xref: /linux/fs/btrfs/block-group.c (revision c4101e55974cc7d835fbd2d8e01553a3f61e9e75)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 	struct btrfs_fs_info *fs_info = block_group->fs_info;
29 
30 	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36 
37 /*
38  * Return target flags in extended format or 0 if restripe for this chunk_type
39  * is not in progress
40  *
41  * Should be called with balance_lock held
42  */
43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 	u64 target = 0;
47 
48 	if (!bctl)
49 		return 0;
50 
51 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 	}
61 
62 	return target;
63 }
64 
65 /*
66  * @flags: available profiles in extended format (see ctree.h)
67  *
68  * Return reduced profile in chunk format.  If profile changing is in progress
69  * (either running or paused) picks the target profile (if it's already
70  * available), otherwise falls back to plain reducing.
71  */
72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 	u64 num_devices = fs_info->fs_devices->rw_devices;
75 	u64 target;
76 	u64 raid_type;
77 	u64 allowed = 0;
78 
79 	/*
80 	 * See if restripe for this chunk_type is in progress, if so try to
81 	 * reduce to the target profile
82 	 */
83 	spin_lock(&fs_info->balance_lock);
84 	target = get_restripe_target(fs_info, flags);
85 	if (target) {
86 		spin_unlock(&fs_info->balance_lock);
87 		return extended_to_chunk(target);
88 	}
89 	spin_unlock(&fs_info->balance_lock);
90 
91 	/* First, mask out the RAID levels which aren't possible */
92 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 			allowed |= btrfs_raid_array[raid_type].bg_flag;
95 	}
96 	allowed &= flags;
97 
98 	/* Select the highest-redundancy RAID level. */
99 	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 		allowed = BTRFS_BLOCK_GROUP_RAID6;
103 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 		allowed = BTRFS_BLOCK_GROUP_RAID5;
107 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 		allowed = BTRFS_BLOCK_GROUP_RAID10;
109 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 		allowed = BTRFS_BLOCK_GROUP_RAID1;
111 	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 		allowed = BTRFS_BLOCK_GROUP_DUP;
113 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 		allowed = BTRFS_BLOCK_GROUP_RAID0;
115 
116 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117 
118 	return extended_to_chunk(flags | allowed);
119 }
120 
121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 	unsigned seq;
124 	u64 flags;
125 
126 	do {
127 		flags = orig_flags;
128 		seq = read_seqbegin(&fs_info->profiles_lock);
129 
130 		if (flags & BTRFS_BLOCK_GROUP_DATA)
131 			flags |= fs_info->avail_data_alloc_bits;
132 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 			flags |= fs_info->avail_system_alloc_bits;
134 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 			flags |= fs_info->avail_metadata_alloc_bits;
136 	} while (read_seqretry(&fs_info->profiles_lock, seq));
137 
138 	return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140 
141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 	refcount_inc(&cache->refs);
144 }
145 
146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 	if (refcount_dec_and_test(&cache->refs)) {
149 		WARN_ON(cache->pinned > 0);
150 		/*
151 		 * If there was a failure to cleanup a log tree, very likely due
152 		 * to an IO failure on a writeback attempt of one or more of its
153 		 * extent buffers, we could not do proper (and cheap) unaccounting
154 		 * of their reserved space, so don't warn on reserved > 0 in that
155 		 * case.
156 		 */
157 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 			WARN_ON(cache->reserved > 0);
160 
161 		/*
162 		 * A block_group shouldn't be on the discard_list anymore.
163 		 * Remove the block_group from the discard_list to prevent us
164 		 * from causing a panic due to NULL pointer dereference.
165 		 */
166 		if (WARN_ON(!list_empty(&cache->discard_list)))
167 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 						  cache);
169 
170 		kfree(cache->free_space_ctl);
171 		btrfs_free_chunk_map(cache->physical_map);
172 		kfree(cache);
173 	}
174 }
175 
176 /*
177  * This adds the block group to the fs_info rb tree for the block group cache
178  */
179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 				       struct btrfs_block_group *block_group)
181 {
182 	struct rb_node **p;
183 	struct rb_node *parent = NULL;
184 	struct btrfs_block_group *cache;
185 	bool leftmost = true;
186 
187 	ASSERT(block_group->length != 0);
188 
189 	write_lock(&info->block_group_cache_lock);
190 	p = &info->block_group_cache_tree.rb_root.rb_node;
191 
192 	while (*p) {
193 		parent = *p;
194 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 		if (block_group->start < cache->start) {
196 			p = &(*p)->rb_left;
197 		} else if (block_group->start > cache->start) {
198 			p = &(*p)->rb_right;
199 			leftmost = false;
200 		} else {
201 			write_unlock(&info->block_group_cache_lock);
202 			return -EEXIST;
203 		}
204 	}
205 
206 	rb_link_node(&block_group->cache_node, parent, p);
207 	rb_insert_color_cached(&block_group->cache_node,
208 			       &info->block_group_cache_tree, leftmost);
209 
210 	write_unlock(&info->block_group_cache_lock);
211 
212 	return 0;
213 }
214 
215 /*
216  * This will return the block group at or after bytenr if contains is 0, else
217  * it will return the block group that contains the bytenr
218  */
219 static struct btrfs_block_group *block_group_cache_tree_search(
220 		struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 	struct btrfs_block_group *cache, *ret = NULL;
223 	struct rb_node *n;
224 	u64 end, start;
225 
226 	read_lock(&info->block_group_cache_lock);
227 	n = info->block_group_cache_tree.rb_root.rb_node;
228 
229 	while (n) {
230 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 		end = cache->start + cache->length - 1;
232 		start = cache->start;
233 
234 		if (bytenr < start) {
235 			if (!contains && (!ret || start < ret->start))
236 				ret = cache;
237 			n = n->rb_left;
238 		} else if (bytenr > start) {
239 			if (contains && bytenr <= end) {
240 				ret = cache;
241 				break;
242 			}
243 			n = n->rb_right;
244 		} else {
245 			ret = cache;
246 			break;
247 		}
248 	}
249 	if (ret)
250 		btrfs_get_block_group(ret);
251 	read_unlock(&info->block_group_cache_lock);
252 
253 	return ret;
254 }
255 
256 /*
257  * Return the block group that starts at or after bytenr
258  */
259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 		struct btrfs_fs_info *info, u64 bytenr)
261 {
262 	return block_group_cache_tree_search(info, bytenr, 0);
263 }
264 
265 /*
266  * Return the block group that contains the given bytenr
267  */
268 struct btrfs_block_group *btrfs_lookup_block_group(
269 		struct btrfs_fs_info *info, u64 bytenr)
270 {
271 	return block_group_cache_tree_search(info, bytenr, 1);
272 }
273 
274 struct btrfs_block_group *btrfs_next_block_group(
275 		struct btrfs_block_group *cache)
276 {
277 	struct btrfs_fs_info *fs_info = cache->fs_info;
278 	struct rb_node *node;
279 
280 	read_lock(&fs_info->block_group_cache_lock);
281 
282 	/* If our block group was removed, we need a full search. */
283 	if (RB_EMPTY_NODE(&cache->cache_node)) {
284 		const u64 next_bytenr = cache->start + cache->length;
285 
286 		read_unlock(&fs_info->block_group_cache_lock);
287 		btrfs_put_block_group(cache);
288 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 	}
290 	node = rb_next(&cache->cache_node);
291 	btrfs_put_block_group(cache);
292 	if (node) {
293 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 		btrfs_get_block_group(cache);
295 	} else
296 		cache = NULL;
297 	read_unlock(&fs_info->block_group_cache_lock);
298 	return cache;
299 }
300 
301 /*
302  * Check if we can do a NOCOW write for a given extent.
303  *
304  * @fs_info:       The filesystem information object.
305  * @bytenr:        Logical start address of the extent.
306  *
307  * Check if we can do a NOCOW write for the given extent, and increments the
308  * number of NOCOW writers in the block group that contains the extent, as long
309  * as the block group exists and it's currently not in read-only mode.
310  *
311  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312  *          is responsible for calling btrfs_dec_nocow_writers() later.
313  *
314  *          Or NULL if we can not do a NOCOW write
315  */
316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 						  u64 bytenr)
318 {
319 	struct btrfs_block_group *bg;
320 	bool can_nocow = true;
321 
322 	bg = btrfs_lookup_block_group(fs_info, bytenr);
323 	if (!bg)
324 		return NULL;
325 
326 	spin_lock(&bg->lock);
327 	if (bg->ro)
328 		can_nocow = false;
329 	else
330 		atomic_inc(&bg->nocow_writers);
331 	spin_unlock(&bg->lock);
332 
333 	if (!can_nocow) {
334 		btrfs_put_block_group(bg);
335 		return NULL;
336 	}
337 
338 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
339 	return bg;
340 }
341 
342 /*
343  * Decrement the number of NOCOW writers in a block group.
344  *
345  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346  * and on the block group returned by that call. Typically this is called after
347  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348  * relocation.
349  *
350  * After this call, the caller should not use the block group anymore. It it wants
351  * to use it, then it should get a reference on it before calling this function.
352  */
353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 	if (atomic_dec_and_test(&bg->nocow_writers))
356 		wake_up_var(&bg->nocow_writers);
357 
358 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 	btrfs_put_block_group(bg);
360 }
361 
362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366 
367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 					const u64 start)
369 {
370 	struct btrfs_block_group *bg;
371 
372 	bg = btrfs_lookup_block_group(fs_info, start);
373 	ASSERT(bg);
374 	if (atomic_dec_and_test(&bg->reservations))
375 		wake_up_var(&bg->reservations);
376 	btrfs_put_block_group(bg);
377 }
378 
379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 	struct btrfs_space_info *space_info = bg->space_info;
382 
383 	ASSERT(bg->ro);
384 
385 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 		return;
387 
388 	/*
389 	 * Our block group is read only but before we set it to read only,
390 	 * some task might have had allocated an extent from it already, but it
391 	 * has not yet created a respective ordered extent (and added it to a
392 	 * root's list of ordered extents).
393 	 * Therefore wait for any task currently allocating extents, since the
394 	 * block group's reservations counter is incremented while a read lock
395 	 * on the groups' semaphore is held and decremented after releasing
396 	 * the read access on that semaphore and creating the ordered extent.
397 	 */
398 	down_write(&space_info->groups_sem);
399 	up_write(&space_info->groups_sem);
400 
401 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403 
404 struct btrfs_caching_control *btrfs_get_caching_control(
405 		struct btrfs_block_group *cache)
406 {
407 	struct btrfs_caching_control *ctl;
408 
409 	spin_lock(&cache->lock);
410 	if (!cache->caching_ctl) {
411 		spin_unlock(&cache->lock);
412 		return NULL;
413 	}
414 
415 	ctl = cache->caching_ctl;
416 	refcount_inc(&ctl->count);
417 	spin_unlock(&cache->lock);
418 	return ctl;
419 }
420 
421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 	if (refcount_dec_and_test(&ctl->count))
424 		kfree(ctl);
425 }
426 
427 /*
428  * When we wait for progress in the block group caching, its because our
429  * allocation attempt failed at least once.  So, we must sleep and let some
430  * progress happen before we try again.
431  *
432  * This function will sleep at least once waiting for new free space to show
433  * up, and then it will check the block group free space numbers for our min
434  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
435  * a free extent of a given size, but this is a good start.
436  *
437  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438  * any of the information in this block group.
439  */
440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 					   u64 num_bytes)
442 {
443 	struct btrfs_caching_control *caching_ctl;
444 	int progress;
445 
446 	caching_ctl = btrfs_get_caching_control(cache);
447 	if (!caching_ctl)
448 		return;
449 
450 	/*
451 	 * We've already failed to allocate from this block group, so even if
452 	 * there's enough space in the block group it isn't contiguous enough to
453 	 * allow for an allocation, so wait for at least the next wakeup tick,
454 	 * or for the thing to be done.
455 	 */
456 	progress = atomic_read(&caching_ctl->progress);
457 
458 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
459 		   (progress != atomic_read(&caching_ctl->progress) &&
460 		    (cache->free_space_ctl->free_space >= num_bytes)));
461 
462 	btrfs_put_caching_control(caching_ctl);
463 }
464 
465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466 				       struct btrfs_caching_control *caching_ctl)
467 {
468 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470 }
471 
472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
473 {
474 	struct btrfs_caching_control *caching_ctl;
475 	int ret;
476 
477 	caching_ctl = btrfs_get_caching_control(cache);
478 	if (!caching_ctl)
479 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
480 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
481 	btrfs_put_caching_control(caching_ctl);
482 	return ret;
483 }
484 
485 #ifdef CONFIG_BTRFS_DEBUG
486 static void fragment_free_space(struct btrfs_block_group *block_group)
487 {
488 	struct btrfs_fs_info *fs_info = block_group->fs_info;
489 	u64 start = block_group->start;
490 	u64 len = block_group->length;
491 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492 		fs_info->nodesize : fs_info->sectorsize;
493 	u64 step = chunk << 1;
494 
495 	while (len > chunk) {
496 		btrfs_remove_free_space(block_group, start, chunk);
497 		start += step;
498 		if (len < step)
499 			len = 0;
500 		else
501 			len -= step;
502 	}
503 }
504 #endif
505 
506 /*
507  * Add a free space range to the in memory free space cache of a block group.
508  * This checks if the range contains super block locations and any such
509  * locations are not added to the free space cache.
510  *
511  * @block_group:      The target block group.
512  * @start:            Start offset of the range.
513  * @end:              End offset of the range (exclusive).
514  * @total_added_ret:  Optional pointer to return the total amount of space
515  *                    added to the block group's free space cache.
516  *
517  * Returns 0 on success or < 0 on error.
518  */
519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
520 			     u64 end, u64 *total_added_ret)
521 {
522 	struct btrfs_fs_info *info = block_group->fs_info;
523 	u64 extent_start, extent_end, size;
524 	int ret;
525 
526 	if (total_added_ret)
527 		*total_added_ret = 0;
528 
529 	while (start < end) {
530 		if (!find_first_extent_bit(&info->excluded_extents, start,
531 					   &extent_start, &extent_end,
532 					   EXTENT_DIRTY | EXTENT_UPTODATE,
533 					   NULL))
534 			break;
535 
536 		if (extent_start <= start) {
537 			start = extent_end + 1;
538 		} else if (extent_start > start && extent_start < end) {
539 			size = extent_start - start;
540 			ret = btrfs_add_free_space_async_trimmed(block_group,
541 								 start, size);
542 			if (ret)
543 				return ret;
544 			if (total_added_ret)
545 				*total_added_ret += size;
546 			start = extent_end + 1;
547 		} else {
548 			break;
549 		}
550 	}
551 
552 	if (start < end) {
553 		size = end - start;
554 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
555 							 size);
556 		if (ret)
557 			return ret;
558 		if (total_added_ret)
559 			*total_added_ret += size;
560 	}
561 
562 	return 0;
563 }
564 
565 /*
566  * Get an arbitrary extent item index / max_index through the block group
567  *
568  * @block_group   the block group to sample from
569  * @index:        the integral step through the block group to grab from
570  * @max_index:    the granularity of the sampling
571  * @key:          return value parameter for the item we find
572  *
573  * Pre-conditions on indices:
574  * 0 <= index <= max_index
575  * 0 < max_index
576  *
577  * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578  * error code on error.
579  */
580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
581 					  struct btrfs_block_group *block_group,
582 					  int index, int max_index,
583 					  struct btrfs_key *found_key)
584 {
585 	struct btrfs_fs_info *fs_info = block_group->fs_info;
586 	struct btrfs_root *extent_root;
587 	u64 search_offset;
588 	u64 search_end = block_group->start + block_group->length;
589 	struct btrfs_path *path;
590 	struct btrfs_key search_key;
591 	int ret = 0;
592 
593 	ASSERT(index >= 0);
594 	ASSERT(index <= max_index);
595 	ASSERT(max_index > 0);
596 	lockdep_assert_held(&caching_ctl->mutex);
597 	lockdep_assert_held_read(&fs_info->commit_root_sem);
598 
599 	path = btrfs_alloc_path();
600 	if (!path)
601 		return -ENOMEM;
602 
603 	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
604 						       BTRFS_SUPER_INFO_OFFSET));
605 
606 	path->skip_locking = 1;
607 	path->search_commit_root = 1;
608 	path->reada = READA_FORWARD;
609 
610 	search_offset = index * div_u64(block_group->length, max_index);
611 	search_key.objectid = block_group->start + search_offset;
612 	search_key.type = BTRFS_EXTENT_ITEM_KEY;
613 	search_key.offset = 0;
614 
615 	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
616 		/* Success; sampled an extent item in the block group */
617 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
618 		    found_key->objectid >= block_group->start &&
619 		    found_key->objectid + found_key->offset <= search_end)
620 			break;
621 
622 		/* We can't possibly find a valid extent item anymore */
623 		if (found_key->objectid >= search_end) {
624 			ret = 1;
625 			break;
626 		}
627 	}
628 
629 	lockdep_assert_held(&caching_ctl->mutex);
630 	lockdep_assert_held_read(&fs_info->commit_root_sem);
631 	btrfs_free_path(path);
632 	return ret;
633 }
634 
635 /*
636  * Best effort attempt to compute a block group's size class while caching it.
637  *
638  * @block_group: the block group we are caching
639  *
640  * We cannot infer the size class while adding free space extents, because that
641  * logic doesn't care about contiguous file extents (it doesn't differentiate
642  * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643  * file extent items. Reading all of them is quite wasteful, because usually
644  * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645  * them at even steps through the block group and pick the smallest size class
646  * we see. Since size class is best effort, and not guaranteed in general,
647  * inaccuracy is acceptable.
648  *
649  * To be more explicit about why this algorithm makes sense:
650  *
651  * If we are caching in a block group from disk, then there are three major cases
652  * to consider:
653  * 1. the block group is well behaved and all extents in it are the same size
654  *    class.
655  * 2. the block group is mostly one size class with rare exceptions for last
656  *    ditch allocations
657  * 3. the block group was populated before size classes and can have a totally
658  *    arbitrary mix of size classes.
659  *
660  * In case 1, looking at any extent in the block group will yield the correct
661  * result. For the mixed cases, taking the minimum size class seems like a good
662  * approximation, since gaps from frees will be usable to the size class. For
663  * 2., a small handful of file extents is likely to yield the right answer. For
664  * 3, we can either read every file extent, or admit that this is best effort
665  * anyway and try to stay fast.
666  *
667  * Returns: 0 on success, negative error code on error.
668  */
669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
670 				       struct btrfs_block_group *block_group)
671 {
672 	struct btrfs_fs_info *fs_info = block_group->fs_info;
673 	struct btrfs_key key;
674 	int i;
675 	u64 min_size = block_group->length;
676 	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
677 	int ret;
678 
679 	if (!btrfs_block_group_should_use_size_class(block_group))
680 		return 0;
681 
682 	lockdep_assert_held(&caching_ctl->mutex);
683 	lockdep_assert_held_read(&fs_info->commit_root_sem);
684 	for (i = 0; i < 5; ++i) {
685 		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
686 		if (ret < 0)
687 			goto out;
688 		if (ret > 0)
689 			continue;
690 		min_size = min_t(u64, min_size, key.offset);
691 		size_class = btrfs_calc_block_group_size_class(min_size);
692 	}
693 	if (size_class != BTRFS_BG_SZ_NONE) {
694 		spin_lock(&block_group->lock);
695 		block_group->size_class = size_class;
696 		spin_unlock(&block_group->lock);
697 	}
698 out:
699 	return ret;
700 }
701 
702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
703 {
704 	struct btrfs_block_group *block_group = caching_ctl->block_group;
705 	struct btrfs_fs_info *fs_info = block_group->fs_info;
706 	struct btrfs_root *extent_root;
707 	struct btrfs_path *path;
708 	struct extent_buffer *leaf;
709 	struct btrfs_key key;
710 	u64 total_found = 0;
711 	u64 last = 0;
712 	u32 nritems;
713 	int ret;
714 	bool wakeup = true;
715 
716 	path = btrfs_alloc_path();
717 	if (!path)
718 		return -ENOMEM;
719 
720 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
721 	extent_root = btrfs_extent_root(fs_info, last);
722 
723 #ifdef CONFIG_BTRFS_DEBUG
724 	/*
725 	 * If we're fragmenting we don't want to make anybody think we can
726 	 * allocate from this block group until we've had a chance to fragment
727 	 * the free space.
728 	 */
729 	if (btrfs_should_fragment_free_space(block_group))
730 		wakeup = false;
731 #endif
732 	/*
733 	 * We don't want to deadlock with somebody trying to allocate a new
734 	 * extent for the extent root while also trying to search the extent
735 	 * root to add free space.  So we skip locking and search the commit
736 	 * root, since its read-only
737 	 */
738 	path->skip_locking = 1;
739 	path->search_commit_root = 1;
740 	path->reada = READA_FORWARD;
741 
742 	key.objectid = last;
743 	key.offset = 0;
744 	key.type = BTRFS_EXTENT_ITEM_KEY;
745 
746 next:
747 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
748 	if (ret < 0)
749 		goto out;
750 
751 	leaf = path->nodes[0];
752 	nritems = btrfs_header_nritems(leaf);
753 
754 	while (1) {
755 		if (btrfs_fs_closing(fs_info) > 1) {
756 			last = (u64)-1;
757 			break;
758 		}
759 
760 		if (path->slots[0] < nritems) {
761 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762 		} else {
763 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
764 			if (ret)
765 				break;
766 
767 			if (need_resched() ||
768 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
769 				btrfs_release_path(path);
770 				up_read(&fs_info->commit_root_sem);
771 				mutex_unlock(&caching_ctl->mutex);
772 				cond_resched();
773 				mutex_lock(&caching_ctl->mutex);
774 				down_read(&fs_info->commit_root_sem);
775 				goto next;
776 			}
777 
778 			ret = btrfs_next_leaf(extent_root, path);
779 			if (ret < 0)
780 				goto out;
781 			if (ret)
782 				break;
783 			leaf = path->nodes[0];
784 			nritems = btrfs_header_nritems(leaf);
785 			continue;
786 		}
787 
788 		if (key.objectid < last) {
789 			key.objectid = last;
790 			key.offset = 0;
791 			key.type = BTRFS_EXTENT_ITEM_KEY;
792 			btrfs_release_path(path);
793 			goto next;
794 		}
795 
796 		if (key.objectid < block_group->start) {
797 			path->slots[0]++;
798 			continue;
799 		}
800 
801 		if (key.objectid >= block_group->start + block_group->length)
802 			break;
803 
804 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
805 		    key.type == BTRFS_METADATA_ITEM_KEY) {
806 			u64 space_added;
807 
808 			ret = btrfs_add_new_free_space(block_group, last,
809 						       key.objectid, &space_added);
810 			if (ret)
811 				goto out;
812 			total_found += space_added;
813 			if (key.type == BTRFS_METADATA_ITEM_KEY)
814 				last = key.objectid +
815 					fs_info->nodesize;
816 			else
817 				last = key.objectid + key.offset;
818 
819 			if (total_found > CACHING_CTL_WAKE_UP) {
820 				total_found = 0;
821 				if (wakeup) {
822 					atomic_inc(&caching_ctl->progress);
823 					wake_up(&caching_ctl->wait);
824 				}
825 			}
826 		}
827 		path->slots[0]++;
828 	}
829 
830 	ret = btrfs_add_new_free_space(block_group, last,
831 				       block_group->start + block_group->length,
832 				       NULL);
833 out:
834 	btrfs_free_path(path);
835 	return ret;
836 }
837 
838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
839 {
840 	clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
841 			  bg->start + bg->length - 1, EXTENT_UPTODATE);
842 }
843 
844 static noinline void caching_thread(struct btrfs_work *work)
845 {
846 	struct btrfs_block_group *block_group;
847 	struct btrfs_fs_info *fs_info;
848 	struct btrfs_caching_control *caching_ctl;
849 	int ret;
850 
851 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
852 	block_group = caching_ctl->block_group;
853 	fs_info = block_group->fs_info;
854 
855 	mutex_lock(&caching_ctl->mutex);
856 	down_read(&fs_info->commit_root_sem);
857 
858 	load_block_group_size_class(caching_ctl, block_group);
859 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
860 		ret = load_free_space_cache(block_group);
861 		if (ret == 1) {
862 			ret = 0;
863 			goto done;
864 		}
865 
866 		/*
867 		 * We failed to load the space cache, set ourselves to
868 		 * CACHE_STARTED and carry on.
869 		 */
870 		spin_lock(&block_group->lock);
871 		block_group->cached = BTRFS_CACHE_STARTED;
872 		spin_unlock(&block_group->lock);
873 		wake_up(&caching_ctl->wait);
874 	}
875 
876 	/*
877 	 * If we are in the transaction that populated the free space tree we
878 	 * can't actually cache from the free space tree as our commit root and
879 	 * real root are the same, so we could change the contents of the blocks
880 	 * while caching.  Instead do the slow caching in this case, and after
881 	 * the transaction has committed we will be safe.
882 	 */
883 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
884 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
885 		ret = load_free_space_tree(caching_ctl);
886 	else
887 		ret = load_extent_tree_free(caching_ctl);
888 done:
889 	spin_lock(&block_group->lock);
890 	block_group->caching_ctl = NULL;
891 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
892 	spin_unlock(&block_group->lock);
893 
894 #ifdef CONFIG_BTRFS_DEBUG
895 	if (btrfs_should_fragment_free_space(block_group)) {
896 		u64 bytes_used;
897 
898 		spin_lock(&block_group->space_info->lock);
899 		spin_lock(&block_group->lock);
900 		bytes_used = block_group->length - block_group->used;
901 		block_group->space_info->bytes_used += bytes_used >> 1;
902 		spin_unlock(&block_group->lock);
903 		spin_unlock(&block_group->space_info->lock);
904 		fragment_free_space(block_group);
905 	}
906 #endif
907 
908 	up_read(&fs_info->commit_root_sem);
909 	btrfs_free_excluded_extents(block_group);
910 	mutex_unlock(&caching_ctl->mutex);
911 
912 	wake_up(&caching_ctl->wait);
913 
914 	btrfs_put_caching_control(caching_ctl);
915 	btrfs_put_block_group(block_group);
916 }
917 
918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
919 {
920 	struct btrfs_fs_info *fs_info = cache->fs_info;
921 	struct btrfs_caching_control *caching_ctl = NULL;
922 	int ret = 0;
923 
924 	/* Allocator for zoned filesystems does not use the cache at all */
925 	if (btrfs_is_zoned(fs_info))
926 		return 0;
927 
928 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
929 	if (!caching_ctl)
930 		return -ENOMEM;
931 
932 	INIT_LIST_HEAD(&caching_ctl->list);
933 	mutex_init(&caching_ctl->mutex);
934 	init_waitqueue_head(&caching_ctl->wait);
935 	caching_ctl->block_group = cache;
936 	refcount_set(&caching_ctl->count, 2);
937 	atomic_set(&caching_ctl->progress, 0);
938 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
939 
940 	spin_lock(&cache->lock);
941 	if (cache->cached != BTRFS_CACHE_NO) {
942 		kfree(caching_ctl);
943 
944 		caching_ctl = cache->caching_ctl;
945 		if (caching_ctl)
946 			refcount_inc(&caching_ctl->count);
947 		spin_unlock(&cache->lock);
948 		goto out;
949 	}
950 	WARN_ON(cache->caching_ctl);
951 	cache->caching_ctl = caching_ctl;
952 	cache->cached = BTRFS_CACHE_STARTED;
953 	spin_unlock(&cache->lock);
954 
955 	write_lock(&fs_info->block_group_cache_lock);
956 	refcount_inc(&caching_ctl->count);
957 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
958 	write_unlock(&fs_info->block_group_cache_lock);
959 
960 	btrfs_get_block_group(cache);
961 
962 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
963 out:
964 	if (wait && caching_ctl)
965 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
966 	if (caching_ctl)
967 		btrfs_put_caching_control(caching_ctl);
968 
969 	return ret;
970 }
971 
972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
973 {
974 	u64 extra_flags = chunk_to_extended(flags) &
975 				BTRFS_EXTENDED_PROFILE_MASK;
976 
977 	write_seqlock(&fs_info->profiles_lock);
978 	if (flags & BTRFS_BLOCK_GROUP_DATA)
979 		fs_info->avail_data_alloc_bits &= ~extra_flags;
980 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
981 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
982 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
983 		fs_info->avail_system_alloc_bits &= ~extra_flags;
984 	write_sequnlock(&fs_info->profiles_lock);
985 }
986 
987 /*
988  * Clear incompat bits for the following feature(s):
989  *
990  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991  *            in the whole filesystem
992  *
993  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
994  */
995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
996 {
997 	bool found_raid56 = false;
998 	bool found_raid1c34 = false;
999 
1000 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1003 		struct list_head *head = &fs_info->space_info;
1004 		struct btrfs_space_info *sinfo;
1005 
1006 		list_for_each_entry_rcu(sinfo, head, list) {
1007 			down_read(&sinfo->groups_sem);
1008 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1009 				found_raid56 = true;
1010 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1011 				found_raid56 = true;
1012 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013 				found_raid1c34 = true;
1014 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015 				found_raid1c34 = true;
1016 			up_read(&sinfo->groups_sem);
1017 		}
1018 		if (!found_raid56)
1019 			btrfs_clear_fs_incompat(fs_info, RAID56);
1020 		if (!found_raid1c34)
1021 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
1022 	}
1023 }
1024 
1025 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1026 				   struct btrfs_path *path,
1027 				   struct btrfs_block_group *block_group)
1028 {
1029 	struct btrfs_fs_info *fs_info = trans->fs_info;
1030 	struct btrfs_root *root;
1031 	struct btrfs_key key;
1032 	int ret;
1033 
1034 	root = btrfs_block_group_root(fs_info);
1035 	key.objectid = block_group->start;
1036 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1037 	key.offset = block_group->length;
1038 
1039 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1040 	if (ret > 0)
1041 		ret = -ENOENT;
1042 	if (ret < 0)
1043 		return ret;
1044 
1045 	ret = btrfs_del_item(trans, root, path);
1046 	return ret;
1047 }
1048 
1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1050 			     struct btrfs_chunk_map *map)
1051 {
1052 	struct btrfs_fs_info *fs_info = trans->fs_info;
1053 	struct btrfs_path *path;
1054 	struct btrfs_block_group *block_group;
1055 	struct btrfs_free_cluster *cluster;
1056 	struct inode *inode;
1057 	struct kobject *kobj = NULL;
1058 	int ret;
1059 	int index;
1060 	int factor;
1061 	struct btrfs_caching_control *caching_ctl = NULL;
1062 	bool remove_map;
1063 	bool remove_rsv = false;
1064 
1065 	block_group = btrfs_lookup_block_group(fs_info, map->start);
1066 	BUG_ON(!block_group);
1067 	BUG_ON(!block_group->ro);
1068 
1069 	trace_btrfs_remove_block_group(block_group);
1070 	/*
1071 	 * Free the reserved super bytes from this block group before
1072 	 * remove it.
1073 	 */
1074 	btrfs_free_excluded_extents(block_group);
1075 	btrfs_free_ref_tree_range(fs_info, block_group->start,
1076 				  block_group->length);
1077 
1078 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1079 	factor = btrfs_bg_type_to_factor(block_group->flags);
1080 
1081 	/* make sure this block group isn't part of an allocation cluster */
1082 	cluster = &fs_info->data_alloc_cluster;
1083 	spin_lock(&cluster->refill_lock);
1084 	btrfs_return_cluster_to_free_space(block_group, cluster);
1085 	spin_unlock(&cluster->refill_lock);
1086 
1087 	/*
1088 	 * make sure this block group isn't part of a metadata
1089 	 * allocation cluster
1090 	 */
1091 	cluster = &fs_info->meta_alloc_cluster;
1092 	spin_lock(&cluster->refill_lock);
1093 	btrfs_return_cluster_to_free_space(block_group, cluster);
1094 	spin_unlock(&cluster->refill_lock);
1095 
1096 	btrfs_clear_treelog_bg(block_group);
1097 	btrfs_clear_data_reloc_bg(block_group);
1098 
1099 	path = btrfs_alloc_path();
1100 	if (!path) {
1101 		ret = -ENOMEM;
1102 		goto out;
1103 	}
1104 
1105 	/*
1106 	 * get the inode first so any iput calls done for the io_list
1107 	 * aren't the final iput (no unlinks allowed now)
1108 	 */
1109 	inode = lookup_free_space_inode(block_group, path);
1110 
1111 	mutex_lock(&trans->transaction->cache_write_mutex);
1112 	/*
1113 	 * Make sure our free space cache IO is done before removing the
1114 	 * free space inode
1115 	 */
1116 	spin_lock(&trans->transaction->dirty_bgs_lock);
1117 	if (!list_empty(&block_group->io_list)) {
1118 		list_del_init(&block_group->io_list);
1119 
1120 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1121 
1122 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1123 		btrfs_wait_cache_io(trans, block_group, path);
1124 		btrfs_put_block_group(block_group);
1125 		spin_lock(&trans->transaction->dirty_bgs_lock);
1126 	}
1127 
1128 	if (!list_empty(&block_group->dirty_list)) {
1129 		list_del_init(&block_group->dirty_list);
1130 		remove_rsv = true;
1131 		btrfs_put_block_group(block_group);
1132 	}
1133 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1134 	mutex_unlock(&trans->transaction->cache_write_mutex);
1135 
1136 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1137 	if (ret)
1138 		goto out;
1139 
1140 	write_lock(&fs_info->block_group_cache_lock);
1141 	rb_erase_cached(&block_group->cache_node,
1142 			&fs_info->block_group_cache_tree);
1143 	RB_CLEAR_NODE(&block_group->cache_node);
1144 
1145 	/* Once for the block groups rbtree */
1146 	btrfs_put_block_group(block_group);
1147 
1148 	write_unlock(&fs_info->block_group_cache_lock);
1149 
1150 	down_write(&block_group->space_info->groups_sem);
1151 	/*
1152 	 * we must use list_del_init so people can check to see if they
1153 	 * are still on the list after taking the semaphore
1154 	 */
1155 	list_del_init(&block_group->list);
1156 	if (list_empty(&block_group->space_info->block_groups[index])) {
1157 		kobj = block_group->space_info->block_group_kobjs[index];
1158 		block_group->space_info->block_group_kobjs[index] = NULL;
1159 		clear_avail_alloc_bits(fs_info, block_group->flags);
1160 	}
1161 	up_write(&block_group->space_info->groups_sem);
1162 	clear_incompat_bg_bits(fs_info, block_group->flags);
1163 	if (kobj) {
1164 		kobject_del(kobj);
1165 		kobject_put(kobj);
1166 	}
1167 
1168 	if (block_group->cached == BTRFS_CACHE_STARTED)
1169 		btrfs_wait_block_group_cache_done(block_group);
1170 
1171 	write_lock(&fs_info->block_group_cache_lock);
1172 	caching_ctl = btrfs_get_caching_control(block_group);
1173 	if (!caching_ctl) {
1174 		struct btrfs_caching_control *ctl;
1175 
1176 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1177 			if (ctl->block_group == block_group) {
1178 				caching_ctl = ctl;
1179 				refcount_inc(&caching_ctl->count);
1180 				break;
1181 			}
1182 		}
1183 	}
1184 	if (caching_ctl)
1185 		list_del_init(&caching_ctl->list);
1186 	write_unlock(&fs_info->block_group_cache_lock);
1187 
1188 	if (caching_ctl) {
1189 		/* Once for the caching bgs list and once for us. */
1190 		btrfs_put_caching_control(caching_ctl);
1191 		btrfs_put_caching_control(caching_ctl);
1192 	}
1193 
1194 	spin_lock(&trans->transaction->dirty_bgs_lock);
1195 	WARN_ON(!list_empty(&block_group->dirty_list));
1196 	WARN_ON(!list_empty(&block_group->io_list));
1197 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1198 
1199 	btrfs_remove_free_space_cache(block_group);
1200 
1201 	spin_lock(&block_group->space_info->lock);
1202 	list_del_init(&block_group->ro_list);
1203 
1204 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1205 		WARN_ON(block_group->space_info->total_bytes
1206 			< block_group->length);
1207 		WARN_ON(block_group->space_info->bytes_readonly
1208 			< block_group->length - block_group->zone_unusable);
1209 		WARN_ON(block_group->space_info->bytes_zone_unusable
1210 			< block_group->zone_unusable);
1211 		WARN_ON(block_group->space_info->disk_total
1212 			< block_group->length * factor);
1213 	}
1214 	block_group->space_info->total_bytes -= block_group->length;
1215 	block_group->space_info->bytes_readonly -=
1216 		(block_group->length - block_group->zone_unusable);
1217 	block_group->space_info->bytes_zone_unusable -=
1218 		block_group->zone_unusable;
1219 	block_group->space_info->disk_total -= block_group->length * factor;
1220 
1221 	spin_unlock(&block_group->space_info->lock);
1222 
1223 	/*
1224 	 * Remove the free space for the block group from the free space tree
1225 	 * and the block group's item from the extent tree before marking the
1226 	 * block group as removed. This is to prevent races with tasks that
1227 	 * freeze and unfreeze a block group, this task and another task
1228 	 * allocating a new block group - the unfreeze task ends up removing
1229 	 * the block group's extent map before the task calling this function
1230 	 * deletes the block group item from the extent tree, allowing for
1231 	 * another task to attempt to create another block group with the same
1232 	 * item key (and failing with -EEXIST and a transaction abort).
1233 	 */
1234 	ret = remove_block_group_free_space(trans, block_group);
1235 	if (ret)
1236 		goto out;
1237 
1238 	ret = remove_block_group_item(trans, path, block_group);
1239 	if (ret < 0)
1240 		goto out;
1241 
1242 	spin_lock(&block_group->lock);
1243 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1244 
1245 	/*
1246 	 * At this point trimming or scrub can't start on this block group,
1247 	 * because we removed the block group from the rbtree
1248 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1249 	 * even if someone already got this block group before we removed it
1250 	 * from the rbtree, they have already incremented block_group->frozen -
1251 	 * if they didn't, for the trimming case they won't find any free space
1252 	 * entries because we already removed them all when we called
1253 	 * btrfs_remove_free_space_cache().
1254 	 *
1255 	 * And we must not remove the chunk map from the fs_info->mapping_tree
1256 	 * to prevent the same logical address range and physical device space
1257 	 * ranges from being reused for a new block group. This is needed to
1258 	 * avoid races with trimming and scrub.
1259 	 *
1260 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1261 	 * completely transactionless, so while it is trimming a range the
1262 	 * currently running transaction might finish and a new one start,
1263 	 * allowing for new block groups to be created that can reuse the same
1264 	 * physical device locations unless we take this special care.
1265 	 *
1266 	 * There may also be an implicit trim operation if the file system
1267 	 * is mounted with -odiscard. The same protections must remain
1268 	 * in place until the extents have been discarded completely when
1269 	 * the transaction commit has completed.
1270 	 */
1271 	remove_map = (atomic_read(&block_group->frozen) == 0);
1272 	spin_unlock(&block_group->lock);
1273 
1274 	if (remove_map)
1275 		btrfs_remove_chunk_map(fs_info, map);
1276 
1277 out:
1278 	/* Once for the lookup reference */
1279 	btrfs_put_block_group(block_group);
1280 	if (remove_rsv)
1281 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1282 	btrfs_free_path(path);
1283 	return ret;
1284 }
1285 
1286 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1287 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1288 {
1289 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1290 	struct btrfs_chunk_map *map;
1291 	unsigned int num_items;
1292 
1293 	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1294 	ASSERT(map != NULL);
1295 	ASSERT(map->start == chunk_offset);
1296 
1297 	/*
1298 	 * We need to reserve 3 + N units from the metadata space info in order
1299 	 * to remove a block group (done at btrfs_remove_chunk() and at
1300 	 * btrfs_remove_block_group()), which are used for:
1301 	 *
1302 	 * 1 unit for adding the free space inode's orphan (located in the tree
1303 	 * of tree roots).
1304 	 * 1 unit for deleting the block group item (located in the extent
1305 	 * tree).
1306 	 * 1 unit for deleting the free space item (located in tree of tree
1307 	 * roots).
1308 	 * N units for deleting N device extent items corresponding to each
1309 	 * stripe (located in the device tree).
1310 	 *
1311 	 * In order to remove a block group we also need to reserve units in the
1312 	 * system space info in order to update the chunk tree (update one or
1313 	 * more device items and remove one chunk item), but this is done at
1314 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1315 	 */
1316 	num_items = 3 + map->num_stripes;
1317 	btrfs_free_chunk_map(map);
1318 
1319 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1320 }
1321 
1322 /*
1323  * Mark block group @cache read-only, so later write won't happen to block
1324  * group @cache.
1325  *
1326  * If @force is not set, this function will only mark the block group readonly
1327  * if we have enough free space (1M) in other metadata/system block groups.
1328  * If @force is not set, this function will mark the block group readonly
1329  * without checking free space.
1330  *
1331  * NOTE: This function doesn't care if other block groups can contain all the
1332  * data in this block group. That check should be done by relocation routine,
1333  * not this function.
1334  */
1335 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1336 {
1337 	struct btrfs_space_info *sinfo = cache->space_info;
1338 	u64 num_bytes;
1339 	int ret = -ENOSPC;
1340 
1341 	spin_lock(&sinfo->lock);
1342 	spin_lock(&cache->lock);
1343 
1344 	if (cache->swap_extents) {
1345 		ret = -ETXTBSY;
1346 		goto out;
1347 	}
1348 
1349 	if (cache->ro) {
1350 		cache->ro++;
1351 		ret = 0;
1352 		goto out;
1353 	}
1354 
1355 	num_bytes = cache->length - cache->reserved - cache->pinned -
1356 		    cache->bytes_super - cache->zone_unusable - cache->used;
1357 
1358 	/*
1359 	 * Data never overcommits, even in mixed mode, so do just the straight
1360 	 * check of left over space in how much we have allocated.
1361 	 */
1362 	if (force) {
1363 		ret = 0;
1364 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1365 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1366 
1367 		/*
1368 		 * Here we make sure if we mark this bg RO, we still have enough
1369 		 * free space as buffer.
1370 		 */
1371 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1372 			ret = 0;
1373 	} else {
1374 		/*
1375 		 * We overcommit metadata, so we need to do the
1376 		 * btrfs_can_overcommit check here, and we need to pass in
1377 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1378 		 * leeway to allow us to mark this block group as read only.
1379 		 */
1380 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1381 					 BTRFS_RESERVE_NO_FLUSH))
1382 			ret = 0;
1383 	}
1384 
1385 	if (!ret) {
1386 		sinfo->bytes_readonly += num_bytes;
1387 		if (btrfs_is_zoned(cache->fs_info)) {
1388 			/* Migrate zone_unusable bytes to readonly */
1389 			sinfo->bytes_readonly += cache->zone_unusable;
1390 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1391 			cache->zone_unusable = 0;
1392 		}
1393 		cache->ro++;
1394 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1395 	}
1396 out:
1397 	spin_unlock(&cache->lock);
1398 	spin_unlock(&sinfo->lock);
1399 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1400 		btrfs_info(cache->fs_info,
1401 			"unable to make block group %llu ro", cache->start);
1402 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1403 	}
1404 	return ret;
1405 }
1406 
1407 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1408 				 struct btrfs_block_group *bg)
1409 {
1410 	struct btrfs_fs_info *fs_info = bg->fs_info;
1411 	struct btrfs_transaction *prev_trans = NULL;
1412 	const u64 start = bg->start;
1413 	const u64 end = start + bg->length - 1;
1414 	int ret;
1415 
1416 	spin_lock(&fs_info->trans_lock);
1417 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1418 		prev_trans = list_last_entry(&trans->transaction->list,
1419 					     struct btrfs_transaction, list);
1420 		refcount_inc(&prev_trans->use_count);
1421 	}
1422 	spin_unlock(&fs_info->trans_lock);
1423 
1424 	/*
1425 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1426 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1427 	 * task might be running finish_extent_commit() for the previous
1428 	 * transaction N - 1, and have seen a range belonging to the block
1429 	 * group in pinned_extents before we were able to clear the whole block
1430 	 * group range from pinned_extents. This means that task can lookup for
1431 	 * the block group after we unpinned it from pinned_extents and removed
1432 	 * it, leading to a BUG_ON() at unpin_extent_range().
1433 	 */
1434 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1435 	if (prev_trans) {
1436 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1437 					EXTENT_DIRTY);
1438 		if (ret)
1439 			goto out;
1440 	}
1441 
1442 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1443 				EXTENT_DIRTY);
1444 out:
1445 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1446 	if (prev_trans)
1447 		btrfs_put_transaction(prev_trans);
1448 
1449 	return ret == 0;
1450 }
1451 
1452 /*
1453  * Process the unused_bgs list and remove any that don't have any allocated
1454  * space inside of them.
1455  */
1456 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1457 {
1458 	struct btrfs_block_group *block_group;
1459 	struct btrfs_space_info *space_info;
1460 	struct btrfs_trans_handle *trans;
1461 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1462 	int ret = 0;
1463 
1464 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1465 		return;
1466 
1467 	if (btrfs_fs_closing(fs_info))
1468 		return;
1469 
1470 	/*
1471 	 * Long running balances can keep us blocked here for eternity, so
1472 	 * simply skip deletion if we're unable to get the mutex.
1473 	 */
1474 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1475 		return;
1476 
1477 	spin_lock(&fs_info->unused_bgs_lock);
1478 	while (!list_empty(&fs_info->unused_bgs)) {
1479 		int trimming;
1480 
1481 		block_group = list_first_entry(&fs_info->unused_bgs,
1482 					       struct btrfs_block_group,
1483 					       bg_list);
1484 		list_del_init(&block_group->bg_list);
1485 
1486 		space_info = block_group->space_info;
1487 
1488 		if (ret || btrfs_mixed_space_info(space_info)) {
1489 			btrfs_put_block_group(block_group);
1490 			continue;
1491 		}
1492 		spin_unlock(&fs_info->unused_bgs_lock);
1493 
1494 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1495 
1496 		/* Don't want to race with allocators so take the groups_sem */
1497 		down_write(&space_info->groups_sem);
1498 
1499 		/*
1500 		 * Async discard moves the final block group discard to be prior
1501 		 * to the unused_bgs code path.  Therefore, if it's not fully
1502 		 * trimmed, punt it back to the async discard lists.
1503 		 */
1504 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1505 		    !btrfs_is_free_space_trimmed(block_group)) {
1506 			trace_btrfs_skip_unused_block_group(block_group);
1507 			up_write(&space_info->groups_sem);
1508 			/* Requeue if we failed because of async discard */
1509 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1510 						 block_group);
1511 			goto next;
1512 		}
1513 
1514 		spin_lock(&block_group->lock);
1515 		if (block_group->reserved || block_group->pinned ||
1516 		    block_group->used || block_group->ro ||
1517 		    list_is_singular(&block_group->list)) {
1518 			/*
1519 			 * We want to bail if we made new allocations or have
1520 			 * outstanding allocations in this block group.  We do
1521 			 * the ro check in case balance is currently acting on
1522 			 * this block group.
1523 			 */
1524 			trace_btrfs_skip_unused_block_group(block_group);
1525 			spin_unlock(&block_group->lock);
1526 			up_write(&space_info->groups_sem);
1527 			goto next;
1528 		}
1529 		spin_unlock(&block_group->lock);
1530 
1531 		/* We don't want to force the issue, only flip if it's ok. */
1532 		ret = inc_block_group_ro(block_group, 0);
1533 		up_write(&space_info->groups_sem);
1534 		if (ret < 0) {
1535 			ret = 0;
1536 			goto next;
1537 		}
1538 
1539 		ret = btrfs_zone_finish(block_group);
1540 		if (ret < 0) {
1541 			btrfs_dec_block_group_ro(block_group);
1542 			if (ret == -EAGAIN)
1543 				ret = 0;
1544 			goto next;
1545 		}
1546 
1547 		/*
1548 		 * Want to do this before we do anything else so we can recover
1549 		 * properly if we fail to join the transaction.
1550 		 */
1551 		trans = btrfs_start_trans_remove_block_group(fs_info,
1552 						     block_group->start);
1553 		if (IS_ERR(trans)) {
1554 			btrfs_dec_block_group_ro(block_group);
1555 			ret = PTR_ERR(trans);
1556 			goto next;
1557 		}
1558 
1559 		/*
1560 		 * We could have pending pinned extents for this block group,
1561 		 * just delete them, we don't care about them anymore.
1562 		 */
1563 		if (!clean_pinned_extents(trans, block_group)) {
1564 			btrfs_dec_block_group_ro(block_group);
1565 			goto end_trans;
1566 		}
1567 
1568 		/*
1569 		 * At this point, the block_group is read only and should fail
1570 		 * new allocations.  However, btrfs_finish_extent_commit() can
1571 		 * cause this block_group to be placed back on the discard
1572 		 * lists because now the block_group isn't fully discarded.
1573 		 * Bail here and try again later after discarding everything.
1574 		 */
1575 		spin_lock(&fs_info->discard_ctl.lock);
1576 		if (!list_empty(&block_group->discard_list)) {
1577 			spin_unlock(&fs_info->discard_ctl.lock);
1578 			btrfs_dec_block_group_ro(block_group);
1579 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1580 						 block_group);
1581 			goto end_trans;
1582 		}
1583 		spin_unlock(&fs_info->discard_ctl.lock);
1584 
1585 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1586 		spin_lock(&space_info->lock);
1587 		spin_lock(&block_group->lock);
1588 
1589 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1590 						     -block_group->pinned);
1591 		space_info->bytes_readonly += block_group->pinned;
1592 		block_group->pinned = 0;
1593 
1594 		spin_unlock(&block_group->lock);
1595 		spin_unlock(&space_info->lock);
1596 
1597 		/*
1598 		 * The normal path here is an unused block group is passed here,
1599 		 * then trimming is handled in the transaction commit path.
1600 		 * Async discard interposes before this to do the trimming
1601 		 * before coming down the unused block group path as trimming
1602 		 * will no longer be done later in the transaction commit path.
1603 		 */
1604 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1605 			goto flip_async;
1606 
1607 		/*
1608 		 * DISCARD can flip during remount. On zoned filesystems, we
1609 		 * need to reset sequential-required zones.
1610 		 */
1611 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1612 				btrfs_is_zoned(fs_info);
1613 
1614 		/* Implicit trim during transaction commit. */
1615 		if (trimming)
1616 			btrfs_freeze_block_group(block_group);
1617 
1618 		/*
1619 		 * Btrfs_remove_chunk will abort the transaction if things go
1620 		 * horribly wrong.
1621 		 */
1622 		ret = btrfs_remove_chunk(trans, block_group->start);
1623 
1624 		if (ret) {
1625 			if (trimming)
1626 				btrfs_unfreeze_block_group(block_group);
1627 			goto end_trans;
1628 		}
1629 
1630 		/*
1631 		 * If we're not mounted with -odiscard, we can just forget
1632 		 * about this block group. Otherwise we'll need to wait
1633 		 * until transaction commit to do the actual discard.
1634 		 */
1635 		if (trimming) {
1636 			spin_lock(&fs_info->unused_bgs_lock);
1637 			/*
1638 			 * A concurrent scrub might have added us to the list
1639 			 * fs_info->unused_bgs, so use a list_move operation
1640 			 * to add the block group to the deleted_bgs list.
1641 			 */
1642 			list_move(&block_group->bg_list,
1643 				  &trans->transaction->deleted_bgs);
1644 			spin_unlock(&fs_info->unused_bgs_lock);
1645 			btrfs_get_block_group(block_group);
1646 		}
1647 end_trans:
1648 		btrfs_end_transaction(trans);
1649 next:
1650 		btrfs_put_block_group(block_group);
1651 		spin_lock(&fs_info->unused_bgs_lock);
1652 	}
1653 	spin_unlock(&fs_info->unused_bgs_lock);
1654 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1655 	return;
1656 
1657 flip_async:
1658 	btrfs_end_transaction(trans);
1659 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1660 	btrfs_put_block_group(block_group);
1661 	btrfs_discard_punt_unused_bgs_list(fs_info);
1662 }
1663 
1664 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1665 {
1666 	struct btrfs_fs_info *fs_info = bg->fs_info;
1667 
1668 	spin_lock(&fs_info->unused_bgs_lock);
1669 	if (list_empty(&bg->bg_list)) {
1670 		btrfs_get_block_group(bg);
1671 		trace_btrfs_add_unused_block_group(bg);
1672 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1673 	} else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1674 		/* Pull out the block group from the reclaim_bgs list. */
1675 		trace_btrfs_add_unused_block_group(bg);
1676 		list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1677 	}
1678 	spin_unlock(&fs_info->unused_bgs_lock);
1679 }
1680 
1681 /*
1682  * We want block groups with a low number of used bytes to be in the beginning
1683  * of the list, so they will get reclaimed first.
1684  */
1685 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1686 			   const struct list_head *b)
1687 {
1688 	const struct btrfs_block_group *bg1, *bg2;
1689 
1690 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1691 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1692 
1693 	return bg1->used > bg2->used;
1694 }
1695 
1696 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1697 {
1698 	if (btrfs_is_zoned(fs_info))
1699 		return btrfs_zoned_should_reclaim(fs_info);
1700 	return true;
1701 }
1702 
1703 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1704 {
1705 	const struct btrfs_space_info *space_info = bg->space_info;
1706 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1707 	const u64 new_val = bg->used;
1708 	const u64 old_val = new_val + bytes_freed;
1709 	u64 thresh;
1710 
1711 	if (reclaim_thresh == 0)
1712 		return false;
1713 
1714 	thresh = mult_perc(bg->length, reclaim_thresh);
1715 
1716 	/*
1717 	 * If we were below the threshold before don't reclaim, we are likely a
1718 	 * brand new block group and we don't want to relocate new block groups.
1719 	 */
1720 	if (old_val < thresh)
1721 		return false;
1722 	if (new_val >= thresh)
1723 		return false;
1724 	return true;
1725 }
1726 
1727 void btrfs_reclaim_bgs_work(struct work_struct *work)
1728 {
1729 	struct btrfs_fs_info *fs_info =
1730 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1731 	struct btrfs_block_group *bg;
1732 	struct btrfs_space_info *space_info;
1733 
1734 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1735 		return;
1736 
1737 	if (btrfs_fs_closing(fs_info))
1738 		return;
1739 
1740 	if (!btrfs_should_reclaim(fs_info))
1741 		return;
1742 
1743 	sb_start_write(fs_info->sb);
1744 
1745 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1746 		sb_end_write(fs_info->sb);
1747 		return;
1748 	}
1749 
1750 	/*
1751 	 * Long running balances can keep us blocked here for eternity, so
1752 	 * simply skip reclaim if we're unable to get the mutex.
1753 	 */
1754 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1755 		btrfs_exclop_finish(fs_info);
1756 		sb_end_write(fs_info->sb);
1757 		return;
1758 	}
1759 
1760 	spin_lock(&fs_info->unused_bgs_lock);
1761 	/*
1762 	 * Sort happens under lock because we can't simply splice it and sort.
1763 	 * The block groups might still be in use and reachable via bg_list,
1764 	 * and their presence in the reclaim_bgs list must be preserved.
1765 	 */
1766 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1767 	while (!list_empty(&fs_info->reclaim_bgs)) {
1768 		u64 zone_unusable;
1769 		int ret = 0;
1770 
1771 		bg = list_first_entry(&fs_info->reclaim_bgs,
1772 				      struct btrfs_block_group,
1773 				      bg_list);
1774 		list_del_init(&bg->bg_list);
1775 
1776 		space_info = bg->space_info;
1777 		spin_unlock(&fs_info->unused_bgs_lock);
1778 
1779 		/* Don't race with allocators so take the groups_sem */
1780 		down_write(&space_info->groups_sem);
1781 
1782 		spin_lock(&bg->lock);
1783 		if (bg->reserved || bg->pinned || bg->ro) {
1784 			/*
1785 			 * We want to bail if we made new allocations or have
1786 			 * outstanding allocations in this block group.  We do
1787 			 * the ro check in case balance is currently acting on
1788 			 * this block group.
1789 			 */
1790 			spin_unlock(&bg->lock);
1791 			up_write(&space_info->groups_sem);
1792 			goto next;
1793 		}
1794 		if (bg->used == 0) {
1795 			/*
1796 			 * It is possible that we trigger relocation on a block
1797 			 * group as its extents are deleted and it first goes
1798 			 * below the threshold, then shortly after goes empty.
1799 			 *
1800 			 * In this case, relocating it does delete it, but has
1801 			 * some overhead in relocation specific metadata, looking
1802 			 * for the non-existent extents and running some extra
1803 			 * transactions, which we can avoid by using one of the
1804 			 * other mechanisms for dealing with empty block groups.
1805 			 */
1806 			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1807 				btrfs_mark_bg_unused(bg);
1808 			spin_unlock(&bg->lock);
1809 			up_write(&space_info->groups_sem);
1810 			goto next;
1811 
1812 		}
1813 		/*
1814 		 * The block group might no longer meet the reclaim condition by
1815 		 * the time we get around to reclaiming it, so to avoid
1816 		 * reclaiming overly full block_groups, skip reclaiming them.
1817 		 *
1818 		 * Since the decision making process also depends on the amount
1819 		 * being freed, pass in a fake giant value to skip that extra
1820 		 * check, which is more meaningful when adding to the list in
1821 		 * the first place.
1822 		 */
1823 		if (!should_reclaim_block_group(bg, bg->length)) {
1824 			spin_unlock(&bg->lock);
1825 			up_write(&space_info->groups_sem);
1826 			goto next;
1827 		}
1828 		spin_unlock(&bg->lock);
1829 
1830 		/*
1831 		 * Get out fast, in case we're read-only or unmounting the
1832 		 * filesystem. It is OK to drop block groups from the list even
1833 		 * for the read-only case. As we did sb_start_write(),
1834 		 * "mount -o remount,ro" won't happen and read-only filesystem
1835 		 * means it is forced read-only due to a fatal error. So, it
1836 		 * never gets back to read-write to let us reclaim again.
1837 		 */
1838 		if (btrfs_need_cleaner_sleep(fs_info)) {
1839 			up_write(&space_info->groups_sem);
1840 			goto next;
1841 		}
1842 
1843 		/*
1844 		 * Cache the zone_unusable value before turning the block group
1845 		 * to read only. As soon as the blog group is read only it's
1846 		 * zone_unusable value gets moved to the block group's read-only
1847 		 * bytes and isn't available for calculations anymore.
1848 		 */
1849 		zone_unusable = bg->zone_unusable;
1850 		ret = inc_block_group_ro(bg, 0);
1851 		up_write(&space_info->groups_sem);
1852 		if (ret < 0)
1853 			goto next;
1854 
1855 		btrfs_info(fs_info,
1856 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1857 				bg->start,
1858 				div64_u64(bg->used * 100, bg->length),
1859 				div64_u64(zone_unusable * 100, bg->length));
1860 		trace_btrfs_reclaim_block_group(bg);
1861 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1862 		if (ret) {
1863 			btrfs_dec_block_group_ro(bg);
1864 			btrfs_err(fs_info, "error relocating chunk %llu",
1865 				  bg->start);
1866 		}
1867 
1868 next:
1869 		if (ret)
1870 			btrfs_mark_bg_to_reclaim(bg);
1871 		btrfs_put_block_group(bg);
1872 
1873 		mutex_unlock(&fs_info->reclaim_bgs_lock);
1874 		/*
1875 		 * Reclaiming all the block groups in the list can take really
1876 		 * long.  Prioritize cleaning up unused block groups.
1877 		 */
1878 		btrfs_delete_unused_bgs(fs_info);
1879 		/*
1880 		 * If we are interrupted by a balance, we can just bail out. The
1881 		 * cleaner thread restart again if necessary.
1882 		 */
1883 		if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1884 			goto end;
1885 		spin_lock(&fs_info->unused_bgs_lock);
1886 	}
1887 	spin_unlock(&fs_info->unused_bgs_lock);
1888 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1889 end:
1890 	btrfs_exclop_finish(fs_info);
1891 	sb_end_write(fs_info->sb);
1892 }
1893 
1894 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1895 {
1896 	spin_lock(&fs_info->unused_bgs_lock);
1897 	if (!list_empty(&fs_info->reclaim_bgs))
1898 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1899 	spin_unlock(&fs_info->unused_bgs_lock);
1900 }
1901 
1902 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1903 {
1904 	struct btrfs_fs_info *fs_info = bg->fs_info;
1905 
1906 	spin_lock(&fs_info->unused_bgs_lock);
1907 	if (list_empty(&bg->bg_list)) {
1908 		btrfs_get_block_group(bg);
1909 		trace_btrfs_add_reclaim_block_group(bg);
1910 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1911 	}
1912 	spin_unlock(&fs_info->unused_bgs_lock);
1913 }
1914 
1915 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1916 			   struct btrfs_path *path)
1917 {
1918 	struct btrfs_chunk_map *map;
1919 	struct btrfs_block_group_item bg;
1920 	struct extent_buffer *leaf;
1921 	int slot;
1922 	u64 flags;
1923 	int ret = 0;
1924 
1925 	slot = path->slots[0];
1926 	leaf = path->nodes[0];
1927 
1928 	map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
1929 	if (!map) {
1930 		btrfs_err(fs_info,
1931 			  "logical %llu len %llu found bg but no related chunk",
1932 			  key->objectid, key->offset);
1933 		return -ENOENT;
1934 	}
1935 
1936 	if (map->start != key->objectid || map->chunk_len != key->offset) {
1937 		btrfs_err(fs_info,
1938 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1939 			  key->objectid, key->offset, map->start, map->chunk_len);
1940 		ret = -EUCLEAN;
1941 		goto out_free_map;
1942 	}
1943 
1944 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1945 			   sizeof(bg));
1946 	flags = btrfs_stack_block_group_flags(&bg) &
1947 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1948 
1949 	if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1950 		btrfs_err(fs_info,
1951 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1952 			  key->objectid, key->offset, flags,
1953 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
1954 		ret = -EUCLEAN;
1955 	}
1956 
1957 out_free_map:
1958 	btrfs_free_chunk_map(map);
1959 	return ret;
1960 }
1961 
1962 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1963 				  struct btrfs_path *path,
1964 				  struct btrfs_key *key)
1965 {
1966 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1967 	int ret;
1968 	struct btrfs_key found_key;
1969 
1970 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1971 		if (found_key.objectid >= key->objectid &&
1972 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1973 			return read_bg_from_eb(fs_info, &found_key, path);
1974 		}
1975 	}
1976 	return ret;
1977 }
1978 
1979 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1980 {
1981 	u64 extra_flags = chunk_to_extended(flags) &
1982 				BTRFS_EXTENDED_PROFILE_MASK;
1983 
1984 	write_seqlock(&fs_info->profiles_lock);
1985 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1986 		fs_info->avail_data_alloc_bits |= extra_flags;
1987 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1988 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1989 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1990 		fs_info->avail_system_alloc_bits |= extra_flags;
1991 	write_sequnlock(&fs_info->profiles_lock);
1992 }
1993 
1994 /*
1995  * Map a physical disk address to a list of logical addresses.
1996  *
1997  * @fs_info:       the filesystem
1998  * @chunk_start:   logical address of block group
1999  * @physical:	   physical address to map to logical addresses
2000  * @logical:	   return array of logical addresses which map to @physical
2001  * @naddrs:	   length of @logical
2002  * @stripe_len:    size of IO stripe for the given block group
2003  *
2004  * Maps a particular @physical disk address to a list of @logical addresses.
2005  * Used primarily to exclude those portions of a block group that contain super
2006  * block copies.
2007  */
2008 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2009 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2010 {
2011 	struct btrfs_chunk_map *map;
2012 	u64 *buf;
2013 	u64 bytenr;
2014 	u64 data_stripe_length;
2015 	u64 io_stripe_size;
2016 	int i, nr = 0;
2017 	int ret = 0;
2018 
2019 	map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2020 	if (IS_ERR(map))
2021 		return -EIO;
2022 
2023 	data_stripe_length = map->stripe_size;
2024 	io_stripe_size = BTRFS_STRIPE_LEN;
2025 	chunk_start = map->start;
2026 
2027 	/* For RAID5/6 adjust to a full IO stripe length */
2028 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2029 		io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2030 
2031 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2032 	if (!buf) {
2033 		ret = -ENOMEM;
2034 		goto out;
2035 	}
2036 
2037 	for (i = 0; i < map->num_stripes; i++) {
2038 		bool already_inserted = false;
2039 		u32 stripe_nr;
2040 		u32 offset;
2041 		int j;
2042 
2043 		if (!in_range(physical, map->stripes[i].physical,
2044 			      data_stripe_length))
2045 			continue;
2046 
2047 		stripe_nr = (physical - map->stripes[i].physical) >>
2048 			    BTRFS_STRIPE_LEN_SHIFT;
2049 		offset = (physical - map->stripes[i].physical) &
2050 			 BTRFS_STRIPE_LEN_MASK;
2051 
2052 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2053 				 BTRFS_BLOCK_GROUP_RAID10))
2054 			stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2055 					    map->sub_stripes);
2056 		/*
2057 		 * The remaining case would be for RAID56, multiply by
2058 		 * nr_data_stripes().  Alternatively, just use rmap_len below
2059 		 * instead of map->stripe_len
2060 		 */
2061 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2062 
2063 		/* Ensure we don't add duplicate addresses */
2064 		for (j = 0; j < nr; j++) {
2065 			if (buf[j] == bytenr) {
2066 				already_inserted = true;
2067 				break;
2068 			}
2069 		}
2070 
2071 		if (!already_inserted)
2072 			buf[nr++] = bytenr;
2073 	}
2074 
2075 	*logical = buf;
2076 	*naddrs = nr;
2077 	*stripe_len = io_stripe_size;
2078 out:
2079 	btrfs_free_chunk_map(map);
2080 	return ret;
2081 }
2082 
2083 static int exclude_super_stripes(struct btrfs_block_group *cache)
2084 {
2085 	struct btrfs_fs_info *fs_info = cache->fs_info;
2086 	const bool zoned = btrfs_is_zoned(fs_info);
2087 	u64 bytenr;
2088 	u64 *logical;
2089 	int stripe_len;
2090 	int i, nr, ret;
2091 
2092 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2093 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2094 		cache->bytes_super += stripe_len;
2095 		ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2096 				     cache->start + stripe_len - 1,
2097 				     EXTENT_UPTODATE, NULL);
2098 		if (ret)
2099 			return ret;
2100 	}
2101 
2102 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2103 		bytenr = btrfs_sb_offset(i);
2104 		ret = btrfs_rmap_block(fs_info, cache->start,
2105 				       bytenr, &logical, &nr, &stripe_len);
2106 		if (ret)
2107 			return ret;
2108 
2109 		/* Shouldn't have super stripes in sequential zones */
2110 		if (zoned && nr) {
2111 			kfree(logical);
2112 			btrfs_err(fs_info,
2113 			"zoned: block group %llu must not contain super block",
2114 				  cache->start);
2115 			return -EUCLEAN;
2116 		}
2117 
2118 		while (nr--) {
2119 			u64 len = min_t(u64, stripe_len,
2120 				cache->start + cache->length - logical[nr]);
2121 
2122 			cache->bytes_super += len;
2123 			ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2124 					     logical[nr] + len - 1,
2125 					     EXTENT_UPTODATE, NULL);
2126 			if (ret) {
2127 				kfree(logical);
2128 				return ret;
2129 			}
2130 		}
2131 
2132 		kfree(logical);
2133 	}
2134 	return 0;
2135 }
2136 
2137 static struct btrfs_block_group *btrfs_create_block_group_cache(
2138 		struct btrfs_fs_info *fs_info, u64 start)
2139 {
2140 	struct btrfs_block_group *cache;
2141 
2142 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2143 	if (!cache)
2144 		return NULL;
2145 
2146 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2147 					GFP_NOFS);
2148 	if (!cache->free_space_ctl) {
2149 		kfree(cache);
2150 		return NULL;
2151 	}
2152 
2153 	cache->start = start;
2154 
2155 	cache->fs_info = fs_info;
2156 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2157 
2158 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2159 
2160 	refcount_set(&cache->refs, 1);
2161 	spin_lock_init(&cache->lock);
2162 	init_rwsem(&cache->data_rwsem);
2163 	INIT_LIST_HEAD(&cache->list);
2164 	INIT_LIST_HEAD(&cache->cluster_list);
2165 	INIT_LIST_HEAD(&cache->bg_list);
2166 	INIT_LIST_HEAD(&cache->ro_list);
2167 	INIT_LIST_HEAD(&cache->discard_list);
2168 	INIT_LIST_HEAD(&cache->dirty_list);
2169 	INIT_LIST_HEAD(&cache->io_list);
2170 	INIT_LIST_HEAD(&cache->active_bg_list);
2171 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2172 	atomic_set(&cache->frozen, 0);
2173 	mutex_init(&cache->free_space_lock);
2174 
2175 	return cache;
2176 }
2177 
2178 /*
2179  * Iterate all chunks and verify that each of them has the corresponding block
2180  * group
2181  */
2182 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2183 {
2184 	u64 start = 0;
2185 	int ret = 0;
2186 
2187 	while (1) {
2188 		struct btrfs_chunk_map *map;
2189 		struct btrfs_block_group *bg;
2190 
2191 		/*
2192 		 * btrfs_find_chunk_map() will return the first chunk map
2193 		 * intersecting the range, so setting @length to 1 is enough to
2194 		 * get the first chunk.
2195 		 */
2196 		map = btrfs_find_chunk_map(fs_info, start, 1);
2197 		if (!map)
2198 			break;
2199 
2200 		bg = btrfs_lookup_block_group(fs_info, map->start);
2201 		if (!bg) {
2202 			btrfs_err(fs_info,
2203 	"chunk start=%llu len=%llu doesn't have corresponding block group",
2204 				     map->start, map->chunk_len);
2205 			ret = -EUCLEAN;
2206 			btrfs_free_chunk_map(map);
2207 			break;
2208 		}
2209 		if (bg->start != map->start || bg->length != map->chunk_len ||
2210 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2211 		    (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2212 			btrfs_err(fs_info,
2213 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2214 				map->start, map->chunk_len,
2215 				map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2216 				bg->start, bg->length,
2217 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2218 			ret = -EUCLEAN;
2219 			btrfs_free_chunk_map(map);
2220 			btrfs_put_block_group(bg);
2221 			break;
2222 		}
2223 		start = map->start + map->chunk_len;
2224 		btrfs_free_chunk_map(map);
2225 		btrfs_put_block_group(bg);
2226 	}
2227 	return ret;
2228 }
2229 
2230 static int read_one_block_group(struct btrfs_fs_info *info,
2231 				struct btrfs_block_group_item *bgi,
2232 				const struct btrfs_key *key,
2233 				int need_clear)
2234 {
2235 	struct btrfs_block_group *cache;
2236 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2237 	int ret;
2238 
2239 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2240 
2241 	cache = btrfs_create_block_group_cache(info, key->objectid);
2242 	if (!cache)
2243 		return -ENOMEM;
2244 
2245 	cache->length = key->offset;
2246 	cache->used = btrfs_stack_block_group_used(bgi);
2247 	cache->commit_used = cache->used;
2248 	cache->flags = btrfs_stack_block_group_flags(bgi);
2249 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2250 
2251 	set_free_space_tree_thresholds(cache);
2252 
2253 	if (need_clear) {
2254 		/*
2255 		 * When we mount with old space cache, we need to
2256 		 * set BTRFS_DC_CLEAR and set dirty flag.
2257 		 *
2258 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2259 		 *    truncate the old free space cache inode and
2260 		 *    setup a new one.
2261 		 * b) Setting 'dirty flag' makes sure that we flush
2262 		 *    the new space cache info onto disk.
2263 		 */
2264 		if (btrfs_test_opt(info, SPACE_CACHE))
2265 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2266 	}
2267 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2268 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2269 			btrfs_err(info,
2270 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2271 				  cache->start);
2272 			ret = -EINVAL;
2273 			goto error;
2274 	}
2275 
2276 	ret = btrfs_load_block_group_zone_info(cache, false);
2277 	if (ret) {
2278 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2279 			  cache->start);
2280 		goto error;
2281 	}
2282 
2283 	/*
2284 	 * We need to exclude the super stripes now so that the space info has
2285 	 * super bytes accounted for, otherwise we'll think we have more space
2286 	 * than we actually do.
2287 	 */
2288 	ret = exclude_super_stripes(cache);
2289 	if (ret) {
2290 		/* We may have excluded something, so call this just in case. */
2291 		btrfs_free_excluded_extents(cache);
2292 		goto error;
2293 	}
2294 
2295 	/*
2296 	 * For zoned filesystem, space after the allocation offset is the only
2297 	 * free space for a block group. So, we don't need any caching work.
2298 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2299 	 * zone_unusable space.
2300 	 *
2301 	 * For regular filesystem, check for two cases, either we are full, and
2302 	 * therefore don't need to bother with the caching work since we won't
2303 	 * find any space, or we are empty, and we can just add all the space
2304 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2305 	 * in the full case.
2306 	 */
2307 	if (btrfs_is_zoned(info)) {
2308 		btrfs_calc_zone_unusable(cache);
2309 		/* Should not have any excluded extents. Just in case, though. */
2310 		btrfs_free_excluded_extents(cache);
2311 	} else if (cache->length == cache->used) {
2312 		cache->cached = BTRFS_CACHE_FINISHED;
2313 		btrfs_free_excluded_extents(cache);
2314 	} else if (cache->used == 0) {
2315 		cache->cached = BTRFS_CACHE_FINISHED;
2316 		ret = btrfs_add_new_free_space(cache, cache->start,
2317 					       cache->start + cache->length, NULL);
2318 		btrfs_free_excluded_extents(cache);
2319 		if (ret)
2320 			goto error;
2321 	}
2322 
2323 	ret = btrfs_add_block_group_cache(info, cache);
2324 	if (ret) {
2325 		btrfs_remove_free_space_cache(cache);
2326 		goto error;
2327 	}
2328 	trace_btrfs_add_block_group(info, cache, 0);
2329 	btrfs_add_bg_to_space_info(info, cache);
2330 
2331 	set_avail_alloc_bits(info, cache->flags);
2332 	if (btrfs_chunk_writeable(info, cache->start)) {
2333 		if (cache->used == 0) {
2334 			ASSERT(list_empty(&cache->bg_list));
2335 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2336 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2337 			else
2338 				btrfs_mark_bg_unused(cache);
2339 		}
2340 	} else {
2341 		inc_block_group_ro(cache, 1);
2342 	}
2343 
2344 	return 0;
2345 error:
2346 	btrfs_put_block_group(cache);
2347 	return ret;
2348 }
2349 
2350 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2351 {
2352 	struct rb_node *node;
2353 	int ret = 0;
2354 
2355 	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2356 		struct btrfs_chunk_map *map;
2357 		struct btrfs_block_group *bg;
2358 
2359 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2360 		bg = btrfs_create_block_group_cache(fs_info, map->start);
2361 		if (!bg) {
2362 			ret = -ENOMEM;
2363 			break;
2364 		}
2365 
2366 		/* Fill dummy cache as FULL */
2367 		bg->length = map->chunk_len;
2368 		bg->flags = map->type;
2369 		bg->cached = BTRFS_CACHE_FINISHED;
2370 		bg->used = map->chunk_len;
2371 		bg->flags = map->type;
2372 		ret = btrfs_add_block_group_cache(fs_info, bg);
2373 		/*
2374 		 * We may have some valid block group cache added already, in
2375 		 * that case we skip to the next one.
2376 		 */
2377 		if (ret == -EEXIST) {
2378 			ret = 0;
2379 			btrfs_put_block_group(bg);
2380 			continue;
2381 		}
2382 
2383 		if (ret) {
2384 			btrfs_remove_free_space_cache(bg);
2385 			btrfs_put_block_group(bg);
2386 			break;
2387 		}
2388 
2389 		btrfs_add_bg_to_space_info(fs_info, bg);
2390 
2391 		set_avail_alloc_bits(fs_info, bg->flags);
2392 	}
2393 	if (!ret)
2394 		btrfs_init_global_block_rsv(fs_info);
2395 	return ret;
2396 }
2397 
2398 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2399 {
2400 	struct btrfs_root *root = btrfs_block_group_root(info);
2401 	struct btrfs_path *path;
2402 	int ret;
2403 	struct btrfs_block_group *cache;
2404 	struct btrfs_space_info *space_info;
2405 	struct btrfs_key key;
2406 	int need_clear = 0;
2407 	u64 cache_gen;
2408 
2409 	/*
2410 	 * Either no extent root (with ibadroots rescue option) or we have
2411 	 * unsupported RO options. The fs can never be mounted read-write, so no
2412 	 * need to waste time searching block group items.
2413 	 *
2414 	 * This also allows new extent tree related changes to be RO compat,
2415 	 * no need for a full incompat flag.
2416 	 */
2417 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2418 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2419 		return fill_dummy_bgs(info);
2420 
2421 	key.objectid = 0;
2422 	key.offset = 0;
2423 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2424 	path = btrfs_alloc_path();
2425 	if (!path)
2426 		return -ENOMEM;
2427 
2428 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2429 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2430 	    btrfs_super_generation(info->super_copy) != cache_gen)
2431 		need_clear = 1;
2432 	if (btrfs_test_opt(info, CLEAR_CACHE))
2433 		need_clear = 1;
2434 
2435 	while (1) {
2436 		struct btrfs_block_group_item bgi;
2437 		struct extent_buffer *leaf;
2438 		int slot;
2439 
2440 		ret = find_first_block_group(info, path, &key);
2441 		if (ret > 0)
2442 			break;
2443 		if (ret != 0)
2444 			goto error;
2445 
2446 		leaf = path->nodes[0];
2447 		slot = path->slots[0];
2448 
2449 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2450 				   sizeof(bgi));
2451 
2452 		btrfs_item_key_to_cpu(leaf, &key, slot);
2453 		btrfs_release_path(path);
2454 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2455 		if (ret < 0)
2456 			goto error;
2457 		key.objectid += key.offset;
2458 		key.offset = 0;
2459 	}
2460 	btrfs_release_path(path);
2461 
2462 	list_for_each_entry(space_info, &info->space_info, list) {
2463 		int i;
2464 
2465 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2466 			if (list_empty(&space_info->block_groups[i]))
2467 				continue;
2468 			cache = list_first_entry(&space_info->block_groups[i],
2469 						 struct btrfs_block_group,
2470 						 list);
2471 			btrfs_sysfs_add_block_group_type(cache);
2472 		}
2473 
2474 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2475 		      (BTRFS_BLOCK_GROUP_RAID10 |
2476 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2477 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2478 		       BTRFS_BLOCK_GROUP_DUP)))
2479 			continue;
2480 		/*
2481 		 * Avoid allocating from un-mirrored block group if there are
2482 		 * mirrored block groups.
2483 		 */
2484 		list_for_each_entry(cache,
2485 				&space_info->block_groups[BTRFS_RAID_RAID0],
2486 				list)
2487 			inc_block_group_ro(cache, 1);
2488 		list_for_each_entry(cache,
2489 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2490 				list)
2491 			inc_block_group_ro(cache, 1);
2492 	}
2493 
2494 	btrfs_init_global_block_rsv(info);
2495 	ret = check_chunk_block_group_mappings(info);
2496 error:
2497 	btrfs_free_path(path);
2498 	/*
2499 	 * We've hit some error while reading the extent tree, and have
2500 	 * rescue=ibadroots mount option.
2501 	 * Try to fill the tree using dummy block groups so that the user can
2502 	 * continue to mount and grab their data.
2503 	 */
2504 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2505 		ret = fill_dummy_bgs(info);
2506 	return ret;
2507 }
2508 
2509 /*
2510  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2511  * allocation.
2512  *
2513  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2514  * phases.
2515  */
2516 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2517 				   struct btrfs_block_group *block_group)
2518 {
2519 	struct btrfs_fs_info *fs_info = trans->fs_info;
2520 	struct btrfs_block_group_item bgi;
2521 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2522 	struct btrfs_key key;
2523 	u64 old_commit_used;
2524 	int ret;
2525 
2526 	spin_lock(&block_group->lock);
2527 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2528 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2529 						   block_group->global_root_id);
2530 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2531 	old_commit_used = block_group->commit_used;
2532 	block_group->commit_used = block_group->used;
2533 	key.objectid = block_group->start;
2534 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2535 	key.offset = block_group->length;
2536 	spin_unlock(&block_group->lock);
2537 
2538 	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2539 	if (ret < 0) {
2540 		spin_lock(&block_group->lock);
2541 		block_group->commit_used = old_commit_used;
2542 		spin_unlock(&block_group->lock);
2543 	}
2544 
2545 	return ret;
2546 }
2547 
2548 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2549 			    struct btrfs_device *device, u64 chunk_offset,
2550 			    u64 start, u64 num_bytes)
2551 {
2552 	struct btrfs_fs_info *fs_info = device->fs_info;
2553 	struct btrfs_root *root = fs_info->dev_root;
2554 	struct btrfs_path *path;
2555 	struct btrfs_dev_extent *extent;
2556 	struct extent_buffer *leaf;
2557 	struct btrfs_key key;
2558 	int ret;
2559 
2560 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2561 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2562 	path = btrfs_alloc_path();
2563 	if (!path)
2564 		return -ENOMEM;
2565 
2566 	key.objectid = device->devid;
2567 	key.type = BTRFS_DEV_EXTENT_KEY;
2568 	key.offset = start;
2569 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2570 	if (ret)
2571 		goto out;
2572 
2573 	leaf = path->nodes[0];
2574 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2575 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2576 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2577 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2578 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2579 
2580 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2581 	btrfs_mark_buffer_dirty(trans, leaf);
2582 out:
2583 	btrfs_free_path(path);
2584 	return ret;
2585 }
2586 
2587 /*
2588  * This function belongs to phase 2.
2589  *
2590  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2591  * phases.
2592  */
2593 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2594 				   u64 chunk_offset, u64 chunk_size)
2595 {
2596 	struct btrfs_fs_info *fs_info = trans->fs_info;
2597 	struct btrfs_device *device;
2598 	struct btrfs_chunk_map *map;
2599 	u64 dev_offset;
2600 	int i;
2601 	int ret = 0;
2602 
2603 	map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2604 	if (IS_ERR(map))
2605 		return PTR_ERR(map);
2606 
2607 	/*
2608 	 * Take the device list mutex to prevent races with the final phase of
2609 	 * a device replace operation that replaces the device object associated
2610 	 * with the map's stripes, because the device object's id can change
2611 	 * at any time during that final phase of the device replace operation
2612 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2613 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2614 	 * resulting in persisting a device extent item with such ID.
2615 	 */
2616 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2617 	for (i = 0; i < map->num_stripes; i++) {
2618 		device = map->stripes[i].dev;
2619 		dev_offset = map->stripes[i].physical;
2620 
2621 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2622 					map->stripe_size);
2623 		if (ret)
2624 			break;
2625 	}
2626 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2627 
2628 	btrfs_free_chunk_map(map);
2629 	return ret;
2630 }
2631 
2632 /*
2633  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2634  * chunk allocation.
2635  *
2636  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2637  * phases.
2638  */
2639 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2640 {
2641 	struct btrfs_fs_info *fs_info = trans->fs_info;
2642 	struct btrfs_block_group *block_group;
2643 	int ret = 0;
2644 
2645 	while (!list_empty(&trans->new_bgs)) {
2646 		int index;
2647 
2648 		block_group = list_first_entry(&trans->new_bgs,
2649 					       struct btrfs_block_group,
2650 					       bg_list);
2651 		if (ret)
2652 			goto next;
2653 
2654 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2655 
2656 		ret = insert_block_group_item(trans, block_group);
2657 		if (ret)
2658 			btrfs_abort_transaction(trans, ret);
2659 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2660 			      &block_group->runtime_flags)) {
2661 			mutex_lock(&fs_info->chunk_mutex);
2662 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2663 			mutex_unlock(&fs_info->chunk_mutex);
2664 			if (ret)
2665 				btrfs_abort_transaction(trans, ret);
2666 		}
2667 		ret = insert_dev_extents(trans, block_group->start,
2668 					 block_group->length);
2669 		if (ret)
2670 			btrfs_abort_transaction(trans, ret);
2671 		add_block_group_free_space(trans, block_group);
2672 
2673 		/*
2674 		 * If we restriped during balance, we may have added a new raid
2675 		 * type, so now add the sysfs entries when it is safe to do so.
2676 		 * We don't have to worry about locking here as it's handled in
2677 		 * btrfs_sysfs_add_block_group_type.
2678 		 */
2679 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2680 			btrfs_sysfs_add_block_group_type(block_group);
2681 
2682 		/* Already aborted the transaction if it failed. */
2683 next:
2684 		btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2685 		list_del_init(&block_group->bg_list);
2686 		clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2687 	}
2688 	btrfs_trans_release_chunk_metadata(trans);
2689 }
2690 
2691 /*
2692  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2693  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2694  */
2695 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2696 {
2697 	u64 div = SZ_1G;
2698 	u64 index;
2699 
2700 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2701 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2702 
2703 	/* If we have a smaller fs index based on 128MiB. */
2704 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2705 		div = SZ_128M;
2706 
2707 	offset = div64_u64(offset, div);
2708 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2709 	return index;
2710 }
2711 
2712 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2713 						 u64 type,
2714 						 u64 chunk_offset, u64 size)
2715 {
2716 	struct btrfs_fs_info *fs_info = trans->fs_info;
2717 	struct btrfs_block_group *cache;
2718 	int ret;
2719 
2720 	btrfs_set_log_full_commit(trans);
2721 
2722 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2723 	if (!cache)
2724 		return ERR_PTR(-ENOMEM);
2725 
2726 	/*
2727 	 * Mark it as new before adding it to the rbtree of block groups or any
2728 	 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2729 	 * before the new flag is set.
2730 	 */
2731 	set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2732 
2733 	cache->length = size;
2734 	set_free_space_tree_thresholds(cache);
2735 	cache->flags = type;
2736 	cache->cached = BTRFS_CACHE_FINISHED;
2737 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2738 
2739 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2740 		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2741 
2742 	ret = btrfs_load_block_group_zone_info(cache, true);
2743 	if (ret) {
2744 		btrfs_put_block_group(cache);
2745 		return ERR_PTR(ret);
2746 	}
2747 
2748 	ret = exclude_super_stripes(cache);
2749 	if (ret) {
2750 		/* We may have excluded something, so call this just in case */
2751 		btrfs_free_excluded_extents(cache);
2752 		btrfs_put_block_group(cache);
2753 		return ERR_PTR(ret);
2754 	}
2755 
2756 	ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2757 	btrfs_free_excluded_extents(cache);
2758 	if (ret) {
2759 		btrfs_put_block_group(cache);
2760 		return ERR_PTR(ret);
2761 	}
2762 
2763 	/*
2764 	 * Ensure the corresponding space_info object is created and
2765 	 * assigned to our block group. We want our bg to be added to the rbtree
2766 	 * with its ->space_info set.
2767 	 */
2768 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2769 	ASSERT(cache->space_info);
2770 
2771 	ret = btrfs_add_block_group_cache(fs_info, cache);
2772 	if (ret) {
2773 		btrfs_remove_free_space_cache(cache);
2774 		btrfs_put_block_group(cache);
2775 		return ERR_PTR(ret);
2776 	}
2777 
2778 	/*
2779 	 * Now that our block group has its ->space_info set and is inserted in
2780 	 * the rbtree, update the space info's counters.
2781 	 */
2782 	trace_btrfs_add_block_group(fs_info, cache, 1);
2783 	btrfs_add_bg_to_space_info(fs_info, cache);
2784 	btrfs_update_global_block_rsv(fs_info);
2785 
2786 #ifdef CONFIG_BTRFS_DEBUG
2787 	if (btrfs_should_fragment_free_space(cache)) {
2788 		cache->space_info->bytes_used += size >> 1;
2789 		fragment_free_space(cache);
2790 	}
2791 #endif
2792 
2793 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2794 	btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
2795 
2796 	set_avail_alloc_bits(fs_info, type);
2797 	return cache;
2798 }
2799 
2800 /*
2801  * Mark one block group RO, can be called several times for the same block
2802  * group.
2803  *
2804  * @cache:		the destination block group
2805  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2806  * 			ensure we still have some free space after marking this
2807  * 			block group RO.
2808  */
2809 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2810 			     bool do_chunk_alloc)
2811 {
2812 	struct btrfs_fs_info *fs_info = cache->fs_info;
2813 	struct btrfs_trans_handle *trans;
2814 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2815 	u64 alloc_flags;
2816 	int ret;
2817 	bool dirty_bg_running;
2818 
2819 	/*
2820 	 * This can only happen when we are doing read-only scrub on read-only
2821 	 * mount.
2822 	 * In that case we should not start a new transaction on read-only fs.
2823 	 * Thus here we skip all chunk allocations.
2824 	 */
2825 	if (sb_rdonly(fs_info->sb)) {
2826 		mutex_lock(&fs_info->ro_block_group_mutex);
2827 		ret = inc_block_group_ro(cache, 0);
2828 		mutex_unlock(&fs_info->ro_block_group_mutex);
2829 		return ret;
2830 	}
2831 
2832 	do {
2833 		trans = btrfs_join_transaction(root);
2834 		if (IS_ERR(trans))
2835 			return PTR_ERR(trans);
2836 
2837 		dirty_bg_running = false;
2838 
2839 		/*
2840 		 * We're not allowed to set block groups readonly after the dirty
2841 		 * block group cache has started writing.  If it already started,
2842 		 * back off and let this transaction commit.
2843 		 */
2844 		mutex_lock(&fs_info->ro_block_group_mutex);
2845 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2846 			u64 transid = trans->transid;
2847 
2848 			mutex_unlock(&fs_info->ro_block_group_mutex);
2849 			btrfs_end_transaction(trans);
2850 
2851 			ret = btrfs_wait_for_commit(fs_info, transid);
2852 			if (ret)
2853 				return ret;
2854 			dirty_bg_running = true;
2855 		}
2856 	} while (dirty_bg_running);
2857 
2858 	if (do_chunk_alloc) {
2859 		/*
2860 		 * If we are changing raid levels, try to allocate a
2861 		 * corresponding block group with the new raid level.
2862 		 */
2863 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2864 		if (alloc_flags != cache->flags) {
2865 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2866 						CHUNK_ALLOC_FORCE);
2867 			/*
2868 			 * ENOSPC is allowed here, we may have enough space
2869 			 * already allocated at the new raid level to carry on
2870 			 */
2871 			if (ret == -ENOSPC)
2872 				ret = 0;
2873 			if (ret < 0)
2874 				goto out;
2875 		}
2876 	}
2877 
2878 	ret = inc_block_group_ro(cache, 0);
2879 	if (!ret)
2880 		goto out;
2881 	if (ret == -ETXTBSY)
2882 		goto unlock_out;
2883 
2884 	/*
2885 	 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
2886 	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
2887 	 * we still want to try our best to mark the block group read-only.
2888 	 */
2889 	if (!do_chunk_alloc && ret == -ENOSPC &&
2890 	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2891 		goto unlock_out;
2892 
2893 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2894 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2895 	if (ret < 0)
2896 		goto out;
2897 	/*
2898 	 * We have allocated a new chunk. We also need to activate that chunk to
2899 	 * grant metadata tickets for zoned filesystem.
2900 	 */
2901 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2902 	if (ret < 0)
2903 		goto out;
2904 
2905 	ret = inc_block_group_ro(cache, 0);
2906 	if (ret == -ETXTBSY)
2907 		goto unlock_out;
2908 out:
2909 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2910 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2911 		mutex_lock(&fs_info->chunk_mutex);
2912 		check_system_chunk(trans, alloc_flags);
2913 		mutex_unlock(&fs_info->chunk_mutex);
2914 	}
2915 unlock_out:
2916 	mutex_unlock(&fs_info->ro_block_group_mutex);
2917 
2918 	btrfs_end_transaction(trans);
2919 	return ret;
2920 }
2921 
2922 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2923 {
2924 	struct btrfs_space_info *sinfo = cache->space_info;
2925 	u64 num_bytes;
2926 
2927 	BUG_ON(!cache->ro);
2928 
2929 	spin_lock(&sinfo->lock);
2930 	spin_lock(&cache->lock);
2931 	if (!--cache->ro) {
2932 		if (btrfs_is_zoned(cache->fs_info)) {
2933 			/* Migrate zone_unusable bytes back */
2934 			cache->zone_unusable =
2935 				(cache->alloc_offset - cache->used) +
2936 				(cache->length - cache->zone_capacity);
2937 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2938 			sinfo->bytes_readonly -= cache->zone_unusable;
2939 		}
2940 		num_bytes = cache->length - cache->reserved -
2941 			    cache->pinned - cache->bytes_super -
2942 			    cache->zone_unusable - cache->used;
2943 		sinfo->bytes_readonly -= num_bytes;
2944 		list_del_init(&cache->ro_list);
2945 	}
2946 	spin_unlock(&cache->lock);
2947 	spin_unlock(&sinfo->lock);
2948 }
2949 
2950 static int update_block_group_item(struct btrfs_trans_handle *trans,
2951 				   struct btrfs_path *path,
2952 				   struct btrfs_block_group *cache)
2953 {
2954 	struct btrfs_fs_info *fs_info = trans->fs_info;
2955 	int ret;
2956 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2957 	unsigned long bi;
2958 	struct extent_buffer *leaf;
2959 	struct btrfs_block_group_item bgi;
2960 	struct btrfs_key key;
2961 	u64 old_commit_used;
2962 	u64 used;
2963 
2964 	/*
2965 	 * Block group items update can be triggered out of commit transaction
2966 	 * critical section, thus we need a consistent view of used bytes.
2967 	 * We cannot use cache->used directly outside of the spin lock, as it
2968 	 * may be changed.
2969 	 */
2970 	spin_lock(&cache->lock);
2971 	old_commit_used = cache->commit_used;
2972 	used = cache->used;
2973 	/* No change in used bytes, can safely skip it. */
2974 	if (cache->commit_used == used) {
2975 		spin_unlock(&cache->lock);
2976 		return 0;
2977 	}
2978 	cache->commit_used = used;
2979 	spin_unlock(&cache->lock);
2980 
2981 	key.objectid = cache->start;
2982 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2983 	key.offset = cache->length;
2984 
2985 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2986 	if (ret) {
2987 		if (ret > 0)
2988 			ret = -ENOENT;
2989 		goto fail;
2990 	}
2991 
2992 	leaf = path->nodes[0];
2993 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2994 	btrfs_set_stack_block_group_used(&bgi, used);
2995 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2996 						   cache->global_root_id);
2997 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2998 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2999 	btrfs_mark_buffer_dirty(trans, leaf);
3000 fail:
3001 	btrfs_release_path(path);
3002 	/*
3003 	 * We didn't update the block group item, need to revert commit_used
3004 	 * unless the block group item didn't exist yet - this is to prevent a
3005 	 * race with a concurrent insertion of the block group item, with
3006 	 * insert_block_group_item(), that happened just after we attempted to
3007 	 * update. In that case we would reset commit_used to 0 just after the
3008 	 * insertion set it to a value greater than 0 - if the block group later
3009 	 * becomes with 0 used bytes, we would incorrectly skip its update.
3010 	 */
3011 	if (ret < 0 && ret != -ENOENT) {
3012 		spin_lock(&cache->lock);
3013 		cache->commit_used = old_commit_used;
3014 		spin_unlock(&cache->lock);
3015 	}
3016 	return ret;
3017 
3018 }
3019 
3020 static int cache_save_setup(struct btrfs_block_group *block_group,
3021 			    struct btrfs_trans_handle *trans,
3022 			    struct btrfs_path *path)
3023 {
3024 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3025 	struct inode *inode = NULL;
3026 	struct extent_changeset *data_reserved = NULL;
3027 	u64 alloc_hint = 0;
3028 	int dcs = BTRFS_DC_ERROR;
3029 	u64 cache_size = 0;
3030 	int retries = 0;
3031 	int ret = 0;
3032 
3033 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3034 		return 0;
3035 
3036 	/*
3037 	 * If this block group is smaller than 100 megs don't bother caching the
3038 	 * block group.
3039 	 */
3040 	if (block_group->length < (100 * SZ_1M)) {
3041 		spin_lock(&block_group->lock);
3042 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3043 		spin_unlock(&block_group->lock);
3044 		return 0;
3045 	}
3046 
3047 	if (TRANS_ABORTED(trans))
3048 		return 0;
3049 again:
3050 	inode = lookup_free_space_inode(block_group, path);
3051 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3052 		ret = PTR_ERR(inode);
3053 		btrfs_release_path(path);
3054 		goto out;
3055 	}
3056 
3057 	if (IS_ERR(inode)) {
3058 		BUG_ON(retries);
3059 		retries++;
3060 
3061 		if (block_group->ro)
3062 			goto out_free;
3063 
3064 		ret = create_free_space_inode(trans, block_group, path);
3065 		if (ret)
3066 			goto out_free;
3067 		goto again;
3068 	}
3069 
3070 	/*
3071 	 * We want to set the generation to 0, that way if anything goes wrong
3072 	 * from here on out we know not to trust this cache when we load up next
3073 	 * time.
3074 	 */
3075 	BTRFS_I(inode)->generation = 0;
3076 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
3077 	if (ret) {
3078 		/*
3079 		 * So theoretically we could recover from this, simply set the
3080 		 * super cache generation to 0 so we know to invalidate the
3081 		 * cache, but then we'd have to keep track of the block groups
3082 		 * that fail this way so we know we _have_ to reset this cache
3083 		 * before the next commit or risk reading stale cache.  So to
3084 		 * limit our exposure to horrible edge cases lets just abort the
3085 		 * transaction, this only happens in really bad situations
3086 		 * anyway.
3087 		 */
3088 		btrfs_abort_transaction(trans, ret);
3089 		goto out_put;
3090 	}
3091 	WARN_ON(ret);
3092 
3093 	/* We've already setup this transaction, go ahead and exit */
3094 	if (block_group->cache_generation == trans->transid &&
3095 	    i_size_read(inode)) {
3096 		dcs = BTRFS_DC_SETUP;
3097 		goto out_put;
3098 	}
3099 
3100 	if (i_size_read(inode) > 0) {
3101 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3102 					&fs_info->global_block_rsv);
3103 		if (ret)
3104 			goto out_put;
3105 
3106 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3107 		if (ret)
3108 			goto out_put;
3109 	}
3110 
3111 	spin_lock(&block_group->lock);
3112 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3113 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3114 		/*
3115 		 * don't bother trying to write stuff out _if_
3116 		 * a) we're not cached,
3117 		 * b) we're with nospace_cache mount option,
3118 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3119 		 */
3120 		dcs = BTRFS_DC_WRITTEN;
3121 		spin_unlock(&block_group->lock);
3122 		goto out_put;
3123 	}
3124 	spin_unlock(&block_group->lock);
3125 
3126 	/*
3127 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3128 	 * skip doing the setup, we've already cleared the cache so we're safe.
3129 	 */
3130 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3131 		ret = -ENOSPC;
3132 		goto out_put;
3133 	}
3134 
3135 	/*
3136 	 * Try to preallocate enough space based on how big the block group is.
3137 	 * Keep in mind this has to include any pinned space which could end up
3138 	 * taking up quite a bit since it's not folded into the other space
3139 	 * cache.
3140 	 */
3141 	cache_size = div_u64(block_group->length, SZ_256M);
3142 	if (!cache_size)
3143 		cache_size = 1;
3144 
3145 	cache_size *= 16;
3146 	cache_size *= fs_info->sectorsize;
3147 
3148 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3149 					  cache_size, false);
3150 	if (ret)
3151 		goto out_put;
3152 
3153 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3154 					      cache_size, cache_size,
3155 					      &alloc_hint);
3156 	/*
3157 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3158 	 * of metadata or split extents when writing the cache out, which means
3159 	 * we can enospc if we are heavily fragmented in addition to just normal
3160 	 * out of space conditions.  So if we hit this just skip setting up any
3161 	 * other block groups for this transaction, maybe we'll unpin enough
3162 	 * space the next time around.
3163 	 */
3164 	if (!ret)
3165 		dcs = BTRFS_DC_SETUP;
3166 	else if (ret == -ENOSPC)
3167 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3168 
3169 out_put:
3170 	iput(inode);
3171 out_free:
3172 	btrfs_release_path(path);
3173 out:
3174 	spin_lock(&block_group->lock);
3175 	if (!ret && dcs == BTRFS_DC_SETUP)
3176 		block_group->cache_generation = trans->transid;
3177 	block_group->disk_cache_state = dcs;
3178 	spin_unlock(&block_group->lock);
3179 
3180 	extent_changeset_free(data_reserved);
3181 	return ret;
3182 }
3183 
3184 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3185 {
3186 	struct btrfs_fs_info *fs_info = trans->fs_info;
3187 	struct btrfs_block_group *cache, *tmp;
3188 	struct btrfs_transaction *cur_trans = trans->transaction;
3189 	struct btrfs_path *path;
3190 
3191 	if (list_empty(&cur_trans->dirty_bgs) ||
3192 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3193 		return 0;
3194 
3195 	path = btrfs_alloc_path();
3196 	if (!path)
3197 		return -ENOMEM;
3198 
3199 	/* Could add new block groups, use _safe just in case */
3200 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3201 				 dirty_list) {
3202 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3203 			cache_save_setup(cache, trans, path);
3204 	}
3205 
3206 	btrfs_free_path(path);
3207 	return 0;
3208 }
3209 
3210 /*
3211  * Transaction commit does final block group cache writeback during a critical
3212  * section where nothing is allowed to change the FS.  This is required in
3213  * order for the cache to actually match the block group, but can introduce a
3214  * lot of latency into the commit.
3215  *
3216  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3217  * There's a chance we'll have to redo some of it if the block group changes
3218  * again during the commit, but it greatly reduces the commit latency by
3219  * getting rid of the easy block groups while we're still allowing others to
3220  * join the commit.
3221  */
3222 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3223 {
3224 	struct btrfs_fs_info *fs_info = trans->fs_info;
3225 	struct btrfs_block_group *cache;
3226 	struct btrfs_transaction *cur_trans = trans->transaction;
3227 	int ret = 0;
3228 	int should_put;
3229 	struct btrfs_path *path = NULL;
3230 	LIST_HEAD(dirty);
3231 	struct list_head *io = &cur_trans->io_bgs;
3232 	int loops = 0;
3233 
3234 	spin_lock(&cur_trans->dirty_bgs_lock);
3235 	if (list_empty(&cur_trans->dirty_bgs)) {
3236 		spin_unlock(&cur_trans->dirty_bgs_lock);
3237 		return 0;
3238 	}
3239 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3240 	spin_unlock(&cur_trans->dirty_bgs_lock);
3241 
3242 again:
3243 	/* Make sure all the block groups on our dirty list actually exist */
3244 	btrfs_create_pending_block_groups(trans);
3245 
3246 	if (!path) {
3247 		path = btrfs_alloc_path();
3248 		if (!path) {
3249 			ret = -ENOMEM;
3250 			goto out;
3251 		}
3252 	}
3253 
3254 	/*
3255 	 * cache_write_mutex is here only to save us from balance or automatic
3256 	 * removal of empty block groups deleting this block group while we are
3257 	 * writing out the cache
3258 	 */
3259 	mutex_lock(&trans->transaction->cache_write_mutex);
3260 	while (!list_empty(&dirty)) {
3261 		bool drop_reserve = true;
3262 
3263 		cache = list_first_entry(&dirty, struct btrfs_block_group,
3264 					 dirty_list);
3265 		/*
3266 		 * This can happen if something re-dirties a block group that
3267 		 * is already under IO.  Just wait for it to finish and then do
3268 		 * it all again
3269 		 */
3270 		if (!list_empty(&cache->io_list)) {
3271 			list_del_init(&cache->io_list);
3272 			btrfs_wait_cache_io(trans, cache, path);
3273 			btrfs_put_block_group(cache);
3274 		}
3275 
3276 
3277 		/*
3278 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3279 		 * it should update the cache_state.  Don't delete until after
3280 		 * we wait.
3281 		 *
3282 		 * Since we're not running in the commit critical section
3283 		 * we need the dirty_bgs_lock to protect from update_block_group
3284 		 */
3285 		spin_lock(&cur_trans->dirty_bgs_lock);
3286 		list_del_init(&cache->dirty_list);
3287 		spin_unlock(&cur_trans->dirty_bgs_lock);
3288 
3289 		should_put = 1;
3290 
3291 		cache_save_setup(cache, trans, path);
3292 
3293 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3294 			cache->io_ctl.inode = NULL;
3295 			ret = btrfs_write_out_cache(trans, cache, path);
3296 			if (ret == 0 && cache->io_ctl.inode) {
3297 				should_put = 0;
3298 
3299 				/*
3300 				 * The cache_write_mutex is protecting the
3301 				 * io_list, also refer to the definition of
3302 				 * btrfs_transaction::io_bgs for more details
3303 				 */
3304 				list_add_tail(&cache->io_list, io);
3305 			} else {
3306 				/*
3307 				 * If we failed to write the cache, the
3308 				 * generation will be bad and life goes on
3309 				 */
3310 				ret = 0;
3311 			}
3312 		}
3313 		if (!ret) {
3314 			ret = update_block_group_item(trans, path, cache);
3315 			/*
3316 			 * Our block group might still be attached to the list
3317 			 * of new block groups in the transaction handle of some
3318 			 * other task (struct btrfs_trans_handle->new_bgs). This
3319 			 * means its block group item isn't yet in the extent
3320 			 * tree. If this happens ignore the error, as we will
3321 			 * try again later in the critical section of the
3322 			 * transaction commit.
3323 			 */
3324 			if (ret == -ENOENT) {
3325 				ret = 0;
3326 				spin_lock(&cur_trans->dirty_bgs_lock);
3327 				if (list_empty(&cache->dirty_list)) {
3328 					list_add_tail(&cache->dirty_list,
3329 						      &cur_trans->dirty_bgs);
3330 					btrfs_get_block_group(cache);
3331 					drop_reserve = false;
3332 				}
3333 				spin_unlock(&cur_trans->dirty_bgs_lock);
3334 			} else if (ret) {
3335 				btrfs_abort_transaction(trans, ret);
3336 			}
3337 		}
3338 
3339 		/* If it's not on the io list, we need to put the block group */
3340 		if (should_put)
3341 			btrfs_put_block_group(cache);
3342 		if (drop_reserve)
3343 			btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3344 		/*
3345 		 * Avoid blocking other tasks for too long. It might even save
3346 		 * us from writing caches for block groups that are going to be
3347 		 * removed.
3348 		 */
3349 		mutex_unlock(&trans->transaction->cache_write_mutex);
3350 		if (ret)
3351 			goto out;
3352 		mutex_lock(&trans->transaction->cache_write_mutex);
3353 	}
3354 	mutex_unlock(&trans->transaction->cache_write_mutex);
3355 
3356 	/*
3357 	 * Go through delayed refs for all the stuff we've just kicked off
3358 	 * and then loop back (just once)
3359 	 */
3360 	if (!ret)
3361 		ret = btrfs_run_delayed_refs(trans, 0);
3362 	if (!ret && loops == 0) {
3363 		loops++;
3364 		spin_lock(&cur_trans->dirty_bgs_lock);
3365 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3366 		/*
3367 		 * dirty_bgs_lock protects us from concurrent block group
3368 		 * deletes too (not just cache_write_mutex).
3369 		 */
3370 		if (!list_empty(&dirty)) {
3371 			spin_unlock(&cur_trans->dirty_bgs_lock);
3372 			goto again;
3373 		}
3374 		spin_unlock(&cur_trans->dirty_bgs_lock);
3375 	}
3376 out:
3377 	if (ret < 0) {
3378 		spin_lock(&cur_trans->dirty_bgs_lock);
3379 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3380 		spin_unlock(&cur_trans->dirty_bgs_lock);
3381 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3382 	}
3383 
3384 	btrfs_free_path(path);
3385 	return ret;
3386 }
3387 
3388 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3389 {
3390 	struct btrfs_fs_info *fs_info = trans->fs_info;
3391 	struct btrfs_block_group *cache;
3392 	struct btrfs_transaction *cur_trans = trans->transaction;
3393 	int ret = 0;
3394 	int should_put;
3395 	struct btrfs_path *path;
3396 	struct list_head *io = &cur_trans->io_bgs;
3397 
3398 	path = btrfs_alloc_path();
3399 	if (!path)
3400 		return -ENOMEM;
3401 
3402 	/*
3403 	 * Even though we are in the critical section of the transaction commit,
3404 	 * we can still have concurrent tasks adding elements to this
3405 	 * transaction's list of dirty block groups. These tasks correspond to
3406 	 * endio free space workers started when writeback finishes for a
3407 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3408 	 * allocate new block groups as a result of COWing nodes of the root
3409 	 * tree when updating the free space inode. The writeback for the space
3410 	 * caches is triggered by an earlier call to
3411 	 * btrfs_start_dirty_block_groups() and iterations of the following
3412 	 * loop.
3413 	 * Also we want to do the cache_save_setup first and then run the
3414 	 * delayed refs to make sure we have the best chance at doing this all
3415 	 * in one shot.
3416 	 */
3417 	spin_lock(&cur_trans->dirty_bgs_lock);
3418 	while (!list_empty(&cur_trans->dirty_bgs)) {
3419 		cache = list_first_entry(&cur_trans->dirty_bgs,
3420 					 struct btrfs_block_group,
3421 					 dirty_list);
3422 
3423 		/*
3424 		 * This can happen if cache_save_setup re-dirties a block group
3425 		 * that is already under IO.  Just wait for it to finish and
3426 		 * then do it all again
3427 		 */
3428 		if (!list_empty(&cache->io_list)) {
3429 			spin_unlock(&cur_trans->dirty_bgs_lock);
3430 			list_del_init(&cache->io_list);
3431 			btrfs_wait_cache_io(trans, cache, path);
3432 			btrfs_put_block_group(cache);
3433 			spin_lock(&cur_trans->dirty_bgs_lock);
3434 		}
3435 
3436 		/*
3437 		 * Don't remove from the dirty list until after we've waited on
3438 		 * any pending IO
3439 		 */
3440 		list_del_init(&cache->dirty_list);
3441 		spin_unlock(&cur_trans->dirty_bgs_lock);
3442 		should_put = 1;
3443 
3444 		cache_save_setup(cache, trans, path);
3445 
3446 		if (!ret)
3447 			ret = btrfs_run_delayed_refs(trans, U64_MAX);
3448 
3449 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3450 			cache->io_ctl.inode = NULL;
3451 			ret = btrfs_write_out_cache(trans, cache, path);
3452 			if (ret == 0 && cache->io_ctl.inode) {
3453 				should_put = 0;
3454 				list_add_tail(&cache->io_list, io);
3455 			} else {
3456 				/*
3457 				 * If we failed to write the cache, the
3458 				 * generation will be bad and life goes on
3459 				 */
3460 				ret = 0;
3461 			}
3462 		}
3463 		if (!ret) {
3464 			ret = update_block_group_item(trans, path, cache);
3465 			/*
3466 			 * One of the free space endio workers might have
3467 			 * created a new block group while updating a free space
3468 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3469 			 * and hasn't released its transaction handle yet, in
3470 			 * which case the new block group is still attached to
3471 			 * its transaction handle and its creation has not
3472 			 * finished yet (no block group item in the extent tree
3473 			 * yet, etc). If this is the case, wait for all free
3474 			 * space endio workers to finish and retry. This is a
3475 			 * very rare case so no need for a more efficient and
3476 			 * complex approach.
3477 			 */
3478 			if (ret == -ENOENT) {
3479 				wait_event(cur_trans->writer_wait,
3480 				   atomic_read(&cur_trans->num_writers) == 1);
3481 				ret = update_block_group_item(trans, path, cache);
3482 			}
3483 			if (ret)
3484 				btrfs_abort_transaction(trans, ret);
3485 		}
3486 
3487 		/* If its not on the io list, we need to put the block group */
3488 		if (should_put)
3489 			btrfs_put_block_group(cache);
3490 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3491 		spin_lock(&cur_trans->dirty_bgs_lock);
3492 	}
3493 	spin_unlock(&cur_trans->dirty_bgs_lock);
3494 
3495 	/*
3496 	 * Refer to the definition of io_bgs member for details why it's safe
3497 	 * to use it without any locking
3498 	 */
3499 	while (!list_empty(io)) {
3500 		cache = list_first_entry(io, struct btrfs_block_group,
3501 					 io_list);
3502 		list_del_init(&cache->io_list);
3503 		btrfs_wait_cache_io(trans, cache, path);
3504 		btrfs_put_block_group(cache);
3505 	}
3506 
3507 	btrfs_free_path(path);
3508 	return ret;
3509 }
3510 
3511 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3512 			     u64 bytenr, u64 num_bytes, bool alloc)
3513 {
3514 	struct btrfs_fs_info *info = trans->fs_info;
3515 	struct btrfs_space_info *space_info;
3516 	struct btrfs_block_group *cache;
3517 	u64 old_val;
3518 	bool reclaim = false;
3519 	bool bg_already_dirty = true;
3520 	int factor;
3521 
3522 	/* Block accounting for super block */
3523 	spin_lock(&info->delalloc_root_lock);
3524 	old_val = btrfs_super_bytes_used(info->super_copy);
3525 	if (alloc)
3526 		old_val += num_bytes;
3527 	else
3528 		old_val -= num_bytes;
3529 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3530 	spin_unlock(&info->delalloc_root_lock);
3531 
3532 	cache = btrfs_lookup_block_group(info, bytenr);
3533 	if (!cache)
3534 		return -ENOENT;
3535 
3536 	/* An extent can not span multiple block groups. */
3537 	ASSERT(bytenr + num_bytes <= cache->start + cache->length);
3538 
3539 	space_info = cache->space_info;
3540 	factor = btrfs_bg_type_to_factor(cache->flags);
3541 
3542 	/*
3543 	 * If this block group has free space cache written out, we need to make
3544 	 * sure to load it if we are removing space.  This is because we need
3545 	 * the unpinning stage to actually add the space back to the block group,
3546 	 * otherwise we will leak space.
3547 	 */
3548 	if (!alloc && !btrfs_block_group_done(cache))
3549 		btrfs_cache_block_group(cache, true);
3550 
3551 	spin_lock(&space_info->lock);
3552 	spin_lock(&cache->lock);
3553 
3554 	if (btrfs_test_opt(info, SPACE_CACHE) &&
3555 	    cache->disk_cache_state < BTRFS_DC_CLEAR)
3556 		cache->disk_cache_state = BTRFS_DC_CLEAR;
3557 
3558 	old_val = cache->used;
3559 	if (alloc) {
3560 		old_val += num_bytes;
3561 		cache->used = old_val;
3562 		cache->reserved -= num_bytes;
3563 		space_info->bytes_reserved -= num_bytes;
3564 		space_info->bytes_used += num_bytes;
3565 		space_info->disk_used += num_bytes * factor;
3566 		spin_unlock(&cache->lock);
3567 		spin_unlock(&space_info->lock);
3568 	} else {
3569 		old_val -= num_bytes;
3570 		cache->used = old_val;
3571 		cache->pinned += num_bytes;
3572 		btrfs_space_info_update_bytes_pinned(info, space_info, num_bytes);
3573 		space_info->bytes_used -= num_bytes;
3574 		space_info->disk_used -= num_bytes * factor;
3575 
3576 		reclaim = should_reclaim_block_group(cache, num_bytes);
3577 
3578 		spin_unlock(&cache->lock);
3579 		spin_unlock(&space_info->lock);
3580 
3581 		set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3582 			       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3583 	}
3584 
3585 	spin_lock(&trans->transaction->dirty_bgs_lock);
3586 	if (list_empty(&cache->dirty_list)) {
3587 		list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3588 		bg_already_dirty = false;
3589 		btrfs_get_block_group(cache);
3590 	}
3591 	spin_unlock(&trans->transaction->dirty_bgs_lock);
3592 
3593 	/*
3594 	 * No longer have used bytes in this block group, queue it for deletion.
3595 	 * We do this after adding the block group to the dirty list to avoid
3596 	 * races between cleaner kthread and space cache writeout.
3597 	 */
3598 	if (!alloc && old_val == 0) {
3599 		if (!btrfs_test_opt(info, DISCARD_ASYNC))
3600 			btrfs_mark_bg_unused(cache);
3601 	} else if (!alloc && reclaim) {
3602 		btrfs_mark_bg_to_reclaim(cache);
3603 	}
3604 
3605 	btrfs_put_block_group(cache);
3606 
3607 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3608 	if (!bg_already_dirty)
3609 		btrfs_inc_delayed_refs_rsv_bg_updates(info);
3610 
3611 	return 0;
3612 }
3613 
3614 /*
3615  * Update the block_group and space info counters.
3616  *
3617  * @cache:	The cache we are manipulating
3618  * @ram_bytes:  The number of bytes of file content, and will be same to
3619  *              @num_bytes except for the compress path.
3620  * @num_bytes:	The number of bytes in question
3621  * @delalloc:   The blocks are allocated for the delalloc write
3622  *
3623  * This is called by the allocator when it reserves space. If this is a
3624  * reservation and the block group has become read only we cannot make the
3625  * reservation and return -EAGAIN, otherwise this function always succeeds.
3626  */
3627 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3628 			     u64 ram_bytes, u64 num_bytes, int delalloc,
3629 			     bool force_wrong_size_class)
3630 {
3631 	struct btrfs_space_info *space_info = cache->space_info;
3632 	enum btrfs_block_group_size_class size_class;
3633 	int ret = 0;
3634 
3635 	spin_lock(&space_info->lock);
3636 	spin_lock(&cache->lock);
3637 	if (cache->ro) {
3638 		ret = -EAGAIN;
3639 		goto out;
3640 	}
3641 
3642 	if (btrfs_block_group_should_use_size_class(cache)) {
3643 		size_class = btrfs_calc_block_group_size_class(num_bytes);
3644 		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3645 		if (ret)
3646 			goto out;
3647 	}
3648 	cache->reserved += num_bytes;
3649 	space_info->bytes_reserved += num_bytes;
3650 	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3651 				      space_info->flags, num_bytes, 1);
3652 	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3653 					      space_info, -ram_bytes);
3654 	if (delalloc)
3655 		cache->delalloc_bytes += num_bytes;
3656 
3657 	/*
3658 	 * Compression can use less space than we reserved, so wake tickets if
3659 	 * that happens.
3660 	 */
3661 	if (num_bytes < ram_bytes)
3662 		btrfs_try_granting_tickets(cache->fs_info, space_info);
3663 out:
3664 	spin_unlock(&cache->lock);
3665 	spin_unlock(&space_info->lock);
3666 	return ret;
3667 }
3668 
3669 /*
3670  * Update the block_group and space info counters.
3671  *
3672  * @cache:      The cache we are manipulating
3673  * @num_bytes:  The number of bytes in question
3674  * @delalloc:   The blocks are allocated for the delalloc write
3675  *
3676  * This is called by somebody who is freeing space that was never actually used
3677  * on disk.  For example if you reserve some space for a new leaf in transaction
3678  * A and before transaction A commits you free that leaf, you call this with
3679  * reserve set to 0 in order to clear the reservation.
3680  */
3681 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3682 			       u64 num_bytes, int delalloc)
3683 {
3684 	struct btrfs_space_info *space_info = cache->space_info;
3685 
3686 	spin_lock(&space_info->lock);
3687 	spin_lock(&cache->lock);
3688 	if (cache->ro)
3689 		space_info->bytes_readonly += num_bytes;
3690 	cache->reserved -= num_bytes;
3691 	space_info->bytes_reserved -= num_bytes;
3692 	space_info->max_extent_size = 0;
3693 
3694 	if (delalloc)
3695 		cache->delalloc_bytes -= num_bytes;
3696 	spin_unlock(&cache->lock);
3697 
3698 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3699 	spin_unlock(&space_info->lock);
3700 }
3701 
3702 static void force_metadata_allocation(struct btrfs_fs_info *info)
3703 {
3704 	struct list_head *head = &info->space_info;
3705 	struct btrfs_space_info *found;
3706 
3707 	list_for_each_entry(found, head, list) {
3708 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3709 			found->force_alloc = CHUNK_ALLOC_FORCE;
3710 	}
3711 }
3712 
3713 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3714 			      struct btrfs_space_info *sinfo, int force)
3715 {
3716 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3717 	u64 thresh;
3718 
3719 	if (force == CHUNK_ALLOC_FORCE)
3720 		return 1;
3721 
3722 	/*
3723 	 * in limited mode, we want to have some free space up to
3724 	 * about 1% of the FS size.
3725 	 */
3726 	if (force == CHUNK_ALLOC_LIMITED) {
3727 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3728 		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3729 
3730 		if (sinfo->total_bytes - bytes_used < thresh)
3731 			return 1;
3732 	}
3733 
3734 	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3735 		return 0;
3736 	return 1;
3737 }
3738 
3739 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3740 {
3741 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3742 
3743 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3744 }
3745 
3746 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3747 {
3748 	struct btrfs_block_group *bg;
3749 	int ret;
3750 
3751 	/*
3752 	 * Check if we have enough space in the system space info because we
3753 	 * will need to update device items in the chunk btree and insert a new
3754 	 * chunk item in the chunk btree as well. This will allocate a new
3755 	 * system block group if needed.
3756 	 */
3757 	check_system_chunk(trans, flags);
3758 
3759 	bg = btrfs_create_chunk(trans, flags);
3760 	if (IS_ERR(bg)) {
3761 		ret = PTR_ERR(bg);
3762 		goto out;
3763 	}
3764 
3765 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3766 	/*
3767 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3768 	 * previously reserved space in the system space_info and allocated one
3769 	 * new system chunk if necessary. However there are three exceptions:
3770 	 *
3771 	 * 1) We may have enough free space in the system space_info but all the
3772 	 *    existing system block groups have a profile which can not be used
3773 	 *    for extent allocation.
3774 	 *
3775 	 *    This happens when mounting in degraded mode. For example we have a
3776 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3777 	 *    using the other device in degraded mode. If we then allocate a chunk,
3778 	 *    we may have enough free space in the existing system space_info, but
3779 	 *    none of the block groups can be used for extent allocation since they
3780 	 *    have a RAID1 profile, and because we are in degraded mode with a
3781 	 *    single device, we are forced to allocate a new system chunk with a
3782 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3783 	 *    block groups and check if they have a usable profile and enough space
3784 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3785 	 *    try again after forcing allocation of a new system chunk. Like this
3786 	 *    we avoid paying the cost of that search in normal circumstances, when
3787 	 *    we were not mounted in degraded mode;
3788 	 *
3789 	 * 2) We had enough free space info the system space_info, and one suitable
3790 	 *    block group to allocate from when we called check_system_chunk()
3791 	 *    above. However right after we called it, the only system block group
3792 	 *    with enough free space got turned into RO mode by a running scrub,
3793 	 *    and in this case we have to allocate a new one and retry. We only
3794 	 *    need do this allocate and retry once, since we have a transaction
3795 	 *    handle and scrub uses the commit root to search for block groups;
3796 	 *
3797 	 * 3) We had one system block group with enough free space when we called
3798 	 *    check_system_chunk(), but after that, right before we tried to
3799 	 *    allocate the last extent buffer we needed, a discard operation came
3800 	 *    in and it temporarily removed the last free space entry from the
3801 	 *    block group (discard removes a free space entry, discards it, and
3802 	 *    then adds back the entry to the block group cache).
3803 	 */
3804 	if (ret == -ENOSPC) {
3805 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3806 		struct btrfs_block_group *sys_bg;
3807 
3808 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3809 		if (IS_ERR(sys_bg)) {
3810 			ret = PTR_ERR(sys_bg);
3811 			btrfs_abort_transaction(trans, ret);
3812 			goto out;
3813 		}
3814 
3815 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3816 		if (ret) {
3817 			btrfs_abort_transaction(trans, ret);
3818 			goto out;
3819 		}
3820 
3821 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3822 		if (ret) {
3823 			btrfs_abort_transaction(trans, ret);
3824 			goto out;
3825 		}
3826 	} else if (ret) {
3827 		btrfs_abort_transaction(trans, ret);
3828 		goto out;
3829 	}
3830 out:
3831 	btrfs_trans_release_chunk_metadata(trans);
3832 
3833 	if (ret)
3834 		return ERR_PTR(ret);
3835 
3836 	btrfs_get_block_group(bg);
3837 	return bg;
3838 }
3839 
3840 /*
3841  * Chunk allocation is done in 2 phases:
3842  *
3843  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3844  *    the chunk, the chunk mapping, create its block group and add the items
3845  *    that belong in the chunk btree to it - more specifically, we need to
3846  *    update device items in the chunk btree and add a new chunk item to it.
3847  *
3848  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3849  *    group item to the extent btree and the device extent items to the devices
3850  *    btree.
3851  *
3852  * This is done to prevent deadlocks. For example when COWing a node from the
3853  * extent btree we are holding a write lock on the node's parent and if we
3854  * trigger chunk allocation and attempted to insert the new block group item
3855  * in the extent btree right way, we could deadlock because the path for the
3856  * insertion can include that parent node. At first glance it seems impossible
3857  * to trigger chunk allocation after starting a transaction since tasks should
3858  * reserve enough transaction units (metadata space), however while that is true
3859  * most of the time, chunk allocation may still be triggered for several reasons:
3860  *
3861  * 1) When reserving metadata, we check if there is enough free space in the
3862  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3863  *    However later when the task actually tries to COW an extent buffer from
3864  *    the extent btree or from the device btree for example, it is forced to
3865  *    allocate a new block group (chunk) because the only one that had enough
3866  *    free space was just turned to RO mode by a running scrub for example (or
3867  *    device replace, block group reclaim thread, etc), so we can not use it
3868  *    for allocating an extent and end up being forced to allocate a new one;
3869  *
3870  * 2) Because we only check that the metadata space_info has enough free bytes,
3871  *    we end up not allocating a new metadata chunk in that case. However if
3872  *    the filesystem was mounted in degraded mode, none of the existing block
3873  *    groups might be suitable for extent allocation due to their incompatible
3874  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3875  *    use a RAID1 profile, in degraded mode using a single device). In this case
3876  *    when the task attempts to COW some extent buffer of the extent btree for
3877  *    example, it will trigger allocation of a new metadata block group with a
3878  *    suitable profile (SINGLE profile in the example of the degraded mount of
3879  *    the RAID1 filesystem);
3880  *
3881  * 3) The task has reserved enough transaction units / metadata space, but when
3882  *    it attempts to COW an extent buffer from the extent or device btree for
3883  *    example, it does not find any free extent in any metadata block group,
3884  *    therefore forced to try to allocate a new metadata block group.
3885  *    This is because some other task allocated all available extents in the
3886  *    meanwhile - this typically happens with tasks that don't reserve space
3887  *    properly, either intentionally or as a bug. One example where this is
3888  *    done intentionally is fsync, as it does not reserve any transaction units
3889  *    and ends up allocating a variable number of metadata extents for log
3890  *    tree extent buffers;
3891  *
3892  * 4) The task has reserved enough transaction units / metadata space, but right
3893  *    before it tries to allocate the last extent buffer it needs, a discard
3894  *    operation comes in and, temporarily, removes the last free space entry from
3895  *    the only metadata block group that had free space (discard starts by
3896  *    removing a free space entry from a block group, then does the discard
3897  *    operation and, once it's done, it adds back the free space entry to the
3898  *    block group).
3899  *
3900  * We also need this 2 phases setup when adding a device to a filesystem with
3901  * a seed device - we must create new metadata and system chunks without adding
3902  * any of the block group items to the chunk, extent and device btrees. If we
3903  * did not do it this way, we would get ENOSPC when attempting to update those
3904  * btrees, since all the chunks from the seed device are read-only.
3905  *
3906  * Phase 1 does the updates and insertions to the chunk btree because if we had
3907  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3908  * parallel, we risk having too many system chunks allocated by many tasks if
3909  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3910  * extreme case this leads to exhaustion of the system chunk array in the
3911  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3912  * and with RAID filesystems (so we have more device items in the chunk btree).
3913  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3914  * the system chunk array due to concurrent allocations") provides more details.
3915  *
3916  * Allocation of system chunks does not happen through this function. A task that
3917  * needs to update the chunk btree (the only btree that uses system chunks), must
3918  * preallocate chunk space by calling either check_system_chunk() or
3919  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3920  * metadata chunk or when removing a chunk, while the later is used before doing
3921  * a modification to the chunk btree - use cases for the later are adding,
3922  * removing and resizing a device as well as relocation of a system chunk.
3923  * See the comment below for more details.
3924  *
3925  * The reservation of system space, done through check_system_chunk(), as well
3926  * as all the updates and insertions into the chunk btree must be done while
3927  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3928  * an extent buffer from the chunks btree we never trigger allocation of a new
3929  * system chunk, which would result in a deadlock (trying to lock twice an
3930  * extent buffer of the chunk btree, first time before triggering the chunk
3931  * allocation and the second time during chunk allocation while attempting to
3932  * update the chunks btree). The system chunk array is also updated while holding
3933  * that mutex. The same logic applies to removing chunks - we must reserve system
3934  * space, update the chunk btree and the system chunk array in the superblock
3935  * while holding fs_info->chunk_mutex.
3936  *
3937  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3938  *
3939  * If @force is CHUNK_ALLOC_FORCE:
3940  *    - return 1 if it successfully allocates a chunk,
3941  *    - return errors including -ENOSPC otherwise.
3942  * If @force is NOT CHUNK_ALLOC_FORCE:
3943  *    - return 0 if it doesn't need to allocate a new chunk,
3944  *    - return 1 if it successfully allocates a chunk,
3945  *    - return errors including -ENOSPC otherwise.
3946  */
3947 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3948 		      enum btrfs_chunk_alloc_enum force)
3949 {
3950 	struct btrfs_fs_info *fs_info = trans->fs_info;
3951 	struct btrfs_space_info *space_info;
3952 	struct btrfs_block_group *ret_bg;
3953 	bool wait_for_alloc = false;
3954 	bool should_alloc = false;
3955 	bool from_extent_allocation = false;
3956 	int ret = 0;
3957 
3958 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3959 		from_extent_allocation = true;
3960 		force = CHUNK_ALLOC_FORCE;
3961 	}
3962 
3963 	/* Don't re-enter if we're already allocating a chunk */
3964 	if (trans->allocating_chunk)
3965 		return -ENOSPC;
3966 	/*
3967 	 * Allocation of system chunks can not happen through this path, as we
3968 	 * could end up in a deadlock if we are allocating a data or metadata
3969 	 * chunk and there is another task modifying the chunk btree.
3970 	 *
3971 	 * This is because while we are holding the chunk mutex, we will attempt
3972 	 * to add the new chunk item to the chunk btree or update an existing
3973 	 * device item in the chunk btree, while the other task that is modifying
3974 	 * the chunk btree is attempting to COW an extent buffer while holding a
3975 	 * lock on it and on its parent - if the COW operation triggers a system
3976 	 * chunk allocation, then we can deadlock because we are holding the
3977 	 * chunk mutex and we may need to access that extent buffer or its parent
3978 	 * in order to add the chunk item or update a device item.
3979 	 *
3980 	 * Tasks that want to modify the chunk tree should reserve system space
3981 	 * before updating the chunk btree, by calling either
3982 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3983 	 * It's possible that after a task reserves the space, it still ends up
3984 	 * here - this happens in the cases described above at do_chunk_alloc().
3985 	 * The task will have to either retry or fail.
3986 	 */
3987 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3988 		return -ENOSPC;
3989 
3990 	space_info = btrfs_find_space_info(fs_info, flags);
3991 	ASSERT(space_info);
3992 
3993 	do {
3994 		spin_lock(&space_info->lock);
3995 		if (force < space_info->force_alloc)
3996 			force = space_info->force_alloc;
3997 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3998 		if (space_info->full) {
3999 			/* No more free physical space */
4000 			if (should_alloc)
4001 				ret = -ENOSPC;
4002 			else
4003 				ret = 0;
4004 			spin_unlock(&space_info->lock);
4005 			return ret;
4006 		} else if (!should_alloc) {
4007 			spin_unlock(&space_info->lock);
4008 			return 0;
4009 		} else if (space_info->chunk_alloc) {
4010 			/*
4011 			 * Someone is already allocating, so we need to block
4012 			 * until this someone is finished and then loop to
4013 			 * recheck if we should continue with our allocation
4014 			 * attempt.
4015 			 */
4016 			wait_for_alloc = true;
4017 			force = CHUNK_ALLOC_NO_FORCE;
4018 			spin_unlock(&space_info->lock);
4019 			mutex_lock(&fs_info->chunk_mutex);
4020 			mutex_unlock(&fs_info->chunk_mutex);
4021 		} else {
4022 			/* Proceed with allocation */
4023 			space_info->chunk_alloc = 1;
4024 			wait_for_alloc = false;
4025 			spin_unlock(&space_info->lock);
4026 		}
4027 
4028 		cond_resched();
4029 	} while (wait_for_alloc);
4030 
4031 	mutex_lock(&fs_info->chunk_mutex);
4032 	trans->allocating_chunk = true;
4033 
4034 	/*
4035 	 * If we have mixed data/metadata chunks we want to make sure we keep
4036 	 * allocating mixed chunks instead of individual chunks.
4037 	 */
4038 	if (btrfs_mixed_space_info(space_info))
4039 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4040 
4041 	/*
4042 	 * if we're doing a data chunk, go ahead and make sure that
4043 	 * we keep a reasonable number of metadata chunks allocated in the
4044 	 * FS as well.
4045 	 */
4046 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4047 		fs_info->data_chunk_allocations++;
4048 		if (!(fs_info->data_chunk_allocations %
4049 		      fs_info->metadata_ratio))
4050 			force_metadata_allocation(fs_info);
4051 	}
4052 
4053 	ret_bg = do_chunk_alloc(trans, flags);
4054 	trans->allocating_chunk = false;
4055 
4056 	if (IS_ERR(ret_bg)) {
4057 		ret = PTR_ERR(ret_bg);
4058 	} else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4059 		/*
4060 		 * New block group is likely to be used soon. Try to activate
4061 		 * it now. Failure is OK for now.
4062 		 */
4063 		btrfs_zone_activate(ret_bg);
4064 	}
4065 
4066 	if (!ret)
4067 		btrfs_put_block_group(ret_bg);
4068 
4069 	spin_lock(&space_info->lock);
4070 	if (ret < 0) {
4071 		if (ret == -ENOSPC)
4072 			space_info->full = 1;
4073 		else
4074 			goto out;
4075 	} else {
4076 		ret = 1;
4077 		space_info->max_extent_size = 0;
4078 	}
4079 
4080 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4081 out:
4082 	space_info->chunk_alloc = 0;
4083 	spin_unlock(&space_info->lock);
4084 	mutex_unlock(&fs_info->chunk_mutex);
4085 
4086 	return ret;
4087 }
4088 
4089 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4090 {
4091 	u64 num_dev;
4092 
4093 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4094 	if (!num_dev)
4095 		num_dev = fs_info->fs_devices->rw_devices;
4096 
4097 	return num_dev;
4098 }
4099 
4100 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4101 				u64 bytes,
4102 				u64 type)
4103 {
4104 	struct btrfs_fs_info *fs_info = trans->fs_info;
4105 	struct btrfs_space_info *info;
4106 	u64 left;
4107 	int ret = 0;
4108 
4109 	/*
4110 	 * Needed because we can end up allocating a system chunk and for an
4111 	 * atomic and race free space reservation in the chunk block reserve.
4112 	 */
4113 	lockdep_assert_held(&fs_info->chunk_mutex);
4114 
4115 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4116 	spin_lock(&info->lock);
4117 	left = info->total_bytes - btrfs_space_info_used(info, true);
4118 	spin_unlock(&info->lock);
4119 
4120 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4121 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4122 			   left, bytes, type);
4123 		btrfs_dump_space_info(fs_info, info, 0, 0);
4124 	}
4125 
4126 	if (left < bytes) {
4127 		u64 flags = btrfs_system_alloc_profile(fs_info);
4128 		struct btrfs_block_group *bg;
4129 
4130 		/*
4131 		 * Ignore failure to create system chunk. We might end up not
4132 		 * needing it, as we might not need to COW all nodes/leafs from
4133 		 * the paths we visit in the chunk tree (they were already COWed
4134 		 * or created in the current transaction for example).
4135 		 */
4136 		bg = btrfs_create_chunk(trans, flags);
4137 		if (IS_ERR(bg)) {
4138 			ret = PTR_ERR(bg);
4139 		} else {
4140 			/*
4141 			 * We have a new chunk. We also need to activate it for
4142 			 * zoned filesystem.
4143 			 */
4144 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4145 			if (ret < 0)
4146 				return;
4147 
4148 			/*
4149 			 * If we fail to add the chunk item here, we end up
4150 			 * trying again at phase 2 of chunk allocation, at
4151 			 * btrfs_create_pending_block_groups(). So ignore
4152 			 * any error here. An ENOSPC here could happen, due to
4153 			 * the cases described at do_chunk_alloc() - the system
4154 			 * block group we just created was just turned into RO
4155 			 * mode by a scrub for example, or a running discard
4156 			 * temporarily removed its free space entries, etc.
4157 			 */
4158 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4159 		}
4160 	}
4161 
4162 	if (!ret) {
4163 		ret = btrfs_block_rsv_add(fs_info,
4164 					  &fs_info->chunk_block_rsv,
4165 					  bytes, BTRFS_RESERVE_NO_FLUSH);
4166 		if (!ret)
4167 			trans->chunk_bytes_reserved += bytes;
4168 	}
4169 }
4170 
4171 /*
4172  * Reserve space in the system space for allocating or removing a chunk.
4173  * The caller must be holding fs_info->chunk_mutex.
4174  */
4175 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4176 {
4177 	struct btrfs_fs_info *fs_info = trans->fs_info;
4178 	const u64 num_devs = get_profile_num_devs(fs_info, type);
4179 	u64 bytes;
4180 
4181 	/* num_devs device items to update and 1 chunk item to add or remove. */
4182 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4183 		btrfs_calc_insert_metadata_size(fs_info, 1);
4184 
4185 	reserve_chunk_space(trans, bytes, type);
4186 }
4187 
4188 /*
4189  * Reserve space in the system space, if needed, for doing a modification to the
4190  * chunk btree.
4191  *
4192  * @trans:		A transaction handle.
4193  * @is_item_insertion:	Indicate if the modification is for inserting a new item
4194  *			in the chunk btree or if it's for the deletion or update
4195  *			of an existing item.
4196  *
4197  * This is used in a context where we need to update the chunk btree outside
4198  * block group allocation and removal, to avoid a deadlock with a concurrent
4199  * task that is allocating a metadata or data block group and therefore needs to
4200  * update the chunk btree while holding the chunk mutex. After the update to the
4201  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4202  *
4203  */
4204 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4205 				  bool is_item_insertion)
4206 {
4207 	struct btrfs_fs_info *fs_info = trans->fs_info;
4208 	u64 bytes;
4209 
4210 	if (is_item_insertion)
4211 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4212 	else
4213 		bytes = btrfs_calc_metadata_size(fs_info, 1);
4214 
4215 	mutex_lock(&fs_info->chunk_mutex);
4216 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4217 	mutex_unlock(&fs_info->chunk_mutex);
4218 }
4219 
4220 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4221 {
4222 	struct btrfs_block_group *block_group;
4223 
4224 	block_group = btrfs_lookup_first_block_group(info, 0);
4225 	while (block_group) {
4226 		btrfs_wait_block_group_cache_done(block_group);
4227 		spin_lock(&block_group->lock);
4228 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4229 				       &block_group->runtime_flags)) {
4230 			struct inode *inode = block_group->inode;
4231 
4232 			block_group->inode = NULL;
4233 			spin_unlock(&block_group->lock);
4234 
4235 			ASSERT(block_group->io_ctl.inode == NULL);
4236 			iput(inode);
4237 		} else {
4238 			spin_unlock(&block_group->lock);
4239 		}
4240 		block_group = btrfs_next_block_group(block_group);
4241 	}
4242 }
4243 
4244 /*
4245  * Must be called only after stopping all workers, since we could have block
4246  * group caching kthreads running, and therefore they could race with us if we
4247  * freed the block groups before stopping them.
4248  */
4249 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4250 {
4251 	struct btrfs_block_group *block_group;
4252 	struct btrfs_space_info *space_info;
4253 	struct btrfs_caching_control *caching_ctl;
4254 	struct rb_node *n;
4255 
4256 	if (btrfs_is_zoned(info)) {
4257 		if (info->active_meta_bg) {
4258 			btrfs_put_block_group(info->active_meta_bg);
4259 			info->active_meta_bg = NULL;
4260 		}
4261 		if (info->active_system_bg) {
4262 			btrfs_put_block_group(info->active_system_bg);
4263 			info->active_system_bg = NULL;
4264 		}
4265 	}
4266 
4267 	write_lock(&info->block_group_cache_lock);
4268 	while (!list_empty(&info->caching_block_groups)) {
4269 		caching_ctl = list_entry(info->caching_block_groups.next,
4270 					 struct btrfs_caching_control, list);
4271 		list_del(&caching_ctl->list);
4272 		btrfs_put_caching_control(caching_ctl);
4273 	}
4274 	write_unlock(&info->block_group_cache_lock);
4275 
4276 	spin_lock(&info->unused_bgs_lock);
4277 	while (!list_empty(&info->unused_bgs)) {
4278 		block_group = list_first_entry(&info->unused_bgs,
4279 					       struct btrfs_block_group,
4280 					       bg_list);
4281 		list_del_init(&block_group->bg_list);
4282 		btrfs_put_block_group(block_group);
4283 	}
4284 
4285 	while (!list_empty(&info->reclaim_bgs)) {
4286 		block_group = list_first_entry(&info->reclaim_bgs,
4287 					       struct btrfs_block_group,
4288 					       bg_list);
4289 		list_del_init(&block_group->bg_list);
4290 		btrfs_put_block_group(block_group);
4291 	}
4292 	spin_unlock(&info->unused_bgs_lock);
4293 
4294 	spin_lock(&info->zone_active_bgs_lock);
4295 	while (!list_empty(&info->zone_active_bgs)) {
4296 		block_group = list_first_entry(&info->zone_active_bgs,
4297 					       struct btrfs_block_group,
4298 					       active_bg_list);
4299 		list_del_init(&block_group->active_bg_list);
4300 		btrfs_put_block_group(block_group);
4301 	}
4302 	spin_unlock(&info->zone_active_bgs_lock);
4303 
4304 	write_lock(&info->block_group_cache_lock);
4305 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4306 		block_group = rb_entry(n, struct btrfs_block_group,
4307 				       cache_node);
4308 		rb_erase_cached(&block_group->cache_node,
4309 				&info->block_group_cache_tree);
4310 		RB_CLEAR_NODE(&block_group->cache_node);
4311 		write_unlock(&info->block_group_cache_lock);
4312 
4313 		down_write(&block_group->space_info->groups_sem);
4314 		list_del(&block_group->list);
4315 		up_write(&block_group->space_info->groups_sem);
4316 
4317 		/*
4318 		 * We haven't cached this block group, which means we could
4319 		 * possibly have excluded extents on this block group.
4320 		 */
4321 		if (block_group->cached == BTRFS_CACHE_NO ||
4322 		    block_group->cached == BTRFS_CACHE_ERROR)
4323 			btrfs_free_excluded_extents(block_group);
4324 
4325 		btrfs_remove_free_space_cache(block_group);
4326 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4327 		ASSERT(list_empty(&block_group->dirty_list));
4328 		ASSERT(list_empty(&block_group->io_list));
4329 		ASSERT(list_empty(&block_group->bg_list));
4330 		ASSERT(refcount_read(&block_group->refs) == 1);
4331 		ASSERT(block_group->swap_extents == 0);
4332 		btrfs_put_block_group(block_group);
4333 
4334 		write_lock(&info->block_group_cache_lock);
4335 	}
4336 	write_unlock(&info->block_group_cache_lock);
4337 
4338 	btrfs_release_global_block_rsv(info);
4339 
4340 	while (!list_empty(&info->space_info)) {
4341 		space_info = list_entry(info->space_info.next,
4342 					struct btrfs_space_info,
4343 					list);
4344 
4345 		/*
4346 		 * Do not hide this behind enospc_debug, this is actually
4347 		 * important and indicates a real bug if this happens.
4348 		 */
4349 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4350 			    space_info->bytes_may_use > 0))
4351 			btrfs_dump_space_info(info, space_info, 0, 0);
4352 
4353 		/*
4354 		 * If there was a failure to cleanup a log tree, very likely due
4355 		 * to an IO failure on a writeback attempt of one or more of its
4356 		 * extent buffers, we could not do proper (and cheap) unaccounting
4357 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4358 		 * that case.
4359 		 */
4360 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4361 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4362 			if (WARN_ON(space_info->bytes_reserved > 0))
4363 				btrfs_dump_space_info(info, space_info, 0, 0);
4364 		}
4365 
4366 		WARN_ON(space_info->reclaim_size > 0);
4367 		list_del(&space_info->list);
4368 		btrfs_sysfs_remove_space_info(space_info);
4369 	}
4370 	return 0;
4371 }
4372 
4373 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4374 {
4375 	atomic_inc(&cache->frozen);
4376 }
4377 
4378 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4379 {
4380 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4381 	bool cleanup;
4382 
4383 	spin_lock(&block_group->lock);
4384 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4385 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4386 	spin_unlock(&block_group->lock);
4387 
4388 	if (cleanup) {
4389 		struct btrfs_chunk_map *map;
4390 
4391 		map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4392 		/* Logic error, can't happen. */
4393 		ASSERT(map);
4394 
4395 		btrfs_remove_chunk_map(fs_info, map);
4396 
4397 		/* Once for our lookup reference. */
4398 		btrfs_free_chunk_map(map);
4399 
4400 		/*
4401 		 * We may have left one free space entry and other possible
4402 		 * tasks trimming this block group have left 1 entry each one.
4403 		 * Free them if any.
4404 		 */
4405 		btrfs_remove_free_space_cache(block_group);
4406 	}
4407 }
4408 
4409 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4410 {
4411 	bool ret = true;
4412 
4413 	spin_lock(&bg->lock);
4414 	if (bg->ro)
4415 		ret = false;
4416 	else
4417 		bg->swap_extents++;
4418 	spin_unlock(&bg->lock);
4419 
4420 	return ret;
4421 }
4422 
4423 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4424 {
4425 	spin_lock(&bg->lock);
4426 	ASSERT(!bg->ro);
4427 	ASSERT(bg->swap_extents >= amount);
4428 	bg->swap_extents -= amount;
4429 	spin_unlock(&bg->lock);
4430 }
4431 
4432 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4433 {
4434 	if (size <= SZ_128K)
4435 		return BTRFS_BG_SZ_SMALL;
4436 	if (size <= SZ_8M)
4437 		return BTRFS_BG_SZ_MEDIUM;
4438 	return BTRFS_BG_SZ_LARGE;
4439 }
4440 
4441 /*
4442  * Handle a block group allocating an extent in a size class
4443  *
4444  * @bg:				The block group we allocated in.
4445  * @size_class:			The size class of the allocation.
4446  * @force_wrong_size_class:	Whether we are desperate enough to allow
4447  *				mismatched size classes.
4448  *
4449  * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4450  * case of a race that leads to the wrong size class without
4451  * force_wrong_size_class set.
4452  *
4453  * find_free_extent will skip block groups with a mismatched size class until
4454  * it really needs to avoid ENOSPC. In that case it will set
4455  * force_wrong_size_class. However, if a block group is newly allocated and
4456  * doesn't yet have a size class, then it is possible for two allocations of
4457  * different sizes to race and both try to use it. The loser is caught here and
4458  * has to retry.
4459  */
4460 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4461 				     enum btrfs_block_group_size_class size_class,
4462 				     bool force_wrong_size_class)
4463 {
4464 	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4465 
4466 	/* The new allocation is in the right size class, do nothing */
4467 	if (bg->size_class == size_class)
4468 		return 0;
4469 	/*
4470 	 * The new allocation is in a mismatched size class.
4471 	 * This means one of two things:
4472 	 *
4473 	 * 1. Two tasks in find_free_extent for different size_classes raced
4474 	 *    and hit the same empty block_group. Make the loser try again.
4475 	 * 2. A call to find_free_extent got desperate enough to set
4476 	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4477 	 *    allocation.
4478 	 */
4479 	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4480 		if (force_wrong_size_class)
4481 			return 0;
4482 		return -EAGAIN;
4483 	}
4484 	/*
4485 	 * The happy new block group case: the new allocation is the first
4486 	 * one in the block_group so we set size_class.
4487 	 */
4488 	bg->size_class = size_class;
4489 
4490 	return 0;
4491 }
4492 
4493 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4494 {
4495 	if (btrfs_is_zoned(bg->fs_info))
4496 		return false;
4497 	if (!btrfs_is_block_group_data_only(bg))
4498 		return false;
4499 	return true;
4500 }
4501