xref: /linux/fs/btrfs/block-group.c (revision c79c3c34f75d72a066e292b10aa50fc758c97c89)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 #include "zoned.h"
19 
20 /*
21  * Return target flags in extended format or 0 if restripe for this chunk_type
22  * is not in progress
23  *
24  * Should be called with balance_lock held
25  */
26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 {
28 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 	u64 target = 0;
30 
31 	if (!bctl)
32 		return 0;
33 
34 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 	}
44 
45 	return target;
46 }
47 
48 /*
49  * @flags: available profiles in extended format (see ctree.h)
50  *
51  * Return reduced profile in chunk format.  If profile changing is in progress
52  * (either running or paused) picks the target profile (if it's already
53  * available), otherwise falls back to plain reducing.
54  */
55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 {
57 	u64 num_devices = fs_info->fs_devices->rw_devices;
58 	u64 target;
59 	u64 raid_type;
60 	u64 allowed = 0;
61 
62 	/*
63 	 * See if restripe for this chunk_type is in progress, if so try to
64 	 * reduce to the target profile
65 	 */
66 	spin_lock(&fs_info->balance_lock);
67 	target = get_restripe_target(fs_info, flags);
68 	if (target) {
69 		spin_unlock(&fs_info->balance_lock);
70 		return extended_to_chunk(target);
71 	}
72 	spin_unlock(&fs_info->balance_lock);
73 
74 	/* First, mask out the RAID levels which aren't possible */
75 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77 			allowed |= btrfs_raid_array[raid_type].bg_flag;
78 	}
79 	allowed &= flags;
80 
81 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82 		allowed = BTRFS_BLOCK_GROUP_RAID6;
83 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84 		allowed = BTRFS_BLOCK_GROUP_RAID5;
85 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86 		allowed = BTRFS_BLOCK_GROUP_RAID10;
87 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88 		allowed = BTRFS_BLOCK_GROUP_RAID1;
89 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90 		allowed = BTRFS_BLOCK_GROUP_RAID0;
91 
92 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93 
94 	return extended_to_chunk(flags | allowed);
95 }
96 
97 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
98 {
99 	unsigned seq;
100 	u64 flags;
101 
102 	do {
103 		flags = orig_flags;
104 		seq = read_seqbegin(&fs_info->profiles_lock);
105 
106 		if (flags & BTRFS_BLOCK_GROUP_DATA)
107 			flags |= fs_info->avail_data_alloc_bits;
108 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109 			flags |= fs_info->avail_system_alloc_bits;
110 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111 			flags |= fs_info->avail_metadata_alloc_bits;
112 	} while (read_seqretry(&fs_info->profiles_lock, seq));
113 
114 	return btrfs_reduce_alloc_profile(fs_info, flags);
115 }
116 
117 void btrfs_get_block_group(struct btrfs_block_group *cache)
118 {
119 	refcount_inc(&cache->refs);
120 }
121 
122 void btrfs_put_block_group(struct btrfs_block_group *cache)
123 {
124 	if (refcount_dec_and_test(&cache->refs)) {
125 		WARN_ON(cache->pinned > 0);
126 		WARN_ON(cache->reserved > 0);
127 
128 		/*
129 		 * A block_group shouldn't be on the discard_list anymore.
130 		 * Remove the block_group from the discard_list to prevent us
131 		 * from causing a panic due to NULL pointer dereference.
132 		 */
133 		if (WARN_ON(!list_empty(&cache->discard_list)))
134 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135 						  cache);
136 
137 		/*
138 		 * If not empty, someone is still holding mutex of
139 		 * full_stripe_lock, which can only be released by caller.
140 		 * And it will definitely cause use-after-free when caller
141 		 * tries to release full stripe lock.
142 		 *
143 		 * No better way to resolve, but only to warn.
144 		 */
145 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146 		kfree(cache->free_space_ctl);
147 		kfree(cache);
148 	}
149 }
150 
151 /*
152  * This adds the block group to the fs_info rb tree for the block group cache
153  */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 				       struct btrfs_block_group *block_group)
156 {
157 	struct rb_node **p;
158 	struct rb_node *parent = NULL;
159 	struct btrfs_block_group *cache;
160 
161 	ASSERT(block_group->length != 0);
162 
163 	spin_lock(&info->block_group_cache_lock);
164 	p = &info->block_group_cache_tree.rb_node;
165 
166 	while (*p) {
167 		parent = *p;
168 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
169 		if (block_group->start < cache->start) {
170 			p = &(*p)->rb_left;
171 		} else if (block_group->start > cache->start) {
172 			p = &(*p)->rb_right;
173 		} else {
174 			spin_unlock(&info->block_group_cache_lock);
175 			return -EEXIST;
176 		}
177 	}
178 
179 	rb_link_node(&block_group->cache_node, parent, p);
180 	rb_insert_color(&block_group->cache_node,
181 			&info->block_group_cache_tree);
182 
183 	if (info->first_logical_byte > block_group->start)
184 		info->first_logical_byte = block_group->start;
185 
186 	spin_unlock(&info->block_group_cache_lock);
187 
188 	return 0;
189 }
190 
191 /*
192  * This will return the block group at or after bytenr if contains is 0, else
193  * it will return the block group that contains the bytenr
194  */
195 static struct btrfs_block_group *block_group_cache_tree_search(
196 		struct btrfs_fs_info *info, u64 bytenr, int contains)
197 {
198 	struct btrfs_block_group *cache, *ret = NULL;
199 	struct rb_node *n;
200 	u64 end, start;
201 
202 	spin_lock(&info->block_group_cache_lock);
203 	n = info->block_group_cache_tree.rb_node;
204 
205 	while (n) {
206 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
207 		end = cache->start + cache->length - 1;
208 		start = cache->start;
209 
210 		if (bytenr < start) {
211 			if (!contains && (!ret || start < ret->start))
212 				ret = cache;
213 			n = n->rb_left;
214 		} else if (bytenr > start) {
215 			if (contains && bytenr <= end) {
216 				ret = cache;
217 				break;
218 			}
219 			n = n->rb_right;
220 		} else {
221 			ret = cache;
222 			break;
223 		}
224 	}
225 	if (ret) {
226 		btrfs_get_block_group(ret);
227 		if (bytenr == 0 && info->first_logical_byte > ret->start)
228 			info->first_logical_byte = ret->start;
229 	}
230 	spin_unlock(&info->block_group_cache_lock);
231 
232 	return ret;
233 }
234 
235 /*
236  * Return the block group that starts at or after bytenr
237  */
238 struct btrfs_block_group *btrfs_lookup_first_block_group(
239 		struct btrfs_fs_info *info, u64 bytenr)
240 {
241 	return block_group_cache_tree_search(info, bytenr, 0);
242 }
243 
244 /*
245  * Return the block group that contains the given bytenr
246  */
247 struct btrfs_block_group *btrfs_lookup_block_group(
248 		struct btrfs_fs_info *info, u64 bytenr)
249 {
250 	return block_group_cache_tree_search(info, bytenr, 1);
251 }
252 
253 struct btrfs_block_group *btrfs_next_block_group(
254 		struct btrfs_block_group *cache)
255 {
256 	struct btrfs_fs_info *fs_info = cache->fs_info;
257 	struct rb_node *node;
258 
259 	spin_lock(&fs_info->block_group_cache_lock);
260 
261 	/* If our block group was removed, we need a full search. */
262 	if (RB_EMPTY_NODE(&cache->cache_node)) {
263 		const u64 next_bytenr = cache->start + cache->length;
264 
265 		spin_unlock(&fs_info->block_group_cache_lock);
266 		btrfs_put_block_group(cache);
267 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268 	}
269 	node = rb_next(&cache->cache_node);
270 	btrfs_put_block_group(cache);
271 	if (node) {
272 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
273 		btrfs_get_block_group(cache);
274 	} else
275 		cache = NULL;
276 	spin_unlock(&fs_info->block_group_cache_lock);
277 	return cache;
278 }
279 
280 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281 {
282 	struct btrfs_block_group *bg;
283 	bool ret = true;
284 
285 	bg = btrfs_lookup_block_group(fs_info, bytenr);
286 	if (!bg)
287 		return false;
288 
289 	spin_lock(&bg->lock);
290 	if (bg->ro)
291 		ret = false;
292 	else
293 		atomic_inc(&bg->nocow_writers);
294 	spin_unlock(&bg->lock);
295 
296 	/* No put on block group, done by btrfs_dec_nocow_writers */
297 	if (!ret)
298 		btrfs_put_block_group(bg);
299 
300 	return ret;
301 }
302 
303 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304 {
305 	struct btrfs_block_group *bg;
306 
307 	bg = btrfs_lookup_block_group(fs_info, bytenr);
308 	ASSERT(bg);
309 	if (atomic_dec_and_test(&bg->nocow_writers))
310 		wake_up_var(&bg->nocow_writers);
311 	/*
312 	 * Once for our lookup and once for the lookup done by a previous call
313 	 * to btrfs_inc_nocow_writers()
314 	 */
315 	btrfs_put_block_group(bg);
316 	btrfs_put_block_group(bg);
317 }
318 
319 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
320 {
321 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322 }
323 
324 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325 					const u64 start)
326 {
327 	struct btrfs_block_group *bg;
328 
329 	bg = btrfs_lookup_block_group(fs_info, start);
330 	ASSERT(bg);
331 	if (atomic_dec_and_test(&bg->reservations))
332 		wake_up_var(&bg->reservations);
333 	btrfs_put_block_group(bg);
334 }
335 
336 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
337 {
338 	struct btrfs_space_info *space_info = bg->space_info;
339 
340 	ASSERT(bg->ro);
341 
342 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343 		return;
344 
345 	/*
346 	 * Our block group is read only but before we set it to read only,
347 	 * some task might have had allocated an extent from it already, but it
348 	 * has not yet created a respective ordered extent (and added it to a
349 	 * root's list of ordered extents).
350 	 * Therefore wait for any task currently allocating extents, since the
351 	 * block group's reservations counter is incremented while a read lock
352 	 * on the groups' semaphore is held and decremented after releasing
353 	 * the read access on that semaphore and creating the ordered extent.
354 	 */
355 	down_write(&space_info->groups_sem);
356 	up_write(&space_info->groups_sem);
357 
358 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359 }
360 
361 struct btrfs_caching_control *btrfs_get_caching_control(
362 		struct btrfs_block_group *cache)
363 {
364 	struct btrfs_caching_control *ctl;
365 
366 	spin_lock(&cache->lock);
367 	if (!cache->caching_ctl) {
368 		spin_unlock(&cache->lock);
369 		return NULL;
370 	}
371 
372 	ctl = cache->caching_ctl;
373 	refcount_inc(&ctl->count);
374 	spin_unlock(&cache->lock);
375 	return ctl;
376 }
377 
378 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379 {
380 	if (refcount_dec_and_test(&ctl->count))
381 		kfree(ctl);
382 }
383 
384 /*
385  * When we wait for progress in the block group caching, its because our
386  * allocation attempt failed at least once.  So, we must sleep and let some
387  * progress happen before we try again.
388  *
389  * This function will sleep at least once waiting for new free space to show
390  * up, and then it will check the block group free space numbers for our min
391  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
392  * a free extent of a given size, but this is a good start.
393  *
394  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395  * any of the information in this block group.
396  */
397 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
398 					   u64 num_bytes)
399 {
400 	struct btrfs_caching_control *caching_ctl;
401 
402 	caching_ctl = btrfs_get_caching_control(cache);
403 	if (!caching_ctl)
404 		return;
405 
406 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
407 		   (cache->free_space_ctl->free_space >= num_bytes));
408 
409 	btrfs_put_caching_control(caching_ctl);
410 }
411 
412 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
413 {
414 	struct btrfs_caching_control *caching_ctl;
415 	int ret = 0;
416 
417 	caching_ctl = btrfs_get_caching_control(cache);
418 	if (!caching_ctl)
419 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420 
421 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
422 	if (cache->cached == BTRFS_CACHE_ERROR)
423 		ret = -EIO;
424 	btrfs_put_caching_control(caching_ctl);
425 	return ret;
426 }
427 
428 static bool space_cache_v1_done(struct btrfs_block_group *cache)
429 {
430 	bool ret;
431 
432 	spin_lock(&cache->lock);
433 	ret = cache->cached != BTRFS_CACHE_FAST;
434 	spin_unlock(&cache->lock);
435 
436 	return ret;
437 }
438 
439 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440 				struct btrfs_caching_control *caching_ctl)
441 {
442 	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443 }
444 
445 #ifdef CONFIG_BTRFS_DEBUG
446 static void fragment_free_space(struct btrfs_block_group *block_group)
447 {
448 	struct btrfs_fs_info *fs_info = block_group->fs_info;
449 	u64 start = block_group->start;
450 	u64 len = block_group->length;
451 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452 		fs_info->nodesize : fs_info->sectorsize;
453 	u64 step = chunk << 1;
454 
455 	while (len > chunk) {
456 		btrfs_remove_free_space(block_group, start, chunk);
457 		start += step;
458 		if (len < step)
459 			len = 0;
460 		else
461 			len -= step;
462 	}
463 }
464 #endif
465 
466 /*
467  * This is only called by btrfs_cache_block_group, since we could have freed
468  * extents we need to check the pinned_extents for any extents that can't be
469  * used yet since their free space will be released as soon as the transaction
470  * commits.
471  */
472 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
473 {
474 	struct btrfs_fs_info *info = block_group->fs_info;
475 	u64 extent_start, extent_end, size, total_added = 0;
476 	int ret;
477 
478 	while (start < end) {
479 		ret = find_first_extent_bit(&info->excluded_extents, start,
480 					    &extent_start, &extent_end,
481 					    EXTENT_DIRTY | EXTENT_UPTODATE,
482 					    NULL);
483 		if (ret)
484 			break;
485 
486 		if (extent_start <= start) {
487 			start = extent_end + 1;
488 		} else if (extent_start > start && extent_start < end) {
489 			size = extent_start - start;
490 			total_added += size;
491 			ret = btrfs_add_free_space_async_trimmed(block_group,
492 								 start, size);
493 			BUG_ON(ret); /* -ENOMEM or logic error */
494 			start = extent_end + 1;
495 		} else {
496 			break;
497 		}
498 	}
499 
500 	if (start < end) {
501 		size = end - start;
502 		total_added += size;
503 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
504 							 size);
505 		BUG_ON(ret); /* -ENOMEM or logic error */
506 	}
507 
508 	return total_added;
509 }
510 
511 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512 {
513 	struct btrfs_block_group *block_group = caching_ctl->block_group;
514 	struct btrfs_fs_info *fs_info = block_group->fs_info;
515 	struct btrfs_root *extent_root = fs_info->extent_root;
516 	struct btrfs_path *path;
517 	struct extent_buffer *leaf;
518 	struct btrfs_key key;
519 	u64 total_found = 0;
520 	u64 last = 0;
521 	u32 nritems;
522 	int ret;
523 	bool wakeup = true;
524 
525 	path = btrfs_alloc_path();
526 	if (!path)
527 		return -ENOMEM;
528 
529 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
530 
531 #ifdef CONFIG_BTRFS_DEBUG
532 	/*
533 	 * If we're fragmenting we don't want to make anybody think we can
534 	 * allocate from this block group until we've had a chance to fragment
535 	 * the free space.
536 	 */
537 	if (btrfs_should_fragment_free_space(block_group))
538 		wakeup = false;
539 #endif
540 	/*
541 	 * We don't want to deadlock with somebody trying to allocate a new
542 	 * extent for the extent root while also trying to search the extent
543 	 * root to add free space.  So we skip locking and search the commit
544 	 * root, since its read-only
545 	 */
546 	path->skip_locking = 1;
547 	path->search_commit_root = 1;
548 	path->reada = READA_FORWARD;
549 
550 	key.objectid = last;
551 	key.offset = 0;
552 	key.type = BTRFS_EXTENT_ITEM_KEY;
553 
554 next:
555 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556 	if (ret < 0)
557 		goto out;
558 
559 	leaf = path->nodes[0];
560 	nritems = btrfs_header_nritems(leaf);
561 
562 	while (1) {
563 		if (btrfs_fs_closing(fs_info) > 1) {
564 			last = (u64)-1;
565 			break;
566 		}
567 
568 		if (path->slots[0] < nritems) {
569 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570 		} else {
571 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572 			if (ret)
573 				break;
574 
575 			if (need_resched() ||
576 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
577 				if (wakeup)
578 					caching_ctl->progress = last;
579 				btrfs_release_path(path);
580 				up_read(&fs_info->commit_root_sem);
581 				mutex_unlock(&caching_ctl->mutex);
582 				cond_resched();
583 				mutex_lock(&caching_ctl->mutex);
584 				down_read(&fs_info->commit_root_sem);
585 				goto next;
586 			}
587 
588 			ret = btrfs_next_leaf(extent_root, path);
589 			if (ret < 0)
590 				goto out;
591 			if (ret)
592 				break;
593 			leaf = path->nodes[0];
594 			nritems = btrfs_header_nritems(leaf);
595 			continue;
596 		}
597 
598 		if (key.objectid < last) {
599 			key.objectid = last;
600 			key.offset = 0;
601 			key.type = BTRFS_EXTENT_ITEM_KEY;
602 
603 			if (wakeup)
604 				caching_ctl->progress = last;
605 			btrfs_release_path(path);
606 			goto next;
607 		}
608 
609 		if (key.objectid < block_group->start) {
610 			path->slots[0]++;
611 			continue;
612 		}
613 
614 		if (key.objectid >= block_group->start + block_group->length)
615 			break;
616 
617 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618 		    key.type == BTRFS_METADATA_ITEM_KEY) {
619 			total_found += add_new_free_space(block_group, last,
620 							  key.objectid);
621 			if (key.type == BTRFS_METADATA_ITEM_KEY)
622 				last = key.objectid +
623 					fs_info->nodesize;
624 			else
625 				last = key.objectid + key.offset;
626 
627 			if (total_found > CACHING_CTL_WAKE_UP) {
628 				total_found = 0;
629 				if (wakeup)
630 					wake_up(&caching_ctl->wait);
631 			}
632 		}
633 		path->slots[0]++;
634 	}
635 	ret = 0;
636 
637 	total_found += add_new_free_space(block_group, last,
638 				block_group->start + block_group->length);
639 	caching_ctl->progress = (u64)-1;
640 
641 out:
642 	btrfs_free_path(path);
643 	return ret;
644 }
645 
646 static noinline void caching_thread(struct btrfs_work *work)
647 {
648 	struct btrfs_block_group *block_group;
649 	struct btrfs_fs_info *fs_info;
650 	struct btrfs_caching_control *caching_ctl;
651 	int ret;
652 
653 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
654 	block_group = caching_ctl->block_group;
655 	fs_info = block_group->fs_info;
656 
657 	mutex_lock(&caching_ctl->mutex);
658 	down_read(&fs_info->commit_root_sem);
659 
660 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661 		ret = load_free_space_cache(block_group);
662 		if (ret == 1) {
663 			ret = 0;
664 			goto done;
665 		}
666 
667 		/*
668 		 * We failed to load the space cache, set ourselves to
669 		 * CACHE_STARTED and carry on.
670 		 */
671 		spin_lock(&block_group->lock);
672 		block_group->cached = BTRFS_CACHE_STARTED;
673 		spin_unlock(&block_group->lock);
674 		wake_up(&caching_ctl->wait);
675 	}
676 
677 	/*
678 	 * If we are in the transaction that populated the free space tree we
679 	 * can't actually cache from the free space tree as our commit root and
680 	 * real root are the same, so we could change the contents of the blocks
681 	 * while caching.  Instead do the slow caching in this case, and after
682 	 * the transaction has committed we will be safe.
683 	 */
684 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
686 		ret = load_free_space_tree(caching_ctl);
687 	else
688 		ret = load_extent_tree_free(caching_ctl);
689 done:
690 	spin_lock(&block_group->lock);
691 	block_group->caching_ctl = NULL;
692 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693 	spin_unlock(&block_group->lock);
694 
695 #ifdef CONFIG_BTRFS_DEBUG
696 	if (btrfs_should_fragment_free_space(block_group)) {
697 		u64 bytes_used;
698 
699 		spin_lock(&block_group->space_info->lock);
700 		spin_lock(&block_group->lock);
701 		bytes_used = block_group->length - block_group->used;
702 		block_group->space_info->bytes_used += bytes_used >> 1;
703 		spin_unlock(&block_group->lock);
704 		spin_unlock(&block_group->space_info->lock);
705 		fragment_free_space(block_group);
706 	}
707 #endif
708 
709 	caching_ctl->progress = (u64)-1;
710 
711 	up_read(&fs_info->commit_root_sem);
712 	btrfs_free_excluded_extents(block_group);
713 	mutex_unlock(&caching_ctl->mutex);
714 
715 	wake_up(&caching_ctl->wait);
716 
717 	btrfs_put_caching_control(caching_ctl);
718 	btrfs_put_block_group(block_group);
719 }
720 
721 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
722 {
723 	DEFINE_WAIT(wait);
724 	struct btrfs_fs_info *fs_info = cache->fs_info;
725 	struct btrfs_caching_control *caching_ctl = NULL;
726 	int ret = 0;
727 
728 	/* Allocator for zoned filesystems does not use the cache at all */
729 	if (btrfs_is_zoned(fs_info))
730 		return 0;
731 
732 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733 	if (!caching_ctl)
734 		return -ENOMEM;
735 
736 	INIT_LIST_HEAD(&caching_ctl->list);
737 	mutex_init(&caching_ctl->mutex);
738 	init_waitqueue_head(&caching_ctl->wait);
739 	caching_ctl->block_group = cache;
740 	caching_ctl->progress = cache->start;
741 	refcount_set(&caching_ctl->count, 2);
742 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
743 
744 	spin_lock(&cache->lock);
745 	if (cache->cached != BTRFS_CACHE_NO) {
746 		kfree(caching_ctl);
747 
748 		caching_ctl = cache->caching_ctl;
749 		if (caching_ctl)
750 			refcount_inc(&caching_ctl->count);
751 		spin_unlock(&cache->lock);
752 		goto out;
753 	}
754 	WARN_ON(cache->caching_ctl);
755 	cache->caching_ctl = caching_ctl;
756 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
757 		cache->cached = BTRFS_CACHE_FAST;
758 	else
759 		cache->cached = BTRFS_CACHE_STARTED;
760 	cache->has_caching_ctl = 1;
761 	spin_unlock(&cache->lock);
762 
763 	spin_lock(&fs_info->block_group_cache_lock);
764 	refcount_inc(&caching_ctl->count);
765 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
766 	spin_unlock(&fs_info->block_group_cache_lock);
767 
768 	btrfs_get_block_group(cache);
769 
770 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
771 out:
772 	if (load_cache_only && caching_ctl)
773 		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774 	if (caching_ctl)
775 		btrfs_put_caching_control(caching_ctl);
776 
777 	return ret;
778 }
779 
780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781 {
782 	u64 extra_flags = chunk_to_extended(flags) &
783 				BTRFS_EXTENDED_PROFILE_MASK;
784 
785 	write_seqlock(&fs_info->profiles_lock);
786 	if (flags & BTRFS_BLOCK_GROUP_DATA)
787 		fs_info->avail_data_alloc_bits &= ~extra_flags;
788 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
789 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791 		fs_info->avail_system_alloc_bits &= ~extra_flags;
792 	write_sequnlock(&fs_info->profiles_lock);
793 }
794 
795 /*
796  * Clear incompat bits for the following feature(s):
797  *
798  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799  *            in the whole filesystem
800  *
801  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
802  */
803 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804 {
805 	bool found_raid56 = false;
806 	bool found_raid1c34 = false;
807 
808 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
811 		struct list_head *head = &fs_info->space_info;
812 		struct btrfs_space_info *sinfo;
813 
814 		list_for_each_entry_rcu(sinfo, head, list) {
815 			down_read(&sinfo->groups_sem);
816 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
817 				found_raid56 = true;
818 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
819 				found_raid56 = true;
820 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821 				found_raid1c34 = true;
822 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823 				found_raid1c34 = true;
824 			up_read(&sinfo->groups_sem);
825 		}
826 		if (!found_raid56)
827 			btrfs_clear_fs_incompat(fs_info, RAID56);
828 		if (!found_raid1c34)
829 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
830 	}
831 }
832 
833 static int remove_block_group_item(struct btrfs_trans_handle *trans,
834 				   struct btrfs_path *path,
835 				   struct btrfs_block_group *block_group)
836 {
837 	struct btrfs_fs_info *fs_info = trans->fs_info;
838 	struct btrfs_root *root;
839 	struct btrfs_key key;
840 	int ret;
841 
842 	root = fs_info->extent_root;
843 	key.objectid = block_group->start;
844 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845 	key.offset = block_group->length;
846 
847 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848 	if (ret > 0)
849 		ret = -ENOENT;
850 	if (ret < 0)
851 		return ret;
852 
853 	ret = btrfs_del_item(trans, root, path);
854 	return ret;
855 }
856 
857 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858 			     u64 group_start, struct extent_map *em)
859 {
860 	struct btrfs_fs_info *fs_info = trans->fs_info;
861 	struct btrfs_path *path;
862 	struct btrfs_block_group *block_group;
863 	struct btrfs_free_cluster *cluster;
864 	struct inode *inode;
865 	struct kobject *kobj = NULL;
866 	int ret;
867 	int index;
868 	int factor;
869 	struct btrfs_caching_control *caching_ctl = NULL;
870 	bool remove_em;
871 	bool remove_rsv = false;
872 
873 	block_group = btrfs_lookup_block_group(fs_info, group_start);
874 	BUG_ON(!block_group);
875 	BUG_ON(!block_group->ro);
876 
877 	trace_btrfs_remove_block_group(block_group);
878 	/*
879 	 * Free the reserved super bytes from this block group before
880 	 * remove it.
881 	 */
882 	btrfs_free_excluded_extents(block_group);
883 	btrfs_free_ref_tree_range(fs_info, block_group->start,
884 				  block_group->length);
885 
886 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
887 	factor = btrfs_bg_type_to_factor(block_group->flags);
888 
889 	/* make sure this block group isn't part of an allocation cluster */
890 	cluster = &fs_info->data_alloc_cluster;
891 	spin_lock(&cluster->refill_lock);
892 	btrfs_return_cluster_to_free_space(block_group, cluster);
893 	spin_unlock(&cluster->refill_lock);
894 
895 	/*
896 	 * make sure this block group isn't part of a metadata
897 	 * allocation cluster
898 	 */
899 	cluster = &fs_info->meta_alloc_cluster;
900 	spin_lock(&cluster->refill_lock);
901 	btrfs_return_cluster_to_free_space(block_group, cluster);
902 	spin_unlock(&cluster->refill_lock);
903 
904 	btrfs_clear_treelog_bg(block_group);
905 
906 	path = btrfs_alloc_path();
907 	if (!path) {
908 		ret = -ENOMEM;
909 		goto out;
910 	}
911 
912 	/*
913 	 * get the inode first so any iput calls done for the io_list
914 	 * aren't the final iput (no unlinks allowed now)
915 	 */
916 	inode = lookup_free_space_inode(block_group, path);
917 
918 	mutex_lock(&trans->transaction->cache_write_mutex);
919 	/*
920 	 * Make sure our free space cache IO is done before removing the
921 	 * free space inode
922 	 */
923 	spin_lock(&trans->transaction->dirty_bgs_lock);
924 	if (!list_empty(&block_group->io_list)) {
925 		list_del_init(&block_group->io_list);
926 
927 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928 
929 		spin_unlock(&trans->transaction->dirty_bgs_lock);
930 		btrfs_wait_cache_io(trans, block_group, path);
931 		btrfs_put_block_group(block_group);
932 		spin_lock(&trans->transaction->dirty_bgs_lock);
933 	}
934 
935 	if (!list_empty(&block_group->dirty_list)) {
936 		list_del_init(&block_group->dirty_list);
937 		remove_rsv = true;
938 		btrfs_put_block_group(block_group);
939 	}
940 	spin_unlock(&trans->transaction->dirty_bgs_lock);
941 	mutex_unlock(&trans->transaction->cache_write_mutex);
942 
943 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944 	if (ret)
945 		goto out;
946 
947 	spin_lock(&fs_info->block_group_cache_lock);
948 	rb_erase(&block_group->cache_node,
949 		 &fs_info->block_group_cache_tree);
950 	RB_CLEAR_NODE(&block_group->cache_node);
951 
952 	/* Once for the block groups rbtree */
953 	btrfs_put_block_group(block_group);
954 
955 	if (fs_info->first_logical_byte == block_group->start)
956 		fs_info->first_logical_byte = (u64)-1;
957 	spin_unlock(&fs_info->block_group_cache_lock);
958 
959 	down_write(&block_group->space_info->groups_sem);
960 	/*
961 	 * we must use list_del_init so people can check to see if they
962 	 * are still on the list after taking the semaphore
963 	 */
964 	list_del_init(&block_group->list);
965 	if (list_empty(&block_group->space_info->block_groups[index])) {
966 		kobj = block_group->space_info->block_group_kobjs[index];
967 		block_group->space_info->block_group_kobjs[index] = NULL;
968 		clear_avail_alloc_bits(fs_info, block_group->flags);
969 	}
970 	up_write(&block_group->space_info->groups_sem);
971 	clear_incompat_bg_bits(fs_info, block_group->flags);
972 	if (kobj) {
973 		kobject_del(kobj);
974 		kobject_put(kobj);
975 	}
976 
977 	if (block_group->has_caching_ctl)
978 		caching_ctl = btrfs_get_caching_control(block_group);
979 	if (block_group->cached == BTRFS_CACHE_STARTED)
980 		btrfs_wait_block_group_cache_done(block_group);
981 	if (block_group->has_caching_ctl) {
982 		spin_lock(&fs_info->block_group_cache_lock);
983 		if (!caching_ctl) {
984 			struct btrfs_caching_control *ctl;
985 
986 			list_for_each_entry(ctl,
987 				    &fs_info->caching_block_groups, list)
988 				if (ctl->block_group == block_group) {
989 					caching_ctl = ctl;
990 					refcount_inc(&caching_ctl->count);
991 					break;
992 				}
993 		}
994 		if (caching_ctl)
995 			list_del_init(&caching_ctl->list);
996 		spin_unlock(&fs_info->block_group_cache_lock);
997 		if (caching_ctl) {
998 			/* Once for the caching bgs list and once for us. */
999 			btrfs_put_caching_control(caching_ctl);
1000 			btrfs_put_caching_control(caching_ctl);
1001 		}
1002 	}
1003 
1004 	spin_lock(&trans->transaction->dirty_bgs_lock);
1005 	WARN_ON(!list_empty(&block_group->dirty_list));
1006 	WARN_ON(!list_empty(&block_group->io_list));
1007 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1008 
1009 	btrfs_remove_free_space_cache(block_group);
1010 
1011 	spin_lock(&block_group->space_info->lock);
1012 	list_del_init(&block_group->ro_list);
1013 
1014 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015 		WARN_ON(block_group->space_info->total_bytes
1016 			< block_group->length);
1017 		WARN_ON(block_group->space_info->bytes_readonly
1018 			< block_group->length - block_group->zone_unusable);
1019 		WARN_ON(block_group->space_info->bytes_zone_unusable
1020 			< block_group->zone_unusable);
1021 		WARN_ON(block_group->space_info->disk_total
1022 			< block_group->length * factor);
1023 	}
1024 	block_group->space_info->total_bytes -= block_group->length;
1025 	block_group->space_info->bytes_readonly -=
1026 		(block_group->length - block_group->zone_unusable);
1027 	block_group->space_info->bytes_zone_unusable -=
1028 		block_group->zone_unusable;
1029 	block_group->space_info->disk_total -= block_group->length * factor;
1030 
1031 	spin_unlock(&block_group->space_info->lock);
1032 
1033 	/*
1034 	 * Remove the free space for the block group from the free space tree
1035 	 * and the block group's item from the extent tree before marking the
1036 	 * block group as removed. This is to prevent races with tasks that
1037 	 * freeze and unfreeze a block group, this task and another task
1038 	 * allocating a new block group - the unfreeze task ends up removing
1039 	 * the block group's extent map before the task calling this function
1040 	 * deletes the block group item from the extent tree, allowing for
1041 	 * another task to attempt to create another block group with the same
1042 	 * item key (and failing with -EEXIST and a transaction abort).
1043 	 */
1044 	ret = remove_block_group_free_space(trans, block_group);
1045 	if (ret)
1046 		goto out;
1047 
1048 	ret = remove_block_group_item(trans, path, block_group);
1049 	if (ret < 0)
1050 		goto out;
1051 
1052 	spin_lock(&block_group->lock);
1053 	block_group->removed = 1;
1054 	/*
1055 	 * At this point trimming or scrub can't start on this block group,
1056 	 * because we removed the block group from the rbtree
1057 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058 	 * even if someone already got this block group before we removed it
1059 	 * from the rbtree, they have already incremented block_group->frozen -
1060 	 * if they didn't, for the trimming case they won't find any free space
1061 	 * entries because we already removed them all when we called
1062 	 * btrfs_remove_free_space_cache().
1063 	 *
1064 	 * And we must not remove the extent map from the fs_info->mapping_tree
1065 	 * to prevent the same logical address range and physical device space
1066 	 * ranges from being reused for a new block group. This is needed to
1067 	 * avoid races with trimming and scrub.
1068 	 *
1069 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070 	 * completely transactionless, so while it is trimming a range the
1071 	 * currently running transaction might finish and a new one start,
1072 	 * allowing for new block groups to be created that can reuse the same
1073 	 * physical device locations unless we take this special care.
1074 	 *
1075 	 * There may also be an implicit trim operation if the file system
1076 	 * is mounted with -odiscard. The same protections must remain
1077 	 * in place until the extents have been discarded completely when
1078 	 * the transaction commit has completed.
1079 	 */
1080 	remove_em = (atomic_read(&block_group->frozen) == 0);
1081 	spin_unlock(&block_group->lock);
1082 
1083 	if (remove_em) {
1084 		struct extent_map_tree *em_tree;
1085 
1086 		em_tree = &fs_info->mapping_tree;
1087 		write_lock(&em_tree->lock);
1088 		remove_extent_mapping(em_tree, em);
1089 		write_unlock(&em_tree->lock);
1090 		/* once for the tree */
1091 		free_extent_map(em);
1092 	}
1093 
1094 out:
1095 	/* Once for the lookup reference */
1096 	btrfs_put_block_group(block_group);
1097 	if (remove_rsv)
1098 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1099 	btrfs_free_path(path);
1100 	return ret;
1101 }
1102 
1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105 {
1106 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107 	struct extent_map *em;
1108 	struct map_lookup *map;
1109 	unsigned int num_items;
1110 
1111 	read_lock(&em_tree->lock);
1112 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113 	read_unlock(&em_tree->lock);
1114 	ASSERT(em && em->start == chunk_offset);
1115 
1116 	/*
1117 	 * We need to reserve 3 + N units from the metadata space info in order
1118 	 * to remove a block group (done at btrfs_remove_chunk() and at
1119 	 * btrfs_remove_block_group()), which are used for:
1120 	 *
1121 	 * 1 unit for adding the free space inode's orphan (located in the tree
1122 	 * of tree roots).
1123 	 * 1 unit for deleting the block group item (located in the extent
1124 	 * tree).
1125 	 * 1 unit for deleting the free space item (located in tree of tree
1126 	 * roots).
1127 	 * N units for deleting N device extent items corresponding to each
1128 	 * stripe (located in the device tree).
1129 	 *
1130 	 * In order to remove a block group we also need to reserve units in the
1131 	 * system space info in order to update the chunk tree (update one or
1132 	 * more device items and remove one chunk item), but this is done at
1133 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1134 	 */
1135 	map = em->map_lookup;
1136 	num_items = 3 + map->num_stripes;
1137 	free_extent_map(em);
1138 
1139 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140 							   num_items);
1141 }
1142 
1143 /*
1144  * Mark block group @cache read-only, so later write won't happen to block
1145  * group @cache.
1146  *
1147  * If @force is not set, this function will only mark the block group readonly
1148  * if we have enough free space (1M) in other metadata/system block groups.
1149  * If @force is not set, this function will mark the block group readonly
1150  * without checking free space.
1151  *
1152  * NOTE: This function doesn't care if other block groups can contain all the
1153  * data in this block group. That check should be done by relocation routine,
1154  * not this function.
1155  */
1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157 {
1158 	struct btrfs_space_info *sinfo = cache->space_info;
1159 	u64 num_bytes;
1160 	int ret = -ENOSPC;
1161 
1162 	spin_lock(&sinfo->lock);
1163 	spin_lock(&cache->lock);
1164 
1165 	if (cache->ro) {
1166 		cache->ro++;
1167 		ret = 0;
1168 		goto out;
1169 	}
1170 
1171 	num_bytes = cache->length - cache->reserved - cache->pinned -
1172 		    cache->bytes_super - cache->zone_unusable - cache->used;
1173 
1174 	/*
1175 	 * Data never overcommits, even in mixed mode, so do just the straight
1176 	 * check of left over space in how much we have allocated.
1177 	 */
1178 	if (force) {
1179 		ret = 0;
1180 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1181 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1182 
1183 		/*
1184 		 * Here we make sure if we mark this bg RO, we still have enough
1185 		 * free space as buffer.
1186 		 */
1187 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1188 			ret = 0;
1189 	} else {
1190 		/*
1191 		 * We overcommit metadata, so we need to do the
1192 		 * btrfs_can_overcommit check here, and we need to pass in
1193 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1194 		 * leeway to allow us to mark this block group as read only.
1195 		 */
1196 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1197 					 BTRFS_RESERVE_NO_FLUSH))
1198 			ret = 0;
1199 	}
1200 
1201 	if (!ret) {
1202 		sinfo->bytes_readonly += num_bytes;
1203 		if (btrfs_is_zoned(cache->fs_info)) {
1204 			/* Migrate zone_unusable bytes to readonly */
1205 			sinfo->bytes_readonly += cache->zone_unusable;
1206 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1207 			cache->zone_unusable = 0;
1208 		}
1209 		cache->ro++;
1210 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1211 	}
1212 out:
1213 	spin_unlock(&cache->lock);
1214 	spin_unlock(&sinfo->lock);
1215 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1216 		btrfs_info(cache->fs_info,
1217 			"unable to make block group %llu ro", cache->start);
1218 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1219 	}
1220 	return ret;
1221 }
1222 
1223 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1224 				 struct btrfs_block_group *bg)
1225 {
1226 	struct btrfs_fs_info *fs_info = bg->fs_info;
1227 	struct btrfs_transaction *prev_trans = NULL;
1228 	const u64 start = bg->start;
1229 	const u64 end = start + bg->length - 1;
1230 	int ret;
1231 
1232 	spin_lock(&fs_info->trans_lock);
1233 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1234 		prev_trans = list_last_entry(&trans->transaction->list,
1235 					     struct btrfs_transaction, list);
1236 		refcount_inc(&prev_trans->use_count);
1237 	}
1238 	spin_unlock(&fs_info->trans_lock);
1239 
1240 	/*
1241 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1242 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1243 	 * task might be running finish_extent_commit() for the previous
1244 	 * transaction N - 1, and have seen a range belonging to the block
1245 	 * group in pinned_extents before we were able to clear the whole block
1246 	 * group range from pinned_extents. This means that task can lookup for
1247 	 * the block group after we unpinned it from pinned_extents and removed
1248 	 * it, leading to a BUG_ON() at unpin_extent_range().
1249 	 */
1250 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1251 	if (prev_trans) {
1252 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1253 					EXTENT_DIRTY);
1254 		if (ret)
1255 			goto out;
1256 	}
1257 
1258 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1259 				EXTENT_DIRTY);
1260 out:
1261 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1262 	if (prev_trans)
1263 		btrfs_put_transaction(prev_trans);
1264 
1265 	return ret == 0;
1266 }
1267 
1268 /*
1269  * Process the unused_bgs list and remove any that don't have any allocated
1270  * space inside of them.
1271  */
1272 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1273 {
1274 	struct btrfs_block_group *block_group;
1275 	struct btrfs_space_info *space_info;
1276 	struct btrfs_trans_handle *trans;
1277 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1278 	int ret = 0;
1279 
1280 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1281 		return;
1282 
1283 	/*
1284 	 * Long running balances can keep us blocked here for eternity, so
1285 	 * simply skip deletion if we're unable to get the mutex.
1286 	 */
1287 	if (!mutex_trylock(&fs_info->delete_unused_bgs_mutex))
1288 		return;
1289 
1290 	spin_lock(&fs_info->unused_bgs_lock);
1291 	while (!list_empty(&fs_info->unused_bgs)) {
1292 		int trimming;
1293 
1294 		block_group = list_first_entry(&fs_info->unused_bgs,
1295 					       struct btrfs_block_group,
1296 					       bg_list);
1297 		list_del_init(&block_group->bg_list);
1298 
1299 		space_info = block_group->space_info;
1300 
1301 		if (ret || btrfs_mixed_space_info(space_info)) {
1302 			btrfs_put_block_group(block_group);
1303 			continue;
1304 		}
1305 		spin_unlock(&fs_info->unused_bgs_lock);
1306 
1307 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1308 
1309 		/* Don't want to race with allocators so take the groups_sem */
1310 		down_write(&space_info->groups_sem);
1311 
1312 		/*
1313 		 * Async discard moves the final block group discard to be prior
1314 		 * to the unused_bgs code path.  Therefore, if it's not fully
1315 		 * trimmed, punt it back to the async discard lists.
1316 		 */
1317 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1318 		    !btrfs_is_free_space_trimmed(block_group)) {
1319 			trace_btrfs_skip_unused_block_group(block_group);
1320 			up_write(&space_info->groups_sem);
1321 			/* Requeue if we failed because of async discard */
1322 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1323 						 block_group);
1324 			goto next;
1325 		}
1326 
1327 		spin_lock(&block_group->lock);
1328 		if (block_group->reserved || block_group->pinned ||
1329 		    block_group->used || block_group->ro ||
1330 		    list_is_singular(&block_group->list)) {
1331 			/*
1332 			 * We want to bail if we made new allocations or have
1333 			 * outstanding allocations in this block group.  We do
1334 			 * the ro check in case balance is currently acting on
1335 			 * this block group.
1336 			 */
1337 			trace_btrfs_skip_unused_block_group(block_group);
1338 			spin_unlock(&block_group->lock);
1339 			up_write(&space_info->groups_sem);
1340 			goto next;
1341 		}
1342 		spin_unlock(&block_group->lock);
1343 
1344 		/* We don't want to force the issue, only flip if it's ok. */
1345 		ret = inc_block_group_ro(block_group, 0);
1346 		up_write(&space_info->groups_sem);
1347 		if (ret < 0) {
1348 			ret = 0;
1349 			goto next;
1350 		}
1351 
1352 		/*
1353 		 * Want to do this before we do anything else so we can recover
1354 		 * properly if we fail to join the transaction.
1355 		 */
1356 		trans = btrfs_start_trans_remove_block_group(fs_info,
1357 						     block_group->start);
1358 		if (IS_ERR(trans)) {
1359 			btrfs_dec_block_group_ro(block_group);
1360 			ret = PTR_ERR(trans);
1361 			goto next;
1362 		}
1363 
1364 		/*
1365 		 * We could have pending pinned extents for this block group,
1366 		 * just delete them, we don't care about them anymore.
1367 		 */
1368 		if (!clean_pinned_extents(trans, block_group)) {
1369 			btrfs_dec_block_group_ro(block_group);
1370 			goto end_trans;
1371 		}
1372 
1373 		/*
1374 		 * At this point, the block_group is read only and should fail
1375 		 * new allocations.  However, btrfs_finish_extent_commit() can
1376 		 * cause this block_group to be placed back on the discard
1377 		 * lists because now the block_group isn't fully discarded.
1378 		 * Bail here and try again later after discarding everything.
1379 		 */
1380 		spin_lock(&fs_info->discard_ctl.lock);
1381 		if (!list_empty(&block_group->discard_list)) {
1382 			spin_unlock(&fs_info->discard_ctl.lock);
1383 			btrfs_dec_block_group_ro(block_group);
1384 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1385 						 block_group);
1386 			goto end_trans;
1387 		}
1388 		spin_unlock(&fs_info->discard_ctl.lock);
1389 
1390 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1391 		spin_lock(&space_info->lock);
1392 		spin_lock(&block_group->lock);
1393 
1394 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1395 						     -block_group->pinned);
1396 		space_info->bytes_readonly += block_group->pinned;
1397 		__btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned);
1398 		block_group->pinned = 0;
1399 
1400 		spin_unlock(&block_group->lock);
1401 		spin_unlock(&space_info->lock);
1402 
1403 		/*
1404 		 * The normal path here is an unused block group is passed here,
1405 		 * then trimming is handled in the transaction commit path.
1406 		 * Async discard interposes before this to do the trimming
1407 		 * before coming down the unused block group path as trimming
1408 		 * will no longer be done later in the transaction commit path.
1409 		 */
1410 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1411 			goto flip_async;
1412 
1413 		/*
1414 		 * DISCARD can flip during remount. On zoned filesystems, we
1415 		 * need to reset sequential-required zones.
1416 		 */
1417 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1418 				btrfs_is_zoned(fs_info);
1419 
1420 		/* Implicit trim during transaction commit. */
1421 		if (trimming)
1422 			btrfs_freeze_block_group(block_group);
1423 
1424 		/*
1425 		 * Btrfs_remove_chunk will abort the transaction if things go
1426 		 * horribly wrong.
1427 		 */
1428 		ret = btrfs_remove_chunk(trans, block_group->start);
1429 
1430 		if (ret) {
1431 			if (trimming)
1432 				btrfs_unfreeze_block_group(block_group);
1433 			goto end_trans;
1434 		}
1435 
1436 		/*
1437 		 * If we're not mounted with -odiscard, we can just forget
1438 		 * about this block group. Otherwise we'll need to wait
1439 		 * until transaction commit to do the actual discard.
1440 		 */
1441 		if (trimming) {
1442 			spin_lock(&fs_info->unused_bgs_lock);
1443 			/*
1444 			 * A concurrent scrub might have added us to the list
1445 			 * fs_info->unused_bgs, so use a list_move operation
1446 			 * to add the block group to the deleted_bgs list.
1447 			 */
1448 			list_move(&block_group->bg_list,
1449 				  &trans->transaction->deleted_bgs);
1450 			spin_unlock(&fs_info->unused_bgs_lock);
1451 			btrfs_get_block_group(block_group);
1452 		}
1453 end_trans:
1454 		btrfs_end_transaction(trans);
1455 next:
1456 		btrfs_put_block_group(block_group);
1457 		spin_lock(&fs_info->unused_bgs_lock);
1458 	}
1459 	spin_unlock(&fs_info->unused_bgs_lock);
1460 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1461 	return;
1462 
1463 flip_async:
1464 	btrfs_end_transaction(trans);
1465 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1466 	btrfs_put_block_group(block_group);
1467 	btrfs_discard_punt_unused_bgs_list(fs_info);
1468 }
1469 
1470 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1471 {
1472 	struct btrfs_fs_info *fs_info = bg->fs_info;
1473 
1474 	spin_lock(&fs_info->unused_bgs_lock);
1475 	if (list_empty(&bg->bg_list)) {
1476 		btrfs_get_block_group(bg);
1477 		trace_btrfs_add_unused_block_group(bg);
1478 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1479 	}
1480 	spin_unlock(&fs_info->unused_bgs_lock);
1481 }
1482 
1483 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1484 			   struct btrfs_path *path)
1485 {
1486 	struct extent_map_tree *em_tree;
1487 	struct extent_map *em;
1488 	struct btrfs_block_group_item bg;
1489 	struct extent_buffer *leaf;
1490 	int slot;
1491 	u64 flags;
1492 	int ret = 0;
1493 
1494 	slot = path->slots[0];
1495 	leaf = path->nodes[0];
1496 
1497 	em_tree = &fs_info->mapping_tree;
1498 	read_lock(&em_tree->lock);
1499 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1500 	read_unlock(&em_tree->lock);
1501 	if (!em) {
1502 		btrfs_err(fs_info,
1503 			  "logical %llu len %llu found bg but no related chunk",
1504 			  key->objectid, key->offset);
1505 		return -ENOENT;
1506 	}
1507 
1508 	if (em->start != key->objectid || em->len != key->offset) {
1509 		btrfs_err(fs_info,
1510 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1511 			key->objectid, key->offset, em->start, em->len);
1512 		ret = -EUCLEAN;
1513 		goto out_free_em;
1514 	}
1515 
1516 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1517 			   sizeof(bg));
1518 	flags = btrfs_stack_block_group_flags(&bg) &
1519 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1520 
1521 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1522 		btrfs_err(fs_info,
1523 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1524 			  key->objectid, key->offset, flags,
1525 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1526 		ret = -EUCLEAN;
1527 	}
1528 
1529 out_free_em:
1530 	free_extent_map(em);
1531 	return ret;
1532 }
1533 
1534 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1535 				  struct btrfs_path *path,
1536 				  struct btrfs_key *key)
1537 {
1538 	struct btrfs_root *root = fs_info->extent_root;
1539 	int ret;
1540 	struct btrfs_key found_key;
1541 	struct extent_buffer *leaf;
1542 	int slot;
1543 
1544 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1545 	if (ret < 0)
1546 		return ret;
1547 
1548 	while (1) {
1549 		slot = path->slots[0];
1550 		leaf = path->nodes[0];
1551 		if (slot >= btrfs_header_nritems(leaf)) {
1552 			ret = btrfs_next_leaf(root, path);
1553 			if (ret == 0)
1554 				continue;
1555 			if (ret < 0)
1556 				goto out;
1557 			break;
1558 		}
1559 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1560 
1561 		if (found_key.objectid >= key->objectid &&
1562 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1563 			ret = read_bg_from_eb(fs_info, &found_key, path);
1564 			break;
1565 		}
1566 
1567 		path->slots[0]++;
1568 	}
1569 out:
1570 	return ret;
1571 }
1572 
1573 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1574 {
1575 	u64 extra_flags = chunk_to_extended(flags) &
1576 				BTRFS_EXTENDED_PROFILE_MASK;
1577 
1578 	write_seqlock(&fs_info->profiles_lock);
1579 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1580 		fs_info->avail_data_alloc_bits |= extra_flags;
1581 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1582 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1583 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1584 		fs_info->avail_system_alloc_bits |= extra_flags;
1585 	write_sequnlock(&fs_info->profiles_lock);
1586 }
1587 
1588 /**
1589  * Map a physical disk address to a list of logical addresses
1590  *
1591  * @fs_info:       the filesystem
1592  * @chunk_start:   logical address of block group
1593  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1594  * @physical:	   physical address to map to logical addresses
1595  * @logical:	   return array of logical addresses which map to @physical
1596  * @naddrs:	   length of @logical
1597  * @stripe_len:    size of IO stripe for the given block group
1598  *
1599  * Maps a particular @physical disk address to a list of @logical addresses.
1600  * Used primarily to exclude those portions of a block group that contain super
1601  * block copies.
1602  */
1603 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1604 		     struct block_device *bdev, u64 physical, u64 **logical,
1605 		     int *naddrs, int *stripe_len)
1606 {
1607 	struct extent_map *em;
1608 	struct map_lookup *map;
1609 	u64 *buf;
1610 	u64 bytenr;
1611 	u64 data_stripe_length;
1612 	u64 io_stripe_size;
1613 	int i, nr = 0;
1614 	int ret = 0;
1615 
1616 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1617 	if (IS_ERR(em))
1618 		return -EIO;
1619 
1620 	map = em->map_lookup;
1621 	data_stripe_length = em->orig_block_len;
1622 	io_stripe_size = map->stripe_len;
1623 	chunk_start = em->start;
1624 
1625 	/* For RAID5/6 adjust to a full IO stripe length */
1626 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1627 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1628 
1629 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1630 	if (!buf) {
1631 		ret = -ENOMEM;
1632 		goto out;
1633 	}
1634 
1635 	for (i = 0; i < map->num_stripes; i++) {
1636 		bool already_inserted = false;
1637 		u64 stripe_nr;
1638 		u64 offset;
1639 		int j;
1640 
1641 		if (!in_range(physical, map->stripes[i].physical,
1642 			      data_stripe_length))
1643 			continue;
1644 
1645 		if (bdev && map->stripes[i].dev->bdev != bdev)
1646 			continue;
1647 
1648 		stripe_nr = physical - map->stripes[i].physical;
1649 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1650 
1651 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1652 			stripe_nr = stripe_nr * map->num_stripes + i;
1653 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1654 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1655 			stripe_nr = stripe_nr * map->num_stripes + i;
1656 		}
1657 		/*
1658 		 * The remaining case would be for RAID56, multiply by
1659 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1660 		 * instead of map->stripe_len
1661 		 */
1662 
1663 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1664 
1665 		/* Ensure we don't add duplicate addresses */
1666 		for (j = 0; j < nr; j++) {
1667 			if (buf[j] == bytenr) {
1668 				already_inserted = true;
1669 				break;
1670 			}
1671 		}
1672 
1673 		if (!already_inserted)
1674 			buf[nr++] = bytenr;
1675 	}
1676 
1677 	*logical = buf;
1678 	*naddrs = nr;
1679 	*stripe_len = io_stripe_size;
1680 out:
1681 	free_extent_map(em);
1682 	return ret;
1683 }
1684 
1685 static int exclude_super_stripes(struct btrfs_block_group *cache)
1686 {
1687 	struct btrfs_fs_info *fs_info = cache->fs_info;
1688 	const bool zoned = btrfs_is_zoned(fs_info);
1689 	u64 bytenr;
1690 	u64 *logical;
1691 	int stripe_len;
1692 	int i, nr, ret;
1693 
1694 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1695 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1696 		cache->bytes_super += stripe_len;
1697 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1698 						stripe_len);
1699 		if (ret)
1700 			return ret;
1701 	}
1702 
1703 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1704 		bytenr = btrfs_sb_offset(i);
1705 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1706 				       bytenr, &logical, &nr, &stripe_len);
1707 		if (ret)
1708 			return ret;
1709 
1710 		/* Shouldn't have super stripes in sequential zones */
1711 		if (zoned && nr) {
1712 			btrfs_err(fs_info,
1713 			"zoned: block group %llu must not contain super block",
1714 				  cache->start);
1715 			return -EUCLEAN;
1716 		}
1717 
1718 		while (nr--) {
1719 			u64 len = min_t(u64, stripe_len,
1720 				cache->start + cache->length - logical[nr]);
1721 
1722 			cache->bytes_super += len;
1723 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1724 							len);
1725 			if (ret) {
1726 				kfree(logical);
1727 				return ret;
1728 			}
1729 		}
1730 
1731 		kfree(logical);
1732 	}
1733 	return 0;
1734 }
1735 
1736 static void link_block_group(struct btrfs_block_group *cache)
1737 {
1738 	struct btrfs_space_info *space_info = cache->space_info;
1739 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1740 
1741 	down_write(&space_info->groups_sem);
1742 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1743 	up_write(&space_info->groups_sem);
1744 }
1745 
1746 static struct btrfs_block_group *btrfs_create_block_group_cache(
1747 		struct btrfs_fs_info *fs_info, u64 start)
1748 {
1749 	struct btrfs_block_group *cache;
1750 
1751 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1752 	if (!cache)
1753 		return NULL;
1754 
1755 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1756 					GFP_NOFS);
1757 	if (!cache->free_space_ctl) {
1758 		kfree(cache);
1759 		return NULL;
1760 	}
1761 
1762 	cache->start = start;
1763 
1764 	cache->fs_info = fs_info;
1765 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1766 
1767 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1768 
1769 	refcount_set(&cache->refs, 1);
1770 	spin_lock_init(&cache->lock);
1771 	init_rwsem(&cache->data_rwsem);
1772 	INIT_LIST_HEAD(&cache->list);
1773 	INIT_LIST_HEAD(&cache->cluster_list);
1774 	INIT_LIST_HEAD(&cache->bg_list);
1775 	INIT_LIST_HEAD(&cache->ro_list);
1776 	INIT_LIST_HEAD(&cache->discard_list);
1777 	INIT_LIST_HEAD(&cache->dirty_list);
1778 	INIT_LIST_HEAD(&cache->io_list);
1779 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1780 	atomic_set(&cache->frozen, 0);
1781 	mutex_init(&cache->free_space_lock);
1782 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1783 
1784 	return cache;
1785 }
1786 
1787 /*
1788  * Iterate all chunks and verify that each of them has the corresponding block
1789  * group
1790  */
1791 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1792 {
1793 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1794 	struct extent_map *em;
1795 	struct btrfs_block_group *bg;
1796 	u64 start = 0;
1797 	int ret = 0;
1798 
1799 	while (1) {
1800 		read_lock(&map_tree->lock);
1801 		/*
1802 		 * lookup_extent_mapping will return the first extent map
1803 		 * intersecting the range, so setting @len to 1 is enough to
1804 		 * get the first chunk.
1805 		 */
1806 		em = lookup_extent_mapping(map_tree, start, 1);
1807 		read_unlock(&map_tree->lock);
1808 		if (!em)
1809 			break;
1810 
1811 		bg = btrfs_lookup_block_group(fs_info, em->start);
1812 		if (!bg) {
1813 			btrfs_err(fs_info,
1814 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1815 				     em->start, em->len);
1816 			ret = -EUCLEAN;
1817 			free_extent_map(em);
1818 			break;
1819 		}
1820 		if (bg->start != em->start || bg->length != em->len ||
1821 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1822 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1823 			btrfs_err(fs_info,
1824 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1825 				em->start, em->len,
1826 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1827 				bg->start, bg->length,
1828 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1829 			ret = -EUCLEAN;
1830 			free_extent_map(em);
1831 			btrfs_put_block_group(bg);
1832 			break;
1833 		}
1834 		start = em->start + em->len;
1835 		free_extent_map(em);
1836 		btrfs_put_block_group(bg);
1837 	}
1838 	return ret;
1839 }
1840 
1841 static int read_one_block_group(struct btrfs_fs_info *info,
1842 				struct btrfs_block_group_item *bgi,
1843 				const struct btrfs_key *key,
1844 				int need_clear)
1845 {
1846 	struct btrfs_block_group *cache;
1847 	struct btrfs_space_info *space_info;
1848 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1849 	int ret;
1850 
1851 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1852 
1853 	cache = btrfs_create_block_group_cache(info, key->objectid);
1854 	if (!cache)
1855 		return -ENOMEM;
1856 
1857 	cache->length = key->offset;
1858 	cache->used = btrfs_stack_block_group_used(bgi);
1859 	cache->flags = btrfs_stack_block_group_flags(bgi);
1860 
1861 	set_free_space_tree_thresholds(cache);
1862 
1863 	if (need_clear) {
1864 		/*
1865 		 * When we mount with old space cache, we need to
1866 		 * set BTRFS_DC_CLEAR and set dirty flag.
1867 		 *
1868 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1869 		 *    truncate the old free space cache inode and
1870 		 *    setup a new one.
1871 		 * b) Setting 'dirty flag' makes sure that we flush
1872 		 *    the new space cache info onto disk.
1873 		 */
1874 		if (btrfs_test_opt(info, SPACE_CACHE))
1875 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1876 	}
1877 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1878 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1879 			btrfs_err(info,
1880 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1881 				  cache->start);
1882 			ret = -EINVAL;
1883 			goto error;
1884 	}
1885 
1886 	ret = btrfs_load_block_group_zone_info(cache, false);
1887 	if (ret) {
1888 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
1889 			  cache->start);
1890 		goto error;
1891 	}
1892 
1893 	/*
1894 	 * We need to exclude the super stripes now so that the space info has
1895 	 * super bytes accounted for, otherwise we'll think we have more space
1896 	 * than we actually do.
1897 	 */
1898 	ret = exclude_super_stripes(cache);
1899 	if (ret) {
1900 		/* We may have excluded something, so call this just in case. */
1901 		btrfs_free_excluded_extents(cache);
1902 		goto error;
1903 	}
1904 
1905 	/*
1906 	 * For zoned filesystem, space after the allocation offset is the only
1907 	 * free space for a block group. So, we don't need any caching work.
1908 	 * btrfs_calc_zone_unusable() will set the amount of free space and
1909 	 * zone_unusable space.
1910 	 *
1911 	 * For regular filesystem, check for two cases, either we are full, and
1912 	 * therefore don't need to bother with the caching work since we won't
1913 	 * find any space, or we are empty, and we can just add all the space
1914 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
1915 	 * in the full case.
1916 	 */
1917 	if (btrfs_is_zoned(info)) {
1918 		btrfs_calc_zone_unusable(cache);
1919 	} else if (cache->length == cache->used) {
1920 		cache->last_byte_to_unpin = (u64)-1;
1921 		cache->cached = BTRFS_CACHE_FINISHED;
1922 		btrfs_free_excluded_extents(cache);
1923 	} else if (cache->used == 0) {
1924 		cache->last_byte_to_unpin = (u64)-1;
1925 		cache->cached = BTRFS_CACHE_FINISHED;
1926 		add_new_free_space(cache, cache->start,
1927 				   cache->start + cache->length);
1928 		btrfs_free_excluded_extents(cache);
1929 	}
1930 
1931 	ret = btrfs_add_block_group_cache(info, cache);
1932 	if (ret) {
1933 		btrfs_remove_free_space_cache(cache);
1934 		goto error;
1935 	}
1936 	trace_btrfs_add_block_group(info, cache, 0);
1937 	btrfs_update_space_info(info, cache->flags, cache->length,
1938 				cache->used, cache->bytes_super,
1939 				cache->zone_unusable, &space_info);
1940 
1941 	cache->space_info = space_info;
1942 
1943 	link_block_group(cache);
1944 
1945 	set_avail_alloc_bits(info, cache->flags);
1946 	if (btrfs_chunk_readonly(info, cache->start)) {
1947 		inc_block_group_ro(cache, 1);
1948 	} else if (cache->used == 0) {
1949 		ASSERT(list_empty(&cache->bg_list));
1950 		if (btrfs_test_opt(info, DISCARD_ASYNC))
1951 			btrfs_discard_queue_work(&info->discard_ctl, cache);
1952 		else
1953 			btrfs_mark_bg_unused(cache);
1954 	}
1955 	return 0;
1956 error:
1957 	btrfs_put_block_group(cache);
1958 	return ret;
1959 }
1960 
1961 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
1962 {
1963 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1964 	struct btrfs_space_info *space_info;
1965 	struct rb_node *node;
1966 	int ret = 0;
1967 
1968 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
1969 		struct extent_map *em;
1970 		struct map_lookup *map;
1971 		struct btrfs_block_group *bg;
1972 
1973 		em = rb_entry(node, struct extent_map, rb_node);
1974 		map = em->map_lookup;
1975 		bg = btrfs_create_block_group_cache(fs_info, em->start);
1976 		if (!bg) {
1977 			ret = -ENOMEM;
1978 			break;
1979 		}
1980 
1981 		/* Fill dummy cache as FULL */
1982 		bg->length = em->len;
1983 		bg->flags = map->type;
1984 		bg->last_byte_to_unpin = (u64)-1;
1985 		bg->cached = BTRFS_CACHE_FINISHED;
1986 		bg->used = em->len;
1987 		bg->flags = map->type;
1988 		ret = btrfs_add_block_group_cache(fs_info, bg);
1989 		if (ret) {
1990 			btrfs_remove_free_space_cache(bg);
1991 			btrfs_put_block_group(bg);
1992 			break;
1993 		}
1994 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
1995 					0, 0, &space_info);
1996 		bg->space_info = space_info;
1997 		link_block_group(bg);
1998 
1999 		set_avail_alloc_bits(fs_info, bg->flags);
2000 	}
2001 	if (!ret)
2002 		btrfs_init_global_block_rsv(fs_info);
2003 	return ret;
2004 }
2005 
2006 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2007 {
2008 	struct btrfs_path *path;
2009 	int ret;
2010 	struct btrfs_block_group *cache;
2011 	struct btrfs_space_info *space_info;
2012 	struct btrfs_key key;
2013 	int need_clear = 0;
2014 	u64 cache_gen;
2015 
2016 	if (!info->extent_root)
2017 		return fill_dummy_bgs(info);
2018 
2019 	key.objectid = 0;
2020 	key.offset = 0;
2021 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2022 	path = btrfs_alloc_path();
2023 	if (!path)
2024 		return -ENOMEM;
2025 
2026 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2027 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2028 	    btrfs_super_generation(info->super_copy) != cache_gen)
2029 		need_clear = 1;
2030 	if (btrfs_test_opt(info, CLEAR_CACHE))
2031 		need_clear = 1;
2032 
2033 	while (1) {
2034 		struct btrfs_block_group_item bgi;
2035 		struct extent_buffer *leaf;
2036 		int slot;
2037 
2038 		ret = find_first_block_group(info, path, &key);
2039 		if (ret > 0)
2040 			break;
2041 		if (ret != 0)
2042 			goto error;
2043 
2044 		leaf = path->nodes[0];
2045 		slot = path->slots[0];
2046 
2047 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2048 				   sizeof(bgi));
2049 
2050 		btrfs_item_key_to_cpu(leaf, &key, slot);
2051 		btrfs_release_path(path);
2052 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2053 		if (ret < 0)
2054 			goto error;
2055 		key.objectid += key.offset;
2056 		key.offset = 0;
2057 	}
2058 	btrfs_release_path(path);
2059 
2060 	list_for_each_entry(space_info, &info->space_info, list) {
2061 		int i;
2062 
2063 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2064 			if (list_empty(&space_info->block_groups[i]))
2065 				continue;
2066 			cache = list_first_entry(&space_info->block_groups[i],
2067 						 struct btrfs_block_group,
2068 						 list);
2069 			btrfs_sysfs_add_block_group_type(cache);
2070 		}
2071 
2072 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2073 		      (BTRFS_BLOCK_GROUP_RAID10 |
2074 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2075 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2076 		       BTRFS_BLOCK_GROUP_DUP)))
2077 			continue;
2078 		/*
2079 		 * Avoid allocating from un-mirrored block group if there are
2080 		 * mirrored block groups.
2081 		 */
2082 		list_for_each_entry(cache,
2083 				&space_info->block_groups[BTRFS_RAID_RAID0],
2084 				list)
2085 			inc_block_group_ro(cache, 1);
2086 		list_for_each_entry(cache,
2087 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2088 				list)
2089 			inc_block_group_ro(cache, 1);
2090 	}
2091 
2092 	btrfs_init_global_block_rsv(info);
2093 	ret = check_chunk_block_group_mappings(info);
2094 error:
2095 	btrfs_free_path(path);
2096 	return ret;
2097 }
2098 
2099 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2100 				   struct btrfs_block_group *block_group)
2101 {
2102 	struct btrfs_fs_info *fs_info = trans->fs_info;
2103 	struct btrfs_block_group_item bgi;
2104 	struct btrfs_root *root;
2105 	struct btrfs_key key;
2106 
2107 	spin_lock(&block_group->lock);
2108 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2109 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2110 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2111 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2112 	key.objectid = block_group->start;
2113 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2114 	key.offset = block_group->length;
2115 	spin_unlock(&block_group->lock);
2116 
2117 	root = fs_info->extent_root;
2118 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2119 }
2120 
2121 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2122 {
2123 	struct btrfs_fs_info *fs_info = trans->fs_info;
2124 	struct btrfs_block_group *block_group;
2125 	int ret = 0;
2126 
2127 	if (!trans->can_flush_pending_bgs)
2128 		return;
2129 
2130 	while (!list_empty(&trans->new_bgs)) {
2131 		int index;
2132 
2133 		block_group = list_first_entry(&trans->new_bgs,
2134 					       struct btrfs_block_group,
2135 					       bg_list);
2136 		if (ret)
2137 			goto next;
2138 
2139 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2140 
2141 		ret = insert_block_group_item(trans, block_group);
2142 		if (ret)
2143 			btrfs_abort_transaction(trans, ret);
2144 		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2145 					block_group->length);
2146 		if (ret)
2147 			btrfs_abort_transaction(trans, ret);
2148 		add_block_group_free_space(trans, block_group);
2149 
2150 		/*
2151 		 * If we restriped during balance, we may have added a new raid
2152 		 * type, so now add the sysfs entries when it is safe to do so.
2153 		 * We don't have to worry about locking here as it's handled in
2154 		 * btrfs_sysfs_add_block_group_type.
2155 		 */
2156 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2157 			btrfs_sysfs_add_block_group_type(block_group);
2158 
2159 		/* Already aborted the transaction if it failed. */
2160 next:
2161 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2162 		list_del_init(&block_group->bg_list);
2163 	}
2164 	btrfs_trans_release_chunk_metadata(trans);
2165 }
2166 
2167 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2168 			   u64 type, u64 chunk_offset, u64 size)
2169 {
2170 	struct btrfs_fs_info *fs_info = trans->fs_info;
2171 	struct btrfs_block_group *cache;
2172 	int ret;
2173 
2174 	btrfs_set_log_full_commit(trans);
2175 
2176 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2177 	if (!cache)
2178 		return -ENOMEM;
2179 
2180 	cache->length = size;
2181 	set_free_space_tree_thresholds(cache);
2182 	cache->used = bytes_used;
2183 	cache->flags = type;
2184 	cache->last_byte_to_unpin = (u64)-1;
2185 	cache->cached = BTRFS_CACHE_FINISHED;
2186 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2187 		cache->needs_free_space = 1;
2188 
2189 	ret = btrfs_load_block_group_zone_info(cache, true);
2190 	if (ret) {
2191 		btrfs_put_block_group(cache);
2192 		return ret;
2193 	}
2194 
2195 	ret = exclude_super_stripes(cache);
2196 	if (ret) {
2197 		/* We may have excluded something, so call this just in case */
2198 		btrfs_free_excluded_extents(cache);
2199 		btrfs_put_block_group(cache);
2200 		return ret;
2201 	}
2202 
2203 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2204 
2205 	btrfs_free_excluded_extents(cache);
2206 
2207 #ifdef CONFIG_BTRFS_DEBUG
2208 	if (btrfs_should_fragment_free_space(cache)) {
2209 		u64 new_bytes_used = size - bytes_used;
2210 
2211 		bytes_used += new_bytes_used >> 1;
2212 		fragment_free_space(cache);
2213 	}
2214 #endif
2215 	/*
2216 	 * Ensure the corresponding space_info object is created and
2217 	 * assigned to our block group. We want our bg to be added to the rbtree
2218 	 * with its ->space_info set.
2219 	 */
2220 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2221 	ASSERT(cache->space_info);
2222 
2223 	ret = btrfs_add_block_group_cache(fs_info, cache);
2224 	if (ret) {
2225 		btrfs_remove_free_space_cache(cache);
2226 		btrfs_put_block_group(cache);
2227 		return ret;
2228 	}
2229 
2230 	/*
2231 	 * Now that our block group has its ->space_info set and is inserted in
2232 	 * the rbtree, update the space info's counters.
2233 	 */
2234 	trace_btrfs_add_block_group(fs_info, cache, 1);
2235 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2236 				cache->bytes_super, 0, &cache->space_info);
2237 	btrfs_update_global_block_rsv(fs_info);
2238 
2239 	link_block_group(cache);
2240 
2241 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2242 	trans->delayed_ref_updates++;
2243 	btrfs_update_delayed_refs_rsv(trans);
2244 
2245 	set_avail_alloc_bits(fs_info, type);
2246 	return 0;
2247 }
2248 
2249 /*
2250  * Mark one block group RO, can be called several times for the same block
2251  * group.
2252  *
2253  * @cache:		the destination block group
2254  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2255  * 			ensure we still have some free space after marking this
2256  * 			block group RO.
2257  */
2258 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2259 			     bool do_chunk_alloc)
2260 {
2261 	struct btrfs_fs_info *fs_info = cache->fs_info;
2262 	struct btrfs_trans_handle *trans;
2263 	u64 alloc_flags;
2264 	int ret;
2265 
2266 again:
2267 	trans = btrfs_join_transaction(fs_info->extent_root);
2268 	if (IS_ERR(trans))
2269 		return PTR_ERR(trans);
2270 
2271 	/*
2272 	 * we're not allowed to set block groups readonly after the dirty
2273 	 * block groups cache has started writing.  If it already started,
2274 	 * back off and let this transaction commit
2275 	 */
2276 	mutex_lock(&fs_info->ro_block_group_mutex);
2277 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2278 		u64 transid = trans->transid;
2279 
2280 		mutex_unlock(&fs_info->ro_block_group_mutex);
2281 		btrfs_end_transaction(trans);
2282 
2283 		ret = btrfs_wait_for_commit(fs_info, transid);
2284 		if (ret)
2285 			return ret;
2286 		goto again;
2287 	}
2288 
2289 	if (do_chunk_alloc) {
2290 		/*
2291 		 * If we are changing raid levels, try to allocate a
2292 		 * corresponding block group with the new raid level.
2293 		 */
2294 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2295 		if (alloc_flags != cache->flags) {
2296 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2297 						CHUNK_ALLOC_FORCE);
2298 			/*
2299 			 * ENOSPC is allowed here, we may have enough space
2300 			 * already allocated at the new raid level to carry on
2301 			 */
2302 			if (ret == -ENOSPC)
2303 				ret = 0;
2304 			if (ret < 0)
2305 				goto out;
2306 		}
2307 	}
2308 
2309 	ret = inc_block_group_ro(cache, 0);
2310 	if (!do_chunk_alloc)
2311 		goto unlock_out;
2312 	if (!ret)
2313 		goto out;
2314 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2315 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2316 	if (ret < 0)
2317 		goto out;
2318 	ret = inc_block_group_ro(cache, 0);
2319 out:
2320 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2321 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2322 		mutex_lock(&fs_info->chunk_mutex);
2323 		check_system_chunk(trans, alloc_flags);
2324 		mutex_unlock(&fs_info->chunk_mutex);
2325 	}
2326 unlock_out:
2327 	mutex_unlock(&fs_info->ro_block_group_mutex);
2328 
2329 	btrfs_end_transaction(trans);
2330 	return ret;
2331 }
2332 
2333 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2334 {
2335 	struct btrfs_space_info *sinfo = cache->space_info;
2336 	u64 num_bytes;
2337 
2338 	BUG_ON(!cache->ro);
2339 
2340 	spin_lock(&sinfo->lock);
2341 	spin_lock(&cache->lock);
2342 	if (!--cache->ro) {
2343 		num_bytes = cache->length - cache->reserved -
2344 			    cache->pinned - cache->bytes_super -
2345 			    cache->zone_unusable - cache->used;
2346 		sinfo->bytes_readonly -= num_bytes;
2347 		if (btrfs_is_zoned(cache->fs_info)) {
2348 			/* Migrate zone_unusable bytes back */
2349 			cache->zone_unusable = cache->alloc_offset - cache->used;
2350 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2351 			sinfo->bytes_readonly -= cache->zone_unusable;
2352 		}
2353 		list_del_init(&cache->ro_list);
2354 	}
2355 	spin_unlock(&cache->lock);
2356 	spin_unlock(&sinfo->lock);
2357 }
2358 
2359 static int update_block_group_item(struct btrfs_trans_handle *trans,
2360 				   struct btrfs_path *path,
2361 				   struct btrfs_block_group *cache)
2362 {
2363 	struct btrfs_fs_info *fs_info = trans->fs_info;
2364 	int ret;
2365 	struct btrfs_root *root = fs_info->extent_root;
2366 	unsigned long bi;
2367 	struct extent_buffer *leaf;
2368 	struct btrfs_block_group_item bgi;
2369 	struct btrfs_key key;
2370 
2371 	key.objectid = cache->start;
2372 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2373 	key.offset = cache->length;
2374 
2375 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2376 	if (ret) {
2377 		if (ret > 0)
2378 			ret = -ENOENT;
2379 		goto fail;
2380 	}
2381 
2382 	leaf = path->nodes[0];
2383 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2384 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2385 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2386 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2387 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2388 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2389 	btrfs_mark_buffer_dirty(leaf);
2390 fail:
2391 	btrfs_release_path(path);
2392 	return ret;
2393 
2394 }
2395 
2396 static int cache_save_setup(struct btrfs_block_group *block_group,
2397 			    struct btrfs_trans_handle *trans,
2398 			    struct btrfs_path *path)
2399 {
2400 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2401 	struct btrfs_root *root = fs_info->tree_root;
2402 	struct inode *inode = NULL;
2403 	struct extent_changeset *data_reserved = NULL;
2404 	u64 alloc_hint = 0;
2405 	int dcs = BTRFS_DC_ERROR;
2406 	u64 num_pages = 0;
2407 	int retries = 0;
2408 	int ret = 0;
2409 
2410 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2411 		return 0;
2412 
2413 	/*
2414 	 * If this block group is smaller than 100 megs don't bother caching the
2415 	 * block group.
2416 	 */
2417 	if (block_group->length < (100 * SZ_1M)) {
2418 		spin_lock(&block_group->lock);
2419 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2420 		spin_unlock(&block_group->lock);
2421 		return 0;
2422 	}
2423 
2424 	if (TRANS_ABORTED(trans))
2425 		return 0;
2426 again:
2427 	inode = lookup_free_space_inode(block_group, path);
2428 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2429 		ret = PTR_ERR(inode);
2430 		btrfs_release_path(path);
2431 		goto out;
2432 	}
2433 
2434 	if (IS_ERR(inode)) {
2435 		BUG_ON(retries);
2436 		retries++;
2437 
2438 		if (block_group->ro)
2439 			goto out_free;
2440 
2441 		ret = create_free_space_inode(trans, block_group, path);
2442 		if (ret)
2443 			goto out_free;
2444 		goto again;
2445 	}
2446 
2447 	/*
2448 	 * We want to set the generation to 0, that way if anything goes wrong
2449 	 * from here on out we know not to trust this cache when we load up next
2450 	 * time.
2451 	 */
2452 	BTRFS_I(inode)->generation = 0;
2453 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2454 	if (ret) {
2455 		/*
2456 		 * So theoretically we could recover from this, simply set the
2457 		 * super cache generation to 0 so we know to invalidate the
2458 		 * cache, but then we'd have to keep track of the block groups
2459 		 * that fail this way so we know we _have_ to reset this cache
2460 		 * before the next commit or risk reading stale cache.  So to
2461 		 * limit our exposure to horrible edge cases lets just abort the
2462 		 * transaction, this only happens in really bad situations
2463 		 * anyway.
2464 		 */
2465 		btrfs_abort_transaction(trans, ret);
2466 		goto out_put;
2467 	}
2468 	WARN_ON(ret);
2469 
2470 	/* We've already setup this transaction, go ahead and exit */
2471 	if (block_group->cache_generation == trans->transid &&
2472 	    i_size_read(inode)) {
2473 		dcs = BTRFS_DC_SETUP;
2474 		goto out_put;
2475 	}
2476 
2477 	if (i_size_read(inode) > 0) {
2478 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2479 					&fs_info->global_block_rsv);
2480 		if (ret)
2481 			goto out_put;
2482 
2483 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2484 		if (ret)
2485 			goto out_put;
2486 	}
2487 
2488 	spin_lock(&block_group->lock);
2489 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2490 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2491 		/*
2492 		 * don't bother trying to write stuff out _if_
2493 		 * a) we're not cached,
2494 		 * b) we're with nospace_cache mount option,
2495 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2496 		 */
2497 		dcs = BTRFS_DC_WRITTEN;
2498 		spin_unlock(&block_group->lock);
2499 		goto out_put;
2500 	}
2501 	spin_unlock(&block_group->lock);
2502 
2503 	/*
2504 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2505 	 * skip doing the setup, we've already cleared the cache so we're safe.
2506 	 */
2507 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2508 		ret = -ENOSPC;
2509 		goto out_put;
2510 	}
2511 
2512 	/*
2513 	 * Try to preallocate enough space based on how big the block group is.
2514 	 * Keep in mind this has to include any pinned space which could end up
2515 	 * taking up quite a bit since it's not folded into the other space
2516 	 * cache.
2517 	 */
2518 	num_pages = div_u64(block_group->length, SZ_256M);
2519 	if (!num_pages)
2520 		num_pages = 1;
2521 
2522 	num_pages *= 16;
2523 	num_pages *= PAGE_SIZE;
2524 
2525 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2526 					  num_pages);
2527 	if (ret)
2528 		goto out_put;
2529 
2530 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2531 					      num_pages, num_pages,
2532 					      &alloc_hint);
2533 	/*
2534 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2535 	 * of metadata or split extents when writing the cache out, which means
2536 	 * we can enospc if we are heavily fragmented in addition to just normal
2537 	 * out of space conditions.  So if we hit this just skip setting up any
2538 	 * other block groups for this transaction, maybe we'll unpin enough
2539 	 * space the next time around.
2540 	 */
2541 	if (!ret)
2542 		dcs = BTRFS_DC_SETUP;
2543 	else if (ret == -ENOSPC)
2544 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2545 
2546 out_put:
2547 	iput(inode);
2548 out_free:
2549 	btrfs_release_path(path);
2550 out:
2551 	spin_lock(&block_group->lock);
2552 	if (!ret && dcs == BTRFS_DC_SETUP)
2553 		block_group->cache_generation = trans->transid;
2554 	block_group->disk_cache_state = dcs;
2555 	spin_unlock(&block_group->lock);
2556 
2557 	extent_changeset_free(data_reserved);
2558 	return ret;
2559 }
2560 
2561 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2562 {
2563 	struct btrfs_fs_info *fs_info = trans->fs_info;
2564 	struct btrfs_block_group *cache, *tmp;
2565 	struct btrfs_transaction *cur_trans = trans->transaction;
2566 	struct btrfs_path *path;
2567 
2568 	if (list_empty(&cur_trans->dirty_bgs) ||
2569 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2570 		return 0;
2571 
2572 	path = btrfs_alloc_path();
2573 	if (!path)
2574 		return -ENOMEM;
2575 
2576 	/* Could add new block groups, use _safe just in case */
2577 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2578 				 dirty_list) {
2579 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2580 			cache_save_setup(cache, trans, path);
2581 	}
2582 
2583 	btrfs_free_path(path);
2584 	return 0;
2585 }
2586 
2587 /*
2588  * Transaction commit does final block group cache writeback during a critical
2589  * section where nothing is allowed to change the FS.  This is required in
2590  * order for the cache to actually match the block group, but can introduce a
2591  * lot of latency into the commit.
2592  *
2593  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2594  * There's a chance we'll have to redo some of it if the block group changes
2595  * again during the commit, but it greatly reduces the commit latency by
2596  * getting rid of the easy block groups while we're still allowing others to
2597  * join the commit.
2598  */
2599 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2600 {
2601 	struct btrfs_fs_info *fs_info = trans->fs_info;
2602 	struct btrfs_block_group *cache;
2603 	struct btrfs_transaction *cur_trans = trans->transaction;
2604 	int ret = 0;
2605 	int should_put;
2606 	struct btrfs_path *path = NULL;
2607 	LIST_HEAD(dirty);
2608 	struct list_head *io = &cur_trans->io_bgs;
2609 	int num_started = 0;
2610 	int loops = 0;
2611 
2612 	spin_lock(&cur_trans->dirty_bgs_lock);
2613 	if (list_empty(&cur_trans->dirty_bgs)) {
2614 		spin_unlock(&cur_trans->dirty_bgs_lock);
2615 		return 0;
2616 	}
2617 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2618 	spin_unlock(&cur_trans->dirty_bgs_lock);
2619 
2620 again:
2621 	/* Make sure all the block groups on our dirty list actually exist */
2622 	btrfs_create_pending_block_groups(trans);
2623 
2624 	if (!path) {
2625 		path = btrfs_alloc_path();
2626 		if (!path) {
2627 			ret = -ENOMEM;
2628 			goto out;
2629 		}
2630 	}
2631 
2632 	/*
2633 	 * cache_write_mutex is here only to save us from balance or automatic
2634 	 * removal of empty block groups deleting this block group while we are
2635 	 * writing out the cache
2636 	 */
2637 	mutex_lock(&trans->transaction->cache_write_mutex);
2638 	while (!list_empty(&dirty)) {
2639 		bool drop_reserve = true;
2640 
2641 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2642 					 dirty_list);
2643 		/*
2644 		 * This can happen if something re-dirties a block group that
2645 		 * is already under IO.  Just wait for it to finish and then do
2646 		 * it all again
2647 		 */
2648 		if (!list_empty(&cache->io_list)) {
2649 			list_del_init(&cache->io_list);
2650 			btrfs_wait_cache_io(trans, cache, path);
2651 			btrfs_put_block_group(cache);
2652 		}
2653 
2654 
2655 		/*
2656 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2657 		 * it should update the cache_state.  Don't delete until after
2658 		 * we wait.
2659 		 *
2660 		 * Since we're not running in the commit critical section
2661 		 * we need the dirty_bgs_lock to protect from update_block_group
2662 		 */
2663 		spin_lock(&cur_trans->dirty_bgs_lock);
2664 		list_del_init(&cache->dirty_list);
2665 		spin_unlock(&cur_trans->dirty_bgs_lock);
2666 
2667 		should_put = 1;
2668 
2669 		cache_save_setup(cache, trans, path);
2670 
2671 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2672 			cache->io_ctl.inode = NULL;
2673 			ret = btrfs_write_out_cache(trans, cache, path);
2674 			if (ret == 0 && cache->io_ctl.inode) {
2675 				num_started++;
2676 				should_put = 0;
2677 
2678 				/*
2679 				 * The cache_write_mutex is protecting the
2680 				 * io_list, also refer to the definition of
2681 				 * btrfs_transaction::io_bgs for more details
2682 				 */
2683 				list_add_tail(&cache->io_list, io);
2684 			} else {
2685 				/*
2686 				 * If we failed to write the cache, the
2687 				 * generation will be bad and life goes on
2688 				 */
2689 				ret = 0;
2690 			}
2691 		}
2692 		if (!ret) {
2693 			ret = update_block_group_item(trans, path, cache);
2694 			/*
2695 			 * Our block group might still be attached to the list
2696 			 * of new block groups in the transaction handle of some
2697 			 * other task (struct btrfs_trans_handle->new_bgs). This
2698 			 * means its block group item isn't yet in the extent
2699 			 * tree. If this happens ignore the error, as we will
2700 			 * try again later in the critical section of the
2701 			 * transaction commit.
2702 			 */
2703 			if (ret == -ENOENT) {
2704 				ret = 0;
2705 				spin_lock(&cur_trans->dirty_bgs_lock);
2706 				if (list_empty(&cache->dirty_list)) {
2707 					list_add_tail(&cache->dirty_list,
2708 						      &cur_trans->dirty_bgs);
2709 					btrfs_get_block_group(cache);
2710 					drop_reserve = false;
2711 				}
2712 				spin_unlock(&cur_trans->dirty_bgs_lock);
2713 			} else if (ret) {
2714 				btrfs_abort_transaction(trans, ret);
2715 			}
2716 		}
2717 
2718 		/* If it's not on the io list, we need to put the block group */
2719 		if (should_put)
2720 			btrfs_put_block_group(cache);
2721 		if (drop_reserve)
2722 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2723 		/*
2724 		 * Avoid blocking other tasks for too long. It might even save
2725 		 * us from writing caches for block groups that are going to be
2726 		 * removed.
2727 		 */
2728 		mutex_unlock(&trans->transaction->cache_write_mutex);
2729 		if (ret)
2730 			goto out;
2731 		mutex_lock(&trans->transaction->cache_write_mutex);
2732 	}
2733 	mutex_unlock(&trans->transaction->cache_write_mutex);
2734 
2735 	/*
2736 	 * Go through delayed refs for all the stuff we've just kicked off
2737 	 * and then loop back (just once)
2738 	 */
2739 	if (!ret)
2740 		ret = btrfs_run_delayed_refs(trans, 0);
2741 	if (!ret && loops == 0) {
2742 		loops++;
2743 		spin_lock(&cur_trans->dirty_bgs_lock);
2744 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2745 		/*
2746 		 * dirty_bgs_lock protects us from concurrent block group
2747 		 * deletes too (not just cache_write_mutex).
2748 		 */
2749 		if (!list_empty(&dirty)) {
2750 			spin_unlock(&cur_trans->dirty_bgs_lock);
2751 			goto again;
2752 		}
2753 		spin_unlock(&cur_trans->dirty_bgs_lock);
2754 	}
2755 out:
2756 	if (ret < 0) {
2757 		spin_lock(&cur_trans->dirty_bgs_lock);
2758 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
2759 		spin_unlock(&cur_trans->dirty_bgs_lock);
2760 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2761 	}
2762 
2763 	btrfs_free_path(path);
2764 	return ret;
2765 }
2766 
2767 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2768 {
2769 	struct btrfs_fs_info *fs_info = trans->fs_info;
2770 	struct btrfs_block_group *cache;
2771 	struct btrfs_transaction *cur_trans = trans->transaction;
2772 	int ret = 0;
2773 	int should_put;
2774 	struct btrfs_path *path;
2775 	struct list_head *io = &cur_trans->io_bgs;
2776 	int num_started = 0;
2777 
2778 	path = btrfs_alloc_path();
2779 	if (!path)
2780 		return -ENOMEM;
2781 
2782 	/*
2783 	 * Even though we are in the critical section of the transaction commit,
2784 	 * we can still have concurrent tasks adding elements to this
2785 	 * transaction's list of dirty block groups. These tasks correspond to
2786 	 * endio free space workers started when writeback finishes for a
2787 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2788 	 * allocate new block groups as a result of COWing nodes of the root
2789 	 * tree when updating the free space inode. The writeback for the space
2790 	 * caches is triggered by an earlier call to
2791 	 * btrfs_start_dirty_block_groups() and iterations of the following
2792 	 * loop.
2793 	 * Also we want to do the cache_save_setup first and then run the
2794 	 * delayed refs to make sure we have the best chance at doing this all
2795 	 * in one shot.
2796 	 */
2797 	spin_lock(&cur_trans->dirty_bgs_lock);
2798 	while (!list_empty(&cur_trans->dirty_bgs)) {
2799 		cache = list_first_entry(&cur_trans->dirty_bgs,
2800 					 struct btrfs_block_group,
2801 					 dirty_list);
2802 
2803 		/*
2804 		 * This can happen if cache_save_setup re-dirties a block group
2805 		 * that is already under IO.  Just wait for it to finish and
2806 		 * then do it all again
2807 		 */
2808 		if (!list_empty(&cache->io_list)) {
2809 			spin_unlock(&cur_trans->dirty_bgs_lock);
2810 			list_del_init(&cache->io_list);
2811 			btrfs_wait_cache_io(trans, cache, path);
2812 			btrfs_put_block_group(cache);
2813 			spin_lock(&cur_trans->dirty_bgs_lock);
2814 		}
2815 
2816 		/*
2817 		 * Don't remove from the dirty list until after we've waited on
2818 		 * any pending IO
2819 		 */
2820 		list_del_init(&cache->dirty_list);
2821 		spin_unlock(&cur_trans->dirty_bgs_lock);
2822 		should_put = 1;
2823 
2824 		cache_save_setup(cache, trans, path);
2825 
2826 		if (!ret)
2827 			ret = btrfs_run_delayed_refs(trans,
2828 						     (unsigned long) -1);
2829 
2830 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2831 			cache->io_ctl.inode = NULL;
2832 			ret = btrfs_write_out_cache(trans, cache, path);
2833 			if (ret == 0 && cache->io_ctl.inode) {
2834 				num_started++;
2835 				should_put = 0;
2836 				list_add_tail(&cache->io_list, io);
2837 			} else {
2838 				/*
2839 				 * If we failed to write the cache, the
2840 				 * generation will be bad and life goes on
2841 				 */
2842 				ret = 0;
2843 			}
2844 		}
2845 		if (!ret) {
2846 			ret = update_block_group_item(trans, path, cache);
2847 			/*
2848 			 * One of the free space endio workers might have
2849 			 * created a new block group while updating a free space
2850 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2851 			 * and hasn't released its transaction handle yet, in
2852 			 * which case the new block group is still attached to
2853 			 * its transaction handle and its creation has not
2854 			 * finished yet (no block group item in the extent tree
2855 			 * yet, etc). If this is the case, wait for all free
2856 			 * space endio workers to finish and retry. This is a
2857 			 * very rare case so no need for a more efficient and
2858 			 * complex approach.
2859 			 */
2860 			if (ret == -ENOENT) {
2861 				wait_event(cur_trans->writer_wait,
2862 				   atomic_read(&cur_trans->num_writers) == 1);
2863 				ret = update_block_group_item(trans, path, cache);
2864 			}
2865 			if (ret)
2866 				btrfs_abort_transaction(trans, ret);
2867 		}
2868 
2869 		/* If its not on the io list, we need to put the block group */
2870 		if (should_put)
2871 			btrfs_put_block_group(cache);
2872 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2873 		spin_lock(&cur_trans->dirty_bgs_lock);
2874 	}
2875 	spin_unlock(&cur_trans->dirty_bgs_lock);
2876 
2877 	/*
2878 	 * Refer to the definition of io_bgs member for details why it's safe
2879 	 * to use it without any locking
2880 	 */
2881 	while (!list_empty(io)) {
2882 		cache = list_first_entry(io, struct btrfs_block_group,
2883 					 io_list);
2884 		list_del_init(&cache->io_list);
2885 		btrfs_wait_cache_io(trans, cache, path);
2886 		btrfs_put_block_group(cache);
2887 	}
2888 
2889 	btrfs_free_path(path);
2890 	return ret;
2891 }
2892 
2893 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2894 			     u64 bytenr, u64 num_bytes, int alloc)
2895 {
2896 	struct btrfs_fs_info *info = trans->fs_info;
2897 	struct btrfs_block_group *cache = NULL;
2898 	u64 total = num_bytes;
2899 	u64 old_val;
2900 	u64 byte_in_group;
2901 	int factor;
2902 	int ret = 0;
2903 
2904 	/* Block accounting for super block */
2905 	spin_lock(&info->delalloc_root_lock);
2906 	old_val = btrfs_super_bytes_used(info->super_copy);
2907 	if (alloc)
2908 		old_val += num_bytes;
2909 	else
2910 		old_val -= num_bytes;
2911 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2912 	spin_unlock(&info->delalloc_root_lock);
2913 
2914 	while (total) {
2915 		cache = btrfs_lookup_block_group(info, bytenr);
2916 		if (!cache) {
2917 			ret = -ENOENT;
2918 			break;
2919 		}
2920 		factor = btrfs_bg_type_to_factor(cache->flags);
2921 
2922 		/*
2923 		 * If this block group has free space cache written out, we
2924 		 * need to make sure to load it if we are removing space.  This
2925 		 * is because we need the unpinning stage to actually add the
2926 		 * space back to the block group, otherwise we will leak space.
2927 		 */
2928 		if (!alloc && !btrfs_block_group_done(cache))
2929 			btrfs_cache_block_group(cache, 1);
2930 
2931 		byte_in_group = bytenr - cache->start;
2932 		WARN_ON(byte_in_group > cache->length);
2933 
2934 		spin_lock(&cache->space_info->lock);
2935 		spin_lock(&cache->lock);
2936 
2937 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2938 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2939 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2940 
2941 		old_val = cache->used;
2942 		num_bytes = min(total, cache->length - byte_in_group);
2943 		if (alloc) {
2944 			old_val += num_bytes;
2945 			cache->used = old_val;
2946 			cache->reserved -= num_bytes;
2947 			cache->space_info->bytes_reserved -= num_bytes;
2948 			cache->space_info->bytes_used += num_bytes;
2949 			cache->space_info->disk_used += num_bytes * factor;
2950 			spin_unlock(&cache->lock);
2951 			spin_unlock(&cache->space_info->lock);
2952 		} else {
2953 			old_val -= num_bytes;
2954 			cache->used = old_val;
2955 			cache->pinned += num_bytes;
2956 			btrfs_space_info_update_bytes_pinned(info,
2957 					cache->space_info, num_bytes);
2958 			cache->space_info->bytes_used -= num_bytes;
2959 			cache->space_info->disk_used -= num_bytes * factor;
2960 			spin_unlock(&cache->lock);
2961 			spin_unlock(&cache->space_info->lock);
2962 
2963 			__btrfs_mod_total_bytes_pinned(cache->space_info,
2964 						       num_bytes);
2965 			set_extent_dirty(&trans->transaction->pinned_extents,
2966 					 bytenr, bytenr + num_bytes - 1,
2967 					 GFP_NOFS | __GFP_NOFAIL);
2968 		}
2969 
2970 		spin_lock(&trans->transaction->dirty_bgs_lock);
2971 		if (list_empty(&cache->dirty_list)) {
2972 			list_add_tail(&cache->dirty_list,
2973 				      &trans->transaction->dirty_bgs);
2974 			trans->delayed_ref_updates++;
2975 			btrfs_get_block_group(cache);
2976 		}
2977 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2978 
2979 		/*
2980 		 * No longer have used bytes in this block group, queue it for
2981 		 * deletion. We do this after adding the block group to the
2982 		 * dirty list to avoid races between cleaner kthread and space
2983 		 * cache writeout.
2984 		 */
2985 		if (!alloc && old_val == 0) {
2986 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2987 				btrfs_mark_bg_unused(cache);
2988 		}
2989 
2990 		btrfs_put_block_group(cache);
2991 		total -= num_bytes;
2992 		bytenr += num_bytes;
2993 	}
2994 
2995 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2996 	btrfs_update_delayed_refs_rsv(trans);
2997 	return ret;
2998 }
2999 
3000 /**
3001  * btrfs_add_reserved_bytes - update the block_group and space info counters
3002  * @cache:	The cache we are manipulating
3003  * @ram_bytes:  The number of bytes of file content, and will be same to
3004  *              @num_bytes except for the compress path.
3005  * @num_bytes:	The number of bytes in question
3006  * @delalloc:   The blocks are allocated for the delalloc write
3007  *
3008  * This is called by the allocator when it reserves space. If this is a
3009  * reservation and the block group has become read only we cannot make the
3010  * reservation and return -EAGAIN, otherwise this function always succeeds.
3011  */
3012 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3013 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3014 {
3015 	struct btrfs_space_info *space_info = cache->space_info;
3016 	int ret = 0;
3017 
3018 	spin_lock(&space_info->lock);
3019 	spin_lock(&cache->lock);
3020 	if (cache->ro) {
3021 		ret = -EAGAIN;
3022 	} else {
3023 		cache->reserved += num_bytes;
3024 		space_info->bytes_reserved += num_bytes;
3025 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3026 					      space_info->flags, num_bytes, 1);
3027 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3028 						      space_info, -ram_bytes);
3029 		if (delalloc)
3030 			cache->delalloc_bytes += num_bytes;
3031 
3032 		/*
3033 		 * Compression can use less space than we reserved, so wake
3034 		 * tickets if that happens
3035 		 */
3036 		if (num_bytes < ram_bytes)
3037 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3038 	}
3039 	spin_unlock(&cache->lock);
3040 	spin_unlock(&space_info->lock);
3041 	return ret;
3042 }
3043 
3044 /**
3045  * btrfs_free_reserved_bytes - update the block_group and space info counters
3046  * @cache:      The cache we are manipulating
3047  * @num_bytes:  The number of bytes in question
3048  * @delalloc:   The blocks are allocated for the delalloc write
3049  *
3050  * This is called by somebody who is freeing space that was never actually used
3051  * on disk.  For example if you reserve some space for a new leaf in transaction
3052  * A and before transaction A commits you free that leaf, you call this with
3053  * reserve set to 0 in order to clear the reservation.
3054  */
3055 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3056 			       u64 num_bytes, int delalloc)
3057 {
3058 	struct btrfs_space_info *space_info = cache->space_info;
3059 
3060 	spin_lock(&space_info->lock);
3061 	spin_lock(&cache->lock);
3062 	if (cache->ro)
3063 		space_info->bytes_readonly += num_bytes;
3064 	cache->reserved -= num_bytes;
3065 	space_info->bytes_reserved -= num_bytes;
3066 	space_info->max_extent_size = 0;
3067 
3068 	if (delalloc)
3069 		cache->delalloc_bytes -= num_bytes;
3070 	spin_unlock(&cache->lock);
3071 
3072 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3073 	spin_unlock(&space_info->lock);
3074 }
3075 
3076 static void force_metadata_allocation(struct btrfs_fs_info *info)
3077 {
3078 	struct list_head *head = &info->space_info;
3079 	struct btrfs_space_info *found;
3080 
3081 	list_for_each_entry(found, head, list) {
3082 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3083 			found->force_alloc = CHUNK_ALLOC_FORCE;
3084 	}
3085 }
3086 
3087 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3088 			      struct btrfs_space_info *sinfo, int force)
3089 {
3090 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3091 	u64 thresh;
3092 
3093 	if (force == CHUNK_ALLOC_FORCE)
3094 		return 1;
3095 
3096 	/*
3097 	 * in limited mode, we want to have some free space up to
3098 	 * about 1% of the FS size.
3099 	 */
3100 	if (force == CHUNK_ALLOC_LIMITED) {
3101 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3102 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3103 
3104 		if (sinfo->total_bytes - bytes_used < thresh)
3105 			return 1;
3106 	}
3107 
3108 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3109 		return 0;
3110 	return 1;
3111 }
3112 
3113 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3114 {
3115 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3116 
3117 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3118 }
3119 
3120 /*
3121  * If force is CHUNK_ALLOC_FORCE:
3122  *    - return 1 if it successfully allocates a chunk,
3123  *    - return errors including -ENOSPC otherwise.
3124  * If force is NOT CHUNK_ALLOC_FORCE:
3125  *    - return 0 if it doesn't need to allocate a new chunk,
3126  *    - return 1 if it successfully allocates a chunk,
3127  *    - return errors including -ENOSPC otherwise.
3128  */
3129 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3130 		      enum btrfs_chunk_alloc_enum force)
3131 {
3132 	struct btrfs_fs_info *fs_info = trans->fs_info;
3133 	struct btrfs_space_info *space_info;
3134 	bool wait_for_alloc = false;
3135 	bool should_alloc = false;
3136 	int ret = 0;
3137 
3138 	/* Don't re-enter if we're already allocating a chunk */
3139 	if (trans->allocating_chunk)
3140 		return -ENOSPC;
3141 
3142 	space_info = btrfs_find_space_info(fs_info, flags);
3143 	ASSERT(space_info);
3144 
3145 	do {
3146 		spin_lock(&space_info->lock);
3147 		if (force < space_info->force_alloc)
3148 			force = space_info->force_alloc;
3149 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3150 		if (space_info->full) {
3151 			/* No more free physical space */
3152 			if (should_alloc)
3153 				ret = -ENOSPC;
3154 			else
3155 				ret = 0;
3156 			spin_unlock(&space_info->lock);
3157 			return ret;
3158 		} else if (!should_alloc) {
3159 			spin_unlock(&space_info->lock);
3160 			return 0;
3161 		} else if (space_info->chunk_alloc) {
3162 			/*
3163 			 * Someone is already allocating, so we need to block
3164 			 * until this someone is finished and then loop to
3165 			 * recheck if we should continue with our allocation
3166 			 * attempt.
3167 			 */
3168 			wait_for_alloc = true;
3169 			spin_unlock(&space_info->lock);
3170 			mutex_lock(&fs_info->chunk_mutex);
3171 			mutex_unlock(&fs_info->chunk_mutex);
3172 		} else {
3173 			/* Proceed with allocation */
3174 			space_info->chunk_alloc = 1;
3175 			wait_for_alloc = false;
3176 			spin_unlock(&space_info->lock);
3177 		}
3178 
3179 		cond_resched();
3180 	} while (wait_for_alloc);
3181 
3182 	mutex_lock(&fs_info->chunk_mutex);
3183 	trans->allocating_chunk = true;
3184 
3185 	/*
3186 	 * If we have mixed data/metadata chunks we want to make sure we keep
3187 	 * allocating mixed chunks instead of individual chunks.
3188 	 */
3189 	if (btrfs_mixed_space_info(space_info))
3190 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3191 
3192 	/*
3193 	 * if we're doing a data chunk, go ahead and make sure that
3194 	 * we keep a reasonable number of metadata chunks allocated in the
3195 	 * FS as well.
3196 	 */
3197 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3198 		fs_info->data_chunk_allocations++;
3199 		if (!(fs_info->data_chunk_allocations %
3200 		      fs_info->metadata_ratio))
3201 			force_metadata_allocation(fs_info);
3202 	}
3203 
3204 	/*
3205 	 * Check if we have enough space in SYSTEM chunk because we may need
3206 	 * to update devices.
3207 	 */
3208 	check_system_chunk(trans, flags);
3209 
3210 	ret = btrfs_alloc_chunk(trans, flags);
3211 	trans->allocating_chunk = false;
3212 
3213 	spin_lock(&space_info->lock);
3214 	if (ret < 0) {
3215 		if (ret == -ENOSPC)
3216 			space_info->full = 1;
3217 		else
3218 			goto out;
3219 	} else {
3220 		ret = 1;
3221 		space_info->max_extent_size = 0;
3222 	}
3223 
3224 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3225 out:
3226 	space_info->chunk_alloc = 0;
3227 	spin_unlock(&space_info->lock);
3228 	mutex_unlock(&fs_info->chunk_mutex);
3229 	/*
3230 	 * When we allocate a new chunk we reserve space in the chunk block
3231 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3232 	 * add new nodes/leafs to it if we end up needing to do it when
3233 	 * inserting the chunk item and updating device items as part of the
3234 	 * second phase of chunk allocation, performed by
3235 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3236 	 * large number of new block groups to create in our transaction
3237 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3238 	 * in extreme cases - like having a single transaction create many new
3239 	 * block groups when starting to write out the free space caches of all
3240 	 * the block groups that were made dirty during the lifetime of the
3241 	 * transaction.
3242 	 */
3243 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3244 		btrfs_create_pending_block_groups(trans);
3245 
3246 	return ret;
3247 }
3248 
3249 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3250 {
3251 	u64 num_dev;
3252 
3253 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3254 	if (!num_dev)
3255 		num_dev = fs_info->fs_devices->rw_devices;
3256 
3257 	return num_dev;
3258 }
3259 
3260 /*
3261  * Reserve space in the system space for allocating or removing a chunk
3262  */
3263 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3264 {
3265 	struct btrfs_fs_info *fs_info = trans->fs_info;
3266 	struct btrfs_space_info *info;
3267 	u64 left;
3268 	u64 thresh;
3269 	int ret = 0;
3270 	u64 num_devs;
3271 
3272 	/*
3273 	 * Needed because we can end up allocating a system chunk and for an
3274 	 * atomic and race free space reservation in the chunk block reserve.
3275 	 */
3276 	lockdep_assert_held(&fs_info->chunk_mutex);
3277 
3278 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3279 	spin_lock(&info->lock);
3280 	left = info->total_bytes - btrfs_space_info_used(info, true);
3281 	spin_unlock(&info->lock);
3282 
3283 	num_devs = get_profile_num_devs(fs_info, type);
3284 
3285 	/* num_devs device items to update and 1 chunk item to add or remove */
3286 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3287 		btrfs_calc_insert_metadata_size(fs_info, 1);
3288 
3289 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3290 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3291 			   left, thresh, type);
3292 		btrfs_dump_space_info(fs_info, info, 0, 0);
3293 	}
3294 
3295 	if (left < thresh) {
3296 		u64 flags = btrfs_system_alloc_profile(fs_info);
3297 
3298 		/*
3299 		 * Ignore failure to create system chunk. We might end up not
3300 		 * needing it, as we might not need to COW all nodes/leafs from
3301 		 * the paths we visit in the chunk tree (they were already COWed
3302 		 * or created in the current transaction for example).
3303 		 */
3304 		ret = btrfs_alloc_chunk(trans, flags);
3305 	}
3306 
3307 	if (!ret) {
3308 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3309 					  &fs_info->chunk_block_rsv,
3310 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3311 		if (!ret)
3312 			trans->chunk_bytes_reserved += thresh;
3313 	}
3314 }
3315 
3316 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3317 {
3318 	struct btrfs_block_group *block_group;
3319 	u64 last = 0;
3320 
3321 	while (1) {
3322 		struct inode *inode;
3323 
3324 		block_group = btrfs_lookup_first_block_group(info, last);
3325 		while (block_group) {
3326 			btrfs_wait_block_group_cache_done(block_group);
3327 			spin_lock(&block_group->lock);
3328 			if (block_group->iref)
3329 				break;
3330 			spin_unlock(&block_group->lock);
3331 			block_group = btrfs_next_block_group(block_group);
3332 		}
3333 		if (!block_group) {
3334 			if (last == 0)
3335 				break;
3336 			last = 0;
3337 			continue;
3338 		}
3339 
3340 		inode = block_group->inode;
3341 		block_group->iref = 0;
3342 		block_group->inode = NULL;
3343 		spin_unlock(&block_group->lock);
3344 		ASSERT(block_group->io_ctl.inode == NULL);
3345 		iput(inode);
3346 		last = block_group->start + block_group->length;
3347 		btrfs_put_block_group(block_group);
3348 	}
3349 }
3350 
3351 /*
3352  * Must be called only after stopping all workers, since we could have block
3353  * group caching kthreads running, and therefore they could race with us if we
3354  * freed the block groups before stopping them.
3355  */
3356 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3357 {
3358 	struct btrfs_block_group *block_group;
3359 	struct btrfs_space_info *space_info;
3360 	struct btrfs_caching_control *caching_ctl;
3361 	struct rb_node *n;
3362 
3363 	spin_lock(&info->block_group_cache_lock);
3364 	while (!list_empty(&info->caching_block_groups)) {
3365 		caching_ctl = list_entry(info->caching_block_groups.next,
3366 					 struct btrfs_caching_control, list);
3367 		list_del(&caching_ctl->list);
3368 		btrfs_put_caching_control(caching_ctl);
3369 	}
3370 	spin_unlock(&info->block_group_cache_lock);
3371 
3372 	spin_lock(&info->unused_bgs_lock);
3373 	while (!list_empty(&info->unused_bgs)) {
3374 		block_group = list_first_entry(&info->unused_bgs,
3375 					       struct btrfs_block_group,
3376 					       bg_list);
3377 		list_del_init(&block_group->bg_list);
3378 		btrfs_put_block_group(block_group);
3379 	}
3380 	spin_unlock(&info->unused_bgs_lock);
3381 
3382 	spin_lock(&info->block_group_cache_lock);
3383 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3384 		block_group = rb_entry(n, struct btrfs_block_group,
3385 				       cache_node);
3386 		rb_erase(&block_group->cache_node,
3387 			 &info->block_group_cache_tree);
3388 		RB_CLEAR_NODE(&block_group->cache_node);
3389 		spin_unlock(&info->block_group_cache_lock);
3390 
3391 		down_write(&block_group->space_info->groups_sem);
3392 		list_del(&block_group->list);
3393 		up_write(&block_group->space_info->groups_sem);
3394 
3395 		/*
3396 		 * We haven't cached this block group, which means we could
3397 		 * possibly have excluded extents on this block group.
3398 		 */
3399 		if (block_group->cached == BTRFS_CACHE_NO ||
3400 		    block_group->cached == BTRFS_CACHE_ERROR)
3401 			btrfs_free_excluded_extents(block_group);
3402 
3403 		btrfs_remove_free_space_cache(block_group);
3404 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3405 		ASSERT(list_empty(&block_group->dirty_list));
3406 		ASSERT(list_empty(&block_group->io_list));
3407 		ASSERT(list_empty(&block_group->bg_list));
3408 		ASSERT(refcount_read(&block_group->refs) == 1);
3409 		btrfs_put_block_group(block_group);
3410 
3411 		spin_lock(&info->block_group_cache_lock);
3412 	}
3413 	spin_unlock(&info->block_group_cache_lock);
3414 
3415 	btrfs_release_global_block_rsv(info);
3416 
3417 	while (!list_empty(&info->space_info)) {
3418 		space_info = list_entry(info->space_info.next,
3419 					struct btrfs_space_info,
3420 					list);
3421 
3422 		/*
3423 		 * Do not hide this behind enospc_debug, this is actually
3424 		 * important and indicates a real bug if this happens.
3425 		 */
3426 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3427 			    space_info->bytes_reserved > 0 ||
3428 			    space_info->bytes_may_use > 0))
3429 			btrfs_dump_space_info(info, space_info, 0, 0);
3430 		WARN_ON(space_info->reclaim_size > 0);
3431 		list_del(&space_info->list);
3432 		btrfs_sysfs_remove_space_info(space_info);
3433 	}
3434 	return 0;
3435 }
3436 
3437 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3438 {
3439 	atomic_inc(&cache->frozen);
3440 }
3441 
3442 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3443 {
3444 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3445 	struct extent_map_tree *em_tree;
3446 	struct extent_map *em;
3447 	bool cleanup;
3448 
3449 	spin_lock(&block_group->lock);
3450 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3451 		   block_group->removed);
3452 	spin_unlock(&block_group->lock);
3453 
3454 	if (cleanup) {
3455 		em_tree = &fs_info->mapping_tree;
3456 		write_lock(&em_tree->lock);
3457 		em = lookup_extent_mapping(em_tree, block_group->start,
3458 					   1);
3459 		BUG_ON(!em); /* logic error, can't happen */
3460 		remove_extent_mapping(em_tree, em);
3461 		write_unlock(&em_tree->lock);
3462 
3463 		/* once for us and once for the tree */
3464 		free_extent_map(em);
3465 		free_extent_map(em);
3466 
3467 		/*
3468 		 * We may have left one free space entry and other possible
3469 		 * tasks trimming this block group have left 1 entry each one.
3470 		 * Free them if any.
3471 		 */
3472 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3473 	}
3474 }
3475