 num_devices = fs_info->fs_devices->rw_devices;
57 	u64 target;
58 	u64 raid_type;
59 	u64 allowed = 0;
60 
61 	/*
62 	 * See if restripe for this chunk_type is in progress, if so try to
63 	 * reduce to the target profile
64 	 */
65 	spin_lock(&fs_info->balance_lock);
66 	target = get_restripe_target(fs_info, flags);
67 	if (target) {
68 		spin_unlock(&fs_info->balance_lock);
69 		return extended_to_chunk(target);
70 	}
71 	spin_unlock(&fs_info->balance_lock);
72 
73 	/* First, mask out the RAID levels which aren't possible */
74 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
75 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
76 			allowed |= btrfs_raid_array[raid_type].bg_flag;
77 	}
78 	allowed &= flags;
79 
80 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
81 		allowed = BTRFS_BLOCK_GROUP_RAID6;
82 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
83 		allowed = BTRFS_BLOCK_GROUP_RAID5;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
85 		allowed = BTRFS_BLOCK_GROUP_RAID10;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
87 		allowed = BTRFS_BLOCK_GROUP_RAID1;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
89 		allowed = BTRFS_BLOCK_GROUP_RAID0;
90 
91 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
92 
93 	return extended_to_chunk(flags | allowed);
94 }
95 
96 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
97 {
98 	unsigned seq;
99 	u64 flags;
100 
101 	do {
102 		flags = orig_flags;
103 		seq = read_seqbegin(&fs_info->profiles_lock);
104 
105 		if (flags & BTRFS_BLOCK_GROUP_DATA)
106 			flags |= fs_info->avail_data_alloc_bits;
107 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
108 			flags |= fs_info->avail_system_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
110 			flags |= fs_info->avail_metadata_alloc_bits;
111 	} while (read_seqretry(&fs_info->profiles_lock, seq));
112 
113 	return btrfs_reduce_alloc_profile(fs_info, flags);
114 }
115 
116 void btrfs_get_block_group(struct btrfs_block_group *cache)
117 {
118 	refcount_inc(&cache->refs);
119 }
120 
121 void btrfs_put_block_group(struct btrfs_block_group *cache)
122 {
123 	if (refcount_dec_and_test(&cache->refs)) {
124 		WARN_ON(cache->pinned > 0);
125 		WARN_ON(cache->reserved > 0);
126 
127 		/*
128 		 * A block_group shouldn't be on the discard_list anymore.
129 		 * Remove the block_group from the discard_list to prevent us
130 		 * from causing a panic due to NULL pointer dereference.
131 		 */
132 		if (WARN_ON(!list_empty(&cache->discard_list)))
133 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
134 						  cache);
135 
136 		/*
137 		 * If not empty, someone is still holding mutex of
138 		 * full_stripe_lock, which can only be released by caller.
139 		 * And it will definitely cause use-after-free when caller
140 		 * tries to release full stripe lock.
141 		 *
142 		 * No better way to resolve, but only to warn.
143 		 */
144 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145 		kfree(cache->free_space_ctl);
146 		kfree(cache);
147 	}
148 }
149 
150 /*
151  * This adds the block group to the fs_info rb tree for the block group cache
152  */
153 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
154 				       struct btrfs_block_group *block_group)
155 {
156 	struct rb_node **p;
157 	struct rb_node *parent = NULL;
158 	struct btrfs_block_group *cache;
159 
160 	ASSERT(block_group->length != 0);
161 
162 	spin_lock(&info->block_group_cache_lock);
163 	p = &info->block_group_cache_tree.rb_node;
164 
165 	while (*p) {
166 		parent = *p;
167 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
168 		if (block_group->start < cache->start) {
169 			p = &(*p)->rb_left;
170 		} else if (block_group->start > cache->start) {
171 			p = &(*p)->rb_right;
172 		} else {
173 			spin_unlock(&info->block_group_cache_lock);
174 			return -EEXIST;
175 		}
176 	}
177 
178 	rb_link_node(&block_group->cache_node, parent, p);
179 	rb_insert_color(&block_group->cache_node,
180 			&info->block_group_cache_tree);
181 
182 	if (info->first_logical_byte > block_group->start)
183 		info->first_logical_byte = block_group->start;
184 
185 	spin_unlock(&info->block_group_cache_lock);
186 
187 	return 0;
188 }
189 
190 /*
191  * This will return the block group at or after bytenr if contains is 0, else
192  * it will return the block group that contains the bytenr
193  */
194 static struct btrfs_block_group *block_group_cache_tree_search(
195 		struct btrfs_fs_info *info, u64 bytenr, int contains)
196 {
197 	struct btrfs_block_group *cache, *ret = NULL;
198 	struct rb_node *n;
199 	u64 end, start;
200 
201 	spin_lock(&info->block_group_cache_lock);
202 	n = info->block_group_cache_tree.rb_node;
203 
204 	while (n) {
205 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
206 		end = cache->start + cache->length - 1;
207 		start = cache->start;
208 
209 		if (bytenr < start) {
210 			if (!contains && (!ret || start < ret->start))
211 				ret = cache;
212 			n = n->rb_left;
213 		} else if (bytenr > start) {
214 			if (contains && bytenr <= end) {
215 				ret = cache;
216 				break;
217 			}
218 			n = n->rb_right;
219 		} else {
220 			ret = cache;
221 			break;
222 		}
223 	}
224 	if (ret) {
225 		btrfs_get_block_group(ret);
226 		if (bytenr == 0 && info->first_logical_byte > ret->start)
227 			info->first_logical_byte = ret->start;
228 	}
229 	spin_unlock(&info->block_group_cache_lock);
230 
231 	return ret;
232 }
233 
234 /*
235  * Return the block group that starts at or after bytenr
236  */
237 struct btrfs_block_group *btrfs_lookup_first_block_group(
238 		struct btrfs_fs_info *info, u64 bytenr)
239 {
240 	return block_group_cache_tree_search(info, bytenr, 0);
241 }
242 
243 /*
244  * Return the block group that contains the given bytenr
245  */
246 struct btrfs_block_group *btrfs_lookup_block_group(
247 		struct btrfs_fs_info *info, u64 bytenr)
248 {
249 	return block_group_cache_tree_search(info, bytenr, 1);
250 }
251 
252 struct btrfs_block_group *btrfs_next_block_group(
253 		struct btrfs_block_group *cache)
254 {
255 	struct btrfs_fs_info *fs_info = cache->fs_info;
256 	struct rb_node *node;
257 
258 	spin_lock(&fs_info->block_group_cache_lock);
259 
260 	/* If our block group was removed, we need a full search. */
261 	if (RB_EMPTY_NODE(&cache->cache_node)) {
262 		const u64 next_bytenr = cache->start + cache->length;
263 
264 		spin_unlock(&fs_info->block_group_cache_lock);
265 		btrfs_put_block_group(cache);
266 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
267 	}
268 	node = rb_next(&cache->cache_node);
269 	btrfs_put_block_group(cache);
270 	if (node) {
271 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
272 		btrfs_get_block_group(cache);
273 	} else
274 		cache = NULL;
275 	spin_unlock(&fs_info->block_group_cache_lock);
276 	return cache;
277 }
278 
279 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
280 {
281 	struct btrfs_block_group *bg;
282 	bool ret = true;
283 
284 	bg = btrfs_lookup_block_group(fs_info, bytenr);
285 	if (!bg)
286 		return false;
287 
288 	spin_lock(&bg->lock);
289 	if (bg->ro)
290 		ret = false;
291 	else
292 		atomic_inc(&bg->nocow_writers);
293 	spin_unlock(&bg->lock);
294 
295 	/* No put on block group, done by btrfs_dec_nocow_writers */
296 	if (!ret)
297 		btrfs_put_block_group(bg);
298 
299 	return ret;
300 }
301 
302 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
303 {
304 	struct btrfs_block_group *bg;
305 
306 	bg = btrfs_lookup_block_group(fs_info, bytenr);
307 	ASSERT(bg);
308 	if (atomic_dec_and_test(&bg->nocow_writers))
309 		wake_up_var(&bg->nocow_writers);
310 	/*
311 	 * Once for our lookup and once for the lookup done by a previous call
312 	 * to btrfs_inc_nocow_writers()
313 	 */
314 	btrfs_put_block_group(bg);
315 	btrfs_put_block_group(bg);
316 }
317 
318 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
319 {
320 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
321 }
322 
323 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
324 					const u64 start)
325 {
326 	struct btrfs_block_group *bg;
327 
328 	bg = btrfs_lookup_block_group(fs_info, start);
329 	ASSERT(bg);
330 	if (atomic_dec_and_test(&bg->reservations))
331 		wake_up_var(&bg->reservations);
332 	btrfs_put_block_group(bg);
333 }
334 
335 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
336 {
337 	struct btrfs_space_info *space_info = bg->space_info;
338 
339 	ASSERT(bg->ro);
340 
341 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
342 		return;
343 
344 	/*
345 	 * Our block group is read only but before we set it to read only,
346 	 * some task might have had allocated an extent from it already, but it
347 	 * has not yet created a respective ordered extent (and added it to a
348 	 * root's list of ordered extents).
349 	 * Therefore wait for any task currently allocating extents, since the
350 	 * block group's reservations counter is incremented while a read lock
351 	 * on the groups' semaphore is held and decremented after releasing
352 	 * the read access on that semaphore and creating the ordered extent.
353 	 */
354 	down_write(&space_info->groups_sem);
355 	up_write(&space_info->groups_sem);
356 
357 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
358 }
359 
360 struct btrfs_caching_control *btrfs_get_caching_control(
361 		struct btrfs_block_group *cache)
362 {
363 	struct btrfs_caching_control *ctl;
364 
365 	spin_lock(&cache->lock);
366 	if (!cache->caching_ctl) {
367 		spin_unlock(&cache->lock);
368 		return NULL;
369 	}
370 
371 	ctl = cache->caching_ctl;
372 	refcount_inc(&ctl->count);
373 	spin_unlock(&cache->lock);
374 	return ctl;
375 }
376 
377 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
378 {
379 	if (refcount_dec_and_test(&ctl->count))
380 		kfree(ctl);
381 }
382 
383 /*
384  * When we wait for progress in the block group caching, its because our
385  * allocation attempt failed at least once.  So, we must sleep and let some
386  * progress happen before we try again.
387  *
388  * This function will sleep at least once waiting for new free space to show
389  * up, and then it will check the block group free space numbers for our min
390  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
391  * a free extent of a given size, but this is a good start.
392  *
393  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
394  * any of the information in this block group.
395  */
396 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
397 					   u64 num_bytes)
398 {
399 	struct btrfs_caching_control *caching_ctl;
400 
401 	caching_ctl = btrfs_get_caching_control(cache);
402 	if (!caching_ctl)
403 		return;
404 
405 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
406 		   (cache->free_space_ctl->free_space >= num_bytes));
407 
408 	btrfs_put_caching_control(caching_ctl);
409 }
410 
411 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
412 {
413 	struct btrfs_caching_control *caching_ctl;
414 	int ret = 0;
415 
416 	caching_ctl = btrfs_get_caching_control(cache);
417 	if (!caching_ctl)
418 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
419 
420 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
421 	if (cache->cached == BTRFS_CACHE_ERROR)
422 		ret = -EIO;
423 	btrfs_put_caching_control(caching_ctl);
424 	return ret;
425 }
426 
427 static bool space_cache_v1_done(struct btrfs_block_group *cache)
428 {
429 	bool ret;
430 
431 	spin_lock(&cache->lock);
432 	ret = cache->cached != BTRFS_CACHE_FAST;
433 	spin_unlock(&cache->lock);
434 
435 	return ret;
436 }
437 
438 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
439 				struct btrfs_caching_control *caching_ctl)
440 {
441 	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
442 }
443 
444 #ifdef CONFIG_BTRFS_DEBUG
445 static void fragment_free_space(struct btrfs_block_group *block_group)
446 {
447 	struct btrfs_fs_info *fs_info = block_group->fs_info;
448 	u64 start = block_group->start;
449 	u64 len = block_group->length;
450 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
451 		fs_info->nodesize : fs_info->sectorsize;
452 	u64 step = chunk << 1;
453 
454 	while (len > chunk) {
455 		btrfs_remove_free_space(block_group, start, chunk);
456 		start += step;
457 		if (len < step)
458 			len = 0;
459 		else
460 			len -= step;
461 	}
462 }
463 #endif
464 
465 /*
466  * This is only called by btrfs_cache_block_group, since we could have freed
467  * extents we need to check the pinned_extents for any extents that can't be
468  * used yet since their free space will be released as soon as the transaction
469  * commits.
470  */
471 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
472 {
473 	struct btrfs_fs_info *info = block_group->fs_info;
474 	u64 extent_start, extent_end, size, total_added = 0;
475 	int ret;
476 
477 	while (start < end) {
478 		ret = find_first_extent_bit(&info->excluded_extents, start,
479 					    &extent_start, &extent_end,
480 					    EXTENT_DIRTY | EXTENT_UPTODATE,
481 					    NULL);
482 		if (ret)
483 			break;
484 
485 		if (extent_start <= start) {
486 			start = extent_end + 1;
487 		} else if (extent_start > start && extent_start < end) {
488 			size = extent_start - start;
489 			total_added += size;
490 			ret = btrfs_add_free_space_async_trimmed(block_group,
491 								 start, size);
492 			BUG_ON(ret); /* -ENOMEM or logic error */
493 			start = extent_end + 1;
494 		} else {
495 			break;
496 		}
497 	}
498 
499 	if (start < end) {
500 		size = end - start;
501 		total_added += size;
502 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
503 							 size);
504 		BUG_ON(ret); /* -ENOMEM or logic error */
505 	}
506 
507 	return total_added;
508 }
509 
510 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
511 {
512 	struct btrfs_block_group *block_group = caching_ctl->block_group;
513 	struct btrfs_fs_info *fs_info = block_group->fs_info;
514 	struct btrfs_root *extent_root = fs_info->extent_root;
515 	struct btrfs_path *path;
516 	struct extent_buffer *leaf;
517 	struct btrfs_key key;
518 	u64 total_found = 0;
519 	u64 last = 0;
520 	u32 nritems;
521 	int ret;
522 	bool wakeup = true;
523 
524 	path = btrfs_alloc_path();
525 	if (!path)
526 		return -ENOMEM;
527 
528 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
529 
530 #ifdef CONFIG_BTRFS_DEBUG
531 	/*
532 	 * If we're fragmenting we don't want to make anybody think we can
533 	 * allocate from this block group until we've had a chance to fragment
534 	 * the free space.
535 	 */
536 	if (btrfs_should_fragment_free_space(block_group))
537 		wakeup = false;
538 #endif
539 	/*
540 	 * We don't want to deadlock with somebody trying to allocate a new
541 	 * extent for the extent root while also trying to search the extent
542 	 * root to add free space.  So we skip locking and search the commit
543 	 * root, since its read-only
544 	 */
545 	path->skip_locking = 1;
546 	path->search_commit_root = 1;
547 	path->reada = READA_FORWARD;
548 
549 	key.objectid = last;
550 	key.offset = 0;
551 	key.type = BTRFS_EXTENT_ITEM_KEY;
552 
553 next:
554 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
555 	if (ret < 0)
556 		goto out;
557 
558 	leaf = path->nodes[0];
559 	nritems = btrfs_header_nritems(leaf);
560 
561 	while (1) {
562 		if (btrfs_fs_closing(fs_info) > 1) {
563 			last = (u64)-1;
564 			break;
565 		}
566 
567 		if (path->slots[0] < nritems) {
568 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
569 		} else {
570 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
571 			if (ret)
572 				break;
573 
574 			if (need_resched() ||
575 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
576 				if (wakeup)
577 					caching_ctl->progress = last;
578 				btrfs_release_path(path);
579 				up_read(&fs_info->commit_root_sem);
580 				mutex_unlock(&caching_ctl->mutex);
581 				cond_resched();
582 				mutex_lock(&caching_ctl->mutex);
583 				down_read(&fs_info->commit_root_sem);
584 				goto next;
585 			}
586 
587 			ret = btrfs_next_leaf(extent_root, path);
588 			if (ret < 0)
589 				goto out;
590 			if (ret)
591 				break;
592 			leaf = path->nodes[0];
593 			nritems = btrfs_header_nritems(leaf);
594 			continue;
595 		}
596 
597 		if (key.objectid < last) {
598 			key.objectid = last;
599 			key.offset = 0;
600 			key.type = BTRFS_EXTENT_ITEM_KEY;
601 
602 			if (wakeup)
603 				caching_ctl->progress = last;
604 			btrfs_release_path(path);
605 			goto next;
606 		}
607 
608 		if (key.objectid < block_group->start) {
609 			path->slots[0]++;
610 			continue;
611 		}
612 
613 		if (key.objectid >= block_group->start + block_group->length)
614 			break;
615 
616 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
617 		    key.type == BTRFS_METADATA_ITEM_KEY) {
618 			total_found += add_new_free_space(block_group, last,
619 							  key.objectid);
620 			if (key.type == BTRFS_METADATA_ITEM_KEY)
621 				last = key.objectid +
622 					fs_info->nodesize;
623 			else
624 				last = key.objectid + key.offset;
625 
626 			if (total_found > CACHING_CTL_WAKE_UP) {
627 				total_found = 0;
628 				if (wakeup)
629 					wake_up(&caching_ctl->wait);
630 			}
631 		}
632 		path->slots[0]++;
633 	}
634 	ret = 0;
635 
636 	total_found += add_new_free_space(block_group, last,
637 				block_group->start + block_group->length);
638 	caching_ctl->progress = (u64)-1;
639 
640 out:
641 	btrfs_free_path(path);
642 	return ret;
643 }
644 
645 static noinline void caching_thread(struct btrfs_work *work)
646 {
647 	struct btrfs_block_group *block_group;
648 	struct btrfs_fs_info *fs_info;
649 	struct btrfs_caching_control *caching_ctl;
650 	int ret;
651 
652 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
653 	block_group = caching_ctl->block_group;
654 	fs_info = block_group->fs_info;
655 
656 	mutex_lock(&caching_ctl->mutex);
657 	down_read(&fs_info->commit_root_sem);
658 
659 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
660 		ret = load_free_space_cache(block_group);
661 		if (ret == 1) {
662 			ret = 0;
663 			goto done;
664 		}
665 
666 		/*
667 		 * We failed to load the space cache, set ourselves to
668 		 * CACHE_STARTED and carry on.
669 		 */
670 		spin_lock(&block_group->lock);
671 		block_group->cached = BTRFS_CACHE_STARTED;
672 		spin_unlock(&block_group->lock);
673 		wake_up(&caching_ctl->wait);
674 	}
675 
676 	/*
677 	 * If we are in the transaction that populated the free space tree we
678 	 * can't actually cache from the free space tree as our commit root and
679 	 * real root are the same, so we could change the contents of the blocks
680 	 * while caching.  Instead do the slow caching in this case, and after
681 	 * the transaction has committed we will be safe.
682 	 */
683 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
684 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
685 		ret = load_free_space_tree(caching_ctl);
686 	else
687 		ret = load_extent_tree_free(caching_ctl);
688 done:
689 	spin_lock(&block_group->lock);
690 	block_group->caching_ctl = NULL;
691 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
692 	spin_unlock(&block_group->lock);
693 
694 #ifdef CONFIG_BTRFS_DEBUG
695 	if (btrfs_should_fragment_free_space(block_group)) {
696 		u64 bytes_used;
697 
698 		spin_lock(&block_group->space_info->lock);
699 		spin_lock(&block_group->lock);
700 		bytes_used = block_group->length - block_group->used;
701 		block_group->space_info->bytes_used += bytes_used >> 1;
702 		spin_unlock(&block_group->lock);
703 		spin_unlock(&block_group->space_info->lock);
704 		fragment_free_space(block_group);
705 	}
706 #endif
707 
708 	caching_ctl->progress = (u64)-1;
709 
710 	up_read(&fs_info->commit_root_sem);
711 	btrfs_free_excluded_extents(block_group);
712 	mutex_unlock(&caching_ctl->mutex);
713 
714 	wake_up(&caching_ctl->wait);
715 
716 	btrfs_put_caching_control(caching_ctl);
717 	btrfs_put_block_group(block_group);
718 }
719 
720 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
721 {
722 	DEFINE_WAIT(wait);
723 	struct btrfs_fs_info *fs_info = cache->fs_info;
724 	struct btrfs_caching_control *caching_ctl = NULL;
725 	int ret = 0;
726 
727 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
728 	if (!caching_ctl)
729 		return -ENOMEM;
730 
731 	INIT_LIST_HEAD(&caching_ctl->list);
732 	mutex_init(&caching_ctl->mutex);
733 	init_waitqueue_head(&caching_ctl->wait);
734 	caching_ctl->block_group = cache;
735 	caching_ctl->progress = cache->start;
736 	refcount_set(&caching_ctl->count, 2);
737 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
738 
739 	spin_lock(&cache->lock);
740 	if (cache->cached != BTRFS_CACHE_NO) {
741 		kfree(caching_ctl);
742 
743 		caching_ctl = cache->caching_ctl;
744 		if (caching_ctl)
745 			refcount_inc(&caching_ctl->count);
746 		spin_unlock(&cache->lock);
747 		goto out;
748 	}
749 	WARN_ON(cache->caching_ctl);
750 	cache->caching_ctl = caching_ctl;
751 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
752 		cache->cached = BTRFS_CACHE_FAST;
753 	else
754 		cache->cached = BTRFS_CACHE_STARTED;
755 	cache->has_caching_ctl = 1;
756 	spin_unlock(&cache->lock);
757 
758 	spin_lock(&fs_info->block_group_cache_lock);
759 	refcount_inc(&caching_ctl->count);
760 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
761 	spin_unlock(&fs_info->block_group_cache_lock);
762 
763 	btrfs_get_block_group(cache);
764 
765 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
766 out:
767 	if (load_cache_only && caching_ctl)
768 		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
769 	if (caching_ctl)
770 		btrfs_put_caching_control(caching_ctl);
771 
772 	return ret;
773 }
774 
775 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
776 {
777 	u64 extra_flags = chunk_to_extended(flags) &
778 				BTRFS_EXTENDED_PROFILE_MASK;
779 
780 	write_seqlock(&fs_info->profiles_lock);
781 	if (flags & BTRFS_BLOCK_GROUP_DATA)
782 		fs_info->avail_data_alloc_bits &= ~extra_flags;
783 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
784 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
785 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
786 		fs_info->avail_system_alloc_bits &= ~extra_flags;
787 	write_sequnlock(&fs_info->profiles_lock);
788 }
789 
790 /*
791  * Clear incompat bits for the following feature(s):
792  *
793  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
794  *            in the whole filesystem
795  *
796  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
797  */
798 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
799 {
800 	bool found_raid56 = false;
801 	bool found_raid1c34 = false;
802 
803 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
804 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
805 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
806 		struct list_head *head = &fs_info->space_info;
807 		struct btrfs_space_info *sinfo;
808 
809 		list_for_each_entry_rcu(sinfo, head, list) {
810 			down_read(&sinfo->groups_sem);
811 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
812 				found_raid56 = true;
813 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
814 				found_raid56 = true;
815 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
816 				found_raid1c34 = true;
817 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
818 				found_raid1c34 = true;
819 			up_read(&sinfo->groups_sem);
820 		}
821 		if (!found_raid56)
822 			btrfs_clear_fs_incompat(fs_info, RAID56);
823 		if (!found_raid1c34)
824 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
825 	}
826 }
827 
828 static int remove_block_group_item(struct btrfs_trans_handle *trans,
829 				   struct btrfs_path *path,
830 				   struct btrfs_block_group *block_group)
831 {
832 	struct btrfs_fs_info *fs_info = trans->fs_info;
833 	struct btrfs_root *root;
834 	struct btrfs_key key;
835 	int ret;
836 
837 	root = fs_info->extent_root;
838 	key.objectid = block_group->start;
839 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
840 	key.offset = block_group->length;
841 
842 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
843 	if (ret > 0)
844 		ret = -ENOENT;
845 	if (ret < 0)
846 		return ret;
847 
848 	ret = btrfs_del_item(trans, root, path);
849 	return ret;
850 }
851 
852 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
853 			     u64 group_start, struct extent_map *em)
854 {
855 	struct btrfs_fs_info *fs_info = trans->fs_info;
856 	struct btrfs_path *path;
857 	struct btrfs_block_group *block_group;
858 	struct btrfs_free_cluster *cluster;
859 	struct inode *inode;
860 	struct kobject *kobj = NULL;
861 	int ret;
862 	int index;
863 	int factor;
864 	struct btrfs_caching_control *caching_ctl = NULL;
865 	bool remove_em;
866 	bool remove_rsv = false;
867 
868 	block_group = btrfs_lookup_block_group(fs_info, group_start);
869 	BUG_ON(!block_group);
870 	BUG_ON(!block_group->ro);
871 
872 	trace_btrfs_remove_block_group(block_group);
873 	/*
874 	 * Free the reserved super bytes from this block group before
875 	 * remove it.
876 	 */
877 	btrfs_free_excluded_extents(block_group);
878 	btrfs_free_ref_tree_range(fs_info, block_group->start,
879 				  block_group->length);
880 
881 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
882 	factor = btrfs_bg_type_to_factor(block_group->flags);
883 
884 	/* make sure this block group isn't part of an allocation cluster */
885 	cluster = &fs_info->data_alloc_cluster;
886 	spin_lock(&cluster->refill_lock);
887 	btrfs_return_cluster_to_free_space(block_group, cluster);
888 	spin_unlock(&cluster->refill_lock);
889 
890 	/*
891 	 * make sure this block group isn't part of a metadata
892 	 * allocation cluster
893 	 */
894 	cluster = &fs_info->meta_alloc_cluster;
895 	spin_lock(&cluster->refill_lock);
896 	btrfs_return_cluster_to_free_space(block_group, cluster);
897 	spin_unlock(&cluster->refill_lock);
898 
899 	path = btrfs_alloc_path();
900 	if (!path) {
901 		ret = -ENOMEM;
902 		goto out;
903 	}
904 
905 	/*
906 	 * get the inode first so any iput calls done for the io_list
907 	 * aren't the final iput (no unlinks allowed now)
908 	 */
909 	inode = lookup_free_space_inode(block_group, path);
910 
911 	mutex_lock(&trans->transaction->cache_write_mutex);
912 	/*
913 	 * Make sure our free space cache IO is done before removing the
914 	 * free space inode
915 	 */
916 	spin_lock(&trans->transaction->dirty_bgs_lock);
917 	if (!list_empty(&block_group->io_list)) {
918 		list_del_init(&block_group->io_list);
919 
920 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
921 
922 		spin_unlock(&trans->transaction->dirty_bgs_lock);
923 		btrfs_wait_cache_io(trans, block_group, path);
924 		btrfs_put_block_group(block_group);
925 		spin_lock(&trans->transaction->dirty_bgs_lock);
926 	}
927 
928 	if (!list_empty(&block_group->dirty_list)) {
929 		list_del_init(&block_group->dirty_list);
930 		remove_rsv = true;
931 		btrfs_put_block_group(block_group);
932 	}
933 	spin_unlock(&trans->transaction->dirty_bgs_lock);
934 	mutex_unlock(&trans->transaction->cache_write_mutex);
935 
936 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
937 	if (ret)
938 		goto out;
939 
940 	spin_lock(&fs_info->block_group_cache_lock);
941 	rb_erase(&block_group->cache_node,
942 		 &fs_info->block_group_cache_tree);
943 	RB_CLEAR_NODE(&block_group->cache_node);
944 
945 	/* Once for the block groups rbtree */
946 	btrfs_put_block_group(block_group);
947 
948 	if (fs_info->first_logical_byte == block_group->start)
949 		fs_info->first_logical_byte = (u64)-1;
950 	spin_unlock(&fs_info->block_group_cache_lock);
951 
952 	down_write(&block_group->space_info->groups_sem);
953 	/*
954 	 * we must use list_del_init so people can check to see if they
955 	 * are still on the list after taking the semaphore
956 	 */
957 	list_del_init(&block_group->list);
958 	if (list_empty(&block_group->space_info->block_groups[index])) {
959 		kobj = block_group->space_info->block_group_kobjs[index];
960 		block_group->space_info->block_group_kobjs[index] = NULL;
961 		clear_avail_alloc_bits(fs_info, block_group->flags);
962 	}
963 	up_write(&block_group->space_info->groups_sem);
964 	clear_incompat_bg_bits(fs_info, block_group->flags);
965 	if (kobj) {
966 		kobject_del(kobj);
967 		kobject_put(kobj);
968 	}
969 
970 	if (block_group->has_caching_ctl)
971 		caching_ctl = btrfs_get_caching_control(block_group);
972 	if (block_group->cached == BTRFS_CACHE_STARTED)
973 		btrfs_wait_block_group_cache_done(block_group);
974 	if (block_group->has_caching_ctl) {
975 		spin_lock(&fs_info->block_group_cache_lock);
976 		if (!caching_ctl) {
977 			struct btrfs_caching_control *ctl;
978 
979 			list_for_each_entry(ctl,
980 				    &fs_info->caching_block_groups, list)
981 				if (ctl->block_group == block_group) {
982 					caching_ctl = ctl;
983 					refcount_inc(&caching_ctl->count);
984 					break;
985 				}
986 		}
987 		if (caching_ctl)
988 			list_del_init(&caching_ctl->list);
989 		spin_unlock(&fs_info->block_group_cache_lock);
990 		if (caching_ctl) {
991 			/* Once for the caching bgs list and once for us. */
992 			btrfs_put_caching_control(caching_ctl);
993 			btrfs_put_caching_control(caching_ctl);
994 		}
995 	}
996 
997 	spin_lock(&trans->transaction->dirty_bgs_lock);
998 	WARN_ON(!list_empty(&block_group->dirty_list));
999 	WARN_ON(!list_empty(&block_group->io_list));
1000 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1001 
1002 	btrfs_remove_free_space_cache(block_group);
1003 
1004 	spin_lock(&block_group->space_info->lock);
1005 	list_del_init(&block_group->ro_list);
1006 
1007 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1008 		WARN_ON(block_group->space_info->total_bytes
1009 			< block_group->length);
1010 		WARN_ON(block_group->space_info->bytes_readonly
1011 			< block_group->length);
1012 		WARN_ON(block_group->space_info->disk_total
1013 			< block_group->length * factor);
1014 	}
1015 	block_group->space_info->total_bytes -= block_group->length;
1016 	block_group->space_info->bytes_readonly -= block_group->length;
1017 	block_group->space_info->disk_total -= block_group->length * factor;
1018 
1019 	spin_unlock(&block_group->space_info->lock);
1020 
1021 	/*
1022 	 * Remove the free space for the block group from the free space tree
1023 	 * and the block group's item from the extent tree before marking the
1024 	 * block group as removed. This is to prevent races with tasks that
1025 	 * freeze and unfreeze a block group, this task and another task
1026 	 * allocating a new block group - the unfreeze task ends up removing
1027 	 * the block group's extent map before the task calling this function
1028 	 * deletes the block group item from the extent tree, allowing for
1029 	 * another task to attempt to create another block group with the same
1030 	 * item key (and failing with -EEXIST and a transaction abort).
1031 	 */
1032 	ret = remove_block_group_free_space(trans, block_group);
1033 	if (ret)
1034 		goto out;
1035 
1036 	ret = remove_block_group_item(trans, path, block_group);
1037 	if (ret < 0)
1038 		goto out;
1039 
1040 	spin_lock(&block_group->lock);
1041 	block_group->removed = 1;
1042 	/*
1043 	 * At this point trimming or scrub can't start on this block group,
1044 	 * because we removed the block group from the rbtree
1045 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1046 	 * even if someone already got this block group before we removed it
1047 	 * from the rbtree, they have already incremented block_group->frozen -
1048 	 * if they didn't, for the trimming case they won't find any free space
1049 	 * entries because we already removed them all when we called
1050 	 * btrfs_remove_free_space_cache().
1051 	 *
1052 	 * And we must not remove the extent map from the fs_info->mapping_tree
1053 	 * to prevent the same logical address range and physical device space
1054 	 * ranges from being reused for a new block group. This is needed to
1055 	 * avoid races with trimming and scrub.
1056 	 *
1057 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1058 	 * completely transactionless, so while it is trimming a range the
1059 	 * currently running transaction might finish and a new one start,
1060 	 * allowing for new block groups to be created that can reuse the same
1061 	 * physical device locations unless we take this special care.
1062 	 *
1063 	 * There may also be an implicit trim operation if the file system
1064 	 * is mounted with -odiscard. The same protections must remain
1065 	 * in place until the extents have been discarded completely when
1066 	 * the transaction commit has completed.
1067 	 */
1068 	remove_em = (atomic_read(&block_group->frozen) == 0);
1069 	spin_unlock(&block_group->lock);
1070 
1071 	if (remove_em) {
1072 		struct extent_map_tree *em_tree;
1073 
1074 		em_tree = &fs_info->mapping_tree;
1075 		write_lock(&em_tree->lock);
1076 		remove_extent_mapping(em_tree, em);
1077 		write_unlock(&em_tree->lock);
1078 		/* once for the tree */
1079 		free_extent_map(em);
1080 	}
1081 
1082 out:
1083 	/* Once for the lookup reference */
1084 	btrfs_put_block_group(block_group);
1085 	if (remove_rsv)
1086 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1087 	btrfs_free_path(path);
1088 	return ret;
1089 }
1090 
1091 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1092 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1093 {
1094 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1095 	struct extent_map *em;
1096 	struct map_lookup *map;
1097 	unsigned int num_items;
1098 
1099 	read_lock(&em_tree->lock);
1100 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1101 	read_unlock(&em_tree->lock);
1102 	ASSERT(em && em->start == chunk_offset);
1103 
1104 	/*
1105 	 * We need to reserve 3 + N units from the metadata space info in order
1106 	 * to remove a block group (done at btrfs_remove_chunk() and at
1107 	 * btrfs_remove_block_group()), which are used for:
1108 	 *
1109 	 * 1 unit for adding the free space inode's orphan (located in the tree
1110 	 * of tree roots).
1111 	 * 1 unit for deleting the block group item (located in the extent
1112 	 * tree).
1113 	 * 1 unit for deleting the free space item (located in tree of tree
1114 	 * roots).
1115 	 * N units for deleting N device extent items corresponding to each
1116 	 * stripe (located in the device tree).
1117 	 *
1118 	 * In order to remove a block group we also need to reserve units in the
1119 	 * system space info in order to update the chunk tree (update one or
1120 	 * more device items and remove one chunk item), but this is done at
1121 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1122 	 */
1123 	map = em->map_lookup;
1124 	num_items = 3 + map->num_stripes;
1125 	free_extent_map(em);
1126 
1127 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1128 							   num_items);
1129 }
1130 
1131 /*
1132  * Mark block group @cache read-only, so later write won't happen to block
1133  * group @cache.
1134  *
1135  * If @force is not set, this function will only mark the block group readonly
1136  * if we have enough free space (1M) in other metadata/system block groups.
1137  * If @force is not set, this function will mark the block group readonly
1138  * without checking free space.
1139  *
1140  * NOTE: This function doesn't care if other block groups can contain all the
1141  * data in this block group. That check should be done by relocation routine,
1142  * not this function.
1143  */
1144 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1145 {
1146 	struct btrfs_space_info *sinfo = cache->space_info;
1147 	u64 num_bytes;
1148 	int ret = -ENOSPC;
1149 
1150 	spin_lock(&sinfo->lock);
1151 	spin_lock(&cache->lock);
1152 
1153 	if (cache->ro) {
1154 		cache->ro++;
1155 		ret = 0;
1156 		goto out;
1157 	}
1158 
1159 	num_bytes = cache->length - cache->reserved - cache->pinned -
1160 		    cache->bytes_super - cache->used;
1161 
1162 	/*
1163 	 * Data never overcommits, even in mixed mode, so do just the straight
1164 	 * check of left over space in how much we have allocated.
1165 	 */
1166 	if (force) {
1167 		ret = 0;
1168 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1169 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1170 
1171 		/*
1172 		 * Here we make sure if we mark this bg RO, we still have enough
1173 		 * free space as buffer.
1174 		 */
1175 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1176 			ret = 0;
1177 	} else {
1178 		/*
1179 		 * We overcommit metadata, so we need to do the
1180 		 * btrfs_can_overcommit check here, and we need to pass in
1181 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1182 		 * leeway to allow us to mark this block group as read only.
1183 		 */
1184 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1185 					 BTRFS_RESERVE_NO_FLUSH))
1186 			ret = 0;
1187 	}
1188 
1189 	if (!ret) {
1190 		sinfo->bytes_readonly += num_bytes;
1191 		cache->ro++;
1192 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1193 	}
1194 out:
1195 	spin_unlock(&cache->lock);
1196 	spin_unlock(&sinfo->lock);
1197 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1198 		btrfs_info(cache->fs_info,
1199 			"unable to make block group %llu ro", cache->start);
1200 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1201 	}
1202 	return ret;
1203 }
1204 
1205 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1206 				 struct btrfs_block_group *bg)
1207 {
1208 	struct btrfs_fs_info *fs_info = bg->fs_info;
1209 	struct btrfs_transaction *prev_trans = NULL;
1210 	const u64 start = bg->start;
1211 	const u64 end = start + bg->length - 1;
1212 	int ret;
1213 
1214 	spin_lock(&fs_info->trans_lock);
1215 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1216 		prev_trans = list_last_entry(&trans->transaction->list,
1217 					     struct btrfs_transaction, list);
1218 		refcount_inc(&prev_trans->use_count);
1219 	}
1220 	spin_unlock(&fs_info->trans_lock);
1221 
1222 	/*
1223 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1224 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1225 	 * task might be running finish_extent_commit() for the previous
1226 	 * transaction N - 1, and have seen a range belonging to the block
1227 	 * group in pinned_extents before we were able to clear the whole block
1228 	 * group range from pinned_extents. This means that task can lookup for
1229 	 * the block group after we unpinned it from pinned_extents and removed
1230 	 * it, leading to a BUG_ON() at unpin_extent_range().
1231 	 */
1232 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1233 	if (prev_trans) {
1234 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1235 					EXTENT_DIRTY);
1236 		if (ret)
1237 			goto out;
1238 	}
1239 
1240 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1241 				EXTENT_DIRTY);
1242 out:
1243 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1244 	if (prev_trans)
1245 		btrfs_put_transaction(prev_trans);
1246 
1247 	return ret == 0;
1248 }
1249 
1250 /*
1251  * Process the unused_bgs list and remove any that don't have any allocated
1252  * space inside of them.
1253  */
1254 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1255 {
1256 	struct btrfs_block_group *block_group;
1257 	struct btrfs_space_info *space_info;
1258 	struct btrfs_trans_handle *trans;
1259 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1260 	int ret = 0;
1261 
1262 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1263 		return;
1264 
1265 	spin_lock(&fs_info->unused_bgs_lock);
1266 	while (!list_empty(&fs_info->unused_bgs)) {
1267 		int trimming;
1268 
1269 		block_group = list_first_entry(&fs_info->unused_bgs,
1270 					       struct btrfs_block_group,
1271 					       bg_list);
1272 		list_del_init(&block_group->bg_list);
1273 
1274 		space_info = block_group->space_info;
1275 
1276 		if (ret || btrfs_mixed_space_info(space_info)) {
1277 			btrfs_put_block_group(block_group);
1278 			continue;
1279 		}
1280 		spin_unlock(&fs_info->unused_bgs_lock);
1281 
1282 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1283 
1284 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1285 
1286 		/* Don't want to race with allocators so take the groups_sem */
1287 		down_write(&space_info->groups_sem);
1288 
1289 		/*
1290 		 * Async discard moves the final block group discard to be prior
1291 		 * to the unused_bgs code path.  Therefore, if it's not fully
1292 		 * trimmed, punt it back to the async discard lists.
1293 		 */
1294 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1295 		    !btrfs_is_free_space_trimmed(block_group)) {
1296 			trace_btrfs_skip_unused_block_group(block_group);
1297 			up_write(&space_info->groups_sem);
1298 			/* Requeue if we failed because of async discard */
1299 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1300 						 block_group);
1301 			goto next;
1302 		}
1303 
1304 		spin_lock(&block_group->lock);
1305 		if (block_group->reserved || block_group->pinned ||
1306 		    block_group->used || block_group->ro ||
1307 		    list_is_singular(&block_group->list)) {
1308 			/*
1309 			 * We want to bail if we made new allocations or have
1310 			 * outstanding allocations in this block group.  We do
1311 			 * the ro check in case balance is currently acting on
1312 			 * this block group.
1313 			 */
1314 			trace_btrfs_skip_unused_block_group(block_group);
1315 			spin_unlock(&block_group->lock);
1316 			up_write(&space_info->groups_sem);
1317 			goto next;
1318 		}
1319 		spin_unlock(&block_group->lock);
1320 
1321 		/* We don't want to force the issue, only flip if it's ok. */
1322 		ret = inc_block_group_ro(block_group, 0);
1323 		up_write(&space_info->groups_sem);
1324 		if (ret < 0) {
1325 			ret = 0;
1326 			goto next;
1327 		}
1328 
1329 		/*
1330 		 * Want to do this before we do anything else so we can recover
1331 		 * properly if we fail to join the transaction.
1332 		 */
1333 		trans = btrfs_start_trans_remove_block_group(fs_info,
1334 						     block_group->start);
1335 		if (IS_ERR(trans)) {
1336 			btrfs_dec_block_group_ro(block_group);
1337 			ret = PTR_ERR(trans);
1338 			goto next;
1339 		}
1340 
1341 		/*
1342 		 * We could have pending pinned extents for this block group,
1343 		 * just delete them, we don't care about them anymore.
1344 		 */
1345 		if (!clean_pinned_extents(trans, block_group)) {
1346 			btrfs_dec_block_group_ro(block_group);
1347 			goto end_trans;
1348 		}
1349 
1350 		/*
1351 		 * At this point, the block_group is read only and should fail
1352 		 * new allocations.  However, btrfs_finish_extent_commit() can
1353 		 * cause this block_group to be placed back on the discard
1354 		 * lists because now the block_group isn't fully discarded.
1355 		 * Bail here and try again later after discarding everything.
1356 		 */
1357 		spin_lock(&fs_info->discard_ctl.lock);
1358 		if (!list_empty(&block_group->discard_list)) {
1359 			spin_unlock(&fs_info->discard_ctl.lock);
1360 			btrfs_dec_block_group_ro(block_group);
1361 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1362 						 block_group);
1363 			goto end_trans;
1364 		}
1365 		spin_unlock(&fs_info->discard_ctl.lock);
1366 
1367 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1368 		spin_lock(&space_info->lock);
1369 		spin_lock(&block_group->lock);
1370 
1371 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1372 						     -block_group->pinned);
1373 		space_info->bytes_readonly += block_group->pinned;
1374 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1375 				   -block_group->pinned,
1376 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1377 		block_group->pinned = 0;
1378 
1379 		spin_unlock(&block_group->lock);
1380 		spin_unlock(&space_info->lock);
1381 
1382 		/*
1383 		 * The normal path here is an unused block group is passed here,
1384 		 * then trimming is handled in the transaction commit path.
1385 		 * Async discard interposes before this to do the trimming
1386 		 * before coming down the unused block group path as trimming
1387 		 * will no longer be done later in the transaction commit path.
1388 		 */
1389 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1390 			goto flip_async;
1391 
1392 		/* DISCARD can flip during remount */
1393 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1394 
1395 		/* Implicit trim during transaction commit. */
1396 		if (trimming)
1397 			btrfs_freeze_block_group(block_group);
1398 
1399 		/*
1400 		 * Btrfs_remove_chunk will abort the transaction if things go
1401 		 * horribly wrong.
1402 		 */
1403 		ret = btrfs_remove_chunk(trans, block_group->start);
1404 
1405 		if (ret) {
1406 			if (trimming)
1407 				btrfs_unfreeze_block_group(block_group);
1408 			goto end_trans;
1409 		}
1410 
1411 		/*
1412 		 * If we're not mounted with -odiscard, we can just forget
1413 		 * about this block group. Otherwise we'll need to wait
1414 		 * until transaction commit to do the actual discard.
1415 		 */
1416 		if (trimming) {
1417 			spin_lock(&fs_info->unused_bgs_lock);
1418 			/*
1419 			 * A concurrent scrub might have added us to the list
1420 			 * fs_info->unused_bgs, so use a list_move operation
1421 			 * to add the block group to the deleted_bgs list.
1422 			 */
1423 			list_move(&block_group->bg_list,
1424 				  &trans->transaction->deleted_bgs);
1425 			spin_unlock(&fs_info->unused_bgs_lock);
1426 			btrfs_get_block_group(block_group);
1427 		}
1428 end_trans:
1429 		btrfs_end_transaction(trans);
1430 next:
1431 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1432 		btrfs_put_block_group(block_group);
1433 		spin_lock(&fs_info->unused_bgs_lock);
1434 	}
1435 	spin_unlock(&fs_info->unused_bgs_lock);
1436 	return;
1437 
1438 flip_async:
1439 	btrfs_end_transaction(trans);
1440 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1441 	btrfs_put_block_group(block_group);
1442 	btrfs_discard_punt_unused_bgs_list(fs_info);
1443 }
1444 
1445 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1446 {
1447 	struct btrfs_fs_info *fs_info = bg->fs_info;
1448 
1449 	spin_lock(&fs_info->unused_bgs_lock);
1450 	if (list_empty(&bg->bg_list)) {
1451 		btrfs_get_block_group(bg);
1452 		trace_btrfs_add_unused_block_group(bg);
1453 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1454 	}
1455 	spin_unlock(&fs_info->unused_bgs_lock);
1456 }
1457 
1458 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1459 			   struct btrfs_path *path)
1460 {
1461 	struct extent_map_tree *em_tree;
1462 	struct extent_map *em;
1463 	struct btrfs_block_group_item bg;
1464 	struct extent_buffer *leaf;
1465 	int slot;
1466 	u64 flags;
1467 	int ret = 0;
1468 
1469 	slot = path->slots[0];
1470 	leaf = path->nodes[0];
1471 
1472 	em_tree = &fs_info->mapping_tree;
1473 	read_lock(&em_tree->lock);
1474 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1475 	read_unlock(&em_tree->lock);
1476 	if (!em) {
1477 		btrfs_err(fs_info,
1478 			  "logical %llu len %llu found bg but no related chunk",
1479 			  key->objectid, key->offset);
1480 		return -ENOENT;
1481 	}
1482 
1483 	if (em->start != key->objectid || em->len != key->offset) {
1484 		btrfs_err(fs_info,
1485 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1486 			key->objectid, key->offset, em->start, em->len);
1487 		ret = -EUCLEAN;
1488 		goto out_free_em;
1489 	}
1490 
1491 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1492 			   sizeof(bg));
1493 	flags = btrfs_stack_block_group_flags(&bg) &
1494 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1495 
1496 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1497 		btrfs_err(fs_info,
1498 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1499 			  key->objectid, key->offset, flags,
1500 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1501 		ret = -EUCLEAN;
1502 	}
1503 
1504 out_free_em:
1505 	free_extent_map(em);
1506 	return ret;
1507 }
1508 
1509 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1510 				  struct btrfs_path *path,
1511 				  struct btrfs_key *key)
1512 {
1513 	struct btrfs_root *root = fs_info->extent_root;
1514 	int ret;
1515 	struct btrfs_key found_key;
1516 	struct extent_buffer *leaf;
1517 	int slot;
1518 
1519 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1520 	if (ret < 0)
1521 		return ret;
1522 
1523 	while (1) {
1524 		slot = path->slots[0];
1525 		leaf = path->nodes[0];
1526 		if (slot >= btrfs_header_nritems(leaf)) {
1527 			ret = btrfs_next_leaf(root, path);
1528 			if (ret == 0)
1529 				continue;
1530 			if (ret < 0)
1531 				goto out;
1532 			break;
1533 		}
1534 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1535 
1536 		if (found_key.objectid >= key->objectid &&
1537 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1538 			ret = read_bg_from_eb(fs_info, &found_key, path);
1539 			break;
1540 		}
1541 
1542 		path->slots[0]++;
1543 	}
1544 out:
1545 	return ret;
1546 }
1547 
1548 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1549 {
1550 	u64 extra_flags = chunk_to_extended(flags) &
1551 				BTRFS_EXTENDED_PROFILE_MASK;
1552 
1553 	write_seqlock(&fs_info->profiles_lock);
1554 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1555 		fs_info->avail_data_alloc_bits |= extra_flags;
1556 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1557 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1558 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1559 		fs_info->avail_system_alloc_bits |= extra_flags;
1560 	write_sequnlock(&fs_info->profiles_lock);
1561 }
1562 
1563 /**
1564  * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1565  * @chunk_start:   logical address of block group
1566  * @physical:	   physical address to map to logical addresses
1567  * @logical:	   return array of logical addresses which map to @physical
1568  * @naddrs:	   length of @logical
1569  * @stripe_len:    size of IO stripe for the given block group
1570  *
1571  * Maps a particular @physical disk address to a list of @logical addresses.
1572  * Used primarily to exclude those portions of a block group that contain super
1573  * block copies.
1574  */
1575 EXPORT_FOR_TESTS
1576 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1577 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1578 {
1579 	struct extent_map *em;
1580 	struct map_lookup *map;
1581 	u64 *buf;
1582 	u64 bytenr;
1583 	u64 data_stripe_length;
1584 	u64 io_stripe_size;
1585 	int i, nr = 0;
1586 	int ret = 0;
1587 
1588 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1589 	if (IS_ERR(em))
1590 		return -EIO;
1591 
1592 	map = em->map_lookup;
1593 	data_stripe_length = em->orig_block_len;
1594 	io_stripe_size = map->stripe_len;
1595 
1596 	/* For RAID5/6 adjust to a full IO stripe length */
1597 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1598 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1599 
1600 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1601 	if (!buf) {
1602 		ret = -ENOMEM;
1603 		goto out;
1604 	}
1605 
1606 	for (i = 0; i < map->num_stripes; i++) {
1607 		bool already_inserted = false;
1608 		u64 stripe_nr;
1609 		int j;
1610 
1611 		if (!in_range(physical, map->stripes[i].physical,
1612 			      data_stripe_length))
1613 			continue;
1614 
1615 		stripe_nr = physical - map->stripes[i].physical;
1616 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1617 
1618 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1619 			stripe_nr = stripe_nr * map->num_stripes + i;
1620 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1621 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1622 			stripe_nr = stripe_nr * map->num_stripes + i;
1623 		}
1624 		/*
1625 		 * The remaining case would be for RAID56, multiply by
1626 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1627 		 * instead of map->stripe_len
1628 		 */
1629 
1630 		bytenr = chunk_start + stripe_nr * io_stripe_size;
1631 
1632 		/* Ensure we don't add duplicate addresses */
1633 		for (j = 0; j < nr; j++) {
1634 			if (buf[j] == bytenr) {
1635 				already_inserted = true;
1636 				break;
1637 			}
1638 		}
1639 
1640 		if (!already_inserted)
1641 			buf[nr++] = bytenr;
1642 	}
1643 
1644 	*logical = buf;
1645 	*naddrs = nr;
1646 	*stripe_len = io_stripe_size;
1647 out:
1648 	free_extent_map(em);
1649 	return ret;
1650 }
1651 
1652 static int exclude_super_stripes(struct btrfs_block_group *cache)
1653 {
1654 	struct btrfs_fs_info *fs_info = cache->fs_info;
1655 	const bool zoned = btrfs_is_zoned(fs_info);
1656 	u64 bytenr;
1657 	u64 *logical;
1658 	int stripe_len;
1659 	int i, nr, ret;
1660 
1661 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1662 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1663 		cache->bytes_super += stripe_len;
1664 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1665 						stripe_len);
1666 		if (ret)
1667 			return ret;
1668 	}
1669 
1670 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1671 		bytenr = btrfs_sb_offset(i);
1672 		ret = btrfs_rmap_block(fs_info, cache->start,
1673 				       bytenr, &logical, &nr, &stripe_len);
1674 		if (ret)
1675 			return ret;
1676 
1677 		/* Shouldn't have super stripes in sequential zones */
1678 		if (zoned && nr) {
1679 			btrfs_err(fs_info,
1680 			"zoned: block group %llu must not contain super block",
1681 				  cache->start);
1682 			return -EUCLEAN;
1683 		}
1684 
1685 		while (nr--) {
1686 			u64 len = min_t(u64, stripe_len,
1687 				cache->start + cache->length - logical[nr]);
1688 
1689 			cache->bytes_super += len;
1690 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1691 							len);
1692 			if (ret) {
1693 				kfree(logical);
1694 				return ret;
1695 			}
1696 		}
1697 
1698 		kfree(logical);
1699 	}
1700 	return 0;
1701 }
1702 
1703 static void link_block_group(struct btrfs_block_group *cache)
1704 {
1705 	struct btrfs_space_info *space_info = cache->space_info;
1706 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1707 
1708 	down_write(&space_info->groups_sem);
1709 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1710 	up_write(&space_info->groups_sem);
1711 }
1712 
1713 static struct btrfs_block_group *btrfs_create_block_group_cache(
1714 		struct btrfs_fs_info *fs_info, u64 start)
1715 {
1716 	struct btrfs_block_group *cache;
1717 
1718 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1719 	if (!cache)
1720 		return NULL;
1721 
1722 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1723 					GFP_NOFS);
1724 	if (!cache->free_space_ctl) {
1725 		kfree(cache);
1726 		return NULL;
1727 	}
1728 
1729 	cache->start = start;
1730 
1731 	cache->fs_info = fs_info;
1732 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1733 
1734 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1735 
1736 	refcount_set(&cache->refs, 1);
1737 	spin_lock_init(&cache->lock);
1738 	init_rwsem(&cache->data_rwsem);
1739 	INIT_LIST_HEAD(&cache->list);
1740 	INIT_LIST_HEAD(&cache->cluster_list);
1741 	INIT_LIST_HEAD(&cache->bg_list);
1742 	INIT_LIST_HEAD(&cache->ro_list);
1743 	INIT_LIST_HEAD(&cache->discard_list);
1744 	INIT_LIST_HEAD(&cache->dirty_list);
1745 	INIT_LIST_HEAD(&cache->io_list);
1746 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1747 	atomic_set(&cache->frozen, 0);
1748 	mutex_init(&cache->free_space_lock);
1749 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1750 
1751 	return cache;
1752 }
1753 
1754 /*
1755  * Iterate all chunks and verify that each of them has the corresponding block
1756  * group
1757  */
1758 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1759 {
1760 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1761 	struct extent_map *em;
1762 	struct btrfs_block_group *bg;
1763 	u64 start = 0;
1764 	int ret = 0;
1765 
1766 	while (1) {
1767 		read_lock(&map_tree->lock);
1768 		/*
1769 		 * lookup_extent_mapping will return the first extent map
1770 		 * intersecting the range, so setting @len to 1 is enough to
1771 		 * get the first chunk.
1772 		 */
1773 		em = lookup_extent_mapping(map_tree, start, 1);
1774 		read_unlock(&map_tree->lock);
1775 		if (!em)
1776 			break;
1777 
1778 		bg = btrfs_lookup_block_group(fs_info, em->start);
1779 		if (!bg) {
1780 			btrfs_err(fs_info,
1781 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1782 				     em->start, em->len);
1783 			ret = -EUCLEAN;
1784 			free_extent_map(em);
1785 			break;
1786 		}
1787 		if (bg->start != em->start || bg->length != em->len ||
1788 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1789 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1790 			btrfs_err(fs_info,
1791 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1792 				em->start, em->len,
1793 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1794 				bg->start, bg->length,
1795 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1796 			ret = -EUCLEAN;
1797 			free_extent_map(em);
1798 			btrfs_put_block_group(bg);
1799 			break;
1800 		}
1801 		start = em->start + em->len;
1802 		free_extent_map(em);
1803 		btrfs_put_block_group(bg);
1804 	}
1805 	return ret;
1806 }
1807 
1808 static void read_block_group_item(struct btrfs_block_group *cache,
1809 				 struct btrfs_path *path,
1810 				 const struct btrfs_key *key)
1811 {
1812 	struct extent_buffer *leaf = path->nodes[0];
1813 	struct btrfs_block_group_item bgi;
1814 	int slot = path->slots[0];
1815 
1816 	cache->length = key->offset;
1817 
1818 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1819 			   sizeof(bgi));
1820 	cache->used = btrfs_stack_block_group_used(&bgi);
1821 	cache->flags = btrfs_stack_block_group_flags(&bgi);
1822 }
1823 
1824 static int read_one_block_group(struct btrfs_fs_info *info,
1825 				struct btrfs_path *path,
1826 				const struct btrfs_key *key,
1827 				int need_clear)
1828 {
1829 	struct btrfs_block_group *cache;
1830 	struct btrfs_space_info *space_info;
1831 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1832 	int ret;
1833 
1834 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1835 
1836 	cache = btrfs_create_block_group_cache(info, key->objectid);
1837 	if (!cache)
1838 		return -ENOMEM;
1839 
1840 	read_block_group_item(cache, path, key);
1841 
1842 	set_free_space_tree_thresholds(cache);
1843 
1844 	if (need_clear) {
1845 		/*
1846 		 * When we mount with old space cache, we need to
1847 		 * set BTRFS_DC_CLEAR and set dirty flag.
1848 		 *
1849 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1850 		 *    truncate the old free space cache inode and
1851 		 *    setup a new one.
1852 		 * b) Setting 'dirty flag' makes sure that we flush
1853 		 *    the new space cache info onto disk.
1854 		 */
1855 		if (btrfs_test_opt(info, SPACE_CACHE))
1856 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1857 	}
1858 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1859 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1860 			btrfs_err(info,
1861 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1862 				  cache->start);
1863 			ret = -EINVAL;
1864 			goto error;
1865 	}
1866 
1867 	/*
1868 	 * We need to exclude the super stripes now so that the space info has
1869 	 * super bytes accounted for, otherwise we'll think we have more space
1870 	 * than we actually do.
1871 	 */
1872 	ret = exclude_super_stripes(cache);
1873 	if (ret) {
1874 		/* We may have excluded something, so call this just in case. */
1875 		btrfs_free_excluded_extents(cache);
1876 		goto error;
1877 	}
1878 
1879 	/*
1880 	 * Check for two cases, either we are full, and therefore don't need
1881 	 * to bother with the caching work since we won't find any space, or we
1882 	 * are empty, and we can just add all the space in and be done with it.
1883 	 * This saves us _a_lot_ of time, particularly in the full case.
1884 	 */
1885 	if (cache->length == cache->used) {
1886 		cache->last_byte_to_unpin = (u64)-1;
1887 		cache->cached = BTRFS_CACHE_FINISHED;
1888 		btrfs_free_excluded_extents(cache);
1889 	} else if (cache->used == 0) {
1890 		cache->last_byte_to_unpin = (u64)-1;
1891 		cache->cached = BTRFS_CACHE_FINISHED;
1892 		add_new_free_space(cache, cache->start,
1893 				   cache->start + cache->length);
1894 		btrfs_free_excluded_extents(cache);
1895 	}
1896 
1897 	ret = btrfs_add_block_group_cache(info, cache);
1898 	if (ret) {
1899 		btrfs_remove_free_space_cache(cache);
1900 		goto error;
1901 	}
1902 	trace_btrfs_add_block_group(info, cache, 0);
1903 	btrfs_update_space_info(info, cache->flags, cache->length,
1904 				cache->used, cache->bytes_super, &space_info);
1905 
1906 	cache->space_info = space_info;
1907 
1908 	link_block_group(cache);
1909 
1910 	set_avail_alloc_bits(info, cache->flags);
1911 	if (btrfs_chunk_readonly(info, cache->start)) {
1912 		inc_block_group_ro(cache, 1);
1913 	} else if (cache->used == 0) {
1914 		ASSERT(list_empty(&cache->bg_list));
1915 		if (btrfs_test_opt(info, DISCARD_ASYNC))
1916 			btrfs_discard_queue_work(&info->discard_ctl, cache);
1917 		else
1918 			btrfs_mark_bg_unused(cache);
1919 	}
1920 	return 0;
1921 error:
1922 	btrfs_put_block_group(cache);
1923 	return ret;
1924 }
1925 
1926 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
1927 {
1928 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1929 	struct btrfs_space_info *space_info;
1930 	struct rb_node *node;
1931 	int ret = 0;
1932 
1933 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
1934 		struct extent_map *em;
1935 		struct map_lookup *map;
1936 		struct btrfs_block_group *bg;
1937 
1938 		em = rb_entry(node, struct extent_map, rb_node);
1939 		map = em->map_lookup;
1940 		bg = btrfs_create_block_group_cache(fs_info, em->start);
1941 		if (!bg) {
1942 			ret = -ENOMEM;
1943 			break;
1944 		}
1945 
1946 		/* Fill dummy cache as FULL */
1947 		bg->length = em->len;
1948 		bg->flags = map->type;
1949 		bg->last_byte_to_unpin = (u64)-1;
1950 		bg->cached = BTRFS_CACHE_FINISHED;
1951 		bg->used = em->len;
1952 		bg->flags = map->type;
1953 		ret = btrfs_add_block_group_cache(fs_info, bg);
1954 		if (ret) {
1955 			btrfs_remove_free_space_cache(bg);
1956 			btrfs_put_block_group(bg);
1957 			break;
1958 		}
1959 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
1960 					0, &space_info);
1961 		bg->space_info = space_info;
1962 		link_block_group(bg);
1963 
1964 		set_avail_alloc_bits(fs_info, bg->flags);
1965 	}
1966 	if (!ret)
1967 		btrfs_init_global_block_rsv(fs_info);
1968 	return ret;
1969 }
1970 
1971 int btrfs_read_block_groups(struct btrfs_fs_info *info)
1972 {
1973 	struct btrfs_path *path;
1974 	int ret;
1975 	struct btrfs_block_group *cache;
1976 	struct btrfs_space_info *space_info;
1977 	struct btrfs_key key;
1978 	int need_clear = 0;
1979 	u64 cache_gen;
1980 
1981 	if (!info->extent_root)
1982 		return fill_dummy_bgs(info);
1983 
1984 	key.objectid = 0;
1985 	key.offset = 0;
1986 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1987 	path = btrfs_alloc_path();
1988 	if (!path)
1989 		return -ENOMEM;
1990 
1991 	cache_gen = btrfs_super_cache_generation(info->super_copy);
1992 	if (btrfs_test_opt(info, SPACE_CACHE) &&
1993 	    btrfs_super_generation(info->super_copy) != cache_gen)
1994 		need_clear = 1;
1995 	if (btrfs_test_opt(info, CLEAR_CACHE))
1996 		need_clear = 1;
1997 
1998 	while (1) {
1999 		ret = find_first_block_group(info, path, &key);
2000 		if (ret > 0)
2001 			break;
2002 		if (ret != 0)
2003 			goto error;
2004 
2005 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2006 		ret = read_one_block_group(info, path, &key, need_clear);
2007 		if (ret < 0)
2008 			goto error;
2009 		key.objectid += key.offset;
2010 		key.offset = 0;
2011 		btrfs_release_path(path);
2012 	}
2013 	btrfs_release_path(path);
2014 
2015 	list_for_each_entry(space_info, &info->space_info, list) {
2016 		int i;
2017 
2018 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2019 			if (list_empty(&space_info->block_groups[i]))
2020 				continue;
2021 			cache = list_first_entry(&space_info->block_groups[i],
2022 						 struct btrfs_block_group,
2023 						 list);
2024 			btrfs_sysfs_add_block_group_type(cache);
2025 		}
2026 
2027 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2028 		      (BTRFS_BLOCK_GROUP_RAID10 |
2029 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2030 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2031 		       BTRFS_BLOCK_GROUP_DUP)))
2032 			continue;
2033 		/*
2034 		 * Avoid allocating from un-mirrored block group if there are
2035 		 * mirrored block groups.
2036 		 */
2037 		list_for_each_entry(cache,
2038 				&space_info->block_groups[BTRFS_RAID_RAID0],
2039 				list)
2040 			inc_block_group_ro(cache, 1);
2041 		list_for_each_entry(cache,
2042 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2043 				list)
2044 			inc_block_group_ro(cache, 1);
2045 	}
2046 
2047 	btrfs_init_global_block_rsv(info);
2048 	ret = check_chunk_block_group_mappings(info);
2049 error:
2050 	btrfs_free_path(path);
2051 	return ret;
2052 }
2053 
2054 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2055 				   struct btrfs_block_group *block_group)
2056 {
2057 	struct btrfs_fs_info *fs_info = trans->fs_info;
2058 	struct btrfs_block_group_item bgi;
2059 	struct btrfs_root *root;
2060 	struct btrfs_key key;
2061 
2062 	spin_lock(&block_group->lock);
2063 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2064 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2065 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2066 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2067 	key.objectid = block_group->start;
2068 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2069 	key.offset = block_group->length;
2070 	spin_unlock(&block_group->lock);
2071 
2072 	root = fs_info->extent_root;
2073 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2074 }
2075 
2076 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2077 {
2078 	struct btrfs_fs_info *fs_info = trans->fs_info;
2079 	struct btrfs_block_group *block_group;
2080 	int ret = 0;
2081 
2082 	if (!trans->can_flush_pending_bgs)
2083 		return;
2084 
2085 	while (!list_empty(&trans->new_bgs)) {
2086 		int index;
2087 
2088 		block_group = list_first_entry(&trans->new_bgs,
2089 					       struct btrfs_block_group,
2090 					       bg_list);
2091 		if (ret)
2092 			goto next;
2093 
2094 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2095 
2096 		ret = insert_block_group_item(trans, block_group);
2097 		if (ret)
2098 			btrfs_abort_transaction(trans, ret);
2099 		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2100 					block_group->length);
2101 		if (ret)
2102 			btrfs_abort_transaction(trans, ret);
2103 		add_block_group_free_space(trans, block_group);
2104 
2105 		/*
2106 		 * If we restriped during balance, we may have added a new raid
2107 		 * type, so now add the sysfs entries when it is safe to do so.
2108 		 * We don't have to worry about locking here as it's handled in
2109 		 * btrfs_sysfs_add_block_group_type.
2110 		 */
2111 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2112 			btrfs_sysfs_add_block_group_type(block_group);
2113 
2114 		/* Already aborted the transaction if it failed. */
2115 next:
2116 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2117 		list_del_init(&block_group->bg_list);
2118 	}
2119 	btrfs_trans_release_chunk_metadata(trans);
2120 }
2121 
2122 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2123 			   u64 type, u64 chunk_offset, u64 size)
2124 {
2125 	struct btrfs_fs_info *fs_info = trans->fs_info;
2126 	struct btrfs_block_group *cache;
2127 	int ret;
2128 
2129 	btrfs_set_log_full_commit(trans);
2130 
2131 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2132 	if (!cache)
2133 		return -ENOMEM;
2134 
2135 	cache->length = size;
2136 	set_free_space_tree_thresholds(cache);
2137 	cache->used = bytes_used;
2138 	cache->flags = type;
2139 	cache->last_byte_to_unpin = (u64)-1;
2140 	cache->cached = BTRFS_CACHE_FINISHED;
2141 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2142 		cache->needs_free_space = 1;
2143 	ret = exclude_super_stripes(cache);
2144 	if (ret) {
2145 		/* We may have excluded something, so call this just in case */
2146 		btrfs_free_excluded_extents(cache);
2147 		btrfs_put_block_group(cache);
2148 		return ret;
2149 	}
2150 
2151 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2152 
2153 	btrfs_free_excluded_extents(cache);
2154 
2155 #ifdef CONFIG_BTRFS_DEBUG
2156 	if (btrfs_should_fragment_free_space(cache)) {
2157 		u64 new_bytes_used = size - bytes_used;
2158 
2159 		bytes_used += new_bytes_used >> 1;
2160 		fragment_free_space(cache);
2161 	}
2162 #endif
2163 	/*
2164 	 * Ensure the corresponding space_info object is created and
2165 	 * assigned to our block group. We want our bg to be added to the rbtree
2166 	 * with its ->space_info set.
2167 	 */
2168 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2169 	ASSERT(cache->space_info);
2170 
2171 	ret = btrfs_add_block_group_cache(fs_info, cache);
2172 	if (ret) {
2173 		btrfs_remove_free_space_cache(cache);
2174 		btrfs_put_block_group(cache);
2175 		return ret;
2176 	}
2177 
2178 	/*
2179 	 * Now that our block group has its ->space_info set and is inserted in
2180 	 * the rbtree, update the space info's counters.
2181 	 */
2182 	trace_btrfs_add_block_group(fs_info, cache, 1);
2183 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2184 				cache->bytes_super, &cache->space_info);
2185 	btrfs_update_global_block_rsv(fs_info);
2186 
2187 	link_block_group(cache);
2188 
2189 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2190 	trans->delayed_ref_updates++;
2191 	btrfs_update_delayed_refs_rsv(trans);
2192 
2193 	set_avail_alloc_bits(fs_info, type);
2194 	return 0;
2195 }
2196 
2197 /*
2198  * Mark one block group RO, can be called several times for the same block
2199  * group.
2200  *
2201  * @cache:		the destination block group
2202  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2203  * 			ensure we still have some free space after marking this
2204  * 			block group RO.
2205  */
2206 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2207 			     bool do_chunk_alloc)
2208 {
2209 	struct btrfs_fs_info *fs_info = cache->fs_info;
2210 	struct btrfs_trans_handle *trans;
2211 	u64 alloc_flags;
2212 	int ret;
2213 
2214 again:
2215 	trans = btrfs_join_transaction(fs_info->extent_root);
2216 	if (IS_ERR(trans))
2217 		return PTR_ERR(trans);
2218 
2219 	/*
2220 	 * we're not allowed to set block groups readonly after the dirty
2221 	 * block groups cache has started writing.  If it already started,
2222 	 * back off and let this transaction commit
2223 	 */
2224 	mutex_lock(&fs_info->ro_block_group_mutex);
2225 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2226 		u64 transid = trans->transid;
2227 
2228 		mutex_unlock(&fs_info->ro_block_group_mutex);
2229 		btrfs_end_transaction(trans);
2230 
2231 		ret = btrfs_wait_for_commit(fs_info, transid);
2232 		if (ret)
2233 			return ret;
2234 		goto again;
2235 	}
2236 
2237 	if (do_chunk_alloc) {
2238 		/*
2239 		 * If we are changing raid levels, try to allocate a
2240 		 * corresponding block group with the new raid level.
2241 		 */
2242 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2243 		if (alloc_flags != cache->flags) {
2244 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2245 						CHUNK_ALLOC_FORCE);
2246 			/*
2247 			 * ENOSPC is allowed here, we may have enough space
2248 			 * already allocated at the new raid level to carry on
2249 			 */
2250 			if (ret == -ENOSPC)
2251 				ret = 0;
2252 			if (ret < 0)
2253 				goto out;
2254 		}
2255 	}
2256 
2257 	ret = inc_block_group_ro(cache, 0);
2258 	if (!do_chunk_alloc)
2259 		goto unlock_out;
2260 	if (!ret)
2261 		goto out;
2262 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2263 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2264 	if (ret < 0)
2265 		goto out;
2266 	ret = inc_block_group_ro(cache, 0);
2267 out:
2268 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2269 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2270 		mutex_lock(&fs_info->chunk_mutex);
2271 		check_system_chunk(trans, alloc_flags);
2272 		mutex_unlock(&fs_info->chunk_mutex);
2273 	}
2274 unlock_out:
2275 	mutex_unlock(&fs_info->ro_block_group_mutex);
2276 
2277 	btrfs_end_transaction(trans);
2278 	return ret;
2279 }
2280 
2281 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2282 {
2283 	struct btrfs_space_info *sinfo = cache->space_info;
2284 	u64 num_bytes;
2285 
2286 	BUG_ON(!cache->ro);
2287 
2288 	spin_lock(&sinfo->lock);
2289 	spin_lock(&cache->lock);
2290 	if (!--cache->ro) {
2291 		num_bytes = cache->length - cache->reserved -
2292 			    cache->pinned - cache->bytes_super - cache->used;
2293 		sinfo->bytes_readonly -= num_bytes;
2294 		list_del_init(&cache->ro_list);
2295 	}
2296 	spin_unlock(&cache->lock);
2297 	spin_unlock(&sinfo->lock);
2298 }
2299 
2300 static int update_block_group_item(struct btrfs_trans_handle *trans,
2301 				   struct btrfs_path *path,
2302 				   struct btrfs_block_group *cache)
2303 {
2304 	struct btrfs_fs_info *fs_info = trans->fs_info;
2305 	int ret;
2306 	struct btrfs_root *root = fs_info->extent_root;
2307 	unsigned long bi;
2308 	struct extent_buffer *leaf;
2309 	struct btrfs_block_group_item bgi;
2310 	struct btrfs_key key;
2311 
2312 	key.objectid = cache->start;
2313 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2314 	key.offset = cache->length;
2315 
2316 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2317 	if (ret) {
2318 		if (ret > 0)
2319 			ret = -ENOENT;
2320 		goto fail;
2321 	}
2322 
2323 	leaf = path->nodes[0];
2324 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2325 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2326 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2327 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2328 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2329 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2330 	btrfs_mark_buffer_dirty(leaf);
2331 fail:
2332 	btrfs_release_path(path);
2333 	return ret;
2334 
2335 }
2336 
2337 static int cache_save_setup(struct btrfs_block_group *block_group,
2338 			    struct btrfs_trans_handle *trans,
2339 			    struct btrfs_path *path)
2340 {
2341 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2342 	struct btrfs_root *root = fs_info->tree_root;
2343 	struct inode *inode = NULL;
2344 	struct extent_changeset *data_reserved = NULL;
2345 	u64 alloc_hint = 0;
2346 	int dcs = BTRFS_DC_ERROR;
2347 	u64 num_pages = 0;
2348 	int retries = 0;
2349 	int ret = 0;
2350 
2351 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2352 		return 0;
2353 
2354 	/*
2355 	 * If this block group is smaller than 100 megs don't bother caching the
2356 	 * block group.
2357 	 */
2358 	if (block_group->length < (100 * SZ_1M)) {
2359 		spin_lock(&block_group->lock);
2360 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2361 		spin_unlock(&block_group->lock);
2362 		return 0;
2363 	}
2364 
2365 	if (TRANS_ABORTED(trans))
2366 		return 0;
2367 again:
2368 	inode = lookup_free_space_inode(block_group, path);
2369 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2370 		ret = PTR_ERR(inode);
2371 		btrfs_release_path(path);
2372 		goto out;
2373 	}
2374 
2375 	if (IS_ERR(inode)) {
2376 		BUG_ON(retries);
2377 		retries++;
2378 
2379 		if (block_group->ro)
2380 			goto out_free;
2381 
2382 		ret = create_free_space_inode(trans, block_group, path);
2383 		if (ret)
2384 			goto out_free;
2385 		goto again;
2386 	}
2387 
2388 	/*
2389 	 * We want to set the generation to 0, that way if anything goes wrong
2390 	 * from here on out we know not to trust this cache when we load up next
2391 	 * time.
2392 	 */
2393 	BTRFS_I(inode)->generation = 0;
2394 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2395 	if (ret) {
2396 		/*
2397 		 * So theoretically we could recover from this, simply set the
2398 		 * super cache generation to 0 so we know to invalidate the
2399 		 * cache, but then we'd have to keep track of the block groups
2400 		 * that fail this way so we know we _have_ to reset this cache
2401 		 * before the next commit or risk reading stale cache.  So to
2402 		 * limit our exposure to horrible edge cases lets just abort the
2403 		 * transaction, this only happens in really bad situations
2404 		 * anyway.
2405 		 */
2406 		btrfs_abort_transaction(trans, ret);
2407 		goto out_put;
2408 	}
2409 	WARN_ON(ret);
2410 
2411 	/* We've already setup this transaction, go ahead and exit */
2412 	if (block_group->cache_generation == trans->transid &&
2413 	    i_size_read(inode)) {
2414 		dcs = BTRFS_DC_SETUP;
2415 		goto out_put;
2416 	}
2417 
2418 	if (i_size_read(inode) > 0) {
2419 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2420 					&fs_info->global_block_rsv);
2421 		if (ret)
2422 			goto out_put;
2423 
2424 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2425 		if (ret)
2426 			goto out_put;
2427 	}
2428 
2429 	spin_lock(&block_group->lock);
2430 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2431 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2432 		/*
2433 		 * don't bother trying to write stuff out _if_
2434 		 * a) we're not cached,
2435 		 * b) we're with nospace_cache mount option,
2436 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2437 		 */
2438 		dcs = BTRFS_DC_WRITTEN;
2439 		spin_unlock(&block_group->lock);
2440 		goto out_put;
2441 	}
2442 	spin_unlock(&block_group->lock);
2443 
2444 	/*
2445 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2446 	 * skip doing the setup, we've already cleared the cache so we're safe.
2447 	 */
2448 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2449 		ret = -ENOSPC;
2450 		goto out_put;
2451 	}
2452 
2453 	/*
2454 	 * Try to preallocate enough space based on how big the block group is.
2455 	 * Keep in mind this has to include any pinned space which could end up
2456 	 * taking up quite a bit since it's not folded into the other space
2457 	 * cache.
2458 	 */
2459 	num_pages = div_u64(block_group->length, SZ_256M);
2460 	if (!num_pages)
2461 		num_pages = 1;
2462 
2463 	num_pages *= 16;
2464 	num_pages *= PAGE_SIZE;
2465 
2466 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2467 					  num_pages);
2468 	if (ret)
2469 		goto out_put;
2470 
2471 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2472 					      num_pages, num_pages,
2473 					      &alloc_hint);
2474 	/*
2475 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2476 	 * of metadata or split extents when writing the cache out, which means
2477 	 * we can enospc if we are heavily fragmented in addition to just normal
2478 	 * out of space conditions.  So if we hit this just skip setting up any
2479 	 * other block groups for this transaction, maybe we'll unpin enough
2480 	 * space the next time around.
2481 	 */
2482 	if (!ret)
2483 		dcs = BTRFS_DC_SETUP;
2484 	else if (ret == -ENOSPC)
2485 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2486 
2487 out_put:
2488 	iput(inode);
2489 out_free:
2490 	btrfs_release_path(path);
2491 out:
2492 	spin_lock(&block_group->lock);
2493 	if (!ret && dcs == BTRFS_DC_SETUP)
2494 		block_group->cache_generation = trans->transid;
2495 	block_group->disk_cache_state = dcs;
2496 	spin_unlock(&block_group->lock);
2497 
2498 	extent_changeset_free(data_reserved);
2499 	return ret;
2500 }
2501 
2502 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2503 {
2504 	struct btrfs_fs_info *fs_info = trans->fs_info;
2505 	struct btrfs_block_group *cache, *tmp;
2506 	struct btrfs_transaction *cur_trans = trans->transaction;
2507 	struct btrfs_path *path;
2508 
2509 	if (list_empty(&cur_trans->dirty_bgs) ||
2510 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2511 		return 0;
2512 
2513 	path = btrfs_alloc_path();
2514 	if (!path)
2515 		return -ENOMEM;
2516 
2517 	/* Could add new block groups, use _safe just in case */
2518 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2519 				 dirty_list) {
2520 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2521 			cache_save_setup(cache, trans, path);
2522 	}
2523 
2524 	btrfs_free_path(path);
2525 	return 0;
2526 }
2527 
2528 /*
2529  * Transaction commit does final block group cache writeback during a critical
2530  * section where nothing is allowed to change the FS.  This is required in
2531  * order for the cache to actually match the block group, but can introduce a
2532  * lot of latency into the commit.
2533  *
2534  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2535  * There's a chance we'll have to redo some of it if the block group changes
2536  * again during the commit, but it greatly reduces the commit latency by
2537  * getting rid of the easy block groups while we're still allowing others to
2538  * join the commit.
2539  */
2540 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2541 {
2542 	struct btrfs_fs_info *fs_info = trans->fs_info;
2543 	struct btrfs_block_group *cache;
2544 	struct btrfs_transaction *cur_trans = trans->transaction;
2545 	int ret = 0;
2546 	int should_put;
2547 	struct btrfs_path *path = NULL;
2548 	LIST_HEAD(dirty);
2549 	struct list_head *io = &cur_trans->io_bgs;
2550 	int num_started = 0;
2551 	int loops = 0;
2552 
2553 	spin_lock(&cur_trans->dirty_bgs_lock);
2554 	if (list_empty(&cur_trans->dirty_bgs)) {
2555 		spin_unlock(&cur_trans->dirty_bgs_lock);
2556 		return 0;
2557 	}
2558 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2559 	spin_unlock(&cur_trans->dirty_bgs_lock);
2560 
2561 again:
2562 	/* Make sure all the block groups on our dirty list actually exist */
2563 	btrfs_create_pending_block_groups(trans);
2564 
2565 	if (!path) {
2566 		path = btrfs_alloc_path();
2567 		if (!path)
2568 			return -ENOMEM;
2569 	}
2570 
2571 	/*
2572 	 * cache_write_mutex is here only to save us from balance or automatic
2573 	 * removal of empty block groups deleting this block group while we are
2574 	 * writing out the cache
2575 	 */
2576 	mutex_lock(&trans->transaction->cache_write_mutex);
2577 	while (!list_empty(&dirty)) {
2578 		bool drop_reserve = true;
2579 
2580 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2581 					 dirty_list);
2582 		/*
2583 		 * This can happen if something re-dirties a block group that
2584 		 * is already under IO.  Just wait for it to finish and then do
2585 		 * it all again
2586 		 */
2587 		if (!list_empty(&cache->io_list)) {
2588 			list_del_init(&cache->io_list);
2589 			btrfs_wait_cache_io(trans, cache, path);
2590 			btrfs_put_block_group(cache);
2591 		}
2592 
2593 
2594 		/*
2595 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2596 		 * it should update the cache_state.  Don't delete until after
2597 		 * we wait.
2598 		 *
2599 		 * Since we're not running in the commit critical section
2600 		 * we need the dirty_bgs_lock to protect from update_block_group
2601 		 */
2602 		spin_lock(&cur_trans->dirty_bgs_lock);
2603 		list_del_init(&cache->dirty_list);
2604 		spin_unlock(&cur_trans->dirty_bgs_lock);
2605 
2606 		should_put = 1;
2607 
2608 		cache_save_setup(cache, trans, path);
2609 
2610 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2611 			cache->io_ctl.inode = NULL;
2612 			ret = btrfs_write_out_cache(trans, cache, path);
2613 			if (ret == 0 && cache->io_ctl.inode) {
2614 				num_started++;
2615 				should_put = 0;
2616 
2617 				/*
2618 				 * The cache_write_mutex is protecting the
2619 				 * io_list, also refer to the definition of
2620 				 * btrfs_transaction::io_bgs for more details
2621 				 */
2622 				list_add_tail(&cache->io_list, io);
2623 			} else {
2624 				/*
2625 				 * If we failed to write the cache, the
2626 				 * generation will be bad and life goes on
2627 				 */
2628 				ret = 0;
2629 			}
2630 		}
2631 		if (!ret) {
2632 			ret = update_block_group_item(trans, path, cache);
2633 			/*
2634 			 * Our block group might still be attached to the list
2635 			 * of new block groups in the transaction handle of some
2636 			 * other task (struct btrfs_trans_handle->new_bgs). This
2637 			 * means its block group item isn't yet in the extent
2638 			 * tree. If this happens ignore the error, as we will
2639 			 * try again later in the critical section of the
2640 			 * transaction commit.
2641 			 */
2642 			if (ret == -ENOENT) {
2643 				ret = 0;
2644 				spin_lock(&cur_trans->dirty_bgs_lock);
2645 				if (list_empty(&cache->dirty_list)) {
2646 					list_add_tail(&cache->dirty_list,
2647 						      &cur_trans->dirty_bgs);
2648 					btrfs_get_block_group(cache);
2649 					drop_reserve = false;
2650 				}
2651 				spin_unlock(&cur_trans->dirty_bgs_lock);
2652 			} else if (ret) {
2653 				btrfs_abort_transaction(trans, ret);
2654 			}
2655 		}
2656 
2657 		/* If it's not on the io list, we need to put the block group */
2658 		if (should_put)
2659 			btrfs_put_block_group(cache);
2660 		if (drop_reserve)
2661 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2662 
2663 		if (ret)
2664 			break;
2665 
2666 		/*
2667 		 * Avoid blocking other tasks for too long. It might even save
2668 		 * us from writing caches for block groups that are going to be
2669 		 * removed.
2670 		 */
2671 		mutex_unlock(&trans->transaction->cache_write_mutex);
2672 		mutex_lock(&trans->transaction->cache_write_mutex);
2673 	}
2674 	mutex_unlock(&trans->transaction->cache_write_mutex);
2675 
2676 	/*
2677 	 * Go through delayed refs for all the stuff we've just kicked off
2678 	 * and then loop back (just once)
2679 	 */
2680 	if (!ret)
2681 		ret = btrfs_run_delayed_refs(trans, 0);
2682 	if (!ret && loops == 0) {
2683 		loops++;
2684 		spin_lock(&cur_trans->dirty_bgs_lock);
2685 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2686 		/*
2687 		 * dirty_bgs_lock protects us from concurrent block group
2688 		 * deletes too (not just cache_write_mutex).
2689 		 */
2690 		if (!list_empty(&dirty)) {
2691 			spin_unlock(&cur_trans->dirty_bgs_lock);
2692 			goto again;
2693 		}
2694 		spin_unlock(&cur_trans->dirty_bgs_lock);
2695 	} else if (ret < 0) {
2696 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2697 	}
2698 
2699 	btrfs_free_path(path);
2700 	return ret;
2701 }
2702 
2703 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2704 {
2705 	struct btrfs_fs_info *fs_info = trans->fs_info;
2706 	struct btrfs_block_group *cache;
2707 	struct btrfs_transaction *cur_trans = trans->transaction;
2708 	int ret = 0;
2709 	int should_put;
2710 	struct btrfs_path *path;
2711 	struct list_head *io = &cur_trans->io_bgs;
2712 	int num_started = 0;
2713 
2714 	path = btrfs_alloc_path();
2715 	if (!path)
2716 		return -ENOMEM;
2717 
2718 	/*
2719 	 * Even though we are in the critical section of the transaction commit,
2720 	 * we can still have concurrent tasks adding elements to this
2721 	 * transaction's list of dirty block groups. These tasks correspond to
2722 	 * endio free space workers started when writeback finishes for a
2723 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2724 	 * allocate new block groups as a result of COWing nodes of the root
2725 	 * tree when updating the free space inode. The writeback for the space
2726 	 * caches is triggered by an earlier call to
2727 	 * btrfs_start_dirty_block_groups() and iterations of the following
2728 	 * loop.
2729 	 * Also we want to do the cache_save_setup first and then run the
2730 	 * delayed refs to make sure we have the best chance at doing this all
2731 	 * in one shot.
2732 	 */
2733 	spin_lock(&cur_trans->dirty_bgs_lock);
2734 	while (!list_empty(&cur_trans->dirty_bgs)) {
2735 		cache = list_first_entry(&cur_trans->dirty_bgs,
2736 					 struct btrfs_block_group,
2737 					 dirty_list);
2738 
2739 		/*
2740 		 * This can happen if cache_save_setup re-dirties a block group
2741 		 * that is already under IO.  Just wait for it to finish and
2742 		 * then do it all again
2743 		 */
2744 		if (!list_empty(&cache->io_list)) {
2745 			spin_unlock(&cur_trans->dirty_bgs_lock);
2746 			list_del_init(&cache->io_list);
2747 			btrfs_wait_cache_io(trans, cache, path);
2748 			btrfs_put_block_group(cache);
2749 			spin_lock(&cur_trans->dirty_bgs_lock);
2750 		}
2751 
2752 		/*
2753 		 * Don't remove from the dirty list until after we've waited on
2754 		 * any pending IO
2755 		 */
2756 		list_del_init(&cache->dirty_list);
2757 		spin_unlock(&cur_trans->dirty_bgs_lock);
2758 		should_put = 1;
2759 
2760 		cache_save_setup(cache, trans, path);
2761 
2762 		if (!ret)
2763 			ret = btrfs_run_delayed_refs(trans,
2764 						     (unsigned long) -1);
2765 
2766 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2767 			cache->io_ctl.inode = NULL;
2768 			ret = btrfs_write_out_cache(trans, cache, path);
2769 			if (ret == 0 && cache->io_ctl.inode) {
2770 				num_started++;
2771 				should_put = 0;
2772 				list_add_tail(&cache->io_list, io);
2773 			} else {
2774 				/*
2775 				 * If we failed to write the cache, the
2776 				 * generation will be bad and life goes on
2777 				 */
2778 				ret = 0;
2779 			}
2780 		}
2781 		if (!ret) {
2782 			ret = update_block_group_item(trans, path, cache);
2783 			/*
2784 			 * One of the free space endio workers might have
2785 			 * created a new block group while updating a free space
2786 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2787 			 * and hasn't released its transaction handle yet, in
2788 			 * which case the new block group is still attached to
2789 			 * its transaction handle and its creation has not
2790 			 * finished yet (no block group item in the extent tree
2791 			 * yet, etc). If this is the case, wait for all free
2792 			 * space endio workers to finish and retry. This is a
2793 			 * very rare case so no need for a more efficient and
2794 			 * complex approach.
2795 			 */
2796 			if (ret == -ENOENT) {
2797 				wait_event(cur_trans->writer_wait,
2798 				   atomic_read(&cur_trans->num_writers) == 1);
2799 				ret = update_block_group_item(trans, path, cache);
2800 			}
2801 			if (ret)
2802 				btrfs_abort_transaction(trans, ret);
2803 		}
2804 
2805 		/* If its not on the io list, we need to put the block group */
2806 		if (should_put)
2807 			btrfs_put_block_group(cache);
2808 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2809 		spin_lock(&cur_trans->dirty_bgs_lock);
2810 	}
2811 	spin_unlock(&cur_trans->dirty_bgs_lock);
2812 
2813 	/*
2814 	 * Refer to the definition of io_bgs member for details why it's safe
2815 	 * to use it without any locking
2816 	 */
2817 	while (!list_empty(io)) {
2818 		cache = list_first_entry(io, struct btrfs_block_group,
2819 					 io_list);
2820 		list_del_init(&cache->io_list);
2821 		btrfs_wait_cache_io(trans, cache, path);
2822 		btrfs_put_block_group(cache);
2823 	}
2824 
2825 	btrfs_free_path(path);
2826 	return ret;
2827 }
2828 
2829 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2830 			     u64 bytenr, u64 num_bytes, int alloc)
2831 {
2832 	struct btrfs_fs_info *info = trans->fs_info;
2833 	struct btrfs_block_group *cache = NULL;
2834 	u64 total = num_bytes;
2835 	u64 old_val;
2836 	u64 byte_in_group;
2837 	int factor;
2838 	int ret = 0;
2839 
2840 	/* Block accounting for super block */
2841 	spin_lock(&info->delalloc_root_lock);
2842 	old_val = btrfs_super_bytes_used(info->super_copy);
2843 	if (alloc)
2844 		old_val += num_bytes;
2845 	else
2846 		old_val -= num_bytes;
2847 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2848 	spin_unlock(&info->delalloc_root_lock);
2849 
2850 	while (total) {
2851 		cache = btrfs_lookup_block_group(info, bytenr);
2852 		if (!cache) {
2853 			ret = -ENOENT;
2854 			break;
2855 		}
2856 		factor = btrfs_bg_type_to_factor(cache->flags);
2857 
2858 		/*
2859 		 * If this block group has free space cache written out, we
2860 		 * need to make sure to load it if we are removing space.  This
2861 		 * is because we need the unpinning stage to actually add the
2862 		 * space back to the block group, otherwise we will leak space.
2863 		 */
2864 		if (!alloc && !btrfs_block_group_done(cache))
2865 			btrfs_cache_block_group(cache, 1);
2866 
2867 		byte_in_group = bytenr - cache->start;
2868 		WARN_ON(byte_in_group > cache->length);
2869 
2870 		spin_lock(&cache->space_info->lock);
2871 		spin_lock(&cache->lock);
2872 
2873 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2874 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2875 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2876 
2877 		old_val = cache->used;
2878 		num_bytes = min(total, cache->length - byte_in_group);
2879 		if (alloc) {
2880 			old_val += num_bytes;
2881 			cache->used = old_val;
2882 			cache->reserved -= num_bytes;
2883 			cache->space_info->bytes_reserved -= num_bytes;
2884 			cache->space_info->bytes_used += num_bytes;
2885 			cache->space_info->disk_used += num_bytes * factor;
2886 			spin_unlock(&cache->lock);
2887 			spin_unlock(&cache->space_info->lock);
2888 		} else {
2889 			old_val -= num_bytes;
2890 			cache->used = old_val;
2891 			cache->pinned += num_bytes;
2892 			btrfs_space_info_update_bytes_pinned(info,
2893 					cache->space_info, num_bytes);
2894 			cache->space_info->bytes_used -= num_bytes;
2895 			cache->space_info->disk_used -= num_bytes * factor;
2896 			spin_unlock(&cache->lock);
2897 			spin_unlock(&cache->space_info->lock);
2898 
2899 			percpu_counter_add_batch(
2900 					&cache->space_info->total_bytes_pinned,
2901 					num_bytes,
2902 					BTRFS_TOTAL_BYTES_PINNED_BATCH);
2903 			set_extent_dirty(&trans->transaction->pinned_extents,
2904 					 bytenr, bytenr + num_bytes - 1,
2905 					 GFP_NOFS | __GFP_NOFAIL);
2906 		}
2907 
2908 		spin_lock(&trans->transaction->dirty_bgs_lock);
2909 		if (list_empty(&cache->dirty_list)) {
2910 			list_add_tail(&cache->dirty_list,
2911 				      &trans->transaction->dirty_bgs);
2912 			trans->delayed_ref_updates++;
2913 			btrfs_get_block_group(cache);
2914 		}
2915 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2916 
2917 		/*
2918 		 * No longer have used bytes in this block group, queue it for
2919 		 * deletion. We do this after adding the block group to the
2920 		 * dirty list to avoid races between cleaner kthread and space
2921 		 * cache writeout.
2922 		 */
2923 		if (!alloc && old_val == 0) {
2924 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2925 				btrfs_mark_bg_unused(cache);
2926 		}
2927 
2928 		btrfs_put_block_group(cache);
2929 		total -= num_bytes;
2930 		bytenr += num_bytes;
2931 	}
2932 
2933 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2934 	btrfs_update_delayed_refs_rsv(trans);
2935 	return ret;
2936 }
2937 
2938 /**
2939  * btrfs_add_reserved_bytes - update the block_group and space info counters
2940  * @cache:	The cache we are manipulating
2941  * @ram_bytes:  The number of bytes of file content, and will be same to
2942  *              @num_bytes except for the compress path.
2943  * @num_bytes:	The number of bytes in question
2944  * @delalloc:   The blocks are allocated for the delalloc write
2945  *
2946  * This is called by the allocator when it reserves space. If this is a
2947  * reservation and the block group has become read only we cannot make the
2948  * reservation and return -EAGAIN, otherwise this function always succeeds.
2949  */
2950 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2951 			     u64 ram_bytes, u64 num_bytes, int delalloc)
2952 {
2953 	struct btrfs_space_info *space_info = cache->space_info;
2954 	int ret = 0;
2955 
2956 	spin_lock(&space_info->lock);
2957 	spin_lock(&cache->lock);
2958 	if (cache->ro) {
2959 		ret = -EAGAIN;
2960 	} else {
2961 		cache->reserved += num_bytes;
2962 		space_info->bytes_reserved += num_bytes;
2963 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
2964 					      space_info->flags, num_bytes, 1);
2965 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
2966 						      space_info, -ram_bytes);
2967 		if (delalloc)
2968 			cache->delalloc_bytes += num_bytes;
2969 
2970 		/*
2971 		 * Compression can use less space than we reserved, so wake
2972 		 * tickets if that happens
2973 		 */
2974 		if (num_bytes < ram_bytes)
2975 			btrfs_try_granting_tickets(cache->fs_info, space_info);
2976 	}
2977 	spin_unlock(&cache->lock);
2978 	spin_unlock(&space_info->lock);
2979 	return ret;
2980 }
2981 
2982 /**
2983  * btrfs_free_reserved_bytes - update the block_group and space info counters
2984  * @cache:      The cache we are manipulating
2985  * @num_bytes:  The number of bytes in question
2986  * @delalloc:   The blocks are allocated for the delalloc write
2987  *
2988  * This is called by somebody who is freeing space that was never actually used
2989  * on disk.  For example if you reserve some space for a new leaf in transaction
2990  * A and before transaction A commits you free that leaf, you call this with
2991  * reserve set to 0 in order to clear the reservation.
2992  */
2993 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
2994 			       u64 num_bytes, int delalloc)
2995 {
2996 	struct btrfs_space_info *space_info = cache->space_info;
2997 
2998 	spin_lock(&space_info->lock);
2999 	spin_lock(&cache->lock);
3000 	if (cache->ro)
3001 		space_info->bytes_readonly += num_bytes;
3002 	cache->reserved -= num_bytes;
3003 	space_info->bytes_reserved -= num_bytes;
3004 	space_info->max_extent_size = 0;
3005 
3006 	if (delalloc)
3007 		cache->delalloc_bytes -= num_bytes;
3008 	spin_unlock(&cache->lock);
3009 
3010 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3011 	spin_unlock(&space_info->lock);
3012 }
3013 
3014 static void force_metadata_allocation(struct btrfs_fs_info *info)
3015 {
3016 	struct list_head *head = &info->space_info;
3017 	struct btrfs_space_info *found;
3018 
3019 	list_for_each_entry(found, head, list) {
3020 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3021 			found->force_alloc = CHUNK_ALLOC_FORCE;
3022 	}
3023 }
3024 
3025 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3026 			      struct btrfs_space_info *sinfo, int force)
3027 {
3028 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3029 	u64 thresh;
3030 
3031 	if (force == CHUNK_ALLOC_FORCE)
3032 		return 1;
3033 
3034 	/*
3035 	 * in limited mode, we want to have some free space up to
3036 	 * about 1% of the FS size.
3037 	 */
3038 	if (force == CHUNK_ALLOC_LIMITED) {
3039 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3040 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3041 
3042 		if (sinfo->total_bytes - bytes_used < thresh)
3043 			return 1;
3044 	}
3045 
3046 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3047 		return 0;
3048 	return 1;
3049 }
3050 
3051 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3052 {
3053 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3054 
3055 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3056 }
3057 
3058 /*
3059  * If force is CHUNK_ALLOC_FORCE:
3060  *    - return 1 if it successfully allocates a chunk,
3061  *    - return errors including -ENOSPC otherwise.
3062  * If force is NOT CHUNK_ALLOC_FORCE:
3063  *    - return 0 if it doesn't need to allocate a new chunk,
3064  *    - return 1 if it successfully allocates a chunk,
3065  *    - return errors including -ENOSPC otherwise.
3066  */
3067 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3068 		      enum btrfs_chunk_alloc_enum force)
3069 {
3070 	struct btrfs_fs_info *fs_info = trans->fs_info;
3071 	struct btrfs_space_info *space_info;
3072 	bool wait_for_alloc = false;
3073 	bool should_alloc = false;
3074 	int ret = 0;
3075 
3076 	/* Don't re-enter if we're already allocating a chunk */
3077 	if (trans->allocating_chunk)
3078 		return -ENOSPC;
3079 
3080 	space_info = btrfs_find_space_info(fs_info, flags);
3081 	ASSERT(space_info);
3082 
3083 	do {
3084 		spin_lock(&space_info->lock);
3085 		if (force < space_info->force_alloc)
3086 			force = space_info->force_alloc;
3087 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3088 		if (space_info->full) {
3089 			/* No more free physical space */
3090 			if (should_alloc)
3091 				ret = -ENOSPC;
3092 			else
3093 				ret = 0;
3094 			spin_unlock(&space_info->lock);
3095 			return ret;
3096 		} else if (!should_alloc) {
3097 			spin_unlock(&space_info->lock);
3098 			return 0;
3099 		} else if (space_info->chunk_alloc) {
3100 			/*
3101 			 * Someone is already allocating, so we need to block
3102 			 * until this someone is finished and then loop to
3103 			 * recheck if we should continue with our allocation
3104 			 * attempt.
3105 			 */
3106 			wait_for_alloc = true;
3107 			spin_unlock(&space_info->lock);
3108 			mutex_lock(&fs_info->chunk_mutex);
3109 			mutex_unlock(&fs_info->chunk_mutex);
3110 		} else {
3111 			/* Proceed with allocation */
3112 			space_info->chunk_alloc = 1;
3113 			wait_for_alloc = false;
3114 			spin_unlock(&space_info->lock);
3115 		}
3116 
3117 		cond_resched();
3118 	} while (wait_for_alloc);
3119 
3120 	mutex_lock(&fs_info->chunk_mutex);
3121 	trans->allocating_chunk = true;
3122 
3123 	/*
3124 	 * If we have mixed data/metadata chunks we want to make sure we keep
3125 	 * allocating mixed chunks instead of individual chunks.
3126 	 */
3127 	if (btrfs_mixed_space_info(space_info))
3128 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3129 
3130 	/*
3131 	 * if we're doing a data chunk, go ahead and make sure that
3132 	 * we keep a reasonable number of metadata chunks allocated in the
3133 	 * FS as well.
3134 	 */
3135 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3136 		fs_info->data_chunk_allocations++;
3137 		if (!(fs_info->data_chunk_allocations %
3138 		      fs_info->metadata_ratio))
3139 			force_metadata_allocation(fs_info);
3140 	}
3141 
3142 	/*
3143 	 * Check if we have enough space in SYSTEM chunk because we may need
3144 	 * to update devices.
3145 	 */
3146 	check_system_chunk(trans, flags);
3147 
3148 	ret = btrfs_alloc_chunk(trans, flags);
3149 	trans->allocating_chunk = false;
3150 
3151 	spin_lock(&space_info->lock);
3152 	if (ret < 0) {
3153 		if (ret == -ENOSPC)
3154 			space_info->full = 1;
3155 		else
3156 			goto out;
3157 	} else {
3158 		ret = 1;
3159 		space_info->max_extent_size = 0;
3160 	}
3161 
3162 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3163 out:
3164 	space_info->chunk_alloc = 0;
3165 	spin_unlock(&space_info->lock);
3166 	mutex_unlock(&fs_info->chunk_mutex);
3167 	/*
3168 	 * When we allocate a new chunk we reserve space in the chunk block
3169 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3170 	 * add new nodes/leafs to it if we end up needing to do it when
3171 	 * inserting the chunk item and updating device items as part of the
3172 	 * second phase of chunk allocation, performed by
3173 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3174 	 * large number of new block groups to create in our transaction
3175 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3176 	 * in extreme cases - like having a single transaction create many new
3177 	 * block groups when starting to write out the free space caches of all
3178 	 * the block groups that were made dirty during the lifetime of the
3179 	 * transaction.
3180 	 */
3181 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3182 		btrfs_create_pending_block_groups(trans);
3183 
3184 	return ret;
3185 }
3186 
3187 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3188 {
3189 	u64 num_dev;
3190 
3191 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3192 	if (!num_dev)
3193 		num_dev = fs_info->fs_devices->rw_devices;
3194 
3195 	return num_dev;
3196 }
3197 
3198 /*
3199  * Reserve space in the system space for allocating or removing a chunk
3200  */
3201 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3202 {
3203 	struct btrfs_fs_info *fs_info = trans->fs_info;
3204 	struct btrfs_space_info *info;
3205 	u64 left;
3206 	u64 thresh;
3207 	int ret = 0;
3208 	u64 num_devs;
3209 
3210 	/*
3211 	 * Needed because we can end up allocating a system chunk and for an
3212 	 * atomic and race free space reservation in the chunk block reserve.
3213 	 */
3214 	lockdep_assert_held(&fs_info->chunk_mutex);
3215 
3216 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3217 	spin_lock(&info->lock);
3218 	left = info->total_bytes - btrfs_space_info_used(info, true);
3219 	spin_unlock(&info->lock);
3220 
3221 	num_devs = get_profile_num_devs(fs_info, type);
3222 
3223 	/* num_devs device items to update and 1 chunk item to add or remove */
3224 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3225 		btrfs_calc_insert_metadata_size(fs_info, 1);
3226 
3227 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3228 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3229 			   left, thresh, type);
3230 		btrfs_dump_space_info(fs_info, info, 0, 0);
3231 	}
3232 
3233 	if (left < thresh) {
3234 		u64 flags = btrfs_system_alloc_profile(fs_info);
3235 
3236 		/*
3237 		 * Ignore failure to create system chunk. We might end up not
3238 		 * needing it, as we might not need to COW all nodes/leafs from
3239 		 * the paths we visit in the chunk tree (they were already COWed
3240 		 * or created in the current transaction for example).
3241 		 */
3242 		ret = btrfs_alloc_chunk(trans, flags);
3243 	}
3244 
3245 	if (!ret) {
3246 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3247 					  &fs_info->chunk_block_rsv,
3248 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3249 		if (!ret)
3250 			trans->chunk_bytes_reserved += thresh;
3251 	}
3252 }
3253 
3254 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3255 {
3256 	struct btrfs_block_group *block_group;
3257 	u64 last = 0;
3258 
3259 	while (1) {
3260 		struct inode *inode;
3261 
3262 		block_group = btrfs_lookup_first_block_group(info, last);
3263 		while (block_group) {
3264 			btrfs_wait_block_group_cache_done(block_group);
3265 			spin_lock(&block_group->lock);
3266 			if (block_group->iref)
3267 				break;
3268 			spin_unlock(&block_group->lock);
3269 			block_group = btrfs_next_block_group(block_group);
3270 		}
3271 		if (!block_group) {
3272 			if (last == 0)
3273 				break;
3274 			last = 0;
3275 			continue;
3276 		}
3277 
3278 		inode = block_group->inode;
3279 		block_group->iref = 0;
3280 		block_group->inode = NULL;
3281 		spin_unlock(&block_group->lock);
3282 		ASSERT(block_group->io_ctl.inode == NULL);
3283 		iput(inode);
3284 		last = block_group->start + block_group->length;
3285 		btrfs_put_block_group(block_group);
3286 	}
3287 }
3288 
3289 /*
3290  * Must be called only after stopping all workers, since we could have block
3291  * group caching kthreads running, and therefore they could race with us if we
3292  * freed the block groups before stopping them.
3293  */
3294 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3295 {
3296 	struct btrfs_block_group *block_group;
3297 	struct btrfs_space_info *space_info;
3298 	struct btrfs_caching_control *caching_ctl;
3299 	struct rb_node *n;
3300 
3301 	spin_lock(&info->block_group_cache_lock);
3302 	while (!list_empty(&info->caching_block_groups)) {
3303 		caching_ctl = list_entry(info->caching_block_groups.next,
3304 					 struct btrfs_caching_control, list);
3305 		list_del(&caching_ctl->list);
3306 		btrfs_put_caching_control(caching_ctl);
3307 	}
3308 	spin_unlock(&info->block_group_cache_lock);
3309 
3310 	spin_lock(&info->unused_bgs_lock);
3311 	while (!list_empty(&info->unused_bgs)) {
3312 		block_group = list_first_entry(&info->unused_bgs,
3313 					       struct btrfs_block_group,
3314 					       bg_list);
3315 		list_del_init(&block_group->bg_list);
3316 		btrfs_put_block_group(block_group);
3317 	}
3318 	spin_unlock(&info->unused_bgs_lock);
3319 
3320 	spin_lock(&info->block_group_cache_lock);
3321 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3322 		block_group = rb_entry(n, struct btrfs_block_group,
3323 				       cache_node);
3324 		rb_erase(&block_group->cache_node,
3325 			 &info->block_group_cache_tree);
3326 		RB_CLEAR_NODE(&block_group->cache_node);
3327 		spin_unlock(&info->block_group_cache_lock);
3328 
3329 		down_write(&block_group->space_info->groups_sem);
3330 		list_del(&block_group->list);
3331 		up_write(&block_group->space_info->groups_sem);
3332 
3333 		/*
3334 		 * We haven't cached this block group, which means we could
3335 		 * possibly have excluded extents on this block group.
3336 		 */
3337 		if (block_group->cached == BTRFS_CACHE_NO ||
3338 		    block_group->cached == BTRFS_CACHE_ERROR)
3339 			btrfs_free_excluded_extents(block_group);
3340 
3341 		btrfs_remove_free_space_cache(block_group);
3342 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3343 		ASSERT(list_empty(&block_group->dirty_list));
3344 		ASSERT(list_empty(&block_group->io_list));
3345 		ASSERT(list_empty(&block_group->bg_list));
3346 		ASSERT(refcount_read(&block_group->refs) == 1);
3347 		btrfs_put_block_group(block_group);
3348 
3349 		spin_lock(&info->block_group_cache_lock);
3350 	}
3351 	spin_unlock(&info->block_group_cache_lock);
3352 
3353 	btrfs_release_global_block_rsv(info);
3354 
3355 	while (!list_empty(&info->space_info)) {
3356 		space_info = list_entry(info->space_info.next,
3357 					struct btrfs_space_info,
3358 					list);
3359 
3360 		/*
3361 		 * Do not hide this behind enospc_debug, this is actually
3362 		 * important and indicates a real bug if this happens.
3363 		 */
3364 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3365 			    space_info->bytes_reserved > 0 ||
3366 			    space_info->bytes_may_use > 0))
3367 			btrfs_dump_space_info(info, space_info, 0, 0);
3368 		WARN_ON(space_info->reclaim_size > 0);
3369 		list_del(&space_info->list);
3370 		btrfs_sysfs_remove_space_info(space_info);
3371 	}
3372 	return 0;
3373 }
3374 
3375 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3376 {
3377 	atomic_inc(&cache->frozen);
3378 }
3379 
3380 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3381 {
3382 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3383 	struct extent_map_tree *em_tree;
3384 	struct extent_map *em;
3385 	bool cleanup;
3386 
3387 	spin_lock(&block_group->lock);
3388 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3389 		   block_group->removed);
3390 	spin_unlock(&block_group->lock);
3391 
3392 	if (cleanup) {
3393 		em_tree = &fs_info->mapping_tree;
3394 		write_lock(&em_tree->lock);
3395 		em = lookup_extent_mapping(em_tree, block_group->start,
3396 					   1);
3397 		BUG_ON(!em); /* logic error, can't happen */
3398 		remove_extent_mapping(em_tree, em);
3399 		write_unlock(&em_tree->lock);
3400 
3401 		/* once for us and once for the tree */
3402 		free_extent_map(em);
3403 		free_extent_map(em);
3404 
3405 		/*
3406 		 * We may have left one free space entry and other possible
3407 		 * tasks trimming this block group have left 1 entry each one.
3408 		 * Free them if any.
3409 		 */
3410 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3411 	}
3412 }
3413