xref: /linux/fs/btrfs/block-group.c (revision c1f3caff2450048ab6c053e5b23698b58f286159)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20 
21 /*
22  * Return target flags in extended format or 0 if restripe for this chunk_type
23  * is not in progress
24  *
25  * Should be called with balance_lock held
26  */
27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
28 {
29 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 	u64 target = 0;
31 
32 	if (!bctl)
33 		return 0;
34 
35 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 	}
45 
46 	return target;
47 }
48 
49 /*
50  * @flags: available profiles in extended format (see ctree.h)
51  *
52  * Return reduced profile in chunk format.  If profile changing is in progress
53  * (either running or paused) picks the target profile (if it's already
54  * available), otherwise falls back to plain reducing.
55  */
56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 	u64 num_devices = fs_info->fs_devices->rw_devices;
59 	u64 target;
60 	u64 raid_type;
61 	u64 allowed = 0;
62 
63 	/*
64 	 * See if restripe for this chunk_type is in progress, if so try to
65 	 * reduce to the target profile
66 	 */
67 	spin_lock(&fs_info->balance_lock);
68 	target = get_restripe_target(fs_info, flags);
69 	if (target) {
70 		spin_unlock(&fs_info->balance_lock);
71 		return extended_to_chunk(target);
72 	}
73 	spin_unlock(&fs_info->balance_lock);
74 
75 	/* First, mask out the RAID levels which aren't possible */
76 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 			allowed |= btrfs_raid_array[raid_type].bg_flag;
79 	}
80 	allowed &= flags;
81 
82 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 		allowed = BTRFS_BLOCK_GROUP_RAID6;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 		allowed = BTRFS_BLOCK_GROUP_RAID5;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 		allowed = BTRFS_BLOCK_GROUP_RAID10;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 		allowed = BTRFS_BLOCK_GROUP_RAID1;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 		allowed = BTRFS_BLOCK_GROUP_RAID0;
92 
93 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94 
95 	return extended_to_chunk(flags | allowed);
96 }
97 
98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 	unsigned seq;
101 	u64 flags;
102 
103 	do {
104 		flags = orig_flags;
105 		seq = read_seqbegin(&fs_info->profiles_lock);
106 
107 		if (flags & BTRFS_BLOCK_GROUP_DATA)
108 			flags |= fs_info->avail_data_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 			flags |= fs_info->avail_system_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 			flags |= fs_info->avail_metadata_alloc_bits;
113 	} while (read_seqretry(&fs_info->profiles_lock, seq));
114 
115 	return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117 
118 void btrfs_get_block_group(struct btrfs_block_group *cache)
119 {
120 	refcount_inc(&cache->refs);
121 }
122 
123 void btrfs_put_block_group(struct btrfs_block_group *cache)
124 {
125 	if (refcount_dec_and_test(&cache->refs)) {
126 		WARN_ON(cache->pinned > 0);
127 		WARN_ON(cache->reserved > 0);
128 
129 		/*
130 		 * A block_group shouldn't be on the discard_list anymore.
131 		 * Remove the block_group from the discard_list to prevent us
132 		 * from causing a panic due to NULL pointer dereference.
133 		 */
134 		if (WARN_ON(!list_empty(&cache->discard_list)))
135 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
136 						  cache);
137 
138 		/*
139 		 * If not empty, someone is still holding mutex of
140 		 * full_stripe_lock, which can only be released by caller.
141 		 * And it will definitely cause use-after-free when caller
142 		 * tries to release full stripe lock.
143 		 *
144 		 * No better way to resolve, but only to warn.
145 		 */
146 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
147 		kfree(cache->free_space_ctl);
148 		kfree(cache->physical_map);
149 		kfree(cache);
150 	}
151 }
152 
153 /*
154  * This adds the block group to the fs_info rb tree for the block group cache
155  */
156 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
157 				       struct btrfs_block_group *block_group)
158 {
159 	struct rb_node **p;
160 	struct rb_node *parent = NULL;
161 	struct btrfs_block_group *cache;
162 
163 	ASSERT(block_group->length != 0);
164 
165 	spin_lock(&info->block_group_cache_lock);
166 	p = &info->block_group_cache_tree.rb_node;
167 
168 	while (*p) {
169 		parent = *p;
170 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
171 		if (block_group->start < cache->start) {
172 			p = &(*p)->rb_left;
173 		} else if (block_group->start > cache->start) {
174 			p = &(*p)->rb_right;
175 		} else {
176 			spin_unlock(&info->block_group_cache_lock);
177 			return -EEXIST;
178 		}
179 	}
180 
181 	rb_link_node(&block_group->cache_node, parent, p);
182 	rb_insert_color(&block_group->cache_node,
183 			&info->block_group_cache_tree);
184 
185 	if (info->first_logical_byte > block_group->start)
186 		info->first_logical_byte = block_group->start;
187 
188 	spin_unlock(&info->block_group_cache_lock);
189 
190 	return 0;
191 }
192 
193 /*
194  * This will return the block group at or after bytenr if contains is 0, else
195  * it will return the block group that contains the bytenr
196  */
197 static struct btrfs_block_group *block_group_cache_tree_search(
198 		struct btrfs_fs_info *info, u64 bytenr, int contains)
199 {
200 	struct btrfs_block_group *cache, *ret = NULL;
201 	struct rb_node *n;
202 	u64 end, start;
203 
204 	spin_lock(&info->block_group_cache_lock);
205 	n = info->block_group_cache_tree.rb_node;
206 
207 	while (n) {
208 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
209 		end = cache->start + cache->length - 1;
210 		start = cache->start;
211 
212 		if (bytenr < start) {
213 			if (!contains && (!ret || start < ret->start))
214 				ret = cache;
215 			n = n->rb_left;
216 		} else if (bytenr > start) {
217 			if (contains && bytenr <= end) {
218 				ret = cache;
219 				break;
220 			}
221 			n = n->rb_right;
222 		} else {
223 			ret = cache;
224 			break;
225 		}
226 	}
227 	if (ret) {
228 		btrfs_get_block_group(ret);
229 		if (bytenr == 0 && info->first_logical_byte > ret->start)
230 			info->first_logical_byte = ret->start;
231 	}
232 	spin_unlock(&info->block_group_cache_lock);
233 
234 	return ret;
235 }
236 
237 /*
238  * Return the block group that starts at or after bytenr
239  */
240 struct btrfs_block_group *btrfs_lookup_first_block_group(
241 		struct btrfs_fs_info *info, u64 bytenr)
242 {
243 	return block_group_cache_tree_search(info, bytenr, 0);
244 }
245 
246 /*
247  * Return the block group that contains the given bytenr
248  */
249 struct btrfs_block_group *btrfs_lookup_block_group(
250 		struct btrfs_fs_info *info, u64 bytenr)
251 {
252 	return block_group_cache_tree_search(info, bytenr, 1);
253 }
254 
255 struct btrfs_block_group *btrfs_next_block_group(
256 		struct btrfs_block_group *cache)
257 {
258 	struct btrfs_fs_info *fs_info = cache->fs_info;
259 	struct rb_node *node;
260 
261 	spin_lock(&fs_info->block_group_cache_lock);
262 
263 	/* If our block group was removed, we need a full search. */
264 	if (RB_EMPTY_NODE(&cache->cache_node)) {
265 		const u64 next_bytenr = cache->start + cache->length;
266 
267 		spin_unlock(&fs_info->block_group_cache_lock);
268 		btrfs_put_block_group(cache);
269 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
270 	}
271 	node = rb_next(&cache->cache_node);
272 	btrfs_put_block_group(cache);
273 	if (node) {
274 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
275 		btrfs_get_block_group(cache);
276 	} else
277 		cache = NULL;
278 	spin_unlock(&fs_info->block_group_cache_lock);
279 	return cache;
280 }
281 
282 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
283 {
284 	struct btrfs_block_group *bg;
285 	bool ret = true;
286 
287 	bg = btrfs_lookup_block_group(fs_info, bytenr);
288 	if (!bg)
289 		return false;
290 
291 	spin_lock(&bg->lock);
292 	if (bg->ro)
293 		ret = false;
294 	else
295 		atomic_inc(&bg->nocow_writers);
296 	spin_unlock(&bg->lock);
297 
298 	/* No put on block group, done by btrfs_dec_nocow_writers */
299 	if (!ret)
300 		btrfs_put_block_group(bg);
301 
302 	return ret;
303 }
304 
305 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
306 {
307 	struct btrfs_block_group *bg;
308 
309 	bg = btrfs_lookup_block_group(fs_info, bytenr);
310 	ASSERT(bg);
311 	if (atomic_dec_and_test(&bg->nocow_writers))
312 		wake_up_var(&bg->nocow_writers);
313 	/*
314 	 * Once for our lookup and once for the lookup done by a previous call
315 	 * to btrfs_inc_nocow_writers()
316 	 */
317 	btrfs_put_block_group(bg);
318 	btrfs_put_block_group(bg);
319 }
320 
321 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
322 {
323 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
324 }
325 
326 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
327 					const u64 start)
328 {
329 	struct btrfs_block_group *bg;
330 
331 	bg = btrfs_lookup_block_group(fs_info, start);
332 	ASSERT(bg);
333 	if (atomic_dec_and_test(&bg->reservations))
334 		wake_up_var(&bg->reservations);
335 	btrfs_put_block_group(bg);
336 }
337 
338 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
339 {
340 	struct btrfs_space_info *space_info = bg->space_info;
341 
342 	ASSERT(bg->ro);
343 
344 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
345 		return;
346 
347 	/*
348 	 * Our block group is read only but before we set it to read only,
349 	 * some task might have had allocated an extent from it already, but it
350 	 * has not yet created a respective ordered extent (and added it to a
351 	 * root's list of ordered extents).
352 	 * Therefore wait for any task currently allocating extents, since the
353 	 * block group's reservations counter is incremented while a read lock
354 	 * on the groups' semaphore is held and decremented after releasing
355 	 * the read access on that semaphore and creating the ordered extent.
356 	 */
357 	down_write(&space_info->groups_sem);
358 	up_write(&space_info->groups_sem);
359 
360 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
361 }
362 
363 struct btrfs_caching_control *btrfs_get_caching_control(
364 		struct btrfs_block_group *cache)
365 {
366 	struct btrfs_caching_control *ctl;
367 
368 	spin_lock(&cache->lock);
369 	if (!cache->caching_ctl) {
370 		spin_unlock(&cache->lock);
371 		return NULL;
372 	}
373 
374 	ctl = cache->caching_ctl;
375 	refcount_inc(&ctl->count);
376 	spin_unlock(&cache->lock);
377 	return ctl;
378 }
379 
380 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
381 {
382 	if (refcount_dec_and_test(&ctl->count))
383 		kfree(ctl);
384 }
385 
386 /*
387  * When we wait for progress in the block group caching, its because our
388  * allocation attempt failed at least once.  So, we must sleep and let some
389  * progress happen before we try again.
390  *
391  * This function will sleep at least once waiting for new free space to show
392  * up, and then it will check the block group free space numbers for our min
393  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
394  * a free extent of a given size, but this is a good start.
395  *
396  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
397  * any of the information in this block group.
398  */
399 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
400 					   u64 num_bytes)
401 {
402 	struct btrfs_caching_control *caching_ctl;
403 
404 	caching_ctl = btrfs_get_caching_control(cache);
405 	if (!caching_ctl)
406 		return;
407 
408 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
409 		   (cache->free_space_ctl->free_space >= num_bytes));
410 
411 	btrfs_put_caching_control(caching_ctl);
412 }
413 
414 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
415 {
416 	struct btrfs_caching_control *caching_ctl;
417 	int ret = 0;
418 
419 	caching_ctl = btrfs_get_caching_control(cache);
420 	if (!caching_ctl)
421 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
422 
423 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
424 	if (cache->cached == BTRFS_CACHE_ERROR)
425 		ret = -EIO;
426 	btrfs_put_caching_control(caching_ctl);
427 	return ret;
428 }
429 
430 static bool space_cache_v1_done(struct btrfs_block_group *cache)
431 {
432 	bool ret;
433 
434 	spin_lock(&cache->lock);
435 	ret = cache->cached != BTRFS_CACHE_FAST;
436 	spin_unlock(&cache->lock);
437 
438 	return ret;
439 }
440 
441 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
442 				struct btrfs_caching_control *caching_ctl)
443 {
444 	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
445 }
446 
447 #ifdef CONFIG_BTRFS_DEBUG
448 static void fragment_free_space(struct btrfs_block_group *block_group)
449 {
450 	struct btrfs_fs_info *fs_info = block_group->fs_info;
451 	u64 start = block_group->start;
452 	u64 len = block_group->length;
453 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
454 		fs_info->nodesize : fs_info->sectorsize;
455 	u64 step = chunk << 1;
456 
457 	while (len > chunk) {
458 		btrfs_remove_free_space(block_group, start, chunk);
459 		start += step;
460 		if (len < step)
461 			len = 0;
462 		else
463 			len -= step;
464 	}
465 }
466 #endif
467 
468 /*
469  * This is only called by btrfs_cache_block_group, since we could have freed
470  * extents we need to check the pinned_extents for any extents that can't be
471  * used yet since their free space will be released as soon as the transaction
472  * commits.
473  */
474 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
475 {
476 	struct btrfs_fs_info *info = block_group->fs_info;
477 	u64 extent_start, extent_end, size, total_added = 0;
478 	int ret;
479 
480 	while (start < end) {
481 		ret = find_first_extent_bit(&info->excluded_extents, start,
482 					    &extent_start, &extent_end,
483 					    EXTENT_DIRTY | EXTENT_UPTODATE,
484 					    NULL);
485 		if (ret)
486 			break;
487 
488 		if (extent_start <= start) {
489 			start = extent_end + 1;
490 		} else if (extent_start > start && extent_start < end) {
491 			size = extent_start - start;
492 			total_added += size;
493 			ret = btrfs_add_free_space_async_trimmed(block_group,
494 								 start, size);
495 			BUG_ON(ret); /* -ENOMEM or logic error */
496 			start = extent_end + 1;
497 		} else {
498 			break;
499 		}
500 	}
501 
502 	if (start < end) {
503 		size = end - start;
504 		total_added += size;
505 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
506 							 size);
507 		BUG_ON(ret); /* -ENOMEM or logic error */
508 	}
509 
510 	return total_added;
511 }
512 
513 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
514 {
515 	struct btrfs_block_group *block_group = caching_ctl->block_group;
516 	struct btrfs_fs_info *fs_info = block_group->fs_info;
517 	struct btrfs_root *extent_root;
518 	struct btrfs_path *path;
519 	struct extent_buffer *leaf;
520 	struct btrfs_key key;
521 	u64 total_found = 0;
522 	u64 last = 0;
523 	u32 nritems;
524 	int ret;
525 	bool wakeup = true;
526 
527 	path = btrfs_alloc_path();
528 	if (!path)
529 		return -ENOMEM;
530 
531 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
532 	extent_root = btrfs_extent_root(fs_info, last);
533 
534 #ifdef CONFIG_BTRFS_DEBUG
535 	/*
536 	 * If we're fragmenting we don't want to make anybody think we can
537 	 * allocate from this block group until we've had a chance to fragment
538 	 * the free space.
539 	 */
540 	if (btrfs_should_fragment_free_space(block_group))
541 		wakeup = false;
542 #endif
543 	/*
544 	 * We don't want to deadlock with somebody trying to allocate a new
545 	 * extent for the extent root while also trying to search the extent
546 	 * root to add free space.  So we skip locking and search the commit
547 	 * root, since its read-only
548 	 */
549 	path->skip_locking = 1;
550 	path->search_commit_root = 1;
551 	path->reada = READA_FORWARD;
552 
553 	key.objectid = last;
554 	key.offset = 0;
555 	key.type = BTRFS_EXTENT_ITEM_KEY;
556 
557 next:
558 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
559 	if (ret < 0)
560 		goto out;
561 
562 	leaf = path->nodes[0];
563 	nritems = btrfs_header_nritems(leaf);
564 
565 	while (1) {
566 		if (btrfs_fs_closing(fs_info) > 1) {
567 			last = (u64)-1;
568 			break;
569 		}
570 
571 		if (path->slots[0] < nritems) {
572 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
573 		} else {
574 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
575 			if (ret)
576 				break;
577 
578 			if (need_resched() ||
579 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
580 				if (wakeup)
581 					caching_ctl->progress = last;
582 				btrfs_release_path(path);
583 				up_read(&fs_info->commit_root_sem);
584 				mutex_unlock(&caching_ctl->mutex);
585 				cond_resched();
586 				mutex_lock(&caching_ctl->mutex);
587 				down_read(&fs_info->commit_root_sem);
588 				goto next;
589 			}
590 
591 			ret = btrfs_next_leaf(extent_root, path);
592 			if (ret < 0)
593 				goto out;
594 			if (ret)
595 				break;
596 			leaf = path->nodes[0];
597 			nritems = btrfs_header_nritems(leaf);
598 			continue;
599 		}
600 
601 		if (key.objectid < last) {
602 			key.objectid = last;
603 			key.offset = 0;
604 			key.type = BTRFS_EXTENT_ITEM_KEY;
605 
606 			if (wakeup)
607 				caching_ctl->progress = last;
608 			btrfs_release_path(path);
609 			goto next;
610 		}
611 
612 		if (key.objectid < block_group->start) {
613 			path->slots[0]++;
614 			continue;
615 		}
616 
617 		if (key.objectid >= block_group->start + block_group->length)
618 			break;
619 
620 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
621 		    key.type == BTRFS_METADATA_ITEM_KEY) {
622 			total_found += add_new_free_space(block_group, last,
623 							  key.objectid);
624 			if (key.type == BTRFS_METADATA_ITEM_KEY)
625 				last = key.objectid +
626 					fs_info->nodesize;
627 			else
628 				last = key.objectid + key.offset;
629 
630 			if (total_found > CACHING_CTL_WAKE_UP) {
631 				total_found = 0;
632 				if (wakeup)
633 					wake_up(&caching_ctl->wait);
634 			}
635 		}
636 		path->slots[0]++;
637 	}
638 	ret = 0;
639 
640 	total_found += add_new_free_space(block_group, last,
641 				block_group->start + block_group->length);
642 	caching_ctl->progress = (u64)-1;
643 
644 out:
645 	btrfs_free_path(path);
646 	return ret;
647 }
648 
649 static noinline void caching_thread(struct btrfs_work *work)
650 {
651 	struct btrfs_block_group *block_group;
652 	struct btrfs_fs_info *fs_info;
653 	struct btrfs_caching_control *caching_ctl;
654 	int ret;
655 
656 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
657 	block_group = caching_ctl->block_group;
658 	fs_info = block_group->fs_info;
659 
660 	mutex_lock(&caching_ctl->mutex);
661 	down_read(&fs_info->commit_root_sem);
662 
663 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
664 		ret = load_free_space_cache(block_group);
665 		if (ret == 1) {
666 			ret = 0;
667 			goto done;
668 		}
669 
670 		/*
671 		 * We failed to load the space cache, set ourselves to
672 		 * CACHE_STARTED and carry on.
673 		 */
674 		spin_lock(&block_group->lock);
675 		block_group->cached = BTRFS_CACHE_STARTED;
676 		spin_unlock(&block_group->lock);
677 		wake_up(&caching_ctl->wait);
678 	}
679 
680 	/*
681 	 * If we are in the transaction that populated the free space tree we
682 	 * can't actually cache from the free space tree as our commit root and
683 	 * real root are the same, so we could change the contents of the blocks
684 	 * while caching.  Instead do the slow caching in this case, and after
685 	 * the transaction has committed we will be safe.
686 	 */
687 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
688 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
689 		ret = load_free_space_tree(caching_ctl);
690 	else
691 		ret = load_extent_tree_free(caching_ctl);
692 done:
693 	spin_lock(&block_group->lock);
694 	block_group->caching_ctl = NULL;
695 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
696 	spin_unlock(&block_group->lock);
697 
698 #ifdef CONFIG_BTRFS_DEBUG
699 	if (btrfs_should_fragment_free_space(block_group)) {
700 		u64 bytes_used;
701 
702 		spin_lock(&block_group->space_info->lock);
703 		spin_lock(&block_group->lock);
704 		bytes_used = block_group->length - block_group->used;
705 		block_group->space_info->bytes_used += bytes_used >> 1;
706 		spin_unlock(&block_group->lock);
707 		spin_unlock(&block_group->space_info->lock);
708 		fragment_free_space(block_group);
709 	}
710 #endif
711 
712 	caching_ctl->progress = (u64)-1;
713 
714 	up_read(&fs_info->commit_root_sem);
715 	btrfs_free_excluded_extents(block_group);
716 	mutex_unlock(&caching_ctl->mutex);
717 
718 	wake_up(&caching_ctl->wait);
719 
720 	btrfs_put_caching_control(caching_ctl);
721 	btrfs_put_block_group(block_group);
722 }
723 
724 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
725 {
726 	DEFINE_WAIT(wait);
727 	struct btrfs_fs_info *fs_info = cache->fs_info;
728 	struct btrfs_caching_control *caching_ctl = NULL;
729 	int ret = 0;
730 
731 	/* Allocator for zoned filesystems does not use the cache at all */
732 	if (btrfs_is_zoned(fs_info))
733 		return 0;
734 
735 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
736 	if (!caching_ctl)
737 		return -ENOMEM;
738 
739 	INIT_LIST_HEAD(&caching_ctl->list);
740 	mutex_init(&caching_ctl->mutex);
741 	init_waitqueue_head(&caching_ctl->wait);
742 	caching_ctl->block_group = cache;
743 	caching_ctl->progress = cache->start;
744 	refcount_set(&caching_ctl->count, 2);
745 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
746 
747 	spin_lock(&cache->lock);
748 	if (cache->cached != BTRFS_CACHE_NO) {
749 		kfree(caching_ctl);
750 
751 		caching_ctl = cache->caching_ctl;
752 		if (caching_ctl)
753 			refcount_inc(&caching_ctl->count);
754 		spin_unlock(&cache->lock);
755 		goto out;
756 	}
757 	WARN_ON(cache->caching_ctl);
758 	cache->caching_ctl = caching_ctl;
759 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
760 		cache->cached = BTRFS_CACHE_FAST;
761 	else
762 		cache->cached = BTRFS_CACHE_STARTED;
763 	cache->has_caching_ctl = 1;
764 	spin_unlock(&cache->lock);
765 
766 	spin_lock(&fs_info->block_group_cache_lock);
767 	refcount_inc(&caching_ctl->count);
768 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
769 	spin_unlock(&fs_info->block_group_cache_lock);
770 
771 	btrfs_get_block_group(cache);
772 
773 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
774 out:
775 	if (load_cache_only && caching_ctl)
776 		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
777 	if (caching_ctl)
778 		btrfs_put_caching_control(caching_ctl);
779 
780 	return ret;
781 }
782 
783 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
784 {
785 	u64 extra_flags = chunk_to_extended(flags) &
786 				BTRFS_EXTENDED_PROFILE_MASK;
787 
788 	write_seqlock(&fs_info->profiles_lock);
789 	if (flags & BTRFS_BLOCK_GROUP_DATA)
790 		fs_info->avail_data_alloc_bits &= ~extra_flags;
791 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
792 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
793 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
794 		fs_info->avail_system_alloc_bits &= ~extra_flags;
795 	write_sequnlock(&fs_info->profiles_lock);
796 }
797 
798 /*
799  * Clear incompat bits for the following feature(s):
800  *
801  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
802  *            in the whole filesystem
803  *
804  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
805  */
806 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
807 {
808 	bool found_raid56 = false;
809 	bool found_raid1c34 = false;
810 
811 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
812 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
813 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
814 		struct list_head *head = &fs_info->space_info;
815 		struct btrfs_space_info *sinfo;
816 
817 		list_for_each_entry_rcu(sinfo, head, list) {
818 			down_read(&sinfo->groups_sem);
819 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
820 				found_raid56 = true;
821 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
822 				found_raid56 = true;
823 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
824 				found_raid1c34 = true;
825 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
826 				found_raid1c34 = true;
827 			up_read(&sinfo->groups_sem);
828 		}
829 		if (!found_raid56)
830 			btrfs_clear_fs_incompat(fs_info, RAID56);
831 		if (!found_raid1c34)
832 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
833 	}
834 }
835 
836 static int remove_block_group_item(struct btrfs_trans_handle *trans,
837 				   struct btrfs_path *path,
838 				   struct btrfs_block_group *block_group)
839 {
840 	struct btrfs_fs_info *fs_info = trans->fs_info;
841 	struct btrfs_root *root;
842 	struct btrfs_key key;
843 	int ret;
844 
845 	root = btrfs_block_group_root(fs_info);
846 	key.objectid = block_group->start;
847 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
848 	key.offset = block_group->length;
849 
850 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
851 	if (ret > 0)
852 		ret = -ENOENT;
853 	if (ret < 0)
854 		return ret;
855 
856 	ret = btrfs_del_item(trans, root, path);
857 	return ret;
858 }
859 
860 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
861 			     u64 group_start, struct extent_map *em)
862 {
863 	struct btrfs_fs_info *fs_info = trans->fs_info;
864 	struct btrfs_path *path;
865 	struct btrfs_block_group *block_group;
866 	struct btrfs_free_cluster *cluster;
867 	struct inode *inode;
868 	struct kobject *kobj = NULL;
869 	int ret;
870 	int index;
871 	int factor;
872 	struct btrfs_caching_control *caching_ctl = NULL;
873 	bool remove_em;
874 	bool remove_rsv = false;
875 
876 	block_group = btrfs_lookup_block_group(fs_info, group_start);
877 	BUG_ON(!block_group);
878 	BUG_ON(!block_group->ro);
879 
880 	trace_btrfs_remove_block_group(block_group);
881 	/*
882 	 * Free the reserved super bytes from this block group before
883 	 * remove it.
884 	 */
885 	btrfs_free_excluded_extents(block_group);
886 	btrfs_free_ref_tree_range(fs_info, block_group->start,
887 				  block_group->length);
888 
889 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
890 	factor = btrfs_bg_type_to_factor(block_group->flags);
891 
892 	/* make sure this block group isn't part of an allocation cluster */
893 	cluster = &fs_info->data_alloc_cluster;
894 	spin_lock(&cluster->refill_lock);
895 	btrfs_return_cluster_to_free_space(block_group, cluster);
896 	spin_unlock(&cluster->refill_lock);
897 
898 	/*
899 	 * make sure this block group isn't part of a metadata
900 	 * allocation cluster
901 	 */
902 	cluster = &fs_info->meta_alloc_cluster;
903 	spin_lock(&cluster->refill_lock);
904 	btrfs_return_cluster_to_free_space(block_group, cluster);
905 	spin_unlock(&cluster->refill_lock);
906 
907 	btrfs_clear_treelog_bg(block_group);
908 	btrfs_clear_data_reloc_bg(block_group);
909 
910 	path = btrfs_alloc_path();
911 	if (!path) {
912 		ret = -ENOMEM;
913 		goto out;
914 	}
915 
916 	/*
917 	 * get the inode first so any iput calls done for the io_list
918 	 * aren't the final iput (no unlinks allowed now)
919 	 */
920 	inode = lookup_free_space_inode(block_group, path);
921 
922 	mutex_lock(&trans->transaction->cache_write_mutex);
923 	/*
924 	 * Make sure our free space cache IO is done before removing the
925 	 * free space inode
926 	 */
927 	spin_lock(&trans->transaction->dirty_bgs_lock);
928 	if (!list_empty(&block_group->io_list)) {
929 		list_del_init(&block_group->io_list);
930 
931 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
932 
933 		spin_unlock(&trans->transaction->dirty_bgs_lock);
934 		btrfs_wait_cache_io(trans, block_group, path);
935 		btrfs_put_block_group(block_group);
936 		spin_lock(&trans->transaction->dirty_bgs_lock);
937 	}
938 
939 	if (!list_empty(&block_group->dirty_list)) {
940 		list_del_init(&block_group->dirty_list);
941 		remove_rsv = true;
942 		btrfs_put_block_group(block_group);
943 	}
944 	spin_unlock(&trans->transaction->dirty_bgs_lock);
945 	mutex_unlock(&trans->transaction->cache_write_mutex);
946 
947 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
948 	if (ret)
949 		goto out;
950 
951 	spin_lock(&fs_info->block_group_cache_lock);
952 	rb_erase(&block_group->cache_node,
953 		 &fs_info->block_group_cache_tree);
954 	RB_CLEAR_NODE(&block_group->cache_node);
955 
956 	/* Once for the block groups rbtree */
957 	btrfs_put_block_group(block_group);
958 
959 	if (fs_info->first_logical_byte == block_group->start)
960 		fs_info->first_logical_byte = (u64)-1;
961 	spin_unlock(&fs_info->block_group_cache_lock);
962 
963 	down_write(&block_group->space_info->groups_sem);
964 	/*
965 	 * we must use list_del_init so people can check to see if they
966 	 * are still on the list after taking the semaphore
967 	 */
968 	list_del_init(&block_group->list);
969 	if (list_empty(&block_group->space_info->block_groups[index])) {
970 		kobj = block_group->space_info->block_group_kobjs[index];
971 		block_group->space_info->block_group_kobjs[index] = NULL;
972 		clear_avail_alloc_bits(fs_info, block_group->flags);
973 	}
974 	up_write(&block_group->space_info->groups_sem);
975 	clear_incompat_bg_bits(fs_info, block_group->flags);
976 	if (kobj) {
977 		kobject_del(kobj);
978 		kobject_put(kobj);
979 	}
980 
981 	if (block_group->has_caching_ctl)
982 		caching_ctl = btrfs_get_caching_control(block_group);
983 	if (block_group->cached == BTRFS_CACHE_STARTED)
984 		btrfs_wait_block_group_cache_done(block_group);
985 	if (block_group->has_caching_ctl) {
986 		spin_lock(&fs_info->block_group_cache_lock);
987 		if (!caching_ctl) {
988 			struct btrfs_caching_control *ctl;
989 
990 			list_for_each_entry(ctl,
991 				    &fs_info->caching_block_groups, list)
992 				if (ctl->block_group == block_group) {
993 					caching_ctl = ctl;
994 					refcount_inc(&caching_ctl->count);
995 					break;
996 				}
997 		}
998 		if (caching_ctl)
999 			list_del_init(&caching_ctl->list);
1000 		spin_unlock(&fs_info->block_group_cache_lock);
1001 		if (caching_ctl) {
1002 			/* Once for the caching bgs list and once for us. */
1003 			btrfs_put_caching_control(caching_ctl);
1004 			btrfs_put_caching_control(caching_ctl);
1005 		}
1006 	}
1007 
1008 	spin_lock(&trans->transaction->dirty_bgs_lock);
1009 	WARN_ON(!list_empty(&block_group->dirty_list));
1010 	WARN_ON(!list_empty(&block_group->io_list));
1011 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1012 
1013 	btrfs_remove_free_space_cache(block_group);
1014 
1015 	spin_lock(&block_group->space_info->lock);
1016 	list_del_init(&block_group->ro_list);
1017 
1018 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1019 		WARN_ON(block_group->space_info->total_bytes
1020 			< block_group->length);
1021 		WARN_ON(block_group->space_info->bytes_readonly
1022 			< block_group->length - block_group->zone_unusable);
1023 		WARN_ON(block_group->space_info->bytes_zone_unusable
1024 			< block_group->zone_unusable);
1025 		WARN_ON(block_group->space_info->disk_total
1026 			< block_group->length * factor);
1027 	}
1028 	block_group->space_info->total_bytes -= block_group->length;
1029 	block_group->space_info->bytes_readonly -=
1030 		(block_group->length - block_group->zone_unusable);
1031 	block_group->space_info->bytes_zone_unusable -=
1032 		block_group->zone_unusable;
1033 	block_group->space_info->disk_total -= block_group->length * factor;
1034 
1035 	spin_unlock(&block_group->space_info->lock);
1036 
1037 	/*
1038 	 * Remove the free space for the block group from the free space tree
1039 	 * and the block group's item from the extent tree before marking the
1040 	 * block group as removed. This is to prevent races with tasks that
1041 	 * freeze and unfreeze a block group, this task and another task
1042 	 * allocating a new block group - the unfreeze task ends up removing
1043 	 * the block group's extent map before the task calling this function
1044 	 * deletes the block group item from the extent tree, allowing for
1045 	 * another task to attempt to create another block group with the same
1046 	 * item key (and failing with -EEXIST and a transaction abort).
1047 	 */
1048 	ret = remove_block_group_free_space(trans, block_group);
1049 	if (ret)
1050 		goto out;
1051 
1052 	ret = remove_block_group_item(trans, path, block_group);
1053 	if (ret < 0)
1054 		goto out;
1055 
1056 	spin_lock(&block_group->lock);
1057 	block_group->removed = 1;
1058 	/*
1059 	 * At this point trimming or scrub can't start on this block group,
1060 	 * because we removed the block group from the rbtree
1061 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1062 	 * even if someone already got this block group before we removed it
1063 	 * from the rbtree, they have already incremented block_group->frozen -
1064 	 * if they didn't, for the trimming case they won't find any free space
1065 	 * entries because we already removed them all when we called
1066 	 * btrfs_remove_free_space_cache().
1067 	 *
1068 	 * And we must not remove the extent map from the fs_info->mapping_tree
1069 	 * to prevent the same logical address range and physical device space
1070 	 * ranges from being reused for a new block group. This is needed to
1071 	 * avoid races with trimming and scrub.
1072 	 *
1073 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1074 	 * completely transactionless, so while it is trimming a range the
1075 	 * currently running transaction might finish and a new one start,
1076 	 * allowing for new block groups to be created that can reuse the same
1077 	 * physical device locations unless we take this special care.
1078 	 *
1079 	 * There may also be an implicit trim operation if the file system
1080 	 * is mounted with -odiscard. The same protections must remain
1081 	 * in place until the extents have been discarded completely when
1082 	 * the transaction commit has completed.
1083 	 */
1084 	remove_em = (atomic_read(&block_group->frozen) == 0);
1085 	spin_unlock(&block_group->lock);
1086 
1087 	if (remove_em) {
1088 		struct extent_map_tree *em_tree;
1089 
1090 		em_tree = &fs_info->mapping_tree;
1091 		write_lock(&em_tree->lock);
1092 		remove_extent_mapping(em_tree, em);
1093 		write_unlock(&em_tree->lock);
1094 		/* once for the tree */
1095 		free_extent_map(em);
1096 	}
1097 
1098 out:
1099 	/* Once for the lookup reference */
1100 	btrfs_put_block_group(block_group);
1101 	if (remove_rsv)
1102 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1103 	btrfs_free_path(path);
1104 	return ret;
1105 }
1106 
1107 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1108 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1109 {
1110 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1111 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1112 	struct extent_map *em;
1113 	struct map_lookup *map;
1114 	unsigned int num_items;
1115 
1116 	read_lock(&em_tree->lock);
1117 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1118 	read_unlock(&em_tree->lock);
1119 	ASSERT(em && em->start == chunk_offset);
1120 
1121 	/*
1122 	 * We need to reserve 3 + N units from the metadata space info in order
1123 	 * to remove a block group (done at btrfs_remove_chunk() and at
1124 	 * btrfs_remove_block_group()), which are used for:
1125 	 *
1126 	 * 1 unit for adding the free space inode's orphan (located in the tree
1127 	 * of tree roots).
1128 	 * 1 unit for deleting the block group item (located in the extent
1129 	 * tree).
1130 	 * 1 unit for deleting the free space item (located in tree of tree
1131 	 * roots).
1132 	 * N units for deleting N device extent items corresponding to each
1133 	 * stripe (located in the device tree).
1134 	 *
1135 	 * In order to remove a block group we also need to reserve units in the
1136 	 * system space info in order to update the chunk tree (update one or
1137 	 * more device items and remove one chunk item), but this is done at
1138 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1139 	 */
1140 	map = em->map_lookup;
1141 	num_items = 3 + map->num_stripes;
1142 	free_extent_map(em);
1143 
1144 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1145 }
1146 
1147 /*
1148  * Mark block group @cache read-only, so later write won't happen to block
1149  * group @cache.
1150  *
1151  * If @force is not set, this function will only mark the block group readonly
1152  * if we have enough free space (1M) in other metadata/system block groups.
1153  * If @force is not set, this function will mark the block group readonly
1154  * without checking free space.
1155  *
1156  * NOTE: This function doesn't care if other block groups can contain all the
1157  * data in this block group. That check should be done by relocation routine,
1158  * not this function.
1159  */
1160 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1161 {
1162 	struct btrfs_space_info *sinfo = cache->space_info;
1163 	u64 num_bytes;
1164 	int ret = -ENOSPC;
1165 
1166 	spin_lock(&sinfo->lock);
1167 	spin_lock(&cache->lock);
1168 
1169 	if (cache->swap_extents) {
1170 		ret = -ETXTBSY;
1171 		goto out;
1172 	}
1173 
1174 	if (cache->ro) {
1175 		cache->ro++;
1176 		ret = 0;
1177 		goto out;
1178 	}
1179 
1180 	num_bytes = cache->length - cache->reserved - cache->pinned -
1181 		    cache->bytes_super - cache->zone_unusable - cache->used;
1182 
1183 	/*
1184 	 * Data never overcommits, even in mixed mode, so do just the straight
1185 	 * check of left over space in how much we have allocated.
1186 	 */
1187 	if (force) {
1188 		ret = 0;
1189 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1190 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1191 
1192 		/*
1193 		 * Here we make sure if we mark this bg RO, we still have enough
1194 		 * free space as buffer.
1195 		 */
1196 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1197 			ret = 0;
1198 	} else {
1199 		/*
1200 		 * We overcommit metadata, so we need to do the
1201 		 * btrfs_can_overcommit check here, and we need to pass in
1202 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1203 		 * leeway to allow us to mark this block group as read only.
1204 		 */
1205 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1206 					 BTRFS_RESERVE_NO_FLUSH))
1207 			ret = 0;
1208 	}
1209 
1210 	if (!ret) {
1211 		sinfo->bytes_readonly += num_bytes;
1212 		if (btrfs_is_zoned(cache->fs_info)) {
1213 			/* Migrate zone_unusable bytes to readonly */
1214 			sinfo->bytes_readonly += cache->zone_unusable;
1215 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1216 			cache->zone_unusable = 0;
1217 		}
1218 		cache->ro++;
1219 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1220 	}
1221 out:
1222 	spin_unlock(&cache->lock);
1223 	spin_unlock(&sinfo->lock);
1224 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1225 		btrfs_info(cache->fs_info,
1226 			"unable to make block group %llu ro", cache->start);
1227 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1228 	}
1229 	return ret;
1230 }
1231 
1232 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1233 				 struct btrfs_block_group *bg)
1234 {
1235 	struct btrfs_fs_info *fs_info = bg->fs_info;
1236 	struct btrfs_transaction *prev_trans = NULL;
1237 	const u64 start = bg->start;
1238 	const u64 end = start + bg->length - 1;
1239 	int ret;
1240 
1241 	spin_lock(&fs_info->trans_lock);
1242 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1243 		prev_trans = list_last_entry(&trans->transaction->list,
1244 					     struct btrfs_transaction, list);
1245 		refcount_inc(&prev_trans->use_count);
1246 	}
1247 	spin_unlock(&fs_info->trans_lock);
1248 
1249 	/*
1250 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1251 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1252 	 * task might be running finish_extent_commit() for the previous
1253 	 * transaction N - 1, and have seen a range belonging to the block
1254 	 * group in pinned_extents before we were able to clear the whole block
1255 	 * group range from pinned_extents. This means that task can lookup for
1256 	 * the block group after we unpinned it from pinned_extents and removed
1257 	 * it, leading to a BUG_ON() at unpin_extent_range().
1258 	 */
1259 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1260 	if (prev_trans) {
1261 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1262 					EXTENT_DIRTY);
1263 		if (ret)
1264 			goto out;
1265 	}
1266 
1267 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1268 				EXTENT_DIRTY);
1269 out:
1270 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1271 	if (prev_trans)
1272 		btrfs_put_transaction(prev_trans);
1273 
1274 	return ret == 0;
1275 }
1276 
1277 /*
1278  * Process the unused_bgs list and remove any that don't have any allocated
1279  * space inside of them.
1280  */
1281 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1282 {
1283 	struct btrfs_block_group *block_group;
1284 	struct btrfs_space_info *space_info;
1285 	struct btrfs_trans_handle *trans;
1286 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1287 	int ret = 0;
1288 
1289 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1290 		return;
1291 
1292 	/*
1293 	 * Long running balances can keep us blocked here for eternity, so
1294 	 * simply skip deletion if we're unable to get the mutex.
1295 	 */
1296 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1297 		return;
1298 
1299 	spin_lock(&fs_info->unused_bgs_lock);
1300 	while (!list_empty(&fs_info->unused_bgs)) {
1301 		int trimming;
1302 
1303 		block_group = list_first_entry(&fs_info->unused_bgs,
1304 					       struct btrfs_block_group,
1305 					       bg_list);
1306 		list_del_init(&block_group->bg_list);
1307 
1308 		space_info = block_group->space_info;
1309 
1310 		if (ret || btrfs_mixed_space_info(space_info)) {
1311 			btrfs_put_block_group(block_group);
1312 			continue;
1313 		}
1314 		spin_unlock(&fs_info->unused_bgs_lock);
1315 
1316 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1317 
1318 		/* Don't want to race with allocators so take the groups_sem */
1319 		down_write(&space_info->groups_sem);
1320 
1321 		/*
1322 		 * Async discard moves the final block group discard to be prior
1323 		 * to the unused_bgs code path.  Therefore, if it's not fully
1324 		 * trimmed, punt it back to the async discard lists.
1325 		 */
1326 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1327 		    !btrfs_is_free_space_trimmed(block_group)) {
1328 			trace_btrfs_skip_unused_block_group(block_group);
1329 			up_write(&space_info->groups_sem);
1330 			/* Requeue if we failed because of async discard */
1331 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1332 						 block_group);
1333 			goto next;
1334 		}
1335 
1336 		spin_lock(&block_group->lock);
1337 		if (block_group->reserved || block_group->pinned ||
1338 		    block_group->used || block_group->ro ||
1339 		    list_is_singular(&block_group->list)) {
1340 			/*
1341 			 * We want to bail if we made new allocations or have
1342 			 * outstanding allocations in this block group.  We do
1343 			 * the ro check in case balance is currently acting on
1344 			 * this block group.
1345 			 */
1346 			trace_btrfs_skip_unused_block_group(block_group);
1347 			spin_unlock(&block_group->lock);
1348 			up_write(&space_info->groups_sem);
1349 			goto next;
1350 		}
1351 		spin_unlock(&block_group->lock);
1352 
1353 		/* We don't want to force the issue, only flip if it's ok. */
1354 		ret = inc_block_group_ro(block_group, 0);
1355 		up_write(&space_info->groups_sem);
1356 		if (ret < 0) {
1357 			ret = 0;
1358 			goto next;
1359 		}
1360 
1361 		/*
1362 		 * Want to do this before we do anything else so we can recover
1363 		 * properly if we fail to join the transaction.
1364 		 */
1365 		trans = btrfs_start_trans_remove_block_group(fs_info,
1366 						     block_group->start);
1367 		if (IS_ERR(trans)) {
1368 			btrfs_dec_block_group_ro(block_group);
1369 			ret = PTR_ERR(trans);
1370 			goto next;
1371 		}
1372 
1373 		/*
1374 		 * We could have pending pinned extents for this block group,
1375 		 * just delete them, we don't care about them anymore.
1376 		 */
1377 		if (!clean_pinned_extents(trans, block_group)) {
1378 			btrfs_dec_block_group_ro(block_group);
1379 			goto end_trans;
1380 		}
1381 
1382 		/*
1383 		 * At this point, the block_group is read only and should fail
1384 		 * new allocations.  However, btrfs_finish_extent_commit() can
1385 		 * cause this block_group to be placed back on the discard
1386 		 * lists because now the block_group isn't fully discarded.
1387 		 * Bail here and try again later after discarding everything.
1388 		 */
1389 		spin_lock(&fs_info->discard_ctl.lock);
1390 		if (!list_empty(&block_group->discard_list)) {
1391 			spin_unlock(&fs_info->discard_ctl.lock);
1392 			btrfs_dec_block_group_ro(block_group);
1393 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1394 						 block_group);
1395 			goto end_trans;
1396 		}
1397 		spin_unlock(&fs_info->discard_ctl.lock);
1398 
1399 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1400 		spin_lock(&space_info->lock);
1401 		spin_lock(&block_group->lock);
1402 
1403 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1404 						     -block_group->pinned);
1405 		space_info->bytes_readonly += block_group->pinned;
1406 		block_group->pinned = 0;
1407 
1408 		spin_unlock(&block_group->lock);
1409 		spin_unlock(&space_info->lock);
1410 
1411 		/*
1412 		 * The normal path here is an unused block group is passed here,
1413 		 * then trimming is handled in the transaction commit path.
1414 		 * Async discard interposes before this to do the trimming
1415 		 * before coming down the unused block group path as trimming
1416 		 * will no longer be done later in the transaction commit path.
1417 		 */
1418 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1419 			goto flip_async;
1420 
1421 		/*
1422 		 * DISCARD can flip during remount. On zoned filesystems, we
1423 		 * need to reset sequential-required zones.
1424 		 */
1425 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1426 				btrfs_is_zoned(fs_info);
1427 
1428 		/* Implicit trim during transaction commit. */
1429 		if (trimming)
1430 			btrfs_freeze_block_group(block_group);
1431 
1432 		/*
1433 		 * Btrfs_remove_chunk will abort the transaction if things go
1434 		 * horribly wrong.
1435 		 */
1436 		ret = btrfs_remove_chunk(trans, block_group->start);
1437 
1438 		if (ret) {
1439 			if (trimming)
1440 				btrfs_unfreeze_block_group(block_group);
1441 			goto end_trans;
1442 		}
1443 
1444 		/*
1445 		 * If we're not mounted with -odiscard, we can just forget
1446 		 * about this block group. Otherwise we'll need to wait
1447 		 * until transaction commit to do the actual discard.
1448 		 */
1449 		if (trimming) {
1450 			spin_lock(&fs_info->unused_bgs_lock);
1451 			/*
1452 			 * A concurrent scrub might have added us to the list
1453 			 * fs_info->unused_bgs, so use a list_move operation
1454 			 * to add the block group to the deleted_bgs list.
1455 			 */
1456 			list_move(&block_group->bg_list,
1457 				  &trans->transaction->deleted_bgs);
1458 			spin_unlock(&fs_info->unused_bgs_lock);
1459 			btrfs_get_block_group(block_group);
1460 		}
1461 end_trans:
1462 		btrfs_end_transaction(trans);
1463 next:
1464 		btrfs_put_block_group(block_group);
1465 		spin_lock(&fs_info->unused_bgs_lock);
1466 	}
1467 	spin_unlock(&fs_info->unused_bgs_lock);
1468 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1469 	return;
1470 
1471 flip_async:
1472 	btrfs_end_transaction(trans);
1473 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1474 	btrfs_put_block_group(block_group);
1475 	btrfs_discard_punt_unused_bgs_list(fs_info);
1476 }
1477 
1478 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1479 {
1480 	struct btrfs_fs_info *fs_info = bg->fs_info;
1481 
1482 	spin_lock(&fs_info->unused_bgs_lock);
1483 	if (list_empty(&bg->bg_list)) {
1484 		btrfs_get_block_group(bg);
1485 		trace_btrfs_add_unused_block_group(bg);
1486 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1487 	}
1488 	spin_unlock(&fs_info->unused_bgs_lock);
1489 }
1490 
1491 /*
1492  * We want block groups with a low number of used bytes to be in the beginning
1493  * of the list, so they will get reclaimed first.
1494  */
1495 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1496 			   const struct list_head *b)
1497 {
1498 	const struct btrfs_block_group *bg1, *bg2;
1499 
1500 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1501 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1502 
1503 	return bg1->used > bg2->used;
1504 }
1505 
1506 void btrfs_reclaim_bgs_work(struct work_struct *work)
1507 {
1508 	struct btrfs_fs_info *fs_info =
1509 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1510 	struct btrfs_block_group *bg;
1511 	struct btrfs_space_info *space_info;
1512 
1513 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1514 		return;
1515 
1516 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1517 		return;
1518 
1519 	/*
1520 	 * Long running balances can keep us blocked here for eternity, so
1521 	 * simply skip reclaim if we're unable to get the mutex.
1522 	 */
1523 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1524 		btrfs_exclop_finish(fs_info);
1525 		return;
1526 	}
1527 
1528 	spin_lock(&fs_info->unused_bgs_lock);
1529 	/*
1530 	 * Sort happens under lock because we can't simply splice it and sort.
1531 	 * The block groups might still be in use and reachable via bg_list,
1532 	 * and their presence in the reclaim_bgs list must be preserved.
1533 	 */
1534 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1535 	while (!list_empty(&fs_info->reclaim_bgs)) {
1536 		u64 zone_unusable;
1537 		int ret = 0;
1538 
1539 		bg = list_first_entry(&fs_info->reclaim_bgs,
1540 				      struct btrfs_block_group,
1541 				      bg_list);
1542 		list_del_init(&bg->bg_list);
1543 
1544 		space_info = bg->space_info;
1545 		spin_unlock(&fs_info->unused_bgs_lock);
1546 
1547 		/* Don't race with allocators so take the groups_sem */
1548 		down_write(&space_info->groups_sem);
1549 
1550 		spin_lock(&bg->lock);
1551 		if (bg->reserved || bg->pinned || bg->ro) {
1552 			/*
1553 			 * We want to bail if we made new allocations or have
1554 			 * outstanding allocations in this block group.  We do
1555 			 * the ro check in case balance is currently acting on
1556 			 * this block group.
1557 			 */
1558 			spin_unlock(&bg->lock);
1559 			up_write(&space_info->groups_sem);
1560 			goto next;
1561 		}
1562 		spin_unlock(&bg->lock);
1563 
1564 		/* Get out fast, in case we're unmounting the filesystem */
1565 		if (btrfs_fs_closing(fs_info)) {
1566 			up_write(&space_info->groups_sem);
1567 			goto next;
1568 		}
1569 
1570 		/*
1571 		 * Cache the zone_unusable value before turning the block group
1572 		 * to read only. As soon as the blog group is read only it's
1573 		 * zone_unusable value gets moved to the block group's read-only
1574 		 * bytes and isn't available for calculations anymore.
1575 		 */
1576 		zone_unusable = bg->zone_unusable;
1577 		ret = inc_block_group_ro(bg, 0);
1578 		up_write(&space_info->groups_sem);
1579 		if (ret < 0)
1580 			goto next;
1581 
1582 		btrfs_info(fs_info,
1583 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1584 				bg->start, div_u64(bg->used * 100, bg->length),
1585 				div64_u64(zone_unusable * 100, bg->length));
1586 		trace_btrfs_reclaim_block_group(bg);
1587 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1588 		if (ret)
1589 			btrfs_err(fs_info, "error relocating chunk %llu",
1590 				  bg->start);
1591 
1592 next:
1593 		btrfs_put_block_group(bg);
1594 		spin_lock(&fs_info->unused_bgs_lock);
1595 	}
1596 	spin_unlock(&fs_info->unused_bgs_lock);
1597 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1598 	btrfs_exclop_finish(fs_info);
1599 }
1600 
1601 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1602 {
1603 	spin_lock(&fs_info->unused_bgs_lock);
1604 	if (!list_empty(&fs_info->reclaim_bgs))
1605 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1606 	spin_unlock(&fs_info->unused_bgs_lock);
1607 }
1608 
1609 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1610 {
1611 	struct btrfs_fs_info *fs_info = bg->fs_info;
1612 
1613 	spin_lock(&fs_info->unused_bgs_lock);
1614 	if (list_empty(&bg->bg_list)) {
1615 		btrfs_get_block_group(bg);
1616 		trace_btrfs_add_reclaim_block_group(bg);
1617 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1618 	}
1619 	spin_unlock(&fs_info->unused_bgs_lock);
1620 }
1621 
1622 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1623 			   struct btrfs_path *path)
1624 {
1625 	struct extent_map_tree *em_tree;
1626 	struct extent_map *em;
1627 	struct btrfs_block_group_item bg;
1628 	struct extent_buffer *leaf;
1629 	int slot;
1630 	u64 flags;
1631 	int ret = 0;
1632 
1633 	slot = path->slots[0];
1634 	leaf = path->nodes[0];
1635 
1636 	em_tree = &fs_info->mapping_tree;
1637 	read_lock(&em_tree->lock);
1638 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1639 	read_unlock(&em_tree->lock);
1640 	if (!em) {
1641 		btrfs_err(fs_info,
1642 			  "logical %llu len %llu found bg but no related chunk",
1643 			  key->objectid, key->offset);
1644 		return -ENOENT;
1645 	}
1646 
1647 	if (em->start != key->objectid || em->len != key->offset) {
1648 		btrfs_err(fs_info,
1649 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1650 			key->objectid, key->offset, em->start, em->len);
1651 		ret = -EUCLEAN;
1652 		goto out_free_em;
1653 	}
1654 
1655 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1656 			   sizeof(bg));
1657 	flags = btrfs_stack_block_group_flags(&bg) &
1658 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1659 
1660 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1661 		btrfs_err(fs_info,
1662 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1663 			  key->objectid, key->offset, flags,
1664 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1665 		ret = -EUCLEAN;
1666 	}
1667 
1668 out_free_em:
1669 	free_extent_map(em);
1670 	return ret;
1671 }
1672 
1673 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1674 				  struct btrfs_path *path,
1675 				  struct btrfs_key *key)
1676 {
1677 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1678 	int ret;
1679 	struct btrfs_key found_key;
1680 	struct extent_buffer *leaf;
1681 	int slot;
1682 
1683 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1684 	if (ret < 0)
1685 		return ret;
1686 
1687 	while (1) {
1688 		slot = path->slots[0];
1689 		leaf = path->nodes[0];
1690 		if (slot >= btrfs_header_nritems(leaf)) {
1691 			ret = btrfs_next_leaf(root, path);
1692 			if (ret == 0)
1693 				continue;
1694 			if (ret < 0)
1695 				goto out;
1696 			break;
1697 		}
1698 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1699 
1700 		if (found_key.objectid >= key->objectid &&
1701 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1702 			ret = read_bg_from_eb(fs_info, &found_key, path);
1703 			break;
1704 		}
1705 
1706 		path->slots[0]++;
1707 	}
1708 out:
1709 	return ret;
1710 }
1711 
1712 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1713 {
1714 	u64 extra_flags = chunk_to_extended(flags) &
1715 				BTRFS_EXTENDED_PROFILE_MASK;
1716 
1717 	write_seqlock(&fs_info->profiles_lock);
1718 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1719 		fs_info->avail_data_alloc_bits |= extra_flags;
1720 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1721 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1722 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1723 		fs_info->avail_system_alloc_bits |= extra_flags;
1724 	write_sequnlock(&fs_info->profiles_lock);
1725 }
1726 
1727 /**
1728  * Map a physical disk address to a list of logical addresses
1729  *
1730  * @fs_info:       the filesystem
1731  * @chunk_start:   logical address of block group
1732  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1733  * @physical:	   physical address to map to logical addresses
1734  * @logical:	   return array of logical addresses which map to @physical
1735  * @naddrs:	   length of @logical
1736  * @stripe_len:    size of IO stripe for the given block group
1737  *
1738  * Maps a particular @physical disk address to a list of @logical addresses.
1739  * Used primarily to exclude those portions of a block group that contain super
1740  * block copies.
1741  */
1742 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1743 		     struct block_device *bdev, u64 physical, u64 **logical,
1744 		     int *naddrs, int *stripe_len)
1745 {
1746 	struct extent_map *em;
1747 	struct map_lookup *map;
1748 	u64 *buf;
1749 	u64 bytenr;
1750 	u64 data_stripe_length;
1751 	u64 io_stripe_size;
1752 	int i, nr = 0;
1753 	int ret = 0;
1754 
1755 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1756 	if (IS_ERR(em))
1757 		return -EIO;
1758 
1759 	map = em->map_lookup;
1760 	data_stripe_length = em->orig_block_len;
1761 	io_stripe_size = map->stripe_len;
1762 	chunk_start = em->start;
1763 
1764 	/* For RAID5/6 adjust to a full IO stripe length */
1765 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1766 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1767 
1768 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1769 	if (!buf) {
1770 		ret = -ENOMEM;
1771 		goto out;
1772 	}
1773 
1774 	for (i = 0; i < map->num_stripes; i++) {
1775 		bool already_inserted = false;
1776 		u64 stripe_nr;
1777 		u64 offset;
1778 		int j;
1779 
1780 		if (!in_range(physical, map->stripes[i].physical,
1781 			      data_stripe_length))
1782 			continue;
1783 
1784 		if (bdev && map->stripes[i].dev->bdev != bdev)
1785 			continue;
1786 
1787 		stripe_nr = physical - map->stripes[i].physical;
1788 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1789 
1790 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1791 			stripe_nr = stripe_nr * map->num_stripes + i;
1792 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1793 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1794 			stripe_nr = stripe_nr * map->num_stripes + i;
1795 		}
1796 		/*
1797 		 * The remaining case would be for RAID56, multiply by
1798 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1799 		 * instead of map->stripe_len
1800 		 */
1801 
1802 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1803 
1804 		/* Ensure we don't add duplicate addresses */
1805 		for (j = 0; j < nr; j++) {
1806 			if (buf[j] == bytenr) {
1807 				already_inserted = true;
1808 				break;
1809 			}
1810 		}
1811 
1812 		if (!already_inserted)
1813 			buf[nr++] = bytenr;
1814 	}
1815 
1816 	*logical = buf;
1817 	*naddrs = nr;
1818 	*stripe_len = io_stripe_size;
1819 out:
1820 	free_extent_map(em);
1821 	return ret;
1822 }
1823 
1824 static int exclude_super_stripes(struct btrfs_block_group *cache)
1825 {
1826 	struct btrfs_fs_info *fs_info = cache->fs_info;
1827 	const bool zoned = btrfs_is_zoned(fs_info);
1828 	u64 bytenr;
1829 	u64 *logical;
1830 	int stripe_len;
1831 	int i, nr, ret;
1832 
1833 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1834 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1835 		cache->bytes_super += stripe_len;
1836 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1837 						stripe_len);
1838 		if (ret)
1839 			return ret;
1840 	}
1841 
1842 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1843 		bytenr = btrfs_sb_offset(i);
1844 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1845 				       bytenr, &logical, &nr, &stripe_len);
1846 		if (ret)
1847 			return ret;
1848 
1849 		/* Shouldn't have super stripes in sequential zones */
1850 		if (zoned && nr) {
1851 			btrfs_err(fs_info,
1852 			"zoned: block group %llu must not contain super block",
1853 				  cache->start);
1854 			return -EUCLEAN;
1855 		}
1856 
1857 		while (nr--) {
1858 			u64 len = min_t(u64, stripe_len,
1859 				cache->start + cache->length - logical[nr]);
1860 
1861 			cache->bytes_super += len;
1862 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1863 							len);
1864 			if (ret) {
1865 				kfree(logical);
1866 				return ret;
1867 			}
1868 		}
1869 
1870 		kfree(logical);
1871 	}
1872 	return 0;
1873 }
1874 
1875 static void link_block_group(struct btrfs_block_group *cache)
1876 {
1877 	struct btrfs_space_info *space_info = cache->space_info;
1878 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1879 
1880 	down_write(&space_info->groups_sem);
1881 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1882 	up_write(&space_info->groups_sem);
1883 }
1884 
1885 static struct btrfs_block_group *btrfs_create_block_group_cache(
1886 		struct btrfs_fs_info *fs_info, u64 start)
1887 {
1888 	struct btrfs_block_group *cache;
1889 
1890 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1891 	if (!cache)
1892 		return NULL;
1893 
1894 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1895 					GFP_NOFS);
1896 	if (!cache->free_space_ctl) {
1897 		kfree(cache);
1898 		return NULL;
1899 	}
1900 
1901 	cache->start = start;
1902 
1903 	cache->fs_info = fs_info;
1904 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1905 
1906 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1907 
1908 	refcount_set(&cache->refs, 1);
1909 	spin_lock_init(&cache->lock);
1910 	init_rwsem(&cache->data_rwsem);
1911 	INIT_LIST_HEAD(&cache->list);
1912 	INIT_LIST_HEAD(&cache->cluster_list);
1913 	INIT_LIST_HEAD(&cache->bg_list);
1914 	INIT_LIST_HEAD(&cache->ro_list);
1915 	INIT_LIST_HEAD(&cache->discard_list);
1916 	INIT_LIST_HEAD(&cache->dirty_list);
1917 	INIT_LIST_HEAD(&cache->io_list);
1918 	INIT_LIST_HEAD(&cache->active_bg_list);
1919 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1920 	atomic_set(&cache->frozen, 0);
1921 	mutex_init(&cache->free_space_lock);
1922 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1923 
1924 	return cache;
1925 }
1926 
1927 /*
1928  * Iterate all chunks and verify that each of them has the corresponding block
1929  * group
1930  */
1931 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1932 {
1933 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1934 	struct extent_map *em;
1935 	struct btrfs_block_group *bg;
1936 	u64 start = 0;
1937 	int ret = 0;
1938 
1939 	while (1) {
1940 		read_lock(&map_tree->lock);
1941 		/*
1942 		 * lookup_extent_mapping will return the first extent map
1943 		 * intersecting the range, so setting @len to 1 is enough to
1944 		 * get the first chunk.
1945 		 */
1946 		em = lookup_extent_mapping(map_tree, start, 1);
1947 		read_unlock(&map_tree->lock);
1948 		if (!em)
1949 			break;
1950 
1951 		bg = btrfs_lookup_block_group(fs_info, em->start);
1952 		if (!bg) {
1953 			btrfs_err(fs_info,
1954 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1955 				     em->start, em->len);
1956 			ret = -EUCLEAN;
1957 			free_extent_map(em);
1958 			break;
1959 		}
1960 		if (bg->start != em->start || bg->length != em->len ||
1961 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1962 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1963 			btrfs_err(fs_info,
1964 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1965 				em->start, em->len,
1966 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1967 				bg->start, bg->length,
1968 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1969 			ret = -EUCLEAN;
1970 			free_extent_map(em);
1971 			btrfs_put_block_group(bg);
1972 			break;
1973 		}
1974 		start = em->start + em->len;
1975 		free_extent_map(em);
1976 		btrfs_put_block_group(bg);
1977 	}
1978 	return ret;
1979 }
1980 
1981 static int read_one_block_group(struct btrfs_fs_info *info,
1982 				struct btrfs_block_group_item *bgi,
1983 				const struct btrfs_key *key,
1984 				int need_clear)
1985 {
1986 	struct btrfs_block_group *cache;
1987 	struct btrfs_space_info *space_info;
1988 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1989 	int ret;
1990 
1991 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1992 
1993 	cache = btrfs_create_block_group_cache(info, key->objectid);
1994 	if (!cache)
1995 		return -ENOMEM;
1996 
1997 	cache->length = key->offset;
1998 	cache->used = btrfs_stack_block_group_used(bgi);
1999 	cache->flags = btrfs_stack_block_group_flags(bgi);
2000 
2001 	set_free_space_tree_thresholds(cache);
2002 
2003 	if (need_clear) {
2004 		/*
2005 		 * When we mount with old space cache, we need to
2006 		 * set BTRFS_DC_CLEAR and set dirty flag.
2007 		 *
2008 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2009 		 *    truncate the old free space cache inode and
2010 		 *    setup a new one.
2011 		 * b) Setting 'dirty flag' makes sure that we flush
2012 		 *    the new space cache info onto disk.
2013 		 */
2014 		if (btrfs_test_opt(info, SPACE_CACHE))
2015 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2016 	}
2017 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2018 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2019 			btrfs_err(info,
2020 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2021 				  cache->start);
2022 			ret = -EINVAL;
2023 			goto error;
2024 	}
2025 
2026 	ret = btrfs_load_block_group_zone_info(cache, false);
2027 	if (ret) {
2028 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2029 			  cache->start);
2030 		goto error;
2031 	}
2032 
2033 	/*
2034 	 * We need to exclude the super stripes now so that the space info has
2035 	 * super bytes accounted for, otherwise we'll think we have more space
2036 	 * than we actually do.
2037 	 */
2038 	ret = exclude_super_stripes(cache);
2039 	if (ret) {
2040 		/* We may have excluded something, so call this just in case. */
2041 		btrfs_free_excluded_extents(cache);
2042 		goto error;
2043 	}
2044 
2045 	/*
2046 	 * For zoned filesystem, space after the allocation offset is the only
2047 	 * free space for a block group. So, we don't need any caching work.
2048 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2049 	 * zone_unusable space.
2050 	 *
2051 	 * For regular filesystem, check for two cases, either we are full, and
2052 	 * therefore don't need to bother with the caching work since we won't
2053 	 * find any space, or we are empty, and we can just add all the space
2054 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2055 	 * in the full case.
2056 	 */
2057 	if (btrfs_is_zoned(info)) {
2058 		btrfs_calc_zone_unusable(cache);
2059 		/* Should not have any excluded extents. Just in case, though. */
2060 		btrfs_free_excluded_extents(cache);
2061 	} else if (cache->length == cache->used) {
2062 		cache->last_byte_to_unpin = (u64)-1;
2063 		cache->cached = BTRFS_CACHE_FINISHED;
2064 		btrfs_free_excluded_extents(cache);
2065 	} else if (cache->used == 0) {
2066 		cache->last_byte_to_unpin = (u64)-1;
2067 		cache->cached = BTRFS_CACHE_FINISHED;
2068 		add_new_free_space(cache, cache->start,
2069 				   cache->start + cache->length);
2070 		btrfs_free_excluded_extents(cache);
2071 	}
2072 
2073 	ret = btrfs_add_block_group_cache(info, cache);
2074 	if (ret) {
2075 		btrfs_remove_free_space_cache(cache);
2076 		goto error;
2077 	}
2078 	trace_btrfs_add_block_group(info, cache, 0);
2079 	btrfs_update_space_info(info, cache->flags, cache->length,
2080 				cache->used, cache->bytes_super,
2081 				cache->zone_unusable, &space_info);
2082 
2083 	cache->space_info = space_info;
2084 
2085 	link_block_group(cache);
2086 
2087 	set_avail_alloc_bits(info, cache->flags);
2088 	if (btrfs_chunk_writeable(info, cache->start)) {
2089 		if (cache->used == 0) {
2090 			ASSERT(list_empty(&cache->bg_list));
2091 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2092 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2093 			else
2094 				btrfs_mark_bg_unused(cache);
2095 		}
2096 	} else {
2097 		inc_block_group_ro(cache, 1);
2098 	}
2099 
2100 	return 0;
2101 error:
2102 	btrfs_put_block_group(cache);
2103 	return ret;
2104 }
2105 
2106 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2107 {
2108 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2109 	struct btrfs_space_info *space_info;
2110 	struct rb_node *node;
2111 	int ret = 0;
2112 
2113 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2114 		struct extent_map *em;
2115 		struct map_lookup *map;
2116 		struct btrfs_block_group *bg;
2117 
2118 		em = rb_entry(node, struct extent_map, rb_node);
2119 		map = em->map_lookup;
2120 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2121 		if (!bg) {
2122 			ret = -ENOMEM;
2123 			break;
2124 		}
2125 
2126 		/* Fill dummy cache as FULL */
2127 		bg->length = em->len;
2128 		bg->flags = map->type;
2129 		bg->last_byte_to_unpin = (u64)-1;
2130 		bg->cached = BTRFS_CACHE_FINISHED;
2131 		bg->used = em->len;
2132 		bg->flags = map->type;
2133 		ret = btrfs_add_block_group_cache(fs_info, bg);
2134 		/*
2135 		 * We may have some valid block group cache added already, in
2136 		 * that case we skip to the next one.
2137 		 */
2138 		if (ret == -EEXIST) {
2139 			ret = 0;
2140 			btrfs_put_block_group(bg);
2141 			continue;
2142 		}
2143 
2144 		if (ret) {
2145 			btrfs_remove_free_space_cache(bg);
2146 			btrfs_put_block_group(bg);
2147 			break;
2148 		}
2149 
2150 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2151 					0, 0, &space_info);
2152 		bg->space_info = space_info;
2153 		link_block_group(bg);
2154 
2155 		set_avail_alloc_bits(fs_info, bg->flags);
2156 	}
2157 	if (!ret)
2158 		btrfs_init_global_block_rsv(fs_info);
2159 	return ret;
2160 }
2161 
2162 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2163 {
2164 	struct btrfs_root *root = btrfs_block_group_root(info);
2165 	struct btrfs_path *path;
2166 	int ret;
2167 	struct btrfs_block_group *cache;
2168 	struct btrfs_space_info *space_info;
2169 	struct btrfs_key key;
2170 	int need_clear = 0;
2171 	u64 cache_gen;
2172 
2173 	if (!root)
2174 		return fill_dummy_bgs(info);
2175 
2176 	key.objectid = 0;
2177 	key.offset = 0;
2178 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2179 	path = btrfs_alloc_path();
2180 	if (!path)
2181 		return -ENOMEM;
2182 
2183 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2184 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2185 	    btrfs_super_generation(info->super_copy) != cache_gen)
2186 		need_clear = 1;
2187 	if (btrfs_test_opt(info, CLEAR_CACHE))
2188 		need_clear = 1;
2189 
2190 	while (1) {
2191 		struct btrfs_block_group_item bgi;
2192 		struct extent_buffer *leaf;
2193 		int slot;
2194 
2195 		ret = find_first_block_group(info, path, &key);
2196 		if (ret > 0)
2197 			break;
2198 		if (ret != 0)
2199 			goto error;
2200 
2201 		leaf = path->nodes[0];
2202 		slot = path->slots[0];
2203 
2204 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2205 				   sizeof(bgi));
2206 
2207 		btrfs_item_key_to_cpu(leaf, &key, slot);
2208 		btrfs_release_path(path);
2209 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2210 		if (ret < 0)
2211 			goto error;
2212 		key.objectid += key.offset;
2213 		key.offset = 0;
2214 	}
2215 	btrfs_release_path(path);
2216 
2217 	list_for_each_entry(space_info, &info->space_info, list) {
2218 		int i;
2219 
2220 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2221 			if (list_empty(&space_info->block_groups[i]))
2222 				continue;
2223 			cache = list_first_entry(&space_info->block_groups[i],
2224 						 struct btrfs_block_group,
2225 						 list);
2226 			btrfs_sysfs_add_block_group_type(cache);
2227 		}
2228 
2229 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2230 		      (BTRFS_BLOCK_GROUP_RAID10 |
2231 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2232 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2233 		       BTRFS_BLOCK_GROUP_DUP)))
2234 			continue;
2235 		/*
2236 		 * Avoid allocating from un-mirrored block group if there are
2237 		 * mirrored block groups.
2238 		 */
2239 		list_for_each_entry(cache,
2240 				&space_info->block_groups[BTRFS_RAID_RAID0],
2241 				list)
2242 			inc_block_group_ro(cache, 1);
2243 		list_for_each_entry(cache,
2244 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2245 				list)
2246 			inc_block_group_ro(cache, 1);
2247 	}
2248 
2249 	btrfs_init_global_block_rsv(info);
2250 	ret = check_chunk_block_group_mappings(info);
2251 error:
2252 	btrfs_free_path(path);
2253 	/*
2254 	 * We've hit some error while reading the extent tree, and have
2255 	 * rescue=ibadroots mount option.
2256 	 * Try to fill the tree using dummy block groups so that the user can
2257 	 * continue to mount and grab their data.
2258 	 */
2259 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2260 		ret = fill_dummy_bgs(info);
2261 	return ret;
2262 }
2263 
2264 /*
2265  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2266  * allocation.
2267  *
2268  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2269  * phases.
2270  */
2271 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2272 				   struct btrfs_block_group *block_group)
2273 {
2274 	struct btrfs_fs_info *fs_info = trans->fs_info;
2275 	struct btrfs_block_group_item bgi;
2276 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2277 	struct btrfs_key key;
2278 
2279 	spin_lock(&block_group->lock);
2280 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2281 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2282 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2283 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2284 	key.objectid = block_group->start;
2285 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2286 	key.offset = block_group->length;
2287 	spin_unlock(&block_group->lock);
2288 
2289 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2290 }
2291 
2292 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2293 			    struct btrfs_device *device, u64 chunk_offset,
2294 			    u64 start, u64 num_bytes)
2295 {
2296 	struct btrfs_fs_info *fs_info = device->fs_info;
2297 	struct btrfs_root *root = fs_info->dev_root;
2298 	struct btrfs_path *path;
2299 	struct btrfs_dev_extent *extent;
2300 	struct extent_buffer *leaf;
2301 	struct btrfs_key key;
2302 	int ret;
2303 
2304 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2305 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2306 	path = btrfs_alloc_path();
2307 	if (!path)
2308 		return -ENOMEM;
2309 
2310 	key.objectid = device->devid;
2311 	key.type = BTRFS_DEV_EXTENT_KEY;
2312 	key.offset = start;
2313 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2314 	if (ret)
2315 		goto out;
2316 
2317 	leaf = path->nodes[0];
2318 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2319 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2320 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2321 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2322 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2323 
2324 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2325 	btrfs_mark_buffer_dirty(leaf);
2326 out:
2327 	btrfs_free_path(path);
2328 	return ret;
2329 }
2330 
2331 /*
2332  * This function belongs to phase 2.
2333  *
2334  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2335  * phases.
2336  */
2337 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2338 				   u64 chunk_offset, u64 chunk_size)
2339 {
2340 	struct btrfs_fs_info *fs_info = trans->fs_info;
2341 	struct btrfs_device *device;
2342 	struct extent_map *em;
2343 	struct map_lookup *map;
2344 	u64 dev_offset;
2345 	u64 stripe_size;
2346 	int i;
2347 	int ret = 0;
2348 
2349 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2350 	if (IS_ERR(em))
2351 		return PTR_ERR(em);
2352 
2353 	map = em->map_lookup;
2354 	stripe_size = em->orig_block_len;
2355 
2356 	/*
2357 	 * Take the device list mutex to prevent races with the final phase of
2358 	 * a device replace operation that replaces the device object associated
2359 	 * with the map's stripes, because the device object's id can change
2360 	 * at any time during that final phase of the device replace operation
2361 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2362 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2363 	 * resulting in persisting a device extent item with such ID.
2364 	 */
2365 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2366 	for (i = 0; i < map->num_stripes; i++) {
2367 		device = map->stripes[i].dev;
2368 		dev_offset = map->stripes[i].physical;
2369 
2370 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2371 				       stripe_size);
2372 		if (ret)
2373 			break;
2374 	}
2375 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2376 
2377 	free_extent_map(em);
2378 	return ret;
2379 }
2380 
2381 /*
2382  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2383  * chunk allocation.
2384  *
2385  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2386  * phases.
2387  */
2388 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2389 {
2390 	struct btrfs_fs_info *fs_info = trans->fs_info;
2391 	struct btrfs_block_group *block_group;
2392 	int ret = 0;
2393 
2394 	while (!list_empty(&trans->new_bgs)) {
2395 		int index;
2396 
2397 		block_group = list_first_entry(&trans->new_bgs,
2398 					       struct btrfs_block_group,
2399 					       bg_list);
2400 		if (ret)
2401 			goto next;
2402 
2403 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2404 
2405 		ret = insert_block_group_item(trans, block_group);
2406 		if (ret)
2407 			btrfs_abort_transaction(trans, ret);
2408 		if (!block_group->chunk_item_inserted) {
2409 			mutex_lock(&fs_info->chunk_mutex);
2410 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2411 			mutex_unlock(&fs_info->chunk_mutex);
2412 			if (ret)
2413 				btrfs_abort_transaction(trans, ret);
2414 		}
2415 		ret = insert_dev_extents(trans, block_group->start,
2416 					 block_group->length);
2417 		if (ret)
2418 			btrfs_abort_transaction(trans, ret);
2419 		add_block_group_free_space(trans, block_group);
2420 
2421 		/*
2422 		 * If we restriped during balance, we may have added a new raid
2423 		 * type, so now add the sysfs entries when it is safe to do so.
2424 		 * We don't have to worry about locking here as it's handled in
2425 		 * btrfs_sysfs_add_block_group_type.
2426 		 */
2427 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2428 			btrfs_sysfs_add_block_group_type(block_group);
2429 
2430 		/* Already aborted the transaction if it failed. */
2431 next:
2432 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2433 		list_del_init(&block_group->bg_list);
2434 	}
2435 	btrfs_trans_release_chunk_metadata(trans);
2436 }
2437 
2438 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2439 						 u64 bytes_used, u64 type,
2440 						 u64 chunk_offset, u64 size)
2441 {
2442 	struct btrfs_fs_info *fs_info = trans->fs_info;
2443 	struct btrfs_block_group *cache;
2444 	int ret;
2445 
2446 	btrfs_set_log_full_commit(trans);
2447 
2448 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2449 	if (!cache)
2450 		return ERR_PTR(-ENOMEM);
2451 
2452 	cache->length = size;
2453 	set_free_space_tree_thresholds(cache);
2454 	cache->used = bytes_used;
2455 	cache->flags = type;
2456 	cache->last_byte_to_unpin = (u64)-1;
2457 	cache->cached = BTRFS_CACHE_FINISHED;
2458 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2459 		cache->needs_free_space = 1;
2460 
2461 	ret = btrfs_load_block_group_zone_info(cache, true);
2462 	if (ret) {
2463 		btrfs_put_block_group(cache);
2464 		return ERR_PTR(ret);
2465 	}
2466 
2467 	/*
2468 	 * New block group is likely to be used soon. Try to activate it now.
2469 	 * Failure is OK for now.
2470 	 */
2471 	btrfs_zone_activate(cache);
2472 
2473 	ret = exclude_super_stripes(cache);
2474 	if (ret) {
2475 		/* We may have excluded something, so call this just in case */
2476 		btrfs_free_excluded_extents(cache);
2477 		btrfs_put_block_group(cache);
2478 		return ERR_PTR(ret);
2479 	}
2480 
2481 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2482 
2483 	btrfs_free_excluded_extents(cache);
2484 
2485 #ifdef CONFIG_BTRFS_DEBUG
2486 	if (btrfs_should_fragment_free_space(cache)) {
2487 		u64 new_bytes_used = size - bytes_used;
2488 
2489 		bytes_used += new_bytes_used >> 1;
2490 		fragment_free_space(cache);
2491 	}
2492 #endif
2493 	/*
2494 	 * Ensure the corresponding space_info object is created and
2495 	 * assigned to our block group. We want our bg to be added to the rbtree
2496 	 * with its ->space_info set.
2497 	 */
2498 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2499 	ASSERT(cache->space_info);
2500 
2501 	ret = btrfs_add_block_group_cache(fs_info, cache);
2502 	if (ret) {
2503 		btrfs_remove_free_space_cache(cache);
2504 		btrfs_put_block_group(cache);
2505 		return ERR_PTR(ret);
2506 	}
2507 
2508 	/*
2509 	 * Now that our block group has its ->space_info set and is inserted in
2510 	 * the rbtree, update the space info's counters.
2511 	 */
2512 	trace_btrfs_add_block_group(fs_info, cache, 1);
2513 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2514 				cache->bytes_super, cache->zone_unusable,
2515 				&cache->space_info);
2516 	btrfs_update_global_block_rsv(fs_info);
2517 
2518 	link_block_group(cache);
2519 
2520 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2521 	trans->delayed_ref_updates++;
2522 	btrfs_update_delayed_refs_rsv(trans);
2523 
2524 	set_avail_alloc_bits(fs_info, type);
2525 	return cache;
2526 }
2527 
2528 /*
2529  * Mark one block group RO, can be called several times for the same block
2530  * group.
2531  *
2532  * @cache:		the destination block group
2533  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2534  * 			ensure we still have some free space after marking this
2535  * 			block group RO.
2536  */
2537 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2538 			     bool do_chunk_alloc)
2539 {
2540 	struct btrfs_fs_info *fs_info = cache->fs_info;
2541 	struct btrfs_trans_handle *trans;
2542 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2543 	u64 alloc_flags;
2544 	int ret;
2545 	bool dirty_bg_running;
2546 
2547 	do {
2548 		trans = btrfs_join_transaction(root);
2549 		if (IS_ERR(trans))
2550 			return PTR_ERR(trans);
2551 
2552 		dirty_bg_running = false;
2553 
2554 		/*
2555 		 * We're not allowed to set block groups readonly after the dirty
2556 		 * block group cache has started writing.  If it already started,
2557 		 * back off and let this transaction commit.
2558 		 */
2559 		mutex_lock(&fs_info->ro_block_group_mutex);
2560 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2561 			u64 transid = trans->transid;
2562 
2563 			mutex_unlock(&fs_info->ro_block_group_mutex);
2564 			btrfs_end_transaction(trans);
2565 
2566 			ret = btrfs_wait_for_commit(fs_info, transid);
2567 			if (ret)
2568 				return ret;
2569 			dirty_bg_running = true;
2570 		}
2571 	} while (dirty_bg_running);
2572 
2573 	if (do_chunk_alloc) {
2574 		/*
2575 		 * If we are changing raid levels, try to allocate a
2576 		 * corresponding block group with the new raid level.
2577 		 */
2578 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2579 		if (alloc_flags != cache->flags) {
2580 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2581 						CHUNK_ALLOC_FORCE);
2582 			/*
2583 			 * ENOSPC is allowed here, we may have enough space
2584 			 * already allocated at the new raid level to carry on
2585 			 */
2586 			if (ret == -ENOSPC)
2587 				ret = 0;
2588 			if (ret < 0)
2589 				goto out;
2590 		}
2591 	}
2592 
2593 	ret = inc_block_group_ro(cache, 0);
2594 	if (!do_chunk_alloc || ret == -ETXTBSY)
2595 		goto unlock_out;
2596 	if (!ret)
2597 		goto out;
2598 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2599 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2600 	if (ret < 0)
2601 		goto out;
2602 	ret = inc_block_group_ro(cache, 0);
2603 	if (ret == -ETXTBSY)
2604 		goto unlock_out;
2605 out:
2606 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2607 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2608 		mutex_lock(&fs_info->chunk_mutex);
2609 		check_system_chunk(trans, alloc_flags);
2610 		mutex_unlock(&fs_info->chunk_mutex);
2611 	}
2612 unlock_out:
2613 	mutex_unlock(&fs_info->ro_block_group_mutex);
2614 
2615 	btrfs_end_transaction(trans);
2616 	return ret;
2617 }
2618 
2619 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2620 {
2621 	struct btrfs_space_info *sinfo = cache->space_info;
2622 	u64 num_bytes;
2623 
2624 	BUG_ON(!cache->ro);
2625 
2626 	spin_lock(&sinfo->lock);
2627 	spin_lock(&cache->lock);
2628 	if (!--cache->ro) {
2629 		if (btrfs_is_zoned(cache->fs_info)) {
2630 			/* Migrate zone_unusable bytes back */
2631 			cache->zone_unusable =
2632 				(cache->alloc_offset - cache->used) +
2633 				(cache->length - cache->zone_capacity);
2634 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2635 			sinfo->bytes_readonly -= cache->zone_unusable;
2636 		}
2637 		num_bytes = cache->length - cache->reserved -
2638 			    cache->pinned - cache->bytes_super -
2639 			    cache->zone_unusable - cache->used;
2640 		sinfo->bytes_readonly -= num_bytes;
2641 		list_del_init(&cache->ro_list);
2642 	}
2643 	spin_unlock(&cache->lock);
2644 	spin_unlock(&sinfo->lock);
2645 }
2646 
2647 static int update_block_group_item(struct btrfs_trans_handle *trans,
2648 				   struct btrfs_path *path,
2649 				   struct btrfs_block_group *cache)
2650 {
2651 	struct btrfs_fs_info *fs_info = trans->fs_info;
2652 	int ret;
2653 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2654 	unsigned long bi;
2655 	struct extent_buffer *leaf;
2656 	struct btrfs_block_group_item bgi;
2657 	struct btrfs_key key;
2658 
2659 	key.objectid = cache->start;
2660 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2661 	key.offset = cache->length;
2662 
2663 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2664 	if (ret) {
2665 		if (ret > 0)
2666 			ret = -ENOENT;
2667 		goto fail;
2668 	}
2669 
2670 	leaf = path->nodes[0];
2671 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2672 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2673 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2674 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2675 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2676 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2677 	btrfs_mark_buffer_dirty(leaf);
2678 fail:
2679 	btrfs_release_path(path);
2680 	return ret;
2681 
2682 }
2683 
2684 static int cache_save_setup(struct btrfs_block_group *block_group,
2685 			    struct btrfs_trans_handle *trans,
2686 			    struct btrfs_path *path)
2687 {
2688 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2689 	struct btrfs_root *root = fs_info->tree_root;
2690 	struct inode *inode = NULL;
2691 	struct extent_changeset *data_reserved = NULL;
2692 	u64 alloc_hint = 0;
2693 	int dcs = BTRFS_DC_ERROR;
2694 	u64 cache_size = 0;
2695 	int retries = 0;
2696 	int ret = 0;
2697 
2698 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2699 		return 0;
2700 
2701 	/*
2702 	 * If this block group is smaller than 100 megs don't bother caching the
2703 	 * block group.
2704 	 */
2705 	if (block_group->length < (100 * SZ_1M)) {
2706 		spin_lock(&block_group->lock);
2707 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2708 		spin_unlock(&block_group->lock);
2709 		return 0;
2710 	}
2711 
2712 	if (TRANS_ABORTED(trans))
2713 		return 0;
2714 again:
2715 	inode = lookup_free_space_inode(block_group, path);
2716 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2717 		ret = PTR_ERR(inode);
2718 		btrfs_release_path(path);
2719 		goto out;
2720 	}
2721 
2722 	if (IS_ERR(inode)) {
2723 		BUG_ON(retries);
2724 		retries++;
2725 
2726 		if (block_group->ro)
2727 			goto out_free;
2728 
2729 		ret = create_free_space_inode(trans, block_group, path);
2730 		if (ret)
2731 			goto out_free;
2732 		goto again;
2733 	}
2734 
2735 	/*
2736 	 * We want to set the generation to 0, that way if anything goes wrong
2737 	 * from here on out we know not to trust this cache when we load up next
2738 	 * time.
2739 	 */
2740 	BTRFS_I(inode)->generation = 0;
2741 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2742 	if (ret) {
2743 		/*
2744 		 * So theoretically we could recover from this, simply set the
2745 		 * super cache generation to 0 so we know to invalidate the
2746 		 * cache, but then we'd have to keep track of the block groups
2747 		 * that fail this way so we know we _have_ to reset this cache
2748 		 * before the next commit or risk reading stale cache.  So to
2749 		 * limit our exposure to horrible edge cases lets just abort the
2750 		 * transaction, this only happens in really bad situations
2751 		 * anyway.
2752 		 */
2753 		btrfs_abort_transaction(trans, ret);
2754 		goto out_put;
2755 	}
2756 	WARN_ON(ret);
2757 
2758 	/* We've already setup this transaction, go ahead and exit */
2759 	if (block_group->cache_generation == trans->transid &&
2760 	    i_size_read(inode)) {
2761 		dcs = BTRFS_DC_SETUP;
2762 		goto out_put;
2763 	}
2764 
2765 	if (i_size_read(inode) > 0) {
2766 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2767 					&fs_info->global_block_rsv);
2768 		if (ret)
2769 			goto out_put;
2770 
2771 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2772 		if (ret)
2773 			goto out_put;
2774 	}
2775 
2776 	spin_lock(&block_group->lock);
2777 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2778 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2779 		/*
2780 		 * don't bother trying to write stuff out _if_
2781 		 * a) we're not cached,
2782 		 * b) we're with nospace_cache mount option,
2783 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2784 		 */
2785 		dcs = BTRFS_DC_WRITTEN;
2786 		spin_unlock(&block_group->lock);
2787 		goto out_put;
2788 	}
2789 	spin_unlock(&block_group->lock);
2790 
2791 	/*
2792 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2793 	 * skip doing the setup, we've already cleared the cache so we're safe.
2794 	 */
2795 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2796 		ret = -ENOSPC;
2797 		goto out_put;
2798 	}
2799 
2800 	/*
2801 	 * Try to preallocate enough space based on how big the block group is.
2802 	 * Keep in mind this has to include any pinned space which could end up
2803 	 * taking up quite a bit since it's not folded into the other space
2804 	 * cache.
2805 	 */
2806 	cache_size = div_u64(block_group->length, SZ_256M);
2807 	if (!cache_size)
2808 		cache_size = 1;
2809 
2810 	cache_size *= 16;
2811 	cache_size *= fs_info->sectorsize;
2812 
2813 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2814 					  cache_size);
2815 	if (ret)
2816 		goto out_put;
2817 
2818 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2819 					      cache_size, cache_size,
2820 					      &alloc_hint);
2821 	/*
2822 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2823 	 * of metadata or split extents when writing the cache out, which means
2824 	 * we can enospc if we are heavily fragmented in addition to just normal
2825 	 * out of space conditions.  So if we hit this just skip setting up any
2826 	 * other block groups for this transaction, maybe we'll unpin enough
2827 	 * space the next time around.
2828 	 */
2829 	if (!ret)
2830 		dcs = BTRFS_DC_SETUP;
2831 	else if (ret == -ENOSPC)
2832 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2833 
2834 out_put:
2835 	iput(inode);
2836 out_free:
2837 	btrfs_release_path(path);
2838 out:
2839 	spin_lock(&block_group->lock);
2840 	if (!ret && dcs == BTRFS_DC_SETUP)
2841 		block_group->cache_generation = trans->transid;
2842 	block_group->disk_cache_state = dcs;
2843 	spin_unlock(&block_group->lock);
2844 
2845 	extent_changeset_free(data_reserved);
2846 	return ret;
2847 }
2848 
2849 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2850 {
2851 	struct btrfs_fs_info *fs_info = trans->fs_info;
2852 	struct btrfs_block_group *cache, *tmp;
2853 	struct btrfs_transaction *cur_trans = trans->transaction;
2854 	struct btrfs_path *path;
2855 
2856 	if (list_empty(&cur_trans->dirty_bgs) ||
2857 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2858 		return 0;
2859 
2860 	path = btrfs_alloc_path();
2861 	if (!path)
2862 		return -ENOMEM;
2863 
2864 	/* Could add new block groups, use _safe just in case */
2865 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2866 				 dirty_list) {
2867 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2868 			cache_save_setup(cache, trans, path);
2869 	}
2870 
2871 	btrfs_free_path(path);
2872 	return 0;
2873 }
2874 
2875 /*
2876  * Transaction commit does final block group cache writeback during a critical
2877  * section where nothing is allowed to change the FS.  This is required in
2878  * order for the cache to actually match the block group, but can introduce a
2879  * lot of latency into the commit.
2880  *
2881  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2882  * There's a chance we'll have to redo some of it if the block group changes
2883  * again during the commit, but it greatly reduces the commit latency by
2884  * getting rid of the easy block groups while we're still allowing others to
2885  * join the commit.
2886  */
2887 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2888 {
2889 	struct btrfs_fs_info *fs_info = trans->fs_info;
2890 	struct btrfs_block_group *cache;
2891 	struct btrfs_transaction *cur_trans = trans->transaction;
2892 	int ret = 0;
2893 	int should_put;
2894 	struct btrfs_path *path = NULL;
2895 	LIST_HEAD(dirty);
2896 	struct list_head *io = &cur_trans->io_bgs;
2897 	int num_started = 0;
2898 	int loops = 0;
2899 
2900 	spin_lock(&cur_trans->dirty_bgs_lock);
2901 	if (list_empty(&cur_trans->dirty_bgs)) {
2902 		spin_unlock(&cur_trans->dirty_bgs_lock);
2903 		return 0;
2904 	}
2905 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2906 	spin_unlock(&cur_trans->dirty_bgs_lock);
2907 
2908 again:
2909 	/* Make sure all the block groups on our dirty list actually exist */
2910 	btrfs_create_pending_block_groups(trans);
2911 
2912 	if (!path) {
2913 		path = btrfs_alloc_path();
2914 		if (!path) {
2915 			ret = -ENOMEM;
2916 			goto out;
2917 		}
2918 	}
2919 
2920 	/*
2921 	 * cache_write_mutex is here only to save us from balance or automatic
2922 	 * removal of empty block groups deleting this block group while we are
2923 	 * writing out the cache
2924 	 */
2925 	mutex_lock(&trans->transaction->cache_write_mutex);
2926 	while (!list_empty(&dirty)) {
2927 		bool drop_reserve = true;
2928 
2929 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2930 					 dirty_list);
2931 		/*
2932 		 * This can happen if something re-dirties a block group that
2933 		 * is already under IO.  Just wait for it to finish and then do
2934 		 * it all again
2935 		 */
2936 		if (!list_empty(&cache->io_list)) {
2937 			list_del_init(&cache->io_list);
2938 			btrfs_wait_cache_io(trans, cache, path);
2939 			btrfs_put_block_group(cache);
2940 		}
2941 
2942 
2943 		/*
2944 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2945 		 * it should update the cache_state.  Don't delete until after
2946 		 * we wait.
2947 		 *
2948 		 * Since we're not running in the commit critical section
2949 		 * we need the dirty_bgs_lock to protect from update_block_group
2950 		 */
2951 		spin_lock(&cur_trans->dirty_bgs_lock);
2952 		list_del_init(&cache->dirty_list);
2953 		spin_unlock(&cur_trans->dirty_bgs_lock);
2954 
2955 		should_put = 1;
2956 
2957 		cache_save_setup(cache, trans, path);
2958 
2959 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2960 			cache->io_ctl.inode = NULL;
2961 			ret = btrfs_write_out_cache(trans, cache, path);
2962 			if (ret == 0 && cache->io_ctl.inode) {
2963 				num_started++;
2964 				should_put = 0;
2965 
2966 				/*
2967 				 * The cache_write_mutex is protecting the
2968 				 * io_list, also refer to the definition of
2969 				 * btrfs_transaction::io_bgs for more details
2970 				 */
2971 				list_add_tail(&cache->io_list, io);
2972 			} else {
2973 				/*
2974 				 * If we failed to write the cache, the
2975 				 * generation will be bad and life goes on
2976 				 */
2977 				ret = 0;
2978 			}
2979 		}
2980 		if (!ret) {
2981 			ret = update_block_group_item(trans, path, cache);
2982 			/*
2983 			 * Our block group might still be attached to the list
2984 			 * of new block groups in the transaction handle of some
2985 			 * other task (struct btrfs_trans_handle->new_bgs). This
2986 			 * means its block group item isn't yet in the extent
2987 			 * tree. If this happens ignore the error, as we will
2988 			 * try again later in the critical section of the
2989 			 * transaction commit.
2990 			 */
2991 			if (ret == -ENOENT) {
2992 				ret = 0;
2993 				spin_lock(&cur_trans->dirty_bgs_lock);
2994 				if (list_empty(&cache->dirty_list)) {
2995 					list_add_tail(&cache->dirty_list,
2996 						      &cur_trans->dirty_bgs);
2997 					btrfs_get_block_group(cache);
2998 					drop_reserve = false;
2999 				}
3000 				spin_unlock(&cur_trans->dirty_bgs_lock);
3001 			} else if (ret) {
3002 				btrfs_abort_transaction(trans, ret);
3003 			}
3004 		}
3005 
3006 		/* If it's not on the io list, we need to put the block group */
3007 		if (should_put)
3008 			btrfs_put_block_group(cache);
3009 		if (drop_reserve)
3010 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3011 		/*
3012 		 * Avoid blocking other tasks for too long. It might even save
3013 		 * us from writing caches for block groups that are going to be
3014 		 * removed.
3015 		 */
3016 		mutex_unlock(&trans->transaction->cache_write_mutex);
3017 		if (ret)
3018 			goto out;
3019 		mutex_lock(&trans->transaction->cache_write_mutex);
3020 	}
3021 	mutex_unlock(&trans->transaction->cache_write_mutex);
3022 
3023 	/*
3024 	 * Go through delayed refs for all the stuff we've just kicked off
3025 	 * and then loop back (just once)
3026 	 */
3027 	if (!ret)
3028 		ret = btrfs_run_delayed_refs(trans, 0);
3029 	if (!ret && loops == 0) {
3030 		loops++;
3031 		spin_lock(&cur_trans->dirty_bgs_lock);
3032 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3033 		/*
3034 		 * dirty_bgs_lock protects us from concurrent block group
3035 		 * deletes too (not just cache_write_mutex).
3036 		 */
3037 		if (!list_empty(&dirty)) {
3038 			spin_unlock(&cur_trans->dirty_bgs_lock);
3039 			goto again;
3040 		}
3041 		spin_unlock(&cur_trans->dirty_bgs_lock);
3042 	}
3043 out:
3044 	if (ret < 0) {
3045 		spin_lock(&cur_trans->dirty_bgs_lock);
3046 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3047 		spin_unlock(&cur_trans->dirty_bgs_lock);
3048 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3049 	}
3050 
3051 	btrfs_free_path(path);
3052 	return ret;
3053 }
3054 
3055 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3056 {
3057 	struct btrfs_fs_info *fs_info = trans->fs_info;
3058 	struct btrfs_block_group *cache;
3059 	struct btrfs_transaction *cur_trans = trans->transaction;
3060 	int ret = 0;
3061 	int should_put;
3062 	struct btrfs_path *path;
3063 	struct list_head *io = &cur_trans->io_bgs;
3064 	int num_started = 0;
3065 
3066 	path = btrfs_alloc_path();
3067 	if (!path)
3068 		return -ENOMEM;
3069 
3070 	/*
3071 	 * Even though we are in the critical section of the transaction commit,
3072 	 * we can still have concurrent tasks adding elements to this
3073 	 * transaction's list of dirty block groups. These tasks correspond to
3074 	 * endio free space workers started when writeback finishes for a
3075 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3076 	 * allocate new block groups as a result of COWing nodes of the root
3077 	 * tree when updating the free space inode. The writeback for the space
3078 	 * caches is triggered by an earlier call to
3079 	 * btrfs_start_dirty_block_groups() and iterations of the following
3080 	 * loop.
3081 	 * Also we want to do the cache_save_setup first and then run the
3082 	 * delayed refs to make sure we have the best chance at doing this all
3083 	 * in one shot.
3084 	 */
3085 	spin_lock(&cur_trans->dirty_bgs_lock);
3086 	while (!list_empty(&cur_trans->dirty_bgs)) {
3087 		cache = list_first_entry(&cur_trans->dirty_bgs,
3088 					 struct btrfs_block_group,
3089 					 dirty_list);
3090 
3091 		/*
3092 		 * This can happen if cache_save_setup re-dirties a block group
3093 		 * that is already under IO.  Just wait for it to finish and
3094 		 * then do it all again
3095 		 */
3096 		if (!list_empty(&cache->io_list)) {
3097 			spin_unlock(&cur_trans->dirty_bgs_lock);
3098 			list_del_init(&cache->io_list);
3099 			btrfs_wait_cache_io(trans, cache, path);
3100 			btrfs_put_block_group(cache);
3101 			spin_lock(&cur_trans->dirty_bgs_lock);
3102 		}
3103 
3104 		/*
3105 		 * Don't remove from the dirty list until after we've waited on
3106 		 * any pending IO
3107 		 */
3108 		list_del_init(&cache->dirty_list);
3109 		spin_unlock(&cur_trans->dirty_bgs_lock);
3110 		should_put = 1;
3111 
3112 		cache_save_setup(cache, trans, path);
3113 
3114 		if (!ret)
3115 			ret = btrfs_run_delayed_refs(trans,
3116 						     (unsigned long) -1);
3117 
3118 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3119 			cache->io_ctl.inode = NULL;
3120 			ret = btrfs_write_out_cache(trans, cache, path);
3121 			if (ret == 0 && cache->io_ctl.inode) {
3122 				num_started++;
3123 				should_put = 0;
3124 				list_add_tail(&cache->io_list, io);
3125 			} else {
3126 				/*
3127 				 * If we failed to write the cache, the
3128 				 * generation will be bad and life goes on
3129 				 */
3130 				ret = 0;
3131 			}
3132 		}
3133 		if (!ret) {
3134 			ret = update_block_group_item(trans, path, cache);
3135 			/*
3136 			 * One of the free space endio workers might have
3137 			 * created a new block group while updating a free space
3138 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3139 			 * and hasn't released its transaction handle yet, in
3140 			 * which case the new block group is still attached to
3141 			 * its transaction handle and its creation has not
3142 			 * finished yet (no block group item in the extent tree
3143 			 * yet, etc). If this is the case, wait for all free
3144 			 * space endio workers to finish and retry. This is a
3145 			 * very rare case so no need for a more efficient and
3146 			 * complex approach.
3147 			 */
3148 			if (ret == -ENOENT) {
3149 				wait_event(cur_trans->writer_wait,
3150 				   atomic_read(&cur_trans->num_writers) == 1);
3151 				ret = update_block_group_item(trans, path, cache);
3152 			}
3153 			if (ret)
3154 				btrfs_abort_transaction(trans, ret);
3155 		}
3156 
3157 		/* If its not on the io list, we need to put the block group */
3158 		if (should_put)
3159 			btrfs_put_block_group(cache);
3160 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3161 		spin_lock(&cur_trans->dirty_bgs_lock);
3162 	}
3163 	spin_unlock(&cur_trans->dirty_bgs_lock);
3164 
3165 	/*
3166 	 * Refer to the definition of io_bgs member for details why it's safe
3167 	 * to use it without any locking
3168 	 */
3169 	while (!list_empty(io)) {
3170 		cache = list_first_entry(io, struct btrfs_block_group,
3171 					 io_list);
3172 		list_del_init(&cache->io_list);
3173 		btrfs_wait_cache_io(trans, cache, path);
3174 		btrfs_put_block_group(cache);
3175 	}
3176 
3177 	btrfs_free_path(path);
3178 	return ret;
3179 }
3180 
3181 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3182 			     u64 bytenr, u64 num_bytes, bool alloc)
3183 {
3184 	struct btrfs_fs_info *info = trans->fs_info;
3185 	struct btrfs_block_group *cache = NULL;
3186 	u64 total = num_bytes;
3187 	u64 old_val;
3188 	u64 byte_in_group;
3189 	int factor;
3190 	int ret = 0;
3191 
3192 	/* Block accounting for super block */
3193 	spin_lock(&info->delalloc_root_lock);
3194 	old_val = btrfs_super_bytes_used(info->super_copy);
3195 	if (alloc)
3196 		old_val += num_bytes;
3197 	else
3198 		old_val -= num_bytes;
3199 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3200 	spin_unlock(&info->delalloc_root_lock);
3201 
3202 	while (total) {
3203 		cache = btrfs_lookup_block_group(info, bytenr);
3204 		if (!cache) {
3205 			ret = -ENOENT;
3206 			break;
3207 		}
3208 		factor = btrfs_bg_type_to_factor(cache->flags);
3209 
3210 		/*
3211 		 * If this block group has free space cache written out, we
3212 		 * need to make sure to load it if we are removing space.  This
3213 		 * is because we need the unpinning stage to actually add the
3214 		 * space back to the block group, otherwise we will leak space.
3215 		 */
3216 		if (!alloc && !btrfs_block_group_done(cache))
3217 			btrfs_cache_block_group(cache, 1);
3218 
3219 		byte_in_group = bytenr - cache->start;
3220 		WARN_ON(byte_in_group > cache->length);
3221 
3222 		spin_lock(&cache->space_info->lock);
3223 		spin_lock(&cache->lock);
3224 
3225 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3226 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3227 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3228 
3229 		old_val = cache->used;
3230 		num_bytes = min(total, cache->length - byte_in_group);
3231 		if (alloc) {
3232 			old_val += num_bytes;
3233 			cache->used = old_val;
3234 			cache->reserved -= num_bytes;
3235 			cache->space_info->bytes_reserved -= num_bytes;
3236 			cache->space_info->bytes_used += num_bytes;
3237 			cache->space_info->disk_used += num_bytes * factor;
3238 			spin_unlock(&cache->lock);
3239 			spin_unlock(&cache->space_info->lock);
3240 		} else {
3241 			old_val -= num_bytes;
3242 			cache->used = old_val;
3243 			cache->pinned += num_bytes;
3244 			btrfs_space_info_update_bytes_pinned(info,
3245 					cache->space_info, num_bytes);
3246 			cache->space_info->bytes_used -= num_bytes;
3247 			cache->space_info->disk_used -= num_bytes * factor;
3248 			spin_unlock(&cache->lock);
3249 			spin_unlock(&cache->space_info->lock);
3250 
3251 			set_extent_dirty(&trans->transaction->pinned_extents,
3252 					 bytenr, bytenr + num_bytes - 1,
3253 					 GFP_NOFS | __GFP_NOFAIL);
3254 		}
3255 
3256 		spin_lock(&trans->transaction->dirty_bgs_lock);
3257 		if (list_empty(&cache->dirty_list)) {
3258 			list_add_tail(&cache->dirty_list,
3259 				      &trans->transaction->dirty_bgs);
3260 			trans->delayed_ref_updates++;
3261 			btrfs_get_block_group(cache);
3262 		}
3263 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3264 
3265 		/*
3266 		 * No longer have used bytes in this block group, queue it for
3267 		 * deletion. We do this after adding the block group to the
3268 		 * dirty list to avoid races between cleaner kthread and space
3269 		 * cache writeout.
3270 		 */
3271 		if (!alloc && old_val == 0) {
3272 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3273 				btrfs_mark_bg_unused(cache);
3274 		}
3275 
3276 		btrfs_put_block_group(cache);
3277 		total -= num_bytes;
3278 		bytenr += num_bytes;
3279 	}
3280 
3281 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3282 	btrfs_update_delayed_refs_rsv(trans);
3283 	return ret;
3284 }
3285 
3286 /**
3287  * btrfs_add_reserved_bytes - update the block_group and space info counters
3288  * @cache:	The cache we are manipulating
3289  * @ram_bytes:  The number of bytes of file content, and will be same to
3290  *              @num_bytes except for the compress path.
3291  * @num_bytes:	The number of bytes in question
3292  * @delalloc:   The blocks are allocated for the delalloc write
3293  *
3294  * This is called by the allocator when it reserves space. If this is a
3295  * reservation and the block group has become read only we cannot make the
3296  * reservation and return -EAGAIN, otherwise this function always succeeds.
3297  */
3298 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3299 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3300 {
3301 	struct btrfs_space_info *space_info = cache->space_info;
3302 	int ret = 0;
3303 
3304 	spin_lock(&space_info->lock);
3305 	spin_lock(&cache->lock);
3306 	if (cache->ro) {
3307 		ret = -EAGAIN;
3308 	} else {
3309 		cache->reserved += num_bytes;
3310 		space_info->bytes_reserved += num_bytes;
3311 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3312 					      space_info->flags, num_bytes, 1);
3313 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3314 						      space_info, -ram_bytes);
3315 		if (delalloc)
3316 			cache->delalloc_bytes += num_bytes;
3317 
3318 		/*
3319 		 * Compression can use less space than we reserved, so wake
3320 		 * tickets if that happens
3321 		 */
3322 		if (num_bytes < ram_bytes)
3323 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3324 	}
3325 	spin_unlock(&cache->lock);
3326 	spin_unlock(&space_info->lock);
3327 	return ret;
3328 }
3329 
3330 /**
3331  * btrfs_free_reserved_bytes - update the block_group and space info counters
3332  * @cache:      The cache we are manipulating
3333  * @num_bytes:  The number of bytes in question
3334  * @delalloc:   The blocks are allocated for the delalloc write
3335  *
3336  * This is called by somebody who is freeing space that was never actually used
3337  * on disk.  For example if you reserve some space for a new leaf in transaction
3338  * A and before transaction A commits you free that leaf, you call this with
3339  * reserve set to 0 in order to clear the reservation.
3340  */
3341 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3342 			       u64 num_bytes, int delalloc)
3343 {
3344 	struct btrfs_space_info *space_info = cache->space_info;
3345 
3346 	spin_lock(&space_info->lock);
3347 	spin_lock(&cache->lock);
3348 	if (cache->ro)
3349 		space_info->bytes_readonly += num_bytes;
3350 	cache->reserved -= num_bytes;
3351 	space_info->bytes_reserved -= num_bytes;
3352 	space_info->max_extent_size = 0;
3353 
3354 	if (delalloc)
3355 		cache->delalloc_bytes -= num_bytes;
3356 	spin_unlock(&cache->lock);
3357 
3358 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3359 	spin_unlock(&space_info->lock);
3360 }
3361 
3362 static void force_metadata_allocation(struct btrfs_fs_info *info)
3363 {
3364 	struct list_head *head = &info->space_info;
3365 	struct btrfs_space_info *found;
3366 
3367 	list_for_each_entry(found, head, list) {
3368 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3369 			found->force_alloc = CHUNK_ALLOC_FORCE;
3370 	}
3371 }
3372 
3373 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3374 			      struct btrfs_space_info *sinfo, int force)
3375 {
3376 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3377 	u64 thresh;
3378 
3379 	if (force == CHUNK_ALLOC_FORCE)
3380 		return 1;
3381 
3382 	/*
3383 	 * in limited mode, we want to have some free space up to
3384 	 * about 1% of the FS size.
3385 	 */
3386 	if (force == CHUNK_ALLOC_LIMITED) {
3387 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3388 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3389 
3390 		if (sinfo->total_bytes - bytes_used < thresh)
3391 			return 1;
3392 	}
3393 
3394 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3395 		return 0;
3396 	return 1;
3397 }
3398 
3399 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3400 {
3401 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3402 
3403 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3404 }
3405 
3406 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3407 {
3408 	struct btrfs_block_group *bg;
3409 	int ret;
3410 
3411 	/*
3412 	 * Check if we have enough space in the system space info because we
3413 	 * will need to update device items in the chunk btree and insert a new
3414 	 * chunk item in the chunk btree as well. This will allocate a new
3415 	 * system block group if needed.
3416 	 */
3417 	check_system_chunk(trans, flags);
3418 
3419 	bg = btrfs_create_chunk(trans, flags);
3420 	if (IS_ERR(bg)) {
3421 		ret = PTR_ERR(bg);
3422 		goto out;
3423 	}
3424 
3425 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3426 	/*
3427 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3428 	 * previously reserved space in the system space_info and allocated one
3429 	 * new system chunk if necessary. However there are three exceptions:
3430 	 *
3431 	 * 1) We may have enough free space in the system space_info but all the
3432 	 *    existing system block groups have a profile which can not be used
3433 	 *    for extent allocation.
3434 	 *
3435 	 *    This happens when mounting in degraded mode. For example we have a
3436 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3437 	 *    using the other device in degraded mode. If we then allocate a chunk,
3438 	 *    we may have enough free space in the existing system space_info, but
3439 	 *    none of the block groups can be used for extent allocation since they
3440 	 *    have a RAID1 profile, and because we are in degraded mode with a
3441 	 *    single device, we are forced to allocate a new system chunk with a
3442 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3443 	 *    block groups and check if they have a usable profile and enough space
3444 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3445 	 *    try again after forcing allocation of a new system chunk. Like this
3446 	 *    we avoid paying the cost of that search in normal circumstances, when
3447 	 *    we were not mounted in degraded mode;
3448 	 *
3449 	 * 2) We had enough free space info the system space_info, and one suitable
3450 	 *    block group to allocate from when we called check_system_chunk()
3451 	 *    above. However right after we called it, the only system block group
3452 	 *    with enough free space got turned into RO mode by a running scrub,
3453 	 *    and in this case we have to allocate a new one and retry. We only
3454 	 *    need do this allocate and retry once, since we have a transaction
3455 	 *    handle and scrub uses the commit root to search for block groups;
3456 	 *
3457 	 * 3) We had one system block group with enough free space when we called
3458 	 *    check_system_chunk(), but after that, right before we tried to
3459 	 *    allocate the last extent buffer we needed, a discard operation came
3460 	 *    in and it temporarily removed the last free space entry from the
3461 	 *    block group (discard removes a free space entry, discards it, and
3462 	 *    then adds back the entry to the block group cache).
3463 	 */
3464 	if (ret == -ENOSPC) {
3465 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3466 		struct btrfs_block_group *sys_bg;
3467 
3468 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3469 		if (IS_ERR(sys_bg)) {
3470 			ret = PTR_ERR(sys_bg);
3471 			btrfs_abort_transaction(trans, ret);
3472 			goto out;
3473 		}
3474 
3475 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3476 		if (ret) {
3477 			btrfs_abort_transaction(trans, ret);
3478 			goto out;
3479 		}
3480 
3481 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3482 		if (ret) {
3483 			btrfs_abort_transaction(trans, ret);
3484 			goto out;
3485 		}
3486 	} else if (ret) {
3487 		btrfs_abort_transaction(trans, ret);
3488 		goto out;
3489 	}
3490 out:
3491 	btrfs_trans_release_chunk_metadata(trans);
3492 
3493 	return ret;
3494 }
3495 
3496 /*
3497  * Chunk allocation is done in 2 phases:
3498  *
3499  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3500  *    the chunk, the chunk mapping, create its block group and add the items
3501  *    that belong in the chunk btree to it - more specifically, we need to
3502  *    update device items in the chunk btree and add a new chunk item to it.
3503  *
3504  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3505  *    group item to the extent btree and the device extent items to the devices
3506  *    btree.
3507  *
3508  * This is done to prevent deadlocks. For example when COWing a node from the
3509  * extent btree we are holding a write lock on the node's parent and if we
3510  * trigger chunk allocation and attempted to insert the new block group item
3511  * in the extent btree right way, we could deadlock because the path for the
3512  * insertion can include that parent node. At first glance it seems impossible
3513  * to trigger chunk allocation after starting a transaction since tasks should
3514  * reserve enough transaction units (metadata space), however while that is true
3515  * most of the time, chunk allocation may still be triggered for several reasons:
3516  *
3517  * 1) When reserving metadata, we check if there is enough free space in the
3518  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3519  *    However later when the task actually tries to COW an extent buffer from
3520  *    the extent btree or from the device btree for example, it is forced to
3521  *    allocate a new block group (chunk) because the only one that had enough
3522  *    free space was just turned to RO mode by a running scrub for example (or
3523  *    device replace, block group reclaim thread, etc), so we can not use it
3524  *    for allocating an extent and end up being forced to allocate a new one;
3525  *
3526  * 2) Because we only check that the metadata space_info has enough free bytes,
3527  *    we end up not allocating a new metadata chunk in that case. However if
3528  *    the filesystem was mounted in degraded mode, none of the existing block
3529  *    groups might be suitable for extent allocation due to their incompatible
3530  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3531  *    use a RAID1 profile, in degraded mode using a single device). In this case
3532  *    when the task attempts to COW some extent buffer of the extent btree for
3533  *    example, it will trigger allocation of a new metadata block group with a
3534  *    suitable profile (SINGLE profile in the example of the degraded mount of
3535  *    the RAID1 filesystem);
3536  *
3537  * 3) The task has reserved enough transaction units / metadata space, but when
3538  *    it attempts to COW an extent buffer from the extent or device btree for
3539  *    example, it does not find any free extent in any metadata block group,
3540  *    therefore forced to try to allocate a new metadata block group.
3541  *    This is because some other task allocated all available extents in the
3542  *    meanwhile - this typically happens with tasks that don't reserve space
3543  *    properly, either intentionally or as a bug. One example where this is
3544  *    done intentionally is fsync, as it does not reserve any transaction units
3545  *    and ends up allocating a variable number of metadata extents for log
3546  *    tree extent buffers;
3547  *
3548  * 4) The task has reserved enough transaction units / metadata space, but right
3549  *    before it tries to allocate the last extent buffer it needs, a discard
3550  *    operation comes in and, temporarily, removes the last free space entry from
3551  *    the only metadata block group that had free space (discard starts by
3552  *    removing a free space entry from a block group, then does the discard
3553  *    operation and, once it's done, it adds back the free space entry to the
3554  *    block group).
3555  *
3556  * We also need this 2 phases setup when adding a device to a filesystem with
3557  * a seed device - we must create new metadata and system chunks without adding
3558  * any of the block group items to the chunk, extent and device btrees. If we
3559  * did not do it this way, we would get ENOSPC when attempting to update those
3560  * btrees, since all the chunks from the seed device are read-only.
3561  *
3562  * Phase 1 does the updates and insertions to the chunk btree because if we had
3563  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3564  * parallel, we risk having too many system chunks allocated by many tasks if
3565  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3566  * extreme case this leads to exhaustion of the system chunk array in the
3567  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3568  * and with RAID filesystems (so we have more device items in the chunk btree).
3569  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3570  * the system chunk array due to concurrent allocations") provides more details.
3571  *
3572  * Allocation of system chunks does not happen through this function. A task that
3573  * needs to update the chunk btree (the only btree that uses system chunks), must
3574  * preallocate chunk space by calling either check_system_chunk() or
3575  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3576  * metadata chunk or when removing a chunk, while the later is used before doing
3577  * a modification to the chunk btree - use cases for the later are adding,
3578  * removing and resizing a device as well as relocation of a system chunk.
3579  * See the comment below for more details.
3580  *
3581  * The reservation of system space, done through check_system_chunk(), as well
3582  * as all the updates and insertions into the chunk btree must be done while
3583  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3584  * an extent buffer from the chunks btree we never trigger allocation of a new
3585  * system chunk, which would result in a deadlock (trying to lock twice an
3586  * extent buffer of the chunk btree, first time before triggering the chunk
3587  * allocation and the second time during chunk allocation while attempting to
3588  * update the chunks btree). The system chunk array is also updated while holding
3589  * that mutex. The same logic applies to removing chunks - we must reserve system
3590  * space, update the chunk btree and the system chunk array in the superblock
3591  * while holding fs_info->chunk_mutex.
3592  *
3593  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3594  *
3595  * If @force is CHUNK_ALLOC_FORCE:
3596  *    - return 1 if it successfully allocates a chunk,
3597  *    - return errors including -ENOSPC otherwise.
3598  * If @force is NOT CHUNK_ALLOC_FORCE:
3599  *    - return 0 if it doesn't need to allocate a new chunk,
3600  *    - return 1 if it successfully allocates a chunk,
3601  *    - return errors including -ENOSPC otherwise.
3602  */
3603 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3604 		      enum btrfs_chunk_alloc_enum force)
3605 {
3606 	struct btrfs_fs_info *fs_info = trans->fs_info;
3607 	struct btrfs_space_info *space_info;
3608 	bool wait_for_alloc = false;
3609 	bool should_alloc = false;
3610 	int ret = 0;
3611 
3612 	/* Don't re-enter if we're already allocating a chunk */
3613 	if (trans->allocating_chunk)
3614 		return -ENOSPC;
3615 	/*
3616 	 * Allocation of system chunks can not happen through this path, as we
3617 	 * could end up in a deadlock if we are allocating a data or metadata
3618 	 * chunk and there is another task modifying the chunk btree.
3619 	 *
3620 	 * This is because while we are holding the chunk mutex, we will attempt
3621 	 * to add the new chunk item to the chunk btree or update an existing
3622 	 * device item in the chunk btree, while the other task that is modifying
3623 	 * the chunk btree is attempting to COW an extent buffer while holding a
3624 	 * lock on it and on its parent - if the COW operation triggers a system
3625 	 * chunk allocation, then we can deadlock because we are holding the
3626 	 * chunk mutex and we may need to access that extent buffer or its parent
3627 	 * in order to add the chunk item or update a device item.
3628 	 *
3629 	 * Tasks that want to modify the chunk tree should reserve system space
3630 	 * before updating the chunk btree, by calling either
3631 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3632 	 * It's possible that after a task reserves the space, it still ends up
3633 	 * here - this happens in the cases described above at do_chunk_alloc().
3634 	 * The task will have to either retry or fail.
3635 	 */
3636 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3637 		return -ENOSPC;
3638 
3639 	space_info = btrfs_find_space_info(fs_info, flags);
3640 	ASSERT(space_info);
3641 
3642 	do {
3643 		spin_lock(&space_info->lock);
3644 		if (force < space_info->force_alloc)
3645 			force = space_info->force_alloc;
3646 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3647 		if (space_info->full) {
3648 			/* No more free physical space */
3649 			if (should_alloc)
3650 				ret = -ENOSPC;
3651 			else
3652 				ret = 0;
3653 			spin_unlock(&space_info->lock);
3654 			return ret;
3655 		} else if (!should_alloc) {
3656 			spin_unlock(&space_info->lock);
3657 			return 0;
3658 		} else if (space_info->chunk_alloc) {
3659 			/*
3660 			 * Someone is already allocating, so we need to block
3661 			 * until this someone is finished and then loop to
3662 			 * recheck if we should continue with our allocation
3663 			 * attempt.
3664 			 */
3665 			wait_for_alloc = true;
3666 			spin_unlock(&space_info->lock);
3667 			mutex_lock(&fs_info->chunk_mutex);
3668 			mutex_unlock(&fs_info->chunk_mutex);
3669 		} else {
3670 			/* Proceed with allocation */
3671 			space_info->chunk_alloc = 1;
3672 			wait_for_alloc = false;
3673 			spin_unlock(&space_info->lock);
3674 		}
3675 
3676 		cond_resched();
3677 	} while (wait_for_alloc);
3678 
3679 	mutex_lock(&fs_info->chunk_mutex);
3680 	trans->allocating_chunk = true;
3681 
3682 	/*
3683 	 * If we have mixed data/metadata chunks we want to make sure we keep
3684 	 * allocating mixed chunks instead of individual chunks.
3685 	 */
3686 	if (btrfs_mixed_space_info(space_info))
3687 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3688 
3689 	/*
3690 	 * if we're doing a data chunk, go ahead and make sure that
3691 	 * we keep a reasonable number of metadata chunks allocated in the
3692 	 * FS as well.
3693 	 */
3694 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3695 		fs_info->data_chunk_allocations++;
3696 		if (!(fs_info->data_chunk_allocations %
3697 		      fs_info->metadata_ratio))
3698 			force_metadata_allocation(fs_info);
3699 	}
3700 
3701 	ret = do_chunk_alloc(trans, flags);
3702 	trans->allocating_chunk = false;
3703 
3704 	spin_lock(&space_info->lock);
3705 	if (ret < 0) {
3706 		if (ret == -ENOSPC)
3707 			space_info->full = 1;
3708 		else
3709 			goto out;
3710 	} else {
3711 		ret = 1;
3712 		space_info->max_extent_size = 0;
3713 	}
3714 
3715 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3716 out:
3717 	space_info->chunk_alloc = 0;
3718 	spin_unlock(&space_info->lock);
3719 	mutex_unlock(&fs_info->chunk_mutex);
3720 
3721 	return ret;
3722 }
3723 
3724 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3725 {
3726 	u64 num_dev;
3727 
3728 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3729 	if (!num_dev)
3730 		num_dev = fs_info->fs_devices->rw_devices;
3731 
3732 	return num_dev;
3733 }
3734 
3735 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3736 				u64 bytes,
3737 				u64 type)
3738 {
3739 	struct btrfs_fs_info *fs_info = trans->fs_info;
3740 	struct btrfs_space_info *info;
3741 	u64 left;
3742 	int ret = 0;
3743 
3744 	/*
3745 	 * Needed because we can end up allocating a system chunk and for an
3746 	 * atomic and race free space reservation in the chunk block reserve.
3747 	 */
3748 	lockdep_assert_held(&fs_info->chunk_mutex);
3749 
3750 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3751 	spin_lock(&info->lock);
3752 	left = info->total_bytes - btrfs_space_info_used(info, true);
3753 	spin_unlock(&info->lock);
3754 
3755 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3756 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3757 			   left, bytes, type);
3758 		btrfs_dump_space_info(fs_info, info, 0, 0);
3759 	}
3760 
3761 	if (left < bytes) {
3762 		u64 flags = btrfs_system_alloc_profile(fs_info);
3763 		struct btrfs_block_group *bg;
3764 
3765 		/*
3766 		 * Ignore failure to create system chunk. We might end up not
3767 		 * needing it, as we might not need to COW all nodes/leafs from
3768 		 * the paths we visit in the chunk tree (they were already COWed
3769 		 * or created in the current transaction for example).
3770 		 */
3771 		bg = btrfs_create_chunk(trans, flags);
3772 		if (IS_ERR(bg)) {
3773 			ret = PTR_ERR(bg);
3774 		} else {
3775 			/*
3776 			 * If we fail to add the chunk item here, we end up
3777 			 * trying again at phase 2 of chunk allocation, at
3778 			 * btrfs_create_pending_block_groups(). So ignore
3779 			 * any error here. An ENOSPC here could happen, due to
3780 			 * the cases described at do_chunk_alloc() - the system
3781 			 * block group we just created was just turned into RO
3782 			 * mode by a scrub for example, or a running discard
3783 			 * temporarily removed its free space entries, etc.
3784 			 */
3785 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3786 		}
3787 	}
3788 
3789 	if (!ret) {
3790 		ret = btrfs_block_rsv_add(fs_info,
3791 					  &fs_info->chunk_block_rsv,
3792 					  bytes, BTRFS_RESERVE_NO_FLUSH);
3793 		if (!ret)
3794 			trans->chunk_bytes_reserved += bytes;
3795 	}
3796 }
3797 
3798 /*
3799  * Reserve space in the system space for allocating or removing a chunk.
3800  * The caller must be holding fs_info->chunk_mutex.
3801  */
3802 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3803 {
3804 	struct btrfs_fs_info *fs_info = trans->fs_info;
3805 	const u64 num_devs = get_profile_num_devs(fs_info, type);
3806 	u64 bytes;
3807 
3808 	/* num_devs device items to update and 1 chunk item to add or remove. */
3809 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3810 		btrfs_calc_insert_metadata_size(fs_info, 1);
3811 
3812 	reserve_chunk_space(trans, bytes, type);
3813 }
3814 
3815 /*
3816  * Reserve space in the system space, if needed, for doing a modification to the
3817  * chunk btree.
3818  *
3819  * @trans:		A transaction handle.
3820  * @is_item_insertion:	Indicate if the modification is for inserting a new item
3821  *			in the chunk btree or if it's for the deletion or update
3822  *			of an existing item.
3823  *
3824  * This is used in a context where we need to update the chunk btree outside
3825  * block group allocation and removal, to avoid a deadlock with a concurrent
3826  * task that is allocating a metadata or data block group and therefore needs to
3827  * update the chunk btree while holding the chunk mutex. After the update to the
3828  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3829  *
3830  */
3831 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3832 				  bool is_item_insertion)
3833 {
3834 	struct btrfs_fs_info *fs_info = trans->fs_info;
3835 	u64 bytes;
3836 
3837 	if (is_item_insertion)
3838 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3839 	else
3840 		bytes = btrfs_calc_metadata_size(fs_info, 1);
3841 
3842 	mutex_lock(&fs_info->chunk_mutex);
3843 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3844 	mutex_unlock(&fs_info->chunk_mutex);
3845 }
3846 
3847 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3848 {
3849 	struct btrfs_block_group *block_group;
3850 	u64 last = 0;
3851 
3852 	while (1) {
3853 		struct inode *inode;
3854 
3855 		block_group = btrfs_lookup_first_block_group(info, last);
3856 		while (block_group) {
3857 			btrfs_wait_block_group_cache_done(block_group);
3858 			spin_lock(&block_group->lock);
3859 			if (block_group->iref)
3860 				break;
3861 			spin_unlock(&block_group->lock);
3862 			block_group = btrfs_next_block_group(block_group);
3863 		}
3864 		if (!block_group) {
3865 			if (last == 0)
3866 				break;
3867 			last = 0;
3868 			continue;
3869 		}
3870 
3871 		inode = block_group->inode;
3872 		block_group->iref = 0;
3873 		block_group->inode = NULL;
3874 		spin_unlock(&block_group->lock);
3875 		ASSERT(block_group->io_ctl.inode == NULL);
3876 		iput(inode);
3877 		last = block_group->start + block_group->length;
3878 		btrfs_put_block_group(block_group);
3879 	}
3880 }
3881 
3882 /*
3883  * Must be called only after stopping all workers, since we could have block
3884  * group caching kthreads running, and therefore they could race with us if we
3885  * freed the block groups before stopping them.
3886  */
3887 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3888 {
3889 	struct btrfs_block_group *block_group;
3890 	struct btrfs_space_info *space_info;
3891 	struct btrfs_caching_control *caching_ctl;
3892 	struct rb_node *n;
3893 
3894 	spin_lock(&info->block_group_cache_lock);
3895 	while (!list_empty(&info->caching_block_groups)) {
3896 		caching_ctl = list_entry(info->caching_block_groups.next,
3897 					 struct btrfs_caching_control, list);
3898 		list_del(&caching_ctl->list);
3899 		btrfs_put_caching_control(caching_ctl);
3900 	}
3901 	spin_unlock(&info->block_group_cache_lock);
3902 
3903 	spin_lock(&info->unused_bgs_lock);
3904 	while (!list_empty(&info->unused_bgs)) {
3905 		block_group = list_first_entry(&info->unused_bgs,
3906 					       struct btrfs_block_group,
3907 					       bg_list);
3908 		list_del_init(&block_group->bg_list);
3909 		btrfs_put_block_group(block_group);
3910 	}
3911 
3912 	while (!list_empty(&info->reclaim_bgs)) {
3913 		block_group = list_first_entry(&info->reclaim_bgs,
3914 					       struct btrfs_block_group,
3915 					       bg_list);
3916 		list_del_init(&block_group->bg_list);
3917 		btrfs_put_block_group(block_group);
3918 	}
3919 	spin_unlock(&info->unused_bgs_lock);
3920 
3921 	spin_lock(&info->zone_active_bgs_lock);
3922 	while (!list_empty(&info->zone_active_bgs)) {
3923 		block_group = list_first_entry(&info->zone_active_bgs,
3924 					       struct btrfs_block_group,
3925 					       active_bg_list);
3926 		list_del_init(&block_group->active_bg_list);
3927 		btrfs_put_block_group(block_group);
3928 	}
3929 	spin_unlock(&info->zone_active_bgs_lock);
3930 
3931 	spin_lock(&info->block_group_cache_lock);
3932 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3933 		block_group = rb_entry(n, struct btrfs_block_group,
3934 				       cache_node);
3935 		rb_erase(&block_group->cache_node,
3936 			 &info->block_group_cache_tree);
3937 		RB_CLEAR_NODE(&block_group->cache_node);
3938 		spin_unlock(&info->block_group_cache_lock);
3939 
3940 		down_write(&block_group->space_info->groups_sem);
3941 		list_del(&block_group->list);
3942 		up_write(&block_group->space_info->groups_sem);
3943 
3944 		/*
3945 		 * We haven't cached this block group, which means we could
3946 		 * possibly have excluded extents on this block group.
3947 		 */
3948 		if (block_group->cached == BTRFS_CACHE_NO ||
3949 		    block_group->cached == BTRFS_CACHE_ERROR)
3950 			btrfs_free_excluded_extents(block_group);
3951 
3952 		btrfs_remove_free_space_cache(block_group);
3953 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3954 		ASSERT(list_empty(&block_group->dirty_list));
3955 		ASSERT(list_empty(&block_group->io_list));
3956 		ASSERT(list_empty(&block_group->bg_list));
3957 		ASSERT(refcount_read(&block_group->refs) == 1);
3958 		ASSERT(block_group->swap_extents == 0);
3959 		btrfs_put_block_group(block_group);
3960 
3961 		spin_lock(&info->block_group_cache_lock);
3962 	}
3963 	spin_unlock(&info->block_group_cache_lock);
3964 
3965 	btrfs_release_global_block_rsv(info);
3966 
3967 	while (!list_empty(&info->space_info)) {
3968 		space_info = list_entry(info->space_info.next,
3969 					struct btrfs_space_info,
3970 					list);
3971 
3972 		/*
3973 		 * Do not hide this behind enospc_debug, this is actually
3974 		 * important and indicates a real bug if this happens.
3975 		 */
3976 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3977 			    space_info->bytes_reserved > 0 ||
3978 			    space_info->bytes_may_use > 0))
3979 			btrfs_dump_space_info(info, space_info, 0, 0);
3980 		WARN_ON(space_info->reclaim_size > 0);
3981 		list_del(&space_info->list);
3982 		btrfs_sysfs_remove_space_info(space_info);
3983 	}
3984 	return 0;
3985 }
3986 
3987 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3988 {
3989 	atomic_inc(&cache->frozen);
3990 }
3991 
3992 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3993 {
3994 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3995 	struct extent_map_tree *em_tree;
3996 	struct extent_map *em;
3997 	bool cleanup;
3998 
3999 	spin_lock(&block_group->lock);
4000 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4001 		   block_group->removed);
4002 	spin_unlock(&block_group->lock);
4003 
4004 	if (cleanup) {
4005 		em_tree = &fs_info->mapping_tree;
4006 		write_lock(&em_tree->lock);
4007 		em = lookup_extent_mapping(em_tree, block_group->start,
4008 					   1);
4009 		BUG_ON(!em); /* logic error, can't happen */
4010 		remove_extent_mapping(em_tree, em);
4011 		write_unlock(&em_tree->lock);
4012 
4013 		/* once for us and once for the tree */
4014 		free_extent_map(em);
4015 		free_extent_map(em);
4016 
4017 		/*
4018 		 * We may have left one free space entry and other possible
4019 		 * tasks trimming this block group have left 1 entry each one.
4020 		 * Free them if any.
4021 		 */
4022 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
4023 	}
4024 }
4025 
4026 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4027 {
4028 	bool ret = true;
4029 
4030 	spin_lock(&bg->lock);
4031 	if (bg->ro)
4032 		ret = false;
4033 	else
4034 		bg->swap_extents++;
4035 	spin_unlock(&bg->lock);
4036 
4037 	return ret;
4038 }
4039 
4040 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4041 {
4042 	spin_lock(&bg->lock);
4043 	ASSERT(!bg->ro);
4044 	ASSERT(bg->swap_extents >= amount);
4045 	bg->swap_extents -= amount;
4046 	spin_unlock(&bg->lock);
4047 }
4048