1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/list_sort.h> 4 #include "misc.h" 5 #include "ctree.h" 6 #include "block-group.h" 7 #include "space-info.h" 8 #include "disk-io.h" 9 #include "free-space-cache.h" 10 #include "free-space-tree.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 #include "discard.h" 18 #include "raid56.h" 19 #include "zoned.h" 20 21 /* 22 * Return target flags in extended format or 0 if restripe for this chunk_type 23 * is not in progress 24 * 25 * Should be called with balance_lock held 26 */ 27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 28 { 29 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 30 u64 target = 0; 31 32 if (!bctl) 33 return 0; 34 35 if (flags & BTRFS_BLOCK_GROUP_DATA && 36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 44 } 45 46 return target; 47 } 48 49 /* 50 * @flags: available profiles in extended format (see ctree.h) 51 * 52 * Return reduced profile in chunk format. If profile changing is in progress 53 * (either running or paused) picks the target profile (if it's already 54 * available), otherwise falls back to plain reducing. 55 */ 56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 57 { 58 u64 num_devices = fs_info->fs_devices->rw_devices; 59 u64 target; 60 u64 raid_type; 61 u64 allowed = 0; 62 63 /* 64 * See if restripe for this chunk_type is in progress, if so try to 65 * reduce to the target profile 66 */ 67 spin_lock(&fs_info->balance_lock); 68 target = get_restripe_target(fs_info, flags); 69 if (target) { 70 spin_unlock(&fs_info->balance_lock); 71 return extended_to_chunk(target); 72 } 73 spin_unlock(&fs_info->balance_lock); 74 75 /* First, mask out the RAID levels which aren't possible */ 76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 77 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 78 allowed |= btrfs_raid_array[raid_type].bg_flag; 79 } 80 allowed &= flags; 81 82 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 83 allowed = BTRFS_BLOCK_GROUP_RAID6; 84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 85 allowed = BTRFS_BLOCK_GROUP_RAID5; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 87 allowed = BTRFS_BLOCK_GROUP_RAID10; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 89 allowed = BTRFS_BLOCK_GROUP_RAID1; 90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 91 allowed = BTRFS_BLOCK_GROUP_RAID0; 92 93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 94 95 return extended_to_chunk(flags | allowed); 96 } 97 98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 99 { 100 unsigned seq; 101 u64 flags; 102 103 do { 104 flags = orig_flags; 105 seq = read_seqbegin(&fs_info->profiles_lock); 106 107 if (flags & BTRFS_BLOCK_GROUP_DATA) 108 flags |= fs_info->avail_data_alloc_bits; 109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 110 flags |= fs_info->avail_system_alloc_bits; 111 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 112 flags |= fs_info->avail_metadata_alloc_bits; 113 } while (read_seqretry(&fs_info->profiles_lock, seq)); 114 115 return btrfs_reduce_alloc_profile(fs_info, flags); 116 } 117 118 void btrfs_get_block_group(struct btrfs_block_group *cache) 119 { 120 refcount_inc(&cache->refs); 121 } 122 123 void btrfs_put_block_group(struct btrfs_block_group *cache) 124 { 125 if (refcount_dec_and_test(&cache->refs)) { 126 WARN_ON(cache->pinned > 0); 127 WARN_ON(cache->reserved > 0); 128 129 /* 130 * A block_group shouldn't be on the discard_list anymore. 131 * Remove the block_group from the discard_list to prevent us 132 * from causing a panic due to NULL pointer dereference. 133 */ 134 if (WARN_ON(!list_empty(&cache->discard_list))) 135 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 136 cache); 137 138 /* 139 * If not empty, someone is still holding mutex of 140 * full_stripe_lock, which can only be released by caller. 141 * And it will definitely cause use-after-free when caller 142 * tries to release full stripe lock. 143 * 144 * No better way to resolve, but only to warn. 145 */ 146 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 147 kfree(cache->free_space_ctl); 148 kfree(cache->physical_map); 149 kfree(cache); 150 } 151 } 152 153 /* 154 * This adds the block group to the fs_info rb tree for the block group cache 155 */ 156 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 157 struct btrfs_block_group *block_group) 158 { 159 struct rb_node **p; 160 struct rb_node *parent = NULL; 161 struct btrfs_block_group *cache; 162 163 ASSERT(block_group->length != 0); 164 165 spin_lock(&info->block_group_cache_lock); 166 p = &info->block_group_cache_tree.rb_node; 167 168 while (*p) { 169 parent = *p; 170 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 171 if (block_group->start < cache->start) { 172 p = &(*p)->rb_left; 173 } else if (block_group->start > cache->start) { 174 p = &(*p)->rb_right; 175 } else { 176 spin_unlock(&info->block_group_cache_lock); 177 return -EEXIST; 178 } 179 } 180 181 rb_link_node(&block_group->cache_node, parent, p); 182 rb_insert_color(&block_group->cache_node, 183 &info->block_group_cache_tree); 184 185 if (info->first_logical_byte > block_group->start) 186 info->first_logical_byte = block_group->start; 187 188 spin_unlock(&info->block_group_cache_lock); 189 190 return 0; 191 } 192 193 /* 194 * This will return the block group at or after bytenr if contains is 0, else 195 * it will return the block group that contains the bytenr 196 */ 197 static struct btrfs_block_group *block_group_cache_tree_search( 198 struct btrfs_fs_info *info, u64 bytenr, int contains) 199 { 200 struct btrfs_block_group *cache, *ret = NULL; 201 struct rb_node *n; 202 u64 end, start; 203 204 spin_lock(&info->block_group_cache_lock); 205 n = info->block_group_cache_tree.rb_node; 206 207 while (n) { 208 cache = rb_entry(n, struct btrfs_block_group, cache_node); 209 end = cache->start + cache->length - 1; 210 start = cache->start; 211 212 if (bytenr < start) { 213 if (!contains && (!ret || start < ret->start)) 214 ret = cache; 215 n = n->rb_left; 216 } else if (bytenr > start) { 217 if (contains && bytenr <= end) { 218 ret = cache; 219 break; 220 } 221 n = n->rb_right; 222 } else { 223 ret = cache; 224 break; 225 } 226 } 227 if (ret) { 228 btrfs_get_block_group(ret); 229 if (bytenr == 0 && info->first_logical_byte > ret->start) 230 info->first_logical_byte = ret->start; 231 } 232 spin_unlock(&info->block_group_cache_lock); 233 234 return ret; 235 } 236 237 /* 238 * Return the block group that starts at or after bytenr 239 */ 240 struct btrfs_block_group *btrfs_lookup_first_block_group( 241 struct btrfs_fs_info *info, u64 bytenr) 242 { 243 return block_group_cache_tree_search(info, bytenr, 0); 244 } 245 246 /* 247 * Return the block group that contains the given bytenr 248 */ 249 struct btrfs_block_group *btrfs_lookup_block_group( 250 struct btrfs_fs_info *info, u64 bytenr) 251 { 252 return block_group_cache_tree_search(info, bytenr, 1); 253 } 254 255 struct btrfs_block_group *btrfs_next_block_group( 256 struct btrfs_block_group *cache) 257 { 258 struct btrfs_fs_info *fs_info = cache->fs_info; 259 struct rb_node *node; 260 261 spin_lock(&fs_info->block_group_cache_lock); 262 263 /* If our block group was removed, we need a full search. */ 264 if (RB_EMPTY_NODE(&cache->cache_node)) { 265 const u64 next_bytenr = cache->start + cache->length; 266 267 spin_unlock(&fs_info->block_group_cache_lock); 268 btrfs_put_block_group(cache); 269 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 270 } 271 node = rb_next(&cache->cache_node); 272 btrfs_put_block_group(cache); 273 if (node) { 274 cache = rb_entry(node, struct btrfs_block_group, cache_node); 275 btrfs_get_block_group(cache); 276 } else 277 cache = NULL; 278 spin_unlock(&fs_info->block_group_cache_lock); 279 return cache; 280 } 281 282 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 283 { 284 struct btrfs_block_group *bg; 285 bool ret = true; 286 287 bg = btrfs_lookup_block_group(fs_info, bytenr); 288 if (!bg) 289 return false; 290 291 spin_lock(&bg->lock); 292 if (bg->ro) 293 ret = false; 294 else 295 atomic_inc(&bg->nocow_writers); 296 spin_unlock(&bg->lock); 297 298 /* No put on block group, done by btrfs_dec_nocow_writers */ 299 if (!ret) 300 btrfs_put_block_group(bg); 301 302 return ret; 303 } 304 305 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 306 { 307 struct btrfs_block_group *bg; 308 309 bg = btrfs_lookup_block_group(fs_info, bytenr); 310 ASSERT(bg); 311 if (atomic_dec_and_test(&bg->nocow_writers)) 312 wake_up_var(&bg->nocow_writers); 313 /* 314 * Once for our lookup and once for the lookup done by a previous call 315 * to btrfs_inc_nocow_writers() 316 */ 317 btrfs_put_block_group(bg); 318 btrfs_put_block_group(bg); 319 } 320 321 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 322 { 323 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 324 } 325 326 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 327 const u64 start) 328 { 329 struct btrfs_block_group *bg; 330 331 bg = btrfs_lookup_block_group(fs_info, start); 332 ASSERT(bg); 333 if (atomic_dec_and_test(&bg->reservations)) 334 wake_up_var(&bg->reservations); 335 btrfs_put_block_group(bg); 336 } 337 338 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 339 { 340 struct btrfs_space_info *space_info = bg->space_info; 341 342 ASSERT(bg->ro); 343 344 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 345 return; 346 347 /* 348 * Our block group is read only but before we set it to read only, 349 * some task might have had allocated an extent from it already, but it 350 * has not yet created a respective ordered extent (and added it to a 351 * root's list of ordered extents). 352 * Therefore wait for any task currently allocating extents, since the 353 * block group's reservations counter is incremented while a read lock 354 * on the groups' semaphore is held and decremented after releasing 355 * the read access on that semaphore and creating the ordered extent. 356 */ 357 down_write(&space_info->groups_sem); 358 up_write(&space_info->groups_sem); 359 360 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 361 } 362 363 struct btrfs_caching_control *btrfs_get_caching_control( 364 struct btrfs_block_group *cache) 365 { 366 struct btrfs_caching_control *ctl; 367 368 spin_lock(&cache->lock); 369 if (!cache->caching_ctl) { 370 spin_unlock(&cache->lock); 371 return NULL; 372 } 373 374 ctl = cache->caching_ctl; 375 refcount_inc(&ctl->count); 376 spin_unlock(&cache->lock); 377 return ctl; 378 } 379 380 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 381 { 382 if (refcount_dec_and_test(&ctl->count)) 383 kfree(ctl); 384 } 385 386 /* 387 * When we wait for progress in the block group caching, its because our 388 * allocation attempt failed at least once. So, we must sleep and let some 389 * progress happen before we try again. 390 * 391 * This function will sleep at least once waiting for new free space to show 392 * up, and then it will check the block group free space numbers for our min 393 * num_bytes. Another option is to have it go ahead and look in the rbtree for 394 * a free extent of a given size, but this is a good start. 395 * 396 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 397 * any of the information in this block group. 398 */ 399 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 400 u64 num_bytes) 401 { 402 struct btrfs_caching_control *caching_ctl; 403 404 caching_ctl = btrfs_get_caching_control(cache); 405 if (!caching_ctl) 406 return; 407 408 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 409 (cache->free_space_ctl->free_space >= num_bytes)); 410 411 btrfs_put_caching_control(caching_ctl); 412 } 413 414 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 415 { 416 struct btrfs_caching_control *caching_ctl; 417 int ret = 0; 418 419 caching_ctl = btrfs_get_caching_control(cache); 420 if (!caching_ctl) 421 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 422 423 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 424 if (cache->cached == BTRFS_CACHE_ERROR) 425 ret = -EIO; 426 btrfs_put_caching_control(caching_ctl); 427 return ret; 428 } 429 430 static bool space_cache_v1_done(struct btrfs_block_group *cache) 431 { 432 bool ret; 433 434 spin_lock(&cache->lock); 435 ret = cache->cached != BTRFS_CACHE_FAST; 436 spin_unlock(&cache->lock); 437 438 return ret; 439 } 440 441 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache, 442 struct btrfs_caching_control *caching_ctl) 443 { 444 wait_event(caching_ctl->wait, space_cache_v1_done(cache)); 445 } 446 447 #ifdef CONFIG_BTRFS_DEBUG 448 static void fragment_free_space(struct btrfs_block_group *block_group) 449 { 450 struct btrfs_fs_info *fs_info = block_group->fs_info; 451 u64 start = block_group->start; 452 u64 len = block_group->length; 453 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 454 fs_info->nodesize : fs_info->sectorsize; 455 u64 step = chunk << 1; 456 457 while (len > chunk) { 458 btrfs_remove_free_space(block_group, start, chunk); 459 start += step; 460 if (len < step) 461 len = 0; 462 else 463 len -= step; 464 } 465 } 466 #endif 467 468 /* 469 * This is only called by btrfs_cache_block_group, since we could have freed 470 * extents we need to check the pinned_extents for any extents that can't be 471 * used yet since their free space will be released as soon as the transaction 472 * commits. 473 */ 474 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 475 { 476 struct btrfs_fs_info *info = block_group->fs_info; 477 u64 extent_start, extent_end, size, total_added = 0; 478 int ret; 479 480 while (start < end) { 481 ret = find_first_extent_bit(&info->excluded_extents, start, 482 &extent_start, &extent_end, 483 EXTENT_DIRTY | EXTENT_UPTODATE, 484 NULL); 485 if (ret) 486 break; 487 488 if (extent_start <= start) { 489 start = extent_end + 1; 490 } else if (extent_start > start && extent_start < end) { 491 size = extent_start - start; 492 total_added += size; 493 ret = btrfs_add_free_space_async_trimmed(block_group, 494 start, size); 495 BUG_ON(ret); /* -ENOMEM or logic error */ 496 start = extent_end + 1; 497 } else { 498 break; 499 } 500 } 501 502 if (start < end) { 503 size = end - start; 504 total_added += size; 505 ret = btrfs_add_free_space_async_trimmed(block_group, start, 506 size); 507 BUG_ON(ret); /* -ENOMEM or logic error */ 508 } 509 510 return total_added; 511 } 512 513 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 514 { 515 struct btrfs_block_group *block_group = caching_ctl->block_group; 516 struct btrfs_fs_info *fs_info = block_group->fs_info; 517 struct btrfs_root *extent_root; 518 struct btrfs_path *path; 519 struct extent_buffer *leaf; 520 struct btrfs_key key; 521 u64 total_found = 0; 522 u64 last = 0; 523 u32 nritems; 524 int ret; 525 bool wakeup = true; 526 527 path = btrfs_alloc_path(); 528 if (!path) 529 return -ENOMEM; 530 531 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 532 extent_root = btrfs_extent_root(fs_info, last); 533 534 #ifdef CONFIG_BTRFS_DEBUG 535 /* 536 * If we're fragmenting we don't want to make anybody think we can 537 * allocate from this block group until we've had a chance to fragment 538 * the free space. 539 */ 540 if (btrfs_should_fragment_free_space(block_group)) 541 wakeup = false; 542 #endif 543 /* 544 * We don't want to deadlock with somebody trying to allocate a new 545 * extent for the extent root while also trying to search the extent 546 * root to add free space. So we skip locking and search the commit 547 * root, since its read-only 548 */ 549 path->skip_locking = 1; 550 path->search_commit_root = 1; 551 path->reada = READA_FORWARD; 552 553 key.objectid = last; 554 key.offset = 0; 555 key.type = BTRFS_EXTENT_ITEM_KEY; 556 557 next: 558 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 559 if (ret < 0) 560 goto out; 561 562 leaf = path->nodes[0]; 563 nritems = btrfs_header_nritems(leaf); 564 565 while (1) { 566 if (btrfs_fs_closing(fs_info) > 1) { 567 last = (u64)-1; 568 break; 569 } 570 571 if (path->slots[0] < nritems) { 572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 573 } else { 574 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 575 if (ret) 576 break; 577 578 if (need_resched() || 579 rwsem_is_contended(&fs_info->commit_root_sem)) { 580 if (wakeup) 581 caching_ctl->progress = last; 582 btrfs_release_path(path); 583 up_read(&fs_info->commit_root_sem); 584 mutex_unlock(&caching_ctl->mutex); 585 cond_resched(); 586 mutex_lock(&caching_ctl->mutex); 587 down_read(&fs_info->commit_root_sem); 588 goto next; 589 } 590 591 ret = btrfs_next_leaf(extent_root, path); 592 if (ret < 0) 593 goto out; 594 if (ret) 595 break; 596 leaf = path->nodes[0]; 597 nritems = btrfs_header_nritems(leaf); 598 continue; 599 } 600 601 if (key.objectid < last) { 602 key.objectid = last; 603 key.offset = 0; 604 key.type = BTRFS_EXTENT_ITEM_KEY; 605 606 if (wakeup) 607 caching_ctl->progress = last; 608 btrfs_release_path(path); 609 goto next; 610 } 611 612 if (key.objectid < block_group->start) { 613 path->slots[0]++; 614 continue; 615 } 616 617 if (key.objectid >= block_group->start + block_group->length) 618 break; 619 620 if (key.type == BTRFS_EXTENT_ITEM_KEY || 621 key.type == BTRFS_METADATA_ITEM_KEY) { 622 total_found += add_new_free_space(block_group, last, 623 key.objectid); 624 if (key.type == BTRFS_METADATA_ITEM_KEY) 625 last = key.objectid + 626 fs_info->nodesize; 627 else 628 last = key.objectid + key.offset; 629 630 if (total_found > CACHING_CTL_WAKE_UP) { 631 total_found = 0; 632 if (wakeup) 633 wake_up(&caching_ctl->wait); 634 } 635 } 636 path->slots[0]++; 637 } 638 ret = 0; 639 640 total_found += add_new_free_space(block_group, last, 641 block_group->start + block_group->length); 642 caching_ctl->progress = (u64)-1; 643 644 out: 645 btrfs_free_path(path); 646 return ret; 647 } 648 649 static noinline void caching_thread(struct btrfs_work *work) 650 { 651 struct btrfs_block_group *block_group; 652 struct btrfs_fs_info *fs_info; 653 struct btrfs_caching_control *caching_ctl; 654 int ret; 655 656 caching_ctl = container_of(work, struct btrfs_caching_control, work); 657 block_group = caching_ctl->block_group; 658 fs_info = block_group->fs_info; 659 660 mutex_lock(&caching_ctl->mutex); 661 down_read(&fs_info->commit_root_sem); 662 663 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 664 ret = load_free_space_cache(block_group); 665 if (ret == 1) { 666 ret = 0; 667 goto done; 668 } 669 670 /* 671 * We failed to load the space cache, set ourselves to 672 * CACHE_STARTED and carry on. 673 */ 674 spin_lock(&block_group->lock); 675 block_group->cached = BTRFS_CACHE_STARTED; 676 spin_unlock(&block_group->lock); 677 wake_up(&caching_ctl->wait); 678 } 679 680 /* 681 * If we are in the transaction that populated the free space tree we 682 * can't actually cache from the free space tree as our commit root and 683 * real root are the same, so we could change the contents of the blocks 684 * while caching. Instead do the slow caching in this case, and after 685 * the transaction has committed we will be safe. 686 */ 687 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 688 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 689 ret = load_free_space_tree(caching_ctl); 690 else 691 ret = load_extent_tree_free(caching_ctl); 692 done: 693 spin_lock(&block_group->lock); 694 block_group->caching_ctl = NULL; 695 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 696 spin_unlock(&block_group->lock); 697 698 #ifdef CONFIG_BTRFS_DEBUG 699 if (btrfs_should_fragment_free_space(block_group)) { 700 u64 bytes_used; 701 702 spin_lock(&block_group->space_info->lock); 703 spin_lock(&block_group->lock); 704 bytes_used = block_group->length - block_group->used; 705 block_group->space_info->bytes_used += bytes_used >> 1; 706 spin_unlock(&block_group->lock); 707 spin_unlock(&block_group->space_info->lock); 708 fragment_free_space(block_group); 709 } 710 #endif 711 712 caching_ctl->progress = (u64)-1; 713 714 up_read(&fs_info->commit_root_sem); 715 btrfs_free_excluded_extents(block_group); 716 mutex_unlock(&caching_ctl->mutex); 717 718 wake_up(&caching_ctl->wait); 719 720 btrfs_put_caching_control(caching_ctl); 721 btrfs_put_block_group(block_group); 722 } 723 724 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 725 { 726 DEFINE_WAIT(wait); 727 struct btrfs_fs_info *fs_info = cache->fs_info; 728 struct btrfs_caching_control *caching_ctl = NULL; 729 int ret = 0; 730 731 /* Allocator for zoned filesystems does not use the cache at all */ 732 if (btrfs_is_zoned(fs_info)) 733 return 0; 734 735 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 736 if (!caching_ctl) 737 return -ENOMEM; 738 739 INIT_LIST_HEAD(&caching_ctl->list); 740 mutex_init(&caching_ctl->mutex); 741 init_waitqueue_head(&caching_ctl->wait); 742 caching_ctl->block_group = cache; 743 caching_ctl->progress = cache->start; 744 refcount_set(&caching_ctl->count, 2); 745 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 746 747 spin_lock(&cache->lock); 748 if (cache->cached != BTRFS_CACHE_NO) { 749 kfree(caching_ctl); 750 751 caching_ctl = cache->caching_ctl; 752 if (caching_ctl) 753 refcount_inc(&caching_ctl->count); 754 spin_unlock(&cache->lock); 755 goto out; 756 } 757 WARN_ON(cache->caching_ctl); 758 cache->caching_ctl = caching_ctl; 759 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 760 cache->cached = BTRFS_CACHE_FAST; 761 else 762 cache->cached = BTRFS_CACHE_STARTED; 763 cache->has_caching_ctl = 1; 764 spin_unlock(&cache->lock); 765 766 spin_lock(&fs_info->block_group_cache_lock); 767 refcount_inc(&caching_ctl->count); 768 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 769 spin_unlock(&fs_info->block_group_cache_lock); 770 771 btrfs_get_block_group(cache); 772 773 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 774 out: 775 if (load_cache_only && caching_ctl) 776 btrfs_wait_space_cache_v1_finished(cache, caching_ctl); 777 if (caching_ctl) 778 btrfs_put_caching_control(caching_ctl); 779 780 return ret; 781 } 782 783 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 784 { 785 u64 extra_flags = chunk_to_extended(flags) & 786 BTRFS_EXTENDED_PROFILE_MASK; 787 788 write_seqlock(&fs_info->profiles_lock); 789 if (flags & BTRFS_BLOCK_GROUP_DATA) 790 fs_info->avail_data_alloc_bits &= ~extra_flags; 791 if (flags & BTRFS_BLOCK_GROUP_METADATA) 792 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 793 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 794 fs_info->avail_system_alloc_bits &= ~extra_flags; 795 write_sequnlock(&fs_info->profiles_lock); 796 } 797 798 /* 799 * Clear incompat bits for the following feature(s): 800 * 801 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 802 * in the whole filesystem 803 * 804 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 805 */ 806 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 807 { 808 bool found_raid56 = false; 809 bool found_raid1c34 = false; 810 811 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 812 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 813 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 814 struct list_head *head = &fs_info->space_info; 815 struct btrfs_space_info *sinfo; 816 817 list_for_each_entry_rcu(sinfo, head, list) { 818 down_read(&sinfo->groups_sem); 819 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 820 found_raid56 = true; 821 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 822 found_raid56 = true; 823 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 824 found_raid1c34 = true; 825 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 826 found_raid1c34 = true; 827 up_read(&sinfo->groups_sem); 828 } 829 if (!found_raid56) 830 btrfs_clear_fs_incompat(fs_info, RAID56); 831 if (!found_raid1c34) 832 btrfs_clear_fs_incompat(fs_info, RAID1C34); 833 } 834 } 835 836 static int remove_block_group_item(struct btrfs_trans_handle *trans, 837 struct btrfs_path *path, 838 struct btrfs_block_group *block_group) 839 { 840 struct btrfs_fs_info *fs_info = trans->fs_info; 841 struct btrfs_root *root; 842 struct btrfs_key key; 843 int ret; 844 845 root = btrfs_block_group_root(fs_info); 846 key.objectid = block_group->start; 847 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 848 key.offset = block_group->length; 849 850 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 851 if (ret > 0) 852 ret = -ENOENT; 853 if (ret < 0) 854 return ret; 855 856 ret = btrfs_del_item(trans, root, path); 857 return ret; 858 } 859 860 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 861 u64 group_start, struct extent_map *em) 862 { 863 struct btrfs_fs_info *fs_info = trans->fs_info; 864 struct btrfs_path *path; 865 struct btrfs_block_group *block_group; 866 struct btrfs_free_cluster *cluster; 867 struct inode *inode; 868 struct kobject *kobj = NULL; 869 int ret; 870 int index; 871 int factor; 872 struct btrfs_caching_control *caching_ctl = NULL; 873 bool remove_em; 874 bool remove_rsv = false; 875 876 block_group = btrfs_lookup_block_group(fs_info, group_start); 877 BUG_ON(!block_group); 878 BUG_ON(!block_group->ro); 879 880 trace_btrfs_remove_block_group(block_group); 881 /* 882 * Free the reserved super bytes from this block group before 883 * remove it. 884 */ 885 btrfs_free_excluded_extents(block_group); 886 btrfs_free_ref_tree_range(fs_info, block_group->start, 887 block_group->length); 888 889 index = btrfs_bg_flags_to_raid_index(block_group->flags); 890 factor = btrfs_bg_type_to_factor(block_group->flags); 891 892 /* make sure this block group isn't part of an allocation cluster */ 893 cluster = &fs_info->data_alloc_cluster; 894 spin_lock(&cluster->refill_lock); 895 btrfs_return_cluster_to_free_space(block_group, cluster); 896 spin_unlock(&cluster->refill_lock); 897 898 /* 899 * make sure this block group isn't part of a metadata 900 * allocation cluster 901 */ 902 cluster = &fs_info->meta_alloc_cluster; 903 spin_lock(&cluster->refill_lock); 904 btrfs_return_cluster_to_free_space(block_group, cluster); 905 spin_unlock(&cluster->refill_lock); 906 907 btrfs_clear_treelog_bg(block_group); 908 btrfs_clear_data_reloc_bg(block_group); 909 910 path = btrfs_alloc_path(); 911 if (!path) { 912 ret = -ENOMEM; 913 goto out; 914 } 915 916 /* 917 * get the inode first so any iput calls done for the io_list 918 * aren't the final iput (no unlinks allowed now) 919 */ 920 inode = lookup_free_space_inode(block_group, path); 921 922 mutex_lock(&trans->transaction->cache_write_mutex); 923 /* 924 * Make sure our free space cache IO is done before removing the 925 * free space inode 926 */ 927 spin_lock(&trans->transaction->dirty_bgs_lock); 928 if (!list_empty(&block_group->io_list)) { 929 list_del_init(&block_group->io_list); 930 931 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 932 933 spin_unlock(&trans->transaction->dirty_bgs_lock); 934 btrfs_wait_cache_io(trans, block_group, path); 935 btrfs_put_block_group(block_group); 936 spin_lock(&trans->transaction->dirty_bgs_lock); 937 } 938 939 if (!list_empty(&block_group->dirty_list)) { 940 list_del_init(&block_group->dirty_list); 941 remove_rsv = true; 942 btrfs_put_block_group(block_group); 943 } 944 spin_unlock(&trans->transaction->dirty_bgs_lock); 945 mutex_unlock(&trans->transaction->cache_write_mutex); 946 947 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 948 if (ret) 949 goto out; 950 951 spin_lock(&fs_info->block_group_cache_lock); 952 rb_erase(&block_group->cache_node, 953 &fs_info->block_group_cache_tree); 954 RB_CLEAR_NODE(&block_group->cache_node); 955 956 /* Once for the block groups rbtree */ 957 btrfs_put_block_group(block_group); 958 959 if (fs_info->first_logical_byte == block_group->start) 960 fs_info->first_logical_byte = (u64)-1; 961 spin_unlock(&fs_info->block_group_cache_lock); 962 963 down_write(&block_group->space_info->groups_sem); 964 /* 965 * we must use list_del_init so people can check to see if they 966 * are still on the list after taking the semaphore 967 */ 968 list_del_init(&block_group->list); 969 if (list_empty(&block_group->space_info->block_groups[index])) { 970 kobj = block_group->space_info->block_group_kobjs[index]; 971 block_group->space_info->block_group_kobjs[index] = NULL; 972 clear_avail_alloc_bits(fs_info, block_group->flags); 973 } 974 up_write(&block_group->space_info->groups_sem); 975 clear_incompat_bg_bits(fs_info, block_group->flags); 976 if (kobj) { 977 kobject_del(kobj); 978 kobject_put(kobj); 979 } 980 981 if (block_group->has_caching_ctl) 982 caching_ctl = btrfs_get_caching_control(block_group); 983 if (block_group->cached == BTRFS_CACHE_STARTED) 984 btrfs_wait_block_group_cache_done(block_group); 985 if (block_group->has_caching_ctl) { 986 spin_lock(&fs_info->block_group_cache_lock); 987 if (!caching_ctl) { 988 struct btrfs_caching_control *ctl; 989 990 list_for_each_entry(ctl, 991 &fs_info->caching_block_groups, list) 992 if (ctl->block_group == block_group) { 993 caching_ctl = ctl; 994 refcount_inc(&caching_ctl->count); 995 break; 996 } 997 } 998 if (caching_ctl) 999 list_del_init(&caching_ctl->list); 1000 spin_unlock(&fs_info->block_group_cache_lock); 1001 if (caching_ctl) { 1002 /* Once for the caching bgs list and once for us. */ 1003 btrfs_put_caching_control(caching_ctl); 1004 btrfs_put_caching_control(caching_ctl); 1005 } 1006 } 1007 1008 spin_lock(&trans->transaction->dirty_bgs_lock); 1009 WARN_ON(!list_empty(&block_group->dirty_list)); 1010 WARN_ON(!list_empty(&block_group->io_list)); 1011 spin_unlock(&trans->transaction->dirty_bgs_lock); 1012 1013 btrfs_remove_free_space_cache(block_group); 1014 1015 spin_lock(&block_group->space_info->lock); 1016 list_del_init(&block_group->ro_list); 1017 1018 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1019 WARN_ON(block_group->space_info->total_bytes 1020 < block_group->length); 1021 WARN_ON(block_group->space_info->bytes_readonly 1022 < block_group->length - block_group->zone_unusable); 1023 WARN_ON(block_group->space_info->bytes_zone_unusable 1024 < block_group->zone_unusable); 1025 WARN_ON(block_group->space_info->disk_total 1026 < block_group->length * factor); 1027 } 1028 block_group->space_info->total_bytes -= block_group->length; 1029 block_group->space_info->bytes_readonly -= 1030 (block_group->length - block_group->zone_unusable); 1031 block_group->space_info->bytes_zone_unusable -= 1032 block_group->zone_unusable; 1033 block_group->space_info->disk_total -= block_group->length * factor; 1034 1035 spin_unlock(&block_group->space_info->lock); 1036 1037 /* 1038 * Remove the free space for the block group from the free space tree 1039 * and the block group's item from the extent tree before marking the 1040 * block group as removed. This is to prevent races with tasks that 1041 * freeze and unfreeze a block group, this task and another task 1042 * allocating a new block group - the unfreeze task ends up removing 1043 * the block group's extent map before the task calling this function 1044 * deletes the block group item from the extent tree, allowing for 1045 * another task to attempt to create another block group with the same 1046 * item key (and failing with -EEXIST and a transaction abort). 1047 */ 1048 ret = remove_block_group_free_space(trans, block_group); 1049 if (ret) 1050 goto out; 1051 1052 ret = remove_block_group_item(trans, path, block_group); 1053 if (ret < 0) 1054 goto out; 1055 1056 spin_lock(&block_group->lock); 1057 block_group->removed = 1; 1058 /* 1059 * At this point trimming or scrub can't start on this block group, 1060 * because we removed the block group from the rbtree 1061 * fs_info->block_group_cache_tree so no one can't find it anymore and 1062 * even if someone already got this block group before we removed it 1063 * from the rbtree, they have already incremented block_group->frozen - 1064 * if they didn't, for the trimming case they won't find any free space 1065 * entries because we already removed them all when we called 1066 * btrfs_remove_free_space_cache(). 1067 * 1068 * And we must not remove the extent map from the fs_info->mapping_tree 1069 * to prevent the same logical address range and physical device space 1070 * ranges from being reused for a new block group. This is needed to 1071 * avoid races with trimming and scrub. 1072 * 1073 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1074 * completely transactionless, so while it is trimming a range the 1075 * currently running transaction might finish and a new one start, 1076 * allowing for new block groups to be created that can reuse the same 1077 * physical device locations unless we take this special care. 1078 * 1079 * There may also be an implicit trim operation if the file system 1080 * is mounted with -odiscard. The same protections must remain 1081 * in place until the extents have been discarded completely when 1082 * the transaction commit has completed. 1083 */ 1084 remove_em = (atomic_read(&block_group->frozen) == 0); 1085 spin_unlock(&block_group->lock); 1086 1087 if (remove_em) { 1088 struct extent_map_tree *em_tree; 1089 1090 em_tree = &fs_info->mapping_tree; 1091 write_lock(&em_tree->lock); 1092 remove_extent_mapping(em_tree, em); 1093 write_unlock(&em_tree->lock); 1094 /* once for the tree */ 1095 free_extent_map(em); 1096 } 1097 1098 out: 1099 /* Once for the lookup reference */ 1100 btrfs_put_block_group(block_group); 1101 if (remove_rsv) 1102 btrfs_delayed_refs_rsv_release(fs_info, 1); 1103 btrfs_free_path(path); 1104 return ret; 1105 } 1106 1107 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1108 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1109 { 1110 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1111 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1112 struct extent_map *em; 1113 struct map_lookup *map; 1114 unsigned int num_items; 1115 1116 read_lock(&em_tree->lock); 1117 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1118 read_unlock(&em_tree->lock); 1119 ASSERT(em && em->start == chunk_offset); 1120 1121 /* 1122 * We need to reserve 3 + N units from the metadata space info in order 1123 * to remove a block group (done at btrfs_remove_chunk() and at 1124 * btrfs_remove_block_group()), which are used for: 1125 * 1126 * 1 unit for adding the free space inode's orphan (located in the tree 1127 * of tree roots). 1128 * 1 unit for deleting the block group item (located in the extent 1129 * tree). 1130 * 1 unit for deleting the free space item (located in tree of tree 1131 * roots). 1132 * N units for deleting N device extent items corresponding to each 1133 * stripe (located in the device tree). 1134 * 1135 * In order to remove a block group we also need to reserve units in the 1136 * system space info in order to update the chunk tree (update one or 1137 * more device items and remove one chunk item), but this is done at 1138 * btrfs_remove_chunk() through a call to check_system_chunk(). 1139 */ 1140 map = em->map_lookup; 1141 num_items = 3 + map->num_stripes; 1142 free_extent_map(em); 1143 1144 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1145 } 1146 1147 /* 1148 * Mark block group @cache read-only, so later write won't happen to block 1149 * group @cache. 1150 * 1151 * If @force is not set, this function will only mark the block group readonly 1152 * if we have enough free space (1M) in other metadata/system block groups. 1153 * If @force is not set, this function will mark the block group readonly 1154 * without checking free space. 1155 * 1156 * NOTE: This function doesn't care if other block groups can contain all the 1157 * data in this block group. That check should be done by relocation routine, 1158 * not this function. 1159 */ 1160 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1161 { 1162 struct btrfs_space_info *sinfo = cache->space_info; 1163 u64 num_bytes; 1164 int ret = -ENOSPC; 1165 1166 spin_lock(&sinfo->lock); 1167 spin_lock(&cache->lock); 1168 1169 if (cache->swap_extents) { 1170 ret = -ETXTBSY; 1171 goto out; 1172 } 1173 1174 if (cache->ro) { 1175 cache->ro++; 1176 ret = 0; 1177 goto out; 1178 } 1179 1180 num_bytes = cache->length - cache->reserved - cache->pinned - 1181 cache->bytes_super - cache->zone_unusable - cache->used; 1182 1183 /* 1184 * Data never overcommits, even in mixed mode, so do just the straight 1185 * check of left over space in how much we have allocated. 1186 */ 1187 if (force) { 1188 ret = 0; 1189 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1190 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1191 1192 /* 1193 * Here we make sure if we mark this bg RO, we still have enough 1194 * free space as buffer. 1195 */ 1196 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1197 ret = 0; 1198 } else { 1199 /* 1200 * We overcommit metadata, so we need to do the 1201 * btrfs_can_overcommit check here, and we need to pass in 1202 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1203 * leeway to allow us to mark this block group as read only. 1204 */ 1205 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1206 BTRFS_RESERVE_NO_FLUSH)) 1207 ret = 0; 1208 } 1209 1210 if (!ret) { 1211 sinfo->bytes_readonly += num_bytes; 1212 if (btrfs_is_zoned(cache->fs_info)) { 1213 /* Migrate zone_unusable bytes to readonly */ 1214 sinfo->bytes_readonly += cache->zone_unusable; 1215 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1216 cache->zone_unusable = 0; 1217 } 1218 cache->ro++; 1219 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1220 } 1221 out: 1222 spin_unlock(&cache->lock); 1223 spin_unlock(&sinfo->lock); 1224 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1225 btrfs_info(cache->fs_info, 1226 "unable to make block group %llu ro", cache->start); 1227 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1228 } 1229 return ret; 1230 } 1231 1232 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1233 struct btrfs_block_group *bg) 1234 { 1235 struct btrfs_fs_info *fs_info = bg->fs_info; 1236 struct btrfs_transaction *prev_trans = NULL; 1237 const u64 start = bg->start; 1238 const u64 end = start + bg->length - 1; 1239 int ret; 1240 1241 spin_lock(&fs_info->trans_lock); 1242 if (trans->transaction->list.prev != &fs_info->trans_list) { 1243 prev_trans = list_last_entry(&trans->transaction->list, 1244 struct btrfs_transaction, list); 1245 refcount_inc(&prev_trans->use_count); 1246 } 1247 spin_unlock(&fs_info->trans_lock); 1248 1249 /* 1250 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1251 * btrfs_finish_extent_commit(). If we are at transaction N, another 1252 * task might be running finish_extent_commit() for the previous 1253 * transaction N - 1, and have seen a range belonging to the block 1254 * group in pinned_extents before we were able to clear the whole block 1255 * group range from pinned_extents. This means that task can lookup for 1256 * the block group after we unpinned it from pinned_extents and removed 1257 * it, leading to a BUG_ON() at unpin_extent_range(). 1258 */ 1259 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1260 if (prev_trans) { 1261 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1262 EXTENT_DIRTY); 1263 if (ret) 1264 goto out; 1265 } 1266 1267 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1268 EXTENT_DIRTY); 1269 out: 1270 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1271 if (prev_trans) 1272 btrfs_put_transaction(prev_trans); 1273 1274 return ret == 0; 1275 } 1276 1277 /* 1278 * Process the unused_bgs list and remove any that don't have any allocated 1279 * space inside of them. 1280 */ 1281 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1282 { 1283 struct btrfs_block_group *block_group; 1284 struct btrfs_space_info *space_info; 1285 struct btrfs_trans_handle *trans; 1286 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1287 int ret = 0; 1288 1289 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1290 return; 1291 1292 /* 1293 * Long running balances can keep us blocked here for eternity, so 1294 * simply skip deletion if we're unable to get the mutex. 1295 */ 1296 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1297 return; 1298 1299 spin_lock(&fs_info->unused_bgs_lock); 1300 while (!list_empty(&fs_info->unused_bgs)) { 1301 int trimming; 1302 1303 block_group = list_first_entry(&fs_info->unused_bgs, 1304 struct btrfs_block_group, 1305 bg_list); 1306 list_del_init(&block_group->bg_list); 1307 1308 space_info = block_group->space_info; 1309 1310 if (ret || btrfs_mixed_space_info(space_info)) { 1311 btrfs_put_block_group(block_group); 1312 continue; 1313 } 1314 spin_unlock(&fs_info->unused_bgs_lock); 1315 1316 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1317 1318 /* Don't want to race with allocators so take the groups_sem */ 1319 down_write(&space_info->groups_sem); 1320 1321 /* 1322 * Async discard moves the final block group discard to be prior 1323 * to the unused_bgs code path. Therefore, if it's not fully 1324 * trimmed, punt it back to the async discard lists. 1325 */ 1326 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1327 !btrfs_is_free_space_trimmed(block_group)) { 1328 trace_btrfs_skip_unused_block_group(block_group); 1329 up_write(&space_info->groups_sem); 1330 /* Requeue if we failed because of async discard */ 1331 btrfs_discard_queue_work(&fs_info->discard_ctl, 1332 block_group); 1333 goto next; 1334 } 1335 1336 spin_lock(&block_group->lock); 1337 if (block_group->reserved || block_group->pinned || 1338 block_group->used || block_group->ro || 1339 list_is_singular(&block_group->list)) { 1340 /* 1341 * We want to bail if we made new allocations or have 1342 * outstanding allocations in this block group. We do 1343 * the ro check in case balance is currently acting on 1344 * this block group. 1345 */ 1346 trace_btrfs_skip_unused_block_group(block_group); 1347 spin_unlock(&block_group->lock); 1348 up_write(&space_info->groups_sem); 1349 goto next; 1350 } 1351 spin_unlock(&block_group->lock); 1352 1353 /* We don't want to force the issue, only flip if it's ok. */ 1354 ret = inc_block_group_ro(block_group, 0); 1355 up_write(&space_info->groups_sem); 1356 if (ret < 0) { 1357 ret = 0; 1358 goto next; 1359 } 1360 1361 /* 1362 * Want to do this before we do anything else so we can recover 1363 * properly if we fail to join the transaction. 1364 */ 1365 trans = btrfs_start_trans_remove_block_group(fs_info, 1366 block_group->start); 1367 if (IS_ERR(trans)) { 1368 btrfs_dec_block_group_ro(block_group); 1369 ret = PTR_ERR(trans); 1370 goto next; 1371 } 1372 1373 /* 1374 * We could have pending pinned extents for this block group, 1375 * just delete them, we don't care about them anymore. 1376 */ 1377 if (!clean_pinned_extents(trans, block_group)) { 1378 btrfs_dec_block_group_ro(block_group); 1379 goto end_trans; 1380 } 1381 1382 /* 1383 * At this point, the block_group is read only and should fail 1384 * new allocations. However, btrfs_finish_extent_commit() can 1385 * cause this block_group to be placed back on the discard 1386 * lists because now the block_group isn't fully discarded. 1387 * Bail here and try again later after discarding everything. 1388 */ 1389 spin_lock(&fs_info->discard_ctl.lock); 1390 if (!list_empty(&block_group->discard_list)) { 1391 spin_unlock(&fs_info->discard_ctl.lock); 1392 btrfs_dec_block_group_ro(block_group); 1393 btrfs_discard_queue_work(&fs_info->discard_ctl, 1394 block_group); 1395 goto end_trans; 1396 } 1397 spin_unlock(&fs_info->discard_ctl.lock); 1398 1399 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1400 spin_lock(&space_info->lock); 1401 spin_lock(&block_group->lock); 1402 1403 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1404 -block_group->pinned); 1405 space_info->bytes_readonly += block_group->pinned; 1406 block_group->pinned = 0; 1407 1408 spin_unlock(&block_group->lock); 1409 spin_unlock(&space_info->lock); 1410 1411 /* 1412 * The normal path here is an unused block group is passed here, 1413 * then trimming is handled in the transaction commit path. 1414 * Async discard interposes before this to do the trimming 1415 * before coming down the unused block group path as trimming 1416 * will no longer be done later in the transaction commit path. 1417 */ 1418 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1419 goto flip_async; 1420 1421 /* 1422 * DISCARD can flip during remount. On zoned filesystems, we 1423 * need to reset sequential-required zones. 1424 */ 1425 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1426 btrfs_is_zoned(fs_info); 1427 1428 /* Implicit trim during transaction commit. */ 1429 if (trimming) 1430 btrfs_freeze_block_group(block_group); 1431 1432 /* 1433 * Btrfs_remove_chunk will abort the transaction if things go 1434 * horribly wrong. 1435 */ 1436 ret = btrfs_remove_chunk(trans, block_group->start); 1437 1438 if (ret) { 1439 if (trimming) 1440 btrfs_unfreeze_block_group(block_group); 1441 goto end_trans; 1442 } 1443 1444 /* 1445 * If we're not mounted with -odiscard, we can just forget 1446 * about this block group. Otherwise we'll need to wait 1447 * until transaction commit to do the actual discard. 1448 */ 1449 if (trimming) { 1450 spin_lock(&fs_info->unused_bgs_lock); 1451 /* 1452 * A concurrent scrub might have added us to the list 1453 * fs_info->unused_bgs, so use a list_move operation 1454 * to add the block group to the deleted_bgs list. 1455 */ 1456 list_move(&block_group->bg_list, 1457 &trans->transaction->deleted_bgs); 1458 spin_unlock(&fs_info->unused_bgs_lock); 1459 btrfs_get_block_group(block_group); 1460 } 1461 end_trans: 1462 btrfs_end_transaction(trans); 1463 next: 1464 btrfs_put_block_group(block_group); 1465 spin_lock(&fs_info->unused_bgs_lock); 1466 } 1467 spin_unlock(&fs_info->unused_bgs_lock); 1468 mutex_unlock(&fs_info->reclaim_bgs_lock); 1469 return; 1470 1471 flip_async: 1472 btrfs_end_transaction(trans); 1473 mutex_unlock(&fs_info->reclaim_bgs_lock); 1474 btrfs_put_block_group(block_group); 1475 btrfs_discard_punt_unused_bgs_list(fs_info); 1476 } 1477 1478 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1479 { 1480 struct btrfs_fs_info *fs_info = bg->fs_info; 1481 1482 spin_lock(&fs_info->unused_bgs_lock); 1483 if (list_empty(&bg->bg_list)) { 1484 btrfs_get_block_group(bg); 1485 trace_btrfs_add_unused_block_group(bg); 1486 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1487 } 1488 spin_unlock(&fs_info->unused_bgs_lock); 1489 } 1490 1491 /* 1492 * We want block groups with a low number of used bytes to be in the beginning 1493 * of the list, so they will get reclaimed first. 1494 */ 1495 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1496 const struct list_head *b) 1497 { 1498 const struct btrfs_block_group *bg1, *bg2; 1499 1500 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1501 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1502 1503 return bg1->used > bg2->used; 1504 } 1505 1506 void btrfs_reclaim_bgs_work(struct work_struct *work) 1507 { 1508 struct btrfs_fs_info *fs_info = 1509 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1510 struct btrfs_block_group *bg; 1511 struct btrfs_space_info *space_info; 1512 1513 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1514 return; 1515 1516 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 1517 return; 1518 1519 /* 1520 * Long running balances can keep us blocked here for eternity, so 1521 * simply skip reclaim if we're unable to get the mutex. 1522 */ 1523 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1524 btrfs_exclop_finish(fs_info); 1525 return; 1526 } 1527 1528 spin_lock(&fs_info->unused_bgs_lock); 1529 /* 1530 * Sort happens under lock because we can't simply splice it and sort. 1531 * The block groups might still be in use and reachable via bg_list, 1532 * and their presence in the reclaim_bgs list must be preserved. 1533 */ 1534 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1535 while (!list_empty(&fs_info->reclaim_bgs)) { 1536 u64 zone_unusable; 1537 int ret = 0; 1538 1539 bg = list_first_entry(&fs_info->reclaim_bgs, 1540 struct btrfs_block_group, 1541 bg_list); 1542 list_del_init(&bg->bg_list); 1543 1544 space_info = bg->space_info; 1545 spin_unlock(&fs_info->unused_bgs_lock); 1546 1547 /* Don't race with allocators so take the groups_sem */ 1548 down_write(&space_info->groups_sem); 1549 1550 spin_lock(&bg->lock); 1551 if (bg->reserved || bg->pinned || bg->ro) { 1552 /* 1553 * We want to bail if we made new allocations or have 1554 * outstanding allocations in this block group. We do 1555 * the ro check in case balance is currently acting on 1556 * this block group. 1557 */ 1558 spin_unlock(&bg->lock); 1559 up_write(&space_info->groups_sem); 1560 goto next; 1561 } 1562 spin_unlock(&bg->lock); 1563 1564 /* Get out fast, in case we're unmounting the filesystem */ 1565 if (btrfs_fs_closing(fs_info)) { 1566 up_write(&space_info->groups_sem); 1567 goto next; 1568 } 1569 1570 /* 1571 * Cache the zone_unusable value before turning the block group 1572 * to read only. As soon as the blog group is read only it's 1573 * zone_unusable value gets moved to the block group's read-only 1574 * bytes and isn't available for calculations anymore. 1575 */ 1576 zone_unusable = bg->zone_unusable; 1577 ret = inc_block_group_ro(bg, 0); 1578 up_write(&space_info->groups_sem); 1579 if (ret < 0) 1580 goto next; 1581 1582 btrfs_info(fs_info, 1583 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1584 bg->start, div_u64(bg->used * 100, bg->length), 1585 div64_u64(zone_unusable * 100, bg->length)); 1586 trace_btrfs_reclaim_block_group(bg); 1587 ret = btrfs_relocate_chunk(fs_info, bg->start); 1588 if (ret) 1589 btrfs_err(fs_info, "error relocating chunk %llu", 1590 bg->start); 1591 1592 next: 1593 btrfs_put_block_group(bg); 1594 spin_lock(&fs_info->unused_bgs_lock); 1595 } 1596 spin_unlock(&fs_info->unused_bgs_lock); 1597 mutex_unlock(&fs_info->reclaim_bgs_lock); 1598 btrfs_exclop_finish(fs_info); 1599 } 1600 1601 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1602 { 1603 spin_lock(&fs_info->unused_bgs_lock); 1604 if (!list_empty(&fs_info->reclaim_bgs)) 1605 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1606 spin_unlock(&fs_info->unused_bgs_lock); 1607 } 1608 1609 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1610 { 1611 struct btrfs_fs_info *fs_info = bg->fs_info; 1612 1613 spin_lock(&fs_info->unused_bgs_lock); 1614 if (list_empty(&bg->bg_list)) { 1615 btrfs_get_block_group(bg); 1616 trace_btrfs_add_reclaim_block_group(bg); 1617 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1618 } 1619 spin_unlock(&fs_info->unused_bgs_lock); 1620 } 1621 1622 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1623 struct btrfs_path *path) 1624 { 1625 struct extent_map_tree *em_tree; 1626 struct extent_map *em; 1627 struct btrfs_block_group_item bg; 1628 struct extent_buffer *leaf; 1629 int slot; 1630 u64 flags; 1631 int ret = 0; 1632 1633 slot = path->slots[0]; 1634 leaf = path->nodes[0]; 1635 1636 em_tree = &fs_info->mapping_tree; 1637 read_lock(&em_tree->lock); 1638 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1639 read_unlock(&em_tree->lock); 1640 if (!em) { 1641 btrfs_err(fs_info, 1642 "logical %llu len %llu found bg but no related chunk", 1643 key->objectid, key->offset); 1644 return -ENOENT; 1645 } 1646 1647 if (em->start != key->objectid || em->len != key->offset) { 1648 btrfs_err(fs_info, 1649 "block group %llu len %llu mismatch with chunk %llu len %llu", 1650 key->objectid, key->offset, em->start, em->len); 1651 ret = -EUCLEAN; 1652 goto out_free_em; 1653 } 1654 1655 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1656 sizeof(bg)); 1657 flags = btrfs_stack_block_group_flags(&bg) & 1658 BTRFS_BLOCK_GROUP_TYPE_MASK; 1659 1660 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1661 btrfs_err(fs_info, 1662 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1663 key->objectid, key->offset, flags, 1664 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1665 ret = -EUCLEAN; 1666 } 1667 1668 out_free_em: 1669 free_extent_map(em); 1670 return ret; 1671 } 1672 1673 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1674 struct btrfs_path *path, 1675 struct btrfs_key *key) 1676 { 1677 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1678 int ret; 1679 struct btrfs_key found_key; 1680 struct extent_buffer *leaf; 1681 int slot; 1682 1683 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1684 if (ret < 0) 1685 return ret; 1686 1687 while (1) { 1688 slot = path->slots[0]; 1689 leaf = path->nodes[0]; 1690 if (slot >= btrfs_header_nritems(leaf)) { 1691 ret = btrfs_next_leaf(root, path); 1692 if (ret == 0) 1693 continue; 1694 if (ret < 0) 1695 goto out; 1696 break; 1697 } 1698 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1699 1700 if (found_key.objectid >= key->objectid && 1701 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1702 ret = read_bg_from_eb(fs_info, &found_key, path); 1703 break; 1704 } 1705 1706 path->slots[0]++; 1707 } 1708 out: 1709 return ret; 1710 } 1711 1712 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1713 { 1714 u64 extra_flags = chunk_to_extended(flags) & 1715 BTRFS_EXTENDED_PROFILE_MASK; 1716 1717 write_seqlock(&fs_info->profiles_lock); 1718 if (flags & BTRFS_BLOCK_GROUP_DATA) 1719 fs_info->avail_data_alloc_bits |= extra_flags; 1720 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1721 fs_info->avail_metadata_alloc_bits |= extra_flags; 1722 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1723 fs_info->avail_system_alloc_bits |= extra_flags; 1724 write_sequnlock(&fs_info->profiles_lock); 1725 } 1726 1727 /** 1728 * Map a physical disk address to a list of logical addresses 1729 * 1730 * @fs_info: the filesystem 1731 * @chunk_start: logical address of block group 1732 * @bdev: physical device to resolve, can be NULL to indicate any device 1733 * @physical: physical address to map to logical addresses 1734 * @logical: return array of logical addresses which map to @physical 1735 * @naddrs: length of @logical 1736 * @stripe_len: size of IO stripe for the given block group 1737 * 1738 * Maps a particular @physical disk address to a list of @logical addresses. 1739 * Used primarily to exclude those portions of a block group that contain super 1740 * block copies. 1741 */ 1742 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1743 struct block_device *bdev, u64 physical, u64 **logical, 1744 int *naddrs, int *stripe_len) 1745 { 1746 struct extent_map *em; 1747 struct map_lookup *map; 1748 u64 *buf; 1749 u64 bytenr; 1750 u64 data_stripe_length; 1751 u64 io_stripe_size; 1752 int i, nr = 0; 1753 int ret = 0; 1754 1755 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1756 if (IS_ERR(em)) 1757 return -EIO; 1758 1759 map = em->map_lookup; 1760 data_stripe_length = em->orig_block_len; 1761 io_stripe_size = map->stripe_len; 1762 chunk_start = em->start; 1763 1764 /* For RAID5/6 adjust to a full IO stripe length */ 1765 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1766 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1767 1768 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1769 if (!buf) { 1770 ret = -ENOMEM; 1771 goto out; 1772 } 1773 1774 for (i = 0; i < map->num_stripes; i++) { 1775 bool already_inserted = false; 1776 u64 stripe_nr; 1777 u64 offset; 1778 int j; 1779 1780 if (!in_range(physical, map->stripes[i].physical, 1781 data_stripe_length)) 1782 continue; 1783 1784 if (bdev && map->stripes[i].dev->bdev != bdev) 1785 continue; 1786 1787 stripe_nr = physical - map->stripes[i].physical; 1788 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 1789 1790 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1791 stripe_nr = stripe_nr * map->num_stripes + i; 1792 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1793 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1794 stripe_nr = stripe_nr * map->num_stripes + i; 1795 } 1796 /* 1797 * The remaining case would be for RAID56, multiply by 1798 * nr_data_stripes(). Alternatively, just use rmap_len below 1799 * instead of map->stripe_len 1800 */ 1801 1802 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 1803 1804 /* Ensure we don't add duplicate addresses */ 1805 for (j = 0; j < nr; j++) { 1806 if (buf[j] == bytenr) { 1807 already_inserted = true; 1808 break; 1809 } 1810 } 1811 1812 if (!already_inserted) 1813 buf[nr++] = bytenr; 1814 } 1815 1816 *logical = buf; 1817 *naddrs = nr; 1818 *stripe_len = io_stripe_size; 1819 out: 1820 free_extent_map(em); 1821 return ret; 1822 } 1823 1824 static int exclude_super_stripes(struct btrfs_block_group *cache) 1825 { 1826 struct btrfs_fs_info *fs_info = cache->fs_info; 1827 const bool zoned = btrfs_is_zoned(fs_info); 1828 u64 bytenr; 1829 u64 *logical; 1830 int stripe_len; 1831 int i, nr, ret; 1832 1833 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1834 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1835 cache->bytes_super += stripe_len; 1836 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1837 stripe_len); 1838 if (ret) 1839 return ret; 1840 } 1841 1842 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1843 bytenr = btrfs_sb_offset(i); 1844 ret = btrfs_rmap_block(fs_info, cache->start, NULL, 1845 bytenr, &logical, &nr, &stripe_len); 1846 if (ret) 1847 return ret; 1848 1849 /* Shouldn't have super stripes in sequential zones */ 1850 if (zoned && nr) { 1851 btrfs_err(fs_info, 1852 "zoned: block group %llu must not contain super block", 1853 cache->start); 1854 return -EUCLEAN; 1855 } 1856 1857 while (nr--) { 1858 u64 len = min_t(u64, stripe_len, 1859 cache->start + cache->length - logical[nr]); 1860 1861 cache->bytes_super += len; 1862 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1863 len); 1864 if (ret) { 1865 kfree(logical); 1866 return ret; 1867 } 1868 } 1869 1870 kfree(logical); 1871 } 1872 return 0; 1873 } 1874 1875 static void link_block_group(struct btrfs_block_group *cache) 1876 { 1877 struct btrfs_space_info *space_info = cache->space_info; 1878 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1879 1880 down_write(&space_info->groups_sem); 1881 list_add_tail(&cache->list, &space_info->block_groups[index]); 1882 up_write(&space_info->groups_sem); 1883 } 1884 1885 static struct btrfs_block_group *btrfs_create_block_group_cache( 1886 struct btrfs_fs_info *fs_info, u64 start) 1887 { 1888 struct btrfs_block_group *cache; 1889 1890 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1891 if (!cache) 1892 return NULL; 1893 1894 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1895 GFP_NOFS); 1896 if (!cache->free_space_ctl) { 1897 kfree(cache); 1898 return NULL; 1899 } 1900 1901 cache->start = start; 1902 1903 cache->fs_info = fs_info; 1904 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1905 1906 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1907 1908 refcount_set(&cache->refs, 1); 1909 spin_lock_init(&cache->lock); 1910 init_rwsem(&cache->data_rwsem); 1911 INIT_LIST_HEAD(&cache->list); 1912 INIT_LIST_HEAD(&cache->cluster_list); 1913 INIT_LIST_HEAD(&cache->bg_list); 1914 INIT_LIST_HEAD(&cache->ro_list); 1915 INIT_LIST_HEAD(&cache->discard_list); 1916 INIT_LIST_HEAD(&cache->dirty_list); 1917 INIT_LIST_HEAD(&cache->io_list); 1918 INIT_LIST_HEAD(&cache->active_bg_list); 1919 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 1920 atomic_set(&cache->frozen, 0); 1921 mutex_init(&cache->free_space_lock); 1922 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1923 1924 return cache; 1925 } 1926 1927 /* 1928 * Iterate all chunks and verify that each of them has the corresponding block 1929 * group 1930 */ 1931 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1932 { 1933 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1934 struct extent_map *em; 1935 struct btrfs_block_group *bg; 1936 u64 start = 0; 1937 int ret = 0; 1938 1939 while (1) { 1940 read_lock(&map_tree->lock); 1941 /* 1942 * lookup_extent_mapping will return the first extent map 1943 * intersecting the range, so setting @len to 1 is enough to 1944 * get the first chunk. 1945 */ 1946 em = lookup_extent_mapping(map_tree, start, 1); 1947 read_unlock(&map_tree->lock); 1948 if (!em) 1949 break; 1950 1951 bg = btrfs_lookup_block_group(fs_info, em->start); 1952 if (!bg) { 1953 btrfs_err(fs_info, 1954 "chunk start=%llu len=%llu doesn't have corresponding block group", 1955 em->start, em->len); 1956 ret = -EUCLEAN; 1957 free_extent_map(em); 1958 break; 1959 } 1960 if (bg->start != em->start || bg->length != em->len || 1961 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1962 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1963 btrfs_err(fs_info, 1964 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1965 em->start, em->len, 1966 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1967 bg->start, bg->length, 1968 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1969 ret = -EUCLEAN; 1970 free_extent_map(em); 1971 btrfs_put_block_group(bg); 1972 break; 1973 } 1974 start = em->start + em->len; 1975 free_extent_map(em); 1976 btrfs_put_block_group(bg); 1977 } 1978 return ret; 1979 } 1980 1981 static int read_one_block_group(struct btrfs_fs_info *info, 1982 struct btrfs_block_group_item *bgi, 1983 const struct btrfs_key *key, 1984 int need_clear) 1985 { 1986 struct btrfs_block_group *cache; 1987 struct btrfs_space_info *space_info; 1988 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1989 int ret; 1990 1991 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1992 1993 cache = btrfs_create_block_group_cache(info, key->objectid); 1994 if (!cache) 1995 return -ENOMEM; 1996 1997 cache->length = key->offset; 1998 cache->used = btrfs_stack_block_group_used(bgi); 1999 cache->flags = btrfs_stack_block_group_flags(bgi); 2000 2001 set_free_space_tree_thresholds(cache); 2002 2003 if (need_clear) { 2004 /* 2005 * When we mount with old space cache, we need to 2006 * set BTRFS_DC_CLEAR and set dirty flag. 2007 * 2008 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2009 * truncate the old free space cache inode and 2010 * setup a new one. 2011 * b) Setting 'dirty flag' makes sure that we flush 2012 * the new space cache info onto disk. 2013 */ 2014 if (btrfs_test_opt(info, SPACE_CACHE)) 2015 cache->disk_cache_state = BTRFS_DC_CLEAR; 2016 } 2017 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2018 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2019 btrfs_err(info, 2020 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2021 cache->start); 2022 ret = -EINVAL; 2023 goto error; 2024 } 2025 2026 ret = btrfs_load_block_group_zone_info(cache, false); 2027 if (ret) { 2028 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2029 cache->start); 2030 goto error; 2031 } 2032 2033 /* 2034 * We need to exclude the super stripes now so that the space info has 2035 * super bytes accounted for, otherwise we'll think we have more space 2036 * than we actually do. 2037 */ 2038 ret = exclude_super_stripes(cache); 2039 if (ret) { 2040 /* We may have excluded something, so call this just in case. */ 2041 btrfs_free_excluded_extents(cache); 2042 goto error; 2043 } 2044 2045 /* 2046 * For zoned filesystem, space after the allocation offset is the only 2047 * free space for a block group. So, we don't need any caching work. 2048 * btrfs_calc_zone_unusable() will set the amount of free space and 2049 * zone_unusable space. 2050 * 2051 * For regular filesystem, check for two cases, either we are full, and 2052 * therefore don't need to bother with the caching work since we won't 2053 * find any space, or we are empty, and we can just add all the space 2054 * in and be done with it. This saves us _a_lot_ of time, particularly 2055 * in the full case. 2056 */ 2057 if (btrfs_is_zoned(info)) { 2058 btrfs_calc_zone_unusable(cache); 2059 /* Should not have any excluded extents. Just in case, though. */ 2060 btrfs_free_excluded_extents(cache); 2061 } else if (cache->length == cache->used) { 2062 cache->last_byte_to_unpin = (u64)-1; 2063 cache->cached = BTRFS_CACHE_FINISHED; 2064 btrfs_free_excluded_extents(cache); 2065 } else if (cache->used == 0) { 2066 cache->last_byte_to_unpin = (u64)-1; 2067 cache->cached = BTRFS_CACHE_FINISHED; 2068 add_new_free_space(cache, cache->start, 2069 cache->start + cache->length); 2070 btrfs_free_excluded_extents(cache); 2071 } 2072 2073 ret = btrfs_add_block_group_cache(info, cache); 2074 if (ret) { 2075 btrfs_remove_free_space_cache(cache); 2076 goto error; 2077 } 2078 trace_btrfs_add_block_group(info, cache, 0); 2079 btrfs_update_space_info(info, cache->flags, cache->length, 2080 cache->used, cache->bytes_super, 2081 cache->zone_unusable, &space_info); 2082 2083 cache->space_info = space_info; 2084 2085 link_block_group(cache); 2086 2087 set_avail_alloc_bits(info, cache->flags); 2088 if (btrfs_chunk_writeable(info, cache->start)) { 2089 if (cache->used == 0) { 2090 ASSERT(list_empty(&cache->bg_list)); 2091 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2092 btrfs_discard_queue_work(&info->discard_ctl, cache); 2093 else 2094 btrfs_mark_bg_unused(cache); 2095 } 2096 } else { 2097 inc_block_group_ro(cache, 1); 2098 } 2099 2100 return 0; 2101 error: 2102 btrfs_put_block_group(cache); 2103 return ret; 2104 } 2105 2106 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2107 { 2108 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2109 struct btrfs_space_info *space_info; 2110 struct rb_node *node; 2111 int ret = 0; 2112 2113 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2114 struct extent_map *em; 2115 struct map_lookup *map; 2116 struct btrfs_block_group *bg; 2117 2118 em = rb_entry(node, struct extent_map, rb_node); 2119 map = em->map_lookup; 2120 bg = btrfs_create_block_group_cache(fs_info, em->start); 2121 if (!bg) { 2122 ret = -ENOMEM; 2123 break; 2124 } 2125 2126 /* Fill dummy cache as FULL */ 2127 bg->length = em->len; 2128 bg->flags = map->type; 2129 bg->last_byte_to_unpin = (u64)-1; 2130 bg->cached = BTRFS_CACHE_FINISHED; 2131 bg->used = em->len; 2132 bg->flags = map->type; 2133 ret = btrfs_add_block_group_cache(fs_info, bg); 2134 /* 2135 * We may have some valid block group cache added already, in 2136 * that case we skip to the next one. 2137 */ 2138 if (ret == -EEXIST) { 2139 ret = 0; 2140 btrfs_put_block_group(bg); 2141 continue; 2142 } 2143 2144 if (ret) { 2145 btrfs_remove_free_space_cache(bg); 2146 btrfs_put_block_group(bg); 2147 break; 2148 } 2149 2150 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len, 2151 0, 0, &space_info); 2152 bg->space_info = space_info; 2153 link_block_group(bg); 2154 2155 set_avail_alloc_bits(fs_info, bg->flags); 2156 } 2157 if (!ret) 2158 btrfs_init_global_block_rsv(fs_info); 2159 return ret; 2160 } 2161 2162 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2163 { 2164 struct btrfs_root *root = btrfs_block_group_root(info); 2165 struct btrfs_path *path; 2166 int ret; 2167 struct btrfs_block_group *cache; 2168 struct btrfs_space_info *space_info; 2169 struct btrfs_key key; 2170 int need_clear = 0; 2171 u64 cache_gen; 2172 2173 if (!root) 2174 return fill_dummy_bgs(info); 2175 2176 key.objectid = 0; 2177 key.offset = 0; 2178 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2179 path = btrfs_alloc_path(); 2180 if (!path) 2181 return -ENOMEM; 2182 2183 cache_gen = btrfs_super_cache_generation(info->super_copy); 2184 if (btrfs_test_opt(info, SPACE_CACHE) && 2185 btrfs_super_generation(info->super_copy) != cache_gen) 2186 need_clear = 1; 2187 if (btrfs_test_opt(info, CLEAR_CACHE)) 2188 need_clear = 1; 2189 2190 while (1) { 2191 struct btrfs_block_group_item bgi; 2192 struct extent_buffer *leaf; 2193 int slot; 2194 2195 ret = find_first_block_group(info, path, &key); 2196 if (ret > 0) 2197 break; 2198 if (ret != 0) 2199 goto error; 2200 2201 leaf = path->nodes[0]; 2202 slot = path->slots[0]; 2203 2204 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2205 sizeof(bgi)); 2206 2207 btrfs_item_key_to_cpu(leaf, &key, slot); 2208 btrfs_release_path(path); 2209 ret = read_one_block_group(info, &bgi, &key, need_clear); 2210 if (ret < 0) 2211 goto error; 2212 key.objectid += key.offset; 2213 key.offset = 0; 2214 } 2215 btrfs_release_path(path); 2216 2217 list_for_each_entry(space_info, &info->space_info, list) { 2218 int i; 2219 2220 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2221 if (list_empty(&space_info->block_groups[i])) 2222 continue; 2223 cache = list_first_entry(&space_info->block_groups[i], 2224 struct btrfs_block_group, 2225 list); 2226 btrfs_sysfs_add_block_group_type(cache); 2227 } 2228 2229 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2230 (BTRFS_BLOCK_GROUP_RAID10 | 2231 BTRFS_BLOCK_GROUP_RAID1_MASK | 2232 BTRFS_BLOCK_GROUP_RAID56_MASK | 2233 BTRFS_BLOCK_GROUP_DUP))) 2234 continue; 2235 /* 2236 * Avoid allocating from un-mirrored block group if there are 2237 * mirrored block groups. 2238 */ 2239 list_for_each_entry(cache, 2240 &space_info->block_groups[BTRFS_RAID_RAID0], 2241 list) 2242 inc_block_group_ro(cache, 1); 2243 list_for_each_entry(cache, 2244 &space_info->block_groups[BTRFS_RAID_SINGLE], 2245 list) 2246 inc_block_group_ro(cache, 1); 2247 } 2248 2249 btrfs_init_global_block_rsv(info); 2250 ret = check_chunk_block_group_mappings(info); 2251 error: 2252 btrfs_free_path(path); 2253 /* 2254 * We've hit some error while reading the extent tree, and have 2255 * rescue=ibadroots mount option. 2256 * Try to fill the tree using dummy block groups so that the user can 2257 * continue to mount and grab their data. 2258 */ 2259 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2260 ret = fill_dummy_bgs(info); 2261 return ret; 2262 } 2263 2264 /* 2265 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2266 * allocation. 2267 * 2268 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2269 * phases. 2270 */ 2271 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2272 struct btrfs_block_group *block_group) 2273 { 2274 struct btrfs_fs_info *fs_info = trans->fs_info; 2275 struct btrfs_block_group_item bgi; 2276 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2277 struct btrfs_key key; 2278 2279 spin_lock(&block_group->lock); 2280 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2281 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2282 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2283 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2284 key.objectid = block_group->start; 2285 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2286 key.offset = block_group->length; 2287 spin_unlock(&block_group->lock); 2288 2289 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2290 } 2291 2292 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2293 struct btrfs_device *device, u64 chunk_offset, 2294 u64 start, u64 num_bytes) 2295 { 2296 struct btrfs_fs_info *fs_info = device->fs_info; 2297 struct btrfs_root *root = fs_info->dev_root; 2298 struct btrfs_path *path; 2299 struct btrfs_dev_extent *extent; 2300 struct extent_buffer *leaf; 2301 struct btrfs_key key; 2302 int ret; 2303 2304 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2305 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2306 path = btrfs_alloc_path(); 2307 if (!path) 2308 return -ENOMEM; 2309 2310 key.objectid = device->devid; 2311 key.type = BTRFS_DEV_EXTENT_KEY; 2312 key.offset = start; 2313 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2314 if (ret) 2315 goto out; 2316 2317 leaf = path->nodes[0]; 2318 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2319 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2320 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2321 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2322 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2323 2324 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2325 btrfs_mark_buffer_dirty(leaf); 2326 out: 2327 btrfs_free_path(path); 2328 return ret; 2329 } 2330 2331 /* 2332 * This function belongs to phase 2. 2333 * 2334 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2335 * phases. 2336 */ 2337 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2338 u64 chunk_offset, u64 chunk_size) 2339 { 2340 struct btrfs_fs_info *fs_info = trans->fs_info; 2341 struct btrfs_device *device; 2342 struct extent_map *em; 2343 struct map_lookup *map; 2344 u64 dev_offset; 2345 u64 stripe_size; 2346 int i; 2347 int ret = 0; 2348 2349 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2350 if (IS_ERR(em)) 2351 return PTR_ERR(em); 2352 2353 map = em->map_lookup; 2354 stripe_size = em->orig_block_len; 2355 2356 /* 2357 * Take the device list mutex to prevent races with the final phase of 2358 * a device replace operation that replaces the device object associated 2359 * with the map's stripes, because the device object's id can change 2360 * at any time during that final phase of the device replace operation 2361 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2362 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2363 * resulting in persisting a device extent item with such ID. 2364 */ 2365 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2366 for (i = 0; i < map->num_stripes; i++) { 2367 device = map->stripes[i].dev; 2368 dev_offset = map->stripes[i].physical; 2369 2370 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2371 stripe_size); 2372 if (ret) 2373 break; 2374 } 2375 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2376 2377 free_extent_map(em); 2378 return ret; 2379 } 2380 2381 /* 2382 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2383 * chunk allocation. 2384 * 2385 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2386 * phases. 2387 */ 2388 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2389 { 2390 struct btrfs_fs_info *fs_info = trans->fs_info; 2391 struct btrfs_block_group *block_group; 2392 int ret = 0; 2393 2394 while (!list_empty(&trans->new_bgs)) { 2395 int index; 2396 2397 block_group = list_first_entry(&trans->new_bgs, 2398 struct btrfs_block_group, 2399 bg_list); 2400 if (ret) 2401 goto next; 2402 2403 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2404 2405 ret = insert_block_group_item(trans, block_group); 2406 if (ret) 2407 btrfs_abort_transaction(trans, ret); 2408 if (!block_group->chunk_item_inserted) { 2409 mutex_lock(&fs_info->chunk_mutex); 2410 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2411 mutex_unlock(&fs_info->chunk_mutex); 2412 if (ret) 2413 btrfs_abort_transaction(trans, ret); 2414 } 2415 ret = insert_dev_extents(trans, block_group->start, 2416 block_group->length); 2417 if (ret) 2418 btrfs_abort_transaction(trans, ret); 2419 add_block_group_free_space(trans, block_group); 2420 2421 /* 2422 * If we restriped during balance, we may have added a new raid 2423 * type, so now add the sysfs entries when it is safe to do so. 2424 * We don't have to worry about locking here as it's handled in 2425 * btrfs_sysfs_add_block_group_type. 2426 */ 2427 if (block_group->space_info->block_group_kobjs[index] == NULL) 2428 btrfs_sysfs_add_block_group_type(block_group); 2429 2430 /* Already aborted the transaction if it failed. */ 2431 next: 2432 btrfs_delayed_refs_rsv_release(fs_info, 1); 2433 list_del_init(&block_group->bg_list); 2434 } 2435 btrfs_trans_release_chunk_metadata(trans); 2436 } 2437 2438 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2439 u64 bytes_used, u64 type, 2440 u64 chunk_offset, u64 size) 2441 { 2442 struct btrfs_fs_info *fs_info = trans->fs_info; 2443 struct btrfs_block_group *cache; 2444 int ret; 2445 2446 btrfs_set_log_full_commit(trans); 2447 2448 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2449 if (!cache) 2450 return ERR_PTR(-ENOMEM); 2451 2452 cache->length = size; 2453 set_free_space_tree_thresholds(cache); 2454 cache->used = bytes_used; 2455 cache->flags = type; 2456 cache->last_byte_to_unpin = (u64)-1; 2457 cache->cached = BTRFS_CACHE_FINISHED; 2458 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2459 cache->needs_free_space = 1; 2460 2461 ret = btrfs_load_block_group_zone_info(cache, true); 2462 if (ret) { 2463 btrfs_put_block_group(cache); 2464 return ERR_PTR(ret); 2465 } 2466 2467 /* 2468 * New block group is likely to be used soon. Try to activate it now. 2469 * Failure is OK for now. 2470 */ 2471 btrfs_zone_activate(cache); 2472 2473 ret = exclude_super_stripes(cache); 2474 if (ret) { 2475 /* We may have excluded something, so call this just in case */ 2476 btrfs_free_excluded_extents(cache); 2477 btrfs_put_block_group(cache); 2478 return ERR_PTR(ret); 2479 } 2480 2481 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2482 2483 btrfs_free_excluded_extents(cache); 2484 2485 #ifdef CONFIG_BTRFS_DEBUG 2486 if (btrfs_should_fragment_free_space(cache)) { 2487 u64 new_bytes_used = size - bytes_used; 2488 2489 bytes_used += new_bytes_used >> 1; 2490 fragment_free_space(cache); 2491 } 2492 #endif 2493 /* 2494 * Ensure the corresponding space_info object is created and 2495 * assigned to our block group. We want our bg to be added to the rbtree 2496 * with its ->space_info set. 2497 */ 2498 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2499 ASSERT(cache->space_info); 2500 2501 ret = btrfs_add_block_group_cache(fs_info, cache); 2502 if (ret) { 2503 btrfs_remove_free_space_cache(cache); 2504 btrfs_put_block_group(cache); 2505 return ERR_PTR(ret); 2506 } 2507 2508 /* 2509 * Now that our block group has its ->space_info set and is inserted in 2510 * the rbtree, update the space info's counters. 2511 */ 2512 trace_btrfs_add_block_group(fs_info, cache, 1); 2513 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2514 cache->bytes_super, cache->zone_unusable, 2515 &cache->space_info); 2516 btrfs_update_global_block_rsv(fs_info); 2517 2518 link_block_group(cache); 2519 2520 list_add_tail(&cache->bg_list, &trans->new_bgs); 2521 trans->delayed_ref_updates++; 2522 btrfs_update_delayed_refs_rsv(trans); 2523 2524 set_avail_alloc_bits(fs_info, type); 2525 return cache; 2526 } 2527 2528 /* 2529 * Mark one block group RO, can be called several times for the same block 2530 * group. 2531 * 2532 * @cache: the destination block group 2533 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2534 * ensure we still have some free space after marking this 2535 * block group RO. 2536 */ 2537 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2538 bool do_chunk_alloc) 2539 { 2540 struct btrfs_fs_info *fs_info = cache->fs_info; 2541 struct btrfs_trans_handle *trans; 2542 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2543 u64 alloc_flags; 2544 int ret; 2545 bool dirty_bg_running; 2546 2547 do { 2548 trans = btrfs_join_transaction(root); 2549 if (IS_ERR(trans)) 2550 return PTR_ERR(trans); 2551 2552 dirty_bg_running = false; 2553 2554 /* 2555 * We're not allowed to set block groups readonly after the dirty 2556 * block group cache has started writing. If it already started, 2557 * back off and let this transaction commit. 2558 */ 2559 mutex_lock(&fs_info->ro_block_group_mutex); 2560 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2561 u64 transid = trans->transid; 2562 2563 mutex_unlock(&fs_info->ro_block_group_mutex); 2564 btrfs_end_transaction(trans); 2565 2566 ret = btrfs_wait_for_commit(fs_info, transid); 2567 if (ret) 2568 return ret; 2569 dirty_bg_running = true; 2570 } 2571 } while (dirty_bg_running); 2572 2573 if (do_chunk_alloc) { 2574 /* 2575 * If we are changing raid levels, try to allocate a 2576 * corresponding block group with the new raid level. 2577 */ 2578 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2579 if (alloc_flags != cache->flags) { 2580 ret = btrfs_chunk_alloc(trans, alloc_flags, 2581 CHUNK_ALLOC_FORCE); 2582 /* 2583 * ENOSPC is allowed here, we may have enough space 2584 * already allocated at the new raid level to carry on 2585 */ 2586 if (ret == -ENOSPC) 2587 ret = 0; 2588 if (ret < 0) 2589 goto out; 2590 } 2591 } 2592 2593 ret = inc_block_group_ro(cache, 0); 2594 if (!do_chunk_alloc || ret == -ETXTBSY) 2595 goto unlock_out; 2596 if (!ret) 2597 goto out; 2598 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2599 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2600 if (ret < 0) 2601 goto out; 2602 ret = inc_block_group_ro(cache, 0); 2603 if (ret == -ETXTBSY) 2604 goto unlock_out; 2605 out: 2606 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2607 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2608 mutex_lock(&fs_info->chunk_mutex); 2609 check_system_chunk(trans, alloc_flags); 2610 mutex_unlock(&fs_info->chunk_mutex); 2611 } 2612 unlock_out: 2613 mutex_unlock(&fs_info->ro_block_group_mutex); 2614 2615 btrfs_end_transaction(trans); 2616 return ret; 2617 } 2618 2619 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2620 { 2621 struct btrfs_space_info *sinfo = cache->space_info; 2622 u64 num_bytes; 2623 2624 BUG_ON(!cache->ro); 2625 2626 spin_lock(&sinfo->lock); 2627 spin_lock(&cache->lock); 2628 if (!--cache->ro) { 2629 if (btrfs_is_zoned(cache->fs_info)) { 2630 /* Migrate zone_unusable bytes back */ 2631 cache->zone_unusable = 2632 (cache->alloc_offset - cache->used) + 2633 (cache->length - cache->zone_capacity); 2634 sinfo->bytes_zone_unusable += cache->zone_unusable; 2635 sinfo->bytes_readonly -= cache->zone_unusable; 2636 } 2637 num_bytes = cache->length - cache->reserved - 2638 cache->pinned - cache->bytes_super - 2639 cache->zone_unusable - cache->used; 2640 sinfo->bytes_readonly -= num_bytes; 2641 list_del_init(&cache->ro_list); 2642 } 2643 spin_unlock(&cache->lock); 2644 spin_unlock(&sinfo->lock); 2645 } 2646 2647 static int update_block_group_item(struct btrfs_trans_handle *trans, 2648 struct btrfs_path *path, 2649 struct btrfs_block_group *cache) 2650 { 2651 struct btrfs_fs_info *fs_info = trans->fs_info; 2652 int ret; 2653 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2654 unsigned long bi; 2655 struct extent_buffer *leaf; 2656 struct btrfs_block_group_item bgi; 2657 struct btrfs_key key; 2658 2659 key.objectid = cache->start; 2660 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2661 key.offset = cache->length; 2662 2663 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2664 if (ret) { 2665 if (ret > 0) 2666 ret = -ENOENT; 2667 goto fail; 2668 } 2669 2670 leaf = path->nodes[0]; 2671 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2672 btrfs_set_stack_block_group_used(&bgi, cache->used); 2673 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2674 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2675 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2676 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2677 btrfs_mark_buffer_dirty(leaf); 2678 fail: 2679 btrfs_release_path(path); 2680 return ret; 2681 2682 } 2683 2684 static int cache_save_setup(struct btrfs_block_group *block_group, 2685 struct btrfs_trans_handle *trans, 2686 struct btrfs_path *path) 2687 { 2688 struct btrfs_fs_info *fs_info = block_group->fs_info; 2689 struct btrfs_root *root = fs_info->tree_root; 2690 struct inode *inode = NULL; 2691 struct extent_changeset *data_reserved = NULL; 2692 u64 alloc_hint = 0; 2693 int dcs = BTRFS_DC_ERROR; 2694 u64 cache_size = 0; 2695 int retries = 0; 2696 int ret = 0; 2697 2698 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2699 return 0; 2700 2701 /* 2702 * If this block group is smaller than 100 megs don't bother caching the 2703 * block group. 2704 */ 2705 if (block_group->length < (100 * SZ_1M)) { 2706 spin_lock(&block_group->lock); 2707 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2708 spin_unlock(&block_group->lock); 2709 return 0; 2710 } 2711 2712 if (TRANS_ABORTED(trans)) 2713 return 0; 2714 again: 2715 inode = lookup_free_space_inode(block_group, path); 2716 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2717 ret = PTR_ERR(inode); 2718 btrfs_release_path(path); 2719 goto out; 2720 } 2721 2722 if (IS_ERR(inode)) { 2723 BUG_ON(retries); 2724 retries++; 2725 2726 if (block_group->ro) 2727 goto out_free; 2728 2729 ret = create_free_space_inode(trans, block_group, path); 2730 if (ret) 2731 goto out_free; 2732 goto again; 2733 } 2734 2735 /* 2736 * We want to set the generation to 0, that way if anything goes wrong 2737 * from here on out we know not to trust this cache when we load up next 2738 * time. 2739 */ 2740 BTRFS_I(inode)->generation = 0; 2741 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2742 if (ret) { 2743 /* 2744 * So theoretically we could recover from this, simply set the 2745 * super cache generation to 0 so we know to invalidate the 2746 * cache, but then we'd have to keep track of the block groups 2747 * that fail this way so we know we _have_ to reset this cache 2748 * before the next commit or risk reading stale cache. So to 2749 * limit our exposure to horrible edge cases lets just abort the 2750 * transaction, this only happens in really bad situations 2751 * anyway. 2752 */ 2753 btrfs_abort_transaction(trans, ret); 2754 goto out_put; 2755 } 2756 WARN_ON(ret); 2757 2758 /* We've already setup this transaction, go ahead and exit */ 2759 if (block_group->cache_generation == trans->transid && 2760 i_size_read(inode)) { 2761 dcs = BTRFS_DC_SETUP; 2762 goto out_put; 2763 } 2764 2765 if (i_size_read(inode) > 0) { 2766 ret = btrfs_check_trunc_cache_free_space(fs_info, 2767 &fs_info->global_block_rsv); 2768 if (ret) 2769 goto out_put; 2770 2771 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2772 if (ret) 2773 goto out_put; 2774 } 2775 2776 spin_lock(&block_group->lock); 2777 if (block_group->cached != BTRFS_CACHE_FINISHED || 2778 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2779 /* 2780 * don't bother trying to write stuff out _if_ 2781 * a) we're not cached, 2782 * b) we're with nospace_cache mount option, 2783 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2784 */ 2785 dcs = BTRFS_DC_WRITTEN; 2786 spin_unlock(&block_group->lock); 2787 goto out_put; 2788 } 2789 spin_unlock(&block_group->lock); 2790 2791 /* 2792 * We hit an ENOSPC when setting up the cache in this transaction, just 2793 * skip doing the setup, we've already cleared the cache so we're safe. 2794 */ 2795 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2796 ret = -ENOSPC; 2797 goto out_put; 2798 } 2799 2800 /* 2801 * Try to preallocate enough space based on how big the block group is. 2802 * Keep in mind this has to include any pinned space which could end up 2803 * taking up quite a bit since it's not folded into the other space 2804 * cache. 2805 */ 2806 cache_size = div_u64(block_group->length, SZ_256M); 2807 if (!cache_size) 2808 cache_size = 1; 2809 2810 cache_size *= 16; 2811 cache_size *= fs_info->sectorsize; 2812 2813 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2814 cache_size); 2815 if (ret) 2816 goto out_put; 2817 2818 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 2819 cache_size, cache_size, 2820 &alloc_hint); 2821 /* 2822 * Our cache requires contiguous chunks so that we don't modify a bunch 2823 * of metadata or split extents when writing the cache out, which means 2824 * we can enospc if we are heavily fragmented in addition to just normal 2825 * out of space conditions. So if we hit this just skip setting up any 2826 * other block groups for this transaction, maybe we'll unpin enough 2827 * space the next time around. 2828 */ 2829 if (!ret) 2830 dcs = BTRFS_DC_SETUP; 2831 else if (ret == -ENOSPC) 2832 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2833 2834 out_put: 2835 iput(inode); 2836 out_free: 2837 btrfs_release_path(path); 2838 out: 2839 spin_lock(&block_group->lock); 2840 if (!ret && dcs == BTRFS_DC_SETUP) 2841 block_group->cache_generation = trans->transid; 2842 block_group->disk_cache_state = dcs; 2843 spin_unlock(&block_group->lock); 2844 2845 extent_changeset_free(data_reserved); 2846 return ret; 2847 } 2848 2849 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2850 { 2851 struct btrfs_fs_info *fs_info = trans->fs_info; 2852 struct btrfs_block_group *cache, *tmp; 2853 struct btrfs_transaction *cur_trans = trans->transaction; 2854 struct btrfs_path *path; 2855 2856 if (list_empty(&cur_trans->dirty_bgs) || 2857 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2858 return 0; 2859 2860 path = btrfs_alloc_path(); 2861 if (!path) 2862 return -ENOMEM; 2863 2864 /* Could add new block groups, use _safe just in case */ 2865 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2866 dirty_list) { 2867 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2868 cache_save_setup(cache, trans, path); 2869 } 2870 2871 btrfs_free_path(path); 2872 return 0; 2873 } 2874 2875 /* 2876 * Transaction commit does final block group cache writeback during a critical 2877 * section where nothing is allowed to change the FS. This is required in 2878 * order for the cache to actually match the block group, but can introduce a 2879 * lot of latency into the commit. 2880 * 2881 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2882 * There's a chance we'll have to redo some of it if the block group changes 2883 * again during the commit, but it greatly reduces the commit latency by 2884 * getting rid of the easy block groups while we're still allowing others to 2885 * join the commit. 2886 */ 2887 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2888 { 2889 struct btrfs_fs_info *fs_info = trans->fs_info; 2890 struct btrfs_block_group *cache; 2891 struct btrfs_transaction *cur_trans = trans->transaction; 2892 int ret = 0; 2893 int should_put; 2894 struct btrfs_path *path = NULL; 2895 LIST_HEAD(dirty); 2896 struct list_head *io = &cur_trans->io_bgs; 2897 int num_started = 0; 2898 int loops = 0; 2899 2900 spin_lock(&cur_trans->dirty_bgs_lock); 2901 if (list_empty(&cur_trans->dirty_bgs)) { 2902 spin_unlock(&cur_trans->dirty_bgs_lock); 2903 return 0; 2904 } 2905 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2906 spin_unlock(&cur_trans->dirty_bgs_lock); 2907 2908 again: 2909 /* Make sure all the block groups on our dirty list actually exist */ 2910 btrfs_create_pending_block_groups(trans); 2911 2912 if (!path) { 2913 path = btrfs_alloc_path(); 2914 if (!path) { 2915 ret = -ENOMEM; 2916 goto out; 2917 } 2918 } 2919 2920 /* 2921 * cache_write_mutex is here only to save us from balance or automatic 2922 * removal of empty block groups deleting this block group while we are 2923 * writing out the cache 2924 */ 2925 mutex_lock(&trans->transaction->cache_write_mutex); 2926 while (!list_empty(&dirty)) { 2927 bool drop_reserve = true; 2928 2929 cache = list_first_entry(&dirty, struct btrfs_block_group, 2930 dirty_list); 2931 /* 2932 * This can happen if something re-dirties a block group that 2933 * is already under IO. Just wait for it to finish and then do 2934 * it all again 2935 */ 2936 if (!list_empty(&cache->io_list)) { 2937 list_del_init(&cache->io_list); 2938 btrfs_wait_cache_io(trans, cache, path); 2939 btrfs_put_block_group(cache); 2940 } 2941 2942 2943 /* 2944 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2945 * it should update the cache_state. Don't delete until after 2946 * we wait. 2947 * 2948 * Since we're not running in the commit critical section 2949 * we need the dirty_bgs_lock to protect from update_block_group 2950 */ 2951 spin_lock(&cur_trans->dirty_bgs_lock); 2952 list_del_init(&cache->dirty_list); 2953 spin_unlock(&cur_trans->dirty_bgs_lock); 2954 2955 should_put = 1; 2956 2957 cache_save_setup(cache, trans, path); 2958 2959 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2960 cache->io_ctl.inode = NULL; 2961 ret = btrfs_write_out_cache(trans, cache, path); 2962 if (ret == 0 && cache->io_ctl.inode) { 2963 num_started++; 2964 should_put = 0; 2965 2966 /* 2967 * The cache_write_mutex is protecting the 2968 * io_list, also refer to the definition of 2969 * btrfs_transaction::io_bgs for more details 2970 */ 2971 list_add_tail(&cache->io_list, io); 2972 } else { 2973 /* 2974 * If we failed to write the cache, the 2975 * generation will be bad and life goes on 2976 */ 2977 ret = 0; 2978 } 2979 } 2980 if (!ret) { 2981 ret = update_block_group_item(trans, path, cache); 2982 /* 2983 * Our block group might still be attached to the list 2984 * of new block groups in the transaction handle of some 2985 * other task (struct btrfs_trans_handle->new_bgs). This 2986 * means its block group item isn't yet in the extent 2987 * tree. If this happens ignore the error, as we will 2988 * try again later in the critical section of the 2989 * transaction commit. 2990 */ 2991 if (ret == -ENOENT) { 2992 ret = 0; 2993 spin_lock(&cur_trans->dirty_bgs_lock); 2994 if (list_empty(&cache->dirty_list)) { 2995 list_add_tail(&cache->dirty_list, 2996 &cur_trans->dirty_bgs); 2997 btrfs_get_block_group(cache); 2998 drop_reserve = false; 2999 } 3000 spin_unlock(&cur_trans->dirty_bgs_lock); 3001 } else if (ret) { 3002 btrfs_abort_transaction(trans, ret); 3003 } 3004 } 3005 3006 /* If it's not on the io list, we need to put the block group */ 3007 if (should_put) 3008 btrfs_put_block_group(cache); 3009 if (drop_reserve) 3010 btrfs_delayed_refs_rsv_release(fs_info, 1); 3011 /* 3012 * Avoid blocking other tasks for too long. It might even save 3013 * us from writing caches for block groups that are going to be 3014 * removed. 3015 */ 3016 mutex_unlock(&trans->transaction->cache_write_mutex); 3017 if (ret) 3018 goto out; 3019 mutex_lock(&trans->transaction->cache_write_mutex); 3020 } 3021 mutex_unlock(&trans->transaction->cache_write_mutex); 3022 3023 /* 3024 * Go through delayed refs for all the stuff we've just kicked off 3025 * and then loop back (just once) 3026 */ 3027 if (!ret) 3028 ret = btrfs_run_delayed_refs(trans, 0); 3029 if (!ret && loops == 0) { 3030 loops++; 3031 spin_lock(&cur_trans->dirty_bgs_lock); 3032 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3033 /* 3034 * dirty_bgs_lock protects us from concurrent block group 3035 * deletes too (not just cache_write_mutex). 3036 */ 3037 if (!list_empty(&dirty)) { 3038 spin_unlock(&cur_trans->dirty_bgs_lock); 3039 goto again; 3040 } 3041 spin_unlock(&cur_trans->dirty_bgs_lock); 3042 } 3043 out: 3044 if (ret < 0) { 3045 spin_lock(&cur_trans->dirty_bgs_lock); 3046 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3047 spin_unlock(&cur_trans->dirty_bgs_lock); 3048 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3049 } 3050 3051 btrfs_free_path(path); 3052 return ret; 3053 } 3054 3055 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3056 { 3057 struct btrfs_fs_info *fs_info = trans->fs_info; 3058 struct btrfs_block_group *cache; 3059 struct btrfs_transaction *cur_trans = trans->transaction; 3060 int ret = 0; 3061 int should_put; 3062 struct btrfs_path *path; 3063 struct list_head *io = &cur_trans->io_bgs; 3064 int num_started = 0; 3065 3066 path = btrfs_alloc_path(); 3067 if (!path) 3068 return -ENOMEM; 3069 3070 /* 3071 * Even though we are in the critical section of the transaction commit, 3072 * we can still have concurrent tasks adding elements to this 3073 * transaction's list of dirty block groups. These tasks correspond to 3074 * endio free space workers started when writeback finishes for a 3075 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3076 * allocate new block groups as a result of COWing nodes of the root 3077 * tree when updating the free space inode. The writeback for the space 3078 * caches is triggered by an earlier call to 3079 * btrfs_start_dirty_block_groups() and iterations of the following 3080 * loop. 3081 * Also we want to do the cache_save_setup first and then run the 3082 * delayed refs to make sure we have the best chance at doing this all 3083 * in one shot. 3084 */ 3085 spin_lock(&cur_trans->dirty_bgs_lock); 3086 while (!list_empty(&cur_trans->dirty_bgs)) { 3087 cache = list_first_entry(&cur_trans->dirty_bgs, 3088 struct btrfs_block_group, 3089 dirty_list); 3090 3091 /* 3092 * This can happen if cache_save_setup re-dirties a block group 3093 * that is already under IO. Just wait for it to finish and 3094 * then do it all again 3095 */ 3096 if (!list_empty(&cache->io_list)) { 3097 spin_unlock(&cur_trans->dirty_bgs_lock); 3098 list_del_init(&cache->io_list); 3099 btrfs_wait_cache_io(trans, cache, path); 3100 btrfs_put_block_group(cache); 3101 spin_lock(&cur_trans->dirty_bgs_lock); 3102 } 3103 3104 /* 3105 * Don't remove from the dirty list until after we've waited on 3106 * any pending IO 3107 */ 3108 list_del_init(&cache->dirty_list); 3109 spin_unlock(&cur_trans->dirty_bgs_lock); 3110 should_put = 1; 3111 3112 cache_save_setup(cache, trans, path); 3113 3114 if (!ret) 3115 ret = btrfs_run_delayed_refs(trans, 3116 (unsigned long) -1); 3117 3118 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3119 cache->io_ctl.inode = NULL; 3120 ret = btrfs_write_out_cache(trans, cache, path); 3121 if (ret == 0 && cache->io_ctl.inode) { 3122 num_started++; 3123 should_put = 0; 3124 list_add_tail(&cache->io_list, io); 3125 } else { 3126 /* 3127 * If we failed to write the cache, the 3128 * generation will be bad and life goes on 3129 */ 3130 ret = 0; 3131 } 3132 } 3133 if (!ret) { 3134 ret = update_block_group_item(trans, path, cache); 3135 /* 3136 * One of the free space endio workers might have 3137 * created a new block group while updating a free space 3138 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3139 * and hasn't released its transaction handle yet, in 3140 * which case the new block group is still attached to 3141 * its transaction handle and its creation has not 3142 * finished yet (no block group item in the extent tree 3143 * yet, etc). If this is the case, wait for all free 3144 * space endio workers to finish and retry. This is a 3145 * very rare case so no need for a more efficient and 3146 * complex approach. 3147 */ 3148 if (ret == -ENOENT) { 3149 wait_event(cur_trans->writer_wait, 3150 atomic_read(&cur_trans->num_writers) == 1); 3151 ret = update_block_group_item(trans, path, cache); 3152 } 3153 if (ret) 3154 btrfs_abort_transaction(trans, ret); 3155 } 3156 3157 /* If its not on the io list, we need to put the block group */ 3158 if (should_put) 3159 btrfs_put_block_group(cache); 3160 btrfs_delayed_refs_rsv_release(fs_info, 1); 3161 spin_lock(&cur_trans->dirty_bgs_lock); 3162 } 3163 spin_unlock(&cur_trans->dirty_bgs_lock); 3164 3165 /* 3166 * Refer to the definition of io_bgs member for details why it's safe 3167 * to use it without any locking 3168 */ 3169 while (!list_empty(io)) { 3170 cache = list_first_entry(io, struct btrfs_block_group, 3171 io_list); 3172 list_del_init(&cache->io_list); 3173 btrfs_wait_cache_io(trans, cache, path); 3174 btrfs_put_block_group(cache); 3175 } 3176 3177 btrfs_free_path(path); 3178 return ret; 3179 } 3180 3181 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3182 u64 bytenr, u64 num_bytes, bool alloc) 3183 { 3184 struct btrfs_fs_info *info = trans->fs_info; 3185 struct btrfs_block_group *cache = NULL; 3186 u64 total = num_bytes; 3187 u64 old_val; 3188 u64 byte_in_group; 3189 int factor; 3190 int ret = 0; 3191 3192 /* Block accounting for super block */ 3193 spin_lock(&info->delalloc_root_lock); 3194 old_val = btrfs_super_bytes_used(info->super_copy); 3195 if (alloc) 3196 old_val += num_bytes; 3197 else 3198 old_val -= num_bytes; 3199 btrfs_set_super_bytes_used(info->super_copy, old_val); 3200 spin_unlock(&info->delalloc_root_lock); 3201 3202 while (total) { 3203 cache = btrfs_lookup_block_group(info, bytenr); 3204 if (!cache) { 3205 ret = -ENOENT; 3206 break; 3207 } 3208 factor = btrfs_bg_type_to_factor(cache->flags); 3209 3210 /* 3211 * If this block group has free space cache written out, we 3212 * need to make sure to load it if we are removing space. This 3213 * is because we need the unpinning stage to actually add the 3214 * space back to the block group, otherwise we will leak space. 3215 */ 3216 if (!alloc && !btrfs_block_group_done(cache)) 3217 btrfs_cache_block_group(cache, 1); 3218 3219 byte_in_group = bytenr - cache->start; 3220 WARN_ON(byte_in_group > cache->length); 3221 3222 spin_lock(&cache->space_info->lock); 3223 spin_lock(&cache->lock); 3224 3225 if (btrfs_test_opt(info, SPACE_CACHE) && 3226 cache->disk_cache_state < BTRFS_DC_CLEAR) 3227 cache->disk_cache_state = BTRFS_DC_CLEAR; 3228 3229 old_val = cache->used; 3230 num_bytes = min(total, cache->length - byte_in_group); 3231 if (alloc) { 3232 old_val += num_bytes; 3233 cache->used = old_val; 3234 cache->reserved -= num_bytes; 3235 cache->space_info->bytes_reserved -= num_bytes; 3236 cache->space_info->bytes_used += num_bytes; 3237 cache->space_info->disk_used += num_bytes * factor; 3238 spin_unlock(&cache->lock); 3239 spin_unlock(&cache->space_info->lock); 3240 } else { 3241 old_val -= num_bytes; 3242 cache->used = old_val; 3243 cache->pinned += num_bytes; 3244 btrfs_space_info_update_bytes_pinned(info, 3245 cache->space_info, num_bytes); 3246 cache->space_info->bytes_used -= num_bytes; 3247 cache->space_info->disk_used -= num_bytes * factor; 3248 spin_unlock(&cache->lock); 3249 spin_unlock(&cache->space_info->lock); 3250 3251 set_extent_dirty(&trans->transaction->pinned_extents, 3252 bytenr, bytenr + num_bytes - 1, 3253 GFP_NOFS | __GFP_NOFAIL); 3254 } 3255 3256 spin_lock(&trans->transaction->dirty_bgs_lock); 3257 if (list_empty(&cache->dirty_list)) { 3258 list_add_tail(&cache->dirty_list, 3259 &trans->transaction->dirty_bgs); 3260 trans->delayed_ref_updates++; 3261 btrfs_get_block_group(cache); 3262 } 3263 spin_unlock(&trans->transaction->dirty_bgs_lock); 3264 3265 /* 3266 * No longer have used bytes in this block group, queue it for 3267 * deletion. We do this after adding the block group to the 3268 * dirty list to avoid races between cleaner kthread and space 3269 * cache writeout. 3270 */ 3271 if (!alloc && old_val == 0) { 3272 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3273 btrfs_mark_bg_unused(cache); 3274 } 3275 3276 btrfs_put_block_group(cache); 3277 total -= num_bytes; 3278 bytenr += num_bytes; 3279 } 3280 3281 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3282 btrfs_update_delayed_refs_rsv(trans); 3283 return ret; 3284 } 3285 3286 /** 3287 * btrfs_add_reserved_bytes - update the block_group and space info counters 3288 * @cache: The cache we are manipulating 3289 * @ram_bytes: The number of bytes of file content, and will be same to 3290 * @num_bytes except for the compress path. 3291 * @num_bytes: The number of bytes in question 3292 * @delalloc: The blocks are allocated for the delalloc write 3293 * 3294 * This is called by the allocator when it reserves space. If this is a 3295 * reservation and the block group has become read only we cannot make the 3296 * reservation and return -EAGAIN, otherwise this function always succeeds. 3297 */ 3298 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3299 u64 ram_bytes, u64 num_bytes, int delalloc) 3300 { 3301 struct btrfs_space_info *space_info = cache->space_info; 3302 int ret = 0; 3303 3304 spin_lock(&space_info->lock); 3305 spin_lock(&cache->lock); 3306 if (cache->ro) { 3307 ret = -EAGAIN; 3308 } else { 3309 cache->reserved += num_bytes; 3310 space_info->bytes_reserved += num_bytes; 3311 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3312 space_info->flags, num_bytes, 1); 3313 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3314 space_info, -ram_bytes); 3315 if (delalloc) 3316 cache->delalloc_bytes += num_bytes; 3317 3318 /* 3319 * Compression can use less space than we reserved, so wake 3320 * tickets if that happens 3321 */ 3322 if (num_bytes < ram_bytes) 3323 btrfs_try_granting_tickets(cache->fs_info, space_info); 3324 } 3325 spin_unlock(&cache->lock); 3326 spin_unlock(&space_info->lock); 3327 return ret; 3328 } 3329 3330 /** 3331 * btrfs_free_reserved_bytes - update the block_group and space info counters 3332 * @cache: The cache we are manipulating 3333 * @num_bytes: The number of bytes in question 3334 * @delalloc: The blocks are allocated for the delalloc write 3335 * 3336 * This is called by somebody who is freeing space that was never actually used 3337 * on disk. For example if you reserve some space for a new leaf in transaction 3338 * A and before transaction A commits you free that leaf, you call this with 3339 * reserve set to 0 in order to clear the reservation. 3340 */ 3341 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3342 u64 num_bytes, int delalloc) 3343 { 3344 struct btrfs_space_info *space_info = cache->space_info; 3345 3346 spin_lock(&space_info->lock); 3347 spin_lock(&cache->lock); 3348 if (cache->ro) 3349 space_info->bytes_readonly += num_bytes; 3350 cache->reserved -= num_bytes; 3351 space_info->bytes_reserved -= num_bytes; 3352 space_info->max_extent_size = 0; 3353 3354 if (delalloc) 3355 cache->delalloc_bytes -= num_bytes; 3356 spin_unlock(&cache->lock); 3357 3358 btrfs_try_granting_tickets(cache->fs_info, space_info); 3359 spin_unlock(&space_info->lock); 3360 } 3361 3362 static void force_metadata_allocation(struct btrfs_fs_info *info) 3363 { 3364 struct list_head *head = &info->space_info; 3365 struct btrfs_space_info *found; 3366 3367 list_for_each_entry(found, head, list) { 3368 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3369 found->force_alloc = CHUNK_ALLOC_FORCE; 3370 } 3371 } 3372 3373 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3374 struct btrfs_space_info *sinfo, int force) 3375 { 3376 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3377 u64 thresh; 3378 3379 if (force == CHUNK_ALLOC_FORCE) 3380 return 1; 3381 3382 /* 3383 * in limited mode, we want to have some free space up to 3384 * about 1% of the FS size. 3385 */ 3386 if (force == CHUNK_ALLOC_LIMITED) { 3387 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3388 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3389 3390 if (sinfo->total_bytes - bytes_used < thresh) 3391 return 1; 3392 } 3393 3394 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3395 return 0; 3396 return 1; 3397 } 3398 3399 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3400 { 3401 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3402 3403 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3404 } 3405 3406 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3407 { 3408 struct btrfs_block_group *bg; 3409 int ret; 3410 3411 /* 3412 * Check if we have enough space in the system space info because we 3413 * will need to update device items in the chunk btree and insert a new 3414 * chunk item in the chunk btree as well. This will allocate a new 3415 * system block group if needed. 3416 */ 3417 check_system_chunk(trans, flags); 3418 3419 bg = btrfs_create_chunk(trans, flags); 3420 if (IS_ERR(bg)) { 3421 ret = PTR_ERR(bg); 3422 goto out; 3423 } 3424 3425 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3426 /* 3427 * Normally we are not expected to fail with -ENOSPC here, since we have 3428 * previously reserved space in the system space_info and allocated one 3429 * new system chunk if necessary. However there are three exceptions: 3430 * 3431 * 1) We may have enough free space in the system space_info but all the 3432 * existing system block groups have a profile which can not be used 3433 * for extent allocation. 3434 * 3435 * This happens when mounting in degraded mode. For example we have a 3436 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3437 * using the other device in degraded mode. If we then allocate a chunk, 3438 * we may have enough free space in the existing system space_info, but 3439 * none of the block groups can be used for extent allocation since they 3440 * have a RAID1 profile, and because we are in degraded mode with a 3441 * single device, we are forced to allocate a new system chunk with a 3442 * SINGLE profile. Making check_system_chunk() iterate over all system 3443 * block groups and check if they have a usable profile and enough space 3444 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3445 * try again after forcing allocation of a new system chunk. Like this 3446 * we avoid paying the cost of that search in normal circumstances, when 3447 * we were not mounted in degraded mode; 3448 * 3449 * 2) We had enough free space info the system space_info, and one suitable 3450 * block group to allocate from when we called check_system_chunk() 3451 * above. However right after we called it, the only system block group 3452 * with enough free space got turned into RO mode by a running scrub, 3453 * and in this case we have to allocate a new one and retry. We only 3454 * need do this allocate and retry once, since we have a transaction 3455 * handle and scrub uses the commit root to search for block groups; 3456 * 3457 * 3) We had one system block group with enough free space when we called 3458 * check_system_chunk(), but after that, right before we tried to 3459 * allocate the last extent buffer we needed, a discard operation came 3460 * in and it temporarily removed the last free space entry from the 3461 * block group (discard removes a free space entry, discards it, and 3462 * then adds back the entry to the block group cache). 3463 */ 3464 if (ret == -ENOSPC) { 3465 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3466 struct btrfs_block_group *sys_bg; 3467 3468 sys_bg = btrfs_create_chunk(trans, sys_flags); 3469 if (IS_ERR(sys_bg)) { 3470 ret = PTR_ERR(sys_bg); 3471 btrfs_abort_transaction(trans, ret); 3472 goto out; 3473 } 3474 3475 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3476 if (ret) { 3477 btrfs_abort_transaction(trans, ret); 3478 goto out; 3479 } 3480 3481 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3482 if (ret) { 3483 btrfs_abort_transaction(trans, ret); 3484 goto out; 3485 } 3486 } else if (ret) { 3487 btrfs_abort_transaction(trans, ret); 3488 goto out; 3489 } 3490 out: 3491 btrfs_trans_release_chunk_metadata(trans); 3492 3493 return ret; 3494 } 3495 3496 /* 3497 * Chunk allocation is done in 2 phases: 3498 * 3499 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3500 * the chunk, the chunk mapping, create its block group and add the items 3501 * that belong in the chunk btree to it - more specifically, we need to 3502 * update device items in the chunk btree and add a new chunk item to it. 3503 * 3504 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3505 * group item to the extent btree and the device extent items to the devices 3506 * btree. 3507 * 3508 * This is done to prevent deadlocks. For example when COWing a node from the 3509 * extent btree we are holding a write lock on the node's parent and if we 3510 * trigger chunk allocation and attempted to insert the new block group item 3511 * in the extent btree right way, we could deadlock because the path for the 3512 * insertion can include that parent node. At first glance it seems impossible 3513 * to trigger chunk allocation after starting a transaction since tasks should 3514 * reserve enough transaction units (metadata space), however while that is true 3515 * most of the time, chunk allocation may still be triggered for several reasons: 3516 * 3517 * 1) When reserving metadata, we check if there is enough free space in the 3518 * metadata space_info and therefore don't trigger allocation of a new chunk. 3519 * However later when the task actually tries to COW an extent buffer from 3520 * the extent btree or from the device btree for example, it is forced to 3521 * allocate a new block group (chunk) because the only one that had enough 3522 * free space was just turned to RO mode by a running scrub for example (or 3523 * device replace, block group reclaim thread, etc), so we can not use it 3524 * for allocating an extent and end up being forced to allocate a new one; 3525 * 3526 * 2) Because we only check that the metadata space_info has enough free bytes, 3527 * we end up not allocating a new metadata chunk in that case. However if 3528 * the filesystem was mounted in degraded mode, none of the existing block 3529 * groups might be suitable for extent allocation due to their incompatible 3530 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3531 * use a RAID1 profile, in degraded mode using a single device). In this case 3532 * when the task attempts to COW some extent buffer of the extent btree for 3533 * example, it will trigger allocation of a new metadata block group with a 3534 * suitable profile (SINGLE profile in the example of the degraded mount of 3535 * the RAID1 filesystem); 3536 * 3537 * 3) The task has reserved enough transaction units / metadata space, but when 3538 * it attempts to COW an extent buffer from the extent or device btree for 3539 * example, it does not find any free extent in any metadata block group, 3540 * therefore forced to try to allocate a new metadata block group. 3541 * This is because some other task allocated all available extents in the 3542 * meanwhile - this typically happens with tasks that don't reserve space 3543 * properly, either intentionally or as a bug. One example where this is 3544 * done intentionally is fsync, as it does not reserve any transaction units 3545 * and ends up allocating a variable number of metadata extents for log 3546 * tree extent buffers; 3547 * 3548 * 4) The task has reserved enough transaction units / metadata space, but right 3549 * before it tries to allocate the last extent buffer it needs, a discard 3550 * operation comes in and, temporarily, removes the last free space entry from 3551 * the only metadata block group that had free space (discard starts by 3552 * removing a free space entry from a block group, then does the discard 3553 * operation and, once it's done, it adds back the free space entry to the 3554 * block group). 3555 * 3556 * We also need this 2 phases setup when adding a device to a filesystem with 3557 * a seed device - we must create new metadata and system chunks without adding 3558 * any of the block group items to the chunk, extent and device btrees. If we 3559 * did not do it this way, we would get ENOSPC when attempting to update those 3560 * btrees, since all the chunks from the seed device are read-only. 3561 * 3562 * Phase 1 does the updates and insertions to the chunk btree because if we had 3563 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3564 * parallel, we risk having too many system chunks allocated by many tasks if 3565 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3566 * extreme case this leads to exhaustion of the system chunk array in the 3567 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3568 * and with RAID filesystems (so we have more device items in the chunk btree). 3569 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3570 * the system chunk array due to concurrent allocations") provides more details. 3571 * 3572 * Allocation of system chunks does not happen through this function. A task that 3573 * needs to update the chunk btree (the only btree that uses system chunks), must 3574 * preallocate chunk space by calling either check_system_chunk() or 3575 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3576 * metadata chunk or when removing a chunk, while the later is used before doing 3577 * a modification to the chunk btree - use cases for the later are adding, 3578 * removing and resizing a device as well as relocation of a system chunk. 3579 * See the comment below for more details. 3580 * 3581 * The reservation of system space, done through check_system_chunk(), as well 3582 * as all the updates and insertions into the chunk btree must be done while 3583 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3584 * an extent buffer from the chunks btree we never trigger allocation of a new 3585 * system chunk, which would result in a deadlock (trying to lock twice an 3586 * extent buffer of the chunk btree, first time before triggering the chunk 3587 * allocation and the second time during chunk allocation while attempting to 3588 * update the chunks btree). The system chunk array is also updated while holding 3589 * that mutex. The same logic applies to removing chunks - we must reserve system 3590 * space, update the chunk btree and the system chunk array in the superblock 3591 * while holding fs_info->chunk_mutex. 3592 * 3593 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3594 * 3595 * If @force is CHUNK_ALLOC_FORCE: 3596 * - return 1 if it successfully allocates a chunk, 3597 * - return errors including -ENOSPC otherwise. 3598 * If @force is NOT CHUNK_ALLOC_FORCE: 3599 * - return 0 if it doesn't need to allocate a new chunk, 3600 * - return 1 if it successfully allocates a chunk, 3601 * - return errors including -ENOSPC otherwise. 3602 */ 3603 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3604 enum btrfs_chunk_alloc_enum force) 3605 { 3606 struct btrfs_fs_info *fs_info = trans->fs_info; 3607 struct btrfs_space_info *space_info; 3608 bool wait_for_alloc = false; 3609 bool should_alloc = false; 3610 int ret = 0; 3611 3612 /* Don't re-enter if we're already allocating a chunk */ 3613 if (trans->allocating_chunk) 3614 return -ENOSPC; 3615 /* 3616 * Allocation of system chunks can not happen through this path, as we 3617 * could end up in a deadlock if we are allocating a data or metadata 3618 * chunk and there is another task modifying the chunk btree. 3619 * 3620 * This is because while we are holding the chunk mutex, we will attempt 3621 * to add the new chunk item to the chunk btree or update an existing 3622 * device item in the chunk btree, while the other task that is modifying 3623 * the chunk btree is attempting to COW an extent buffer while holding a 3624 * lock on it and on its parent - if the COW operation triggers a system 3625 * chunk allocation, then we can deadlock because we are holding the 3626 * chunk mutex and we may need to access that extent buffer or its parent 3627 * in order to add the chunk item or update a device item. 3628 * 3629 * Tasks that want to modify the chunk tree should reserve system space 3630 * before updating the chunk btree, by calling either 3631 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 3632 * It's possible that after a task reserves the space, it still ends up 3633 * here - this happens in the cases described above at do_chunk_alloc(). 3634 * The task will have to either retry or fail. 3635 */ 3636 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3637 return -ENOSPC; 3638 3639 space_info = btrfs_find_space_info(fs_info, flags); 3640 ASSERT(space_info); 3641 3642 do { 3643 spin_lock(&space_info->lock); 3644 if (force < space_info->force_alloc) 3645 force = space_info->force_alloc; 3646 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3647 if (space_info->full) { 3648 /* No more free physical space */ 3649 if (should_alloc) 3650 ret = -ENOSPC; 3651 else 3652 ret = 0; 3653 spin_unlock(&space_info->lock); 3654 return ret; 3655 } else if (!should_alloc) { 3656 spin_unlock(&space_info->lock); 3657 return 0; 3658 } else if (space_info->chunk_alloc) { 3659 /* 3660 * Someone is already allocating, so we need to block 3661 * until this someone is finished and then loop to 3662 * recheck if we should continue with our allocation 3663 * attempt. 3664 */ 3665 wait_for_alloc = true; 3666 spin_unlock(&space_info->lock); 3667 mutex_lock(&fs_info->chunk_mutex); 3668 mutex_unlock(&fs_info->chunk_mutex); 3669 } else { 3670 /* Proceed with allocation */ 3671 space_info->chunk_alloc = 1; 3672 wait_for_alloc = false; 3673 spin_unlock(&space_info->lock); 3674 } 3675 3676 cond_resched(); 3677 } while (wait_for_alloc); 3678 3679 mutex_lock(&fs_info->chunk_mutex); 3680 trans->allocating_chunk = true; 3681 3682 /* 3683 * If we have mixed data/metadata chunks we want to make sure we keep 3684 * allocating mixed chunks instead of individual chunks. 3685 */ 3686 if (btrfs_mixed_space_info(space_info)) 3687 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3688 3689 /* 3690 * if we're doing a data chunk, go ahead and make sure that 3691 * we keep a reasonable number of metadata chunks allocated in the 3692 * FS as well. 3693 */ 3694 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3695 fs_info->data_chunk_allocations++; 3696 if (!(fs_info->data_chunk_allocations % 3697 fs_info->metadata_ratio)) 3698 force_metadata_allocation(fs_info); 3699 } 3700 3701 ret = do_chunk_alloc(trans, flags); 3702 trans->allocating_chunk = false; 3703 3704 spin_lock(&space_info->lock); 3705 if (ret < 0) { 3706 if (ret == -ENOSPC) 3707 space_info->full = 1; 3708 else 3709 goto out; 3710 } else { 3711 ret = 1; 3712 space_info->max_extent_size = 0; 3713 } 3714 3715 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3716 out: 3717 space_info->chunk_alloc = 0; 3718 spin_unlock(&space_info->lock); 3719 mutex_unlock(&fs_info->chunk_mutex); 3720 3721 return ret; 3722 } 3723 3724 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3725 { 3726 u64 num_dev; 3727 3728 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3729 if (!num_dev) 3730 num_dev = fs_info->fs_devices->rw_devices; 3731 3732 return num_dev; 3733 } 3734 3735 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 3736 u64 bytes, 3737 u64 type) 3738 { 3739 struct btrfs_fs_info *fs_info = trans->fs_info; 3740 struct btrfs_space_info *info; 3741 u64 left; 3742 int ret = 0; 3743 3744 /* 3745 * Needed because we can end up allocating a system chunk and for an 3746 * atomic and race free space reservation in the chunk block reserve. 3747 */ 3748 lockdep_assert_held(&fs_info->chunk_mutex); 3749 3750 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3751 spin_lock(&info->lock); 3752 left = info->total_bytes - btrfs_space_info_used(info, true); 3753 spin_unlock(&info->lock); 3754 3755 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3756 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3757 left, bytes, type); 3758 btrfs_dump_space_info(fs_info, info, 0, 0); 3759 } 3760 3761 if (left < bytes) { 3762 u64 flags = btrfs_system_alloc_profile(fs_info); 3763 struct btrfs_block_group *bg; 3764 3765 /* 3766 * Ignore failure to create system chunk. We might end up not 3767 * needing it, as we might not need to COW all nodes/leafs from 3768 * the paths we visit in the chunk tree (they were already COWed 3769 * or created in the current transaction for example). 3770 */ 3771 bg = btrfs_create_chunk(trans, flags); 3772 if (IS_ERR(bg)) { 3773 ret = PTR_ERR(bg); 3774 } else { 3775 /* 3776 * If we fail to add the chunk item here, we end up 3777 * trying again at phase 2 of chunk allocation, at 3778 * btrfs_create_pending_block_groups(). So ignore 3779 * any error here. An ENOSPC here could happen, due to 3780 * the cases described at do_chunk_alloc() - the system 3781 * block group we just created was just turned into RO 3782 * mode by a scrub for example, or a running discard 3783 * temporarily removed its free space entries, etc. 3784 */ 3785 btrfs_chunk_alloc_add_chunk_item(trans, bg); 3786 } 3787 } 3788 3789 if (!ret) { 3790 ret = btrfs_block_rsv_add(fs_info, 3791 &fs_info->chunk_block_rsv, 3792 bytes, BTRFS_RESERVE_NO_FLUSH); 3793 if (!ret) 3794 trans->chunk_bytes_reserved += bytes; 3795 } 3796 } 3797 3798 /* 3799 * Reserve space in the system space for allocating or removing a chunk. 3800 * The caller must be holding fs_info->chunk_mutex. 3801 */ 3802 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3803 { 3804 struct btrfs_fs_info *fs_info = trans->fs_info; 3805 const u64 num_devs = get_profile_num_devs(fs_info, type); 3806 u64 bytes; 3807 3808 /* num_devs device items to update and 1 chunk item to add or remove. */ 3809 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 3810 btrfs_calc_insert_metadata_size(fs_info, 1); 3811 3812 reserve_chunk_space(trans, bytes, type); 3813 } 3814 3815 /* 3816 * Reserve space in the system space, if needed, for doing a modification to the 3817 * chunk btree. 3818 * 3819 * @trans: A transaction handle. 3820 * @is_item_insertion: Indicate if the modification is for inserting a new item 3821 * in the chunk btree or if it's for the deletion or update 3822 * of an existing item. 3823 * 3824 * This is used in a context where we need to update the chunk btree outside 3825 * block group allocation and removal, to avoid a deadlock with a concurrent 3826 * task that is allocating a metadata or data block group and therefore needs to 3827 * update the chunk btree while holding the chunk mutex. After the update to the 3828 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 3829 * 3830 */ 3831 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 3832 bool is_item_insertion) 3833 { 3834 struct btrfs_fs_info *fs_info = trans->fs_info; 3835 u64 bytes; 3836 3837 if (is_item_insertion) 3838 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 3839 else 3840 bytes = btrfs_calc_metadata_size(fs_info, 1); 3841 3842 mutex_lock(&fs_info->chunk_mutex); 3843 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 3844 mutex_unlock(&fs_info->chunk_mutex); 3845 } 3846 3847 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3848 { 3849 struct btrfs_block_group *block_group; 3850 u64 last = 0; 3851 3852 while (1) { 3853 struct inode *inode; 3854 3855 block_group = btrfs_lookup_first_block_group(info, last); 3856 while (block_group) { 3857 btrfs_wait_block_group_cache_done(block_group); 3858 spin_lock(&block_group->lock); 3859 if (block_group->iref) 3860 break; 3861 spin_unlock(&block_group->lock); 3862 block_group = btrfs_next_block_group(block_group); 3863 } 3864 if (!block_group) { 3865 if (last == 0) 3866 break; 3867 last = 0; 3868 continue; 3869 } 3870 3871 inode = block_group->inode; 3872 block_group->iref = 0; 3873 block_group->inode = NULL; 3874 spin_unlock(&block_group->lock); 3875 ASSERT(block_group->io_ctl.inode == NULL); 3876 iput(inode); 3877 last = block_group->start + block_group->length; 3878 btrfs_put_block_group(block_group); 3879 } 3880 } 3881 3882 /* 3883 * Must be called only after stopping all workers, since we could have block 3884 * group caching kthreads running, and therefore they could race with us if we 3885 * freed the block groups before stopping them. 3886 */ 3887 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3888 { 3889 struct btrfs_block_group *block_group; 3890 struct btrfs_space_info *space_info; 3891 struct btrfs_caching_control *caching_ctl; 3892 struct rb_node *n; 3893 3894 spin_lock(&info->block_group_cache_lock); 3895 while (!list_empty(&info->caching_block_groups)) { 3896 caching_ctl = list_entry(info->caching_block_groups.next, 3897 struct btrfs_caching_control, list); 3898 list_del(&caching_ctl->list); 3899 btrfs_put_caching_control(caching_ctl); 3900 } 3901 spin_unlock(&info->block_group_cache_lock); 3902 3903 spin_lock(&info->unused_bgs_lock); 3904 while (!list_empty(&info->unused_bgs)) { 3905 block_group = list_first_entry(&info->unused_bgs, 3906 struct btrfs_block_group, 3907 bg_list); 3908 list_del_init(&block_group->bg_list); 3909 btrfs_put_block_group(block_group); 3910 } 3911 3912 while (!list_empty(&info->reclaim_bgs)) { 3913 block_group = list_first_entry(&info->reclaim_bgs, 3914 struct btrfs_block_group, 3915 bg_list); 3916 list_del_init(&block_group->bg_list); 3917 btrfs_put_block_group(block_group); 3918 } 3919 spin_unlock(&info->unused_bgs_lock); 3920 3921 spin_lock(&info->zone_active_bgs_lock); 3922 while (!list_empty(&info->zone_active_bgs)) { 3923 block_group = list_first_entry(&info->zone_active_bgs, 3924 struct btrfs_block_group, 3925 active_bg_list); 3926 list_del_init(&block_group->active_bg_list); 3927 btrfs_put_block_group(block_group); 3928 } 3929 spin_unlock(&info->zone_active_bgs_lock); 3930 3931 spin_lock(&info->block_group_cache_lock); 3932 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3933 block_group = rb_entry(n, struct btrfs_block_group, 3934 cache_node); 3935 rb_erase(&block_group->cache_node, 3936 &info->block_group_cache_tree); 3937 RB_CLEAR_NODE(&block_group->cache_node); 3938 spin_unlock(&info->block_group_cache_lock); 3939 3940 down_write(&block_group->space_info->groups_sem); 3941 list_del(&block_group->list); 3942 up_write(&block_group->space_info->groups_sem); 3943 3944 /* 3945 * We haven't cached this block group, which means we could 3946 * possibly have excluded extents on this block group. 3947 */ 3948 if (block_group->cached == BTRFS_CACHE_NO || 3949 block_group->cached == BTRFS_CACHE_ERROR) 3950 btrfs_free_excluded_extents(block_group); 3951 3952 btrfs_remove_free_space_cache(block_group); 3953 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3954 ASSERT(list_empty(&block_group->dirty_list)); 3955 ASSERT(list_empty(&block_group->io_list)); 3956 ASSERT(list_empty(&block_group->bg_list)); 3957 ASSERT(refcount_read(&block_group->refs) == 1); 3958 ASSERT(block_group->swap_extents == 0); 3959 btrfs_put_block_group(block_group); 3960 3961 spin_lock(&info->block_group_cache_lock); 3962 } 3963 spin_unlock(&info->block_group_cache_lock); 3964 3965 btrfs_release_global_block_rsv(info); 3966 3967 while (!list_empty(&info->space_info)) { 3968 space_info = list_entry(info->space_info.next, 3969 struct btrfs_space_info, 3970 list); 3971 3972 /* 3973 * Do not hide this behind enospc_debug, this is actually 3974 * important and indicates a real bug if this happens. 3975 */ 3976 if (WARN_ON(space_info->bytes_pinned > 0 || 3977 space_info->bytes_reserved > 0 || 3978 space_info->bytes_may_use > 0)) 3979 btrfs_dump_space_info(info, space_info, 0, 0); 3980 WARN_ON(space_info->reclaim_size > 0); 3981 list_del(&space_info->list); 3982 btrfs_sysfs_remove_space_info(space_info); 3983 } 3984 return 0; 3985 } 3986 3987 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 3988 { 3989 atomic_inc(&cache->frozen); 3990 } 3991 3992 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 3993 { 3994 struct btrfs_fs_info *fs_info = block_group->fs_info; 3995 struct extent_map_tree *em_tree; 3996 struct extent_map *em; 3997 bool cleanup; 3998 3999 spin_lock(&block_group->lock); 4000 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4001 block_group->removed); 4002 spin_unlock(&block_group->lock); 4003 4004 if (cleanup) { 4005 em_tree = &fs_info->mapping_tree; 4006 write_lock(&em_tree->lock); 4007 em = lookup_extent_mapping(em_tree, block_group->start, 4008 1); 4009 BUG_ON(!em); /* logic error, can't happen */ 4010 remove_extent_mapping(em_tree, em); 4011 write_unlock(&em_tree->lock); 4012 4013 /* once for us and once for the tree */ 4014 free_extent_map(em); 4015 free_extent_map(em); 4016 4017 /* 4018 * We may have left one free space entry and other possible 4019 * tasks trimming this block group have left 1 entry each one. 4020 * Free them if any. 4021 */ 4022 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 4023 } 4024 } 4025 4026 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4027 { 4028 bool ret = true; 4029 4030 spin_lock(&bg->lock); 4031 if (bg->ro) 4032 ret = false; 4033 else 4034 bg->swap_extents++; 4035 spin_unlock(&bg->lock); 4036 4037 return ret; 4038 } 4039 4040 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4041 { 4042 spin_lock(&bg->lock); 4043 ASSERT(!bg->ro); 4044 ASSERT(bg->swap_extents >= amount); 4045 bg->swap_extents -= amount; 4046 spin_unlock(&bg->lock); 4047 } 4048