1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-group.h" 6 #include "space-info.h" 7 #include "disk-io.h" 8 #include "free-space-cache.h" 9 #include "free-space-tree.h" 10 #include "volumes.h" 11 #include "transaction.h" 12 #include "ref-verify.h" 13 #include "sysfs.h" 14 #include "tree-log.h" 15 #include "delalloc-space.h" 16 #include "discard.h" 17 #include "raid56.h" 18 #include "zoned.h" 19 20 /* 21 * Return target flags in extended format or 0 if restripe for this chunk_type 22 * is not in progress 23 * 24 * Should be called with balance_lock held 25 */ 26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 27 { 28 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 29 u64 target = 0; 30 31 if (!bctl) 32 return 0; 33 34 if (flags & BTRFS_BLOCK_GROUP_DATA && 35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 43 } 44 45 return target; 46 } 47 48 /* 49 * @flags: available profiles in extended format (see ctree.h) 50 * 51 * Return reduced profile in chunk format. If profile changing is in progress 52 * (either running or paused) picks the target profile (if it's already 53 * available), otherwise falls back to plain reducing. 54 */ 55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 56 { 57 u64 num_devices = fs_info->fs_devices->rw_devices; 58 u64 target; 59 u64 raid_type; 60 u64 allowed = 0; 61 62 /* 63 * See if restripe for this chunk_type is in progress, if so try to 64 * reduce to the target profile 65 */ 66 spin_lock(&fs_info->balance_lock); 67 target = get_restripe_target(fs_info, flags); 68 if (target) { 69 spin_unlock(&fs_info->balance_lock); 70 return extended_to_chunk(target); 71 } 72 spin_unlock(&fs_info->balance_lock); 73 74 /* First, mask out the RAID levels which aren't possible */ 75 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 76 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 77 allowed |= btrfs_raid_array[raid_type].bg_flag; 78 } 79 allowed &= flags; 80 81 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 82 allowed = BTRFS_BLOCK_GROUP_RAID6; 83 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 84 allowed = BTRFS_BLOCK_GROUP_RAID5; 85 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 86 allowed = BTRFS_BLOCK_GROUP_RAID10; 87 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 88 allowed = BTRFS_BLOCK_GROUP_RAID1; 89 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 90 allowed = BTRFS_BLOCK_GROUP_RAID0; 91 92 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 93 94 return extended_to_chunk(flags | allowed); 95 } 96 97 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 98 { 99 unsigned seq; 100 u64 flags; 101 102 do { 103 flags = orig_flags; 104 seq = read_seqbegin(&fs_info->profiles_lock); 105 106 if (flags & BTRFS_BLOCK_GROUP_DATA) 107 flags |= fs_info->avail_data_alloc_bits; 108 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 109 flags |= fs_info->avail_system_alloc_bits; 110 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 111 flags |= fs_info->avail_metadata_alloc_bits; 112 } while (read_seqretry(&fs_info->profiles_lock, seq)); 113 114 return btrfs_reduce_alloc_profile(fs_info, flags); 115 } 116 117 void btrfs_get_block_group(struct btrfs_block_group *cache) 118 { 119 refcount_inc(&cache->refs); 120 } 121 122 void btrfs_put_block_group(struct btrfs_block_group *cache) 123 { 124 if (refcount_dec_and_test(&cache->refs)) { 125 WARN_ON(cache->pinned > 0); 126 WARN_ON(cache->reserved > 0); 127 128 /* 129 * A block_group shouldn't be on the discard_list anymore. 130 * Remove the block_group from the discard_list to prevent us 131 * from causing a panic due to NULL pointer dereference. 132 */ 133 if (WARN_ON(!list_empty(&cache->discard_list))) 134 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 135 cache); 136 137 /* 138 * If not empty, someone is still holding mutex of 139 * full_stripe_lock, which can only be released by caller. 140 * And it will definitely cause use-after-free when caller 141 * tries to release full stripe lock. 142 * 143 * No better way to resolve, but only to warn. 144 */ 145 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 146 kfree(cache->free_space_ctl); 147 kfree(cache); 148 } 149 } 150 151 /* 152 * This adds the block group to the fs_info rb tree for the block group cache 153 */ 154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 155 struct btrfs_block_group *block_group) 156 { 157 struct rb_node **p; 158 struct rb_node *parent = NULL; 159 struct btrfs_block_group *cache; 160 161 ASSERT(block_group->length != 0); 162 163 spin_lock(&info->block_group_cache_lock); 164 p = &info->block_group_cache_tree.rb_node; 165 166 while (*p) { 167 parent = *p; 168 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 169 if (block_group->start < cache->start) { 170 p = &(*p)->rb_left; 171 } else if (block_group->start > cache->start) { 172 p = &(*p)->rb_right; 173 } else { 174 spin_unlock(&info->block_group_cache_lock); 175 return -EEXIST; 176 } 177 } 178 179 rb_link_node(&block_group->cache_node, parent, p); 180 rb_insert_color(&block_group->cache_node, 181 &info->block_group_cache_tree); 182 183 if (info->first_logical_byte > block_group->start) 184 info->first_logical_byte = block_group->start; 185 186 spin_unlock(&info->block_group_cache_lock); 187 188 return 0; 189 } 190 191 /* 192 * This will return the block group at or after bytenr if contains is 0, else 193 * it will return the block group that contains the bytenr 194 */ 195 static struct btrfs_block_group *block_group_cache_tree_search( 196 struct btrfs_fs_info *info, u64 bytenr, int contains) 197 { 198 struct btrfs_block_group *cache, *ret = NULL; 199 struct rb_node *n; 200 u64 end, start; 201 202 spin_lock(&info->block_group_cache_lock); 203 n = info->block_group_cache_tree.rb_node; 204 205 while (n) { 206 cache = rb_entry(n, struct btrfs_block_group, cache_node); 207 end = cache->start + cache->length - 1; 208 start = cache->start; 209 210 if (bytenr < start) { 211 if (!contains && (!ret || start < ret->start)) 212 ret = cache; 213 n = n->rb_left; 214 } else if (bytenr > start) { 215 if (contains && bytenr <= end) { 216 ret = cache; 217 break; 218 } 219 n = n->rb_right; 220 } else { 221 ret = cache; 222 break; 223 } 224 } 225 if (ret) { 226 btrfs_get_block_group(ret); 227 if (bytenr == 0 && info->first_logical_byte > ret->start) 228 info->first_logical_byte = ret->start; 229 } 230 spin_unlock(&info->block_group_cache_lock); 231 232 return ret; 233 } 234 235 /* 236 * Return the block group that starts at or after bytenr 237 */ 238 struct btrfs_block_group *btrfs_lookup_first_block_group( 239 struct btrfs_fs_info *info, u64 bytenr) 240 { 241 return block_group_cache_tree_search(info, bytenr, 0); 242 } 243 244 /* 245 * Return the block group that contains the given bytenr 246 */ 247 struct btrfs_block_group *btrfs_lookup_block_group( 248 struct btrfs_fs_info *info, u64 bytenr) 249 { 250 return block_group_cache_tree_search(info, bytenr, 1); 251 } 252 253 struct btrfs_block_group *btrfs_next_block_group( 254 struct btrfs_block_group *cache) 255 { 256 struct btrfs_fs_info *fs_info = cache->fs_info; 257 struct rb_node *node; 258 259 spin_lock(&fs_info->block_group_cache_lock); 260 261 /* If our block group was removed, we need a full search. */ 262 if (RB_EMPTY_NODE(&cache->cache_node)) { 263 const u64 next_bytenr = cache->start + cache->length; 264 265 spin_unlock(&fs_info->block_group_cache_lock); 266 btrfs_put_block_group(cache); 267 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 268 } 269 node = rb_next(&cache->cache_node); 270 btrfs_put_block_group(cache); 271 if (node) { 272 cache = rb_entry(node, struct btrfs_block_group, cache_node); 273 btrfs_get_block_group(cache); 274 } else 275 cache = NULL; 276 spin_unlock(&fs_info->block_group_cache_lock); 277 return cache; 278 } 279 280 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 281 { 282 struct btrfs_block_group *bg; 283 bool ret = true; 284 285 bg = btrfs_lookup_block_group(fs_info, bytenr); 286 if (!bg) 287 return false; 288 289 spin_lock(&bg->lock); 290 if (bg->ro) 291 ret = false; 292 else 293 atomic_inc(&bg->nocow_writers); 294 spin_unlock(&bg->lock); 295 296 /* No put on block group, done by btrfs_dec_nocow_writers */ 297 if (!ret) 298 btrfs_put_block_group(bg); 299 300 return ret; 301 } 302 303 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 304 { 305 struct btrfs_block_group *bg; 306 307 bg = btrfs_lookup_block_group(fs_info, bytenr); 308 ASSERT(bg); 309 if (atomic_dec_and_test(&bg->nocow_writers)) 310 wake_up_var(&bg->nocow_writers); 311 /* 312 * Once for our lookup and once for the lookup done by a previous call 313 * to btrfs_inc_nocow_writers() 314 */ 315 btrfs_put_block_group(bg); 316 btrfs_put_block_group(bg); 317 } 318 319 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 320 { 321 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 322 } 323 324 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 325 const u64 start) 326 { 327 struct btrfs_block_group *bg; 328 329 bg = btrfs_lookup_block_group(fs_info, start); 330 ASSERT(bg); 331 if (atomic_dec_and_test(&bg->reservations)) 332 wake_up_var(&bg->reservations); 333 btrfs_put_block_group(bg); 334 } 335 336 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 337 { 338 struct btrfs_space_info *space_info = bg->space_info; 339 340 ASSERT(bg->ro); 341 342 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 343 return; 344 345 /* 346 * Our block group is read only but before we set it to read only, 347 * some task might have had allocated an extent from it already, but it 348 * has not yet created a respective ordered extent (and added it to a 349 * root's list of ordered extents). 350 * Therefore wait for any task currently allocating extents, since the 351 * block group's reservations counter is incremented while a read lock 352 * on the groups' semaphore is held and decremented after releasing 353 * the read access on that semaphore and creating the ordered extent. 354 */ 355 down_write(&space_info->groups_sem); 356 up_write(&space_info->groups_sem); 357 358 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 359 } 360 361 struct btrfs_caching_control *btrfs_get_caching_control( 362 struct btrfs_block_group *cache) 363 { 364 struct btrfs_caching_control *ctl; 365 366 spin_lock(&cache->lock); 367 if (!cache->caching_ctl) { 368 spin_unlock(&cache->lock); 369 return NULL; 370 } 371 372 ctl = cache->caching_ctl; 373 refcount_inc(&ctl->count); 374 spin_unlock(&cache->lock); 375 return ctl; 376 } 377 378 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 379 { 380 if (refcount_dec_and_test(&ctl->count)) 381 kfree(ctl); 382 } 383 384 /* 385 * When we wait for progress in the block group caching, its because our 386 * allocation attempt failed at least once. So, we must sleep and let some 387 * progress happen before we try again. 388 * 389 * This function will sleep at least once waiting for new free space to show 390 * up, and then it will check the block group free space numbers for our min 391 * num_bytes. Another option is to have it go ahead and look in the rbtree for 392 * a free extent of a given size, but this is a good start. 393 * 394 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 395 * any of the information in this block group. 396 */ 397 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 398 u64 num_bytes) 399 { 400 struct btrfs_caching_control *caching_ctl; 401 402 caching_ctl = btrfs_get_caching_control(cache); 403 if (!caching_ctl) 404 return; 405 406 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 407 (cache->free_space_ctl->free_space >= num_bytes)); 408 409 btrfs_put_caching_control(caching_ctl); 410 } 411 412 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 413 { 414 struct btrfs_caching_control *caching_ctl; 415 int ret = 0; 416 417 caching_ctl = btrfs_get_caching_control(cache); 418 if (!caching_ctl) 419 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 420 421 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 422 if (cache->cached == BTRFS_CACHE_ERROR) 423 ret = -EIO; 424 btrfs_put_caching_control(caching_ctl); 425 return ret; 426 } 427 428 static bool space_cache_v1_done(struct btrfs_block_group *cache) 429 { 430 bool ret; 431 432 spin_lock(&cache->lock); 433 ret = cache->cached != BTRFS_CACHE_FAST; 434 spin_unlock(&cache->lock); 435 436 return ret; 437 } 438 439 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache, 440 struct btrfs_caching_control *caching_ctl) 441 { 442 wait_event(caching_ctl->wait, space_cache_v1_done(cache)); 443 } 444 445 #ifdef CONFIG_BTRFS_DEBUG 446 static void fragment_free_space(struct btrfs_block_group *block_group) 447 { 448 struct btrfs_fs_info *fs_info = block_group->fs_info; 449 u64 start = block_group->start; 450 u64 len = block_group->length; 451 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 452 fs_info->nodesize : fs_info->sectorsize; 453 u64 step = chunk << 1; 454 455 while (len > chunk) { 456 btrfs_remove_free_space(block_group, start, chunk); 457 start += step; 458 if (len < step) 459 len = 0; 460 else 461 len -= step; 462 } 463 } 464 #endif 465 466 /* 467 * This is only called by btrfs_cache_block_group, since we could have freed 468 * extents we need to check the pinned_extents for any extents that can't be 469 * used yet since their free space will be released as soon as the transaction 470 * commits. 471 */ 472 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 473 { 474 struct btrfs_fs_info *info = block_group->fs_info; 475 u64 extent_start, extent_end, size, total_added = 0; 476 int ret; 477 478 while (start < end) { 479 ret = find_first_extent_bit(&info->excluded_extents, start, 480 &extent_start, &extent_end, 481 EXTENT_DIRTY | EXTENT_UPTODATE, 482 NULL); 483 if (ret) 484 break; 485 486 if (extent_start <= start) { 487 start = extent_end + 1; 488 } else if (extent_start > start && extent_start < end) { 489 size = extent_start - start; 490 total_added += size; 491 ret = btrfs_add_free_space_async_trimmed(block_group, 492 start, size); 493 BUG_ON(ret); /* -ENOMEM or logic error */ 494 start = extent_end + 1; 495 } else { 496 break; 497 } 498 } 499 500 if (start < end) { 501 size = end - start; 502 total_added += size; 503 ret = btrfs_add_free_space_async_trimmed(block_group, start, 504 size); 505 BUG_ON(ret); /* -ENOMEM or logic error */ 506 } 507 508 return total_added; 509 } 510 511 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 512 { 513 struct btrfs_block_group *block_group = caching_ctl->block_group; 514 struct btrfs_fs_info *fs_info = block_group->fs_info; 515 struct btrfs_root *extent_root = fs_info->extent_root; 516 struct btrfs_path *path; 517 struct extent_buffer *leaf; 518 struct btrfs_key key; 519 u64 total_found = 0; 520 u64 last = 0; 521 u32 nritems; 522 int ret; 523 bool wakeup = true; 524 525 path = btrfs_alloc_path(); 526 if (!path) 527 return -ENOMEM; 528 529 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 530 531 #ifdef CONFIG_BTRFS_DEBUG 532 /* 533 * If we're fragmenting we don't want to make anybody think we can 534 * allocate from this block group until we've had a chance to fragment 535 * the free space. 536 */ 537 if (btrfs_should_fragment_free_space(block_group)) 538 wakeup = false; 539 #endif 540 /* 541 * We don't want to deadlock with somebody trying to allocate a new 542 * extent for the extent root while also trying to search the extent 543 * root to add free space. So we skip locking and search the commit 544 * root, since its read-only 545 */ 546 path->skip_locking = 1; 547 path->search_commit_root = 1; 548 path->reada = READA_FORWARD; 549 550 key.objectid = last; 551 key.offset = 0; 552 key.type = BTRFS_EXTENT_ITEM_KEY; 553 554 next: 555 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 556 if (ret < 0) 557 goto out; 558 559 leaf = path->nodes[0]; 560 nritems = btrfs_header_nritems(leaf); 561 562 while (1) { 563 if (btrfs_fs_closing(fs_info) > 1) { 564 last = (u64)-1; 565 break; 566 } 567 568 if (path->slots[0] < nritems) { 569 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 570 } else { 571 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 572 if (ret) 573 break; 574 575 if (need_resched() || 576 rwsem_is_contended(&fs_info->commit_root_sem)) { 577 if (wakeup) 578 caching_ctl->progress = last; 579 btrfs_release_path(path); 580 up_read(&fs_info->commit_root_sem); 581 mutex_unlock(&caching_ctl->mutex); 582 cond_resched(); 583 mutex_lock(&caching_ctl->mutex); 584 down_read(&fs_info->commit_root_sem); 585 goto next; 586 } 587 588 ret = btrfs_next_leaf(extent_root, path); 589 if (ret < 0) 590 goto out; 591 if (ret) 592 break; 593 leaf = path->nodes[0]; 594 nritems = btrfs_header_nritems(leaf); 595 continue; 596 } 597 598 if (key.objectid < last) { 599 key.objectid = last; 600 key.offset = 0; 601 key.type = BTRFS_EXTENT_ITEM_KEY; 602 603 if (wakeup) 604 caching_ctl->progress = last; 605 btrfs_release_path(path); 606 goto next; 607 } 608 609 if (key.objectid < block_group->start) { 610 path->slots[0]++; 611 continue; 612 } 613 614 if (key.objectid >= block_group->start + block_group->length) 615 break; 616 617 if (key.type == BTRFS_EXTENT_ITEM_KEY || 618 key.type == BTRFS_METADATA_ITEM_KEY) { 619 total_found += add_new_free_space(block_group, last, 620 key.objectid); 621 if (key.type == BTRFS_METADATA_ITEM_KEY) 622 last = key.objectid + 623 fs_info->nodesize; 624 else 625 last = key.objectid + key.offset; 626 627 if (total_found > CACHING_CTL_WAKE_UP) { 628 total_found = 0; 629 if (wakeup) 630 wake_up(&caching_ctl->wait); 631 } 632 } 633 path->slots[0]++; 634 } 635 ret = 0; 636 637 total_found += add_new_free_space(block_group, last, 638 block_group->start + block_group->length); 639 caching_ctl->progress = (u64)-1; 640 641 out: 642 btrfs_free_path(path); 643 return ret; 644 } 645 646 static noinline void caching_thread(struct btrfs_work *work) 647 { 648 struct btrfs_block_group *block_group; 649 struct btrfs_fs_info *fs_info; 650 struct btrfs_caching_control *caching_ctl; 651 int ret; 652 653 caching_ctl = container_of(work, struct btrfs_caching_control, work); 654 block_group = caching_ctl->block_group; 655 fs_info = block_group->fs_info; 656 657 mutex_lock(&caching_ctl->mutex); 658 down_read(&fs_info->commit_root_sem); 659 660 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 661 ret = load_free_space_cache(block_group); 662 if (ret == 1) { 663 ret = 0; 664 goto done; 665 } 666 667 /* 668 * We failed to load the space cache, set ourselves to 669 * CACHE_STARTED and carry on. 670 */ 671 spin_lock(&block_group->lock); 672 block_group->cached = BTRFS_CACHE_STARTED; 673 spin_unlock(&block_group->lock); 674 wake_up(&caching_ctl->wait); 675 } 676 677 /* 678 * If we are in the transaction that populated the free space tree we 679 * can't actually cache from the free space tree as our commit root and 680 * real root are the same, so we could change the contents of the blocks 681 * while caching. Instead do the slow caching in this case, and after 682 * the transaction has committed we will be safe. 683 */ 684 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 685 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 686 ret = load_free_space_tree(caching_ctl); 687 else 688 ret = load_extent_tree_free(caching_ctl); 689 done: 690 spin_lock(&block_group->lock); 691 block_group->caching_ctl = NULL; 692 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 693 spin_unlock(&block_group->lock); 694 695 #ifdef CONFIG_BTRFS_DEBUG 696 if (btrfs_should_fragment_free_space(block_group)) { 697 u64 bytes_used; 698 699 spin_lock(&block_group->space_info->lock); 700 spin_lock(&block_group->lock); 701 bytes_used = block_group->length - block_group->used; 702 block_group->space_info->bytes_used += bytes_used >> 1; 703 spin_unlock(&block_group->lock); 704 spin_unlock(&block_group->space_info->lock); 705 fragment_free_space(block_group); 706 } 707 #endif 708 709 caching_ctl->progress = (u64)-1; 710 711 up_read(&fs_info->commit_root_sem); 712 btrfs_free_excluded_extents(block_group); 713 mutex_unlock(&caching_ctl->mutex); 714 715 wake_up(&caching_ctl->wait); 716 717 btrfs_put_caching_control(caching_ctl); 718 btrfs_put_block_group(block_group); 719 } 720 721 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 722 { 723 DEFINE_WAIT(wait); 724 struct btrfs_fs_info *fs_info = cache->fs_info; 725 struct btrfs_caching_control *caching_ctl = NULL; 726 int ret = 0; 727 728 /* Allocator for zoned filesystems does not use the cache at all */ 729 if (btrfs_is_zoned(fs_info)) 730 return 0; 731 732 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 733 if (!caching_ctl) 734 return -ENOMEM; 735 736 INIT_LIST_HEAD(&caching_ctl->list); 737 mutex_init(&caching_ctl->mutex); 738 init_waitqueue_head(&caching_ctl->wait); 739 caching_ctl->block_group = cache; 740 caching_ctl->progress = cache->start; 741 refcount_set(&caching_ctl->count, 2); 742 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 743 744 spin_lock(&cache->lock); 745 if (cache->cached != BTRFS_CACHE_NO) { 746 kfree(caching_ctl); 747 748 caching_ctl = cache->caching_ctl; 749 if (caching_ctl) 750 refcount_inc(&caching_ctl->count); 751 spin_unlock(&cache->lock); 752 goto out; 753 } 754 WARN_ON(cache->caching_ctl); 755 cache->caching_ctl = caching_ctl; 756 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 757 cache->cached = BTRFS_CACHE_FAST; 758 else 759 cache->cached = BTRFS_CACHE_STARTED; 760 cache->has_caching_ctl = 1; 761 spin_unlock(&cache->lock); 762 763 spin_lock(&fs_info->block_group_cache_lock); 764 refcount_inc(&caching_ctl->count); 765 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 766 spin_unlock(&fs_info->block_group_cache_lock); 767 768 btrfs_get_block_group(cache); 769 770 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 771 out: 772 if (load_cache_only && caching_ctl) 773 btrfs_wait_space_cache_v1_finished(cache, caching_ctl); 774 if (caching_ctl) 775 btrfs_put_caching_control(caching_ctl); 776 777 return ret; 778 } 779 780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 781 { 782 u64 extra_flags = chunk_to_extended(flags) & 783 BTRFS_EXTENDED_PROFILE_MASK; 784 785 write_seqlock(&fs_info->profiles_lock); 786 if (flags & BTRFS_BLOCK_GROUP_DATA) 787 fs_info->avail_data_alloc_bits &= ~extra_flags; 788 if (flags & BTRFS_BLOCK_GROUP_METADATA) 789 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 790 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 791 fs_info->avail_system_alloc_bits &= ~extra_flags; 792 write_sequnlock(&fs_info->profiles_lock); 793 } 794 795 /* 796 * Clear incompat bits for the following feature(s): 797 * 798 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 799 * in the whole filesystem 800 * 801 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 802 */ 803 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 804 { 805 bool found_raid56 = false; 806 bool found_raid1c34 = false; 807 808 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 809 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 810 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 811 struct list_head *head = &fs_info->space_info; 812 struct btrfs_space_info *sinfo; 813 814 list_for_each_entry_rcu(sinfo, head, list) { 815 down_read(&sinfo->groups_sem); 816 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 817 found_raid56 = true; 818 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 819 found_raid56 = true; 820 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 821 found_raid1c34 = true; 822 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 823 found_raid1c34 = true; 824 up_read(&sinfo->groups_sem); 825 } 826 if (!found_raid56) 827 btrfs_clear_fs_incompat(fs_info, RAID56); 828 if (!found_raid1c34) 829 btrfs_clear_fs_incompat(fs_info, RAID1C34); 830 } 831 } 832 833 static int remove_block_group_item(struct btrfs_trans_handle *trans, 834 struct btrfs_path *path, 835 struct btrfs_block_group *block_group) 836 { 837 struct btrfs_fs_info *fs_info = trans->fs_info; 838 struct btrfs_root *root; 839 struct btrfs_key key; 840 int ret; 841 842 root = fs_info->extent_root; 843 key.objectid = block_group->start; 844 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 845 key.offset = block_group->length; 846 847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 848 if (ret > 0) 849 ret = -ENOENT; 850 if (ret < 0) 851 return ret; 852 853 ret = btrfs_del_item(trans, root, path); 854 return ret; 855 } 856 857 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 858 u64 group_start, struct extent_map *em) 859 { 860 struct btrfs_fs_info *fs_info = trans->fs_info; 861 struct btrfs_path *path; 862 struct btrfs_block_group *block_group; 863 struct btrfs_free_cluster *cluster; 864 struct inode *inode; 865 struct kobject *kobj = NULL; 866 int ret; 867 int index; 868 int factor; 869 struct btrfs_caching_control *caching_ctl = NULL; 870 bool remove_em; 871 bool remove_rsv = false; 872 873 block_group = btrfs_lookup_block_group(fs_info, group_start); 874 BUG_ON(!block_group); 875 BUG_ON(!block_group->ro); 876 877 trace_btrfs_remove_block_group(block_group); 878 /* 879 * Free the reserved super bytes from this block group before 880 * remove it. 881 */ 882 btrfs_free_excluded_extents(block_group); 883 btrfs_free_ref_tree_range(fs_info, block_group->start, 884 block_group->length); 885 886 index = btrfs_bg_flags_to_raid_index(block_group->flags); 887 factor = btrfs_bg_type_to_factor(block_group->flags); 888 889 /* make sure this block group isn't part of an allocation cluster */ 890 cluster = &fs_info->data_alloc_cluster; 891 spin_lock(&cluster->refill_lock); 892 btrfs_return_cluster_to_free_space(block_group, cluster); 893 spin_unlock(&cluster->refill_lock); 894 895 /* 896 * make sure this block group isn't part of a metadata 897 * allocation cluster 898 */ 899 cluster = &fs_info->meta_alloc_cluster; 900 spin_lock(&cluster->refill_lock); 901 btrfs_return_cluster_to_free_space(block_group, cluster); 902 spin_unlock(&cluster->refill_lock); 903 904 btrfs_clear_treelog_bg(block_group); 905 906 path = btrfs_alloc_path(); 907 if (!path) { 908 ret = -ENOMEM; 909 goto out; 910 } 911 912 /* 913 * get the inode first so any iput calls done for the io_list 914 * aren't the final iput (no unlinks allowed now) 915 */ 916 inode = lookup_free_space_inode(block_group, path); 917 918 mutex_lock(&trans->transaction->cache_write_mutex); 919 /* 920 * Make sure our free space cache IO is done before removing the 921 * free space inode 922 */ 923 spin_lock(&trans->transaction->dirty_bgs_lock); 924 if (!list_empty(&block_group->io_list)) { 925 list_del_init(&block_group->io_list); 926 927 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 928 929 spin_unlock(&trans->transaction->dirty_bgs_lock); 930 btrfs_wait_cache_io(trans, block_group, path); 931 btrfs_put_block_group(block_group); 932 spin_lock(&trans->transaction->dirty_bgs_lock); 933 } 934 935 if (!list_empty(&block_group->dirty_list)) { 936 list_del_init(&block_group->dirty_list); 937 remove_rsv = true; 938 btrfs_put_block_group(block_group); 939 } 940 spin_unlock(&trans->transaction->dirty_bgs_lock); 941 mutex_unlock(&trans->transaction->cache_write_mutex); 942 943 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 944 if (ret) 945 goto out; 946 947 spin_lock(&fs_info->block_group_cache_lock); 948 rb_erase(&block_group->cache_node, 949 &fs_info->block_group_cache_tree); 950 RB_CLEAR_NODE(&block_group->cache_node); 951 952 /* Once for the block groups rbtree */ 953 btrfs_put_block_group(block_group); 954 955 if (fs_info->first_logical_byte == block_group->start) 956 fs_info->first_logical_byte = (u64)-1; 957 spin_unlock(&fs_info->block_group_cache_lock); 958 959 down_write(&block_group->space_info->groups_sem); 960 /* 961 * we must use list_del_init so people can check to see if they 962 * are still on the list after taking the semaphore 963 */ 964 list_del_init(&block_group->list); 965 if (list_empty(&block_group->space_info->block_groups[index])) { 966 kobj = block_group->space_info->block_group_kobjs[index]; 967 block_group->space_info->block_group_kobjs[index] = NULL; 968 clear_avail_alloc_bits(fs_info, block_group->flags); 969 } 970 up_write(&block_group->space_info->groups_sem); 971 clear_incompat_bg_bits(fs_info, block_group->flags); 972 if (kobj) { 973 kobject_del(kobj); 974 kobject_put(kobj); 975 } 976 977 if (block_group->has_caching_ctl) 978 caching_ctl = btrfs_get_caching_control(block_group); 979 if (block_group->cached == BTRFS_CACHE_STARTED) 980 btrfs_wait_block_group_cache_done(block_group); 981 if (block_group->has_caching_ctl) { 982 spin_lock(&fs_info->block_group_cache_lock); 983 if (!caching_ctl) { 984 struct btrfs_caching_control *ctl; 985 986 list_for_each_entry(ctl, 987 &fs_info->caching_block_groups, list) 988 if (ctl->block_group == block_group) { 989 caching_ctl = ctl; 990 refcount_inc(&caching_ctl->count); 991 break; 992 } 993 } 994 if (caching_ctl) 995 list_del_init(&caching_ctl->list); 996 spin_unlock(&fs_info->block_group_cache_lock); 997 if (caching_ctl) { 998 /* Once for the caching bgs list and once for us. */ 999 btrfs_put_caching_control(caching_ctl); 1000 btrfs_put_caching_control(caching_ctl); 1001 } 1002 } 1003 1004 spin_lock(&trans->transaction->dirty_bgs_lock); 1005 WARN_ON(!list_empty(&block_group->dirty_list)); 1006 WARN_ON(!list_empty(&block_group->io_list)); 1007 spin_unlock(&trans->transaction->dirty_bgs_lock); 1008 1009 btrfs_remove_free_space_cache(block_group); 1010 1011 spin_lock(&block_group->space_info->lock); 1012 list_del_init(&block_group->ro_list); 1013 1014 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1015 WARN_ON(block_group->space_info->total_bytes 1016 < block_group->length); 1017 WARN_ON(block_group->space_info->bytes_readonly 1018 < block_group->length - block_group->zone_unusable); 1019 WARN_ON(block_group->space_info->bytes_zone_unusable 1020 < block_group->zone_unusable); 1021 WARN_ON(block_group->space_info->disk_total 1022 < block_group->length * factor); 1023 } 1024 block_group->space_info->total_bytes -= block_group->length; 1025 block_group->space_info->bytes_readonly -= 1026 (block_group->length - block_group->zone_unusable); 1027 block_group->space_info->bytes_zone_unusable -= 1028 block_group->zone_unusable; 1029 block_group->space_info->disk_total -= block_group->length * factor; 1030 1031 spin_unlock(&block_group->space_info->lock); 1032 1033 /* 1034 * Remove the free space for the block group from the free space tree 1035 * and the block group's item from the extent tree before marking the 1036 * block group as removed. This is to prevent races with tasks that 1037 * freeze and unfreeze a block group, this task and another task 1038 * allocating a new block group - the unfreeze task ends up removing 1039 * the block group's extent map before the task calling this function 1040 * deletes the block group item from the extent tree, allowing for 1041 * another task to attempt to create another block group with the same 1042 * item key (and failing with -EEXIST and a transaction abort). 1043 */ 1044 ret = remove_block_group_free_space(trans, block_group); 1045 if (ret) 1046 goto out; 1047 1048 ret = remove_block_group_item(trans, path, block_group); 1049 if (ret < 0) 1050 goto out; 1051 1052 spin_lock(&block_group->lock); 1053 block_group->removed = 1; 1054 /* 1055 * At this point trimming or scrub can't start on this block group, 1056 * because we removed the block group from the rbtree 1057 * fs_info->block_group_cache_tree so no one can't find it anymore and 1058 * even if someone already got this block group before we removed it 1059 * from the rbtree, they have already incremented block_group->frozen - 1060 * if they didn't, for the trimming case they won't find any free space 1061 * entries because we already removed them all when we called 1062 * btrfs_remove_free_space_cache(). 1063 * 1064 * And we must not remove the extent map from the fs_info->mapping_tree 1065 * to prevent the same logical address range and physical device space 1066 * ranges from being reused for a new block group. This is needed to 1067 * avoid races with trimming and scrub. 1068 * 1069 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1070 * completely transactionless, so while it is trimming a range the 1071 * currently running transaction might finish and a new one start, 1072 * allowing for new block groups to be created that can reuse the same 1073 * physical device locations unless we take this special care. 1074 * 1075 * There may also be an implicit trim operation if the file system 1076 * is mounted with -odiscard. The same protections must remain 1077 * in place until the extents have been discarded completely when 1078 * the transaction commit has completed. 1079 */ 1080 remove_em = (atomic_read(&block_group->frozen) == 0); 1081 spin_unlock(&block_group->lock); 1082 1083 if (remove_em) { 1084 struct extent_map_tree *em_tree; 1085 1086 em_tree = &fs_info->mapping_tree; 1087 write_lock(&em_tree->lock); 1088 remove_extent_mapping(em_tree, em); 1089 write_unlock(&em_tree->lock); 1090 /* once for the tree */ 1091 free_extent_map(em); 1092 } 1093 1094 out: 1095 /* Once for the lookup reference */ 1096 btrfs_put_block_group(block_group); 1097 if (remove_rsv) 1098 btrfs_delayed_refs_rsv_release(fs_info, 1); 1099 btrfs_free_path(path); 1100 return ret; 1101 } 1102 1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1104 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1105 { 1106 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1107 struct extent_map *em; 1108 struct map_lookup *map; 1109 unsigned int num_items; 1110 1111 read_lock(&em_tree->lock); 1112 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1113 read_unlock(&em_tree->lock); 1114 ASSERT(em && em->start == chunk_offset); 1115 1116 /* 1117 * We need to reserve 3 + N units from the metadata space info in order 1118 * to remove a block group (done at btrfs_remove_chunk() and at 1119 * btrfs_remove_block_group()), which are used for: 1120 * 1121 * 1 unit for adding the free space inode's orphan (located in the tree 1122 * of tree roots). 1123 * 1 unit for deleting the block group item (located in the extent 1124 * tree). 1125 * 1 unit for deleting the free space item (located in tree of tree 1126 * roots). 1127 * N units for deleting N device extent items corresponding to each 1128 * stripe (located in the device tree). 1129 * 1130 * In order to remove a block group we also need to reserve units in the 1131 * system space info in order to update the chunk tree (update one or 1132 * more device items and remove one chunk item), but this is done at 1133 * btrfs_remove_chunk() through a call to check_system_chunk(). 1134 */ 1135 map = em->map_lookup; 1136 num_items = 3 + map->num_stripes; 1137 free_extent_map(em); 1138 1139 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 1140 num_items); 1141 } 1142 1143 /* 1144 * Mark block group @cache read-only, so later write won't happen to block 1145 * group @cache. 1146 * 1147 * If @force is not set, this function will only mark the block group readonly 1148 * if we have enough free space (1M) in other metadata/system block groups. 1149 * If @force is not set, this function will mark the block group readonly 1150 * without checking free space. 1151 * 1152 * NOTE: This function doesn't care if other block groups can contain all the 1153 * data in this block group. That check should be done by relocation routine, 1154 * not this function. 1155 */ 1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1157 { 1158 struct btrfs_space_info *sinfo = cache->space_info; 1159 u64 num_bytes; 1160 int ret = -ENOSPC; 1161 1162 spin_lock(&sinfo->lock); 1163 spin_lock(&cache->lock); 1164 1165 if (cache->ro) { 1166 cache->ro++; 1167 ret = 0; 1168 goto out; 1169 } 1170 1171 num_bytes = cache->length - cache->reserved - cache->pinned - 1172 cache->bytes_super - cache->zone_unusable - cache->used; 1173 1174 /* 1175 * Data never overcommits, even in mixed mode, so do just the straight 1176 * check of left over space in how much we have allocated. 1177 */ 1178 if (force) { 1179 ret = 0; 1180 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1181 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1182 1183 /* 1184 * Here we make sure if we mark this bg RO, we still have enough 1185 * free space as buffer. 1186 */ 1187 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1188 ret = 0; 1189 } else { 1190 /* 1191 * We overcommit metadata, so we need to do the 1192 * btrfs_can_overcommit check here, and we need to pass in 1193 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1194 * leeway to allow us to mark this block group as read only. 1195 */ 1196 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1197 BTRFS_RESERVE_NO_FLUSH)) 1198 ret = 0; 1199 } 1200 1201 if (!ret) { 1202 sinfo->bytes_readonly += num_bytes; 1203 if (btrfs_is_zoned(cache->fs_info)) { 1204 /* Migrate zone_unusable bytes to readonly */ 1205 sinfo->bytes_readonly += cache->zone_unusable; 1206 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1207 cache->zone_unusable = 0; 1208 } 1209 cache->ro++; 1210 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1211 } 1212 out: 1213 spin_unlock(&cache->lock); 1214 spin_unlock(&sinfo->lock); 1215 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1216 btrfs_info(cache->fs_info, 1217 "unable to make block group %llu ro", cache->start); 1218 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1219 } 1220 return ret; 1221 } 1222 1223 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1224 struct btrfs_block_group *bg) 1225 { 1226 struct btrfs_fs_info *fs_info = bg->fs_info; 1227 struct btrfs_transaction *prev_trans = NULL; 1228 const u64 start = bg->start; 1229 const u64 end = start + bg->length - 1; 1230 int ret; 1231 1232 spin_lock(&fs_info->trans_lock); 1233 if (trans->transaction->list.prev != &fs_info->trans_list) { 1234 prev_trans = list_last_entry(&trans->transaction->list, 1235 struct btrfs_transaction, list); 1236 refcount_inc(&prev_trans->use_count); 1237 } 1238 spin_unlock(&fs_info->trans_lock); 1239 1240 /* 1241 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1242 * btrfs_finish_extent_commit(). If we are at transaction N, another 1243 * task might be running finish_extent_commit() for the previous 1244 * transaction N - 1, and have seen a range belonging to the block 1245 * group in pinned_extents before we were able to clear the whole block 1246 * group range from pinned_extents. This means that task can lookup for 1247 * the block group after we unpinned it from pinned_extents and removed 1248 * it, leading to a BUG_ON() at unpin_extent_range(). 1249 */ 1250 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1251 if (prev_trans) { 1252 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1253 EXTENT_DIRTY); 1254 if (ret) 1255 goto out; 1256 } 1257 1258 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1259 EXTENT_DIRTY); 1260 out: 1261 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1262 if (prev_trans) 1263 btrfs_put_transaction(prev_trans); 1264 1265 return ret == 0; 1266 } 1267 1268 /* 1269 * Process the unused_bgs list and remove any that don't have any allocated 1270 * space inside of them. 1271 */ 1272 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1273 { 1274 struct btrfs_block_group *block_group; 1275 struct btrfs_space_info *space_info; 1276 struct btrfs_trans_handle *trans; 1277 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1278 int ret = 0; 1279 1280 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1281 return; 1282 1283 /* 1284 * Long running balances can keep us blocked here for eternity, so 1285 * simply skip deletion if we're unable to get the mutex. 1286 */ 1287 if (!mutex_trylock(&fs_info->delete_unused_bgs_mutex)) 1288 return; 1289 1290 spin_lock(&fs_info->unused_bgs_lock); 1291 while (!list_empty(&fs_info->unused_bgs)) { 1292 int trimming; 1293 1294 block_group = list_first_entry(&fs_info->unused_bgs, 1295 struct btrfs_block_group, 1296 bg_list); 1297 list_del_init(&block_group->bg_list); 1298 1299 space_info = block_group->space_info; 1300 1301 if (ret || btrfs_mixed_space_info(space_info)) { 1302 btrfs_put_block_group(block_group); 1303 continue; 1304 } 1305 spin_unlock(&fs_info->unused_bgs_lock); 1306 1307 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1308 1309 /* Don't want to race with allocators so take the groups_sem */ 1310 down_write(&space_info->groups_sem); 1311 1312 /* 1313 * Async discard moves the final block group discard to be prior 1314 * to the unused_bgs code path. Therefore, if it's not fully 1315 * trimmed, punt it back to the async discard lists. 1316 */ 1317 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1318 !btrfs_is_free_space_trimmed(block_group)) { 1319 trace_btrfs_skip_unused_block_group(block_group); 1320 up_write(&space_info->groups_sem); 1321 /* Requeue if we failed because of async discard */ 1322 btrfs_discard_queue_work(&fs_info->discard_ctl, 1323 block_group); 1324 goto next; 1325 } 1326 1327 spin_lock(&block_group->lock); 1328 if (block_group->reserved || block_group->pinned || 1329 block_group->used || block_group->ro || 1330 list_is_singular(&block_group->list)) { 1331 /* 1332 * We want to bail if we made new allocations or have 1333 * outstanding allocations in this block group. We do 1334 * the ro check in case balance is currently acting on 1335 * this block group. 1336 */ 1337 trace_btrfs_skip_unused_block_group(block_group); 1338 spin_unlock(&block_group->lock); 1339 up_write(&space_info->groups_sem); 1340 goto next; 1341 } 1342 spin_unlock(&block_group->lock); 1343 1344 /* We don't want to force the issue, only flip if it's ok. */ 1345 ret = inc_block_group_ro(block_group, 0); 1346 up_write(&space_info->groups_sem); 1347 if (ret < 0) { 1348 ret = 0; 1349 goto next; 1350 } 1351 1352 /* 1353 * Want to do this before we do anything else so we can recover 1354 * properly if we fail to join the transaction. 1355 */ 1356 trans = btrfs_start_trans_remove_block_group(fs_info, 1357 block_group->start); 1358 if (IS_ERR(trans)) { 1359 btrfs_dec_block_group_ro(block_group); 1360 ret = PTR_ERR(trans); 1361 goto next; 1362 } 1363 1364 /* 1365 * We could have pending pinned extents for this block group, 1366 * just delete them, we don't care about them anymore. 1367 */ 1368 if (!clean_pinned_extents(trans, block_group)) { 1369 btrfs_dec_block_group_ro(block_group); 1370 goto end_trans; 1371 } 1372 1373 /* 1374 * At this point, the block_group is read only and should fail 1375 * new allocations. However, btrfs_finish_extent_commit() can 1376 * cause this block_group to be placed back on the discard 1377 * lists because now the block_group isn't fully discarded. 1378 * Bail here and try again later after discarding everything. 1379 */ 1380 spin_lock(&fs_info->discard_ctl.lock); 1381 if (!list_empty(&block_group->discard_list)) { 1382 spin_unlock(&fs_info->discard_ctl.lock); 1383 btrfs_dec_block_group_ro(block_group); 1384 btrfs_discard_queue_work(&fs_info->discard_ctl, 1385 block_group); 1386 goto end_trans; 1387 } 1388 spin_unlock(&fs_info->discard_ctl.lock); 1389 1390 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1391 spin_lock(&space_info->lock); 1392 spin_lock(&block_group->lock); 1393 1394 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1395 -block_group->pinned); 1396 space_info->bytes_readonly += block_group->pinned; 1397 __btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned); 1398 block_group->pinned = 0; 1399 1400 spin_unlock(&block_group->lock); 1401 spin_unlock(&space_info->lock); 1402 1403 /* 1404 * The normal path here is an unused block group is passed here, 1405 * then trimming is handled in the transaction commit path. 1406 * Async discard interposes before this to do the trimming 1407 * before coming down the unused block group path as trimming 1408 * will no longer be done later in the transaction commit path. 1409 */ 1410 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1411 goto flip_async; 1412 1413 /* 1414 * DISCARD can flip during remount. On zoned filesystems, we 1415 * need to reset sequential-required zones. 1416 */ 1417 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1418 btrfs_is_zoned(fs_info); 1419 1420 /* Implicit trim during transaction commit. */ 1421 if (trimming) 1422 btrfs_freeze_block_group(block_group); 1423 1424 /* 1425 * Btrfs_remove_chunk will abort the transaction if things go 1426 * horribly wrong. 1427 */ 1428 ret = btrfs_remove_chunk(trans, block_group->start); 1429 1430 if (ret) { 1431 if (trimming) 1432 btrfs_unfreeze_block_group(block_group); 1433 goto end_trans; 1434 } 1435 1436 /* 1437 * If we're not mounted with -odiscard, we can just forget 1438 * about this block group. Otherwise we'll need to wait 1439 * until transaction commit to do the actual discard. 1440 */ 1441 if (trimming) { 1442 spin_lock(&fs_info->unused_bgs_lock); 1443 /* 1444 * A concurrent scrub might have added us to the list 1445 * fs_info->unused_bgs, so use a list_move operation 1446 * to add the block group to the deleted_bgs list. 1447 */ 1448 list_move(&block_group->bg_list, 1449 &trans->transaction->deleted_bgs); 1450 spin_unlock(&fs_info->unused_bgs_lock); 1451 btrfs_get_block_group(block_group); 1452 } 1453 end_trans: 1454 btrfs_end_transaction(trans); 1455 next: 1456 btrfs_put_block_group(block_group); 1457 spin_lock(&fs_info->unused_bgs_lock); 1458 } 1459 spin_unlock(&fs_info->unused_bgs_lock); 1460 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1461 return; 1462 1463 flip_async: 1464 btrfs_end_transaction(trans); 1465 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1466 btrfs_put_block_group(block_group); 1467 btrfs_discard_punt_unused_bgs_list(fs_info); 1468 } 1469 1470 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1471 { 1472 struct btrfs_fs_info *fs_info = bg->fs_info; 1473 1474 spin_lock(&fs_info->unused_bgs_lock); 1475 if (list_empty(&bg->bg_list)) { 1476 btrfs_get_block_group(bg); 1477 trace_btrfs_add_unused_block_group(bg); 1478 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1479 } 1480 spin_unlock(&fs_info->unused_bgs_lock); 1481 } 1482 1483 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1484 struct btrfs_path *path) 1485 { 1486 struct extent_map_tree *em_tree; 1487 struct extent_map *em; 1488 struct btrfs_block_group_item bg; 1489 struct extent_buffer *leaf; 1490 int slot; 1491 u64 flags; 1492 int ret = 0; 1493 1494 slot = path->slots[0]; 1495 leaf = path->nodes[0]; 1496 1497 em_tree = &fs_info->mapping_tree; 1498 read_lock(&em_tree->lock); 1499 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1500 read_unlock(&em_tree->lock); 1501 if (!em) { 1502 btrfs_err(fs_info, 1503 "logical %llu len %llu found bg but no related chunk", 1504 key->objectid, key->offset); 1505 return -ENOENT; 1506 } 1507 1508 if (em->start != key->objectid || em->len != key->offset) { 1509 btrfs_err(fs_info, 1510 "block group %llu len %llu mismatch with chunk %llu len %llu", 1511 key->objectid, key->offset, em->start, em->len); 1512 ret = -EUCLEAN; 1513 goto out_free_em; 1514 } 1515 1516 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1517 sizeof(bg)); 1518 flags = btrfs_stack_block_group_flags(&bg) & 1519 BTRFS_BLOCK_GROUP_TYPE_MASK; 1520 1521 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1522 btrfs_err(fs_info, 1523 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1524 key->objectid, key->offset, flags, 1525 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1526 ret = -EUCLEAN; 1527 } 1528 1529 out_free_em: 1530 free_extent_map(em); 1531 return ret; 1532 } 1533 1534 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1535 struct btrfs_path *path, 1536 struct btrfs_key *key) 1537 { 1538 struct btrfs_root *root = fs_info->extent_root; 1539 int ret; 1540 struct btrfs_key found_key; 1541 struct extent_buffer *leaf; 1542 int slot; 1543 1544 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1545 if (ret < 0) 1546 return ret; 1547 1548 while (1) { 1549 slot = path->slots[0]; 1550 leaf = path->nodes[0]; 1551 if (slot >= btrfs_header_nritems(leaf)) { 1552 ret = btrfs_next_leaf(root, path); 1553 if (ret == 0) 1554 continue; 1555 if (ret < 0) 1556 goto out; 1557 break; 1558 } 1559 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1560 1561 if (found_key.objectid >= key->objectid && 1562 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1563 ret = read_bg_from_eb(fs_info, &found_key, path); 1564 break; 1565 } 1566 1567 path->slots[0]++; 1568 } 1569 out: 1570 return ret; 1571 } 1572 1573 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1574 { 1575 u64 extra_flags = chunk_to_extended(flags) & 1576 BTRFS_EXTENDED_PROFILE_MASK; 1577 1578 write_seqlock(&fs_info->profiles_lock); 1579 if (flags & BTRFS_BLOCK_GROUP_DATA) 1580 fs_info->avail_data_alloc_bits |= extra_flags; 1581 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1582 fs_info->avail_metadata_alloc_bits |= extra_flags; 1583 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1584 fs_info->avail_system_alloc_bits |= extra_flags; 1585 write_sequnlock(&fs_info->profiles_lock); 1586 } 1587 1588 /** 1589 * Map a physical disk address to a list of logical addresses 1590 * 1591 * @fs_info: the filesystem 1592 * @chunk_start: logical address of block group 1593 * @bdev: physical device to resolve, can be NULL to indicate any device 1594 * @physical: physical address to map to logical addresses 1595 * @logical: return array of logical addresses which map to @physical 1596 * @naddrs: length of @logical 1597 * @stripe_len: size of IO stripe for the given block group 1598 * 1599 * Maps a particular @physical disk address to a list of @logical addresses. 1600 * Used primarily to exclude those portions of a block group that contain super 1601 * block copies. 1602 */ 1603 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1604 struct block_device *bdev, u64 physical, u64 **logical, 1605 int *naddrs, int *stripe_len) 1606 { 1607 struct extent_map *em; 1608 struct map_lookup *map; 1609 u64 *buf; 1610 u64 bytenr; 1611 u64 data_stripe_length; 1612 u64 io_stripe_size; 1613 int i, nr = 0; 1614 int ret = 0; 1615 1616 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1617 if (IS_ERR(em)) 1618 return -EIO; 1619 1620 map = em->map_lookup; 1621 data_stripe_length = em->orig_block_len; 1622 io_stripe_size = map->stripe_len; 1623 chunk_start = em->start; 1624 1625 /* For RAID5/6 adjust to a full IO stripe length */ 1626 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1627 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1628 1629 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1630 if (!buf) { 1631 ret = -ENOMEM; 1632 goto out; 1633 } 1634 1635 for (i = 0; i < map->num_stripes; i++) { 1636 bool already_inserted = false; 1637 u64 stripe_nr; 1638 u64 offset; 1639 int j; 1640 1641 if (!in_range(physical, map->stripes[i].physical, 1642 data_stripe_length)) 1643 continue; 1644 1645 if (bdev && map->stripes[i].dev->bdev != bdev) 1646 continue; 1647 1648 stripe_nr = physical - map->stripes[i].physical; 1649 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 1650 1651 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1652 stripe_nr = stripe_nr * map->num_stripes + i; 1653 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1654 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1655 stripe_nr = stripe_nr * map->num_stripes + i; 1656 } 1657 /* 1658 * The remaining case would be for RAID56, multiply by 1659 * nr_data_stripes(). Alternatively, just use rmap_len below 1660 * instead of map->stripe_len 1661 */ 1662 1663 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 1664 1665 /* Ensure we don't add duplicate addresses */ 1666 for (j = 0; j < nr; j++) { 1667 if (buf[j] == bytenr) { 1668 already_inserted = true; 1669 break; 1670 } 1671 } 1672 1673 if (!already_inserted) 1674 buf[nr++] = bytenr; 1675 } 1676 1677 *logical = buf; 1678 *naddrs = nr; 1679 *stripe_len = io_stripe_size; 1680 out: 1681 free_extent_map(em); 1682 return ret; 1683 } 1684 1685 static int exclude_super_stripes(struct btrfs_block_group *cache) 1686 { 1687 struct btrfs_fs_info *fs_info = cache->fs_info; 1688 const bool zoned = btrfs_is_zoned(fs_info); 1689 u64 bytenr; 1690 u64 *logical; 1691 int stripe_len; 1692 int i, nr, ret; 1693 1694 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1695 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1696 cache->bytes_super += stripe_len; 1697 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1698 stripe_len); 1699 if (ret) 1700 return ret; 1701 } 1702 1703 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1704 bytenr = btrfs_sb_offset(i); 1705 ret = btrfs_rmap_block(fs_info, cache->start, NULL, 1706 bytenr, &logical, &nr, &stripe_len); 1707 if (ret) 1708 return ret; 1709 1710 /* Shouldn't have super stripes in sequential zones */ 1711 if (zoned && nr) { 1712 btrfs_err(fs_info, 1713 "zoned: block group %llu must not contain super block", 1714 cache->start); 1715 return -EUCLEAN; 1716 } 1717 1718 while (nr--) { 1719 u64 len = min_t(u64, stripe_len, 1720 cache->start + cache->length - logical[nr]); 1721 1722 cache->bytes_super += len; 1723 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1724 len); 1725 if (ret) { 1726 kfree(logical); 1727 return ret; 1728 } 1729 } 1730 1731 kfree(logical); 1732 } 1733 return 0; 1734 } 1735 1736 static void link_block_group(struct btrfs_block_group *cache) 1737 { 1738 struct btrfs_space_info *space_info = cache->space_info; 1739 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1740 1741 down_write(&space_info->groups_sem); 1742 list_add_tail(&cache->list, &space_info->block_groups[index]); 1743 up_write(&space_info->groups_sem); 1744 } 1745 1746 static struct btrfs_block_group *btrfs_create_block_group_cache( 1747 struct btrfs_fs_info *fs_info, u64 start) 1748 { 1749 struct btrfs_block_group *cache; 1750 1751 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1752 if (!cache) 1753 return NULL; 1754 1755 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1756 GFP_NOFS); 1757 if (!cache->free_space_ctl) { 1758 kfree(cache); 1759 return NULL; 1760 } 1761 1762 cache->start = start; 1763 1764 cache->fs_info = fs_info; 1765 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1766 1767 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1768 1769 refcount_set(&cache->refs, 1); 1770 spin_lock_init(&cache->lock); 1771 init_rwsem(&cache->data_rwsem); 1772 INIT_LIST_HEAD(&cache->list); 1773 INIT_LIST_HEAD(&cache->cluster_list); 1774 INIT_LIST_HEAD(&cache->bg_list); 1775 INIT_LIST_HEAD(&cache->ro_list); 1776 INIT_LIST_HEAD(&cache->discard_list); 1777 INIT_LIST_HEAD(&cache->dirty_list); 1778 INIT_LIST_HEAD(&cache->io_list); 1779 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 1780 atomic_set(&cache->frozen, 0); 1781 mutex_init(&cache->free_space_lock); 1782 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1783 1784 return cache; 1785 } 1786 1787 /* 1788 * Iterate all chunks and verify that each of them has the corresponding block 1789 * group 1790 */ 1791 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1792 { 1793 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1794 struct extent_map *em; 1795 struct btrfs_block_group *bg; 1796 u64 start = 0; 1797 int ret = 0; 1798 1799 while (1) { 1800 read_lock(&map_tree->lock); 1801 /* 1802 * lookup_extent_mapping will return the first extent map 1803 * intersecting the range, so setting @len to 1 is enough to 1804 * get the first chunk. 1805 */ 1806 em = lookup_extent_mapping(map_tree, start, 1); 1807 read_unlock(&map_tree->lock); 1808 if (!em) 1809 break; 1810 1811 bg = btrfs_lookup_block_group(fs_info, em->start); 1812 if (!bg) { 1813 btrfs_err(fs_info, 1814 "chunk start=%llu len=%llu doesn't have corresponding block group", 1815 em->start, em->len); 1816 ret = -EUCLEAN; 1817 free_extent_map(em); 1818 break; 1819 } 1820 if (bg->start != em->start || bg->length != em->len || 1821 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1822 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1823 btrfs_err(fs_info, 1824 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1825 em->start, em->len, 1826 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1827 bg->start, bg->length, 1828 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1829 ret = -EUCLEAN; 1830 free_extent_map(em); 1831 btrfs_put_block_group(bg); 1832 break; 1833 } 1834 start = em->start + em->len; 1835 free_extent_map(em); 1836 btrfs_put_block_group(bg); 1837 } 1838 return ret; 1839 } 1840 1841 static int read_one_block_group(struct btrfs_fs_info *info, 1842 struct btrfs_block_group_item *bgi, 1843 const struct btrfs_key *key, 1844 int need_clear) 1845 { 1846 struct btrfs_block_group *cache; 1847 struct btrfs_space_info *space_info; 1848 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1849 int ret; 1850 1851 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1852 1853 cache = btrfs_create_block_group_cache(info, key->objectid); 1854 if (!cache) 1855 return -ENOMEM; 1856 1857 cache->length = key->offset; 1858 cache->used = btrfs_stack_block_group_used(bgi); 1859 cache->flags = btrfs_stack_block_group_flags(bgi); 1860 1861 set_free_space_tree_thresholds(cache); 1862 1863 if (need_clear) { 1864 /* 1865 * When we mount with old space cache, we need to 1866 * set BTRFS_DC_CLEAR and set dirty flag. 1867 * 1868 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 1869 * truncate the old free space cache inode and 1870 * setup a new one. 1871 * b) Setting 'dirty flag' makes sure that we flush 1872 * the new space cache info onto disk. 1873 */ 1874 if (btrfs_test_opt(info, SPACE_CACHE)) 1875 cache->disk_cache_state = BTRFS_DC_CLEAR; 1876 } 1877 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 1878 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 1879 btrfs_err(info, 1880 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 1881 cache->start); 1882 ret = -EINVAL; 1883 goto error; 1884 } 1885 1886 ret = btrfs_load_block_group_zone_info(cache, false); 1887 if (ret) { 1888 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 1889 cache->start); 1890 goto error; 1891 } 1892 1893 /* 1894 * We need to exclude the super stripes now so that the space info has 1895 * super bytes accounted for, otherwise we'll think we have more space 1896 * than we actually do. 1897 */ 1898 ret = exclude_super_stripes(cache); 1899 if (ret) { 1900 /* We may have excluded something, so call this just in case. */ 1901 btrfs_free_excluded_extents(cache); 1902 goto error; 1903 } 1904 1905 /* 1906 * For zoned filesystem, space after the allocation offset is the only 1907 * free space for a block group. So, we don't need any caching work. 1908 * btrfs_calc_zone_unusable() will set the amount of free space and 1909 * zone_unusable space. 1910 * 1911 * For regular filesystem, check for two cases, either we are full, and 1912 * therefore don't need to bother with the caching work since we won't 1913 * find any space, or we are empty, and we can just add all the space 1914 * in and be done with it. This saves us _a_lot_ of time, particularly 1915 * in the full case. 1916 */ 1917 if (btrfs_is_zoned(info)) { 1918 btrfs_calc_zone_unusable(cache); 1919 } else if (cache->length == cache->used) { 1920 cache->last_byte_to_unpin = (u64)-1; 1921 cache->cached = BTRFS_CACHE_FINISHED; 1922 btrfs_free_excluded_extents(cache); 1923 } else if (cache->used == 0) { 1924 cache->last_byte_to_unpin = (u64)-1; 1925 cache->cached = BTRFS_CACHE_FINISHED; 1926 add_new_free_space(cache, cache->start, 1927 cache->start + cache->length); 1928 btrfs_free_excluded_extents(cache); 1929 } 1930 1931 ret = btrfs_add_block_group_cache(info, cache); 1932 if (ret) { 1933 btrfs_remove_free_space_cache(cache); 1934 goto error; 1935 } 1936 trace_btrfs_add_block_group(info, cache, 0); 1937 btrfs_update_space_info(info, cache->flags, cache->length, 1938 cache->used, cache->bytes_super, 1939 cache->zone_unusable, &space_info); 1940 1941 cache->space_info = space_info; 1942 1943 link_block_group(cache); 1944 1945 set_avail_alloc_bits(info, cache->flags); 1946 if (btrfs_chunk_readonly(info, cache->start)) { 1947 inc_block_group_ro(cache, 1); 1948 } else if (cache->used == 0) { 1949 ASSERT(list_empty(&cache->bg_list)); 1950 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1951 btrfs_discard_queue_work(&info->discard_ctl, cache); 1952 else 1953 btrfs_mark_bg_unused(cache); 1954 } 1955 return 0; 1956 error: 1957 btrfs_put_block_group(cache); 1958 return ret; 1959 } 1960 1961 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 1962 { 1963 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1964 struct btrfs_space_info *space_info; 1965 struct rb_node *node; 1966 int ret = 0; 1967 1968 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 1969 struct extent_map *em; 1970 struct map_lookup *map; 1971 struct btrfs_block_group *bg; 1972 1973 em = rb_entry(node, struct extent_map, rb_node); 1974 map = em->map_lookup; 1975 bg = btrfs_create_block_group_cache(fs_info, em->start); 1976 if (!bg) { 1977 ret = -ENOMEM; 1978 break; 1979 } 1980 1981 /* Fill dummy cache as FULL */ 1982 bg->length = em->len; 1983 bg->flags = map->type; 1984 bg->last_byte_to_unpin = (u64)-1; 1985 bg->cached = BTRFS_CACHE_FINISHED; 1986 bg->used = em->len; 1987 bg->flags = map->type; 1988 ret = btrfs_add_block_group_cache(fs_info, bg); 1989 if (ret) { 1990 btrfs_remove_free_space_cache(bg); 1991 btrfs_put_block_group(bg); 1992 break; 1993 } 1994 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len, 1995 0, 0, &space_info); 1996 bg->space_info = space_info; 1997 link_block_group(bg); 1998 1999 set_avail_alloc_bits(fs_info, bg->flags); 2000 } 2001 if (!ret) 2002 btrfs_init_global_block_rsv(fs_info); 2003 return ret; 2004 } 2005 2006 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2007 { 2008 struct btrfs_path *path; 2009 int ret; 2010 struct btrfs_block_group *cache; 2011 struct btrfs_space_info *space_info; 2012 struct btrfs_key key; 2013 int need_clear = 0; 2014 u64 cache_gen; 2015 2016 if (!info->extent_root) 2017 return fill_dummy_bgs(info); 2018 2019 key.objectid = 0; 2020 key.offset = 0; 2021 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2022 path = btrfs_alloc_path(); 2023 if (!path) 2024 return -ENOMEM; 2025 2026 cache_gen = btrfs_super_cache_generation(info->super_copy); 2027 if (btrfs_test_opt(info, SPACE_CACHE) && 2028 btrfs_super_generation(info->super_copy) != cache_gen) 2029 need_clear = 1; 2030 if (btrfs_test_opt(info, CLEAR_CACHE)) 2031 need_clear = 1; 2032 2033 while (1) { 2034 struct btrfs_block_group_item bgi; 2035 struct extent_buffer *leaf; 2036 int slot; 2037 2038 ret = find_first_block_group(info, path, &key); 2039 if (ret > 0) 2040 break; 2041 if (ret != 0) 2042 goto error; 2043 2044 leaf = path->nodes[0]; 2045 slot = path->slots[0]; 2046 2047 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2048 sizeof(bgi)); 2049 2050 btrfs_item_key_to_cpu(leaf, &key, slot); 2051 btrfs_release_path(path); 2052 ret = read_one_block_group(info, &bgi, &key, need_clear); 2053 if (ret < 0) 2054 goto error; 2055 key.objectid += key.offset; 2056 key.offset = 0; 2057 } 2058 btrfs_release_path(path); 2059 2060 list_for_each_entry(space_info, &info->space_info, list) { 2061 int i; 2062 2063 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2064 if (list_empty(&space_info->block_groups[i])) 2065 continue; 2066 cache = list_first_entry(&space_info->block_groups[i], 2067 struct btrfs_block_group, 2068 list); 2069 btrfs_sysfs_add_block_group_type(cache); 2070 } 2071 2072 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2073 (BTRFS_BLOCK_GROUP_RAID10 | 2074 BTRFS_BLOCK_GROUP_RAID1_MASK | 2075 BTRFS_BLOCK_GROUP_RAID56_MASK | 2076 BTRFS_BLOCK_GROUP_DUP))) 2077 continue; 2078 /* 2079 * Avoid allocating from un-mirrored block group if there are 2080 * mirrored block groups. 2081 */ 2082 list_for_each_entry(cache, 2083 &space_info->block_groups[BTRFS_RAID_RAID0], 2084 list) 2085 inc_block_group_ro(cache, 1); 2086 list_for_each_entry(cache, 2087 &space_info->block_groups[BTRFS_RAID_SINGLE], 2088 list) 2089 inc_block_group_ro(cache, 1); 2090 } 2091 2092 btrfs_init_global_block_rsv(info); 2093 ret = check_chunk_block_group_mappings(info); 2094 error: 2095 btrfs_free_path(path); 2096 return ret; 2097 } 2098 2099 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2100 struct btrfs_block_group *block_group) 2101 { 2102 struct btrfs_fs_info *fs_info = trans->fs_info; 2103 struct btrfs_block_group_item bgi; 2104 struct btrfs_root *root; 2105 struct btrfs_key key; 2106 2107 spin_lock(&block_group->lock); 2108 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2109 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2110 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2111 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2112 key.objectid = block_group->start; 2113 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2114 key.offset = block_group->length; 2115 spin_unlock(&block_group->lock); 2116 2117 root = fs_info->extent_root; 2118 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2119 } 2120 2121 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2122 { 2123 struct btrfs_fs_info *fs_info = trans->fs_info; 2124 struct btrfs_block_group *block_group; 2125 int ret = 0; 2126 2127 if (!trans->can_flush_pending_bgs) 2128 return; 2129 2130 while (!list_empty(&trans->new_bgs)) { 2131 int index; 2132 2133 block_group = list_first_entry(&trans->new_bgs, 2134 struct btrfs_block_group, 2135 bg_list); 2136 if (ret) 2137 goto next; 2138 2139 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2140 2141 ret = insert_block_group_item(trans, block_group); 2142 if (ret) 2143 btrfs_abort_transaction(trans, ret); 2144 ret = btrfs_finish_chunk_alloc(trans, block_group->start, 2145 block_group->length); 2146 if (ret) 2147 btrfs_abort_transaction(trans, ret); 2148 add_block_group_free_space(trans, block_group); 2149 2150 /* 2151 * If we restriped during balance, we may have added a new raid 2152 * type, so now add the sysfs entries when it is safe to do so. 2153 * We don't have to worry about locking here as it's handled in 2154 * btrfs_sysfs_add_block_group_type. 2155 */ 2156 if (block_group->space_info->block_group_kobjs[index] == NULL) 2157 btrfs_sysfs_add_block_group_type(block_group); 2158 2159 /* Already aborted the transaction if it failed. */ 2160 next: 2161 btrfs_delayed_refs_rsv_release(fs_info, 1); 2162 list_del_init(&block_group->bg_list); 2163 } 2164 btrfs_trans_release_chunk_metadata(trans); 2165 } 2166 2167 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 2168 u64 type, u64 chunk_offset, u64 size) 2169 { 2170 struct btrfs_fs_info *fs_info = trans->fs_info; 2171 struct btrfs_block_group *cache; 2172 int ret; 2173 2174 btrfs_set_log_full_commit(trans); 2175 2176 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2177 if (!cache) 2178 return -ENOMEM; 2179 2180 cache->length = size; 2181 set_free_space_tree_thresholds(cache); 2182 cache->used = bytes_used; 2183 cache->flags = type; 2184 cache->last_byte_to_unpin = (u64)-1; 2185 cache->cached = BTRFS_CACHE_FINISHED; 2186 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2187 cache->needs_free_space = 1; 2188 2189 ret = btrfs_load_block_group_zone_info(cache, true); 2190 if (ret) { 2191 btrfs_put_block_group(cache); 2192 return ret; 2193 } 2194 2195 ret = exclude_super_stripes(cache); 2196 if (ret) { 2197 /* We may have excluded something, so call this just in case */ 2198 btrfs_free_excluded_extents(cache); 2199 btrfs_put_block_group(cache); 2200 return ret; 2201 } 2202 2203 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2204 2205 btrfs_free_excluded_extents(cache); 2206 2207 #ifdef CONFIG_BTRFS_DEBUG 2208 if (btrfs_should_fragment_free_space(cache)) { 2209 u64 new_bytes_used = size - bytes_used; 2210 2211 bytes_used += new_bytes_used >> 1; 2212 fragment_free_space(cache); 2213 } 2214 #endif 2215 /* 2216 * Ensure the corresponding space_info object is created and 2217 * assigned to our block group. We want our bg to be added to the rbtree 2218 * with its ->space_info set. 2219 */ 2220 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2221 ASSERT(cache->space_info); 2222 2223 ret = btrfs_add_block_group_cache(fs_info, cache); 2224 if (ret) { 2225 btrfs_remove_free_space_cache(cache); 2226 btrfs_put_block_group(cache); 2227 return ret; 2228 } 2229 2230 /* 2231 * Now that our block group has its ->space_info set and is inserted in 2232 * the rbtree, update the space info's counters. 2233 */ 2234 trace_btrfs_add_block_group(fs_info, cache, 1); 2235 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2236 cache->bytes_super, 0, &cache->space_info); 2237 btrfs_update_global_block_rsv(fs_info); 2238 2239 link_block_group(cache); 2240 2241 list_add_tail(&cache->bg_list, &trans->new_bgs); 2242 trans->delayed_ref_updates++; 2243 btrfs_update_delayed_refs_rsv(trans); 2244 2245 set_avail_alloc_bits(fs_info, type); 2246 return 0; 2247 } 2248 2249 /* 2250 * Mark one block group RO, can be called several times for the same block 2251 * group. 2252 * 2253 * @cache: the destination block group 2254 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2255 * ensure we still have some free space after marking this 2256 * block group RO. 2257 */ 2258 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2259 bool do_chunk_alloc) 2260 { 2261 struct btrfs_fs_info *fs_info = cache->fs_info; 2262 struct btrfs_trans_handle *trans; 2263 u64 alloc_flags; 2264 int ret; 2265 2266 again: 2267 trans = btrfs_join_transaction(fs_info->extent_root); 2268 if (IS_ERR(trans)) 2269 return PTR_ERR(trans); 2270 2271 /* 2272 * we're not allowed to set block groups readonly after the dirty 2273 * block groups cache has started writing. If it already started, 2274 * back off and let this transaction commit 2275 */ 2276 mutex_lock(&fs_info->ro_block_group_mutex); 2277 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2278 u64 transid = trans->transid; 2279 2280 mutex_unlock(&fs_info->ro_block_group_mutex); 2281 btrfs_end_transaction(trans); 2282 2283 ret = btrfs_wait_for_commit(fs_info, transid); 2284 if (ret) 2285 return ret; 2286 goto again; 2287 } 2288 2289 if (do_chunk_alloc) { 2290 /* 2291 * If we are changing raid levels, try to allocate a 2292 * corresponding block group with the new raid level. 2293 */ 2294 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2295 if (alloc_flags != cache->flags) { 2296 ret = btrfs_chunk_alloc(trans, alloc_flags, 2297 CHUNK_ALLOC_FORCE); 2298 /* 2299 * ENOSPC is allowed here, we may have enough space 2300 * already allocated at the new raid level to carry on 2301 */ 2302 if (ret == -ENOSPC) 2303 ret = 0; 2304 if (ret < 0) 2305 goto out; 2306 } 2307 } 2308 2309 ret = inc_block_group_ro(cache, 0); 2310 if (!do_chunk_alloc) 2311 goto unlock_out; 2312 if (!ret) 2313 goto out; 2314 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2315 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2316 if (ret < 0) 2317 goto out; 2318 ret = inc_block_group_ro(cache, 0); 2319 out: 2320 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2321 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2322 mutex_lock(&fs_info->chunk_mutex); 2323 check_system_chunk(trans, alloc_flags); 2324 mutex_unlock(&fs_info->chunk_mutex); 2325 } 2326 unlock_out: 2327 mutex_unlock(&fs_info->ro_block_group_mutex); 2328 2329 btrfs_end_transaction(trans); 2330 return ret; 2331 } 2332 2333 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2334 { 2335 struct btrfs_space_info *sinfo = cache->space_info; 2336 u64 num_bytes; 2337 2338 BUG_ON(!cache->ro); 2339 2340 spin_lock(&sinfo->lock); 2341 spin_lock(&cache->lock); 2342 if (!--cache->ro) { 2343 num_bytes = cache->length - cache->reserved - 2344 cache->pinned - cache->bytes_super - 2345 cache->zone_unusable - cache->used; 2346 sinfo->bytes_readonly -= num_bytes; 2347 if (btrfs_is_zoned(cache->fs_info)) { 2348 /* Migrate zone_unusable bytes back */ 2349 cache->zone_unusable = cache->alloc_offset - cache->used; 2350 sinfo->bytes_zone_unusable += cache->zone_unusable; 2351 sinfo->bytes_readonly -= cache->zone_unusable; 2352 } 2353 list_del_init(&cache->ro_list); 2354 } 2355 spin_unlock(&cache->lock); 2356 spin_unlock(&sinfo->lock); 2357 } 2358 2359 static int update_block_group_item(struct btrfs_trans_handle *trans, 2360 struct btrfs_path *path, 2361 struct btrfs_block_group *cache) 2362 { 2363 struct btrfs_fs_info *fs_info = trans->fs_info; 2364 int ret; 2365 struct btrfs_root *root = fs_info->extent_root; 2366 unsigned long bi; 2367 struct extent_buffer *leaf; 2368 struct btrfs_block_group_item bgi; 2369 struct btrfs_key key; 2370 2371 key.objectid = cache->start; 2372 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2373 key.offset = cache->length; 2374 2375 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2376 if (ret) { 2377 if (ret > 0) 2378 ret = -ENOENT; 2379 goto fail; 2380 } 2381 2382 leaf = path->nodes[0]; 2383 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2384 btrfs_set_stack_block_group_used(&bgi, cache->used); 2385 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2386 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2387 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2388 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2389 btrfs_mark_buffer_dirty(leaf); 2390 fail: 2391 btrfs_release_path(path); 2392 return ret; 2393 2394 } 2395 2396 static int cache_save_setup(struct btrfs_block_group *block_group, 2397 struct btrfs_trans_handle *trans, 2398 struct btrfs_path *path) 2399 { 2400 struct btrfs_fs_info *fs_info = block_group->fs_info; 2401 struct btrfs_root *root = fs_info->tree_root; 2402 struct inode *inode = NULL; 2403 struct extent_changeset *data_reserved = NULL; 2404 u64 alloc_hint = 0; 2405 int dcs = BTRFS_DC_ERROR; 2406 u64 num_pages = 0; 2407 int retries = 0; 2408 int ret = 0; 2409 2410 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2411 return 0; 2412 2413 /* 2414 * If this block group is smaller than 100 megs don't bother caching the 2415 * block group. 2416 */ 2417 if (block_group->length < (100 * SZ_1M)) { 2418 spin_lock(&block_group->lock); 2419 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2420 spin_unlock(&block_group->lock); 2421 return 0; 2422 } 2423 2424 if (TRANS_ABORTED(trans)) 2425 return 0; 2426 again: 2427 inode = lookup_free_space_inode(block_group, path); 2428 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2429 ret = PTR_ERR(inode); 2430 btrfs_release_path(path); 2431 goto out; 2432 } 2433 2434 if (IS_ERR(inode)) { 2435 BUG_ON(retries); 2436 retries++; 2437 2438 if (block_group->ro) 2439 goto out_free; 2440 2441 ret = create_free_space_inode(trans, block_group, path); 2442 if (ret) 2443 goto out_free; 2444 goto again; 2445 } 2446 2447 /* 2448 * We want to set the generation to 0, that way if anything goes wrong 2449 * from here on out we know not to trust this cache when we load up next 2450 * time. 2451 */ 2452 BTRFS_I(inode)->generation = 0; 2453 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2454 if (ret) { 2455 /* 2456 * So theoretically we could recover from this, simply set the 2457 * super cache generation to 0 so we know to invalidate the 2458 * cache, but then we'd have to keep track of the block groups 2459 * that fail this way so we know we _have_ to reset this cache 2460 * before the next commit or risk reading stale cache. So to 2461 * limit our exposure to horrible edge cases lets just abort the 2462 * transaction, this only happens in really bad situations 2463 * anyway. 2464 */ 2465 btrfs_abort_transaction(trans, ret); 2466 goto out_put; 2467 } 2468 WARN_ON(ret); 2469 2470 /* We've already setup this transaction, go ahead and exit */ 2471 if (block_group->cache_generation == trans->transid && 2472 i_size_read(inode)) { 2473 dcs = BTRFS_DC_SETUP; 2474 goto out_put; 2475 } 2476 2477 if (i_size_read(inode) > 0) { 2478 ret = btrfs_check_trunc_cache_free_space(fs_info, 2479 &fs_info->global_block_rsv); 2480 if (ret) 2481 goto out_put; 2482 2483 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2484 if (ret) 2485 goto out_put; 2486 } 2487 2488 spin_lock(&block_group->lock); 2489 if (block_group->cached != BTRFS_CACHE_FINISHED || 2490 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2491 /* 2492 * don't bother trying to write stuff out _if_ 2493 * a) we're not cached, 2494 * b) we're with nospace_cache mount option, 2495 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2496 */ 2497 dcs = BTRFS_DC_WRITTEN; 2498 spin_unlock(&block_group->lock); 2499 goto out_put; 2500 } 2501 spin_unlock(&block_group->lock); 2502 2503 /* 2504 * We hit an ENOSPC when setting up the cache in this transaction, just 2505 * skip doing the setup, we've already cleared the cache so we're safe. 2506 */ 2507 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2508 ret = -ENOSPC; 2509 goto out_put; 2510 } 2511 2512 /* 2513 * Try to preallocate enough space based on how big the block group is. 2514 * Keep in mind this has to include any pinned space which could end up 2515 * taking up quite a bit since it's not folded into the other space 2516 * cache. 2517 */ 2518 num_pages = div_u64(block_group->length, SZ_256M); 2519 if (!num_pages) 2520 num_pages = 1; 2521 2522 num_pages *= 16; 2523 num_pages *= PAGE_SIZE; 2524 2525 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2526 num_pages); 2527 if (ret) 2528 goto out_put; 2529 2530 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2531 num_pages, num_pages, 2532 &alloc_hint); 2533 /* 2534 * Our cache requires contiguous chunks so that we don't modify a bunch 2535 * of metadata or split extents when writing the cache out, which means 2536 * we can enospc if we are heavily fragmented in addition to just normal 2537 * out of space conditions. So if we hit this just skip setting up any 2538 * other block groups for this transaction, maybe we'll unpin enough 2539 * space the next time around. 2540 */ 2541 if (!ret) 2542 dcs = BTRFS_DC_SETUP; 2543 else if (ret == -ENOSPC) 2544 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2545 2546 out_put: 2547 iput(inode); 2548 out_free: 2549 btrfs_release_path(path); 2550 out: 2551 spin_lock(&block_group->lock); 2552 if (!ret && dcs == BTRFS_DC_SETUP) 2553 block_group->cache_generation = trans->transid; 2554 block_group->disk_cache_state = dcs; 2555 spin_unlock(&block_group->lock); 2556 2557 extent_changeset_free(data_reserved); 2558 return ret; 2559 } 2560 2561 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2562 { 2563 struct btrfs_fs_info *fs_info = trans->fs_info; 2564 struct btrfs_block_group *cache, *tmp; 2565 struct btrfs_transaction *cur_trans = trans->transaction; 2566 struct btrfs_path *path; 2567 2568 if (list_empty(&cur_trans->dirty_bgs) || 2569 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2570 return 0; 2571 2572 path = btrfs_alloc_path(); 2573 if (!path) 2574 return -ENOMEM; 2575 2576 /* Could add new block groups, use _safe just in case */ 2577 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2578 dirty_list) { 2579 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2580 cache_save_setup(cache, trans, path); 2581 } 2582 2583 btrfs_free_path(path); 2584 return 0; 2585 } 2586 2587 /* 2588 * Transaction commit does final block group cache writeback during a critical 2589 * section where nothing is allowed to change the FS. This is required in 2590 * order for the cache to actually match the block group, but can introduce a 2591 * lot of latency into the commit. 2592 * 2593 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2594 * There's a chance we'll have to redo some of it if the block group changes 2595 * again during the commit, but it greatly reduces the commit latency by 2596 * getting rid of the easy block groups while we're still allowing others to 2597 * join the commit. 2598 */ 2599 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2600 { 2601 struct btrfs_fs_info *fs_info = trans->fs_info; 2602 struct btrfs_block_group *cache; 2603 struct btrfs_transaction *cur_trans = trans->transaction; 2604 int ret = 0; 2605 int should_put; 2606 struct btrfs_path *path = NULL; 2607 LIST_HEAD(dirty); 2608 struct list_head *io = &cur_trans->io_bgs; 2609 int num_started = 0; 2610 int loops = 0; 2611 2612 spin_lock(&cur_trans->dirty_bgs_lock); 2613 if (list_empty(&cur_trans->dirty_bgs)) { 2614 spin_unlock(&cur_trans->dirty_bgs_lock); 2615 return 0; 2616 } 2617 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2618 spin_unlock(&cur_trans->dirty_bgs_lock); 2619 2620 again: 2621 /* Make sure all the block groups on our dirty list actually exist */ 2622 btrfs_create_pending_block_groups(trans); 2623 2624 if (!path) { 2625 path = btrfs_alloc_path(); 2626 if (!path) { 2627 ret = -ENOMEM; 2628 goto out; 2629 } 2630 } 2631 2632 /* 2633 * cache_write_mutex is here only to save us from balance or automatic 2634 * removal of empty block groups deleting this block group while we are 2635 * writing out the cache 2636 */ 2637 mutex_lock(&trans->transaction->cache_write_mutex); 2638 while (!list_empty(&dirty)) { 2639 bool drop_reserve = true; 2640 2641 cache = list_first_entry(&dirty, struct btrfs_block_group, 2642 dirty_list); 2643 /* 2644 * This can happen if something re-dirties a block group that 2645 * is already under IO. Just wait for it to finish and then do 2646 * it all again 2647 */ 2648 if (!list_empty(&cache->io_list)) { 2649 list_del_init(&cache->io_list); 2650 btrfs_wait_cache_io(trans, cache, path); 2651 btrfs_put_block_group(cache); 2652 } 2653 2654 2655 /* 2656 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2657 * it should update the cache_state. Don't delete until after 2658 * we wait. 2659 * 2660 * Since we're not running in the commit critical section 2661 * we need the dirty_bgs_lock to protect from update_block_group 2662 */ 2663 spin_lock(&cur_trans->dirty_bgs_lock); 2664 list_del_init(&cache->dirty_list); 2665 spin_unlock(&cur_trans->dirty_bgs_lock); 2666 2667 should_put = 1; 2668 2669 cache_save_setup(cache, trans, path); 2670 2671 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2672 cache->io_ctl.inode = NULL; 2673 ret = btrfs_write_out_cache(trans, cache, path); 2674 if (ret == 0 && cache->io_ctl.inode) { 2675 num_started++; 2676 should_put = 0; 2677 2678 /* 2679 * The cache_write_mutex is protecting the 2680 * io_list, also refer to the definition of 2681 * btrfs_transaction::io_bgs for more details 2682 */ 2683 list_add_tail(&cache->io_list, io); 2684 } else { 2685 /* 2686 * If we failed to write the cache, the 2687 * generation will be bad and life goes on 2688 */ 2689 ret = 0; 2690 } 2691 } 2692 if (!ret) { 2693 ret = update_block_group_item(trans, path, cache); 2694 /* 2695 * Our block group might still be attached to the list 2696 * of new block groups in the transaction handle of some 2697 * other task (struct btrfs_trans_handle->new_bgs). This 2698 * means its block group item isn't yet in the extent 2699 * tree. If this happens ignore the error, as we will 2700 * try again later in the critical section of the 2701 * transaction commit. 2702 */ 2703 if (ret == -ENOENT) { 2704 ret = 0; 2705 spin_lock(&cur_trans->dirty_bgs_lock); 2706 if (list_empty(&cache->dirty_list)) { 2707 list_add_tail(&cache->dirty_list, 2708 &cur_trans->dirty_bgs); 2709 btrfs_get_block_group(cache); 2710 drop_reserve = false; 2711 } 2712 spin_unlock(&cur_trans->dirty_bgs_lock); 2713 } else if (ret) { 2714 btrfs_abort_transaction(trans, ret); 2715 } 2716 } 2717 2718 /* If it's not on the io list, we need to put the block group */ 2719 if (should_put) 2720 btrfs_put_block_group(cache); 2721 if (drop_reserve) 2722 btrfs_delayed_refs_rsv_release(fs_info, 1); 2723 /* 2724 * Avoid blocking other tasks for too long. It might even save 2725 * us from writing caches for block groups that are going to be 2726 * removed. 2727 */ 2728 mutex_unlock(&trans->transaction->cache_write_mutex); 2729 if (ret) 2730 goto out; 2731 mutex_lock(&trans->transaction->cache_write_mutex); 2732 } 2733 mutex_unlock(&trans->transaction->cache_write_mutex); 2734 2735 /* 2736 * Go through delayed refs for all the stuff we've just kicked off 2737 * and then loop back (just once) 2738 */ 2739 if (!ret) 2740 ret = btrfs_run_delayed_refs(trans, 0); 2741 if (!ret && loops == 0) { 2742 loops++; 2743 spin_lock(&cur_trans->dirty_bgs_lock); 2744 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2745 /* 2746 * dirty_bgs_lock protects us from concurrent block group 2747 * deletes too (not just cache_write_mutex). 2748 */ 2749 if (!list_empty(&dirty)) { 2750 spin_unlock(&cur_trans->dirty_bgs_lock); 2751 goto again; 2752 } 2753 spin_unlock(&cur_trans->dirty_bgs_lock); 2754 } 2755 out: 2756 if (ret < 0) { 2757 spin_lock(&cur_trans->dirty_bgs_lock); 2758 list_splice_init(&dirty, &cur_trans->dirty_bgs); 2759 spin_unlock(&cur_trans->dirty_bgs_lock); 2760 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 2761 } 2762 2763 btrfs_free_path(path); 2764 return ret; 2765 } 2766 2767 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 2768 { 2769 struct btrfs_fs_info *fs_info = trans->fs_info; 2770 struct btrfs_block_group *cache; 2771 struct btrfs_transaction *cur_trans = trans->transaction; 2772 int ret = 0; 2773 int should_put; 2774 struct btrfs_path *path; 2775 struct list_head *io = &cur_trans->io_bgs; 2776 int num_started = 0; 2777 2778 path = btrfs_alloc_path(); 2779 if (!path) 2780 return -ENOMEM; 2781 2782 /* 2783 * Even though we are in the critical section of the transaction commit, 2784 * we can still have concurrent tasks adding elements to this 2785 * transaction's list of dirty block groups. These tasks correspond to 2786 * endio free space workers started when writeback finishes for a 2787 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 2788 * allocate new block groups as a result of COWing nodes of the root 2789 * tree when updating the free space inode. The writeback for the space 2790 * caches is triggered by an earlier call to 2791 * btrfs_start_dirty_block_groups() and iterations of the following 2792 * loop. 2793 * Also we want to do the cache_save_setup first and then run the 2794 * delayed refs to make sure we have the best chance at doing this all 2795 * in one shot. 2796 */ 2797 spin_lock(&cur_trans->dirty_bgs_lock); 2798 while (!list_empty(&cur_trans->dirty_bgs)) { 2799 cache = list_first_entry(&cur_trans->dirty_bgs, 2800 struct btrfs_block_group, 2801 dirty_list); 2802 2803 /* 2804 * This can happen if cache_save_setup re-dirties a block group 2805 * that is already under IO. Just wait for it to finish and 2806 * then do it all again 2807 */ 2808 if (!list_empty(&cache->io_list)) { 2809 spin_unlock(&cur_trans->dirty_bgs_lock); 2810 list_del_init(&cache->io_list); 2811 btrfs_wait_cache_io(trans, cache, path); 2812 btrfs_put_block_group(cache); 2813 spin_lock(&cur_trans->dirty_bgs_lock); 2814 } 2815 2816 /* 2817 * Don't remove from the dirty list until after we've waited on 2818 * any pending IO 2819 */ 2820 list_del_init(&cache->dirty_list); 2821 spin_unlock(&cur_trans->dirty_bgs_lock); 2822 should_put = 1; 2823 2824 cache_save_setup(cache, trans, path); 2825 2826 if (!ret) 2827 ret = btrfs_run_delayed_refs(trans, 2828 (unsigned long) -1); 2829 2830 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 2831 cache->io_ctl.inode = NULL; 2832 ret = btrfs_write_out_cache(trans, cache, path); 2833 if (ret == 0 && cache->io_ctl.inode) { 2834 num_started++; 2835 should_put = 0; 2836 list_add_tail(&cache->io_list, io); 2837 } else { 2838 /* 2839 * If we failed to write the cache, the 2840 * generation will be bad and life goes on 2841 */ 2842 ret = 0; 2843 } 2844 } 2845 if (!ret) { 2846 ret = update_block_group_item(trans, path, cache); 2847 /* 2848 * One of the free space endio workers might have 2849 * created a new block group while updating a free space 2850 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 2851 * and hasn't released its transaction handle yet, in 2852 * which case the new block group is still attached to 2853 * its transaction handle and its creation has not 2854 * finished yet (no block group item in the extent tree 2855 * yet, etc). If this is the case, wait for all free 2856 * space endio workers to finish and retry. This is a 2857 * very rare case so no need for a more efficient and 2858 * complex approach. 2859 */ 2860 if (ret == -ENOENT) { 2861 wait_event(cur_trans->writer_wait, 2862 atomic_read(&cur_trans->num_writers) == 1); 2863 ret = update_block_group_item(trans, path, cache); 2864 } 2865 if (ret) 2866 btrfs_abort_transaction(trans, ret); 2867 } 2868 2869 /* If its not on the io list, we need to put the block group */ 2870 if (should_put) 2871 btrfs_put_block_group(cache); 2872 btrfs_delayed_refs_rsv_release(fs_info, 1); 2873 spin_lock(&cur_trans->dirty_bgs_lock); 2874 } 2875 spin_unlock(&cur_trans->dirty_bgs_lock); 2876 2877 /* 2878 * Refer to the definition of io_bgs member for details why it's safe 2879 * to use it without any locking 2880 */ 2881 while (!list_empty(io)) { 2882 cache = list_first_entry(io, struct btrfs_block_group, 2883 io_list); 2884 list_del_init(&cache->io_list); 2885 btrfs_wait_cache_io(trans, cache, path); 2886 btrfs_put_block_group(cache); 2887 } 2888 2889 btrfs_free_path(path); 2890 return ret; 2891 } 2892 2893 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 2894 u64 bytenr, u64 num_bytes, int alloc) 2895 { 2896 struct btrfs_fs_info *info = trans->fs_info; 2897 struct btrfs_block_group *cache = NULL; 2898 u64 total = num_bytes; 2899 u64 old_val; 2900 u64 byte_in_group; 2901 int factor; 2902 int ret = 0; 2903 2904 /* Block accounting for super block */ 2905 spin_lock(&info->delalloc_root_lock); 2906 old_val = btrfs_super_bytes_used(info->super_copy); 2907 if (alloc) 2908 old_val += num_bytes; 2909 else 2910 old_val -= num_bytes; 2911 btrfs_set_super_bytes_used(info->super_copy, old_val); 2912 spin_unlock(&info->delalloc_root_lock); 2913 2914 while (total) { 2915 cache = btrfs_lookup_block_group(info, bytenr); 2916 if (!cache) { 2917 ret = -ENOENT; 2918 break; 2919 } 2920 factor = btrfs_bg_type_to_factor(cache->flags); 2921 2922 /* 2923 * If this block group has free space cache written out, we 2924 * need to make sure to load it if we are removing space. This 2925 * is because we need the unpinning stage to actually add the 2926 * space back to the block group, otherwise we will leak space. 2927 */ 2928 if (!alloc && !btrfs_block_group_done(cache)) 2929 btrfs_cache_block_group(cache, 1); 2930 2931 byte_in_group = bytenr - cache->start; 2932 WARN_ON(byte_in_group > cache->length); 2933 2934 spin_lock(&cache->space_info->lock); 2935 spin_lock(&cache->lock); 2936 2937 if (btrfs_test_opt(info, SPACE_CACHE) && 2938 cache->disk_cache_state < BTRFS_DC_CLEAR) 2939 cache->disk_cache_state = BTRFS_DC_CLEAR; 2940 2941 old_val = cache->used; 2942 num_bytes = min(total, cache->length - byte_in_group); 2943 if (alloc) { 2944 old_val += num_bytes; 2945 cache->used = old_val; 2946 cache->reserved -= num_bytes; 2947 cache->space_info->bytes_reserved -= num_bytes; 2948 cache->space_info->bytes_used += num_bytes; 2949 cache->space_info->disk_used += num_bytes * factor; 2950 spin_unlock(&cache->lock); 2951 spin_unlock(&cache->space_info->lock); 2952 } else { 2953 old_val -= num_bytes; 2954 cache->used = old_val; 2955 cache->pinned += num_bytes; 2956 btrfs_space_info_update_bytes_pinned(info, 2957 cache->space_info, num_bytes); 2958 cache->space_info->bytes_used -= num_bytes; 2959 cache->space_info->disk_used -= num_bytes * factor; 2960 spin_unlock(&cache->lock); 2961 spin_unlock(&cache->space_info->lock); 2962 2963 __btrfs_mod_total_bytes_pinned(cache->space_info, 2964 num_bytes); 2965 set_extent_dirty(&trans->transaction->pinned_extents, 2966 bytenr, bytenr + num_bytes - 1, 2967 GFP_NOFS | __GFP_NOFAIL); 2968 } 2969 2970 spin_lock(&trans->transaction->dirty_bgs_lock); 2971 if (list_empty(&cache->dirty_list)) { 2972 list_add_tail(&cache->dirty_list, 2973 &trans->transaction->dirty_bgs); 2974 trans->delayed_ref_updates++; 2975 btrfs_get_block_group(cache); 2976 } 2977 spin_unlock(&trans->transaction->dirty_bgs_lock); 2978 2979 /* 2980 * No longer have used bytes in this block group, queue it for 2981 * deletion. We do this after adding the block group to the 2982 * dirty list to avoid races between cleaner kthread and space 2983 * cache writeout. 2984 */ 2985 if (!alloc && old_val == 0) { 2986 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 2987 btrfs_mark_bg_unused(cache); 2988 } 2989 2990 btrfs_put_block_group(cache); 2991 total -= num_bytes; 2992 bytenr += num_bytes; 2993 } 2994 2995 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 2996 btrfs_update_delayed_refs_rsv(trans); 2997 return ret; 2998 } 2999 3000 /** 3001 * btrfs_add_reserved_bytes - update the block_group and space info counters 3002 * @cache: The cache we are manipulating 3003 * @ram_bytes: The number of bytes of file content, and will be same to 3004 * @num_bytes except for the compress path. 3005 * @num_bytes: The number of bytes in question 3006 * @delalloc: The blocks are allocated for the delalloc write 3007 * 3008 * This is called by the allocator when it reserves space. If this is a 3009 * reservation and the block group has become read only we cannot make the 3010 * reservation and return -EAGAIN, otherwise this function always succeeds. 3011 */ 3012 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3013 u64 ram_bytes, u64 num_bytes, int delalloc) 3014 { 3015 struct btrfs_space_info *space_info = cache->space_info; 3016 int ret = 0; 3017 3018 spin_lock(&space_info->lock); 3019 spin_lock(&cache->lock); 3020 if (cache->ro) { 3021 ret = -EAGAIN; 3022 } else { 3023 cache->reserved += num_bytes; 3024 space_info->bytes_reserved += num_bytes; 3025 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3026 space_info->flags, num_bytes, 1); 3027 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3028 space_info, -ram_bytes); 3029 if (delalloc) 3030 cache->delalloc_bytes += num_bytes; 3031 3032 /* 3033 * Compression can use less space than we reserved, so wake 3034 * tickets if that happens 3035 */ 3036 if (num_bytes < ram_bytes) 3037 btrfs_try_granting_tickets(cache->fs_info, space_info); 3038 } 3039 spin_unlock(&cache->lock); 3040 spin_unlock(&space_info->lock); 3041 return ret; 3042 } 3043 3044 /** 3045 * btrfs_free_reserved_bytes - update the block_group and space info counters 3046 * @cache: The cache we are manipulating 3047 * @num_bytes: The number of bytes in question 3048 * @delalloc: The blocks are allocated for the delalloc write 3049 * 3050 * This is called by somebody who is freeing space that was never actually used 3051 * on disk. For example if you reserve some space for a new leaf in transaction 3052 * A and before transaction A commits you free that leaf, you call this with 3053 * reserve set to 0 in order to clear the reservation. 3054 */ 3055 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3056 u64 num_bytes, int delalloc) 3057 { 3058 struct btrfs_space_info *space_info = cache->space_info; 3059 3060 spin_lock(&space_info->lock); 3061 spin_lock(&cache->lock); 3062 if (cache->ro) 3063 space_info->bytes_readonly += num_bytes; 3064 cache->reserved -= num_bytes; 3065 space_info->bytes_reserved -= num_bytes; 3066 space_info->max_extent_size = 0; 3067 3068 if (delalloc) 3069 cache->delalloc_bytes -= num_bytes; 3070 spin_unlock(&cache->lock); 3071 3072 btrfs_try_granting_tickets(cache->fs_info, space_info); 3073 spin_unlock(&space_info->lock); 3074 } 3075 3076 static void force_metadata_allocation(struct btrfs_fs_info *info) 3077 { 3078 struct list_head *head = &info->space_info; 3079 struct btrfs_space_info *found; 3080 3081 list_for_each_entry(found, head, list) { 3082 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3083 found->force_alloc = CHUNK_ALLOC_FORCE; 3084 } 3085 } 3086 3087 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3088 struct btrfs_space_info *sinfo, int force) 3089 { 3090 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3091 u64 thresh; 3092 3093 if (force == CHUNK_ALLOC_FORCE) 3094 return 1; 3095 3096 /* 3097 * in limited mode, we want to have some free space up to 3098 * about 1% of the FS size. 3099 */ 3100 if (force == CHUNK_ALLOC_LIMITED) { 3101 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3102 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3103 3104 if (sinfo->total_bytes - bytes_used < thresh) 3105 return 1; 3106 } 3107 3108 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3109 return 0; 3110 return 1; 3111 } 3112 3113 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3114 { 3115 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3116 3117 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3118 } 3119 3120 /* 3121 * If force is CHUNK_ALLOC_FORCE: 3122 * - return 1 if it successfully allocates a chunk, 3123 * - return errors including -ENOSPC otherwise. 3124 * If force is NOT CHUNK_ALLOC_FORCE: 3125 * - return 0 if it doesn't need to allocate a new chunk, 3126 * - return 1 if it successfully allocates a chunk, 3127 * - return errors including -ENOSPC otherwise. 3128 */ 3129 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3130 enum btrfs_chunk_alloc_enum force) 3131 { 3132 struct btrfs_fs_info *fs_info = trans->fs_info; 3133 struct btrfs_space_info *space_info; 3134 bool wait_for_alloc = false; 3135 bool should_alloc = false; 3136 int ret = 0; 3137 3138 /* Don't re-enter if we're already allocating a chunk */ 3139 if (trans->allocating_chunk) 3140 return -ENOSPC; 3141 3142 space_info = btrfs_find_space_info(fs_info, flags); 3143 ASSERT(space_info); 3144 3145 do { 3146 spin_lock(&space_info->lock); 3147 if (force < space_info->force_alloc) 3148 force = space_info->force_alloc; 3149 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3150 if (space_info->full) { 3151 /* No more free physical space */ 3152 if (should_alloc) 3153 ret = -ENOSPC; 3154 else 3155 ret = 0; 3156 spin_unlock(&space_info->lock); 3157 return ret; 3158 } else if (!should_alloc) { 3159 spin_unlock(&space_info->lock); 3160 return 0; 3161 } else if (space_info->chunk_alloc) { 3162 /* 3163 * Someone is already allocating, so we need to block 3164 * until this someone is finished and then loop to 3165 * recheck if we should continue with our allocation 3166 * attempt. 3167 */ 3168 wait_for_alloc = true; 3169 spin_unlock(&space_info->lock); 3170 mutex_lock(&fs_info->chunk_mutex); 3171 mutex_unlock(&fs_info->chunk_mutex); 3172 } else { 3173 /* Proceed with allocation */ 3174 space_info->chunk_alloc = 1; 3175 wait_for_alloc = false; 3176 spin_unlock(&space_info->lock); 3177 } 3178 3179 cond_resched(); 3180 } while (wait_for_alloc); 3181 3182 mutex_lock(&fs_info->chunk_mutex); 3183 trans->allocating_chunk = true; 3184 3185 /* 3186 * If we have mixed data/metadata chunks we want to make sure we keep 3187 * allocating mixed chunks instead of individual chunks. 3188 */ 3189 if (btrfs_mixed_space_info(space_info)) 3190 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3191 3192 /* 3193 * if we're doing a data chunk, go ahead and make sure that 3194 * we keep a reasonable number of metadata chunks allocated in the 3195 * FS as well. 3196 */ 3197 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3198 fs_info->data_chunk_allocations++; 3199 if (!(fs_info->data_chunk_allocations % 3200 fs_info->metadata_ratio)) 3201 force_metadata_allocation(fs_info); 3202 } 3203 3204 /* 3205 * Check if we have enough space in SYSTEM chunk because we may need 3206 * to update devices. 3207 */ 3208 check_system_chunk(trans, flags); 3209 3210 ret = btrfs_alloc_chunk(trans, flags); 3211 trans->allocating_chunk = false; 3212 3213 spin_lock(&space_info->lock); 3214 if (ret < 0) { 3215 if (ret == -ENOSPC) 3216 space_info->full = 1; 3217 else 3218 goto out; 3219 } else { 3220 ret = 1; 3221 space_info->max_extent_size = 0; 3222 } 3223 3224 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3225 out: 3226 space_info->chunk_alloc = 0; 3227 spin_unlock(&space_info->lock); 3228 mutex_unlock(&fs_info->chunk_mutex); 3229 /* 3230 * When we allocate a new chunk we reserve space in the chunk block 3231 * reserve to make sure we can COW nodes/leafs in the chunk tree or 3232 * add new nodes/leafs to it if we end up needing to do it when 3233 * inserting the chunk item and updating device items as part of the 3234 * second phase of chunk allocation, performed by 3235 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 3236 * large number of new block groups to create in our transaction 3237 * handle's new_bgs list to avoid exhausting the chunk block reserve 3238 * in extreme cases - like having a single transaction create many new 3239 * block groups when starting to write out the free space caches of all 3240 * the block groups that were made dirty during the lifetime of the 3241 * transaction. 3242 */ 3243 if (trans->chunk_bytes_reserved >= (u64)SZ_2M) 3244 btrfs_create_pending_block_groups(trans); 3245 3246 return ret; 3247 } 3248 3249 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3250 { 3251 u64 num_dev; 3252 3253 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3254 if (!num_dev) 3255 num_dev = fs_info->fs_devices->rw_devices; 3256 3257 return num_dev; 3258 } 3259 3260 /* 3261 * Reserve space in the system space for allocating or removing a chunk 3262 */ 3263 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3264 { 3265 struct btrfs_fs_info *fs_info = trans->fs_info; 3266 struct btrfs_space_info *info; 3267 u64 left; 3268 u64 thresh; 3269 int ret = 0; 3270 u64 num_devs; 3271 3272 /* 3273 * Needed because we can end up allocating a system chunk and for an 3274 * atomic and race free space reservation in the chunk block reserve. 3275 */ 3276 lockdep_assert_held(&fs_info->chunk_mutex); 3277 3278 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3279 spin_lock(&info->lock); 3280 left = info->total_bytes - btrfs_space_info_used(info, true); 3281 spin_unlock(&info->lock); 3282 3283 num_devs = get_profile_num_devs(fs_info, type); 3284 3285 /* num_devs device items to update and 1 chunk item to add or remove */ 3286 thresh = btrfs_calc_metadata_size(fs_info, num_devs) + 3287 btrfs_calc_insert_metadata_size(fs_info, 1); 3288 3289 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3290 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3291 left, thresh, type); 3292 btrfs_dump_space_info(fs_info, info, 0, 0); 3293 } 3294 3295 if (left < thresh) { 3296 u64 flags = btrfs_system_alloc_profile(fs_info); 3297 3298 /* 3299 * Ignore failure to create system chunk. We might end up not 3300 * needing it, as we might not need to COW all nodes/leafs from 3301 * the paths we visit in the chunk tree (they were already COWed 3302 * or created in the current transaction for example). 3303 */ 3304 ret = btrfs_alloc_chunk(trans, flags); 3305 } 3306 3307 if (!ret) { 3308 ret = btrfs_block_rsv_add(fs_info->chunk_root, 3309 &fs_info->chunk_block_rsv, 3310 thresh, BTRFS_RESERVE_NO_FLUSH); 3311 if (!ret) 3312 trans->chunk_bytes_reserved += thresh; 3313 } 3314 } 3315 3316 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3317 { 3318 struct btrfs_block_group *block_group; 3319 u64 last = 0; 3320 3321 while (1) { 3322 struct inode *inode; 3323 3324 block_group = btrfs_lookup_first_block_group(info, last); 3325 while (block_group) { 3326 btrfs_wait_block_group_cache_done(block_group); 3327 spin_lock(&block_group->lock); 3328 if (block_group->iref) 3329 break; 3330 spin_unlock(&block_group->lock); 3331 block_group = btrfs_next_block_group(block_group); 3332 } 3333 if (!block_group) { 3334 if (last == 0) 3335 break; 3336 last = 0; 3337 continue; 3338 } 3339 3340 inode = block_group->inode; 3341 block_group->iref = 0; 3342 block_group->inode = NULL; 3343 spin_unlock(&block_group->lock); 3344 ASSERT(block_group->io_ctl.inode == NULL); 3345 iput(inode); 3346 last = block_group->start + block_group->length; 3347 btrfs_put_block_group(block_group); 3348 } 3349 } 3350 3351 /* 3352 * Must be called only after stopping all workers, since we could have block 3353 * group caching kthreads running, and therefore they could race with us if we 3354 * freed the block groups before stopping them. 3355 */ 3356 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3357 { 3358 struct btrfs_block_group *block_group; 3359 struct btrfs_space_info *space_info; 3360 struct btrfs_caching_control *caching_ctl; 3361 struct rb_node *n; 3362 3363 spin_lock(&info->block_group_cache_lock); 3364 while (!list_empty(&info->caching_block_groups)) { 3365 caching_ctl = list_entry(info->caching_block_groups.next, 3366 struct btrfs_caching_control, list); 3367 list_del(&caching_ctl->list); 3368 btrfs_put_caching_control(caching_ctl); 3369 } 3370 spin_unlock(&info->block_group_cache_lock); 3371 3372 spin_lock(&info->unused_bgs_lock); 3373 while (!list_empty(&info->unused_bgs)) { 3374 block_group = list_first_entry(&info->unused_bgs, 3375 struct btrfs_block_group, 3376 bg_list); 3377 list_del_init(&block_group->bg_list); 3378 btrfs_put_block_group(block_group); 3379 } 3380 spin_unlock(&info->unused_bgs_lock); 3381 3382 spin_lock(&info->block_group_cache_lock); 3383 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3384 block_group = rb_entry(n, struct btrfs_block_group, 3385 cache_node); 3386 rb_erase(&block_group->cache_node, 3387 &info->block_group_cache_tree); 3388 RB_CLEAR_NODE(&block_group->cache_node); 3389 spin_unlock(&info->block_group_cache_lock); 3390 3391 down_write(&block_group->space_info->groups_sem); 3392 list_del(&block_group->list); 3393 up_write(&block_group->space_info->groups_sem); 3394 3395 /* 3396 * We haven't cached this block group, which means we could 3397 * possibly have excluded extents on this block group. 3398 */ 3399 if (block_group->cached == BTRFS_CACHE_NO || 3400 block_group->cached == BTRFS_CACHE_ERROR) 3401 btrfs_free_excluded_extents(block_group); 3402 3403 btrfs_remove_free_space_cache(block_group); 3404 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3405 ASSERT(list_empty(&block_group->dirty_list)); 3406 ASSERT(list_empty(&block_group->io_list)); 3407 ASSERT(list_empty(&block_group->bg_list)); 3408 ASSERT(refcount_read(&block_group->refs) == 1); 3409 btrfs_put_block_group(block_group); 3410 3411 spin_lock(&info->block_group_cache_lock); 3412 } 3413 spin_unlock(&info->block_group_cache_lock); 3414 3415 btrfs_release_global_block_rsv(info); 3416 3417 while (!list_empty(&info->space_info)) { 3418 space_info = list_entry(info->space_info.next, 3419 struct btrfs_space_info, 3420 list); 3421 3422 /* 3423 * Do not hide this behind enospc_debug, this is actually 3424 * important and indicates a real bug if this happens. 3425 */ 3426 if (WARN_ON(space_info->bytes_pinned > 0 || 3427 space_info->bytes_reserved > 0 || 3428 space_info->bytes_may_use > 0)) 3429 btrfs_dump_space_info(info, space_info, 0, 0); 3430 WARN_ON(space_info->reclaim_size > 0); 3431 list_del(&space_info->list); 3432 btrfs_sysfs_remove_space_info(space_info); 3433 } 3434 return 0; 3435 } 3436 3437 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 3438 { 3439 atomic_inc(&cache->frozen); 3440 } 3441 3442 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 3443 { 3444 struct btrfs_fs_info *fs_info = block_group->fs_info; 3445 struct extent_map_tree *em_tree; 3446 struct extent_map *em; 3447 bool cleanup; 3448 3449 spin_lock(&block_group->lock); 3450 cleanup = (atomic_dec_and_test(&block_group->frozen) && 3451 block_group->removed); 3452 spin_unlock(&block_group->lock); 3453 3454 if (cleanup) { 3455 em_tree = &fs_info->mapping_tree; 3456 write_lock(&em_tree->lock); 3457 em = lookup_extent_mapping(em_tree, block_group->start, 3458 1); 3459 BUG_ON(!em); /* logic error, can't happen */ 3460 remove_extent_mapping(em_tree, em); 3461 write_unlock(&em_tree->lock); 3462 3463 /* once for us and once for the tree */ 3464 free_extent_map(em); 3465 free_extent_map(em); 3466 3467 /* 3468 * We may have left one free space entry and other possible 3469 * tasks trimming this block group have left 1 entry each one. 3470 * Free them if any. 3471 */ 3472 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3473 } 3474 } 3475