1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 static inline bool has_unwritten_metadata(struct btrfs_block_group *block_group) 38 { 39 /* The meta_write_pointer is available only on the zoned setup. */ 40 if (!btrfs_is_zoned(block_group->fs_info)) 41 return false; 42 43 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 44 return false; 45 46 return block_group->start + block_group->alloc_offset > 47 block_group->meta_write_pointer; 48 } 49 50 /* 51 * Return target flags in extended format or 0 if restripe for this chunk_type 52 * is not in progress 53 * 54 * Should be called with balance_lock held 55 */ 56 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags) 57 { 58 const struct btrfs_balance_control *bctl = fs_info->balance_ctl; 59 u64 target = 0; 60 61 if (!bctl) 62 return 0; 63 64 if (flags & BTRFS_BLOCK_GROUP_DATA && 65 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 66 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 67 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 68 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 69 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 70 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 71 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 72 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 73 } 74 75 return target; 76 } 77 78 /* 79 * @flags: available profiles in extended format (see ctree.h) 80 * 81 * Return reduced profile in chunk format. If profile changing is in progress 82 * (either running or paused) picks the target profile (if it's already 83 * available), otherwise falls back to plain reducing. 84 */ 85 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 86 { 87 u64 num_devices = fs_info->fs_devices->rw_devices; 88 u64 target; 89 u64 raid_type; 90 u64 allowed = 0; 91 92 /* 93 * See if restripe for this chunk_type is in progress, if so try to 94 * reduce to the target profile 95 */ 96 spin_lock(&fs_info->balance_lock); 97 target = get_restripe_target(fs_info, flags); 98 if (target) { 99 spin_unlock(&fs_info->balance_lock); 100 return extended_to_chunk(target); 101 } 102 spin_unlock(&fs_info->balance_lock); 103 104 /* First, mask out the RAID levels which aren't possible */ 105 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 106 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 107 allowed |= btrfs_raid_array[raid_type].bg_flag; 108 } 109 allowed &= flags; 110 111 /* Select the highest-redundancy RAID level. */ 112 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 113 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 114 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 115 allowed = BTRFS_BLOCK_GROUP_RAID6; 116 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 117 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 118 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 119 allowed = BTRFS_BLOCK_GROUP_RAID5; 120 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 121 allowed = BTRFS_BLOCK_GROUP_RAID10; 122 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 123 allowed = BTRFS_BLOCK_GROUP_RAID1; 124 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 125 allowed = BTRFS_BLOCK_GROUP_DUP; 126 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 127 allowed = BTRFS_BLOCK_GROUP_RAID0; 128 129 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 130 131 return extended_to_chunk(flags | allowed); 132 } 133 134 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 135 { 136 unsigned seq; 137 u64 flags; 138 139 do { 140 flags = orig_flags; 141 seq = read_seqbegin(&fs_info->profiles_lock); 142 143 if (flags & BTRFS_BLOCK_GROUP_DATA) 144 flags |= fs_info->avail_data_alloc_bits; 145 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 146 flags |= fs_info->avail_system_alloc_bits; 147 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 148 flags |= fs_info->avail_metadata_alloc_bits; 149 } while (read_seqretry(&fs_info->profiles_lock, seq)); 150 151 return btrfs_reduce_alloc_profile(fs_info, flags); 152 } 153 154 void btrfs_get_block_group(struct btrfs_block_group *cache) 155 { 156 refcount_inc(&cache->refs); 157 } 158 159 void btrfs_put_block_group(struct btrfs_block_group *cache) 160 { 161 if (refcount_dec_and_test(&cache->refs)) { 162 WARN_ON(cache->pinned > 0); 163 /* 164 * If there was a failure to cleanup a log tree, very likely due 165 * to an IO failure on a writeback attempt of one or more of its 166 * extent buffers, we could not do proper (and cheap) unaccounting 167 * of their reserved space, so don't warn on reserved > 0 in that 168 * case. 169 */ 170 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 171 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 172 WARN_ON(cache->reserved > 0); 173 174 /* 175 * A block_group shouldn't be on the discard_list anymore. 176 * Remove the block_group from the discard_list to prevent us 177 * from causing a panic due to NULL pointer dereference. 178 */ 179 if (WARN_ON(!list_empty(&cache->discard_list))) 180 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 181 cache); 182 183 kfree(cache->free_space_ctl); 184 btrfs_free_chunk_map(cache->physical_map); 185 kfree(cache); 186 } 187 } 188 189 static int btrfs_bg_start_cmp(const struct rb_node *new, 190 const struct rb_node *exist) 191 { 192 const struct btrfs_block_group *new_bg = 193 rb_entry(new, struct btrfs_block_group, cache_node); 194 const struct btrfs_block_group *exist_bg = 195 rb_entry(exist, struct btrfs_block_group, cache_node); 196 197 if (new_bg->start < exist_bg->start) 198 return -1; 199 if (new_bg->start > exist_bg->start) 200 return 1; 201 return 0; 202 } 203 204 /* 205 * This adds the block group to the fs_info rb tree for the block group cache 206 */ 207 static int btrfs_add_block_group_cache(struct btrfs_block_group *block_group) 208 { 209 struct btrfs_fs_info *fs_info = block_group->fs_info; 210 struct rb_node *exist; 211 int ret = 0; 212 213 ASSERT(block_group->length != 0); 214 215 write_lock(&fs_info->block_group_cache_lock); 216 217 exist = rb_find_add_cached(&block_group->cache_node, 218 &fs_info->block_group_cache_tree, btrfs_bg_start_cmp); 219 if (exist) 220 ret = -EEXIST; 221 write_unlock(&fs_info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 /* 227 * This will return the block group at or after bytenr if contains is 0, else 228 * it will return the block group that contains the bytenr 229 */ 230 static struct btrfs_block_group *block_group_cache_tree_search( 231 struct btrfs_fs_info *info, u64 bytenr, int contains) 232 { 233 struct btrfs_block_group *cache, *ret = NULL; 234 struct rb_node *n; 235 u64 end, start; 236 237 read_lock(&info->block_group_cache_lock); 238 n = info->block_group_cache_tree.rb_root.rb_node; 239 240 while (n) { 241 cache = rb_entry(n, struct btrfs_block_group, cache_node); 242 end = cache->start + cache->length - 1; 243 start = cache->start; 244 245 if (bytenr < start) { 246 if (!contains && (!ret || start < ret->start)) 247 ret = cache; 248 n = n->rb_left; 249 } else if (bytenr > start) { 250 if (contains && bytenr <= end) { 251 ret = cache; 252 break; 253 } 254 n = n->rb_right; 255 } else { 256 ret = cache; 257 break; 258 } 259 } 260 if (ret) 261 btrfs_get_block_group(ret); 262 read_unlock(&info->block_group_cache_lock); 263 264 return ret; 265 } 266 267 /* 268 * Return the block group that starts at or after bytenr 269 */ 270 struct btrfs_block_group *btrfs_lookup_first_block_group( 271 struct btrfs_fs_info *info, u64 bytenr) 272 { 273 return block_group_cache_tree_search(info, bytenr, 0); 274 } 275 276 /* 277 * Return the block group that contains the given bytenr 278 */ 279 struct btrfs_block_group *btrfs_lookup_block_group( 280 struct btrfs_fs_info *info, u64 bytenr) 281 { 282 return block_group_cache_tree_search(info, bytenr, 1); 283 } 284 285 struct btrfs_block_group *btrfs_next_block_group( 286 struct btrfs_block_group *cache) 287 { 288 struct btrfs_fs_info *fs_info = cache->fs_info; 289 struct rb_node *node; 290 291 read_lock(&fs_info->block_group_cache_lock); 292 293 /* If our block group was removed, we need a full search. */ 294 if (RB_EMPTY_NODE(&cache->cache_node)) { 295 const u64 next_bytenr = cache->start + cache->length; 296 297 read_unlock(&fs_info->block_group_cache_lock); 298 btrfs_put_block_group(cache); 299 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 300 } 301 node = rb_next(&cache->cache_node); 302 btrfs_put_block_group(cache); 303 if (node) { 304 cache = rb_entry(node, struct btrfs_block_group, cache_node); 305 btrfs_get_block_group(cache); 306 } else 307 cache = NULL; 308 read_unlock(&fs_info->block_group_cache_lock); 309 return cache; 310 } 311 312 /* 313 * Check if we can do a NOCOW write for a given extent. 314 * 315 * @fs_info: The filesystem information object. 316 * @bytenr: Logical start address of the extent. 317 * 318 * Check if we can do a NOCOW write for the given extent, and increments the 319 * number of NOCOW writers in the block group that contains the extent, as long 320 * as the block group exists and it's currently not in read-only mode. 321 * 322 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 323 * is responsible for calling btrfs_dec_nocow_writers() later. 324 * 325 * Or NULL if we can not do a NOCOW write 326 */ 327 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 328 u64 bytenr) 329 { 330 struct btrfs_block_group *bg; 331 bool can_nocow = true; 332 333 bg = btrfs_lookup_block_group(fs_info, bytenr); 334 if (!bg) 335 return NULL; 336 337 spin_lock(&bg->lock); 338 if (bg->ro) 339 can_nocow = false; 340 else 341 atomic_inc(&bg->nocow_writers); 342 spin_unlock(&bg->lock); 343 344 if (!can_nocow) { 345 btrfs_put_block_group(bg); 346 return NULL; 347 } 348 349 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 350 return bg; 351 } 352 353 /* 354 * Decrement the number of NOCOW writers in a block group. 355 * 356 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 357 * and on the block group returned by that call. Typically this is called after 358 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 359 * relocation. 360 * 361 * After this call, the caller should not use the block group anymore. It it wants 362 * to use it, then it should get a reference on it before calling this function. 363 */ 364 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 365 { 366 if (atomic_dec_and_test(&bg->nocow_writers)) 367 wake_up_var(&bg->nocow_writers); 368 369 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 370 btrfs_put_block_group(bg); 371 } 372 373 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 374 { 375 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 376 } 377 378 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 379 const u64 start) 380 { 381 struct btrfs_block_group *bg; 382 383 bg = btrfs_lookup_block_group(fs_info, start); 384 ASSERT(bg); 385 if (atomic_dec_and_test(&bg->reservations)) 386 wake_up_var(&bg->reservations); 387 btrfs_put_block_group(bg); 388 } 389 390 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 391 { 392 struct btrfs_space_info *space_info = bg->space_info; 393 394 ASSERT(bg->ro); 395 396 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 397 return; 398 399 /* 400 * Our block group is read only but before we set it to read only, 401 * some task might have had allocated an extent from it already, but it 402 * has not yet created a respective ordered extent (and added it to a 403 * root's list of ordered extents). 404 * Therefore wait for any task currently allocating extents, since the 405 * block group's reservations counter is incremented while a read lock 406 * on the groups' semaphore is held and decremented after releasing 407 * the read access on that semaphore and creating the ordered extent. 408 */ 409 down_write(&space_info->groups_sem); 410 up_write(&space_info->groups_sem); 411 412 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 413 } 414 415 struct btrfs_caching_control *btrfs_get_caching_control( 416 struct btrfs_block_group *cache) 417 { 418 struct btrfs_caching_control *ctl; 419 420 spin_lock(&cache->lock); 421 if (!cache->caching_ctl) { 422 spin_unlock(&cache->lock); 423 return NULL; 424 } 425 426 ctl = cache->caching_ctl; 427 refcount_inc(&ctl->count); 428 spin_unlock(&cache->lock); 429 return ctl; 430 } 431 432 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 433 { 434 if (refcount_dec_and_test(&ctl->count)) 435 kfree(ctl); 436 } 437 438 /* 439 * When we wait for progress in the block group caching, its because our 440 * allocation attempt failed at least once. So, we must sleep and let some 441 * progress happen before we try again. 442 * 443 * This function will sleep at least once waiting for new free space to show 444 * up, and then it will check the block group free space numbers for our min 445 * num_bytes. Another option is to have it go ahead and look in the rbtree for 446 * a free extent of a given size, but this is a good start. 447 * 448 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 449 * any of the information in this block group. 450 */ 451 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 452 u64 num_bytes) 453 { 454 struct btrfs_caching_control *caching_ctl; 455 int progress; 456 457 caching_ctl = btrfs_get_caching_control(cache); 458 if (!caching_ctl) 459 return; 460 461 /* 462 * We've already failed to allocate from this block group, so even if 463 * there's enough space in the block group it isn't contiguous enough to 464 * allow for an allocation, so wait for at least the next wakeup tick, 465 * or for the thing to be done. 466 */ 467 progress = atomic_read(&caching_ctl->progress); 468 469 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 470 (progress != atomic_read(&caching_ctl->progress) && 471 (cache->free_space_ctl->free_space >= num_bytes))); 472 473 btrfs_put_caching_control(caching_ctl); 474 } 475 476 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 477 struct btrfs_caching_control *caching_ctl) 478 { 479 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 480 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 481 } 482 483 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 484 { 485 struct btrfs_caching_control *caching_ctl; 486 int ret; 487 488 caching_ctl = btrfs_get_caching_control(cache); 489 if (!caching_ctl) 490 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 491 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 492 btrfs_put_caching_control(caching_ctl); 493 return ret; 494 } 495 496 #ifdef CONFIG_BTRFS_DEBUG 497 static void fragment_free_space(struct btrfs_block_group *block_group) 498 { 499 struct btrfs_fs_info *fs_info = block_group->fs_info; 500 u64 start = block_group->start; 501 u64 len = block_group->length; 502 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 503 fs_info->nodesize : fs_info->sectorsize; 504 u64 step = chunk << 1; 505 506 while (len > chunk) { 507 btrfs_remove_free_space(block_group, start, chunk); 508 start += step; 509 if (len < step) 510 len = 0; 511 else 512 len -= step; 513 } 514 } 515 #endif 516 517 /* 518 * Add a free space range to the in memory free space cache of a block group. 519 * This checks if the range contains super block locations and any such 520 * locations are not added to the free space cache. 521 * 522 * @block_group: The target block group. 523 * @start: Start offset of the range. 524 * @end: End offset of the range (exclusive). 525 * @total_added_ret: Optional pointer to return the total amount of space 526 * added to the block group's free space cache. 527 * 528 * Returns 0 on success or < 0 on error. 529 */ 530 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 531 u64 end, u64 *total_added_ret) 532 { 533 struct btrfs_fs_info *info = block_group->fs_info; 534 u64 extent_start, extent_end, size; 535 int ret; 536 537 if (total_added_ret) 538 *total_added_ret = 0; 539 540 while (start < end) { 541 if (!btrfs_find_first_extent_bit(&info->excluded_extents, start, 542 &extent_start, &extent_end, 543 EXTENT_DIRTY, NULL)) 544 break; 545 546 if (extent_start <= start) { 547 start = extent_end + 1; 548 } else if (extent_start > start && extent_start < end) { 549 size = extent_start - start; 550 ret = btrfs_add_free_space_async_trimmed(block_group, 551 start, size); 552 if (ret) 553 return ret; 554 if (total_added_ret) 555 *total_added_ret += size; 556 start = extent_end + 1; 557 } else { 558 break; 559 } 560 } 561 562 if (start < end) { 563 size = end - start; 564 ret = btrfs_add_free_space_async_trimmed(block_group, start, 565 size); 566 if (ret) 567 return ret; 568 if (total_added_ret) 569 *total_added_ret += size; 570 } 571 572 return 0; 573 } 574 575 /* 576 * Get an arbitrary extent item index / max_index through the block group 577 * 578 * @block_group the block group to sample from 579 * @index: the integral step through the block group to grab from 580 * @max_index: the granularity of the sampling 581 * @key: return value parameter for the item we find 582 * 583 * Pre-conditions on indices: 584 * 0 <= index <= max_index 585 * 0 < max_index 586 * 587 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 588 * error code on error. 589 */ 590 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 591 struct btrfs_block_group *block_group, 592 int index, int max_index, 593 struct btrfs_key *found_key) 594 { 595 struct btrfs_fs_info *fs_info = block_group->fs_info; 596 struct btrfs_root *extent_root; 597 u64 search_offset; 598 u64 search_end = block_group->start + block_group->length; 599 BTRFS_PATH_AUTO_FREE(path); 600 struct btrfs_key search_key; 601 int ret = 0; 602 603 ASSERT(index >= 0); 604 ASSERT(index <= max_index); 605 ASSERT(max_index > 0); 606 lockdep_assert_held(&caching_ctl->mutex); 607 lockdep_assert_held_read(&fs_info->commit_root_sem); 608 609 path = btrfs_alloc_path(); 610 if (!path) 611 return -ENOMEM; 612 613 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 614 BTRFS_SUPER_INFO_OFFSET)); 615 616 path->skip_locking = 1; 617 path->search_commit_root = 1; 618 path->reada = READA_FORWARD; 619 620 search_offset = index * div_u64(block_group->length, max_index); 621 search_key.objectid = block_group->start + search_offset; 622 search_key.type = BTRFS_EXTENT_ITEM_KEY; 623 search_key.offset = 0; 624 625 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 626 /* Success; sampled an extent item in the block group */ 627 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 628 found_key->objectid >= block_group->start && 629 found_key->objectid + found_key->offset <= search_end) 630 break; 631 632 /* We can't possibly find a valid extent item anymore */ 633 if (found_key->objectid >= search_end) { 634 ret = 1; 635 break; 636 } 637 } 638 639 lockdep_assert_held(&caching_ctl->mutex); 640 lockdep_assert_held_read(&fs_info->commit_root_sem); 641 return ret; 642 } 643 644 /* 645 * Best effort attempt to compute a block group's size class while caching it. 646 * 647 * @block_group: the block group we are caching 648 * 649 * We cannot infer the size class while adding free space extents, because that 650 * logic doesn't care about contiguous file extents (it doesn't differentiate 651 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 652 * file extent items. Reading all of them is quite wasteful, because usually 653 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 654 * them at even steps through the block group and pick the smallest size class 655 * we see. Since size class is best effort, and not guaranteed in general, 656 * inaccuracy is acceptable. 657 * 658 * To be more explicit about why this algorithm makes sense: 659 * 660 * If we are caching in a block group from disk, then there are three major cases 661 * to consider: 662 * 1. the block group is well behaved and all extents in it are the same size 663 * class. 664 * 2. the block group is mostly one size class with rare exceptions for last 665 * ditch allocations 666 * 3. the block group was populated before size classes and can have a totally 667 * arbitrary mix of size classes. 668 * 669 * In case 1, looking at any extent in the block group will yield the correct 670 * result. For the mixed cases, taking the minimum size class seems like a good 671 * approximation, since gaps from frees will be usable to the size class. For 672 * 2., a small handful of file extents is likely to yield the right answer. For 673 * 3, we can either read every file extent, or admit that this is best effort 674 * anyway and try to stay fast. 675 * 676 * Returns: 0 on success, negative error code on error. 677 */ 678 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 679 struct btrfs_block_group *block_group) 680 { 681 struct btrfs_fs_info *fs_info = block_group->fs_info; 682 struct btrfs_key key; 683 int i; 684 u64 min_size = block_group->length; 685 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 686 int ret; 687 688 if (!btrfs_block_group_should_use_size_class(block_group)) 689 return 0; 690 691 lockdep_assert_held(&caching_ctl->mutex); 692 lockdep_assert_held_read(&fs_info->commit_root_sem); 693 for (i = 0; i < 5; ++i) { 694 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 695 if (ret < 0) 696 goto out; 697 if (ret > 0) 698 continue; 699 min_size = min_t(u64, min_size, key.offset); 700 size_class = btrfs_calc_block_group_size_class(min_size); 701 } 702 if (size_class != BTRFS_BG_SZ_NONE) { 703 spin_lock(&block_group->lock); 704 block_group->size_class = size_class; 705 spin_unlock(&block_group->lock); 706 } 707 out: 708 return ret; 709 } 710 711 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 712 { 713 struct btrfs_block_group *block_group = caching_ctl->block_group; 714 struct btrfs_fs_info *fs_info = block_group->fs_info; 715 struct btrfs_root *extent_root; 716 BTRFS_PATH_AUTO_FREE(path); 717 struct extent_buffer *leaf; 718 struct btrfs_key key; 719 u64 total_found = 0; 720 u64 last = 0; 721 u32 nritems; 722 int ret; 723 bool wakeup = true; 724 725 path = btrfs_alloc_path(); 726 if (!path) 727 return -ENOMEM; 728 729 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 730 extent_root = btrfs_extent_root(fs_info, last); 731 732 #ifdef CONFIG_BTRFS_DEBUG 733 /* 734 * If we're fragmenting we don't want to make anybody think we can 735 * allocate from this block group until we've had a chance to fragment 736 * the free space. 737 */ 738 if (btrfs_should_fragment_free_space(block_group)) 739 wakeup = false; 740 #endif 741 /* 742 * We don't want to deadlock with somebody trying to allocate a new 743 * extent for the extent root while also trying to search the extent 744 * root to add free space. So we skip locking and search the commit 745 * root, since its read-only 746 */ 747 path->skip_locking = 1; 748 path->search_commit_root = 1; 749 path->reada = READA_FORWARD; 750 751 key.objectid = last; 752 key.type = BTRFS_EXTENT_ITEM_KEY; 753 key.offset = 0; 754 755 next: 756 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 757 if (ret < 0) 758 goto out; 759 760 leaf = path->nodes[0]; 761 nritems = btrfs_header_nritems(leaf); 762 763 while (1) { 764 if (btrfs_fs_closing(fs_info) > 1) { 765 last = (u64)-1; 766 break; 767 } 768 769 if (path->slots[0] < nritems) { 770 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 771 } else { 772 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 773 if (ret) 774 break; 775 776 if (need_resched() || 777 rwsem_is_contended(&fs_info->commit_root_sem)) { 778 btrfs_release_path(path); 779 up_read(&fs_info->commit_root_sem); 780 mutex_unlock(&caching_ctl->mutex); 781 cond_resched(); 782 mutex_lock(&caching_ctl->mutex); 783 down_read(&fs_info->commit_root_sem); 784 goto next; 785 } 786 787 ret = btrfs_next_leaf(extent_root, path); 788 if (ret < 0) 789 goto out; 790 if (ret) 791 break; 792 leaf = path->nodes[0]; 793 nritems = btrfs_header_nritems(leaf); 794 continue; 795 } 796 797 if (key.objectid < last) { 798 key.objectid = last; 799 key.type = BTRFS_EXTENT_ITEM_KEY; 800 key.offset = 0; 801 btrfs_release_path(path); 802 goto next; 803 } 804 805 if (key.objectid < block_group->start) { 806 path->slots[0]++; 807 continue; 808 } 809 810 if (key.objectid >= block_group->start + block_group->length) 811 break; 812 813 if (key.type == BTRFS_EXTENT_ITEM_KEY || 814 key.type == BTRFS_METADATA_ITEM_KEY) { 815 u64 space_added; 816 817 ret = btrfs_add_new_free_space(block_group, last, 818 key.objectid, &space_added); 819 if (ret) 820 goto out; 821 total_found += space_added; 822 if (key.type == BTRFS_METADATA_ITEM_KEY) 823 last = key.objectid + 824 fs_info->nodesize; 825 else 826 last = key.objectid + key.offset; 827 828 if (total_found > CACHING_CTL_WAKE_UP) { 829 total_found = 0; 830 if (wakeup) { 831 atomic_inc(&caching_ctl->progress); 832 wake_up(&caching_ctl->wait); 833 } 834 } 835 } 836 path->slots[0]++; 837 } 838 839 ret = btrfs_add_new_free_space(block_group, last, 840 block_group->start + block_group->length, 841 NULL); 842 out: 843 return ret; 844 } 845 846 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 847 { 848 btrfs_clear_extent_bit(&bg->fs_info->excluded_extents, bg->start, 849 bg->start + bg->length - 1, EXTENT_DIRTY, NULL); 850 } 851 852 static noinline void caching_thread(struct btrfs_work *work) 853 { 854 struct btrfs_block_group *block_group; 855 struct btrfs_fs_info *fs_info; 856 struct btrfs_caching_control *caching_ctl; 857 int ret; 858 859 caching_ctl = container_of(work, struct btrfs_caching_control, work); 860 block_group = caching_ctl->block_group; 861 fs_info = block_group->fs_info; 862 863 mutex_lock(&caching_ctl->mutex); 864 down_read(&fs_info->commit_root_sem); 865 866 load_block_group_size_class(caching_ctl, block_group); 867 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 868 ret = load_free_space_cache(block_group); 869 if (ret == 1) { 870 ret = 0; 871 goto done; 872 } 873 874 /* 875 * We failed to load the space cache, set ourselves to 876 * CACHE_STARTED and carry on. 877 */ 878 spin_lock(&block_group->lock); 879 block_group->cached = BTRFS_CACHE_STARTED; 880 spin_unlock(&block_group->lock); 881 wake_up(&caching_ctl->wait); 882 } 883 884 /* 885 * If we are in the transaction that populated the free space tree we 886 * can't actually cache from the free space tree as our commit root and 887 * real root are the same, so we could change the contents of the blocks 888 * while caching. Instead do the slow caching in this case, and after 889 * the transaction has committed we will be safe. 890 */ 891 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 892 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 893 ret = btrfs_load_free_space_tree(caching_ctl); 894 else 895 ret = load_extent_tree_free(caching_ctl); 896 done: 897 spin_lock(&block_group->lock); 898 block_group->caching_ctl = NULL; 899 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 900 spin_unlock(&block_group->lock); 901 902 #ifdef CONFIG_BTRFS_DEBUG 903 if (btrfs_should_fragment_free_space(block_group)) { 904 u64 bytes_used; 905 906 spin_lock(&block_group->space_info->lock); 907 spin_lock(&block_group->lock); 908 bytes_used = block_group->length - block_group->used; 909 block_group->space_info->bytes_used += bytes_used >> 1; 910 spin_unlock(&block_group->lock); 911 spin_unlock(&block_group->space_info->lock); 912 fragment_free_space(block_group); 913 } 914 #endif 915 916 up_read(&fs_info->commit_root_sem); 917 btrfs_free_excluded_extents(block_group); 918 mutex_unlock(&caching_ctl->mutex); 919 920 wake_up(&caching_ctl->wait); 921 922 btrfs_put_caching_control(caching_ctl); 923 btrfs_put_block_group(block_group); 924 } 925 926 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 927 { 928 struct btrfs_fs_info *fs_info = cache->fs_info; 929 struct btrfs_caching_control *caching_ctl = NULL; 930 int ret = 0; 931 932 /* Allocator for zoned filesystems does not use the cache at all */ 933 if (btrfs_is_zoned(fs_info)) 934 return 0; 935 936 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 937 if (!caching_ctl) 938 return -ENOMEM; 939 940 INIT_LIST_HEAD(&caching_ctl->list); 941 mutex_init(&caching_ctl->mutex); 942 init_waitqueue_head(&caching_ctl->wait); 943 caching_ctl->block_group = cache; 944 refcount_set(&caching_ctl->count, 2); 945 atomic_set(&caching_ctl->progress, 0); 946 btrfs_init_work(&caching_ctl->work, caching_thread, NULL); 947 948 spin_lock(&cache->lock); 949 if (cache->cached != BTRFS_CACHE_NO) { 950 kfree(caching_ctl); 951 952 caching_ctl = cache->caching_ctl; 953 if (caching_ctl) 954 refcount_inc(&caching_ctl->count); 955 spin_unlock(&cache->lock); 956 goto out; 957 } 958 WARN_ON(cache->caching_ctl); 959 cache->caching_ctl = caching_ctl; 960 cache->cached = BTRFS_CACHE_STARTED; 961 spin_unlock(&cache->lock); 962 963 write_lock(&fs_info->block_group_cache_lock); 964 refcount_inc(&caching_ctl->count); 965 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 966 write_unlock(&fs_info->block_group_cache_lock); 967 968 btrfs_get_block_group(cache); 969 970 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 971 out: 972 if (wait && caching_ctl) 973 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 974 if (caching_ctl) 975 btrfs_put_caching_control(caching_ctl); 976 977 return ret; 978 } 979 980 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 981 { 982 u64 extra_flags = chunk_to_extended(flags) & 983 BTRFS_EXTENDED_PROFILE_MASK; 984 985 write_seqlock(&fs_info->profiles_lock); 986 if (flags & BTRFS_BLOCK_GROUP_DATA) 987 fs_info->avail_data_alloc_bits &= ~extra_flags; 988 if (flags & BTRFS_BLOCK_GROUP_METADATA) 989 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 990 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 991 fs_info->avail_system_alloc_bits &= ~extra_flags; 992 write_sequnlock(&fs_info->profiles_lock); 993 } 994 995 /* 996 * Clear incompat bits for the following feature(s): 997 * 998 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 999 * in the whole filesystem 1000 * 1001 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 1002 */ 1003 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 1004 { 1005 bool found_raid56 = false; 1006 bool found_raid1c34 = false; 1007 1008 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 1009 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 1010 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1011 struct list_head *head = &fs_info->space_info; 1012 struct btrfs_space_info *sinfo; 1013 1014 list_for_each_entry_rcu(sinfo, head, list) { 1015 down_read(&sinfo->groups_sem); 1016 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1017 found_raid56 = true; 1018 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1019 found_raid56 = true; 1020 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1021 found_raid1c34 = true; 1022 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1023 found_raid1c34 = true; 1024 up_read(&sinfo->groups_sem); 1025 } 1026 if (!found_raid56) 1027 btrfs_clear_fs_incompat(fs_info, RAID56); 1028 if (!found_raid1c34) 1029 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1030 } 1031 } 1032 1033 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1034 { 1035 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1036 return fs_info->block_group_root; 1037 return btrfs_extent_root(fs_info, 0); 1038 } 1039 1040 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1041 struct btrfs_path *path, 1042 struct btrfs_block_group *block_group) 1043 { 1044 struct btrfs_fs_info *fs_info = trans->fs_info; 1045 struct btrfs_root *root; 1046 struct btrfs_key key; 1047 int ret; 1048 1049 root = btrfs_block_group_root(fs_info); 1050 key.objectid = block_group->start; 1051 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1052 key.offset = block_group->length; 1053 1054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1055 if (ret > 0) 1056 ret = -ENOENT; 1057 if (ret < 0) 1058 return ret; 1059 1060 ret = btrfs_del_item(trans, root, path); 1061 return ret; 1062 } 1063 1064 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1065 struct btrfs_chunk_map *map) 1066 { 1067 struct btrfs_fs_info *fs_info = trans->fs_info; 1068 struct btrfs_path *path; 1069 struct btrfs_block_group *block_group; 1070 struct btrfs_free_cluster *cluster; 1071 struct inode *inode; 1072 struct kobject *kobj = NULL; 1073 int ret; 1074 int index; 1075 int factor; 1076 struct btrfs_caching_control *caching_ctl = NULL; 1077 bool remove_map; 1078 bool remove_rsv = false; 1079 1080 block_group = btrfs_lookup_block_group(fs_info, map->start); 1081 if (!block_group) 1082 return -ENOENT; 1083 1084 BUG_ON(!block_group->ro); 1085 1086 trace_btrfs_remove_block_group(block_group); 1087 /* 1088 * Free the reserved super bytes from this block group before 1089 * remove it. 1090 */ 1091 btrfs_free_excluded_extents(block_group); 1092 btrfs_free_ref_tree_range(fs_info, block_group->start, 1093 block_group->length); 1094 1095 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1096 factor = btrfs_bg_type_to_factor(block_group->flags); 1097 1098 /* make sure this block group isn't part of an allocation cluster */ 1099 cluster = &fs_info->data_alloc_cluster; 1100 spin_lock(&cluster->refill_lock); 1101 btrfs_return_cluster_to_free_space(block_group, cluster); 1102 spin_unlock(&cluster->refill_lock); 1103 1104 /* 1105 * make sure this block group isn't part of a metadata 1106 * allocation cluster 1107 */ 1108 cluster = &fs_info->meta_alloc_cluster; 1109 spin_lock(&cluster->refill_lock); 1110 btrfs_return_cluster_to_free_space(block_group, cluster); 1111 spin_unlock(&cluster->refill_lock); 1112 1113 btrfs_clear_treelog_bg(block_group); 1114 btrfs_clear_data_reloc_bg(block_group); 1115 1116 path = btrfs_alloc_path(); 1117 if (!path) { 1118 ret = -ENOMEM; 1119 goto out; 1120 } 1121 1122 /* 1123 * get the inode first so any iput calls done for the io_list 1124 * aren't the final iput (no unlinks allowed now) 1125 */ 1126 inode = lookup_free_space_inode(block_group, path); 1127 1128 mutex_lock(&trans->transaction->cache_write_mutex); 1129 /* 1130 * Make sure our free space cache IO is done before removing the 1131 * free space inode 1132 */ 1133 spin_lock(&trans->transaction->dirty_bgs_lock); 1134 if (!list_empty(&block_group->io_list)) { 1135 list_del_init(&block_group->io_list); 1136 1137 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1138 1139 spin_unlock(&trans->transaction->dirty_bgs_lock); 1140 btrfs_wait_cache_io(trans, block_group, path); 1141 btrfs_put_block_group(block_group); 1142 spin_lock(&trans->transaction->dirty_bgs_lock); 1143 } 1144 1145 if (!list_empty(&block_group->dirty_list)) { 1146 list_del_init(&block_group->dirty_list); 1147 remove_rsv = true; 1148 btrfs_put_block_group(block_group); 1149 } 1150 spin_unlock(&trans->transaction->dirty_bgs_lock); 1151 mutex_unlock(&trans->transaction->cache_write_mutex); 1152 1153 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1154 if (ret) 1155 goto out; 1156 1157 write_lock(&fs_info->block_group_cache_lock); 1158 rb_erase_cached(&block_group->cache_node, 1159 &fs_info->block_group_cache_tree); 1160 RB_CLEAR_NODE(&block_group->cache_node); 1161 1162 /* Once for the block groups rbtree */ 1163 btrfs_put_block_group(block_group); 1164 1165 write_unlock(&fs_info->block_group_cache_lock); 1166 1167 down_write(&block_group->space_info->groups_sem); 1168 /* 1169 * we must use list_del_init so people can check to see if they 1170 * are still on the list after taking the semaphore 1171 */ 1172 list_del_init(&block_group->list); 1173 if (list_empty(&block_group->space_info->block_groups[index])) { 1174 kobj = block_group->space_info->block_group_kobjs[index]; 1175 block_group->space_info->block_group_kobjs[index] = NULL; 1176 clear_avail_alloc_bits(fs_info, block_group->flags); 1177 } 1178 up_write(&block_group->space_info->groups_sem); 1179 clear_incompat_bg_bits(fs_info, block_group->flags); 1180 if (kobj) { 1181 kobject_del(kobj); 1182 kobject_put(kobj); 1183 } 1184 1185 if (block_group->cached == BTRFS_CACHE_STARTED) 1186 btrfs_wait_block_group_cache_done(block_group); 1187 1188 write_lock(&fs_info->block_group_cache_lock); 1189 caching_ctl = btrfs_get_caching_control(block_group); 1190 if (!caching_ctl) { 1191 struct btrfs_caching_control *ctl; 1192 1193 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1194 if (ctl->block_group == block_group) { 1195 caching_ctl = ctl; 1196 refcount_inc(&caching_ctl->count); 1197 break; 1198 } 1199 } 1200 } 1201 if (caching_ctl) 1202 list_del_init(&caching_ctl->list); 1203 write_unlock(&fs_info->block_group_cache_lock); 1204 1205 if (caching_ctl) { 1206 /* Once for the caching bgs list and once for us. */ 1207 btrfs_put_caching_control(caching_ctl); 1208 btrfs_put_caching_control(caching_ctl); 1209 } 1210 1211 spin_lock(&trans->transaction->dirty_bgs_lock); 1212 WARN_ON(!list_empty(&block_group->dirty_list)); 1213 WARN_ON(!list_empty(&block_group->io_list)); 1214 spin_unlock(&trans->transaction->dirty_bgs_lock); 1215 1216 btrfs_remove_free_space_cache(block_group); 1217 1218 spin_lock(&block_group->space_info->lock); 1219 list_del_init(&block_group->ro_list); 1220 1221 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1222 WARN_ON(block_group->space_info->total_bytes 1223 < block_group->length); 1224 WARN_ON(block_group->space_info->bytes_readonly 1225 < block_group->length - block_group->zone_unusable); 1226 WARN_ON(block_group->space_info->bytes_zone_unusable 1227 < block_group->zone_unusable); 1228 WARN_ON(block_group->space_info->disk_total 1229 < block_group->length * factor); 1230 } 1231 block_group->space_info->total_bytes -= block_group->length; 1232 block_group->space_info->bytes_readonly -= 1233 (block_group->length - block_group->zone_unusable); 1234 btrfs_space_info_update_bytes_zone_unusable(block_group->space_info, 1235 -block_group->zone_unusable); 1236 block_group->space_info->disk_total -= block_group->length * factor; 1237 1238 spin_unlock(&block_group->space_info->lock); 1239 1240 /* 1241 * Remove the free space for the block group from the free space tree 1242 * and the block group's item from the extent tree before marking the 1243 * block group as removed. This is to prevent races with tasks that 1244 * freeze and unfreeze a block group, this task and another task 1245 * allocating a new block group - the unfreeze task ends up removing 1246 * the block group's extent map before the task calling this function 1247 * deletes the block group item from the extent tree, allowing for 1248 * another task to attempt to create another block group with the same 1249 * item key (and failing with -EEXIST and a transaction abort). 1250 */ 1251 ret = btrfs_remove_block_group_free_space(trans, block_group); 1252 if (ret) 1253 goto out; 1254 1255 ret = remove_block_group_item(trans, path, block_group); 1256 if (ret < 0) 1257 goto out; 1258 1259 spin_lock(&block_group->lock); 1260 /* 1261 * Hitting this WARN means we removed a block group with an unwritten 1262 * region. It will cause "unable to find chunk map for logical" errors. 1263 */ 1264 if (WARN_ON(has_unwritten_metadata(block_group))) 1265 btrfs_warn(fs_info, 1266 "block group %llu is removed before metadata write out", 1267 block_group->start); 1268 1269 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1270 1271 /* 1272 * At this point trimming or scrub can't start on this block group, 1273 * because we removed the block group from the rbtree 1274 * fs_info->block_group_cache_tree so no one can't find it anymore and 1275 * even if someone already got this block group before we removed it 1276 * from the rbtree, they have already incremented block_group->frozen - 1277 * if they didn't, for the trimming case they won't find any free space 1278 * entries because we already removed them all when we called 1279 * btrfs_remove_free_space_cache(). 1280 * 1281 * And we must not remove the chunk map from the fs_info->mapping_tree 1282 * to prevent the same logical address range and physical device space 1283 * ranges from being reused for a new block group. This is needed to 1284 * avoid races with trimming and scrub. 1285 * 1286 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1287 * completely transactionless, so while it is trimming a range the 1288 * currently running transaction might finish and a new one start, 1289 * allowing for new block groups to be created that can reuse the same 1290 * physical device locations unless we take this special care. 1291 * 1292 * There may also be an implicit trim operation if the file system 1293 * is mounted with -odiscard. The same protections must remain 1294 * in place until the extents have been discarded completely when 1295 * the transaction commit has completed. 1296 */ 1297 remove_map = (atomic_read(&block_group->frozen) == 0); 1298 spin_unlock(&block_group->lock); 1299 1300 if (remove_map) 1301 btrfs_remove_chunk_map(fs_info, map); 1302 1303 out: 1304 /* Once for the lookup reference */ 1305 btrfs_put_block_group(block_group); 1306 if (remove_rsv) 1307 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 1308 btrfs_free_path(path); 1309 return ret; 1310 } 1311 1312 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1313 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1314 { 1315 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1316 struct btrfs_chunk_map *map; 1317 unsigned int num_items; 1318 1319 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 1320 ASSERT(map != NULL); 1321 ASSERT(map->start == chunk_offset); 1322 1323 /* 1324 * We need to reserve 3 + N units from the metadata space info in order 1325 * to remove a block group (done at btrfs_remove_chunk() and at 1326 * btrfs_remove_block_group()), which are used for: 1327 * 1328 * 1 unit for adding the free space inode's orphan (located in the tree 1329 * of tree roots). 1330 * 1 unit for deleting the block group item (located in the extent 1331 * tree). 1332 * 1 unit for deleting the free space item (located in tree of tree 1333 * roots). 1334 * N units for deleting N device extent items corresponding to each 1335 * stripe (located in the device tree). 1336 * 1337 * In order to remove a block group we also need to reserve units in the 1338 * system space info in order to update the chunk tree (update one or 1339 * more device items and remove one chunk item), but this is done at 1340 * btrfs_remove_chunk() through a call to check_system_chunk(). 1341 */ 1342 num_items = 3 + map->num_stripes; 1343 btrfs_free_chunk_map(map); 1344 1345 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1346 } 1347 1348 /* 1349 * Mark block group @cache read-only, so later write won't happen to block 1350 * group @cache. 1351 * 1352 * If @force is not set, this function will only mark the block group readonly 1353 * if we have enough free space (1M) in other metadata/system block groups. 1354 * If @force is not set, this function will mark the block group readonly 1355 * without checking free space. 1356 * 1357 * NOTE: This function doesn't care if other block groups can contain all the 1358 * data in this block group. That check should be done by relocation routine, 1359 * not this function. 1360 */ 1361 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1362 { 1363 struct btrfs_space_info *sinfo = cache->space_info; 1364 u64 num_bytes; 1365 int ret = -ENOSPC; 1366 1367 spin_lock(&sinfo->lock); 1368 spin_lock(&cache->lock); 1369 1370 if (cache->swap_extents) { 1371 ret = -ETXTBSY; 1372 goto out; 1373 } 1374 1375 if (cache->ro) { 1376 cache->ro++; 1377 ret = 0; 1378 goto out; 1379 } 1380 1381 num_bytes = cache->length - cache->reserved - cache->pinned - 1382 cache->bytes_super - cache->zone_unusable - cache->used; 1383 1384 /* 1385 * Data never overcommits, even in mixed mode, so do just the straight 1386 * check of left over space in how much we have allocated. 1387 */ 1388 if (force) { 1389 ret = 0; 1390 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1391 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1392 1393 /* 1394 * Here we make sure if we mark this bg RO, we still have enough 1395 * free space as buffer. 1396 */ 1397 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1398 ret = 0; 1399 } else { 1400 /* 1401 * We overcommit metadata, so we need to do the 1402 * btrfs_can_overcommit check here, and we need to pass in 1403 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1404 * leeway to allow us to mark this block group as read only. 1405 */ 1406 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1407 BTRFS_RESERVE_NO_FLUSH)) 1408 ret = 0; 1409 } 1410 1411 if (!ret) { 1412 sinfo->bytes_readonly += num_bytes; 1413 if (btrfs_is_zoned(cache->fs_info)) { 1414 /* Migrate zone_unusable bytes to readonly */ 1415 sinfo->bytes_readonly += cache->zone_unusable; 1416 btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable); 1417 cache->zone_unusable = 0; 1418 } 1419 cache->ro++; 1420 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1421 } 1422 out: 1423 spin_unlock(&cache->lock); 1424 spin_unlock(&sinfo->lock); 1425 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1426 btrfs_info(cache->fs_info, 1427 "unable to make block group %llu ro", cache->start); 1428 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, false); 1429 } 1430 return ret; 1431 } 1432 1433 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1434 const struct btrfs_block_group *bg) 1435 { 1436 struct btrfs_fs_info *fs_info = trans->fs_info; 1437 struct btrfs_transaction *prev_trans = NULL; 1438 const u64 start = bg->start; 1439 const u64 end = start + bg->length - 1; 1440 int ret; 1441 1442 spin_lock(&fs_info->trans_lock); 1443 if (!list_is_first(&trans->transaction->list, &fs_info->trans_list)) { 1444 prev_trans = list_prev_entry(trans->transaction, list); 1445 refcount_inc(&prev_trans->use_count); 1446 } 1447 spin_unlock(&fs_info->trans_lock); 1448 1449 /* 1450 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1451 * btrfs_finish_extent_commit(). If we are at transaction N, another 1452 * task might be running finish_extent_commit() for the previous 1453 * transaction N - 1, and have seen a range belonging to the block 1454 * group in pinned_extents before we were able to clear the whole block 1455 * group range from pinned_extents. This means that task can lookup for 1456 * the block group after we unpinned it from pinned_extents and removed 1457 * it, leading to an error at unpin_extent_range(). 1458 */ 1459 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1460 if (prev_trans) { 1461 ret = btrfs_clear_extent_bit(&prev_trans->pinned_extents, start, end, 1462 EXTENT_DIRTY, NULL); 1463 if (ret) 1464 goto out; 1465 } 1466 1467 ret = btrfs_clear_extent_bit(&trans->transaction->pinned_extents, start, end, 1468 EXTENT_DIRTY, NULL); 1469 out: 1470 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1471 if (prev_trans) 1472 btrfs_put_transaction(prev_trans); 1473 1474 return ret == 0; 1475 } 1476 1477 /* 1478 * Link the block_group to a list via bg_list. 1479 * 1480 * @bg: The block_group to link to the list. 1481 * @list: The list to link it to. 1482 * 1483 * Use this rather than list_add_tail() directly to ensure proper respect 1484 * to locking and refcounting. 1485 * 1486 * Returns: true if the bg was linked with a refcount bump and false otherwise. 1487 */ 1488 static bool btrfs_link_bg_list(struct btrfs_block_group *bg, struct list_head *list) 1489 { 1490 struct btrfs_fs_info *fs_info = bg->fs_info; 1491 bool added = false; 1492 1493 spin_lock(&fs_info->unused_bgs_lock); 1494 if (list_empty(&bg->bg_list)) { 1495 btrfs_get_block_group(bg); 1496 list_add_tail(&bg->bg_list, list); 1497 added = true; 1498 } 1499 spin_unlock(&fs_info->unused_bgs_lock); 1500 return added; 1501 } 1502 1503 /* 1504 * Process the unused_bgs list and remove any that don't have any allocated 1505 * space inside of them. 1506 */ 1507 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1508 { 1509 LIST_HEAD(retry_list); 1510 struct btrfs_block_group *block_group; 1511 struct btrfs_space_info *space_info; 1512 struct btrfs_trans_handle *trans; 1513 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1514 int ret = 0; 1515 1516 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1517 return; 1518 1519 if (btrfs_fs_closing(fs_info)) 1520 return; 1521 1522 /* 1523 * Long running balances can keep us blocked here for eternity, so 1524 * simply skip deletion if we're unable to get the mutex. 1525 */ 1526 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1527 return; 1528 1529 spin_lock(&fs_info->unused_bgs_lock); 1530 while (!list_empty(&fs_info->unused_bgs)) { 1531 u64 used; 1532 int trimming; 1533 1534 block_group = list_first_entry(&fs_info->unused_bgs, 1535 struct btrfs_block_group, 1536 bg_list); 1537 list_del_init(&block_group->bg_list); 1538 1539 space_info = block_group->space_info; 1540 1541 if (ret || btrfs_mixed_space_info(space_info)) { 1542 btrfs_put_block_group(block_group); 1543 continue; 1544 } 1545 spin_unlock(&fs_info->unused_bgs_lock); 1546 1547 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1548 1549 /* Don't want to race with allocators so take the groups_sem */ 1550 down_write(&space_info->groups_sem); 1551 1552 /* 1553 * Async discard moves the final block group discard to be prior 1554 * to the unused_bgs code path. Therefore, if it's not fully 1555 * trimmed, punt it back to the async discard lists. 1556 */ 1557 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1558 !btrfs_is_free_space_trimmed(block_group)) { 1559 trace_btrfs_skip_unused_block_group(block_group); 1560 up_write(&space_info->groups_sem); 1561 /* Requeue if we failed because of async discard */ 1562 btrfs_discard_queue_work(&fs_info->discard_ctl, 1563 block_group); 1564 goto next; 1565 } 1566 1567 spin_lock(&space_info->lock); 1568 spin_lock(&block_group->lock); 1569 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1570 list_is_singular(&block_group->list)) { 1571 /* 1572 * We want to bail if we made new allocations or have 1573 * outstanding allocations in this block group. We do 1574 * the ro check in case balance is currently acting on 1575 * this block group. 1576 * 1577 * Also bail out if this is the only block group for its 1578 * type, because otherwise we would lose profile 1579 * information from fs_info->avail_*_alloc_bits and the 1580 * next block group of this type would be created with a 1581 * "single" profile (even if we're in a raid fs) because 1582 * fs_info->avail_*_alloc_bits would be 0. 1583 */ 1584 trace_btrfs_skip_unused_block_group(block_group); 1585 spin_unlock(&block_group->lock); 1586 spin_unlock(&space_info->lock); 1587 up_write(&space_info->groups_sem); 1588 goto next; 1589 } 1590 1591 /* 1592 * The block group may be unused but there may be space reserved 1593 * accounting with the existence of that block group, that is, 1594 * space_info->bytes_may_use was incremented by a task but no 1595 * space was yet allocated from the block group by the task. 1596 * That space may or may not be allocated, as we are generally 1597 * pessimistic about space reservation for metadata as well as 1598 * for data when using compression (as we reserve space based on 1599 * the worst case, when data can't be compressed, and before 1600 * actually attempting compression, before starting writeback). 1601 * 1602 * So check if the total space of the space_info minus the size 1603 * of this block group is less than the used space of the 1604 * space_info - if that's the case, then it means we have tasks 1605 * that might be relying on the block group in order to allocate 1606 * extents, and add back the block group to the unused list when 1607 * we finish, so that we retry later in case no tasks ended up 1608 * needing to allocate extents from the block group. 1609 */ 1610 used = btrfs_space_info_used(space_info, true); 1611 if ((space_info->total_bytes - block_group->length < used && 1612 block_group->zone_unusable < block_group->length) || 1613 has_unwritten_metadata(block_group)) { 1614 /* 1615 * Add a reference for the list, compensate for the ref 1616 * drop under the "next" label for the 1617 * fs_info->unused_bgs list. 1618 */ 1619 btrfs_link_bg_list(block_group, &retry_list); 1620 1621 trace_btrfs_skip_unused_block_group(block_group); 1622 spin_unlock(&block_group->lock); 1623 spin_unlock(&space_info->lock); 1624 up_write(&space_info->groups_sem); 1625 goto next; 1626 } 1627 1628 spin_unlock(&block_group->lock); 1629 spin_unlock(&space_info->lock); 1630 1631 /* We don't want to force the issue, only flip if it's ok. */ 1632 ret = inc_block_group_ro(block_group, 0); 1633 up_write(&space_info->groups_sem); 1634 if (ret < 0) { 1635 ret = 0; 1636 goto next; 1637 } 1638 1639 ret = btrfs_zone_finish(block_group); 1640 if (ret < 0) { 1641 btrfs_dec_block_group_ro(block_group); 1642 if (ret == -EAGAIN) { 1643 btrfs_link_bg_list(block_group, &retry_list); 1644 ret = 0; 1645 } 1646 goto next; 1647 } 1648 1649 /* 1650 * Want to do this before we do anything else so we can recover 1651 * properly if we fail to join the transaction. 1652 */ 1653 trans = btrfs_start_trans_remove_block_group(fs_info, 1654 block_group->start); 1655 if (IS_ERR(trans)) { 1656 btrfs_dec_block_group_ro(block_group); 1657 ret = PTR_ERR(trans); 1658 goto next; 1659 } 1660 1661 /* 1662 * We could have pending pinned extents for this block group, 1663 * just delete them, we don't care about them anymore. 1664 */ 1665 if (!clean_pinned_extents(trans, block_group)) { 1666 btrfs_dec_block_group_ro(block_group); 1667 goto end_trans; 1668 } 1669 1670 /* 1671 * At this point, the block_group is read only and should fail 1672 * new allocations. However, btrfs_finish_extent_commit() can 1673 * cause this block_group to be placed back on the discard 1674 * lists because now the block_group isn't fully discarded. 1675 * Bail here and try again later after discarding everything. 1676 */ 1677 spin_lock(&fs_info->discard_ctl.lock); 1678 if (!list_empty(&block_group->discard_list)) { 1679 spin_unlock(&fs_info->discard_ctl.lock); 1680 btrfs_dec_block_group_ro(block_group); 1681 btrfs_discard_queue_work(&fs_info->discard_ctl, 1682 block_group); 1683 goto end_trans; 1684 } 1685 spin_unlock(&fs_info->discard_ctl.lock); 1686 1687 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1688 spin_lock(&space_info->lock); 1689 spin_lock(&block_group->lock); 1690 1691 btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned); 1692 space_info->bytes_readonly += block_group->pinned; 1693 block_group->pinned = 0; 1694 1695 spin_unlock(&block_group->lock); 1696 spin_unlock(&space_info->lock); 1697 1698 /* 1699 * The normal path here is an unused block group is passed here, 1700 * then trimming is handled in the transaction commit path. 1701 * Async discard interposes before this to do the trimming 1702 * before coming down the unused block group path as trimming 1703 * will no longer be done later in the transaction commit path. 1704 */ 1705 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1706 goto flip_async; 1707 1708 /* 1709 * DISCARD can flip during remount. On zoned filesystems, we 1710 * need to reset sequential-required zones. 1711 */ 1712 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1713 btrfs_is_zoned(fs_info); 1714 1715 /* Implicit trim during transaction commit. */ 1716 if (trimming) 1717 btrfs_freeze_block_group(block_group); 1718 1719 /* 1720 * Btrfs_remove_chunk will abort the transaction if things go 1721 * horribly wrong. 1722 */ 1723 ret = btrfs_remove_chunk(trans, block_group->start); 1724 1725 if (ret) { 1726 if (trimming) 1727 btrfs_unfreeze_block_group(block_group); 1728 goto end_trans; 1729 } 1730 1731 /* 1732 * If we're not mounted with -odiscard, we can just forget 1733 * about this block group. Otherwise we'll need to wait 1734 * until transaction commit to do the actual discard. 1735 */ 1736 if (trimming) { 1737 spin_lock(&fs_info->unused_bgs_lock); 1738 /* 1739 * A concurrent scrub might have added us to the list 1740 * fs_info->unused_bgs, so use a list_move operation 1741 * to add the block group to the deleted_bgs list. 1742 */ 1743 list_move(&block_group->bg_list, 1744 &trans->transaction->deleted_bgs); 1745 spin_unlock(&fs_info->unused_bgs_lock); 1746 btrfs_get_block_group(block_group); 1747 } 1748 end_trans: 1749 btrfs_end_transaction(trans); 1750 next: 1751 btrfs_put_block_group(block_group); 1752 spin_lock(&fs_info->unused_bgs_lock); 1753 } 1754 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1755 spin_unlock(&fs_info->unused_bgs_lock); 1756 mutex_unlock(&fs_info->reclaim_bgs_lock); 1757 return; 1758 1759 flip_async: 1760 btrfs_end_transaction(trans); 1761 spin_lock(&fs_info->unused_bgs_lock); 1762 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1763 spin_unlock(&fs_info->unused_bgs_lock); 1764 mutex_unlock(&fs_info->reclaim_bgs_lock); 1765 btrfs_put_block_group(block_group); 1766 btrfs_discard_punt_unused_bgs_list(fs_info); 1767 } 1768 1769 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1770 { 1771 struct btrfs_fs_info *fs_info = bg->fs_info; 1772 1773 spin_lock(&fs_info->unused_bgs_lock); 1774 if (list_empty(&bg->bg_list)) { 1775 btrfs_get_block_group(bg); 1776 trace_btrfs_add_unused_block_group(bg); 1777 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1778 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1779 /* Pull out the block group from the reclaim_bgs list. */ 1780 trace_btrfs_add_unused_block_group(bg); 1781 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1782 } 1783 spin_unlock(&fs_info->unused_bgs_lock); 1784 } 1785 1786 /* 1787 * We want block groups with a low number of used bytes to be in the beginning 1788 * of the list, so they will get reclaimed first. 1789 */ 1790 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1791 const struct list_head *b) 1792 { 1793 const struct btrfs_block_group *bg1, *bg2; 1794 1795 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1796 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1797 1798 /* 1799 * Some other task may be updating the ->used field concurrently, but it 1800 * is not serious if we get a stale value or load/store tearing issues, 1801 * as sorting the list of block groups to reclaim is not critical and an 1802 * occasional imperfect order is ok. So silence KCSAN and avoid the 1803 * overhead of locking or any other synchronization. 1804 */ 1805 return data_race(bg1->used > bg2->used); 1806 } 1807 1808 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info) 1809 { 1810 if (btrfs_is_zoned(fs_info)) 1811 return btrfs_zoned_should_reclaim(fs_info); 1812 return true; 1813 } 1814 1815 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed) 1816 { 1817 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info); 1818 u64 thresh_bytes = mult_perc(bg->length, thresh_pct); 1819 const u64 new_val = bg->used; 1820 const u64 old_val = new_val + bytes_freed; 1821 1822 if (thresh_bytes == 0) 1823 return false; 1824 1825 /* 1826 * If we were below the threshold before don't reclaim, we are likely a 1827 * brand new block group and we don't want to relocate new block groups. 1828 */ 1829 if (old_val < thresh_bytes) 1830 return false; 1831 if (new_val >= thresh_bytes) 1832 return false; 1833 return true; 1834 } 1835 1836 void btrfs_reclaim_bgs_work(struct work_struct *work) 1837 { 1838 struct btrfs_fs_info *fs_info = 1839 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1840 struct btrfs_block_group *bg; 1841 struct btrfs_space_info *space_info; 1842 LIST_HEAD(retry_list); 1843 1844 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1845 return; 1846 1847 if (btrfs_fs_closing(fs_info)) 1848 return; 1849 1850 if (!btrfs_should_reclaim(fs_info)) 1851 return; 1852 1853 sb_start_write(fs_info->sb); 1854 1855 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1856 sb_end_write(fs_info->sb); 1857 return; 1858 } 1859 1860 /* 1861 * Long running balances can keep us blocked here for eternity, so 1862 * simply skip reclaim if we're unable to get the mutex. 1863 */ 1864 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1865 btrfs_exclop_finish(fs_info); 1866 sb_end_write(fs_info->sb); 1867 return; 1868 } 1869 1870 spin_lock(&fs_info->unused_bgs_lock); 1871 /* 1872 * Sort happens under lock because we can't simply splice it and sort. 1873 * The block groups might still be in use and reachable via bg_list, 1874 * and their presence in the reclaim_bgs list must be preserved. 1875 */ 1876 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1877 while (!list_empty(&fs_info->reclaim_bgs)) { 1878 u64 used; 1879 u64 reserved; 1880 int ret = 0; 1881 1882 bg = list_first_entry(&fs_info->reclaim_bgs, 1883 struct btrfs_block_group, 1884 bg_list); 1885 list_del_init(&bg->bg_list); 1886 1887 space_info = bg->space_info; 1888 spin_unlock(&fs_info->unused_bgs_lock); 1889 1890 /* Don't race with allocators so take the groups_sem */ 1891 down_write(&space_info->groups_sem); 1892 1893 spin_lock(&space_info->lock); 1894 spin_lock(&bg->lock); 1895 if (bg->reserved || bg->pinned || bg->ro) { 1896 /* 1897 * We want to bail if we made new allocations or have 1898 * outstanding allocations in this block group. We do 1899 * the ro check in case balance is currently acting on 1900 * this block group. 1901 */ 1902 spin_unlock(&bg->lock); 1903 spin_unlock(&space_info->lock); 1904 up_write(&space_info->groups_sem); 1905 goto next; 1906 } 1907 if (bg->used == 0) { 1908 /* 1909 * It is possible that we trigger relocation on a block 1910 * group as its extents are deleted and it first goes 1911 * below the threshold, then shortly after goes empty. 1912 * 1913 * In this case, relocating it does delete it, but has 1914 * some overhead in relocation specific metadata, looking 1915 * for the non-existent extents and running some extra 1916 * transactions, which we can avoid by using one of the 1917 * other mechanisms for dealing with empty block groups. 1918 */ 1919 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1920 btrfs_mark_bg_unused(bg); 1921 spin_unlock(&bg->lock); 1922 spin_unlock(&space_info->lock); 1923 up_write(&space_info->groups_sem); 1924 goto next; 1925 1926 } 1927 /* 1928 * The block group might no longer meet the reclaim condition by 1929 * the time we get around to reclaiming it, so to avoid 1930 * reclaiming overly full block_groups, skip reclaiming them. 1931 * 1932 * Since the decision making process also depends on the amount 1933 * being freed, pass in a fake giant value to skip that extra 1934 * check, which is more meaningful when adding to the list in 1935 * the first place. 1936 */ 1937 if (!should_reclaim_block_group(bg, bg->length)) { 1938 spin_unlock(&bg->lock); 1939 spin_unlock(&space_info->lock); 1940 up_write(&space_info->groups_sem); 1941 goto next; 1942 } 1943 1944 spin_unlock(&bg->lock); 1945 spin_unlock(&space_info->lock); 1946 1947 /* 1948 * Get out fast, in case we're read-only or unmounting the 1949 * filesystem. It is OK to drop block groups from the list even 1950 * for the read-only case. As we did sb_start_write(), 1951 * "mount -o remount,ro" won't happen and read-only filesystem 1952 * means it is forced read-only due to a fatal error. So, it 1953 * never gets back to read-write to let us reclaim again. 1954 */ 1955 if (btrfs_need_cleaner_sleep(fs_info)) { 1956 up_write(&space_info->groups_sem); 1957 goto next; 1958 } 1959 1960 ret = inc_block_group_ro(bg, 0); 1961 up_write(&space_info->groups_sem); 1962 if (ret < 0) 1963 goto next; 1964 1965 /* 1966 * The amount of bytes reclaimed corresponds to the sum of the 1967 * "used" and "reserved" counters. We have set the block group 1968 * to RO above, which prevents reservations from happening but 1969 * we may have existing reservations for which allocation has 1970 * not yet been done - btrfs_update_block_group() was not yet 1971 * called, which is where we will transfer a reserved extent's 1972 * size from the "reserved" counter to the "used" counter - this 1973 * happens when running delayed references. When we relocate the 1974 * chunk below, relocation first flushes dellaloc, waits for 1975 * ordered extent completion (which is where we create delayed 1976 * references for data extents) and commits the current 1977 * transaction (which runs delayed references), and only after 1978 * it does the actual work to move extents out of the block 1979 * group. So the reported amount of reclaimed bytes is 1980 * effectively the sum of the 'used' and 'reserved' counters. 1981 */ 1982 spin_lock(&bg->lock); 1983 used = bg->used; 1984 reserved = bg->reserved; 1985 spin_unlock(&bg->lock); 1986 1987 trace_btrfs_reclaim_block_group(bg); 1988 ret = btrfs_relocate_chunk(fs_info, bg->start, false); 1989 if (ret) { 1990 btrfs_dec_block_group_ro(bg); 1991 btrfs_err(fs_info, "error relocating chunk %llu", 1992 bg->start); 1993 used = 0; 1994 reserved = 0; 1995 spin_lock(&space_info->lock); 1996 space_info->reclaim_errors++; 1997 if (READ_ONCE(space_info->periodic_reclaim)) 1998 space_info->periodic_reclaim_ready = false; 1999 spin_unlock(&space_info->lock); 2000 } 2001 spin_lock(&space_info->lock); 2002 space_info->reclaim_count++; 2003 space_info->reclaim_bytes += used; 2004 space_info->reclaim_bytes += reserved; 2005 spin_unlock(&space_info->lock); 2006 2007 next: 2008 if (ret && !READ_ONCE(space_info->periodic_reclaim)) 2009 btrfs_link_bg_list(bg, &retry_list); 2010 btrfs_put_block_group(bg); 2011 2012 mutex_unlock(&fs_info->reclaim_bgs_lock); 2013 /* 2014 * Reclaiming all the block groups in the list can take really 2015 * long. Prioritize cleaning up unused block groups. 2016 */ 2017 btrfs_delete_unused_bgs(fs_info); 2018 /* 2019 * If we are interrupted by a balance, we can just bail out. The 2020 * cleaner thread restart again if necessary. 2021 */ 2022 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 2023 goto end; 2024 spin_lock(&fs_info->unused_bgs_lock); 2025 } 2026 spin_unlock(&fs_info->unused_bgs_lock); 2027 mutex_unlock(&fs_info->reclaim_bgs_lock); 2028 end: 2029 spin_lock(&fs_info->unused_bgs_lock); 2030 list_splice_tail(&retry_list, &fs_info->reclaim_bgs); 2031 spin_unlock(&fs_info->unused_bgs_lock); 2032 btrfs_exclop_finish(fs_info); 2033 sb_end_write(fs_info->sb); 2034 } 2035 2036 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 2037 { 2038 btrfs_reclaim_sweep(fs_info); 2039 spin_lock(&fs_info->unused_bgs_lock); 2040 if (!list_empty(&fs_info->reclaim_bgs)) 2041 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 2042 spin_unlock(&fs_info->unused_bgs_lock); 2043 } 2044 2045 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 2046 { 2047 struct btrfs_fs_info *fs_info = bg->fs_info; 2048 2049 if (btrfs_link_bg_list(bg, &fs_info->reclaim_bgs)) 2050 trace_btrfs_add_reclaim_block_group(bg); 2051 } 2052 2053 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key, 2054 const struct btrfs_path *path) 2055 { 2056 struct btrfs_chunk_map *map; 2057 struct btrfs_block_group_item bg; 2058 struct extent_buffer *leaf; 2059 int slot; 2060 u64 flags; 2061 int ret = 0; 2062 2063 slot = path->slots[0]; 2064 leaf = path->nodes[0]; 2065 2066 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset); 2067 if (!map) { 2068 btrfs_err(fs_info, 2069 "logical %llu len %llu found bg but no related chunk", 2070 key->objectid, key->offset); 2071 return -ENOENT; 2072 } 2073 2074 if (map->start != key->objectid || map->chunk_len != key->offset) { 2075 btrfs_err(fs_info, 2076 "block group %llu len %llu mismatch with chunk %llu len %llu", 2077 key->objectid, key->offset, map->start, map->chunk_len); 2078 ret = -EUCLEAN; 2079 goto out_free_map; 2080 } 2081 2082 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 2083 sizeof(bg)); 2084 flags = btrfs_stack_block_group_flags(&bg) & 2085 BTRFS_BLOCK_GROUP_TYPE_MASK; 2086 2087 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2088 btrfs_err(fs_info, 2089 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 2090 key->objectid, key->offset, flags, 2091 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type)); 2092 ret = -EUCLEAN; 2093 } 2094 2095 out_free_map: 2096 btrfs_free_chunk_map(map); 2097 return ret; 2098 } 2099 2100 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2101 struct btrfs_path *path, 2102 const struct btrfs_key *key) 2103 { 2104 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2105 int ret; 2106 struct btrfs_key found_key; 2107 2108 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2109 if (found_key.objectid >= key->objectid && 2110 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2111 return read_bg_from_eb(fs_info, &found_key, path); 2112 } 2113 } 2114 return ret; 2115 } 2116 2117 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2118 { 2119 u64 extra_flags = chunk_to_extended(flags) & 2120 BTRFS_EXTENDED_PROFILE_MASK; 2121 2122 write_seqlock(&fs_info->profiles_lock); 2123 if (flags & BTRFS_BLOCK_GROUP_DATA) 2124 fs_info->avail_data_alloc_bits |= extra_flags; 2125 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2126 fs_info->avail_metadata_alloc_bits |= extra_flags; 2127 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2128 fs_info->avail_system_alloc_bits |= extra_flags; 2129 write_sequnlock(&fs_info->profiles_lock); 2130 } 2131 2132 /* 2133 * Map a physical disk address to a list of logical addresses. 2134 * 2135 * @fs_info: the filesystem 2136 * @chunk_start: logical address of block group 2137 * @physical: physical address to map to logical addresses 2138 * @logical: return array of logical addresses which map to @physical 2139 * @naddrs: length of @logical 2140 * @stripe_len: size of IO stripe for the given block group 2141 * 2142 * Maps a particular @physical disk address to a list of @logical addresses. 2143 * Used primarily to exclude those portions of a block group that contain super 2144 * block copies. 2145 */ 2146 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2147 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2148 { 2149 struct btrfs_chunk_map *map; 2150 u64 *buf; 2151 u64 bytenr; 2152 u64 data_stripe_length; 2153 u64 io_stripe_size; 2154 int i, nr = 0; 2155 int ret = 0; 2156 2157 map = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2158 if (IS_ERR(map)) 2159 return -EIO; 2160 2161 data_stripe_length = map->stripe_size; 2162 io_stripe_size = BTRFS_STRIPE_LEN; 2163 chunk_start = map->start; 2164 2165 /* For RAID5/6 adjust to a full IO stripe length */ 2166 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2167 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2168 2169 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2170 if (!buf) { 2171 ret = -ENOMEM; 2172 goto out; 2173 } 2174 2175 for (i = 0; i < map->num_stripes; i++) { 2176 bool already_inserted = false; 2177 u32 stripe_nr; 2178 u32 offset; 2179 int j; 2180 2181 if (!in_range(physical, map->stripes[i].physical, 2182 data_stripe_length)) 2183 continue; 2184 2185 stripe_nr = (physical - map->stripes[i].physical) >> 2186 BTRFS_STRIPE_LEN_SHIFT; 2187 offset = (physical - map->stripes[i].physical) & 2188 BTRFS_STRIPE_LEN_MASK; 2189 2190 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2191 BTRFS_BLOCK_GROUP_RAID10)) 2192 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2193 map->sub_stripes); 2194 /* 2195 * The remaining case would be for RAID56, multiply by 2196 * nr_data_stripes(). Alternatively, just use rmap_len below 2197 * instead of map->stripe_len 2198 */ 2199 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2200 2201 /* Ensure we don't add duplicate addresses */ 2202 for (j = 0; j < nr; j++) { 2203 if (buf[j] == bytenr) { 2204 already_inserted = true; 2205 break; 2206 } 2207 } 2208 2209 if (!already_inserted) 2210 buf[nr++] = bytenr; 2211 } 2212 2213 *logical = buf; 2214 *naddrs = nr; 2215 *stripe_len = io_stripe_size; 2216 out: 2217 btrfs_free_chunk_map(map); 2218 return ret; 2219 } 2220 2221 static int exclude_super_stripes(struct btrfs_block_group *cache) 2222 { 2223 struct btrfs_fs_info *fs_info = cache->fs_info; 2224 const bool zoned = btrfs_is_zoned(fs_info); 2225 u64 bytenr; 2226 u64 *logical; 2227 int stripe_len; 2228 int i, nr, ret; 2229 2230 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2231 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2232 cache->bytes_super += stripe_len; 2233 ret = btrfs_set_extent_bit(&fs_info->excluded_extents, cache->start, 2234 cache->start + stripe_len - 1, 2235 EXTENT_DIRTY, NULL); 2236 if (ret) 2237 return ret; 2238 } 2239 2240 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2241 bytenr = btrfs_sb_offset(i); 2242 ret = btrfs_rmap_block(fs_info, cache->start, 2243 bytenr, &logical, &nr, &stripe_len); 2244 if (ret) 2245 return ret; 2246 2247 /* Shouldn't have super stripes in sequential zones */ 2248 if (zoned && nr) { 2249 kfree(logical); 2250 btrfs_err(fs_info, 2251 "zoned: block group %llu must not contain super block", 2252 cache->start); 2253 return -EUCLEAN; 2254 } 2255 2256 while (nr--) { 2257 u64 len = min_t(u64, stripe_len, 2258 cache->start + cache->length - logical[nr]); 2259 2260 cache->bytes_super += len; 2261 ret = btrfs_set_extent_bit(&fs_info->excluded_extents, 2262 logical[nr], logical[nr] + len - 1, 2263 EXTENT_DIRTY, NULL); 2264 if (ret) { 2265 kfree(logical); 2266 return ret; 2267 } 2268 } 2269 2270 kfree(logical); 2271 } 2272 return 0; 2273 } 2274 2275 static struct btrfs_block_group *btrfs_create_block_group_cache( 2276 struct btrfs_fs_info *fs_info, u64 start) 2277 { 2278 struct btrfs_block_group *cache; 2279 2280 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2281 if (!cache) 2282 return NULL; 2283 2284 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2285 GFP_NOFS); 2286 if (!cache->free_space_ctl) { 2287 kfree(cache); 2288 return NULL; 2289 } 2290 2291 cache->start = start; 2292 2293 cache->fs_info = fs_info; 2294 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2295 2296 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2297 2298 refcount_set(&cache->refs, 1); 2299 spin_lock_init(&cache->lock); 2300 init_rwsem(&cache->data_rwsem); 2301 INIT_LIST_HEAD(&cache->list); 2302 INIT_LIST_HEAD(&cache->cluster_list); 2303 INIT_LIST_HEAD(&cache->bg_list); 2304 INIT_LIST_HEAD(&cache->ro_list); 2305 INIT_LIST_HEAD(&cache->discard_list); 2306 INIT_LIST_HEAD(&cache->dirty_list); 2307 INIT_LIST_HEAD(&cache->io_list); 2308 INIT_LIST_HEAD(&cache->active_bg_list); 2309 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2310 atomic_set(&cache->frozen, 0); 2311 mutex_init(&cache->free_space_lock); 2312 2313 return cache; 2314 } 2315 2316 /* 2317 * Iterate all chunks and verify that each of them has the corresponding block 2318 * group 2319 */ 2320 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2321 { 2322 u64 start = 0; 2323 int ret = 0; 2324 2325 while (1) { 2326 struct btrfs_chunk_map *map; 2327 struct btrfs_block_group *bg; 2328 2329 /* 2330 * btrfs_find_chunk_map() will return the first chunk map 2331 * intersecting the range, so setting @length to 1 is enough to 2332 * get the first chunk. 2333 */ 2334 map = btrfs_find_chunk_map(fs_info, start, 1); 2335 if (!map) 2336 break; 2337 2338 bg = btrfs_lookup_block_group(fs_info, map->start); 2339 if (!bg) { 2340 btrfs_err(fs_info, 2341 "chunk start=%llu len=%llu doesn't have corresponding block group", 2342 map->start, map->chunk_len); 2343 ret = -EUCLEAN; 2344 btrfs_free_chunk_map(map); 2345 break; 2346 } 2347 if (bg->start != map->start || bg->length != map->chunk_len || 2348 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2349 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2350 btrfs_err(fs_info, 2351 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2352 map->start, map->chunk_len, 2353 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2354 bg->start, bg->length, 2355 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2356 ret = -EUCLEAN; 2357 btrfs_free_chunk_map(map); 2358 btrfs_put_block_group(bg); 2359 break; 2360 } 2361 start = map->start + map->chunk_len; 2362 btrfs_free_chunk_map(map); 2363 btrfs_put_block_group(bg); 2364 } 2365 return ret; 2366 } 2367 2368 static int read_one_block_group(struct btrfs_fs_info *info, 2369 struct btrfs_block_group_item *bgi, 2370 const struct btrfs_key *key, 2371 int need_clear) 2372 { 2373 struct btrfs_block_group *cache; 2374 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2375 int ret; 2376 2377 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2378 2379 cache = btrfs_create_block_group_cache(info, key->objectid); 2380 if (!cache) 2381 return -ENOMEM; 2382 2383 cache->length = key->offset; 2384 cache->used = btrfs_stack_block_group_used(bgi); 2385 cache->commit_used = cache->used; 2386 cache->flags = btrfs_stack_block_group_flags(bgi); 2387 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2388 cache->space_info = btrfs_find_space_info(info, cache->flags); 2389 2390 btrfs_set_free_space_tree_thresholds(cache); 2391 2392 if (need_clear) { 2393 /* 2394 * When we mount with old space cache, we need to 2395 * set BTRFS_DC_CLEAR and set dirty flag. 2396 * 2397 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2398 * truncate the old free space cache inode and 2399 * setup a new one. 2400 * b) Setting 'dirty flag' makes sure that we flush 2401 * the new space cache info onto disk. 2402 */ 2403 if (btrfs_test_opt(info, SPACE_CACHE)) 2404 cache->disk_cache_state = BTRFS_DC_CLEAR; 2405 } 2406 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2407 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2408 btrfs_err(info, 2409 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2410 cache->start); 2411 ret = -EINVAL; 2412 goto error; 2413 } 2414 2415 ret = btrfs_load_block_group_zone_info(cache, false); 2416 if (ret) { 2417 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2418 cache->start); 2419 goto error; 2420 } 2421 2422 /* 2423 * We need to exclude the super stripes now so that the space info has 2424 * super bytes accounted for, otherwise we'll think we have more space 2425 * than we actually do. 2426 */ 2427 ret = exclude_super_stripes(cache); 2428 if (ret) { 2429 /* We may have excluded something, so call this just in case. */ 2430 btrfs_free_excluded_extents(cache); 2431 goto error; 2432 } 2433 2434 /* 2435 * For zoned filesystem, space after the allocation offset is the only 2436 * free space for a block group. So, we don't need any caching work. 2437 * btrfs_calc_zone_unusable() will set the amount of free space and 2438 * zone_unusable space. 2439 * 2440 * For regular filesystem, check for two cases, either we are full, and 2441 * therefore don't need to bother with the caching work since we won't 2442 * find any space, or we are empty, and we can just add all the space 2443 * in and be done with it. This saves us _a_lot_ of time, particularly 2444 * in the full case. 2445 */ 2446 if (btrfs_is_zoned(info)) { 2447 btrfs_calc_zone_unusable(cache); 2448 /* Should not have any excluded extents. Just in case, though. */ 2449 btrfs_free_excluded_extents(cache); 2450 } else if (cache->length == cache->used) { 2451 cache->cached = BTRFS_CACHE_FINISHED; 2452 btrfs_free_excluded_extents(cache); 2453 } else if (cache->used == 0) { 2454 cache->cached = BTRFS_CACHE_FINISHED; 2455 ret = btrfs_add_new_free_space(cache, cache->start, 2456 cache->start + cache->length, NULL); 2457 btrfs_free_excluded_extents(cache); 2458 if (ret) 2459 goto error; 2460 } 2461 2462 ret = btrfs_add_block_group_cache(cache); 2463 if (ret) { 2464 btrfs_remove_free_space_cache(cache); 2465 goto error; 2466 } 2467 2468 trace_btrfs_add_block_group(info, cache, 0); 2469 btrfs_add_bg_to_space_info(info, cache); 2470 2471 set_avail_alloc_bits(info, cache->flags); 2472 if (btrfs_chunk_writeable(info, cache->start)) { 2473 if (cache->used == 0) { 2474 ASSERT(list_empty(&cache->bg_list)); 2475 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2476 btrfs_discard_queue_work(&info->discard_ctl, cache); 2477 else 2478 btrfs_mark_bg_unused(cache); 2479 } 2480 } else { 2481 inc_block_group_ro(cache, 1); 2482 } 2483 2484 return 0; 2485 error: 2486 btrfs_put_block_group(cache); 2487 return ret; 2488 } 2489 2490 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2491 { 2492 struct rb_node *node; 2493 int ret = 0; 2494 2495 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 2496 struct btrfs_chunk_map *map; 2497 struct btrfs_block_group *bg; 2498 2499 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 2500 bg = btrfs_create_block_group_cache(fs_info, map->start); 2501 if (!bg) { 2502 ret = -ENOMEM; 2503 break; 2504 } 2505 2506 /* Fill dummy cache as FULL */ 2507 bg->length = map->chunk_len; 2508 bg->flags = map->type; 2509 bg->cached = BTRFS_CACHE_FINISHED; 2510 bg->used = map->chunk_len; 2511 bg->flags = map->type; 2512 bg->space_info = btrfs_find_space_info(fs_info, bg->flags); 2513 ret = btrfs_add_block_group_cache(bg); 2514 /* 2515 * We may have some valid block group cache added already, in 2516 * that case we skip to the next one. 2517 */ 2518 if (ret == -EEXIST) { 2519 ret = 0; 2520 btrfs_put_block_group(bg); 2521 continue; 2522 } 2523 2524 if (ret) { 2525 btrfs_remove_free_space_cache(bg); 2526 btrfs_put_block_group(bg); 2527 break; 2528 } 2529 2530 btrfs_add_bg_to_space_info(fs_info, bg); 2531 2532 set_avail_alloc_bits(fs_info, bg->flags); 2533 } 2534 if (!ret) 2535 btrfs_init_global_block_rsv(fs_info); 2536 return ret; 2537 } 2538 2539 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2540 { 2541 struct btrfs_root *root = btrfs_block_group_root(info); 2542 struct btrfs_path *path; 2543 int ret; 2544 struct btrfs_block_group *cache; 2545 struct btrfs_space_info *space_info; 2546 struct btrfs_key key; 2547 int need_clear = 0; 2548 u64 cache_gen; 2549 2550 /* 2551 * Either no extent root (with ibadroots rescue option) or we have 2552 * unsupported RO options. The fs can never be mounted read-write, so no 2553 * need to waste time searching block group items. 2554 * 2555 * This also allows new extent tree related changes to be RO compat, 2556 * no need for a full incompat flag. 2557 */ 2558 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2559 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2560 return fill_dummy_bgs(info); 2561 2562 key.objectid = 0; 2563 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2564 key.offset = 0; 2565 path = btrfs_alloc_path(); 2566 if (!path) 2567 return -ENOMEM; 2568 2569 cache_gen = btrfs_super_cache_generation(info->super_copy); 2570 if (btrfs_test_opt(info, SPACE_CACHE) && 2571 btrfs_super_generation(info->super_copy) != cache_gen) 2572 need_clear = 1; 2573 if (btrfs_test_opt(info, CLEAR_CACHE)) 2574 need_clear = 1; 2575 2576 while (1) { 2577 struct btrfs_block_group_item bgi; 2578 struct extent_buffer *leaf; 2579 int slot; 2580 2581 ret = find_first_block_group(info, path, &key); 2582 if (ret > 0) 2583 break; 2584 if (ret != 0) 2585 goto error; 2586 2587 leaf = path->nodes[0]; 2588 slot = path->slots[0]; 2589 2590 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2591 sizeof(bgi)); 2592 2593 btrfs_item_key_to_cpu(leaf, &key, slot); 2594 btrfs_release_path(path); 2595 ret = read_one_block_group(info, &bgi, &key, need_clear); 2596 if (ret < 0) 2597 goto error; 2598 key.objectid += key.offset; 2599 key.offset = 0; 2600 } 2601 btrfs_release_path(path); 2602 2603 list_for_each_entry(space_info, &info->space_info, list) { 2604 int i; 2605 2606 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2607 if (list_empty(&space_info->block_groups[i])) 2608 continue; 2609 cache = list_first_entry(&space_info->block_groups[i], 2610 struct btrfs_block_group, 2611 list); 2612 btrfs_sysfs_add_block_group_type(cache); 2613 } 2614 2615 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2616 (BTRFS_BLOCK_GROUP_RAID10 | 2617 BTRFS_BLOCK_GROUP_RAID1_MASK | 2618 BTRFS_BLOCK_GROUP_RAID56_MASK | 2619 BTRFS_BLOCK_GROUP_DUP))) 2620 continue; 2621 /* 2622 * Avoid allocating from un-mirrored block group if there are 2623 * mirrored block groups. 2624 */ 2625 list_for_each_entry(cache, 2626 &space_info->block_groups[BTRFS_RAID_RAID0], 2627 list) 2628 inc_block_group_ro(cache, 1); 2629 list_for_each_entry(cache, 2630 &space_info->block_groups[BTRFS_RAID_SINGLE], 2631 list) 2632 inc_block_group_ro(cache, 1); 2633 } 2634 2635 btrfs_init_global_block_rsv(info); 2636 ret = check_chunk_block_group_mappings(info); 2637 error: 2638 btrfs_free_path(path); 2639 /* 2640 * We've hit some error while reading the extent tree, and have 2641 * rescue=ibadroots mount option. 2642 * Try to fill the tree using dummy block groups so that the user can 2643 * continue to mount and grab their data. 2644 */ 2645 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2646 ret = fill_dummy_bgs(info); 2647 return ret; 2648 } 2649 2650 /* 2651 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2652 * allocation. 2653 * 2654 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2655 * phases. 2656 */ 2657 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2658 struct btrfs_block_group *block_group) 2659 { 2660 struct btrfs_fs_info *fs_info = trans->fs_info; 2661 struct btrfs_block_group_item bgi; 2662 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2663 struct btrfs_key key; 2664 u64 old_commit_used; 2665 int ret; 2666 2667 spin_lock(&block_group->lock); 2668 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2669 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2670 block_group->global_root_id); 2671 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2672 old_commit_used = block_group->commit_used; 2673 block_group->commit_used = block_group->used; 2674 key.objectid = block_group->start; 2675 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2676 key.offset = block_group->length; 2677 spin_unlock(&block_group->lock); 2678 2679 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2680 if (ret < 0) { 2681 spin_lock(&block_group->lock); 2682 block_group->commit_used = old_commit_used; 2683 spin_unlock(&block_group->lock); 2684 } 2685 2686 return ret; 2687 } 2688 2689 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2690 const struct btrfs_device *device, u64 chunk_offset, 2691 u64 start, u64 num_bytes) 2692 { 2693 struct btrfs_fs_info *fs_info = device->fs_info; 2694 struct btrfs_root *root = fs_info->dev_root; 2695 BTRFS_PATH_AUTO_FREE(path); 2696 struct btrfs_dev_extent *extent; 2697 struct extent_buffer *leaf; 2698 struct btrfs_key key; 2699 int ret; 2700 2701 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2702 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2703 path = btrfs_alloc_path(); 2704 if (!path) 2705 return -ENOMEM; 2706 2707 key.objectid = device->devid; 2708 key.type = BTRFS_DEV_EXTENT_KEY; 2709 key.offset = start; 2710 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2711 if (ret) 2712 return ret; 2713 2714 leaf = path->nodes[0]; 2715 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2716 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2717 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2718 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2719 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2720 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2721 2722 return ret; 2723 } 2724 2725 /* 2726 * This function belongs to phase 2. 2727 * 2728 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2729 * phases. 2730 */ 2731 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2732 u64 chunk_offset, u64 chunk_size) 2733 { 2734 struct btrfs_fs_info *fs_info = trans->fs_info; 2735 struct btrfs_device *device; 2736 struct btrfs_chunk_map *map; 2737 u64 dev_offset; 2738 int i; 2739 int ret = 0; 2740 2741 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2742 if (IS_ERR(map)) 2743 return PTR_ERR(map); 2744 2745 /* 2746 * Take the device list mutex to prevent races with the final phase of 2747 * a device replace operation that replaces the device object associated 2748 * with the map's stripes, because the device object's id can change 2749 * at any time during that final phase of the device replace operation 2750 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2751 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2752 * resulting in persisting a device extent item with such ID. 2753 */ 2754 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2755 for (i = 0; i < map->num_stripes; i++) { 2756 device = map->stripes[i].dev; 2757 dev_offset = map->stripes[i].physical; 2758 2759 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2760 map->stripe_size); 2761 if (ret) 2762 break; 2763 } 2764 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2765 2766 btrfs_free_chunk_map(map); 2767 return ret; 2768 } 2769 2770 /* 2771 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2772 * chunk allocation. 2773 * 2774 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2775 * phases. 2776 */ 2777 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2778 { 2779 struct btrfs_fs_info *fs_info = trans->fs_info; 2780 struct btrfs_block_group *block_group; 2781 int ret = 0; 2782 2783 while (!list_empty(&trans->new_bgs)) { 2784 int index; 2785 2786 block_group = list_first_entry(&trans->new_bgs, 2787 struct btrfs_block_group, 2788 bg_list); 2789 if (ret) 2790 goto next; 2791 2792 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2793 2794 ret = insert_block_group_item(trans, block_group); 2795 if (ret) 2796 btrfs_abort_transaction(trans, ret); 2797 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2798 &block_group->runtime_flags)) { 2799 mutex_lock(&fs_info->chunk_mutex); 2800 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2801 mutex_unlock(&fs_info->chunk_mutex); 2802 if (ret) 2803 btrfs_abort_transaction(trans, ret); 2804 } 2805 ret = insert_dev_extents(trans, block_group->start, 2806 block_group->length); 2807 if (ret) 2808 btrfs_abort_transaction(trans, ret); 2809 btrfs_add_block_group_free_space(trans, block_group); 2810 2811 /* 2812 * If we restriped during balance, we may have added a new raid 2813 * type, so now add the sysfs entries when it is safe to do so. 2814 * We don't have to worry about locking here as it's handled in 2815 * btrfs_sysfs_add_block_group_type. 2816 */ 2817 if (block_group->space_info->block_group_kobjs[index] == NULL) 2818 btrfs_sysfs_add_block_group_type(block_group); 2819 2820 /* Already aborted the transaction if it failed. */ 2821 next: 2822 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2823 2824 spin_lock(&fs_info->unused_bgs_lock); 2825 list_del_init(&block_group->bg_list); 2826 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2827 btrfs_put_block_group(block_group); 2828 spin_unlock(&fs_info->unused_bgs_lock); 2829 2830 /* 2831 * If the block group is still unused, add it to the list of 2832 * unused block groups. The block group may have been created in 2833 * order to satisfy a space reservation, in which case the 2834 * extent allocation only happens later. But often we don't 2835 * actually need to allocate space that we previously reserved, 2836 * so the block group may become unused for a long time. For 2837 * example for metadata we generally reserve space for a worst 2838 * possible scenario, but then don't end up allocating all that 2839 * space or none at all (due to no need to COW, extent buffers 2840 * were already COWed in the current transaction and still 2841 * unwritten, tree heights lower than the maximum possible 2842 * height, etc). For data we generally reserve the axact amount 2843 * of space we are going to allocate later, the exception is 2844 * when using compression, as we must reserve space based on the 2845 * uncompressed data size, because the compression is only done 2846 * when writeback triggered and we don't know how much space we 2847 * are actually going to need, so we reserve the uncompressed 2848 * size because the data may be incompressible in the worst case. 2849 */ 2850 if (ret == 0) { 2851 bool used; 2852 2853 spin_lock(&block_group->lock); 2854 used = btrfs_is_block_group_used(block_group); 2855 spin_unlock(&block_group->lock); 2856 2857 if (!used) 2858 btrfs_mark_bg_unused(block_group); 2859 } 2860 } 2861 btrfs_trans_release_chunk_metadata(trans); 2862 } 2863 2864 /* 2865 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2866 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2867 */ 2868 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset) 2869 { 2870 u64 div = SZ_1G; 2871 u64 index; 2872 2873 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2874 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2875 2876 /* If we have a smaller fs index based on 128MiB. */ 2877 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2878 div = SZ_128M; 2879 2880 offset = div64_u64(offset, div); 2881 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2882 return index; 2883 } 2884 2885 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2886 struct btrfs_space_info *space_info, 2887 u64 type, u64 chunk_offset, u64 size) 2888 { 2889 struct btrfs_fs_info *fs_info = trans->fs_info; 2890 struct btrfs_block_group *cache; 2891 int ret; 2892 2893 btrfs_set_log_full_commit(trans); 2894 2895 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2896 if (!cache) 2897 return ERR_PTR(-ENOMEM); 2898 2899 /* 2900 * Mark it as new before adding it to the rbtree of block groups or any 2901 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2902 * before the new flag is set. 2903 */ 2904 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2905 2906 cache->length = size; 2907 btrfs_set_free_space_tree_thresholds(cache); 2908 cache->flags = type; 2909 cache->cached = BTRFS_CACHE_FINISHED; 2910 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2911 2912 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2913 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2914 2915 ret = btrfs_load_block_group_zone_info(cache, true); 2916 if (ret) { 2917 btrfs_put_block_group(cache); 2918 return ERR_PTR(ret); 2919 } 2920 2921 ret = exclude_super_stripes(cache); 2922 if (ret) { 2923 /* We may have excluded something, so call this just in case */ 2924 btrfs_free_excluded_extents(cache); 2925 btrfs_put_block_group(cache); 2926 return ERR_PTR(ret); 2927 } 2928 2929 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2930 btrfs_free_excluded_extents(cache); 2931 if (ret) { 2932 btrfs_put_block_group(cache); 2933 return ERR_PTR(ret); 2934 } 2935 2936 /* 2937 * Ensure the corresponding space_info object is created and 2938 * assigned to our block group. We want our bg to be added to the rbtree 2939 * with its ->space_info set. 2940 */ 2941 cache->space_info = space_info; 2942 ASSERT(cache->space_info); 2943 2944 ret = btrfs_add_block_group_cache(cache); 2945 if (ret) { 2946 btrfs_remove_free_space_cache(cache); 2947 btrfs_put_block_group(cache); 2948 return ERR_PTR(ret); 2949 } 2950 2951 /* 2952 * Now that our block group has its ->space_info set and is inserted in 2953 * the rbtree, update the space info's counters. 2954 */ 2955 trace_btrfs_add_block_group(fs_info, cache, 1); 2956 btrfs_add_bg_to_space_info(fs_info, cache); 2957 btrfs_update_global_block_rsv(fs_info); 2958 2959 #ifdef CONFIG_BTRFS_DEBUG 2960 if (btrfs_should_fragment_free_space(cache)) { 2961 cache->space_info->bytes_used += size >> 1; 2962 fragment_free_space(cache); 2963 } 2964 #endif 2965 2966 btrfs_link_bg_list(cache, &trans->new_bgs); 2967 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info); 2968 2969 set_avail_alloc_bits(fs_info, type); 2970 return cache; 2971 } 2972 2973 /* 2974 * Mark one block group RO, can be called several times for the same block 2975 * group. 2976 * 2977 * @cache: the destination block group 2978 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2979 * ensure we still have some free space after marking this 2980 * block group RO. 2981 */ 2982 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2983 bool do_chunk_alloc) 2984 { 2985 struct btrfs_fs_info *fs_info = cache->fs_info; 2986 struct btrfs_space_info *space_info = cache->space_info; 2987 struct btrfs_trans_handle *trans; 2988 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2989 u64 alloc_flags; 2990 int ret; 2991 bool dirty_bg_running; 2992 2993 /* 2994 * This can only happen when we are doing read-only scrub on read-only 2995 * mount. 2996 * In that case we should not start a new transaction on read-only fs. 2997 * Thus here we skip all chunk allocations. 2998 */ 2999 if (sb_rdonly(fs_info->sb)) { 3000 mutex_lock(&fs_info->ro_block_group_mutex); 3001 ret = inc_block_group_ro(cache, 0); 3002 mutex_unlock(&fs_info->ro_block_group_mutex); 3003 return ret; 3004 } 3005 3006 do { 3007 trans = btrfs_join_transaction(root); 3008 if (IS_ERR(trans)) 3009 return PTR_ERR(trans); 3010 3011 dirty_bg_running = false; 3012 3013 /* 3014 * We're not allowed to set block groups readonly after the dirty 3015 * block group cache has started writing. If it already started, 3016 * back off and let this transaction commit. 3017 */ 3018 mutex_lock(&fs_info->ro_block_group_mutex); 3019 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 3020 u64 transid = trans->transid; 3021 3022 mutex_unlock(&fs_info->ro_block_group_mutex); 3023 btrfs_end_transaction(trans); 3024 3025 ret = btrfs_wait_for_commit(fs_info, transid); 3026 if (ret) 3027 return ret; 3028 dirty_bg_running = true; 3029 } 3030 } while (dirty_bg_running); 3031 3032 if (do_chunk_alloc) { 3033 /* 3034 * If we are changing raid levels, try to allocate a 3035 * corresponding block group with the new raid level. 3036 */ 3037 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3038 if (alloc_flags != cache->flags) { 3039 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, 3040 CHUNK_ALLOC_FORCE); 3041 /* 3042 * ENOSPC is allowed here, we may have enough space 3043 * already allocated at the new raid level to carry on 3044 */ 3045 if (ret == -ENOSPC) 3046 ret = 0; 3047 if (ret < 0) 3048 goto out; 3049 } 3050 } 3051 3052 ret = inc_block_group_ro(cache, 0); 3053 if (!ret) 3054 goto out; 3055 if (ret == -ETXTBSY) 3056 goto unlock_out; 3057 3058 /* 3059 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system 3060 * chunk allocation storm to exhaust the system chunk array. Otherwise 3061 * we still want to try our best to mark the block group read-only. 3062 */ 3063 if (!do_chunk_alloc && ret == -ENOSPC && 3064 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 3065 goto unlock_out; 3066 3067 alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags); 3068 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE); 3069 if (ret < 0) 3070 goto out; 3071 /* 3072 * We have allocated a new chunk. We also need to activate that chunk to 3073 * grant metadata tickets for zoned filesystem. 3074 */ 3075 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true); 3076 if (ret < 0) 3077 goto out; 3078 3079 ret = inc_block_group_ro(cache, 0); 3080 if (ret == -ETXTBSY) 3081 goto unlock_out; 3082 out: 3083 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 3084 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3085 mutex_lock(&fs_info->chunk_mutex); 3086 check_system_chunk(trans, alloc_flags); 3087 mutex_unlock(&fs_info->chunk_mutex); 3088 } 3089 unlock_out: 3090 mutex_unlock(&fs_info->ro_block_group_mutex); 3091 3092 btrfs_end_transaction(trans); 3093 return ret; 3094 } 3095 3096 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 3097 { 3098 struct btrfs_space_info *sinfo = cache->space_info; 3099 u64 num_bytes; 3100 3101 BUG_ON(!cache->ro); 3102 3103 spin_lock(&sinfo->lock); 3104 spin_lock(&cache->lock); 3105 if (!--cache->ro) { 3106 if (btrfs_is_zoned(cache->fs_info)) { 3107 /* Migrate zone_unusable bytes back */ 3108 cache->zone_unusable = 3109 (cache->alloc_offset - cache->used - cache->pinned - 3110 cache->reserved) + 3111 (cache->length - cache->zone_capacity); 3112 btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable); 3113 sinfo->bytes_readonly -= cache->zone_unusable; 3114 } 3115 num_bytes = cache->length - cache->reserved - 3116 cache->pinned - cache->bytes_super - 3117 cache->zone_unusable - cache->used; 3118 sinfo->bytes_readonly -= num_bytes; 3119 list_del_init(&cache->ro_list); 3120 } 3121 spin_unlock(&cache->lock); 3122 spin_unlock(&sinfo->lock); 3123 } 3124 3125 static int update_block_group_item(struct btrfs_trans_handle *trans, 3126 struct btrfs_path *path, 3127 struct btrfs_block_group *cache) 3128 { 3129 struct btrfs_fs_info *fs_info = trans->fs_info; 3130 int ret; 3131 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3132 unsigned long bi; 3133 struct extent_buffer *leaf; 3134 struct btrfs_block_group_item bgi; 3135 struct btrfs_key key; 3136 u64 old_commit_used; 3137 u64 used; 3138 3139 /* 3140 * Block group items update can be triggered out of commit transaction 3141 * critical section, thus we need a consistent view of used bytes. 3142 * We cannot use cache->used directly outside of the spin lock, as it 3143 * may be changed. 3144 */ 3145 spin_lock(&cache->lock); 3146 old_commit_used = cache->commit_used; 3147 used = cache->used; 3148 /* No change in used bytes, can safely skip it. */ 3149 if (cache->commit_used == used) { 3150 spin_unlock(&cache->lock); 3151 return 0; 3152 } 3153 cache->commit_used = used; 3154 spin_unlock(&cache->lock); 3155 3156 key.objectid = cache->start; 3157 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3158 key.offset = cache->length; 3159 3160 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3161 if (ret) { 3162 if (ret > 0) 3163 ret = -ENOENT; 3164 goto fail; 3165 } 3166 3167 leaf = path->nodes[0]; 3168 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3169 btrfs_set_stack_block_group_used(&bgi, used); 3170 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3171 cache->global_root_id); 3172 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3173 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3174 fail: 3175 btrfs_release_path(path); 3176 /* 3177 * We didn't update the block group item, need to revert commit_used 3178 * unless the block group item didn't exist yet - this is to prevent a 3179 * race with a concurrent insertion of the block group item, with 3180 * insert_block_group_item(), that happened just after we attempted to 3181 * update. In that case we would reset commit_used to 0 just after the 3182 * insertion set it to a value greater than 0 - if the block group later 3183 * becomes with 0 used bytes, we would incorrectly skip its update. 3184 */ 3185 if (ret < 0 && ret != -ENOENT) { 3186 spin_lock(&cache->lock); 3187 cache->commit_used = old_commit_used; 3188 spin_unlock(&cache->lock); 3189 } 3190 return ret; 3191 3192 } 3193 3194 static int cache_save_setup(struct btrfs_block_group *block_group, 3195 struct btrfs_trans_handle *trans, 3196 struct btrfs_path *path) 3197 { 3198 struct btrfs_fs_info *fs_info = block_group->fs_info; 3199 struct inode *inode = NULL; 3200 struct extent_changeset *data_reserved = NULL; 3201 u64 alloc_hint = 0; 3202 int dcs = BTRFS_DC_ERROR; 3203 u64 cache_size = 0; 3204 int retries = 0; 3205 int ret = 0; 3206 3207 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3208 return 0; 3209 3210 /* 3211 * If this block group is smaller than 100 megs don't bother caching the 3212 * block group. 3213 */ 3214 if (block_group->length < (100 * SZ_1M)) { 3215 spin_lock(&block_group->lock); 3216 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3217 spin_unlock(&block_group->lock); 3218 return 0; 3219 } 3220 3221 if (TRANS_ABORTED(trans)) 3222 return 0; 3223 again: 3224 inode = lookup_free_space_inode(block_group, path); 3225 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3226 ret = PTR_ERR(inode); 3227 btrfs_release_path(path); 3228 goto out; 3229 } 3230 3231 if (IS_ERR(inode)) { 3232 BUG_ON(retries); 3233 retries++; 3234 3235 if (block_group->ro) 3236 goto out_free; 3237 3238 ret = create_free_space_inode(trans, block_group, path); 3239 if (ret) 3240 goto out_free; 3241 goto again; 3242 } 3243 3244 /* 3245 * We want to set the generation to 0, that way if anything goes wrong 3246 * from here on out we know not to trust this cache when we load up next 3247 * time. 3248 */ 3249 BTRFS_I(inode)->generation = 0; 3250 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 3251 if (ret) { 3252 /* 3253 * So theoretically we could recover from this, simply set the 3254 * super cache generation to 0 so we know to invalidate the 3255 * cache, but then we'd have to keep track of the block groups 3256 * that fail this way so we know we _have_ to reset this cache 3257 * before the next commit or risk reading stale cache. So to 3258 * limit our exposure to horrible edge cases lets just abort the 3259 * transaction, this only happens in really bad situations 3260 * anyway. 3261 */ 3262 btrfs_abort_transaction(trans, ret); 3263 goto out_put; 3264 } 3265 WARN_ON(ret); 3266 3267 /* We've already setup this transaction, go ahead and exit */ 3268 if (block_group->cache_generation == trans->transid && 3269 i_size_read(inode)) { 3270 dcs = BTRFS_DC_SETUP; 3271 goto out_put; 3272 } 3273 3274 if (i_size_read(inode) > 0) { 3275 ret = btrfs_check_trunc_cache_free_space(fs_info, 3276 &fs_info->global_block_rsv); 3277 if (ret) 3278 goto out_put; 3279 3280 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3281 if (ret) 3282 goto out_put; 3283 } 3284 3285 spin_lock(&block_group->lock); 3286 if (block_group->cached != BTRFS_CACHE_FINISHED || 3287 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3288 /* 3289 * don't bother trying to write stuff out _if_ 3290 * a) we're not cached, 3291 * b) we're with nospace_cache mount option, 3292 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3293 */ 3294 dcs = BTRFS_DC_WRITTEN; 3295 spin_unlock(&block_group->lock); 3296 goto out_put; 3297 } 3298 spin_unlock(&block_group->lock); 3299 3300 /* 3301 * We hit an ENOSPC when setting up the cache in this transaction, just 3302 * skip doing the setup, we've already cleared the cache so we're safe. 3303 */ 3304 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3305 ret = -ENOSPC; 3306 goto out_put; 3307 } 3308 3309 /* 3310 * Try to preallocate enough space based on how big the block group is. 3311 * Keep in mind this has to include any pinned space which could end up 3312 * taking up quite a bit since it's not folded into the other space 3313 * cache. 3314 */ 3315 cache_size = div_u64(block_group->length, SZ_256M); 3316 if (!cache_size) 3317 cache_size = 1; 3318 3319 cache_size *= 16; 3320 cache_size *= fs_info->sectorsize; 3321 3322 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3323 cache_size, false); 3324 if (ret) 3325 goto out_put; 3326 3327 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3328 cache_size, cache_size, 3329 &alloc_hint); 3330 /* 3331 * Our cache requires contiguous chunks so that we don't modify a bunch 3332 * of metadata or split extents when writing the cache out, which means 3333 * we can enospc if we are heavily fragmented in addition to just normal 3334 * out of space conditions. So if we hit this just skip setting up any 3335 * other block groups for this transaction, maybe we'll unpin enough 3336 * space the next time around. 3337 */ 3338 if (!ret) 3339 dcs = BTRFS_DC_SETUP; 3340 else if (ret == -ENOSPC) 3341 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3342 3343 out_put: 3344 iput(inode); 3345 out_free: 3346 btrfs_release_path(path); 3347 out: 3348 spin_lock(&block_group->lock); 3349 if (!ret && dcs == BTRFS_DC_SETUP) 3350 block_group->cache_generation = trans->transid; 3351 block_group->disk_cache_state = dcs; 3352 spin_unlock(&block_group->lock); 3353 3354 extent_changeset_free(data_reserved); 3355 return ret; 3356 } 3357 3358 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3359 { 3360 struct btrfs_fs_info *fs_info = trans->fs_info; 3361 struct btrfs_block_group *cache, *tmp; 3362 struct btrfs_transaction *cur_trans = trans->transaction; 3363 BTRFS_PATH_AUTO_FREE(path); 3364 3365 if (list_empty(&cur_trans->dirty_bgs) || 3366 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3367 return 0; 3368 3369 path = btrfs_alloc_path(); 3370 if (!path) 3371 return -ENOMEM; 3372 3373 /* Could add new block groups, use _safe just in case */ 3374 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3375 dirty_list) { 3376 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3377 cache_save_setup(cache, trans, path); 3378 } 3379 3380 return 0; 3381 } 3382 3383 /* 3384 * Transaction commit does final block group cache writeback during a critical 3385 * section where nothing is allowed to change the FS. This is required in 3386 * order for the cache to actually match the block group, but can introduce a 3387 * lot of latency into the commit. 3388 * 3389 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3390 * There's a chance we'll have to redo some of it if the block group changes 3391 * again during the commit, but it greatly reduces the commit latency by 3392 * getting rid of the easy block groups while we're still allowing others to 3393 * join the commit. 3394 */ 3395 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3396 { 3397 struct btrfs_fs_info *fs_info = trans->fs_info; 3398 struct btrfs_block_group *cache; 3399 struct btrfs_transaction *cur_trans = trans->transaction; 3400 int ret = 0; 3401 int should_put; 3402 BTRFS_PATH_AUTO_FREE(path); 3403 LIST_HEAD(dirty); 3404 struct list_head *io = &cur_trans->io_bgs; 3405 int loops = 0; 3406 3407 spin_lock(&cur_trans->dirty_bgs_lock); 3408 if (list_empty(&cur_trans->dirty_bgs)) { 3409 spin_unlock(&cur_trans->dirty_bgs_lock); 3410 return 0; 3411 } 3412 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3413 spin_unlock(&cur_trans->dirty_bgs_lock); 3414 3415 again: 3416 /* Make sure all the block groups on our dirty list actually exist */ 3417 btrfs_create_pending_block_groups(trans); 3418 3419 if (!path) { 3420 path = btrfs_alloc_path(); 3421 if (!path) { 3422 ret = -ENOMEM; 3423 goto out; 3424 } 3425 } 3426 3427 /* 3428 * cache_write_mutex is here only to save us from balance or automatic 3429 * removal of empty block groups deleting this block group while we are 3430 * writing out the cache 3431 */ 3432 mutex_lock(&trans->transaction->cache_write_mutex); 3433 while (!list_empty(&dirty)) { 3434 bool drop_reserve = true; 3435 3436 cache = list_first_entry(&dirty, struct btrfs_block_group, 3437 dirty_list); 3438 /* 3439 * This can happen if something re-dirties a block group that 3440 * is already under IO. Just wait for it to finish and then do 3441 * it all again 3442 */ 3443 if (!list_empty(&cache->io_list)) { 3444 list_del_init(&cache->io_list); 3445 btrfs_wait_cache_io(trans, cache, path); 3446 btrfs_put_block_group(cache); 3447 } 3448 3449 3450 /* 3451 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3452 * it should update the cache_state. Don't delete until after 3453 * we wait. 3454 * 3455 * Since we're not running in the commit critical section 3456 * we need the dirty_bgs_lock to protect from update_block_group 3457 */ 3458 spin_lock(&cur_trans->dirty_bgs_lock); 3459 list_del_init(&cache->dirty_list); 3460 spin_unlock(&cur_trans->dirty_bgs_lock); 3461 3462 should_put = 1; 3463 3464 cache_save_setup(cache, trans, path); 3465 3466 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3467 cache->io_ctl.inode = NULL; 3468 ret = btrfs_write_out_cache(trans, cache, path); 3469 if (ret == 0 && cache->io_ctl.inode) { 3470 should_put = 0; 3471 3472 /* 3473 * The cache_write_mutex is protecting the 3474 * io_list, also refer to the definition of 3475 * btrfs_transaction::io_bgs for more details 3476 */ 3477 list_add_tail(&cache->io_list, io); 3478 } else { 3479 /* 3480 * If we failed to write the cache, the 3481 * generation will be bad and life goes on 3482 */ 3483 ret = 0; 3484 } 3485 } 3486 if (!ret) { 3487 ret = update_block_group_item(trans, path, cache); 3488 /* 3489 * Our block group might still be attached to the list 3490 * of new block groups in the transaction handle of some 3491 * other task (struct btrfs_trans_handle->new_bgs). This 3492 * means its block group item isn't yet in the extent 3493 * tree. If this happens ignore the error, as we will 3494 * try again later in the critical section of the 3495 * transaction commit. 3496 */ 3497 if (ret == -ENOENT) { 3498 ret = 0; 3499 spin_lock(&cur_trans->dirty_bgs_lock); 3500 if (list_empty(&cache->dirty_list)) { 3501 list_add_tail(&cache->dirty_list, 3502 &cur_trans->dirty_bgs); 3503 btrfs_get_block_group(cache); 3504 drop_reserve = false; 3505 } 3506 spin_unlock(&cur_trans->dirty_bgs_lock); 3507 } else if (ret) { 3508 btrfs_abort_transaction(trans, ret); 3509 } 3510 } 3511 3512 /* If it's not on the io list, we need to put the block group */ 3513 if (should_put) 3514 btrfs_put_block_group(cache); 3515 if (drop_reserve) 3516 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3517 /* 3518 * Avoid blocking other tasks for too long. It might even save 3519 * us from writing caches for block groups that are going to be 3520 * removed. 3521 */ 3522 mutex_unlock(&trans->transaction->cache_write_mutex); 3523 if (ret) 3524 goto out; 3525 mutex_lock(&trans->transaction->cache_write_mutex); 3526 } 3527 mutex_unlock(&trans->transaction->cache_write_mutex); 3528 3529 /* 3530 * Go through delayed refs for all the stuff we've just kicked off 3531 * and then loop back (just once) 3532 */ 3533 if (!ret) 3534 ret = btrfs_run_delayed_refs(trans, 0); 3535 if (!ret && loops == 0) { 3536 loops++; 3537 spin_lock(&cur_trans->dirty_bgs_lock); 3538 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3539 /* 3540 * dirty_bgs_lock protects us from concurrent block group 3541 * deletes too (not just cache_write_mutex). 3542 */ 3543 if (!list_empty(&dirty)) { 3544 spin_unlock(&cur_trans->dirty_bgs_lock); 3545 goto again; 3546 } 3547 spin_unlock(&cur_trans->dirty_bgs_lock); 3548 } 3549 out: 3550 if (ret < 0) { 3551 spin_lock(&cur_trans->dirty_bgs_lock); 3552 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3553 spin_unlock(&cur_trans->dirty_bgs_lock); 3554 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3555 } 3556 3557 return ret; 3558 } 3559 3560 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3561 { 3562 struct btrfs_fs_info *fs_info = trans->fs_info; 3563 struct btrfs_block_group *cache; 3564 struct btrfs_transaction *cur_trans = trans->transaction; 3565 int ret = 0; 3566 int should_put; 3567 BTRFS_PATH_AUTO_FREE(path); 3568 struct list_head *io = &cur_trans->io_bgs; 3569 3570 path = btrfs_alloc_path(); 3571 if (!path) 3572 return -ENOMEM; 3573 3574 /* 3575 * Even though we are in the critical section of the transaction commit, 3576 * we can still have concurrent tasks adding elements to this 3577 * transaction's list of dirty block groups. These tasks correspond to 3578 * endio free space workers started when writeback finishes for a 3579 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3580 * allocate new block groups as a result of COWing nodes of the root 3581 * tree when updating the free space inode. The writeback for the space 3582 * caches is triggered by an earlier call to 3583 * btrfs_start_dirty_block_groups() and iterations of the following 3584 * loop. 3585 * Also we want to do the cache_save_setup first and then run the 3586 * delayed refs to make sure we have the best chance at doing this all 3587 * in one shot. 3588 */ 3589 spin_lock(&cur_trans->dirty_bgs_lock); 3590 while (!list_empty(&cur_trans->dirty_bgs)) { 3591 cache = list_first_entry(&cur_trans->dirty_bgs, 3592 struct btrfs_block_group, 3593 dirty_list); 3594 3595 /* 3596 * This can happen if cache_save_setup re-dirties a block group 3597 * that is already under IO. Just wait for it to finish and 3598 * then do it all again 3599 */ 3600 if (!list_empty(&cache->io_list)) { 3601 spin_unlock(&cur_trans->dirty_bgs_lock); 3602 list_del_init(&cache->io_list); 3603 btrfs_wait_cache_io(trans, cache, path); 3604 btrfs_put_block_group(cache); 3605 spin_lock(&cur_trans->dirty_bgs_lock); 3606 } 3607 3608 /* 3609 * Don't remove from the dirty list until after we've waited on 3610 * any pending IO 3611 */ 3612 list_del_init(&cache->dirty_list); 3613 spin_unlock(&cur_trans->dirty_bgs_lock); 3614 should_put = 1; 3615 3616 cache_save_setup(cache, trans, path); 3617 3618 if (!ret) 3619 ret = btrfs_run_delayed_refs(trans, U64_MAX); 3620 3621 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3622 cache->io_ctl.inode = NULL; 3623 ret = btrfs_write_out_cache(trans, cache, path); 3624 if (ret == 0 && cache->io_ctl.inode) { 3625 should_put = 0; 3626 list_add_tail(&cache->io_list, io); 3627 } else { 3628 /* 3629 * If we failed to write the cache, the 3630 * generation will be bad and life goes on 3631 */ 3632 ret = 0; 3633 } 3634 } 3635 if (!ret) { 3636 ret = update_block_group_item(trans, path, cache); 3637 /* 3638 * One of the free space endio workers might have 3639 * created a new block group while updating a free space 3640 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3641 * and hasn't released its transaction handle yet, in 3642 * which case the new block group is still attached to 3643 * its transaction handle and its creation has not 3644 * finished yet (no block group item in the extent tree 3645 * yet, etc). If this is the case, wait for all free 3646 * space endio workers to finish and retry. This is a 3647 * very rare case so no need for a more efficient and 3648 * complex approach. 3649 */ 3650 if (ret == -ENOENT) { 3651 wait_event(cur_trans->writer_wait, 3652 atomic_read(&cur_trans->num_writers) == 1); 3653 ret = update_block_group_item(trans, path, cache); 3654 if (ret) 3655 btrfs_abort_transaction(trans, ret); 3656 } else if (ret) { 3657 btrfs_abort_transaction(trans, ret); 3658 } 3659 } 3660 3661 /* If its not on the io list, we need to put the block group */ 3662 if (should_put) 3663 btrfs_put_block_group(cache); 3664 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3665 spin_lock(&cur_trans->dirty_bgs_lock); 3666 } 3667 spin_unlock(&cur_trans->dirty_bgs_lock); 3668 3669 /* 3670 * Refer to the definition of io_bgs member for details why it's safe 3671 * to use it without any locking 3672 */ 3673 while (!list_empty(io)) { 3674 cache = list_first_entry(io, struct btrfs_block_group, 3675 io_list); 3676 list_del_init(&cache->io_list); 3677 btrfs_wait_cache_io(trans, cache, path); 3678 btrfs_put_block_group(cache); 3679 } 3680 3681 return ret; 3682 } 3683 3684 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3685 u64 bytenr, u64 num_bytes, bool alloc) 3686 { 3687 struct btrfs_fs_info *info = trans->fs_info; 3688 struct btrfs_space_info *space_info; 3689 struct btrfs_block_group *cache; 3690 u64 old_val; 3691 bool reclaim = false; 3692 bool bg_already_dirty = true; 3693 int factor; 3694 3695 /* Block accounting for super block */ 3696 spin_lock(&info->delalloc_root_lock); 3697 old_val = btrfs_super_bytes_used(info->super_copy); 3698 if (alloc) 3699 old_val += num_bytes; 3700 else 3701 old_val -= num_bytes; 3702 btrfs_set_super_bytes_used(info->super_copy, old_val); 3703 spin_unlock(&info->delalloc_root_lock); 3704 3705 cache = btrfs_lookup_block_group(info, bytenr); 3706 if (!cache) 3707 return -ENOENT; 3708 3709 /* An extent can not span multiple block groups. */ 3710 ASSERT(bytenr + num_bytes <= cache->start + cache->length); 3711 3712 space_info = cache->space_info; 3713 factor = btrfs_bg_type_to_factor(cache->flags); 3714 3715 /* 3716 * If this block group has free space cache written out, we need to make 3717 * sure to load it if we are removing space. This is because we need 3718 * the unpinning stage to actually add the space back to the block group, 3719 * otherwise we will leak space. 3720 */ 3721 if (!alloc && !btrfs_block_group_done(cache)) 3722 btrfs_cache_block_group(cache, true); 3723 3724 spin_lock(&space_info->lock); 3725 spin_lock(&cache->lock); 3726 3727 if (btrfs_test_opt(info, SPACE_CACHE) && 3728 cache->disk_cache_state < BTRFS_DC_CLEAR) 3729 cache->disk_cache_state = BTRFS_DC_CLEAR; 3730 3731 old_val = cache->used; 3732 if (alloc) { 3733 old_val += num_bytes; 3734 cache->used = old_val; 3735 cache->reserved -= num_bytes; 3736 cache->reclaim_mark = 0; 3737 space_info->bytes_reserved -= num_bytes; 3738 space_info->bytes_used += num_bytes; 3739 space_info->disk_used += num_bytes * factor; 3740 if (READ_ONCE(space_info->periodic_reclaim)) 3741 btrfs_space_info_update_reclaimable(space_info, -num_bytes); 3742 spin_unlock(&cache->lock); 3743 spin_unlock(&space_info->lock); 3744 } else { 3745 old_val -= num_bytes; 3746 cache->used = old_val; 3747 cache->pinned += num_bytes; 3748 btrfs_space_info_update_bytes_pinned(space_info, num_bytes); 3749 space_info->bytes_used -= num_bytes; 3750 space_info->disk_used -= num_bytes * factor; 3751 if (READ_ONCE(space_info->periodic_reclaim)) 3752 btrfs_space_info_update_reclaimable(space_info, num_bytes); 3753 else 3754 reclaim = should_reclaim_block_group(cache, num_bytes); 3755 3756 spin_unlock(&cache->lock); 3757 spin_unlock(&space_info->lock); 3758 3759 btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr, 3760 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 3761 } 3762 3763 spin_lock(&trans->transaction->dirty_bgs_lock); 3764 if (list_empty(&cache->dirty_list)) { 3765 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs); 3766 bg_already_dirty = false; 3767 btrfs_get_block_group(cache); 3768 } 3769 spin_unlock(&trans->transaction->dirty_bgs_lock); 3770 3771 /* 3772 * No longer have used bytes in this block group, queue it for deletion. 3773 * We do this after adding the block group to the dirty list to avoid 3774 * races between cleaner kthread and space cache writeout. 3775 */ 3776 if (!alloc && old_val == 0) { 3777 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3778 btrfs_mark_bg_unused(cache); 3779 } else if (!alloc && reclaim) { 3780 btrfs_mark_bg_to_reclaim(cache); 3781 } 3782 3783 btrfs_put_block_group(cache); 3784 3785 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3786 if (!bg_already_dirty) 3787 btrfs_inc_delayed_refs_rsv_bg_updates(info); 3788 3789 return 0; 3790 } 3791 3792 /* 3793 * Update the block_group and space info counters. 3794 * 3795 * @cache: The cache we are manipulating 3796 * @ram_bytes: The number of bytes of file content, and will be same to 3797 * @num_bytes except for the compress path. 3798 * @num_bytes: The number of bytes in question 3799 * @delalloc: The blocks are allocated for the delalloc write 3800 * 3801 * This is called by the allocator when it reserves space. If this is a 3802 * reservation and the block group has become read only we cannot make the 3803 * reservation and return -EAGAIN, otherwise this function always succeeds. 3804 */ 3805 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3806 u64 ram_bytes, u64 num_bytes, int delalloc, 3807 bool force_wrong_size_class) 3808 { 3809 struct btrfs_space_info *space_info = cache->space_info; 3810 enum btrfs_block_group_size_class size_class; 3811 int ret = 0; 3812 3813 spin_lock(&space_info->lock); 3814 spin_lock(&cache->lock); 3815 if (cache->ro) { 3816 ret = -EAGAIN; 3817 goto out; 3818 } 3819 3820 if (btrfs_block_group_should_use_size_class(cache)) { 3821 size_class = btrfs_calc_block_group_size_class(num_bytes); 3822 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3823 if (ret) 3824 goto out; 3825 } 3826 cache->reserved += num_bytes; 3827 space_info->bytes_reserved += num_bytes; 3828 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3829 space_info->flags, num_bytes, 1); 3830 btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes); 3831 if (delalloc) 3832 cache->delalloc_bytes += num_bytes; 3833 3834 /* 3835 * Compression can use less space than we reserved, so wake tickets if 3836 * that happens. 3837 */ 3838 if (num_bytes < ram_bytes) 3839 btrfs_try_granting_tickets(cache->fs_info, space_info); 3840 out: 3841 spin_unlock(&cache->lock); 3842 spin_unlock(&space_info->lock); 3843 return ret; 3844 } 3845 3846 /* 3847 * Update the block_group and space info counters. 3848 * 3849 * @cache: The cache we are manipulating. 3850 * @num_bytes: The number of bytes in question. 3851 * @is_delalloc: Whether the blocks are allocated for a delalloc write. 3852 * 3853 * This is called by somebody who is freeing space that was never actually used 3854 * on disk. For example if you reserve some space for a new leaf in transaction 3855 * A and before transaction A commits you free that leaf, you call this with 3856 * reserve set to 0 in order to clear the reservation. 3857 */ 3858 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, u64 num_bytes, 3859 bool is_delalloc) 3860 { 3861 struct btrfs_space_info *space_info = cache->space_info; 3862 3863 spin_lock(&space_info->lock); 3864 spin_lock(&cache->lock); 3865 if (cache->ro) 3866 space_info->bytes_readonly += num_bytes; 3867 else if (btrfs_is_zoned(cache->fs_info)) 3868 space_info->bytes_zone_unusable += num_bytes; 3869 cache->reserved -= num_bytes; 3870 space_info->bytes_reserved -= num_bytes; 3871 space_info->max_extent_size = 0; 3872 3873 if (is_delalloc) 3874 cache->delalloc_bytes -= num_bytes; 3875 spin_unlock(&cache->lock); 3876 3877 btrfs_try_granting_tickets(cache->fs_info, space_info); 3878 spin_unlock(&space_info->lock); 3879 } 3880 3881 static void force_metadata_allocation(struct btrfs_fs_info *info) 3882 { 3883 struct list_head *head = &info->space_info; 3884 struct btrfs_space_info *found; 3885 3886 list_for_each_entry(found, head, list) { 3887 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3888 found->force_alloc = CHUNK_ALLOC_FORCE; 3889 } 3890 } 3891 3892 static bool should_alloc_chunk(const struct btrfs_fs_info *fs_info, 3893 const struct btrfs_space_info *sinfo, int force) 3894 { 3895 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3896 u64 thresh; 3897 3898 if (force == CHUNK_ALLOC_FORCE) 3899 return true; 3900 3901 /* 3902 * in limited mode, we want to have some free space up to 3903 * about 1% of the FS size. 3904 */ 3905 if (force == CHUNK_ALLOC_LIMITED) { 3906 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3907 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3908 3909 if (sinfo->total_bytes - bytes_used < thresh) 3910 return true; 3911 } 3912 3913 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3914 return false; 3915 return true; 3916 } 3917 3918 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3919 { 3920 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3921 struct btrfs_space_info *space_info; 3922 3923 space_info = btrfs_find_space_info(trans->fs_info, type); 3924 if (!space_info) { 3925 DEBUG_WARN(); 3926 return -EINVAL; 3927 } 3928 3929 return btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE); 3930 } 3931 3932 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, 3933 struct btrfs_space_info *space_info, 3934 u64 flags) 3935 { 3936 struct btrfs_block_group *bg; 3937 int ret; 3938 3939 /* 3940 * Check if we have enough space in the system space info because we 3941 * will need to update device items in the chunk btree and insert a new 3942 * chunk item in the chunk btree as well. This will allocate a new 3943 * system block group if needed. 3944 */ 3945 check_system_chunk(trans, flags); 3946 3947 bg = btrfs_create_chunk(trans, space_info, flags); 3948 if (IS_ERR(bg)) { 3949 ret = PTR_ERR(bg); 3950 goto out; 3951 } 3952 3953 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3954 /* 3955 * Normally we are not expected to fail with -ENOSPC here, since we have 3956 * previously reserved space in the system space_info and allocated one 3957 * new system chunk if necessary. However there are three exceptions: 3958 * 3959 * 1) We may have enough free space in the system space_info but all the 3960 * existing system block groups have a profile which can not be used 3961 * for extent allocation. 3962 * 3963 * This happens when mounting in degraded mode. For example we have a 3964 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3965 * using the other device in degraded mode. If we then allocate a chunk, 3966 * we may have enough free space in the existing system space_info, but 3967 * none of the block groups can be used for extent allocation since they 3968 * have a RAID1 profile, and because we are in degraded mode with a 3969 * single device, we are forced to allocate a new system chunk with a 3970 * SINGLE profile. Making check_system_chunk() iterate over all system 3971 * block groups and check if they have a usable profile and enough space 3972 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3973 * try again after forcing allocation of a new system chunk. Like this 3974 * we avoid paying the cost of that search in normal circumstances, when 3975 * we were not mounted in degraded mode; 3976 * 3977 * 2) We had enough free space info the system space_info, and one suitable 3978 * block group to allocate from when we called check_system_chunk() 3979 * above. However right after we called it, the only system block group 3980 * with enough free space got turned into RO mode by a running scrub, 3981 * and in this case we have to allocate a new one and retry. We only 3982 * need do this allocate and retry once, since we have a transaction 3983 * handle and scrub uses the commit root to search for block groups; 3984 * 3985 * 3) We had one system block group with enough free space when we called 3986 * check_system_chunk(), but after that, right before we tried to 3987 * allocate the last extent buffer we needed, a discard operation came 3988 * in and it temporarily removed the last free space entry from the 3989 * block group (discard removes a free space entry, discards it, and 3990 * then adds back the entry to the block group cache). 3991 */ 3992 if (ret == -ENOSPC) { 3993 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3994 struct btrfs_block_group *sys_bg; 3995 struct btrfs_space_info *sys_space_info; 3996 3997 sys_space_info = btrfs_find_space_info(trans->fs_info, sys_flags); 3998 if (!sys_space_info) { 3999 ret = -EINVAL; 4000 btrfs_abort_transaction(trans, ret); 4001 goto out; 4002 } 4003 4004 sys_bg = btrfs_create_chunk(trans, sys_space_info, sys_flags); 4005 if (IS_ERR(sys_bg)) { 4006 ret = PTR_ERR(sys_bg); 4007 btrfs_abort_transaction(trans, ret); 4008 goto out; 4009 } 4010 4011 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 4012 if (ret) { 4013 btrfs_abort_transaction(trans, ret); 4014 goto out; 4015 } 4016 4017 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 4018 if (ret) { 4019 btrfs_abort_transaction(trans, ret); 4020 goto out; 4021 } 4022 } else if (ret) { 4023 btrfs_abort_transaction(trans, ret); 4024 goto out; 4025 } 4026 out: 4027 btrfs_trans_release_chunk_metadata(trans); 4028 4029 if (ret) 4030 return ERR_PTR(ret); 4031 4032 btrfs_get_block_group(bg); 4033 return bg; 4034 } 4035 4036 /* 4037 * Chunk allocation is done in 2 phases: 4038 * 4039 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 4040 * the chunk, the chunk mapping, create its block group and add the items 4041 * that belong in the chunk btree to it - more specifically, we need to 4042 * update device items in the chunk btree and add a new chunk item to it. 4043 * 4044 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 4045 * group item to the extent btree and the device extent items to the devices 4046 * btree. 4047 * 4048 * This is done to prevent deadlocks. For example when COWing a node from the 4049 * extent btree we are holding a write lock on the node's parent and if we 4050 * trigger chunk allocation and attempted to insert the new block group item 4051 * in the extent btree right way, we could deadlock because the path for the 4052 * insertion can include that parent node. At first glance it seems impossible 4053 * to trigger chunk allocation after starting a transaction since tasks should 4054 * reserve enough transaction units (metadata space), however while that is true 4055 * most of the time, chunk allocation may still be triggered for several reasons: 4056 * 4057 * 1) When reserving metadata, we check if there is enough free space in the 4058 * metadata space_info and therefore don't trigger allocation of a new chunk. 4059 * However later when the task actually tries to COW an extent buffer from 4060 * the extent btree or from the device btree for example, it is forced to 4061 * allocate a new block group (chunk) because the only one that had enough 4062 * free space was just turned to RO mode by a running scrub for example (or 4063 * device replace, block group reclaim thread, etc), so we can not use it 4064 * for allocating an extent and end up being forced to allocate a new one; 4065 * 4066 * 2) Because we only check that the metadata space_info has enough free bytes, 4067 * we end up not allocating a new metadata chunk in that case. However if 4068 * the filesystem was mounted in degraded mode, none of the existing block 4069 * groups might be suitable for extent allocation due to their incompatible 4070 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 4071 * use a RAID1 profile, in degraded mode using a single device). In this case 4072 * when the task attempts to COW some extent buffer of the extent btree for 4073 * example, it will trigger allocation of a new metadata block group with a 4074 * suitable profile (SINGLE profile in the example of the degraded mount of 4075 * the RAID1 filesystem); 4076 * 4077 * 3) The task has reserved enough transaction units / metadata space, but when 4078 * it attempts to COW an extent buffer from the extent or device btree for 4079 * example, it does not find any free extent in any metadata block group, 4080 * therefore forced to try to allocate a new metadata block group. 4081 * This is because some other task allocated all available extents in the 4082 * meanwhile - this typically happens with tasks that don't reserve space 4083 * properly, either intentionally or as a bug. One example where this is 4084 * done intentionally is fsync, as it does not reserve any transaction units 4085 * and ends up allocating a variable number of metadata extents for log 4086 * tree extent buffers; 4087 * 4088 * 4) The task has reserved enough transaction units / metadata space, but right 4089 * before it tries to allocate the last extent buffer it needs, a discard 4090 * operation comes in and, temporarily, removes the last free space entry from 4091 * the only metadata block group that had free space (discard starts by 4092 * removing a free space entry from a block group, then does the discard 4093 * operation and, once it's done, it adds back the free space entry to the 4094 * block group). 4095 * 4096 * We also need this 2 phases setup when adding a device to a filesystem with 4097 * a seed device - we must create new metadata and system chunks without adding 4098 * any of the block group items to the chunk, extent and device btrees. If we 4099 * did not do it this way, we would get ENOSPC when attempting to update those 4100 * btrees, since all the chunks from the seed device are read-only. 4101 * 4102 * Phase 1 does the updates and insertions to the chunk btree because if we had 4103 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 4104 * parallel, we risk having too many system chunks allocated by many tasks if 4105 * many tasks reach phase 1 without the previous ones completing phase 2. In the 4106 * extreme case this leads to exhaustion of the system chunk array in the 4107 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 4108 * and with RAID filesystems (so we have more device items in the chunk btree). 4109 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 4110 * the system chunk array due to concurrent allocations") provides more details. 4111 * 4112 * Allocation of system chunks does not happen through this function. A task that 4113 * needs to update the chunk btree (the only btree that uses system chunks), must 4114 * preallocate chunk space by calling either check_system_chunk() or 4115 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 4116 * metadata chunk or when removing a chunk, while the later is used before doing 4117 * a modification to the chunk btree - use cases for the later are adding, 4118 * removing and resizing a device as well as relocation of a system chunk. 4119 * See the comment below for more details. 4120 * 4121 * The reservation of system space, done through check_system_chunk(), as well 4122 * as all the updates and insertions into the chunk btree must be done while 4123 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4124 * an extent buffer from the chunks btree we never trigger allocation of a new 4125 * system chunk, which would result in a deadlock (trying to lock twice an 4126 * extent buffer of the chunk btree, first time before triggering the chunk 4127 * allocation and the second time during chunk allocation while attempting to 4128 * update the chunks btree). The system chunk array is also updated while holding 4129 * that mutex. The same logic applies to removing chunks - we must reserve system 4130 * space, update the chunk btree and the system chunk array in the superblock 4131 * while holding fs_info->chunk_mutex. 4132 * 4133 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4134 * 4135 * @space_info: specify which space_info the new chunk should belong to. 4136 * 4137 * If @force is CHUNK_ALLOC_FORCE: 4138 * - return 1 if it successfully allocates a chunk, 4139 * - return errors including -ENOSPC otherwise. 4140 * If @force is NOT CHUNK_ALLOC_FORCE: 4141 * - return 0 if it doesn't need to allocate a new chunk, 4142 * - return 1 if it successfully allocates a chunk, 4143 * - return errors including -ENOSPC otherwise. 4144 */ 4145 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, 4146 struct btrfs_space_info *space_info, u64 flags, 4147 enum btrfs_chunk_alloc_enum force) 4148 { 4149 struct btrfs_fs_info *fs_info = trans->fs_info; 4150 struct btrfs_block_group *ret_bg; 4151 bool wait_for_alloc = false; 4152 bool should_alloc = false; 4153 bool from_extent_allocation = false; 4154 int ret = 0; 4155 4156 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4157 from_extent_allocation = true; 4158 force = CHUNK_ALLOC_FORCE; 4159 } 4160 4161 /* Don't re-enter if we're already allocating a chunk */ 4162 if (trans->allocating_chunk) 4163 return -ENOSPC; 4164 /* 4165 * Allocation of system chunks can not happen through this path, as we 4166 * could end up in a deadlock if we are allocating a data or metadata 4167 * chunk and there is another task modifying the chunk btree. 4168 * 4169 * This is because while we are holding the chunk mutex, we will attempt 4170 * to add the new chunk item to the chunk btree or update an existing 4171 * device item in the chunk btree, while the other task that is modifying 4172 * the chunk btree is attempting to COW an extent buffer while holding a 4173 * lock on it and on its parent - if the COW operation triggers a system 4174 * chunk allocation, then we can deadlock because we are holding the 4175 * chunk mutex and we may need to access that extent buffer or its parent 4176 * in order to add the chunk item or update a device item. 4177 * 4178 * Tasks that want to modify the chunk tree should reserve system space 4179 * before updating the chunk btree, by calling either 4180 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4181 * It's possible that after a task reserves the space, it still ends up 4182 * here - this happens in the cases described above at do_chunk_alloc(). 4183 * The task will have to either retry or fail. 4184 */ 4185 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4186 return -ENOSPC; 4187 4188 do { 4189 spin_lock(&space_info->lock); 4190 if (force < space_info->force_alloc) 4191 force = space_info->force_alloc; 4192 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4193 if (space_info->full) { 4194 /* No more free physical space */ 4195 if (should_alloc) 4196 ret = -ENOSPC; 4197 else 4198 ret = 0; 4199 spin_unlock(&space_info->lock); 4200 return ret; 4201 } else if (!should_alloc) { 4202 spin_unlock(&space_info->lock); 4203 return 0; 4204 } else if (space_info->chunk_alloc) { 4205 /* 4206 * Someone is already allocating, so we need to block 4207 * until this someone is finished and then loop to 4208 * recheck if we should continue with our allocation 4209 * attempt. 4210 */ 4211 wait_for_alloc = true; 4212 force = CHUNK_ALLOC_NO_FORCE; 4213 spin_unlock(&space_info->lock); 4214 mutex_lock(&fs_info->chunk_mutex); 4215 mutex_unlock(&fs_info->chunk_mutex); 4216 } else { 4217 /* Proceed with allocation */ 4218 space_info->chunk_alloc = 1; 4219 wait_for_alloc = false; 4220 spin_unlock(&space_info->lock); 4221 } 4222 4223 cond_resched(); 4224 } while (wait_for_alloc); 4225 4226 mutex_lock(&fs_info->chunk_mutex); 4227 trans->allocating_chunk = true; 4228 4229 /* 4230 * If we have mixed data/metadata chunks we want to make sure we keep 4231 * allocating mixed chunks instead of individual chunks. 4232 */ 4233 if (btrfs_mixed_space_info(space_info)) 4234 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4235 4236 /* 4237 * if we're doing a data chunk, go ahead and make sure that 4238 * we keep a reasonable number of metadata chunks allocated in the 4239 * FS as well. 4240 */ 4241 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4242 fs_info->data_chunk_allocations++; 4243 if (!(fs_info->data_chunk_allocations % 4244 fs_info->metadata_ratio)) 4245 force_metadata_allocation(fs_info); 4246 } 4247 4248 ret_bg = do_chunk_alloc(trans, space_info, flags); 4249 trans->allocating_chunk = false; 4250 4251 if (IS_ERR(ret_bg)) { 4252 ret = PTR_ERR(ret_bg); 4253 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4254 /* 4255 * New block group is likely to be used soon. Try to activate 4256 * it now. Failure is OK for now. 4257 */ 4258 btrfs_zone_activate(ret_bg); 4259 } 4260 4261 if (!ret) 4262 btrfs_put_block_group(ret_bg); 4263 4264 spin_lock(&space_info->lock); 4265 if (ret < 0) { 4266 if (ret == -ENOSPC) 4267 space_info->full = 1; 4268 else 4269 goto out; 4270 } else { 4271 ret = 1; 4272 space_info->max_extent_size = 0; 4273 } 4274 4275 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4276 out: 4277 space_info->chunk_alloc = 0; 4278 spin_unlock(&space_info->lock); 4279 mutex_unlock(&fs_info->chunk_mutex); 4280 4281 return ret; 4282 } 4283 4284 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type) 4285 { 4286 u64 num_dev; 4287 4288 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4289 if (!num_dev) 4290 num_dev = fs_info->fs_devices->rw_devices; 4291 4292 return num_dev; 4293 } 4294 4295 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4296 u64 bytes, 4297 u64 type) 4298 { 4299 struct btrfs_fs_info *fs_info = trans->fs_info; 4300 struct btrfs_space_info *info; 4301 u64 left; 4302 int ret = 0; 4303 4304 /* 4305 * Needed because we can end up allocating a system chunk and for an 4306 * atomic and race free space reservation in the chunk block reserve. 4307 */ 4308 lockdep_assert_held(&fs_info->chunk_mutex); 4309 4310 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4311 spin_lock(&info->lock); 4312 left = info->total_bytes - btrfs_space_info_used(info, true); 4313 spin_unlock(&info->lock); 4314 4315 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4316 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4317 left, bytes, type); 4318 btrfs_dump_space_info(fs_info, info, 0, false); 4319 } 4320 4321 if (left < bytes) { 4322 u64 flags = btrfs_system_alloc_profile(fs_info); 4323 struct btrfs_block_group *bg; 4324 struct btrfs_space_info *space_info; 4325 4326 space_info = btrfs_find_space_info(fs_info, flags); 4327 ASSERT(space_info); 4328 4329 /* 4330 * Ignore failure to create system chunk. We might end up not 4331 * needing it, as we might not need to COW all nodes/leafs from 4332 * the paths we visit in the chunk tree (they were already COWed 4333 * or created in the current transaction for example). 4334 */ 4335 bg = btrfs_create_chunk(trans, space_info, flags); 4336 if (IS_ERR(bg)) { 4337 ret = PTR_ERR(bg); 4338 } else { 4339 /* 4340 * We have a new chunk. We also need to activate it for 4341 * zoned filesystem. 4342 */ 4343 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4344 if (ret < 0) 4345 return; 4346 4347 /* 4348 * If we fail to add the chunk item here, we end up 4349 * trying again at phase 2 of chunk allocation, at 4350 * btrfs_create_pending_block_groups(). So ignore 4351 * any error here. An ENOSPC here could happen, due to 4352 * the cases described at do_chunk_alloc() - the system 4353 * block group we just created was just turned into RO 4354 * mode by a scrub for example, or a running discard 4355 * temporarily removed its free space entries, etc. 4356 */ 4357 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4358 } 4359 } 4360 4361 if (!ret) { 4362 ret = btrfs_block_rsv_add(fs_info, 4363 &fs_info->chunk_block_rsv, 4364 bytes, BTRFS_RESERVE_NO_FLUSH); 4365 if (!ret) 4366 trans->chunk_bytes_reserved += bytes; 4367 } 4368 } 4369 4370 /* 4371 * Reserve space in the system space for allocating or removing a chunk. 4372 * The caller must be holding fs_info->chunk_mutex. 4373 */ 4374 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4375 { 4376 struct btrfs_fs_info *fs_info = trans->fs_info; 4377 const u64 num_devs = get_profile_num_devs(fs_info, type); 4378 u64 bytes; 4379 4380 /* num_devs device items to update and 1 chunk item to add or remove. */ 4381 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4382 btrfs_calc_insert_metadata_size(fs_info, 1); 4383 4384 reserve_chunk_space(trans, bytes, type); 4385 } 4386 4387 /* 4388 * Reserve space in the system space, if needed, for doing a modification to the 4389 * chunk btree. 4390 * 4391 * @trans: A transaction handle. 4392 * @is_item_insertion: Indicate if the modification is for inserting a new item 4393 * in the chunk btree or if it's for the deletion or update 4394 * of an existing item. 4395 * 4396 * This is used in a context where we need to update the chunk btree outside 4397 * block group allocation and removal, to avoid a deadlock with a concurrent 4398 * task that is allocating a metadata or data block group and therefore needs to 4399 * update the chunk btree while holding the chunk mutex. After the update to the 4400 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4401 * 4402 */ 4403 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4404 bool is_item_insertion) 4405 { 4406 struct btrfs_fs_info *fs_info = trans->fs_info; 4407 u64 bytes; 4408 4409 if (is_item_insertion) 4410 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4411 else 4412 bytes = btrfs_calc_metadata_size(fs_info, 1); 4413 4414 mutex_lock(&fs_info->chunk_mutex); 4415 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4416 mutex_unlock(&fs_info->chunk_mutex); 4417 } 4418 4419 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4420 { 4421 struct btrfs_block_group *block_group; 4422 4423 block_group = btrfs_lookup_first_block_group(info, 0); 4424 while (block_group) { 4425 btrfs_wait_block_group_cache_done(block_group); 4426 spin_lock(&block_group->lock); 4427 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4428 &block_group->runtime_flags)) { 4429 struct btrfs_inode *inode = block_group->inode; 4430 4431 block_group->inode = NULL; 4432 spin_unlock(&block_group->lock); 4433 4434 ASSERT(block_group->io_ctl.inode == NULL); 4435 iput(&inode->vfs_inode); 4436 } else { 4437 spin_unlock(&block_group->lock); 4438 } 4439 block_group = btrfs_next_block_group(block_group); 4440 } 4441 } 4442 4443 static void check_removing_space_info(struct btrfs_space_info *space_info) 4444 { 4445 struct btrfs_fs_info *info = space_info->fs_info; 4446 4447 if (space_info->subgroup_id == BTRFS_SUB_GROUP_PRIMARY) { 4448 /* This is a top space_info, proceed with its children first. */ 4449 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) { 4450 if (space_info->sub_group[i]) { 4451 check_removing_space_info(space_info->sub_group[i]); 4452 kfree(space_info->sub_group[i]); 4453 space_info->sub_group[i] = NULL; 4454 } 4455 } 4456 } 4457 4458 /* 4459 * Do not hide this behind enospc_debug, this is actually important and 4460 * indicates a real bug if this happens. 4461 */ 4462 if (WARN_ON(space_info->bytes_pinned > 0 || space_info->bytes_may_use > 0)) 4463 btrfs_dump_space_info(info, space_info, 0, false); 4464 4465 /* 4466 * If there was a failure to cleanup a log tree, very likely due to an 4467 * IO failure on a writeback attempt of one or more of its extent 4468 * buffers, we could not do proper (and cheap) unaccounting of their 4469 * reserved space, so don't warn on bytes_reserved > 0 in that case. 4470 */ 4471 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4472 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4473 if (WARN_ON(space_info->bytes_reserved > 0)) 4474 btrfs_dump_space_info(info, space_info, 0, false); 4475 } 4476 4477 WARN_ON(space_info->reclaim_size > 0); 4478 } 4479 4480 /* 4481 * Must be called only after stopping all workers, since we could have block 4482 * group caching kthreads running, and therefore they could race with us if we 4483 * freed the block groups before stopping them. 4484 */ 4485 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4486 { 4487 struct btrfs_block_group *block_group; 4488 struct btrfs_space_info *space_info; 4489 struct btrfs_caching_control *caching_ctl; 4490 struct rb_node *n; 4491 4492 if (btrfs_is_zoned(info)) { 4493 if (info->active_meta_bg) { 4494 btrfs_put_block_group(info->active_meta_bg); 4495 info->active_meta_bg = NULL; 4496 } 4497 if (info->active_system_bg) { 4498 btrfs_put_block_group(info->active_system_bg); 4499 info->active_system_bg = NULL; 4500 } 4501 } 4502 4503 write_lock(&info->block_group_cache_lock); 4504 while (!list_empty(&info->caching_block_groups)) { 4505 caching_ctl = list_first_entry(&info->caching_block_groups, 4506 struct btrfs_caching_control, list); 4507 list_del(&caching_ctl->list); 4508 btrfs_put_caching_control(caching_ctl); 4509 } 4510 write_unlock(&info->block_group_cache_lock); 4511 4512 spin_lock(&info->unused_bgs_lock); 4513 while (!list_empty(&info->unused_bgs)) { 4514 block_group = list_first_entry(&info->unused_bgs, 4515 struct btrfs_block_group, 4516 bg_list); 4517 list_del_init(&block_group->bg_list); 4518 btrfs_put_block_group(block_group); 4519 } 4520 4521 while (!list_empty(&info->reclaim_bgs)) { 4522 block_group = list_first_entry(&info->reclaim_bgs, 4523 struct btrfs_block_group, 4524 bg_list); 4525 list_del_init(&block_group->bg_list); 4526 btrfs_put_block_group(block_group); 4527 } 4528 spin_unlock(&info->unused_bgs_lock); 4529 4530 spin_lock(&info->zone_active_bgs_lock); 4531 while (!list_empty(&info->zone_active_bgs)) { 4532 block_group = list_first_entry(&info->zone_active_bgs, 4533 struct btrfs_block_group, 4534 active_bg_list); 4535 list_del_init(&block_group->active_bg_list); 4536 btrfs_put_block_group(block_group); 4537 } 4538 spin_unlock(&info->zone_active_bgs_lock); 4539 4540 write_lock(&info->block_group_cache_lock); 4541 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4542 block_group = rb_entry(n, struct btrfs_block_group, 4543 cache_node); 4544 rb_erase_cached(&block_group->cache_node, 4545 &info->block_group_cache_tree); 4546 RB_CLEAR_NODE(&block_group->cache_node); 4547 write_unlock(&info->block_group_cache_lock); 4548 4549 down_write(&block_group->space_info->groups_sem); 4550 list_del(&block_group->list); 4551 up_write(&block_group->space_info->groups_sem); 4552 4553 /* 4554 * We haven't cached this block group, which means we could 4555 * possibly have excluded extents on this block group. 4556 */ 4557 if (block_group->cached == BTRFS_CACHE_NO || 4558 block_group->cached == BTRFS_CACHE_ERROR) 4559 btrfs_free_excluded_extents(block_group); 4560 4561 btrfs_remove_free_space_cache(block_group); 4562 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4563 ASSERT(list_empty(&block_group->dirty_list)); 4564 ASSERT(list_empty(&block_group->io_list)); 4565 ASSERT(list_empty(&block_group->bg_list)); 4566 ASSERT(refcount_read(&block_group->refs) == 1); 4567 ASSERT(block_group->swap_extents == 0); 4568 btrfs_put_block_group(block_group); 4569 4570 write_lock(&info->block_group_cache_lock); 4571 } 4572 write_unlock(&info->block_group_cache_lock); 4573 4574 btrfs_release_global_block_rsv(info); 4575 4576 while (!list_empty(&info->space_info)) { 4577 space_info = list_first_entry(&info->space_info, 4578 struct btrfs_space_info, list); 4579 4580 check_removing_space_info(space_info); 4581 list_del(&space_info->list); 4582 btrfs_sysfs_remove_space_info(space_info); 4583 } 4584 return 0; 4585 } 4586 4587 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4588 { 4589 atomic_inc(&cache->frozen); 4590 } 4591 4592 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4593 { 4594 struct btrfs_fs_info *fs_info = block_group->fs_info; 4595 bool cleanup; 4596 4597 spin_lock(&block_group->lock); 4598 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4599 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4600 spin_unlock(&block_group->lock); 4601 4602 if (cleanup) { 4603 struct btrfs_chunk_map *map; 4604 4605 map = btrfs_find_chunk_map(fs_info, block_group->start, 1); 4606 /* Logic error, can't happen. */ 4607 ASSERT(map); 4608 4609 btrfs_remove_chunk_map(fs_info, map); 4610 4611 /* Once for our lookup reference. */ 4612 btrfs_free_chunk_map(map); 4613 4614 /* 4615 * We may have left one free space entry and other possible 4616 * tasks trimming this block group have left 1 entry each one. 4617 * Free them if any. 4618 */ 4619 btrfs_remove_free_space_cache(block_group); 4620 } 4621 } 4622 4623 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4624 { 4625 bool ret = true; 4626 4627 spin_lock(&bg->lock); 4628 if (bg->ro) 4629 ret = false; 4630 else 4631 bg->swap_extents++; 4632 spin_unlock(&bg->lock); 4633 4634 return ret; 4635 } 4636 4637 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4638 { 4639 spin_lock(&bg->lock); 4640 ASSERT(!bg->ro); 4641 ASSERT(bg->swap_extents >= amount); 4642 bg->swap_extents -= amount; 4643 spin_unlock(&bg->lock); 4644 } 4645 4646 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4647 { 4648 if (size <= SZ_128K) 4649 return BTRFS_BG_SZ_SMALL; 4650 if (size <= SZ_8M) 4651 return BTRFS_BG_SZ_MEDIUM; 4652 return BTRFS_BG_SZ_LARGE; 4653 } 4654 4655 /* 4656 * Handle a block group allocating an extent in a size class 4657 * 4658 * @bg: The block group we allocated in. 4659 * @size_class: The size class of the allocation. 4660 * @force_wrong_size_class: Whether we are desperate enough to allow 4661 * mismatched size classes. 4662 * 4663 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4664 * case of a race that leads to the wrong size class without 4665 * force_wrong_size_class set. 4666 * 4667 * find_free_extent will skip block groups with a mismatched size class until 4668 * it really needs to avoid ENOSPC. In that case it will set 4669 * force_wrong_size_class. However, if a block group is newly allocated and 4670 * doesn't yet have a size class, then it is possible for two allocations of 4671 * different sizes to race and both try to use it. The loser is caught here and 4672 * has to retry. 4673 */ 4674 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4675 enum btrfs_block_group_size_class size_class, 4676 bool force_wrong_size_class) 4677 { 4678 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4679 4680 /* The new allocation is in the right size class, do nothing */ 4681 if (bg->size_class == size_class) 4682 return 0; 4683 /* 4684 * The new allocation is in a mismatched size class. 4685 * This means one of two things: 4686 * 4687 * 1. Two tasks in find_free_extent for different size_classes raced 4688 * and hit the same empty block_group. Make the loser try again. 4689 * 2. A call to find_free_extent got desperate enough to set 4690 * 'force_wrong_slab'. Don't change the size_class, but allow the 4691 * allocation. 4692 */ 4693 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4694 if (force_wrong_size_class) 4695 return 0; 4696 return -EAGAIN; 4697 } 4698 /* 4699 * The happy new block group case: the new allocation is the first 4700 * one in the block_group so we set size_class. 4701 */ 4702 bg->size_class = size_class; 4703 4704 return 0; 4705 } 4706 4707 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg) 4708 { 4709 if (btrfs_is_zoned(bg->fs_info)) 4710 return false; 4711 if (!btrfs_is_block_group_data_only(bg)) 4712 return false; 4713 return true; 4714 } 4715