1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 btrfs_free_chunk_map(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 /* 177 * This adds the block group to the fs_info rb tree for the block group cache 178 */ 179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 180 struct btrfs_block_group *block_group) 181 { 182 struct rb_node **p; 183 struct rb_node *parent = NULL; 184 struct btrfs_block_group *cache; 185 bool leftmost = true; 186 187 ASSERT(block_group->length != 0); 188 189 write_lock(&info->block_group_cache_lock); 190 p = &info->block_group_cache_tree.rb_root.rb_node; 191 192 while (*p) { 193 parent = *p; 194 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 195 if (block_group->start < cache->start) { 196 p = &(*p)->rb_left; 197 } else if (block_group->start > cache->start) { 198 p = &(*p)->rb_right; 199 leftmost = false; 200 } else { 201 write_unlock(&info->block_group_cache_lock); 202 return -EEXIST; 203 } 204 } 205 206 rb_link_node(&block_group->cache_node, parent, p); 207 rb_insert_color_cached(&block_group->cache_node, 208 &info->block_group_cache_tree, leftmost); 209 210 write_unlock(&info->block_group_cache_lock); 211 212 return 0; 213 } 214 215 /* 216 * This will return the block group at or after bytenr if contains is 0, else 217 * it will return the block group that contains the bytenr 218 */ 219 static struct btrfs_block_group *block_group_cache_tree_search( 220 struct btrfs_fs_info *info, u64 bytenr, int contains) 221 { 222 struct btrfs_block_group *cache, *ret = NULL; 223 struct rb_node *n; 224 u64 end, start; 225 226 read_lock(&info->block_group_cache_lock); 227 n = info->block_group_cache_tree.rb_root.rb_node; 228 229 while (n) { 230 cache = rb_entry(n, struct btrfs_block_group, cache_node); 231 end = cache->start + cache->length - 1; 232 start = cache->start; 233 234 if (bytenr < start) { 235 if (!contains && (!ret || start < ret->start)) 236 ret = cache; 237 n = n->rb_left; 238 } else if (bytenr > start) { 239 if (contains && bytenr <= end) { 240 ret = cache; 241 break; 242 } 243 n = n->rb_right; 244 } else { 245 ret = cache; 246 break; 247 } 248 } 249 if (ret) 250 btrfs_get_block_group(ret); 251 read_unlock(&info->block_group_cache_lock); 252 253 return ret; 254 } 255 256 /* 257 * Return the block group that starts at or after bytenr 258 */ 259 struct btrfs_block_group *btrfs_lookup_first_block_group( 260 struct btrfs_fs_info *info, u64 bytenr) 261 { 262 return block_group_cache_tree_search(info, bytenr, 0); 263 } 264 265 /* 266 * Return the block group that contains the given bytenr 267 */ 268 struct btrfs_block_group *btrfs_lookup_block_group( 269 struct btrfs_fs_info *info, u64 bytenr) 270 { 271 return block_group_cache_tree_search(info, bytenr, 1); 272 } 273 274 struct btrfs_block_group *btrfs_next_block_group( 275 struct btrfs_block_group *cache) 276 { 277 struct btrfs_fs_info *fs_info = cache->fs_info; 278 struct rb_node *node; 279 280 read_lock(&fs_info->block_group_cache_lock); 281 282 /* If our block group was removed, we need a full search. */ 283 if (RB_EMPTY_NODE(&cache->cache_node)) { 284 const u64 next_bytenr = cache->start + cache->length; 285 286 read_unlock(&fs_info->block_group_cache_lock); 287 btrfs_put_block_group(cache); 288 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 289 } 290 node = rb_next(&cache->cache_node); 291 btrfs_put_block_group(cache); 292 if (node) { 293 cache = rb_entry(node, struct btrfs_block_group, cache_node); 294 btrfs_get_block_group(cache); 295 } else 296 cache = NULL; 297 read_unlock(&fs_info->block_group_cache_lock); 298 return cache; 299 } 300 301 /* 302 * Check if we can do a NOCOW write for a given extent. 303 * 304 * @fs_info: The filesystem information object. 305 * @bytenr: Logical start address of the extent. 306 * 307 * Check if we can do a NOCOW write for the given extent, and increments the 308 * number of NOCOW writers in the block group that contains the extent, as long 309 * as the block group exists and it's currently not in read-only mode. 310 * 311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 312 * is responsible for calling btrfs_dec_nocow_writers() later. 313 * 314 * Or NULL if we can not do a NOCOW write 315 */ 316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 317 u64 bytenr) 318 { 319 struct btrfs_block_group *bg; 320 bool can_nocow = true; 321 322 bg = btrfs_lookup_block_group(fs_info, bytenr); 323 if (!bg) 324 return NULL; 325 326 spin_lock(&bg->lock); 327 if (bg->ro) 328 can_nocow = false; 329 else 330 atomic_inc(&bg->nocow_writers); 331 spin_unlock(&bg->lock); 332 333 if (!can_nocow) { 334 btrfs_put_block_group(bg); 335 return NULL; 336 } 337 338 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 339 return bg; 340 } 341 342 /* 343 * Decrement the number of NOCOW writers in a block group. 344 * 345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 346 * and on the block group returned by that call. Typically this is called after 347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 348 * relocation. 349 * 350 * After this call, the caller should not use the block group anymore. It it wants 351 * to use it, then it should get a reference on it before calling this function. 352 */ 353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 354 { 355 if (atomic_dec_and_test(&bg->nocow_writers)) 356 wake_up_var(&bg->nocow_writers); 357 358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 359 btrfs_put_block_group(bg); 360 } 361 362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 363 { 364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 365 } 366 367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 368 const u64 start) 369 { 370 struct btrfs_block_group *bg; 371 372 bg = btrfs_lookup_block_group(fs_info, start); 373 ASSERT(bg); 374 if (atomic_dec_and_test(&bg->reservations)) 375 wake_up_var(&bg->reservations); 376 btrfs_put_block_group(bg); 377 } 378 379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 380 { 381 struct btrfs_space_info *space_info = bg->space_info; 382 383 ASSERT(bg->ro); 384 385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 386 return; 387 388 /* 389 * Our block group is read only but before we set it to read only, 390 * some task might have had allocated an extent from it already, but it 391 * has not yet created a respective ordered extent (and added it to a 392 * root's list of ordered extents). 393 * Therefore wait for any task currently allocating extents, since the 394 * block group's reservations counter is incremented while a read lock 395 * on the groups' semaphore is held and decremented after releasing 396 * the read access on that semaphore and creating the ordered extent. 397 */ 398 down_write(&space_info->groups_sem); 399 up_write(&space_info->groups_sem); 400 401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 402 } 403 404 struct btrfs_caching_control *btrfs_get_caching_control( 405 struct btrfs_block_group *cache) 406 { 407 struct btrfs_caching_control *ctl; 408 409 spin_lock(&cache->lock); 410 if (!cache->caching_ctl) { 411 spin_unlock(&cache->lock); 412 return NULL; 413 } 414 415 ctl = cache->caching_ctl; 416 refcount_inc(&ctl->count); 417 spin_unlock(&cache->lock); 418 return ctl; 419 } 420 421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 422 { 423 if (refcount_dec_and_test(&ctl->count)) 424 kfree(ctl); 425 } 426 427 /* 428 * When we wait for progress in the block group caching, its because our 429 * allocation attempt failed at least once. So, we must sleep and let some 430 * progress happen before we try again. 431 * 432 * This function will sleep at least once waiting for new free space to show 433 * up, and then it will check the block group free space numbers for our min 434 * num_bytes. Another option is to have it go ahead and look in the rbtree for 435 * a free extent of a given size, but this is a good start. 436 * 437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 438 * any of the information in this block group. 439 */ 440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 441 u64 num_bytes) 442 { 443 struct btrfs_caching_control *caching_ctl; 444 int progress; 445 446 caching_ctl = btrfs_get_caching_control(cache); 447 if (!caching_ctl) 448 return; 449 450 /* 451 * We've already failed to allocate from this block group, so even if 452 * there's enough space in the block group it isn't contiguous enough to 453 * allow for an allocation, so wait for at least the next wakeup tick, 454 * or for the thing to be done. 455 */ 456 progress = atomic_read(&caching_ctl->progress); 457 458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 459 (progress != atomic_read(&caching_ctl->progress) && 460 (cache->free_space_ctl->free_space >= num_bytes))); 461 462 btrfs_put_caching_control(caching_ctl); 463 } 464 465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 466 struct btrfs_caching_control *caching_ctl) 467 { 468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 470 } 471 472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 473 { 474 struct btrfs_caching_control *caching_ctl; 475 int ret; 476 477 caching_ctl = btrfs_get_caching_control(cache); 478 if (!caching_ctl) 479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 481 btrfs_put_caching_control(caching_ctl); 482 return ret; 483 } 484 485 #ifdef CONFIG_BTRFS_DEBUG 486 static void fragment_free_space(struct btrfs_block_group *block_group) 487 { 488 struct btrfs_fs_info *fs_info = block_group->fs_info; 489 u64 start = block_group->start; 490 u64 len = block_group->length; 491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 492 fs_info->nodesize : fs_info->sectorsize; 493 u64 step = chunk << 1; 494 495 while (len > chunk) { 496 btrfs_remove_free_space(block_group, start, chunk); 497 start += step; 498 if (len < step) 499 len = 0; 500 else 501 len -= step; 502 } 503 } 504 #endif 505 506 /* 507 * Add a free space range to the in memory free space cache of a block group. 508 * This checks if the range contains super block locations and any such 509 * locations are not added to the free space cache. 510 * 511 * @block_group: The target block group. 512 * @start: Start offset of the range. 513 * @end: End offset of the range (exclusive). 514 * @total_added_ret: Optional pointer to return the total amount of space 515 * added to the block group's free space cache. 516 * 517 * Returns 0 on success or < 0 on error. 518 */ 519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 520 u64 end, u64 *total_added_ret) 521 { 522 struct btrfs_fs_info *info = block_group->fs_info; 523 u64 extent_start, extent_end, size; 524 int ret; 525 526 if (total_added_ret) 527 *total_added_ret = 0; 528 529 while (start < end) { 530 if (!find_first_extent_bit(&info->excluded_extents, start, 531 &extent_start, &extent_end, 532 EXTENT_DIRTY | EXTENT_UPTODATE, 533 NULL)) 534 break; 535 536 if (extent_start <= start) { 537 start = extent_end + 1; 538 } else if (extent_start > start && extent_start < end) { 539 size = extent_start - start; 540 ret = btrfs_add_free_space_async_trimmed(block_group, 541 start, size); 542 if (ret) 543 return ret; 544 if (total_added_ret) 545 *total_added_ret += size; 546 start = extent_end + 1; 547 } else { 548 break; 549 } 550 } 551 552 if (start < end) { 553 size = end - start; 554 ret = btrfs_add_free_space_async_trimmed(block_group, start, 555 size); 556 if (ret) 557 return ret; 558 if (total_added_ret) 559 *total_added_ret += size; 560 } 561 562 return 0; 563 } 564 565 /* 566 * Get an arbitrary extent item index / max_index through the block group 567 * 568 * @block_group the block group to sample from 569 * @index: the integral step through the block group to grab from 570 * @max_index: the granularity of the sampling 571 * @key: return value parameter for the item we find 572 * 573 * Pre-conditions on indices: 574 * 0 <= index <= max_index 575 * 0 < max_index 576 * 577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 578 * error code on error. 579 */ 580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 581 struct btrfs_block_group *block_group, 582 int index, int max_index, 583 struct btrfs_key *found_key) 584 { 585 struct btrfs_fs_info *fs_info = block_group->fs_info; 586 struct btrfs_root *extent_root; 587 u64 search_offset; 588 u64 search_end = block_group->start + block_group->length; 589 struct btrfs_path *path; 590 struct btrfs_key search_key; 591 int ret = 0; 592 593 ASSERT(index >= 0); 594 ASSERT(index <= max_index); 595 ASSERT(max_index > 0); 596 lockdep_assert_held(&caching_ctl->mutex); 597 lockdep_assert_held_read(&fs_info->commit_root_sem); 598 599 path = btrfs_alloc_path(); 600 if (!path) 601 return -ENOMEM; 602 603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 604 BTRFS_SUPER_INFO_OFFSET)); 605 606 path->skip_locking = 1; 607 path->search_commit_root = 1; 608 path->reada = READA_FORWARD; 609 610 search_offset = index * div_u64(block_group->length, max_index); 611 search_key.objectid = block_group->start + search_offset; 612 search_key.type = BTRFS_EXTENT_ITEM_KEY; 613 search_key.offset = 0; 614 615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 616 /* Success; sampled an extent item in the block group */ 617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 618 found_key->objectid >= block_group->start && 619 found_key->objectid + found_key->offset <= search_end) 620 break; 621 622 /* We can't possibly find a valid extent item anymore */ 623 if (found_key->objectid >= search_end) { 624 ret = 1; 625 break; 626 } 627 } 628 629 lockdep_assert_held(&caching_ctl->mutex); 630 lockdep_assert_held_read(&fs_info->commit_root_sem); 631 btrfs_free_path(path); 632 return ret; 633 } 634 635 /* 636 * Best effort attempt to compute a block group's size class while caching it. 637 * 638 * @block_group: the block group we are caching 639 * 640 * We cannot infer the size class while adding free space extents, because that 641 * logic doesn't care about contiguous file extents (it doesn't differentiate 642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 643 * file extent items. Reading all of them is quite wasteful, because usually 644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 645 * them at even steps through the block group and pick the smallest size class 646 * we see. Since size class is best effort, and not guaranteed in general, 647 * inaccuracy is acceptable. 648 * 649 * To be more explicit about why this algorithm makes sense: 650 * 651 * If we are caching in a block group from disk, then there are three major cases 652 * to consider: 653 * 1. the block group is well behaved and all extents in it are the same size 654 * class. 655 * 2. the block group is mostly one size class with rare exceptions for last 656 * ditch allocations 657 * 3. the block group was populated before size classes and can have a totally 658 * arbitrary mix of size classes. 659 * 660 * In case 1, looking at any extent in the block group will yield the correct 661 * result. For the mixed cases, taking the minimum size class seems like a good 662 * approximation, since gaps from frees will be usable to the size class. For 663 * 2., a small handful of file extents is likely to yield the right answer. For 664 * 3, we can either read every file extent, or admit that this is best effort 665 * anyway and try to stay fast. 666 * 667 * Returns: 0 on success, negative error code on error. 668 */ 669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 670 struct btrfs_block_group *block_group) 671 { 672 struct btrfs_fs_info *fs_info = block_group->fs_info; 673 struct btrfs_key key; 674 int i; 675 u64 min_size = block_group->length; 676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 677 int ret; 678 679 if (!btrfs_block_group_should_use_size_class(block_group)) 680 return 0; 681 682 lockdep_assert_held(&caching_ctl->mutex); 683 lockdep_assert_held_read(&fs_info->commit_root_sem); 684 for (i = 0; i < 5; ++i) { 685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 686 if (ret < 0) 687 goto out; 688 if (ret > 0) 689 continue; 690 min_size = min_t(u64, min_size, key.offset); 691 size_class = btrfs_calc_block_group_size_class(min_size); 692 } 693 if (size_class != BTRFS_BG_SZ_NONE) { 694 spin_lock(&block_group->lock); 695 block_group->size_class = size_class; 696 spin_unlock(&block_group->lock); 697 } 698 out: 699 return ret; 700 } 701 702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 703 { 704 struct btrfs_block_group *block_group = caching_ctl->block_group; 705 struct btrfs_fs_info *fs_info = block_group->fs_info; 706 struct btrfs_root *extent_root; 707 struct btrfs_path *path; 708 struct extent_buffer *leaf; 709 struct btrfs_key key; 710 u64 total_found = 0; 711 u64 last = 0; 712 u32 nritems; 713 int ret; 714 bool wakeup = true; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 721 extent_root = btrfs_extent_root(fs_info, last); 722 723 #ifdef CONFIG_BTRFS_DEBUG 724 /* 725 * If we're fragmenting we don't want to make anybody think we can 726 * allocate from this block group until we've had a chance to fragment 727 * the free space. 728 */ 729 if (btrfs_should_fragment_free_space(block_group)) 730 wakeup = false; 731 #endif 732 /* 733 * We don't want to deadlock with somebody trying to allocate a new 734 * extent for the extent root while also trying to search the extent 735 * root to add free space. So we skip locking and search the commit 736 * root, since its read-only 737 */ 738 path->skip_locking = 1; 739 path->search_commit_root = 1; 740 path->reada = READA_FORWARD; 741 742 key.objectid = last; 743 key.offset = 0; 744 key.type = BTRFS_EXTENT_ITEM_KEY; 745 746 next: 747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 748 if (ret < 0) 749 goto out; 750 751 leaf = path->nodes[0]; 752 nritems = btrfs_header_nritems(leaf); 753 754 while (1) { 755 if (btrfs_fs_closing(fs_info) > 1) { 756 last = (u64)-1; 757 break; 758 } 759 760 if (path->slots[0] < nritems) { 761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 762 } else { 763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 764 if (ret) 765 break; 766 767 if (need_resched() || 768 rwsem_is_contended(&fs_info->commit_root_sem)) { 769 btrfs_release_path(path); 770 up_read(&fs_info->commit_root_sem); 771 mutex_unlock(&caching_ctl->mutex); 772 cond_resched(); 773 mutex_lock(&caching_ctl->mutex); 774 down_read(&fs_info->commit_root_sem); 775 goto next; 776 } 777 778 ret = btrfs_next_leaf(extent_root, path); 779 if (ret < 0) 780 goto out; 781 if (ret) 782 break; 783 leaf = path->nodes[0]; 784 nritems = btrfs_header_nritems(leaf); 785 continue; 786 } 787 788 if (key.objectid < last) { 789 key.objectid = last; 790 key.offset = 0; 791 key.type = BTRFS_EXTENT_ITEM_KEY; 792 btrfs_release_path(path); 793 goto next; 794 } 795 796 if (key.objectid < block_group->start) { 797 path->slots[0]++; 798 continue; 799 } 800 801 if (key.objectid >= block_group->start + block_group->length) 802 break; 803 804 if (key.type == BTRFS_EXTENT_ITEM_KEY || 805 key.type == BTRFS_METADATA_ITEM_KEY) { 806 u64 space_added; 807 808 ret = btrfs_add_new_free_space(block_group, last, 809 key.objectid, &space_added); 810 if (ret) 811 goto out; 812 total_found += space_added; 813 if (key.type == BTRFS_METADATA_ITEM_KEY) 814 last = key.objectid + 815 fs_info->nodesize; 816 else 817 last = key.objectid + key.offset; 818 819 if (total_found > CACHING_CTL_WAKE_UP) { 820 total_found = 0; 821 if (wakeup) { 822 atomic_inc(&caching_ctl->progress); 823 wake_up(&caching_ctl->wait); 824 } 825 } 826 } 827 path->slots[0]++; 828 } 829 830 ret = btrfs_add_new_free_space(block_group, last, 831 block_group->start + block_group->length, 832 NULL); 833 out: 834 btrfs_free_path(path); 835 return ret; 836 } 837 838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 839 { 840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start, 841 bg->start + bg->length - 1, EXTENT_UPTODATE); 842 } 843 844 static noinline void caching_thread(struct btrfs_work *work) 845 { 846 struct btrfs_block_group *block_group; 847 struct btrfs_fs_info *fs_info; 848 struct btrfs_caching_control *caching_ctl; 849 int ret; 850 851 caching_ctl = container_of(work, struct btrfs_caching_control, work); 852 block_group = caching_ctl->block_group; 853 fs_info = block_group->fs_info; 854 855 mutex_lock(&caching_ctl->mutex); 856 down_read(&fs_info->commit_root_sem); 857 858 load_block_group_size_class(caching_ctl, block_group); 859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 860 ret = load_free_space_cache(block_group); 861 if (ret == 1) { 862 ret = 0; 863 goto done; 864 } 865 866 /* 867 * We failed to load the space cache, set ourselves to 868 * CACHE_STARTED and carry on. 869 */ 870 spin_lock(&block_group->lock); 871 block_group->cached = BTRFS_CACHE_STARTED; 872 spin_unlock(&block_group->lock); 873 wake_up(&caching_ctl->wait); 874 } 875 876 /* 877 * If we are in the transaction that populated the free space tree we 878 * can't actually cache from the free space tree as our commit root and 879 * real root are the same, so we could change the contents of the blocks 880 * while caching. Instead do the slow caching in this case, and after 881 * the transaction has committed we will be safe. 882 */ 883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 885 ret = load_free_space_tree(caching_ctl); 886 else 887 ret = load_extent_tree_free(caching_ctl); 888 done: 889 spin_lock(&block_group->lock); 890 block_group->caching_ctl = NULL; 891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 892 spin_unlock(&block_group->lock); 893 894 #ifdef CONFIG_BTRFS_DEBUG 895 if (btrfs_should_fragment_free_space(block_group)) { 896 u64 bytes_used; 897 898 spin_lock(&block_group->space_info->lock); 899 spin_lock(&block_group->lock); 900 bytes_used = block_group->length - block_group->used; 901 block_group->space_info->bytes_used += bytes_used >> 1; 902 spin_unlock(&block_group->lock); 903 spin_unlock(&block_group->space_info->lock); 904 fragment_free_space(block_group); 905 } 906 #endif 907 908 up_read(&fs_info->commit_root_sem); 909 btrfs_free_excluded_extents(block_group); 910 mutex_unlock(&caching_ctl->mutex); 911 912 wake_up(&caching_ctl->wait); 913 914 btrfs_put_caching_control(caching_ctl); 915 btrfs_put_block_group(block_group); 916 } 917 918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 919 { 920 struct btrfs_fs_info *fs_info = cache->fs_info; 921 struct btrfs_caching_control *caching_ctl = NULL; 922 int ret = 0; 923 924 /* Allocator for zoned filesystems does not use the cache at all */ 925 if (btrfs_is_zoned(fs_info)) 926 return 0; 927 928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 929 if (!caching_ctl) 930 return -ENOMEM; 931 932 INIT_LIST_HEAD(&caching_ctl->list); 933 mutex_init(&caching_ctl->mutex); 934 init_waitqueue_head(&caching_ctl->wait); 935 caching_ctl->block_group = cache; 936 refcount_set(&caching_ctl->count, 2); 937 atomic_set(&caching_ctl->progress, 0); 938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL); 939 940 spin_lock(&cache->lock); 941 if (cache->cached != BTRFS_CACHE_NO) { 942 kfree(caching_ctl); 943 944 caching_ctl = cache->caching_ctl; 945 if (caching_ctl) 946 refcount_inc(&caching_ctl->count); 947 spin_unlock(&cache->lock); 948 goto out; 949 } 950 WARN_ON(cache->caching_ctl); 951 cache->caching_ctl = caching_ctl; 952 cache->cached = BTRFS_CACHE_STARTED; 953 spin_unlock(&cache->lock); 954 955 write_lock(&fs_info->block_group_cache_lock); 956 refcount_inc(&caching_ctl->count); 957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 958 write_unlock(&fs_info->block_group_cache_lock); 959 960 btrfs_get_block_group(cache); 961 962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 963 out: 964 if (wait && caching_ctl) 965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 966 if (caching_ctl) 967 btrfs_put_caching_control(caching_ctl); 968 969 return ret; 970 } 971 972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 973 { 974 u64 extra_flags = chunk_to_extended(flags) & 975 BTRFS_EXTENDED_PROFILE_MASK; 976 977 write_seqlock(&fs_info->profiles_lock); 978 if (flags & BTRFS_BLOCK_GROUP_DATA) 979 fs_info->avail_data_alloc_bits &= ~extra_flags; 980 if (flags & BTRFS_BLOCK_GROUP_METADATA) 981 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 983 fs_info->avail_system_alloc_bits &= ~extra_flags; 984 write_sequnlock(&fs_info->profiles_lock); 985 } 986 987 /* 988 * Clear incompat bits for the following feature(s): 989 * 990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 991 * in the whole filesystem 992 * 993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 994 */ 995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 996 { 997 bool found_raid56 = false; 998 bool found_raid1c34 = false; 999 1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1003 struct list_head *head = &fs_info->space_info; 1004 struct btrfs_space_info *sinfo; 1005 1006 list_for_each_entry_rcu(sinfo, head, list) { 1007 down_read(&sinfo->groups_sem); 1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1009 found_raid56 = true; 1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1011 found_raid56 = true; 1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1013 found_raid1c34 = true; 1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1015 found_raid1c34 = true; 1016 up_read(&sinfo->groups_sem); 1017 } 1018 if (!found_raid56) 1019 btrfs_clear_fs_incompat(fs_info, RAID56); 1020 if (!found_raid1c34) 1021 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1022 } 1023 } 1024 1025 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1026 struct btrfs_path *path, 1027 struct btrfs_block_group *block_group) 1028 { 1029 struct btrfs_fs_info *fs_info = trans->fs_info; 1030 struct btrfs_root *root; 1031 struct btrfs_key key; 1032 int ret; 1033 1034 root = btrfs_block_group_root(fs_info); 1035 key.objectid = block_group->start; 1036 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1037 key.offset = block_group->length; 1038 1039 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1040 if (ret > 0) 1041 ret = -ENOENT; 1042 if (ret < 0) 1043 return ret; 1044 1045 ret = btrfs_del_item(trans, root, path); 1046 return ret; 1047 } 1048 1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1050 struct btrfs_chunk_map *map) 1051 { 1052 struct btrfs_fs_info *fs_info = trans->fs_info; 1053 struct btrfs_path *path; 1054 struct btrfs_block_group *block_group; 1055 struct btrfs_free_cluster *cluster; 1056 struct inode *inode; 1057 struct kobject *kobj = NULL; 1058 int ret; 1059 int index; 1060 int factor; 1061 struct btrfs_caching_control *caching_ctl = NULL; 1062 bool remove_map; 1063 bool remove_rsv = false; 1064 1065 block_group = btrfs_lookup_block_group(fs_info, map->start); 1066 BUG_ON(!block_group); 1067 BUG_ON(!block_group->ro); 1068 1069 trace_btrfs_remove_block_group(block_group); 1070 /* 1071 * Free the reserved super bytes from this block group before 1072 * remove it. 1073 */ 1074 btrfs_free_excluded_extents(block_group); 1075 btrfs_free_ref_tree_range(fs_info, block_group->start, 1076 block_group->length); 1077 1078 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1079 factor = btrfs_bg_type_to_factor(block_group->flags); 1080 1081 /* make sure this block group isn't part of an allocation cluster */ 1082 cluster = &fs_info->data_alloc_cluster; 1083 spin_lock(&cluster->refill_lock); 1084 btrfs_return_cluster_to_free_space(block_group, cluster); 1085 spin_unlock(&cluster->refill_lock); 1086 1087 /* 1088 * make sure this block group isn't part of a metadata 1089 * allocation cluster 1090 */ 1091 cluster = &fs_info->meta_alloc_cluster; 1092 spin_lock(&cluster->refill_lock); 1093 btrfs_return_cluster_to_free_space(block_group, cluster); 1094 spin_unlock(&cluster->refill_lock); 1095 1096 btrfs_clear_treelog_bg(block_group); 1097 btrfs_clear_data_reloc_bg(block_group); 1098 1099 path = btrfs_alloc_path(); 1100 if (!path) { 1101 ret = -ENOMEM; 1102 goto out; 1103 } 1104 1105 /* 1106 * get the inode first so any iput calls done for the io_list 1107 * aren't the final iput (no unlinks allowed now) 1108 */ 1109 inode = lookup_free_space_inode(block_group, path); 1110 1111 mutex_lock(&trans->transaction->cache_write_mutex); 1112 /* 1113 * Make sure our free space cache IO is done before removing the 1114 * free space inode 1115 */ 1116 spin_lock(&trans->transaction->dirty_bgs_lock); 1117 if (!list_empty(&block_group->io_list)) { 1118 list_del_init(&block_group->io_list); 1119 1120 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1121 1122 spin_unlock(&trans->transaction->dirty_bgs_lock); 1123 btrfs_wait_cache_io(trans, block_group, path); 1124 btrfs_put_block_group(block_group); 1125 spin_lock(&trans->transaction->dirty_bgs_lock); 1126 } 1127 1128 if (!list_empty(&block_group->dirty_list)) { 1129 list_del_init(&block_group->dirty_list); 1130 remove_rsv = true; 1131 btrfs_put_block_group(block_group); 1132 } 1133 spin_unlock(&trans->transaction->dirty_bgs_lock); 1134 mutex_unlock(&trans->transaction->cache_write_mutex); 1135 1136 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1137 if (ret) 1138 goto out; 1139 1140 write_lock(&fs_info->block_group_cache_lock); 1141 rb_erase_cached(&block_group->cache_node, 1142 &fs_info->block_group_cache_tree); 1143 RB_CLEAR_NODE(&block_group->cache_node); 1144 1145 /* Once for the block groups rbtree */ 1146 btrfs_put_block_group(block_group); 1147 1148 write_unlock(&fs_info->block_group_cache_lock); 1149 1150 down_write(&block_group->space_info->groups_sem); 1151 /* 1152 * we must use list_del_init so people can check to see if they 1153 * are still on the list after taking the semaphore 1154 */ 1155 list_del_init(&block_group->list); 1156 if (list_empty(&block_group->space_info->block_groups[index])) { 1157 kobj = block_group->space_info->block_group_kobjs[index]; 1158 block_group->space_info->block_group_kobjs[index] = NULL; 1159 clear_avail_alloc_bits(fs_info, block_group->flags); 1160 } 1161 up_write(&block_group->space_info->groups_sem); 1162 clear_incompat_bg_bits(fs_info, block_group->flags); 1163 if (kobj) { 1164 kobject_del(kobj); 1165 kobject_put(kobj); 1166 } 1167 1168 if (block_group->cached == BTRFS_CACHE_STARTED) 1169 btrfs_wait_block_group_cache_done(block_group); 1170 1171 write_lock(&fs_info->block_group_cache_lock); 1172 caching_ctl = btrfs_get_caching_control(block_group); 1173 if (!caching_ctl) { 1174 struct btrfs_caching_control *ctl; 1175 1176 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1177 if (ctl->block_group == block_group) { 1178 caching_ctl = ctl; 1179 refcount_inc(&caching_ctl->count); 1180 break; 1181 } 1182 } 1183 } 1184 if (caching_ctl) 1185 list_del_init(&caching_ctl->list); 1186 write_unlock(&fs_info->block_group_cache_lock); 1187 1188 if (caching_ctl) { 1189 /* Once for the caching bgs list and once for us. */ 1190 btrfs_put_caching_control(caching_ctl); 1191 btrfs_put_caching_control(caching_ctl); 1192 } 1193 1194 spin_lock(&trans->transaction->dirty_bgs_lock); 1195 WARN_ON(!list_empty(&block_group->dirty_list)); 1196 WARN_ON(!list_empty(&block_group->io_list)); 1197 spin_unlock(&trans->transaction->dirty_bgs_lock); 1198 1199 btrfs_remove_free_space_cache(block_group); 1200 1201 spin_lock(&block_group->space_info->lock); 1202 list_del_init(&block_group->ro_list); 1203 1204 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1205 WARN_ON(block_group->space_info->total_bytes 1206 < block_group->length); 1207 WARN_ON(block_group->space_info->bytes_readonly 1208 < block_group->length - block_group->zone_unusable); 1209 WARN_ON(block_group->space_info->bytes_zone_unusable 1210 < block_group->zone_unusable); 1211 WARN_ON(block_group->space_info->disk_total 1212 < block_group->length * factor); 1213 } 1214 block_group->space_info->total_bytes -= block_group->length; 1215 block_group->space_info->bytes_readonly -= 1216 (block_group->length - block_group->zone_unusable); 1217 block_group->space_info->bytes_zone_unusable -= 1218 block_group->zone_unusable; 1219 block_group->space_info->disk_total -= block_group->length * factor; 1220 1221 spin_unlock(&block_group->space_info->lock); 1222 1223 /* 1224 * Remove the free space for the block group from the free space tree 1225 * and the block group's item from the extent tree before marking the 1226 * block group as removed. This is to prevent races with tasks that 1227 * freeze and unfreeze a block group, this task and another task 1228 * allocating a new block group - the unfreeze task ends up removing 1229 * the block group's extent map before the task calling this function 1230 * deletes the block group item from the extent tree, allowing for 1231 * another task to attempt to create another block group with the same 1232 * item key (and failing with -EEXIST and a transaction abort). 1233 */ 1234 ret = remove_block_group_free_space(trans, block_group); 1235 if (ret) 1236 goto out; 1237 1238 ret = remove_block_group_item(trans, path, block_group); 1239 if (ret < 0) 1240 goto out; 1241 1242 spin_lock(&block_group->lock); 1243 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1244 1245 /* 1246 * At this point trimming or scrub can't start on this block group, 1247 * because we removed the block group from the rbtree 1248 * fs_info->block_group_cache_tree so no one can't find it anymore and 1249 * even if someone already got this block group before we removed it 1250 * from the rbtree, they have already incremented block_group->frozen - 1251 * if they didn't, for the trimming case they won't find any free space 1252 * entries because we already removed them all when we called 1253 * btrfs_remove_free_space_cache(). 1254 * 1255 * And we must not remove the chunk map from the fs_info->mapping_tree 1256 * to prevent the same logical address range and physical device space 1257 * ranges from being reused for a new block group. This is needed to 1258 * avoid races with trimming and scrub. 1259 * 1260 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1261 * completely transactionless, so while it is trimming a range the 1262 * currently running transaction might finish and a new one start, 1263 * allowing for new block groups to be created that can reuse the same 1264 * physical device locations unless we take this special care. 1265 * 1266 * There may also be an implicit trim operation if the file system 1267 * is mounted with -odiscard. The same protections must remain 1268 * in place until the extents have been discarded completely when 1269 * the transaction commit has completed. 1270 */ 1271 remove_map = (atomic_read(&block_group->frozen) == 0); 1272 spin_unlock(&block_group->lock); 1273 1274 if (remove_map) 1275 btrfs_remove_chunk_map(fs_info, map); 1276 1277 out: 1278 /* Once for the lookup reference */ 1279 btrfs_put_block_group(block_group); 1280 if (remove_rsv) 1281 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 1282 btrfs_free_path(path); 1283 return ret; 1284 } 1285 1286 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1287 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1288 { 1289 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1290 struct btrfs_chunk_map *map; 1291 unsigned int num_items; 1292 1293 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 1294 ASSERT(map != NULL); 1295 ASSERT(map->start == chunk_offset); 1296 1297 /* 1298 * We need to reserve 3 + N units from the metadata space info in order 1299 * to remove a block group (done at btrfs_remove_chunk() and at 1300 * btrfs_remove_block_group()), which are used for: 1301 * 1302 * 1 unit for adding the free space inode's orphan (located in the tree 1303 * of tree roots). 1304 * 1 unit for deleting the block group item (located in the extent 1305 * tree). 1306 * 1 unit for deleting the free space item (located in tree of tree 1307 * roots). 1308 * N units for deleting N device extent items corresponding to each 1309 * stripe (located in the device tree). 1310 * 1311 * In order to remove a block group we also need to reserve units in the 1312 * system space info in order to update the chunk tree (update one or 1313 * more device items and remove one chunk item), but this is done at 1314 * btrfs_remove_chunk() through a call to check_system_chunk(). 1315 */ 1316 num_items = 3 + map->num_stripes; 1317 btrfs_free_chunk_map(map); 1318 1319 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1320 } 1321 1322 /* 1323 * Mark block group @cache read-only, so later write won't happen to block 1324 * group @cache. 1325 * 1326 * If @force is not set, this function will only mark the block group readonly 1327 * if we have enough free space (1M) in other metadata/system block groups. 1328 * If @force is not set, this function will mark the block group readonly 1329 * without checking free space. 1330 * 1331 * NOTE: This function doesn't care if other block groups can contain all the 1332 * data in this block group. That check should be done by relocation routine, 1333 * not this function. 1334 */ 1335 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1336 { 1337 struct btrfs_space_info *sinfo = cache->space_info; 1338 u64 num_bytes; 1339 int ret = -ENOSPC; 1340 1341 spin_lock(&sinfo->lock); 1342 spin_lock(&cache->lock); 1343 1344 if (cache->swap_extents) { 1345 ret = -ETXTBSY; 1346 goto out; 1347 } 1348 1349 if (cache->ro) { 1350 cache->ro++; 1351 ret = 0; 1352 goto out; 1353 } 1354 1355 num_bytes = cache->length - cache->reserved - cache->pinned - 1356 cache->bytes_super - cache->zone_unusable - cache->used; 1357 1358 /* 1359 * Data never overcommits, even in mixed mode, so do just the straight 1360 * check of left over space in how much we have allocated. 1361 */ 1362 if (force) { 1363 ret = 0; 1364 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1365 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1366 1367 /* 1368 * Here we make sure if we mark this bg RO, we still have enough 1369 * free space as buffer. 1370 */ 1371 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1372 ret = 0; 1373 } else { 1374 /* 1375 * We overcommit metadata, so we need to do the 1376 * btrfs_can_overcommit check here, and we need to pass in 1377 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1378 * leeway to allow us to mark this block group as read only. 1379 */ 1380 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1381 BTRFS_RESERVE_NO_FLUSH)) 1382 ret = 0; 1383 } 1384 1385 if (!ret) { 1386 sinfo->bytes_readonly += num_bytes; 1387 if (btrfs_is_zoned(cache->fs_info)) { 1388 /* Migrate zone_unusable bytes to readonly */ 1389 sinfo->bytes_readonly += cache->zone_unusable; 1390 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1391 cache->zone_unusable = 0; 1392 } 1393 cache->ro++; 1394 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1395 } 1396 out: 1397 spin_unlock(&cache->lock); 1398 spin_unlock(&sinfo->lock); 1399 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1400 btrfs_info(cache->fs_info, 1401 "unable to make block group %llu ro", cache->start); 1402 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1403 } 1404 return ret; 1405 } 1406 1407 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1408 struct btrfs_block_group *bg) 1409 { 1410 struct btrfs_fs_info *fs_info = bg->fs_info; 1411 struct btrfs_transaction *prev_trans = NULL; 1412 const u64 start = bg->start; 1413 const u64 end = start + bg->length - 1; 1414 int ret; 1415 1416 spin_lock(&fs_info->trans_lock); 1417 if (trans->transaction->list.prev != &fs_info->trans_list) { 1418 prev_trans = list_last_entry(&trans->transaction->list, 1419 struct btrfs_transaction, list); 1420 refcount_inc(&prev_trans->use_count); 1421 } 1422 spin_unlock(&fs_info->trans_lock); 1423 1424 /* 1425 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1426 * btrfs_finish_extent_commit(). If we are at transaction N, another 1427 * task might be running finish_extent_commit() for the previous 1428 * transaction N - 1, and have seen a range belonging to the block 1429 * group in pinned_extents before we were able to clear the whole block 1430 * group range from pinned_extents. This means that task can lookup for 1431 * the block group after we unpinned it from pinned_extents and removed 1432 * it, leading to a BUG_ON() at unpin_extent_range(). 1433 */ 1434 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1435 if (prev_trans) { 1436 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1437 EXTENT_DIRTY); 1438 if (ret) 1439 goto out; 1440 } 1441 1442 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1443 EXTENT_DIRTY); 1444 out: 1445 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1446 if (prev_trans) 1447 btrfs_put_transaction(prev_trans); 1448 1449 return ret == 0; 1450 } 1451 1452 /* 1453 * Process the unused_bgs list and remove any that don't have any allocated 1454 * space inside of them. 1455 */ 1456 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1457 { 1458 LIST_HEAD(retry_list); 1459 struct btrfs_block_group *block_group; 1460 struct btrfs_space_info *space_info; 1461 struct btrfs_trans_handle *trans; 1462 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1463 int ret = 0; 1464 1465 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1466 return; 1467 1468 if (btrfs_fs_closing(fs_info)) 1469 return; 1470 1471 /* 1472 * Long running balances can keep us blocked here for eternity, so 1473 * simply skip deletion if we're unable to get the mutex. 1474 */ 1475 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1476 return; 1477 1478 spin_lock(&fs_info->unused_bgs_lock); 1479 while (!list_empty(&fs_info->unused_bgs)) { 1480 u64 used; 1481 int trimming; 1482 1483 block_group = list_first_entry(&fs_info->unused_bgs, 1484 struct btrfs_block_group, 1485 bg_list); 1486 list_del_init(&block_group->bg_list); 1487 1488 space_info = block_group->space_info; 1489 1490 if (ret || btrfs_mixed_space_info(space_info)) { 1491 btrfs_put_block_group(block_group); 1492 continue; 1493 } 1494 spin_unlock(&fs_info->unused_bgs_lock); 1495 1496 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1497 1498 /* Don't want to race with allocators so take the groups_sem */ 1499 down_write(&space_info->groups_sem); 1500 1501 /* 1502 * Async discard moves the final block group discard to be prior 1503 * to the unused_bgs code path. Therefore, if it's not fully 1504 * trimmed, punt it back to the async discard lists. 1505 */ 1506 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1507 !btrfs_is_free_space_trimmed(block_group)) { 1508 trace_btrfs_skip_unused_block_group(block_group); 1509 up_write(&space_info->groups_sem); 1510 /* Requeue if we failed because of async discard */ 1511 btrfs_discard_queue_work(&fs_info->discard_ctl, 1512 block_group); 1513 goto next; 1514 } 1515 1516 spin_lock(&space_info->lock); 1517 spin_lock(&block_group->lock); 1518 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1519 list_is_singular(&block_group->list)) { 1520 /* 1521 * We want to bail if we made new allocations or have 1522 * outstanding allocations in this block group. We do 1523 * the ro check in case balance is currently acting on 1524 * this block group. 1525 */ 1526 trace_btrfs_skip_unused_block_group(block_group); 1527 spin_unlock(&block_group->lock); 1528 spin_unlock(&space_info->lock); 1529 up_write(&space_info->groups_sem); 1530 goto next; 1531 } 1532 1533 /* 1534 * The block group may be unused but there may be space reserved 1535 * accounting with the existence of that block group, that is, 1536 * space_info->bytes_may_use was incremented by a task but no 1537 * space was yet allocated from the block group by the task. 1538 * That space may or may not be allocated, as we are generally 1539 * pessimistic about space reservation for metadata as well as 1540 * for data when using compression (as we reserve space based on 1541 * the worst case, when data can't be compressed, and before 1542 * actually attempting compression, before starting writeback). 1543 * 1544 * So check if the total space of the space_info minus the size 1545 * of this block group is less than the used space of the 1546 * space_info - if that's the case, then it means we have tasks 1547 * that might be relying on the block group in order to allocate 1548 * extents, and add back the block group to the unused list when 1549 * we finish, so that we retry later in case no tasks ended up 1550 * needing to allocate extents from the block group. 1551 */ 1552 used = btrfs_space_info_used(space_info, true); 1553 if (space_info->total_bytes - block_group->length < used) { 1554 /* 1555 * Add a reference for the list, compensate for the ref 1556 * drop under the "next" label for the 1557 * fs_info->unused_bgs list. 1558 */ 1559 btrfs_get_block_group(block_group); 1560 list_add_tail(&block_group->bg_list, &retry_list); 1561 1562 trace_btrfs_skip_unused_block_group(block_group); 1563 spin_unlock(&block_group->lock); 1564 spin_unlock(&space_info->lock); 1565 up_write(&space_info->groups_sem); 1566 goto next; 1567 } 1568 1569 spin_unlock(&block_group->lock); 1570 spin_unlock(&space_info->lock); 1571 1572 /* We don't want to force the issue, only flip if it's ok. */ 1573 ret = inc_block_group_ro(block_group, 0); 1574 up_write(&space_info->groups_sem); 1575 if (ret < 0) { 1576 ret = 0; 1577 goto next; 1578 } 1579 1580 ret = btrfs_zone_finish(block_group); 1581 if (ret < 0) { 1582 btrfs_dec_block_group_ro(block_group); 1583 if (ret == -EAGAIN) 1584 ret = 0; 1585 goto next; 1586 } 1587 1588 /* 1589 * Want to do this before we do anything else so we can recover 1590 * properly if we fail to join the transaction. 1591 */ 1592 trans = btrfs_start_trans_remove_block_group(fs_info, 1593 block_group->start); 1594 if (IS_ERR(trans)) { 1595 btrfs_dec_block_group_ro(block_group); 1596 ret = PTR_ERR(trans); 1597 goto next; 1598 } 1599 1600 /* 1601 * We could have pending pinned extents for this block group, 1602 * just delete them, we don't care about them anymore. 1603 */ 1604 if (!clean_pinned_extents(trans, block_group)) { 1605 btrfs_dec_block_group_ro(block_group); 1606 goto end_trans; 1607 } 1608 1609 /* 1610 * At this point, the block_group is read only and should fail 1611 * new allocations. However, btrfs_finish_extent_commit() can 1612 * cause this block_group to be placed back on the discard 1613 * lists because now the block_group isn't fully discarded. 1614 * Bail here and try again later after discarding everything. 1615 */ 1616 spin_lock(&fs_info->discard_ctl.lock); 1617 if (!list_empty(&block_group->discard_list)) { 1618 spin_unlock(&fs_info->discard_ctl.lock); 1619 btrfs_dec_block_group_ro(block_group); 1620 btrfs_discard_queue_work(&fs_info->discard_ctl, 1621 block_group); 1622 goto end_trans; 1623 } 1624 spin_unlock(&fs_info->discard_ctl.lock); 1625 1626 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1627 spin_lock(&space_info->lock); 1628 spin_lock(&block_group->lock); 1629 1630 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1631 -block_group->pinned); 1632 space_info->bytes_readonly += block_group->pinned; 1633 block_group->pinned = 0; 1634 1635 spin_unlock(&block_group->lock); 1636 spin_unlock(&space_info->lock); 1637 1638 /* 1639 * The normal path here is an unused block group is passed here, 1640 * then trimming is handled in the transaction commit path. 1641 * Async discard interposes before this to do the trimming 1642 * before coming down the unused block group path as trimming 1643 * will no longer be done later in the transaction commit path. 1644 */ 1645 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1646 goto flip_async; 1647 1648 /* 1649 * DISCARD can flip during remount. On zoned filesystems, we 1650 * need to reset sequential-required zones. 1651 */ 1652 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1653 btrfs_is_zoned(fs_info); 1654 1655 /* Implicit trim during transaction commit. */ 1656 if (trimming) 1657 btrfs_freeze_block_group(block_group); 1658 1659 /* 1660 * Btrfs_remove_chunk will abort the transaction if things go 1661 * horribly wrong. 1662 */ 1663 ret = btrfs_remove_chunk(trans, block_group->start); 1664 1665 if (ret) { 1666 if (trimming) 1667 btrfs_unfreeze_block_group(block_group); 1668 goto end_trans; 1669 } 1670 1671 /* 1672 * If we're not mounted with -odiscard, we can just forget 1673 * about this block group. Otherwise we'll need to wait 1674 * until transaction commit to do the actual discard. 1675 */ 1676 if (trimming) { 1677 spin_lock(&fs_info->unused_bgs_lock); 1678 /* 1679 * A concurrent scrub might have added us to the list 1680 * fs_info->unused_bgs, so use a list_move operation 1681 * to add the block group to the deleted_bgs list. 1682 */ 1683 list_move(&block_group->bg_list, 1684 &trans->transaction->deleted_bgs); 1685 spin_unlock(&fs_info->unused_bgs_lock); 1686 btrfs_get_block_group(block_group); 1687 } 1688 end_trans: 1689 btrfs_end_transaction(trans); 1690 next: 1691 btrfs_put_block_group(block_group); 1692 spin_lock(&fs_info->unused_bgs_lock); 1693 } 1694 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1695 spin_unlock(&fs_info->unused_bgs_lock); 1696 mutex_unlock(&fs_info->reclaim_bgs_lock); 1697 return; 1698 1699 flip_async: 1700 btrfs_end_transaction(trans); 1701 spin_lock(&fs_info->unused_bgs_lock); 1702 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1703 spin_unlock(&fs_info->unused_bgs_lock); 1704 mutex_unlock(&fs_info->reclaim_bgs_lock); 1705 btrfs_put_block_group(block_group); 1706 btrfs_discard_punt_unused_bgs_list(fs_info); 1707 } 1708 1709 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1710 { 1711 struct btrfs_fs_info *fs_info = bg->fs_info; 1712 1713 spin_lock(&fs_info->unused_bgs_lock); 1714 if (list_empty(&bg->bg_list)) { 1715 btrfs_get_block_group(bg); 1716 trace_btrfs_add_unused_block_group(bg); 1717 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1718 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1719 /* Pull out the block group from the reclaim_bgs list. */ 1720 trace_btrfs_add_unused_block_group(bg); 1721 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1722 } 1723 spin_unlock(&fs_info->unused_bgs_lock); 1724 } 1725 1726 /* 1727 * We want block groups with a low number of used bytes to be in the beginning 1728 * of the list, so they will get reclaimed first. 1729 */ 1730 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1731 const struct list_head *b) 1732 { 1733 const struct btrfs_block_group *bg1, *bg2; 1734 1735 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1736 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1737 1738 return bg1->used > bg2->used; 1739 } 1740 1741 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1742 { 1743 if (btrfs_is_zoned(fs_info)) 1744 return btrfs_zoned_should_reclaim(fs_info); 1745 return true; 1746 } 1747 1748 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1749 { 1750 const struct btrfs_space_info *space_info = bg->space_info; 1751 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 1752 const u64 new_val = bg->used; 1753 const u64 old_val = new_val + bytes_freed; 1754 u64 thresh; 1755 1756 if (reclaim_thresh == 0) 1757 return false; 1758 1759 thresh = mult_perc(bg->length, reclaim_thresh); 1760 1761 /* 1762 * If we were below the threshold before don't reclaim, we are likely a 1763 * brand new block group and we don't want to relocate new block groups. 1764 */ 1765 if (old_val < thresh) 1766 return false; 1767 if (new_val >= thresh) 1768 return false; 1769 return true; 1770 } 1771 1772 void btrfs_reclaim_bgs_work(struct work_struct *work) 1773 { 1774 struct btrfs_fs_info *fs_info = 1775 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1776 struct btrfs_block_group *bg; 1777 struct btrfs_space_info *space_info; 1778 1779 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1780 return; 1781 1782 if (btrfs_fs_closing(fs_info)) 1783 return; 1784 1785 if (!btrfs_should_reclaim(fs_info)) 1786 return; 1787 1788 sb_start_write(fs_info->sb); 1789 1790 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1791 sb_end_write(fs_info->sb); 1792 return; 1793 } 1794 1795 /* 1796 * Long running balances can keep us blocked here for eternity, so 1797 * simply skip reclaim if we're unable to get the mutex. 1798 */ 1799 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1800 btrfs_exclop_finish(fs_info); 1801 sb_end_write(fs_info->sb); 1802 return; 1803 } 1804 1805 spin_lock(&fs_info->unused_bgs_lock); 1806 /* 1807 * Sort happens under lock because we can't simply splice it and sort. 1808 * The block groups might still be in use and reachable via bg_list, 1809 * and their presence in the reclaim_bgs list must be preserved. 1810 */ 1811 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1812 while (!list_empty(&fs_info->reclaim_bgs)) { 1813 u64 zone_unusable; 1814 int ret = 0; 1815 1816 bg = list_first_entry(&fs_info->reclaim_bgs, 1817 struct btrfs_block_group, 1818 bg_list); 1819 list_del_init(&bg->bg_list); 1820 1821 space_info = bg->space_info; 1822 spin_unlock(&fs_info->unused_bgs_lock); 1823 1824 /* Don't race with allocators so take the groups_sem */ 1825 down_write(&space_info->groups_sem); 1826 1827 spin_lock(&bg->lock); 1828 if (bg->reserved || bg->pinned || bg->ro) { 1829 /* 1830 * We want to bail if we made new allocations or have 1831 * outstanding allocations in this block group. We do 1832 * the ro check in case balance is currently acting on 1833 * this block group. 1834 */ 1835 spin_unlock(&bg->lock); 1836 up_write(&space_info->groups_sem); 1837 goto next; 1838 } 1839 if (bg->used == 0) { 1840 /* 1841 * It is possible that we trigger relocation on a block 1842 * group as its extents are deleted and it first goes 1843 * below the threshold, then shortly after goes empty. 1844 * 1845 * In this case, relocating it does delete it, but has 1846 * some overhead in relocation specific metadata, looking 1847 * for the non-existent extents and running some extra 1848 * transactions, which we can avoid by using one of the 1849 * other mechanisms for dealing with empty block groups. 1850 */ 1851 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1852 btrfs_mark_bg_unused(bg); 1853 spin_unlock(&bg->lock); 1854 up_write(&space_info->groups_sem); 1855 goto next; 1856 1857 } 1858 /* 1859 * The block group might no longer meet the reclaim condition by 1860 * the time we get around to reclaiming it, so to avoid 1861 * reclaiming overly full block_groups, skip reclaiming them. 1862 * 1863 * Since the decision making process also depends on the amount 1864 * being freed, pass in a fake giant value to skip that extra 1865 * check, which is more meaningful when adding to the list in 1866 * the first place. 1867 */ 1868 if (!should_reclaim_block_group(bg, bg->length)) { 1869 spin_unlock(&bg->lock); 1870 up_write(&space_info->groups_sem); 1871 goto next; 1872 } 1873 spin_unlock(&bg->lock); 1874 1875 /* 1876 * Get out fast, in case we're read-only or unmounting the 1877 * filesystem. It is OK to drop block groups from the list even 1878 * for the read-only case. As we did sb_start_write(), 1879 * "mount -o remount,ro" won't happen and read-only filesystem 1880 * means it is forced read-only due to a fatal error. So, it 1881 * never gets back to read-write to let us reclaim again. 1882 */ 1883 if (btrfs_need_cleaner_sleep(fs_info)) { 1884 up_write(&space_info->groups_sem); 1885 goto next; 1886 } 1887 1888 /* 1889 * Cache the zone_unusable value before turning the block group 1890 * to read only. As soon as the blog group is read only it's 1891 * zone_unusable value gets moved to the block group's read-only 1892 * bytes and isn't available for calculations anymore. 1893 */ 1894 zone_unusable = bg->zone_unusable; 1895 ret = inc_block_group_ro(bg, 0); 1896 up_write(&space_info->groups_sem); 1897 if (ret < 0) 1898 goto next; 1899 1900 btrfs_info(fs_info, 1901 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1902 bg->start, 1903 div64_u64(bg->used * 100, bg->length), 1904 div64_u64(zone_unusable * 100, bg->length)); 1905 trace_btrfs_reclaim_block_group(bg); 1906 ret = btrfs_relocate_chunk(fs_info, bg->start); 1907 if (ret) { 1908 btrfs_dec_block_group_ro(bg); 1909 btrfs_err(fs_info, "error relocating chunk %llu", 1910 bg->start); 1911 } 1912 1913 next: 1914 if (ret) 1915 btrfs_mark_bg_to_reclaim(bg); 1916 btrfs_put_block_group(bg); 1917 1918 mutex_unlock(&fs_info->reclaim_bgs_lock); 1919 /* 1920 * Reclaiming all the block groups in the list can take really 1921 * long. Prioritize cleaning up unused block groups. 1922 */ 1923 btrfs_delete_unused_bgs(fs_info); 1924 /* 1925 * If we are interrupted by a balance, we can just bail out. The 1926 * cleaner thread restart again if necessary. 1927 */ 1928 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1929 goto end; 1930 spin_lock(&fs_info->unused_bgs_lock); 1931 } 1932 spin_unlock(&fs_info->unused_bgs_lock); 1933 mutex_unlock(&fs_info->reclaim_bgs_lock); 1934 end: 1935 btrfs_exclop_finish(fs_info); 1936 sb_end_write(fs_info->sb); 1937 } 1938 1939 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1940 { 1941 spin_lock(&fs_info->unused_bgs_lock); 1942 if (!list_empty(&fs_info->reclaim_bgs)) 1943 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1944 spin_unlock(&fs_info->unused_bgs_lock); 1945 } 1946 1947 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1948 { 1949 struct btrfs_fs_info *fs_info = bg->fs_info; 1950 1951 spin_lock(&fs_info->unused_bgs_lock); 1952 if (list_empty(&bg->bg_list)) { 1953 btrfs_get_block_group(bg); 1954 trace_btrfs_add_reclaim_block_group(bg); 1955 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1956 } 1957 spin_unlock(&fs_info->unused_bgs_lock); 1958 } 1959 1960 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1961 struct btrfs_path *path) 1962 { 1963 struct btrfs_chunk_map *map; 1964 struct btrfs_block_group_item bg; 1965 struct extent_buffer *leaf; 1966 int slot; 1967 u64 flags; 1968 int ret = 0; 1969 1970 slot = path->slots[0]; 1971 leaf = path->nodes[0]; 1972 1973 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset); 1974 if (!map) { 1975 btrfs_err(fs_info, 1976 "logical %llu len %llu found bg but no related chunk", 1977 key->objectid, key->offset); 1978 return -ENOENT; 1979 } 1980 1981 if (map->start != key->objectid || map->chunk_len != key->offset) { 1982 btrfs_err(fs_info, 1983 "block group %llu len %llu mismatch with chunk %llu len %llu", 1984 key->objectid, key->offset, map->start, map->chunk_len); 1985 ret = -EUCLEAN; 1986 goto out_free_map; 1987 } 1988 1989 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1990 sizeof(bg)); 1991 flags = btrfs_stack_block_group_flags(&bg) & 1992 BTRFS_BLOCK_GROUP_TYPE_MASK; 1993 1994 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1995 btrfs_err(fs_info, 1996 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1997 key->objectid, key->offset, flags, 1998 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type)); 1999 ret = -EUCLEAN; 2000 } 2001 2002 out_free_map: 2003 btrfs_free_chunk_map(map); 2004 return ret; 2005 } 2006 2007 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2008 struct btrfs_path *path, 2009 struct btrfs_key *key) 2010 { 2011 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2012 int ret; 2013 struct btrfs_key found_key; 2014 2015 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2016 if (found_key.objectid >= key->objectid && 2017 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2018 return read_bg_from_eb(fs_info, &found_key, path); 2019 } 2020 } 2021 return ret; 2022 } 2023 2024 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2025 { 2026 u64 extra_flags = chunk_to_extended(flags) & 2027 BTRFS_EXTENDED_PROFILE_MASK; 2028 2029 write_seqlock(&fs_info->profiles_lock); 2030 if (flags & BTRFS_BLOCK_GROUP_DATA) 2031 fs_info->avail_data_alloc_bits |= extra_flags; 2032 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2033 fs_info->avail_metadata_alloc_bits |= extra_flags; 2034 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2035 fs_info->avail_system_alloc_bits |= extra_flags; 2036 write_sequnlock(&fs_info->profiles_lock); 2037 } 2038 2039 /* 2040 * Map a physical disk address to a list of logical addresses. 2041 * 2042 * @fs_info: the filesystem 2043 * @chunk_start: logical address of block group 2044 * @physical: physical address to map to logical addresses 2045 * @logical: return array of logical addresses which map to @physical 2046 * @naddrs: length of @logical 2047 * @stripe_len: size of IO stripe for the given block group 2048 * 2049 * Maps a particular @physical disk address to a list of @logical addresses. 2050 * Used primarily to exclude those portions of a block group that contain super 2051 * block copies. 2052 */ 2053 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2054 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2055 { 2056 struct btrfs_chunk_map *map; 2057 u64 *buf; 2058 u64 bytenr; 2059 u64 data_stripe_length; 2060 u64 io_stripe_size; 2061 int i, nr = 0; 2062 int ret = 0; 2063 2064 map = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2065 if (IS_ERR(map)) 2066 return -EIO; 2067 2068 data_stripe_length = map->stripe_size; 2069 io_stripe_size = BTRFS_STRIPE_LEN; 2070 chunk_start = map->start; 2071 2072 /* For RAID5/6 adjust to a full IO stripe length */ 2073 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2074 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2075 2076 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2077 if (!buf) { 2078 ret = -ENOMEM; 2079 goto out; 2080 } 2081 2082 for (i = 0; i < map->num_stripes; i++) { 2083 bool already_inserted = false; 2084 u32 stripe_nr; 2085 u32 offset; 2086 int j; 2087 2088 if (!in_range(physical, map->stripes[i].physical, 2089 data_stripe_length)) 2090 continue; 2091 2092 stripe_nr = (physical - map->stripes[i].physical) >> 2093 BTRFS_STRIPE_LEN_SHIFT; 2094 offset = (physical - map->stripes[i].physical) & 2095 BTRFS_STRIPE_LEN_MASK; 2096 2097 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2098 BTRFS_BLOCK_GROUP_RAID10)) 2099 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2100 map->sub_stripes); 2101 /* 2102 * The remaining case would be for RAID56, multiply by 2103 * nr_data_stripes(). Alternatively, just use rmap_len below 2104 * instead of map->stripe_len 2105 */ 2106 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2107 2108 /* Ensure we don't add duplicate addresses */ 2109 for (j = 0; j < nr; j++) { 2110 if (buf[j] == bytenr) { 2111 already_inserted = true; 2112 break; 2113 } 2114 } 2115 2116 if (!already_inserted) 2117 buf[nr++] = bytenr; 2118 } 2119 2120 *logical = buf; 2121 *naddrs = nr; 2122 *stripe_len = io_stripe_size; 2123 out: 2124 btrfs_free_chunk_map(map); 2125 return ret; 2126 } 2127 2128 static int exclude_super_stripes(struct btrfs_block_group *cache) 2129 { 2130 struct btrfs_fs_info *fs_info = cache->fs_info; 2131 const bool zoned = btrfs_is_zoned(fs_info); 2132 u64 bytenr; 2133 u64 *logical; 2134 int stripe_len; 2135 int i, nr, ret; 2136 2137 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2138 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2139 cache->bytes_super += stripe_len; 2140 ret = set_extent_bit(&fs_info->excluded_extents, cache->start, 2141 cache->start + stripe_len - 1, 2142 EXTENT_UPTODATE, NULL); 2143 if (ret) 2144 return ret; 2145 } 2146 2147 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2148 bytenr = btrfs_sb_offset(i); 2149 ret = btrfs_rmap_block(fs_info, cache->start, 2150 bytenr, &logical, &nr, &stripe_len); 2151 if (ret) 2152 return ret; 2153 2154 /* Shouldn't have super stripes in sequential zones */ 2155 if (zoned && nr) { 2156 kfree(logical); 2157 btrfs_err(fs_info, 2158 "zoned: block group %llu must not contain super block", 2159 cache->start); 2160 return -EUCLEAN; 2161 } 2162 2163 while (nr--) { 2164 u64 len = min_t(u64, stripe_len, 2165 cache->start + cache->length - logical[nr]); 2166 2167 cache->bytes_super += len; 2168 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr], 2169 logical[nr] + len - 1, 2170 EXTENT_UPTODATE, NULL); 2171 if (ret) { 2172 kfree(logical); 2173 return ret; 2174 } 2175 } 2176 2177 kfree(logical); 2178 } 2179 return 0; 2180 } 2181 2182 static struct btrfs_block_group *btrfs_create_block_group_cache( 2183 struct btrfs_fs_info *fs_info, u64 start) 2184 { 2185 struct btrfs_block_group *cache; 2186 2187 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2188 if (!cache) 2189 return NULL; 2190 2191 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2192 GFP_NOFS); 2193 if (!cache->free_space_ctl) { 2194 kfree(cache); 2195 return NULL; 2196 } 2197 2198 cache->start = start; 2199 2200 cache->fs_info = fs_info; 2201 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2202 2203 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2204 2205 refcount_set(&cache->refs, 1); 2206 spin_lock_init(&cache->lock); 2207 init_rwsem(&cache->data_rwsem); 2208 INIT_LIST_HEAD(&cache->list); 2209 INIT_LIST_HEAD(&cache->cluster_list); 2210 INIT_LIST_HEAD(&cache->bg_list); 2211 INIT_LIST_HEAD(&cache->ro_list); 2212 INIT_LIST_HEAD(&cache->discard_list); 2213 INIT_LIST_HEAD(&cache->dirty_list); 2214 INIT_LIST_HEAD(&cache->io_list); 2215 INIT_LIST_HEAD(&cache->active_bg_list); 2216 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2217 atomic_set(&cache->frozen, 0); 2218 mutex_init(&cache->free_space_lock); 2219 2220 return cache; 2221 } 2222 2223 /* 2224 * Iterate all chunks and verify that each of them has the corresponding block 2225 * group 2226 */ 2227 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2228 { 2229 u64 start = 0; 2230 int ret = 0; 2231 2232 while (1) { 2233 struct btrfs_chunk_map *map; 2234 struct btrfs_block_group *bg; 2235 2236 /* 2237 * btrfs_find_chunk_map() will return the first chunk map 2238 * intersecting the range, so setting @length to 1 is enough to 2239 * get the first chunk. 2240 */ 2241 map = btrfs_find_chunk_map(fs_info, start, 1); 2242 if (!map) 2243 break; 2244 2245 bg = btrfs_lookup_block_group(fs_info, map->start); 2246 if (!bg) { 2247 btrfs_err(fs_info, 2248 "chunk start=%llu len=%llu doesn't have corresponding block group", 2249 map->start, map->chunk_len); 2250 ret = -EUCLEAN; 2251 btrfs_free_chunk_map(map); 2252 break; 2253 } 2254 if (bg->start != map->start || bg->length != map->chunk_len || 2255 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2256 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2257 btrfs_err(fs_info, 2258 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2259 map->start, map->chunk_len, 2260 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2261 bg->start, bg->length, 2262 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2263 ret = -EUCLEAN; 2264 btrfs_free_chunk_map(map); 2265 btrfs_put_block_group(bg); 2266 break; 2267 } 2268 start = map->start + map->chunk_len; 2269 btrfs_free_chunk_map(map); 2270 btrfs_put_block_group(bg); 2271 } 2272 return ret; 2273 } 2274 2275 static int read_one_block_group(struct btrfs_fs_info *info, 2276 struct btrfs_block_group_item *bgi, 2277 const struct btrfs_key *key, 2278 int need_clear) 2279 { 2280 struct btrfs_block_group *cache; 2281 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2282 int ret; 2283 2284 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2285 2286 cache = btrfs_create_block_group_cache(info, key->objectid); 2287 if (!cache) 2288 return -ENOMEM; 2289 2290 cache->length = key->offset; 2291 cache->used = btrfs_stack_block_group_used(bgi); 2292 cache->commit_used = cache->used; 2293 cache->flags = btrfs_stack_block_group_flags(bgi); 2294 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2295 2296 set_free_space_tree_thresholds(cache); 2297 2298 if (need_clear) { 2299 /* 2300 * When we mount with old space cache, we need to 2301 * set BTRFS_DC_CLEAR and set dirty flag. 2302 * 2303 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2304 * truncate the old free space cache inode and 2305 * setup a new one. 2306 * b) Setting 'dirty flag' makes sure that we flush 2307 * the new space cache info onto disk. 2308 */ 2309 if (btrfs_test_opt(info, SPACE_CACHE)) 2310 cache->disk_cache_state = BTRFS_DC_CLEAR; 2311 } 2312 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2313 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2314 btrfs_err(info, 2315 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2316 cache->start); 2317 ret = -EINVAL; 2318 goto error; 2319 } 2320 2321 ret = btrfs_load_block_group_zone_info(cache, false); 2322 if (ret) { 2323 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2324 cache->start); 2325 goto error; 2326 } 2327 2328 /* 2329 * We need to exclude the super stripes now so that the space info has 2330 * super bytes accounted for, otherwise we'll think we have more space 2331 * than we actually do. 2332 */ 2333 ret = exclude_super_stripes(cache); 2334 if (ret) { 2335 /* We may have excluded something, so call this just in case. */ 2336 btrfs_free_excluded_extents(cache); 2337 goto error; 2338 } 2339 2340 /* 2341 * For zoned filesystem, space after the allocation offset is the only 2342 * free space for a block group. So, we don't need any caching work. 2343 * btrfs_calc_zone_unusable() will set the amount of free space and 2344 * zone_unusable space. 2345 * 2346 * For regular filesystem, check for two cases, either we are full, and 2347 * therefore don't need to bother with the caching work since we won't 2348 * find any space, or we are empty, and we can just add all the space 2349 * in and be done with it. This saves us _a_lot_ of time, particularly 2350 * in the full case. 2351 */ 2352 if (btrfs_is_zoned(info)) { 2353 btrfs_calc_zone_unusable(cache); 2354 /* Should not have any excluded extents. Just in case, though. */ 2355 btrfs_free_excluded_extents(cache); 2356 } else if (cache->length == cache->used) { 2357 cache->cached = BTRFS_CACHE_FINISHED; 2358 btrfs_free_excluded_extents(cache); 2359 } else if (cache->used == 0) { 2360 cache->cached = BTRFS_CACHE_FINISHED; 2361 ret = btrfs_add_new_free_space(cache, cache->start, 2362 cache->start + cache->length, NULL); 2363 btrfs_free_excluded_extents(cache); 2364 if (ret) 2365 goto error; 2366 } 2367 2368 ret = btrfs_add_block_group_cache(info, cache); 2369 if (ret) { 2370 btrfs_remove_free_space_cache(cache); 2371 goto error; 2372 } 2373 trace_btrfs_add_block_group(info, cache, 0); 2374 btrfs_add_bg_to_space_info(info, cache); 2375 2376 set_avail_alloc_bits(info, cache->flags); 2377 if (btrfs_chunk_writeable(info, cache->start)) { 2378 if (cache->used == 0) { 2379 ASSERT(list_empty(&cache->bg_list)); 2380 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2381 btrfs_discard_queue_work(&info->discard_ctl, cache); 2382 else 2383 btrfs_mark_bg_unused(cache); 2384 } 2385 } else { 2386 inc_block_group_ro(cache, 1); 2387 } 2388 2389 return 0; 2390 error: 2391 btrfs_put_block_group(cache); 2392 return ret; 2393 } 2394 2395 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2396 { 2397 struct rb_node *node; 2398 int ret = 0; 2399 2400 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 2401 struct btrfs_chunk_map *map; 2402 struct btrfs_block_group *bg; 2403 2404 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 2405 bg = btrfs_create_block_group_cache(fs_info, map->start); 2406 if (!bg) { 2407 ret = -ENOMEM; 2408 break; 2409 } 2410 2411 /* Fill dummy cache as FULL */ 2412 bg->length = map->chunk_len; 2413 bg->flags = map->type; 2414 bg->cached = BTRFS_CACHE_FINISHED; 2415 bg->used = map->chunk_len; 2416 bg->flags = map->type; 2417 ret = btrfs_add_block_group_cache(fs_info, bg); 2418 /* 2419 * We may have some valid block group cache added already, in 2420 * that case we skip to the next one. 2421 */ 2422 if (ret == -EEXIST) { 2423 ret = 0; 2424 btrfs_put_block_group(bg); 2425 continue; 2426 } 2427 2428 if (ret) { 2429 btrfs_remove_free_space_cache(bg); 2430 btrfs_put_block_group(bg); 2431 break; 2432 } 2433 2434 btrfs_add_bg_to_space_info(fs_info, bg); 2435 2436 set_avail_alloc_bits(fs_info, bg->flags); 2437 } 2438 if (!ret) 2439 btrfs_init_global_block_rsv(fs_info); 2440 return ret; 2441 } 2442 2443 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2444 { 2445 struct btrfs_root *root = btrfs_block_group_root(info); 2446 struct btrfs_path *path; 2447 int ret; 2448 struct btrfs_block_group *cache; 2449 struct btrfs_space_info *space_info; 2450 struct btrfs_key key; 2451 int need_clear = 0; 2452 u64 cache_gen; 2453 2454 /* 2455 * Either no extent root (with ibadroots rescue option) or we have 2456 * unsupported RO options. The fs can never be mounted read-write, so no 2457 * need to waste time searching block group items. 2458 * 2459 * This also allows new extent tree related changes to be RO compat, 2460 * no need for a full incompat flag. 2461 */ 2462 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2463 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2464 return fill_dummy_bgs(info); 2465 2466 key.objectid = 0; 2467 key.offset = 0; 2468 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2469 path = btrfs_alloc_path(); 2470 if (!path) 2471 return -ENOMEM; 2472 2473 cache_gen = btrfs_super_cache_generation(info->super_copy); 2474 if (btrfs_test_opt(info, SPACE_CACHE) && 2475 btrfs_super_generation(info->super_copy) != cache_gen) 2476 need_clear = 1; 2477 if (btrfs_test_opt(info, CLEAR_CACHE)) 2478 need_clear = 1; 2479 2480 while (1) { 2481 struct btrfs_block_group_item bgi; 2482 struct extent_buffer *leaf; 2483 int slot; 2484 2485 ret = find_first_block_group(info, path, &key); 2486 if (ret > 0) 2487 break; 2488 if (ret != 0) 2489 goto error; 2490 2491 leaf = path->nodes[0]; 2492 slot = path->slots[0]; 2493 2494 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2495 sizeof(bgi)); 2496 2497 btrfs_item_key_to_cpu(leaf, &key, slot); 2498 btrfs_release_path(path); 2499 ret = read_one_block_group(info, &bgi, &key, need_clear); 2500 if (ret < 0) 2501 goto error; 2502 key.objectid += key.offset; 2503 key.offset = 0; 2504 } 2505 btrfs_release_path(path); 2506 2507 list_for_each_entry(space_info, &info->space_info, list) { 2508 int i; 2509 2510 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2511 if (list_empty(&space_info->block_groups[i])) 2512 continue; 2513 cache = list_first_entry(&space_info->block_groups[i], 2514 struct btrfs_block_group, 2515 list); 2516 btrfs_sysfs_add_block_group_type(cache); 2517 } 2518 2519 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2520 (BTRFS_BLOCK_GROUP_RAID10 | 2521 BTRFS_BLOCK_GROUP_RAID1_MASK | 2522 BTRFS_BLOCK_GROUP_RAID56_MASK | 2523 BTRFS_BLOCK_GROUP_DUP))) 2524 continue; 2525 /* 2526 * Avoid allocating from un-mirrored block group if there are 2527 * mirrored block groups. 2528 */ 2529 list_for_each_entry(cache, 2530 &space_info->block_groups[BTRFS_RAID_RAID0], 2531 list) 2532 inc_block_group_ro(cache, 1); 2533 list_for_each_entry(cache, 2534 &space_info->block_groups[BTRFS_RAID_SINGLE], 2535 list) 2536 inc_block_group_ro(cache, 1); 2537 } 2538 2539 btrfs_init_global_block_rsv(info); 2540 ret = check_chunk_block_group_mappings(info); 2541 error: 2542 btrfs_free_path(path); 2543 /* 2544 * We've hit some error while reading the extent tree, and have 2545 * rescue=ibadroots mount option. 2546 * Try to fill the tree using dummy block groups so that the user can 2547 * continue to mount and grab their data. 2548 */ 2549 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2550 ret = fill_dummy_bgs(info); 2551 return ret; 2552 } 2553 2554 /* 2555 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2556 * allocation. 2557 * 2558 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2559 * phases. 2560 */ 2561 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2562 struct btrfs_block_group *block_group) 2563 { 2564 struct btrfs_fs_info *fs_info = trans->fs_info; 2565 struct btrfs_block_group_item bgi; 2566 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2567 struct btrfs_key key; 2568 u64 old_commit_used; 2569 int ret; 2570 2571 spin_lock(&block_group->lock); 2572 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2573 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2574 block_group->global_root_id); 2575 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2576 old_commit_used = block_group->commit_used; 2577 block_group->commit_used = block_group->used; 2578 key.objectid = block_group->start; 2579 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2580 key.offset = block_group->length; 2581 spin_unlock(&block_group->lock); 2582 2583 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2584 if (ret < 0) { 2585 spin_lock(&block_group->lock); 2586 block_group->commit_used = old_commit_used; 2587 spin_unlock(&block_group->lock); 2588 } 2589 2590 return ret; 2591 } 2592 2593 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2594 struct btrfs_device *device, u64 chunk_offset, 2595 u64 start, u64 num_bytes) 2596 { 2597 struct btrfs_fs_info *fs_info = device->fs_info; 2598 struct btrfs_root *root = fs_info->dev_root; 2599 struct btrfs_path *path; 2600 struct btrfs_dev_extent *extent; 2601 struct extent_buffer *leaf; 2602 struct btrfs_key key; 2603 int ret; 2604 2605 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2606 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2607 path = btrfs_alloc_path(); 2608 if (!path) 2609 return -ENOMEM; 2610 2611 key.objectid = device->devid; 2612 key.type = BTRFS_DEV_EXTENT_KEY; 2613 key.offset = start; 2614 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2615 if (ret) 2616 goto out; 2617 2618 leaf = path->nodes[0]; 2619 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2620 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2621 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2622 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2623 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2624 2625 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2626 btrfs_mark_buffer_dirty(trans, leaf); 2627 out: 2628 btrfs_free_path(path); 2629 return ret; 2630 } 2631 2632 /* 2633 * This function belongs to phase 2. 2634 * 2635 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2636 * phases. 2637 */ 2638 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2639 u64 chunk_offset, u64 chunk_size) 2640 { 2641 struct btrfs_fs_info *fs_info = trans->fs_info; 2642 struct btrfs_device *device; 2643 struct btrfs_chunk_map *map; 2644 u64 dev_offset; 2645 int i; 2646 int ret = 0; 2647 2648 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2649 if (IS_ERR(map)) 2650 return PTR_ERR(map); 2651 2652 /* 2653 * Take the device list mutex to prevent races with the final phase of 2654 * a device replace operation that replaces the device object associated 2655 * with the map's stripes, because the device object's id can change 2656 * at any time during that final phase of the device replace operation 2657 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2658 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2659 * resulting in persisting a device extent item with such ID. 2660 */ 2661 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2662 for (i = 0; i < map->num_stripes; i++) { 2663 device = map->stripes[i].dev; 2664 dev_offset = map->stripes[i].physical; 2665 2666 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2667 map->stripe_size); 2668 if (ret) 2669 break; 2670 } 2671 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2672 2673 btrfs_free_chunk_map(map); 2674 return ret; 2675 } 2676 2677 /* 2678 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2679 * chunk allocation. 2680 * 2681 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2682 * phases. 2683 */ 2684 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2685 { 2686 struct btrfs_fs_info *fs_info = trans->fs_info; 2687 struct btrfs_block_group *block_group; 2688 int ret = 0; 2689 2690 while (!list_empty(&trans->new_bgs)) { 2691 int index; 2692 2693 block_group = list_first_entry(&trans->new_bgs, 2694 struct btrfs_block_group, 2695 bg_list); 2696 if (ret) 2697 goto next; 2698 2699 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2700 2701 ret = insert_block_group_item(trans, block_group); 2702 if (ret) 2703 btrfs_abort_transaction(trans, ret); 2704 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2705 &block_group->runtime_flags)) { 2706 mutex_lock(&fs_info->chunk_mutex); 2707 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2708 mutex_unlock(&fs_info->chunk_mutex); 2709 if (ret) 2710 btrfs_abort_transaction(trans, ret); 2711 } 2712 ret = insert_dev_extents(trans, block_group->start, 2713 block_group->length); 2714 if (ret) 2715 btrfs_abort_transaction(trans, ret); 2716 add_block_group_free_space(trans, block_group); 2717 2718 /* 2719 * If we restriped during balance, we may have added a new raid 2720 * type, so now add the sysfs entries when it is safe to do so. 2721 * We don't have to worry about locking here as it's handled in 2722 * btrfs_sysfs_add_block_group_type. 2723 */ 2724 if (block_group->space_info->block_group_kobjs[index] == NULL) 2725 btrfs_sysfs_add_block_group_type(block_group); 2726 2727 /* Already aborted the transaction if it failed. */ 2728 next: 2729 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2730 list_del_init(&block_group->bg_list); 2731 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2732 2733 /* 2734 * If the block group is still unused, add it to the list of 2735 * unused block groups. The block group may have been created in 2736 * order to satisfy a space reservation, in which case the 2737 * extent allocation only happens later. But often we don't 2738 * actually need to allocate space that we previously reserved, 2739 * so the block group may become unused for a long time. For 2740 * example for metadata we generally reserve space for a worst 2741 * possible scenario, but then don't end up allocating all that 2742 * space or none at all (due to no need to COW, extent buffers 2743 * were already COWed in the current transaction and still 2744 * unwritten, tree heights lower than the maximum possible 2745 * height, etc). For data we generally reserve the axact amount 2746 * of space we are going to allocate later, the exception is 2747 * when using compression, as we must reserve space based on the 2748 * uncompressed data size, because the compression is only done 2749 * when writeback triggered and we don't know how much space we 2750 * are actually going to need, so we reserve the uncompressed 2751 * size because the data may be uncompressible in the worst case. 2752 */ 2753 if (ret == 0) { 2754 bool used; 2755 2756 spin_lock(&block_group->lock); 2757 used = btrfs_is_block_group_used(block_group); 2758 spin_unlock(&block_group->lock); 2759 2760 if (!used) 2761 btrfs_mark_bg_unused(block_group); 2762 } 2763 } 2764 btrfs_trans_release_chunk_metadata(trans); 2765 } 2766 2767 /* 2768 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2769 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2770 */ 2771 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2772 { 2773 u64 div = SZ_1G; 2774 u64 index; 2775 2776 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2777 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2778 2779 /* If we have a smaller fs index based on 128MiB. */ 2780 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2781 div = SZ_128M; 2782 2783 offset = div64_u64(offset, div); 2784 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2785 return index; 2786 } 2787 2788 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2789 u64 type, 2790 u64 chunk_offset, u64 size) 2791 { 2792 struct btrfs_fs_info *fs_info = trans->fs_info; 2793 struct btrfs_block_group *cache; 2794 int ret; 2795 2796 btrfs_set_log_full_commit(trans); 2797 2798 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2799 if (!cache) 2800 return ERR_PTR(-ENOMEM); 2801 2802 /* 2803 * Mark it as new before adding it to the rbtree of block groups or any 2804 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2805 * before the new flag is set. 2806 */ 2807 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2808 2809 cache->length = size; 2810 set_free_space_tree_thresholds(cache); 2811 cache->flags = type; 2812 cache->cached = BTRFS_CACHE_FINISHED; 2813 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2814 2815 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2816 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2817 2818 ret = btrfs_load_block_group_zone_info(cache, true); 2819 if (ret) { 2820 btrfs_put_block_group(cache); 2821 return ERR_PTR(ret); 2822 } 2823 2824 ret = exclude_super_stripes(cache); 2825 if (ret) { 2826 /* We may have excluded something, so call this just in case */ 2827 btrfs_free_excluded_extents(cache); 2828 btrfs_put_block_group(cache); 2829 return ERR_PTR(ret); 2830 } 2831 2832 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2833 btrfs_free_excluded_extents(cache); 2834 if (ret) { 2835 btrfs_put_block_group(cache); 2836 return ERR_PTR(ret); 2837 } 2838 2839 /* 2840 * Ensure the corresponding space_info object is created and 2841 * assigned to our block group. We want our bg to be added to the rbtree 2842 * with its ->space_info set. 2843 */ 2844 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2845 ASSERT(cache->space_info); 2846 2847 ret = btrfs_add_block_group_cache(fs_info, cache); 2848 if (ret) { 2849 btrfs_remove_free_space_cache(cache); 2850 btrfs_put_block_group(cache); 2851 return ERR_PTR(ret); 2852 } 2853 2854 /* 2855 * Now that our block group has its ->space_info set and is inserted in 2856 * the rbtree, update the space info's counters. 2857 */ 2858 trace_btrfs_add_block_group(fs_info, cache, 1); 2859 btrfs_add_bg_to_space_info(fs_info, cache); 2860 btrfs_update_global_block_rsv(fs_info); 2861 2862 #ifdef CONFIG_BTRFS_DEBUG 2863 if (btrfs_should_fragment_free_space(cache)) { 2864 cache->space_info->bytes_used += size >> 1; 2865 fragment_free_space(cache); 2866 } 2867 #endif 2868 2869 list_add_tail(&cache->bg_list, &trans->new_bgs); 2870 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info); 2871 2872 set_avail_alloc_bits(fs_info, type); 2873 return cache; 2874 } 2875 2876 /* 2877 * Mark one block group RO, can be called several times for the same block 2878 * group. 2879 * 2880 * @cache: the destination block group 2881 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2882 * ensure we still have some free space after marking this 2883 * block group RO. 2884 */ 2885 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2886 bool do_chunk_alloc) 2887 { 2888 struct btrfs_fs_info *fs_info = cache->fs_info; 2889 struct btrfs_trans_handle *trans; 2890 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2891 u64 alloc_flags; 2892 int ret; 2893 bool dirty_bg_running; 2894 2895 /* 2896 * This can only happen when we are doing read-only scrub on read-only 2897 * mount. 2898 * In that case we should not start a new transaction on read-only fs. 2899 * Thus here we skip all chunk allocations. 2900 */ 2901 if (sb_rdonly(fs_info->sb)) { 2902 mutex_lock(&fs_info->ro_block_group_mutex); 2903 ret = inc_block_group_ro(cache, 0); 2904 mutex_unlock(&fs_info->ro_block_group_mutex); 2905 return ret; 2906 } 2907 2908 do { 2909 trans = btrfs_join_transaction(root); 2910 if (IS_ERR(trans)) 2911 return PTR_ERR(trans); 2912 2913 dirty_bg_running = false; 2914 2915 /* 2916 * We're not allowed to set block groups readonly after the dirty 2917 * block group cache has started writing. If it already started, 2918 * back off and let this transaction commit. 2919 */ 2920 mutex_lock(&fs_info->ro_block_group_mutex); 2921 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2922 u64 transid = trans->transid; 2923 2924 mutex_unlock(&fs_info->ro_block_group_mutex); 2925 btrfs_end_transaction(trans); 2926 2927 ret = btrfs_wait_for_commit(fs_info, transid); 2928 if (ret) 2929 return ret; 2930 dirty_bg_running = true; 2931 } 2932 } while (dirty_bg_running); 2933 2934 if (do_chunk_alloc) { 2935 /* 2936 * If we are changing raid levels, try to allocate a 2937 * corresponding block group with the new raid level. 2938 */ 2939 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2940 if (alloc_flags != cache->flags) { 2941 ret = btrfs_chunk_alloc(trans, alloc_flags, 2942 CHUNK_ALLOC_FORCE); 2943 /* 2944 * ENOSPC is allowed here, we may have enough space 2945 * already allocated at the new raid level to carry on 2946 */ 2947 if (ret == -ENOSPC) 2948 ret = 0; 2949 if (ret < 0) 2950 goto out; 2951 } 2952 } 2953 2954 ret = inc_block_group_ro(cache, 0); 2955 if (!ret) 2956 goto out; 2957 if (ret == -ETXTBSY) 2958 goto unlock_out; 2959 2960 /* 2961 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system 2962 * chunk allocation storm to exhaust the system chunk array. Otherwise 2963 * we still want to try our best to mark the block group read-only. 2964 */ 2965 if (!do_chunk_alloc && ret == -ENOSPC && 2966 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 2967 goto unlock_out; 2968 2969 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2970 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2971 if (ret < 0) 2972 goto out; 2973 /* 2974 * We have allocated a new chunk. We also need to activate that chunk to 2975 * grant metadata tickets for zoned filesystem. 2976 */ 2977 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2978 if (ret < 0) 2979 goto out; 2980 2981 ret = inc_block_group_ro(cache, 0); 2982 if (ret == -ETXTBSY) 2983 goto unlock_out; 2984 out: 2985 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2986 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2987 mutex_lock(&fs_info->chunk_mutex); 2988 check_system_chunk(trans, alloc_flags); 2989 mutex_unlock(&fs_info->chunk_mutex); 2990 } 2991 unlock_out: 2992 mutex_unlock(&fs_info->ro_block_group_mutex); 2993 2994 btrfs_end_transaction(trans); 2995 return ret; 2996 } 2997 2998 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2999 { 3000 struct btrfs_space_info *sinfo = cache->space_info; 3001 u64 num_bytes; 3002 3003 BUG_ON(!cache->ro); 3004 3005 spin_lock(&sinfo->lock); 3006 spin_lock(&cache->lock); 3007 if (!--cache->ro) { 3008 if (btrfs_is_zoned(cache->fs_info)) { 3009 /* Migrate zone_unusable bytes back */ 3010 cache->zone_unusable = 3011 (cache->alloc_offset - cache->used) + 3012 (cache->length - cache->zone_capacity); 3013 sinfo->bytes_zone_unusable += cache->zone_unusable; 3014 sinfo->bytes_readonly -= cache->zone_unusable; 3015 } 3016 num_bytes = cache->length - cache->reserved - 3017 cache->pinned - cache->bytes_super - 3018 cache->zone_unusable - cache->used; 3019 sinfo->bytes_readonly -= num_bytes; 3020 list_del_init(&cache->ro_list); 3021 } 3022 spin_unlock(&cache->lock); 3023 spin_unlock(&sinfo->lock); 3024 } 3025 3026 static int update_block_group_item(struct btrfs_trans_handle *trans, 3027 struct btrfs_path *path, 3028 struct btrfs_block_group *cache) 3029 { 3030 struct btrfs_fs_info *fs_info = trans->fs_info; 3031 int ret; 3032 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3033 unsigned long bi; 3034 struct extent_buffer *leaf; 3035 struct btrfs_block_group_item bgi; 3036 struct btrfs_key key; 3037 u64 old_commit_used; 3038 u64 used; 3039 3040 /* 3041 * Block group items update can be triggered out of commit transaction 3042 * critical section, thus we need a consistent view of used bytes. 3043 * We cannot use cache->used directly outside of the spin lock, as it 3044 * may be changed. 3045 */ 3046 spin_lock(&cache->lock); 3047 old_commit_used = cache->commit_used; 3048 used = cache->used; 3049 /* No change in used bytes, can safely skip it. */ 3050 if (cache->commit_used == used) { 3051 spin_unlock(&cache->lock); 3052 return 0; 3053 } 3054 cache->commit_used = used; 3055 spin_unlock(&cache->lock); 3056 3057 key.objectid = cache->start; 3058 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3059 key.offset = cache->length; 3060 3061 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3062 if (ret) { 3063 if (ret > 0) 3064 ret = -ENOENT; 3065 goto fail; 3066 } 3067 3068 leaf = path->nodes[0]; 3069 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3070 btrfs_set_stack_block_group_used(&bgi, used); 3071 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3072 cache->global_root_id); 3073 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3074 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3075 btrfs_mark_buffer_dirty(trans, leaf); 3076 fail: 3077 btrfs_release_path(path); 3078 /* 3079 * We didn't update the block group item, need to revert commit_used 3080 * unless the block group item didn't exist yet - this is to prevent a 3081 * race with a concurrent insertion of the block group item, with 3082 * insert_block_group_item(), that happened just after we attempted to 3083 * update. In that case we would reset commit_used to 0 just after the 3084 * insertion set it to a value greater than 0 - if the block group later 3085 * becomes with 0 used bytes, we would incorrectly skip its update. 3086 */ 3087 if (ret < 0 && ret != -ENOENT) { 3088 spin_lock(&cache->lock); 3089 cache->commit_used = old_commit_used; 3090 spin_unlock(&cache->lock); 3091 } 3092 return ret; 3093 3094 } 3095 3096 static int cache_save_setup(struct btrfs_block_group *block_group, 3097 struct btrfs_trans_handle *trans, 3098 struct btrfs_path *path) 3099 { 3100 struct btrfs_fs_info *fs_info = block_group->fs_info; 3101 struct inode *inode = NULL; 3102 struct extent_changeset *data_reserved = NULL; 3103 u64 alloc_hint = 0; 3104 int dcs = BTRFS_DC_ERROR; 3105 u64 cache_size = 0; 3106 int retries = 0; 3107 int ret = 0; 3108 3109 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3110 return 0; 3111 3112 /* 3113 * If this block group is smaller than 100 megs don't bother caching the 3114 * block group. 3115 */ 3116 if (block_group->length < (100 * SZ_1M)) { 3117 spin_lock(&block_group->lock); 3118 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3119 spin_unlock(&block_group->lock); 3120 return 0; 3121 } 3122 3123 if (TRANS_ABORTED(trans)) 3124 return 0; 3125 again: 3126 inode = lookup_free_space_inode(block_group, path); 3127 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3128 ret = PTR_ERR(inode); 3129 btrfs_release_path(path); 3130 goto out; 3131 } 3132 3133 if (IS_ERR(inode)) { 3134 BUG_ON(retries); 3135 retries++; 3136 3137 if (block_group->ro) 3138 goto out_free; 3139 3140 ret = create_free_space_inode(trans, block_group, path); 3141 if (ret) 3142 goto out_free; 3143 goto again; 3144 } 3145 3146 /* 3147 * We want to set the generation to 0, that way if anything goes wrong 3148 * from here on out we know not to trust this cache when we load up next 3149 * time. 3150 */ 3151 BTRFS_I(inode)->generation = 0; 3152 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 3153 if (ret) { 3154 /* 3155 * So theoretically we could recover from this, simply set the 3156 * super cache generation to 0 so we know to invalidate the 3157 * cache, but then we'd have to keep track of the block groups 3158 * that fail this way so we know we _have_ to reset this cache 3159 * before the next commit or risk reading stale cache. So to 3160 * limit our exposure to horrible edge cases lets just abort the 3161 * transaction, this only happens in really bad situations 3162 * anyway. 3163 */ 3164 btrfs_abort_transaction(trans, ret); 3165 goto out_put; 3166 } 3167 WARN_ON(ret); 3168 3169 /* We've already setup this transaction, go ahead and exit */ 3170 if (block_group->cache_generation == trans->transid && 3171 i_size_read(inode)) { 3172 dcs = BTRFS_DC_SETUP; 3173 goto out_put; 3174 } 3175 3176 if (i_size_read(inode) > 0) { 3177 ret = btrfs_check_trunc_cache_free_space(fs_info, 3178 &fs_info->global_block_rsv); 3179 if (ret) 3180 goto out_put; 3181 3182 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3183 if (ret) 3184 goto out_put; 3185 } 3186 3187 spin_lock(&block_group->lock); 3188 if (block_group->cached != BTRFS_CACHE_FINISHED || 3189 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3190 /* 3191 * don't bother trying to write stuff out _if_ 3192 * a) we're not cached, 3193 * b) we're with nospace_cache mount option, 3194 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3195 */ 3196 dcs = BTRFS_DC_WRITTEN; 3197 spin_unlock(&block_group->lock); 3198 goto out_put; 3199 } 3200 spin_unlock(&block_group->lock); 3201 3202 /* 3203 * We hit an ENOSPC when setting up the cache in this transaction, just 3204 * skip doing the setup, we've already cleared the cache so we're safe. 3205 */ 3206 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3207 ret = -ENOSPC; 3208 goto out_put; 3209 } 3210 3211 /* 3212 * Try to preallocate enough space based on how big the block group is. 3213 * Keep in mind this has to include any pinned space which could end up 3214 * taking up quite a bit since it's not folded into the other space 3215 * cache. 3216 */ 3217 cache_size = div_u64(block_group->length, SZ_256M); 3218 if (!cache_size) 3219 cache_size = 1; 3220 3221 cache_size *= 16; 3222 cache_size *= fs_info->sectorsize; 3223 3224 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3225 cache_size, false); 3226 if (ret) 3227 goto out_put; 3228 3229 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3230 cache_size, cache_size, 3231 &alloc_hint); 3232 /* 3233 * Our cache requires contiguous chunks so that we don't modify a bunch 3234 * of metadata or split extents when writing the cache out, which means 3235 * we can enospc if we are heavily fragmented in addition to just normal 3236 * out of space conditions. So if we hit this just skip setting up any 3237 * other block groups for this transaction, maybe we'll unpin enough 3238 * space the next time around. 3239 */ 3240 if (!ret) 3241 dcs = BTRFS_DC_SETUP; 3242 else if (ret == -ENOSPC) 3243 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3244 3245 out_put: 3246 iput(inode); 3247 out_free: 3248 btrfs_release_path(path); 3249 out: 3250 spin_lock(&block_group->lock); 3251 if (!ret && dcs == BTRFS_DC_SETUP) 3252 block_group->cache_generation = trans->transid; 3253 block_group->disk_cache_state = dcs; 3254 spin_unlock(&block_group->lock); 3255 3256 extent_changeset_free(data_reserved); 3257 return ret; 3258 } 3259 3260 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3261 { 3262 struct btrfs_fs_info *fs_info = trans->fs_info; 3263 struct btrfs_block_group *cache, *tmp; 3264 struct btrfs_transaction *cur_trans = trans->transaction; 3265 struct btrfs_path *path; 3266 3267 if (list_empty(&cur_trans->dirty_bgs) || 3268 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3269 return 0; 3270 3271 path = btrfs_alloc_path(); 3272 if (!path) 3273 return -ENOMEM; 3274 3275 /* Could add new block groups, use _safe just in case */ 3276 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3277 dirty_list) { 3278 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3279 cache_save_setup(cache, trans, path); 3280 } 3281 3282 btrfs_free_path(path); 3283 return 0; 3284 } 3285 3286 /* 3287 * Transaction commit does final block group cache writeback during a critical 3288 * section where nothing is allowed to change the FS. This is required in 3289 * order for the cache to actually match the block group, but can introduce a 3290 * lot of latency into the commit. 3291 * 3292 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3293 * There's a chance we'll have to redo some of it if the block group changes 3294 * again during the commit, but it greatly reduces the commit latency by 3295 * getting rid of the easy block groups while we're still allowing others to 3296 * join the commit. 3297 */ 3298 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3299 { 3300 struct btrfs_fs_info *fs_info = trans->fs_info; 3301 struct btrfs_block_group *cache; 3302 struct btrfs_transaction *cur_trans = trans->transaction; 3303 int ret = 0; 3304 int should_put; 3305 struct btrfs_path *path = NULL; 3306 LIST_HEAD(dirty); 3307 struct list_head *io = &cur_trans->io_bgs; 3308 int loops = 0; 3309 3310 spin_lock(&cur_trans->dirty_bgs_lock); 3311 if (list_empty(&cur_trans->dirty_bgs)) { 3312 spin_unlock(&cur_trans->dirty_bgs_lock); 3313 return 0; 3314 } 3315 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3316 spin_unlock(&cur_trans->dirty_bgs_lock); 3317 3318 again: 3319 /* Make sure all the block groups on our dirty list actually exist */ 3320 btrfs_create_pending_block_groups(trans); 3321 3322 if (!path) { 3323 path = btrfs_alloc_path(); 3324 if (!path) { 3325 ret = -ENOMEM; 3326 goto out; 3327 } 3328 } 3329 3330 /* 3331 * cache_write_mutex is here only to save us from balance or automatic 3332 * removal of empty block groups deleting this block group while we are 3333 * writing out the cache 3334 */ 3335 mutex_lock(&trans->transaction->cache_write_mutex); 3336 while (!list_empty(&dirty)) { 3337 bool drop_reserve = true; 3338 3339 cache = list_first_entry(&dirty, struct btrfs_block_group, 3340 dirty_list); 3341 /* 3342 * This can happen if something re-dirties a block group that 3343 * is already under IO. Just wait for it to finish and then do 3344 * it all again 3345 */ 3346 if (!list_empty(&cache->io_list)) { 3347 list_del_init(&cache->io_list); 3348 btrfs_wait_cache_io(trans, cache, path); 3349 btrfs_put_block_group(cache); 3350 } 3351 3352 3353 /* 3354 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3355 * it should update the cache_state. Don't delete until after 3356 * we wait. 3357 * 3358 * Since we're not running in the commit critical section 3359 * we need the dirty_bgs_lock to protect from update_block_group 3360 */ 3361 spin_lock(&cur_trans->dirty_bgs_lock); 3362 list_del_init(&cache->dirty_list); 3363 spin_unlock(&cur_trans->dirty_bgs_lock); 3364 3365 should_put = 1; 3366 3367 cache_save_setup(cache, trans, path); 3368 3369 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3370 cache->io_ctl.inode = NULL; 3371 ret = btrfs_write_out_cache(trans, cache, path); 3372 if (ret == 0 && cache->io_ctl.inode) { 3373 should_put = 0; 3374 3375 /* 3376 * The cache_write_mutex is protecting the 3377 * io_list, also refer to the definition of 3378 * btrfs_transaction::io_bgs for more details 3379 */ 3380 list_add_tail(&cache->io_list, io); 3381 } else { 3382 /* 3383 * If we failed to write the cache, the 3384 * generation will be bad and life goes on 3385 */ 3386 ret = 0; 3387 } 3388 } 3389 if (!ret) { 3390 ret = update_block_group_item(trans, path, cache); 3391 /* 3392 * Our block group might still be attached to the list 3393 * of new block groups in the transaction handle of some 3394 * other task (struct btrfs_trans_handle->new_bgs). This 3395 * means its block group item isn't yet in the extent 3396 * tree. If this happens ignore the error, as we will 3397 * try again later in the critical section of the 3398 * transaction commit. 3399 */ 3400 if (ret == -ENOENT) { 3401 ret = 0; 3402 spin_lock(&cur_trans->dirty_bgs_lock); 3403 if (list_empty(&cache->dirty_list)) { 3404 list_add_tail(&cache->dirty_list, 3405 &cur_trans->dirty_bgs); 3406 btrfs_get_block_group(cache); 3407 drop_reserve = false; 3408 } 3409 spin_unlock(&cur_trans->dirty_bgs_lock); 3410 } else if (ret) { 3411 btrfs_abort_transaction(trans, ret); 3412 } 3413 } 3414 3415 /* If it's not on the io list, we need to put the block group */ 3416 if (should_put) 3417 btrfs_put_block_group(cache); 3418 if (drop_reserve) 3419 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3420 /* 3421 * Avoid blocking other tasks for too long. It might even save 3422 * us from writing caches for block groups that are going to be 3423 * removed. 3424 */ 3425 mutex_unlock(&trans->transaction->cache_write_mutex); 3426 if (ret) 3427 goto out; 3428 mutex_lock(&trans->transaction->cache_write_mutex); 3429 } 3430 mutex_unlock(&trans->transaction->cache_write_mutex); 3431 3432 /* 3433 * Go through delayed refs for all the stuff we've just kicked off 3434 * and then loop back (just once) 3435 */ 3436 if (!ret) 3437 ret = btrfs_run_delayed_refs(trans, 0); 3438 if (!ret && loops == 0) { 3439 loops++; 3440 spin_lock(&cur_trans->dirty_bgs_lock); 3441 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3442 /* 3443 * dirty_bgs_lock protects us from concurrent block group 3444 * deletes too (not just cache_write_mutex). 3445 */ 3446 if (!list_empty(&dirty)) { 3447 spin_unlock(&cur_trans->dirty_bgs_lock); 3448 goto again; 3449 } 3450 spin_unlock(&cur_trans->dirty_bgs_lock); 3451 } 3452 out: 3453 if (ret < 0) { 3454 spin_lock(&cur_trans->dirty_bgs_lock); 3455 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3456 spin_unlock(&cur_trans->dirty_bgs_lock); 3457 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3458 } 3459 3460 btrfs_free_path(path); 3461 return ret; 3462 } 3463 3464 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3465 { 3466 struct btrfs_fs_info *fs_info = trans->fs_info; 3467 struct btrfs_block_group *cache; 3468 struct btrfs_transaction *cur_trans = trans->transaction; 3469 int ret = 0; 3470 int should_put; 3471 struct btrfs_path *path; 3472 struct list_head *io = &cur_trans->io_bgs; 3473 3474 path = btrfs_alloc_path(); 3475 if (!path) 3476 return -ENOMEM; 3477 3478 /* 3479 * Even though we are in the critical section of the transaction commit, 3480 * we can still have concurrent tasks adding elements to this 3481 * transaction's list of dirty block groups. These tasks correspond to 3482 * endio free space workers started when writeback finishes for a 3483 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3484 * allocate new block groups as a result of COWing nodes of the root 3485 * tree when updating the free space inode. The writeback for the space 3486 * caches is triggered by an earlier call to 3487 * btrfs_start_dirty_block_groups() and iterations of the following 3488 * loop. 3489 * Also we want to do the cache_save_setup first and then run the 3490 * delayed refs to make sure we have the best chance at doing this all 3491 * in one shot. 3492 */ 3493 spin_lock(&cur_trans->dirty_bgs_lock); 3494 while (!list_empty(&cur_trans->dirty_bgs)) { 3495 cache = list_first_entry(&cur_trans->dirty_bgs, 3496 struct btrfs_block_group, 3497 dirty_list); 3498 3499 /* 3500 * This can happen if cache_save_setup re-dirties a block group 3501 * that is already under IO. Just wait for it to finish and 3502 * then do it all again 3503 */ 3504 if (!list_empty(&cache->io_list)) { 3505 spin_unlock(&cur_trans->dirty_bgs_lock); 3506 list_del_init(&cache->io_list); 3507 btrfs_wait_cache_io(trans, cache, path); 3508 btrfs_put_block_group(cache); 3509 spin_lock(&cur_trans->dirty_bgs_lock); 3510 } 3511 3512 /* 3513 * Don't remove from the dirty list until after we've waited on 3514 * any pending IO 3515 */ 3516 list_del_init(&cache->dirty_list); 3517 spin_unlock(&cur_trans->dirty_bgs_lock); 3518 should_put = 1; 3519 3520 cache_save_setup(cache, trans, path); 3521 3522 if (!ret) 3523 ret = btrfs_run_delayed_refs(trans, U64_MAX); 3524 3525 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3526 cache->io_ctl.inode = NULL; 3527 ret = btrfs_write_out_cache(trans, cache, path); 3528 if (ret == 0 && cache->io_ctl.inode) { 3529 should_put = 0; 3530 list_add_tail(&cache->io_list, io); 3531 } else { 3532 /* 3533 * If we failed to write the cache, the 3534 * generation will be bad and life goes on 3535 */ 3536 ret = 0; 3537 } 3538 } 3539 if (!ret) { 3540 ret = update_block_group_item(trans, path, cache); 3541 /* 3542 * One of the free space endio workers might have 3543 * created a new block group while updating a free space 3544 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3545 * and hasn't released its transaction handle yet, in 3546 * which case the new block group is still attached to 3547 * its transaction handle and its creation has not 3548 * finished yet (no block group item in the extent tree 3549 * yet, etc). If this is the case, wait for all free 3550 * space endio workers to finish and retry. This is a 3551 * very rare case so no need for a more efficient and 3552 * complex approach. 3553 */ 3554 if (ret == -ENOENT) { 3555 wait_event(cur_trans->writer_wait, 3556 atomic_read(&cur_trans->num_writers) == 1); 3557 ret = update_block_group_item(trans, path, cache); 3558 } 3559 if (ret) 3560 btrfs_abort_transaction(trans, ret); 3561 } 3562 3563 /* If its not on the io list, we need to put the block group */ 3564 if (should_put) 3565 btrfs_put_block_group(cache); 3566 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3567 spin_lock(&cur_trans->dirty_bgs_lock); 3568 } 3569 spin_unlock(&cur_trans->dirty_bgs_lock); 3570 3571 /* 3572 * Refer to the definition of io_bgs member for details why it's safe 3573 * to use it without any locking 3574 */ 3575 while (!list_empty(io)) { 3576 cache = list_first_entry(io, struct btrfs_block_group, 3577 io_list); 3578 list_del_init(&cache->io_list); 3579 btrfs_wait_cache_io(trans, cache, path); 3580 btrfs_put_block_group(cache); 3581 } 3582 3583 btrfs_free_path(path); 3584 return ret; 3585 } 3586 3587 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3588 u64 bytenr, u64 num_bytes, bool alloc) 3589 { 3590 struct btrfs_fs_info *info = trans->fs_info; 3591 struct btrfs_space_info *space_info; 3592 struct btrfs_block_group *cache; 3593 u64 old_val; 3594 bool reclaim = false; 3595 bool bg_already_dirty = true; 3596 int factor; 3597 3598 /* Block accounting for super block */ 3599 spin_lock(&info->delalloc_root_lock); 3600 old_val = btrfs_super_bytes_used(info->super_copy); 3601 if (alloc) 3602 old_val += num_bytes; 3603 else 3604 old_val -= num_bytes; 3605 btrfs_set_super_bytes_used(info->super_copy, old_val); 3606 spin_unlock(&info->delalloc_root_lock); 3607 3608 cache = btrfs_lookup_block_group(info, bytenr); 3609 if (!cache) 3610 return -ENOENT; 3611 3612 /* An extent can not span multiple block groups. */ 3613 ASSERT(bytenr + num_bytes <= cache->start + cache->length); 3614 3615 space_info = cache->space_info; 3616 factor = btrfs_bg_type_to_factor(cache->flags); 3617 3618 /* 3619 * If this block group has free space cache written out, we need to make 3620 * sure to load it if we are removing space. This is because we need 3621 * the unpinning stage to actually add the space back to the block group, 3622 * otherwise we will leak space. 3623 */ 3624 if (!alloc && !btrfs_block_group_done(cache)) 3625 btrfs_cache_block_group(cache, true); 3626 3627 spin_lock(&space_info->lock); 3628 spin_lock(&cache->lock); 3629 3630 if (btrfs_test_opt(info, SPACE_CACHE) && 3631 cache->disk_cache_state < BTRFS_DC_CLEAR) 3632 cache->disk_cache_state = BTRFS_DC_CLEAR; 3633 3634 old_val = cache->used; 3635 if (alloc) { 3636 old_val += num_bytes; 3637 cache->used = old_val; 3638 cache->reserved -= num_bytes; 3639 space_info->bytes_reserved -= num_bytes; 3640 space_info->bytes_used += num_bytes; 3641 space_info->disk_used += num_bytes * factor; 3642 spin_unlock(&cache->lock); 3643 spin_unlock(&space_info->lock); 3644 } else { 3645 old_val -= num_bytes; 3646 cache->used = old_val; 3647 cache->pinned += num_bytes; 3648 btrfs_space_info_update_bytes_pinned(info, space_info, num_bytes); 3649 space_info->bytes_used -= num_bytes; 3650 space_info->disk_used -= num_bytes * factor; 3651 3652 reclaim = should_reclaim_block_group(cache, num_bytes); 3653 3654 spin_unlock(&cache->lock); 3655 spin_unlock(&space_info->lock); 3656 3657 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 3658 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 3659 } 3660 3661 spin_lock(&trans->transaction->dirty_bgs_lock); 3662 if (list_empty(&cache->dirty_list)) { 3663 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs); 3664 bg_already_dirty = false; 3665 btrfs_get_block_group(cache); 3666 } 3667 spin_unlock(&trans->transaction->dirty_bgs_lock); 3668 3669 /* 3670 * No longer have used bytes in this block group, queue it for deletion. 3671 * We do this after adding the block group to the dirty list to avoid 3672 * races between cleaner kthread and space cache writeout. 3673 */ 3674 if (!alloc && old_val == 0) { 3675 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3676 btrfs_mark_bg_unused(cache); 3677 } else if (!alloc && reclaim) { 3678 btrfs_mark_bg_to_reclaim(cache); 3679 } 3680 3681 btrfs_put_block_group(cache); 3682 3683 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3684 if (!bg_already_dirty) 3685 btrfs_inc_delayed_refs_rsv_bg_updates(info); 3686 3687 return 0; 3688 } 3689 3690 /* 3691 * Update the block_group and space info counters. 3692 * 3693 * @cache: The cache we are manipulating 3694 * @ram_bytes: The number of bytes of file content, and will be same to 3695 * @num_bytes except for the compress path. 3696 * @num_bytes: The number of bytes in question 3697 * @delalloc: The blocks are allocated for the delalloc write 3698 * 3699 * This is called by the allocator when it reserves space. If this is a 3700 * reservation and the block group has become read only we cannot make the 3701 * reservation and return -EAGAIN, otherwise this function always succeeds. 3702 */ 3703 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3704 u64 ram_bytes, u64 num_bytes, int delalloc, 3705 bool force_wrong_size_class) 3706 { 3707 struct btrfs_space_info *space_info = cache->space_info; 3708 enum btrfs_block_group_size_class size_class; 3709 int ret = 0; 3710 3711 spin_lock(&space_info->lock); 3712 spin_lock(&cache->lock); 3713 if (cache->ro) { 3714 ret = -EAGAIN; 3715 goto out; 3716 } 3717 3718 if (btrfs_block_group_should_use_size_class(cache)) { 3719 size_class = btrfs_calc_block_group_size_class(num_bytes); 3720 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3721 if (ret) 3722 goto out; 3723 } 3724 cache->reserved += num_bytes; 3725 space_info->bytes_reserved += num_bytes; 3726 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3727 space_info->flags, num_bytes, 1); 3728 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3729 space_info, -ram_bytes); 3730 if (delalloc) 3731 cache->delalloc_bytes += num_bytes; 3732 3733 /* 3734 * Compression can use less space than we reserved, so wake tickets if 3735 * that happens. 3736 */ 3737 if (num_bytes < ram_bytes) 3738 btrfs_try_granting_tickets(cache->fs_info, space_info); 3739 out: 3740 spin_unlock(&cache->lock); 3741 spin_unlock(&space_info->lock); 3742 return ret; 3743 } 3744 3745 /* 3746 * Update the block_group and space info counters. 3747 * 3748 * @cache: The cache we are manipulating 3749 * @num_bytes: The number of bytes in question 3750 * @delalloc: The blocks are allocated for the delalloc write 3751 * 3752 * This is called by somebody who is freeing space that was never actually used 3753 * on disk. For example if you reserve some space for a new leaf in transaction 3754 * A and before transaction A commits you free that leaf, you call this with 3755 * reserve set to 0 in order to clear the reservation. 3756 */ 3757 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3758 u64 num_bytes, int delalloc) 3759 { 3760 struct btrfs_space_info *space_info = cache->space_info; 3761 3762 spin_lock(&space_info->lock); 3763 spin_lock(&cache->lock); 3764 if (cache->ro) 3765 space_info->bytes_readonly += num_bytes; 3766 cache->reserved -= num_bytes; 3767 space_info->bytes_reserved -= num_bytes; 3768 space_info->max_extent_size = 0; 3769 3770 if (delalloc) 3771 cache->delalloc_bytes -= num_bytes; 3772 spin_unlock(&cache->lock); 3773 3774 btrfs_try_granting_tickets(cache->fs_info, space_info); 3775 spin_unlock(&space_info->lock); 3776 } 3777 3778 static void force_metadata_allocation(struct btrfs_fs_info *info) 3779 { 3780 struct list_head *head = &info->space_info; 3781 struct btrfs_space_info *found; 3782 3783 list_for_each_entry(found, head, list) { 3784 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3785 found->force_alloc = CHUNK_ALLOC_FORCE; 3786 } 3787 } 3788 3789 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3790 struct btrfs_space_info *sinfo, int force) 3791 { 3792 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3793 u64 thresh; 3794 3795 if (force == CHUNK_ALLOC_FORCE) 3796 return 1; 3797 3798 /* 3799 * in limited mode, we want to have some free space up to 3800 * about 1% of the FS size. 3801 */ 3802 if (force == CHUNK_ALLOC_LIMITED) { 3803 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3804 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3805 3806 if (sinfo->total_bytes - bytes_used < thresh) 3807 return 1; 3808 } 3809 3810 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3811 return 0; 3812 return 1; 3813 } 3814 3815 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3816 { 3817 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3818 3819 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3820 } 3821 3822 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3823 { 3824 struct btrfs_block_group *bg; 3825 int ret; 3826 3827 /* 3828 * Check if we have enough space in the system space info because we 3829 * will need to update device items in the chunk btree and insert a new 3830 * chunk item in the chunk btree as well. This will allocate a new 3831 * system block group if needed. 3832 */ 3833 check_system_chunk(trans, flags); 3834 3835 bg = btrfs_create_chunk(trans, flags); 3836 if (IS_ERR(bg)) { 3837 ret = PTR_ERR(bg); 3838 goto out; 3839 } 3840 3841 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3842 /* 3843 * Normally we are not expected to fail with -ENOSPC here, since we have 3844 * previously reserved space in the system space_info and allocated one 3845 * new system chunk if necessary. However there are three exceptions: 3846 * 3847 * 1) We may have enough free space in the system space_info but all the 3848 * existing system block groups have a profile which can not be used 3849 * for extent allocation. 3850 * 3851 * This happens when mounting in degraded mode. For example we have a 3852 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3853 * using the other device in degraded mode. If we then allocate a chunk, 3854 * we may have enough free space in the existing system space_info, but 3855 * none of the block groups can be used for extent allocation since they 3856 * have a RAID1 profile, and because we are in degraded mode with a 3857 * single device, we are forced to allocate a new system chunk with a 3858 * SINGLE profile. Making check_system_chunk() iterate over all system 3859 * block groups and check if they have a usable profile and enough space 3860 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3861 * try again after forcing allocation of a new system chunk. Like this 3862 * we avoid paying the cost of that search in normal circumstances, when 3863 * we were not mounted in degraded mode; 3864 * 3865 * 2) We had enough free space info the system space_info, and one suitable 3866 * block group to allocate from when we called check_system_chunk() 3867 * above. However right after we called it, the only system block group 3868 * with enough free space got turned into RO mode by a running scrub, 3869 * and in this case we have to allocate a new one and retry. We only 3870 * need do this allocate and retry once, since we have a transaction 3871 * handle and scrub uses the commit root to search for block groups; 3872 * 3873 * 3) We had one system block group with enough free space when we called 3874 * check_system_chunk(), but after that, right before we tried to 3875 * allocate the last extent buffer we needed, a discard operation came 3876 * in and it temporarily removed the last free space entry from the 3877 * block group (discard removes a free space entry, discards it, and 3878 * then adds back the entry to the block group cache). 3879 */ 3880 if (ret == -ENOSPC) { 3881 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3882 struct btrfs_block_group *sys_bg; 3883 3884 sys_bg = btrfs_create_chunk(trans, sys_flags); 3885 if (IS_ERR(sys_bg)) { 3886 ret = PTR_ERR(sys_bg); 3887 btrfs_abort_transaction(trans, ret); 3888 goto out; 3889 } 3890 3891 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3892 if (ret) { 3893 btrfs_abort_transaction(trans, ret); 3894 goto out; 3895 } 3896 3897 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3898 if (ret) { 3899 btrfs_abort_transaction(trans, ret); 3900 goto out; 3901 } 3902 } else if (ret) { 3903 btrfs_abort_transaction(trans, ret); 3904 goto out; 3905 } 3906 out: 3907 btrfs_trans_release_chunk_metadata(trans); 3908 3909 if (ret) 3910 return ERR_PTR(ret); 3911 3912 btrfs_get_block_group(bg); 3913 return bg; 3914 } 3915 3916 /* 3917 * Chunk allocation is done in 2 phases: 3918 * 3919 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3920 * the chunk, the chunk mapping, create its block group and add the items 3921 * that belong in the chunk btree to it - more specifically, we need to 3922 * update device items in the chunk btree and add a new chunk item to it. 3923 * 3924 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3925 * group item to the extent btree and the device extent items to the devices 3926 * btree. 3927 * 3928 * This is done to prevent deadlocks. For example when COWing a node from the 3929 * extent btree we are holding a write lock on the node's parent and if we 3930 * trigger chunk allocation and attempted to insert the new block group item 3931 * in the extent btree right way, we could deadlock because the path for the 3932 * insertion can include that parent node. At first glance it seems impossible 3933 * to trigger chunk allocation after starting a transaction since tasks should 3934 * reserve enough transaction units (metadata space), however while that is true 3935 * most of the time, chunk allocation may still be triggered for several reasons: 3936 * 3937 * 1) When reserving metadata, we check if there is enough free space in the 3938 * metadata space_info and therefore don't trigger allocation of a new chunk. 3939 * However later when the task actually tries to COW an extent buffer from 3940 * the extent btree or from the device btree for example, it is forced to 3941 * allocate a new block group (chunk) because the only one that had enough 3942 * free space was just turned to RO mode by a running scrub for example (or 3943 * device replace, block group reclaim thread, etc), so we can not use it 3944 * for allocating an extent and end up being forced to allocate a new one; 3945 * 3946 * 2) Because we only check that the metadata space_info has enough free bytes, 3947 * we end up not allocating a new metadata chunk in that case. However if 3948 * the filesystem was mounted in degraded mode, none of the existing block 3949 * groups might be suitable for extent allocation due to their incompatible 3950 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3951 * use a RAID1 profile, in degraded mode using a single device). In this case 3952 * when the task attempts to COW some extent buffer of the extent btree for 3953 * example, it will trigger allocation of a new metadata block group with a 3954 * suitable profile (SINGLE profile in the example of the degraded mount of 3955 * the RAID1 filesystem); 3956 * 3957 * 3) The task has reserved enough transaction units / metadata space, but when 3958 * it attempts to COW an extent buffer from the extent or device btree for 3959 * example, it does not find any free extent in any metadata block group, 3960 * therefore forced to try to allocate a new metadata block group. 3961 * This is because some other task allocated all available extents in the 3962 * meanwhile - this typically happens with tasks that don't reserve space 3963 * properly, either intentionally or as a bug. One example where this is 3964 * done intentionally is fsync, as it does not reserve any transaction units 3965 * and ends up allocating a variable number of metadata extents for log 3966 * tree extent buffers; 3967 * 3968 * 4) The task has reserved enough transaction units / metadata space, but right 3969 * before it tries to allocate the last extent buffer it needs, a discard 3970 * operation comes in and, temporarily, removes the last free space entry from 3971 * the only metadata block group that had free space (discard starts by 3972 * removing a free space entry from a block group, then does the discard 3973 * operation and, once it's done, it adds back the free space entry to the 3974 * block group). 3975 * 3976 * We also need this 2 phases setup when adding a device to a filesystem with 3977 * a seed device - we must create new metadata and system chunks without adding 3978 * any of the block group items to the chunk, extent and device btrees. If we 3979 * did not do it this way, we would get ENOSPC when attempting to update those 3980 * btrees, since all the chunks from the seed device are read-only. 3981 * 3982 * Phase 1 does the updates and insertions to the chunk btree because if we had 3983 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3984 * parallel, we risk having too many system chunks allocated by many tasks if 3985 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3986 * extreme case this leads to exhaustion of the system chunk array in the 3987 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3988 * and with RAID filesystems (so we have more device items in the chunk btree). 3989 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3990 * the system chunk array due to concurrent allocations") provides more details. 3991 * 3992 * Allocation of system chunks does not happen through this function. A task that 3993 * needs to update the chunk btree (the only btree that uses system chunks), must 3994 * preallocate chunk space by calling either check_system_chunk() or 3995 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3996 * metadata chunk or when removing a chunk, while the later is used before doing 3997 * a modification to the chunk btree - use cases for the later are adding, 3998 * removing and resizing a device as well as relocation of a system chunk. 3999 * See the comment below for more details. 4000 * 4001 * The reservation of system space, done through check_system_chunk(), as well 4002 * as all the updates and insertions into the chunk btree must be done while 4003 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4004 * an extent buffer from the chunks btree we never trigger allocation of a new 4005 * system chunk, which would result in a deadlock (trying to lock twice an 4006 * extent buffer of the chunk btree, first time before triggering the chunk 4007 * allocation and the second time during chunk allocation while attempting to 4008 * update the chunks btree). The system chunk array is also updated while holding 4009 * that mutex. The same logic applies to removing chunks - we must reserve system 4010 * space, update the chunk btree and the system chunk array in the superblock 4011 * while holding fs_info->chunk_mutex. 4012 * 4013 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4014 * 4015 * If @force is CHUNK_ALLOC_FORCE: 4016 * - return 1 if it successfully allocates a chunk, 4017 * - return errors including -ENOSPC otherwise. 4018 * If @force is NOT CHUNK_ALLOC_FORCE: 4019 * - return 0 if it doesn't need to allocate a new chunk, 4020 * - return 1 if it successfully allocates a chunk, 4021 * - return errors including -ENOSPC otherwise. 4022 */ 4023 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 4024 enum btrfs_chunk_alloc_enum force) 4025 { 4026 struct btrfs_fs_info *fs_info = trans->fs_info; 4027 struct btrfs_space_info *space_info; 4028 struct btrfs_block_group *ret_bg; 4029 bool wait_for_alloc = false; 4030 bool should_alloc = false; 4031 bool from_extent_allocation = false; 4032 int ret = 0; 4033 4034 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4035 from_extent_allocation = true; 4036 force = CHUNK_ALLOC_FORCE; 4037 } 4038 4039 /* Don't re-enter if we're already allocating a chunk */ 4040 if (trans->allocating_chunk) 4041 return -ENOSPC; 4042 /* 4043 * Allocation of system chunks can not happen through this path, as we 4044 * could end up in a deadlock if we are allocating a data or metadata 4045 * chunk and there is another task modifying the chunk btree. 4046 * 4047 * This is because while we are holding the chunk mutex, we will attempt 4048 * to add the new chunk item to the chunk btree or update an existing 4049 * device item in the chunk btree, while the other task that is modifying 4050 * the chunk btree is attempting to COW an extent buffer while holding a 4051 * lock on it and on its parent - if the COW operation triggers a system 4052 * chunk allocation, then we can deadlock because we are holding the 4053 * chunk mutex and we may need to access that extent buffer or its parent 4054 * in order to add the chunk item or update a device item. 4055 * 4056 * Tasks that want to modify the chunk tree should reserve system space 4057 * before updating the chunk btree, by calling either 4058 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4059 * It's possible that after a task reserves the space, it still ends up 4060 * here - this happens in the cases described above at do_chunk_alloc(). 4061 * The task will have to either retry or fail. 4062 */ 4063 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4064 return -ENOSPC; 4065 4066 space_info = btrfs_find_space_info(fs_info, flags); 4067 ASSERT(space_info); 4068 4069 do { 4070 spin_lock(&space_info->lock); 4071 if (force < space_info->force_alloc) 4072 force = space_info->force_alloc; 4073 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4074 if (space_info->full) { 4075 /* No more free physical space */ 4076 if (should_alloc) 4077 ret = -ENOSPC; 4078 else 4079 ret = 0; 4080 spin_unlock(&space_info->lock); 4081 return ret; 4082 } else if (!should_alloc) { 4083 spin_unlock(&space_info->lock); 4084 return 0; 4085 } else if (space_info->chunk_alloc) { 4086 /* 4087 * Someone is already allocating, so we need to block 4088 * until this someone is finished and then loop to 4089 * recheck if we should continue with our allocation 4090 * attempt. 4091 */ 4092 wait_for_alloc = true; 4093 force = CHUNK_ALLOC_NO_FORCE; 4094 spin_unlock(&space_info->lock); 4095 mutex_lock(&fs_info->chunk_mutex); 4096 mutex_unlock(&fs_info->chunk_mutex); 4097 } else { 4098 /* Proceed with allocation */ 4099 space_info->chunk_alloc = 1; 4100 wait_for_alloc = false; 4101 spin_unlock(&space_info->lock); 4102 } 4103 4104 cond_resched(); 4105 } while (wait_for_alloc); 4106 4107 mutex_lock(&fs_info->chunk_mutex); 4108 trans->allocating_chunk = true; 4109 4110 /* 4111 * If we have mixed data/metadata chunks we want to make sure we keep 4112 * allocating mixed chunks instead of individual chunks. 4113 */ 4114 if (btrfs_mixed_space_info(space_info)) 4115 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4116 4117 /* 4118 * if we're doing a data chunk, go ahead and make sure that 4119 * we keep a reasonable number of metadata chunks allocated in the 4120 * FS as well. 4121 */ 4122 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4123 fs_info->data_chunk_allocations++; 4124 if (!(fs_info->data_chunk_allocations % 4125 fs_info->metadata_ratio)) 4126 force_metadata_allocation(fs_info); 4127 } 4128 4129 ret_bg = do_chunk_alloc(trans, flags); 4130 trans->allocating_chunk = false; 4131 4132 if (IS_ERR(ret_bg)) { 4133 ret = PTR_ERR(ret_bg); 4134 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4135 /* 4136 * New block group is likely to be used soon. Try to activate 4137 * it now. Failure is OK for now. 4138 */ 4139 btrfs_zone_activate(ret_bg); 4140 } 4141 4142 if (!ret) 4143 btrfs_put_block_group(ret_bg); 4144 4145 spin_lock(&space_info->lock); 4146 if (ret < 0) { 4147 if (ret == -ENOSPC) 4148 space_info->full = 1; 4149 else 4150 goto out; 4151 } else { 4152 ret = 1; 4153 space_info->max_extent_size = 0; 4154 } 4155 4156 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4157 out: 4158 space_info->chunk_alloc = 0; 4159 spin_unlock(&space_info->lock); 4160 mutex_unlock(&fs_info->chunk_mutex); 4161 4162 return ret; 4163 } 4164 4165 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4166 { 4167 u64 num_dev; 4168 4169 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4170 if (!num_dev) 4171 num_dev = fs_info->fs_devices->rw_devices; 4172 4173 return num_dev; 4174 } 4175 4176 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4177 u64 bytes, 4178 u64 type) 4179 { 4180 struct btrfs_fs_info *fs_info = trans->fs_info; 4181 struct btrfs_space_info *info; 4182 u64 left; 4183 int ret = 0; 4184 4185 /* 4186 * Needed because we can end up allocating a system chunk and for an 4187 * atomic and race free space reservation in the chunk block reserve. 4188 */ 4189 lockdep_assert_held(&fs_info->chunk_mutex); 4190 4191 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4192 spin_lock(&info->lock); 4193 left = info->total_bytes - btrfs_space_info_used(info, true); 4194 spin_unlock(&info->lock); 4195 4196 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4197 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4198 left, bytes, type); 4199 btrfs_dump_space_info(fs_info, info, 0, 0); 4200 } 4201 4202 if (left < bytes) { 4203 u64 flags = btrfs_system_alloc_profile(fs_info); 4204 struct btrfs_block_group *bg; 4205 4206 /* 4207 * Ignore failure to create system chunk. We might end up not 4208 * needing it, as we might not need to COW all nodes/leafs from 4209 * the paths we visit in the chunk tree (they were already COWed 4210 * or created in the current transaction for example). 4211 */ 4212 bg = btrfs_create_chunk(trans, flags); 4213 if (IS_ERR(bg)) { 4214 ret = PTR_ERR(bg); 4215 } else { 4216 /* 4217 * We have a new chunk. We also need to activate it for 4218 * zoned filesystem. 4219 */ 4220 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4221 if (ret < 0) 4222 return; 4223 4224 /* 4225 * If we fail to add the chunk item here, we end up 4226 * trying again at phase 2 of chunk allocation, at 4227 * btrfs_create_pending_block_groups(). So ignore 4228 * any error here. An ENOSPC here could happen, due to 4229 * the cases described at do_chunk_alloc() - the system 4230 * block group we just created was just turned into RO 4231 * mode by a scrub for example, or a running discard 4232 * temporarily removed its free space entries, etc. 4233 */ 4234 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4235 } 4236 } 4237 4238 if (!ret) { 4239 ret = btrfs_block_rsv_add(fs_info, 4240 &fs_info->chunk_block_rsv, 4241 bytes, BTRFS_RESERVE_NO_FLUSH); 4242 if (!ret) 4243 trans->chunk_bytes_reserved += bytes; 4244 } 4245 } 4246 4247 /* 4248 * Reserve space in the system space for allocating or removing a chunk. 4249 * The caller must be holding fs_info->chunk_mutex. 4250 */ 4251 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4252 { 4253 struct btrfs_fs_info *fs_info = trans->fs_info; 4254 const u64 num_devs = get_profile_num_devs(fs_info, type); 4255 u64 bytes; 4256 4257 /* num_devs device items to update and 1 chunk item to add or remove. */ 4258 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4259 btrfs_calc_insert_metadata_size(fs_info, 1); 4260 4261 reserve_chunk_space(trans, bytes, type); 4262 } 4263 4264 /* 4265 * Reserve space in the system space, if needed, for doing a modification to the 4266 * chunk btree. 4267 * 4268 * @trans: A transaction handle. 4269 * @is_item_insertion: Indicate if the modification is for inserting a new item 4270 * in the chunk btree or if it's for the deletion or update 4271 * of an existing item. 4272 * 4273 * This is used in a context where we need to update the chunk btree outside 4274 * block group allocation and removal, to avoid a deadlock with a concurrent 4275 * task that is allocating a metadata or data block group and therefore needs to 4276 * update the chunk btree while holding the chunk mutex. After the update to the 4277 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4278 * 4279 */ 4280 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4281 bool is_item_insertion) 4282 { 4283 struct btrfs_fs_info *fs_info = trans->fs_info; 4284 u64 bytes; 4285 4286 if (is_item_insertion) 4287 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4288 else 4289 bytes = btrfs_calc_metadata_size(fs_info, 1); 4290 4291 mutex_lock(&fs_info->chunk_mutex); 4292 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4293 mutex_unlock(&fs_info->chunk_mutex); 4294 } 4295 4296 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4297 { 4298 struct btrfs_block_group *block_group; 4299 4300 block_group = btrfs_lookup_first_block_group(info, 0); 4301 while (block_group) { 4302 btrfs_wait_block_group_cache_done(block_group); 4303 spin_lock(&block_group->lock); 4304 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4305 &block_group->runtime_flags)) { 4306 struct inode *inode = block_group->inode; 4307 4308 block_group->inode = NULL; 4309 spin_unlock(&block_group->lock); 4310 4311 ASSERT(block_group->io_ctl.inode == NULL); 4312 iput(inode); 4313 } else { 4314 spin_unlock(&block_group->lock); 4315 } 4316 block_group = btrfs_next_block_group(block_group); 4317 } 4318 } 4319 4320 /* 4321 * Must be called only after stopping all workers, since we could have block 4322 * group caching kthreads running, and therefore they could race with us if we 4323 * freed the block groups before stopping them. 4324 */ 4325 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4326 { 4327 struct btrfs_block_group *block_group; 4328 struct btrfs_space_info *space_info; 4329 struct btrfs_caching_control *caching_ctl; 4330 struct rb_node *n; 4331 4332 if (btrfs_is_zoned(info)) { 4333 if (info->active_meta_bg) { 4334 btrfs_put_block_group(info->active_meta_bg); 4335 info->active_meta_bg = NULL; 4336 } 4337 if (info->active_system_bg) { 4338 btrfs_put_block_group(info->active_system_bg); 4339 info->active_system_bg = NULL; 4340 } 4341 } 4342 4343 write_lock(&info->block_group_cache_lock); 4344 while (!list_empty(&info->caching_block_groups)) { 4345 caching_ctl = list_entry(info->caching_block_groups.next, 4346 struct btrfs_caching_control, list); 4347 list_del(&caching_ctl->list); 4348 btrfs_put_caching_control(caching_ctl); 4349 } 4350 write_unlock(&info->block_group_cache_lock); 4351 4352 spin_lock(&info->unused_bgs_lock); 4353 while (!list_empty(&info->unused_bgs)) { 4354 block_group = list_first_entry(&info->unused_bgs, 4355 struct btrfs_block_group, 4356 bg_list); 4357 list_del_init(&block_group->bg_list); 4358 btrfs_put_block_group(block_group); 4359 } 4360 4361 while (!list_empty(&info->reclaim_bgs)) { 4362 block_group = list_first_entry(&info->reclaim_bgs, 4363 struct btrfs_block_group, 4364 bg_list); 4365 list_del_init(&block_group->bg_list); 4366 btrfs_put_block_group(block_group); 4367 } 4368 spin_unlock(&info->unused_bgs_lock); 4369 4370 spin_lock(&info->zone_active_bgs_lock); 4371 while (!list_empty(&info->zone_active_bgs)) { 4372 block_group = list_first_entry(&info->zone_active_bgs, 4373 struct btrfs_block_group, 4374 active_bg_list); 4375 list_del_init(&block_group->active_bg_list); 4376 btrfs_put_block_group(block_group); 4377 } 4378 spin_unlock(&info->zone_active_bgs_lock); 4379 4380 write_lock(&info->block_group_cache_lock); 4381 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4382 block_group = rb_entry(n, struct btrfs_block_group, 4383 cache_node); 4384 rb_erase_cached(&block_group->cache_node, 4385 &info->block_group_cache_tree); 4386 RB_CLEAR_NODE(&block_group->cache_node); 4387 write_unlock(&info->block_group_cache_lock); 4388 4389 down_write(&block_group->space_info->groups_sem); 4390 list_del(&block_group->list); 4391 up_write(&block_group->space_info->groups_sem); 4392 4393 /* 4394 * We haven't cached this block group, which means we could 4395 * possibly have excluded extents on this block group. 4396 */ 4397 if (block_group->cached == BTRFS_CACHE_NO || 4398 block_group->cached == BTRFS_CACHE_ERROR) 4399 btrfs_free_excluded_extents(block_group); 4400 4401 btrfs_remove_free_space_cache(block_group); 4402 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4403 ASSERT(list_empty(&block_group->dirty_list)); 4404 ASSERT(list_empty(&block_group->io_list)); 4405 ASSERT(list_empty(&block_group->bg_list)); 4406 ASSERT(refcount_read(&block_group->refs) == 1); 4407 ASSERT(block_group->swap_extents == 0); 4408 btrfs_put_block_group(block_group); 4409 4410 write_lock(&info->block_group_cache_lock); 4411 } 4412 write_unlock(&info->block_group_cache_lock); 4413 4414 btrfs_release_global_block_rsv(info); 4415 4416 while (!list_empty(&info->space_info)) { 4417 space_info = list_entry(info->space_info.next, 4418 struct btrfs_space_info, 4419 list); 4420 4421 /* 4422 * Do not hide this behind enospc_debug, this is actually 4423 * important and indicates a real bug if this happens. 4424 */ 4425 if (WARN_ON(space_info->bytes_pinned > 0 || 4426 space_info->bytes_may_use > 0)) 4427 btrfs_dump_space_info(info, space_info, 0, 0); 4428 4429 /* 4430 * If there was a failure to cleanup a log tree, very likely due 4431 * to an IO failure on a writeback attempt of one or more of its 4432 * extent buffers, we could not do proper (and cheap) unaccounting 4433 * of their reserved space, so don't warn on bytes_reserved > 0 in 4434 * that case. 4435 */ 4436 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4437 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4438 if (WARN_ON(space_info->bytes_reserved > 0)) 4439 btrfs_dump_space_info(info, space_info, 0, 0); 4440 } 4441 4442 WARN_ON(space_info->reclaim_size > 0); 4443 list_del(&space_info->list); 4444 btrfs_sysfs_remove_space_info(space_info); 4445 } 4446 return 0; 4447 } 4448 4449 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4450 { 4451 atomic_inc(&cache->frozen); 4452 } 4453 4454 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4455 { 4456 struct btrfs_fs_info *fs_info = block_group->fs_info; 4457 bool cleanup; 4458 4459 spin_lock(&block_group->lock); 4460 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4461 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4462 spin_unlock(&block_group->lock); 4463 4464 if (cleanup) { 4465 struct btrfs_chunk_map *map; 4466 4467 map = btrfs_find_chunk_map(fs_info, block_group->start, 1); 4468 /* Logic error, can't happen. */ 4469 ASSERT(map); 4470 4471 btrfs_remove_chunk_map(fs_info, map); 4472 4473 /* Once for our lookup reference. */ 4474 btrfs_free_chunk_map(map); 4475 4476 /* 4477 * We may have left one free space entry and other possible 4478 * tasks trimming this block group have left 1 entry each one. 4479 * Free them if any. 4480 */ 4481 btrfs_remove_free_space_cache(block_group); 4482 } 4483 } 4484 4485 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4486 { 4487 bool ret = true; 4488 4489 spin_lock(&bg->lock); 4490 if (bg->ro) 4491 ret = false; 4492 else 4493 bg->swap_extents++; 4494 spin_unlock(&bg->lock); 4495 4496 return ret; 4497 } 4498 4499 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4500 { 4501 spin_lock(&bg->lock); 4502 ASSERT(!bg->ro); 4503 ASSERT(bg->swap_extents >= amount); 4504 bg->swap_extents -= amount; 4505 spin_unlock(&bg->lock); 4506 } 4507 4508 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4509 { 4510 if (size <= SZ_128K) 4511 return BTRFS_BG_SZ_SMALL; 4512 if (size <= SZ_8M) 4513 return BTRFS_BG_SZ_MEDIUM; 4514 return BTRFS_BG_SZ_LARGE; 4515 } 4516 4517 /* 4518 * Handle a block group allocating an extent in a size class 4519 * 4520 * @bg: The block group we allocated in. 4521 * @size_class: The size class of the allocation. 4522 * @force_wrong_size_class: Whether we are desperate enough to allow 4523 * mismatched size classes. 4524 * 4525 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4526 * case of a race that leads to the wrong size class without 4527 * force_wrong_size_class set. 4528 * 4529 * find_free_extent will skip block groups with a mismatched size class until 4530 * it really needs to avoid ENOSPC. In that case it will set 4531 * force_wrong_size_class. However, if a block group is newly allocated and 4532 * doesn't yet have a size class, then it is possible for two allocations of 4533 * different sizes to race and both try to use it. The loser is caught here and 4534 * has to retry. 4535 */ 4536 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4537 enum btrfs_block_group_size_class size_class, 4538 bool force_wrong_size_class) 4539 { 4540 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4541 4542 /* The new allocation is in the right size class, do nothing */ 4543 if (bg->size_class == size_class) 4544 return 0; 4545 /* 4546 * The new allocation is in a mismatched size class. 4547 * This means one of two things: 4548 * 4549 * 1. Two tasks in find_free_extent for different size_classes raced 4550 * and hit the same empty block_group. Make the loser try again. 4551 * 2. A call to find_free_extent got desperate enough to set 4552 * 'force_wrong_slab'. Don't change the size_class, but allow the 4553 * allocation. 4554 */ 4555 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4556 if (force_wrong_size_class) 4557 return 0; 4558 return -EAGAIN; 4559 } 4560 /* 4561 * The happy new block group case: the new allocation is the first 4562 * one in the block_group so we set size_class. 4563 */ 4564 bg->size_class = size_class; 4565 4566 return 0; 4567 } 4568 4569 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg) 4570 { 4571 if (btrfs_is_zoned(bg->fs_info)) 4572 return false; 4573 if (!btrfs_is_block_group_data_only(bg)) 4574 return false; 4575 return true; 4576 } 4577