xref: /linux/fs/btrfs/block-group.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 
19 /*
20  * Return target flags in extended format or 0 if restripe for this chunk_type
21  * is not in progress
22  *
23  * Should be called with balance_lock held
24  */
25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
26 {
27 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
28 	u64 target = 0;
29 
30 	if (!bctl)
31 		return 0;
32 
33 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
34 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
35 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
36 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
37 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
38 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
39 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
40 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
41 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
42 	}
43 
44 	return target;
45 }
46 
47 /*
48  * @flags: available profiles in extended format (see ctree.h)
49  *
50  * Return reduced profile in chunk format.  If profile changing is in progress
51  * (either running or paused) picks the target profile (if it's already
52  * available), otherwise falls back to plain reducing.
53  */
54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
55 {
56 	u64 num_devices = fs_info->fs_devices->rw_devices;
57 	u64 target;
58 	u64 raid_type;
59 	u64 allowed = 0;
60 
61 	/*
62 	 * See if restripe for this chunk_type is in progress, if so try to
63 	 * reduce to the target profile
64 	 */
65 	spin_lock(&fs_info->balance_lock);
66 	target = get_restripe_target(fs_info, flags);
67 	if (target) {
68 		/* Pick target profile only if it's already available */
69 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
70 			spin_unlock(&fs_info->balance_lock);
71 			return extended_to_chunk(target);
72 		}
73 	}
74 	spin_unlock(&fs_info->balance_lock);
75 
76 	/* First, mask out the RAID levels which aren't possible */
77 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
78 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
79 			allowed |= btrfs_raid_array[raid_type].bg_flag;
80 	}
81 	allowed &= flags;
82 
83 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
84 		allowed = BTRFS_BLOCK_GROUP_RAID6;
85 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
86 		allowed = BTRFS_BLOCK_GROUP_RAID5;
87 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
88 		allowed = BTRFS_BLOCK_GROUP_RAID10;
89 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
90 		allowed = BTRFS_BLOCK_GROUP_RAID1;
91 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
92 		allowed = BTRFS_BLOCK_GROUP_RAID0;
93 
94 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
95 
96 	return extended_to_chunk(flags | allowed);
97 }
98 
99 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
100 {
101 	unsigned seq;
102 	u64 flags;
103 
104 	do {
105 		flags = orig_flags;
106 		seq = read_seqbegin(&fs_info->profiles_lock);
107 
108 		if (flags & BTRFS_BLOCK_GROUP_DATA)
109 			flags |= fs_info->avail_data_alloc_bits;
110 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
111 			flags |= fs_info->avail_system_alloc_bits;
112 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
113 			flags |= fs_info->avail_metadata_alloc_bits;
114 	} while (read_seqretry(&fs_info->profiles_lock, seq));
115 
116 	return btrfs_reduce_alloc_profile(fs_info, flags);
117 }
118 
119 void btrfs_get_block_group(struct btrfs_block_group *cache)
120 {
121 	atomic_inc(&cache->count);
122 }
123 
124 void btrfs_put_block_group(struct btrfs_block_group *cache)
125 {
126 	if (atomic_dec_and_test(&cache->count)) {
127 		WARN_ON(cache->pinned > 0);
128 		WARN_ON(cache->reserved > 0);
129 
130 		/*
131 		 * A block_group shouldn't be on the discard_list anymore.
132 		 * Remove the block_group from the discard_list to prevent us
133 		 * from causing a panic due to NULL pointer dereference.
134 		 */
135 		if (WARN_ON(!list_empty(&cache->discard_list)))
136 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
137 						  cache);
138 
139 		/*
140 		 * If not empty, someone is still holding mutex of
141 		 * full_stripe_lock, which can only be released by caller.
142 		 * And it will definitely cause use-after-free when caller
143 		 * tries to release full stripe lock.
144 		 *
145 		 * No better way to resolve, but only to warn.
146 		 */
147 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
148 		kfree(cache->free_space_ctl);
149 		kfree(cache);
150 	}
151 }
152 
153 /*
154  * This adds the block group to the fs_info rb tree for the block group cache
155  */
156 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
157 				       struct btrfs_block_group *block_group)
158 {
159 	struct rb_node **p;
160 	struct rb_node *parent = NULL;
161 	struct btrfs_block_group *cache;
162 
163 	ASSERT(block_group->length != 0);
164 
165 	spin_lock(&info->block_group_cache_lock);
166 	p = &info->block_group_cache_tree.rb_node;
167 
168 	while (*p) {
169 		parent = *p;
170 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
171 		if (block_group->start < cache->start) {
172 			p = &(*p)->rb_left;
173 		} else if (block_group->start > cache->start) {
174 			p = &(*p)->rb_right;
175 		} else {
176 			spin_unlock(&info->block_group_cache_lock);
177 			return -EEXIST;
178 		}
179 	}
180 
181 	rb_link_node(&block_group->cache_node, parent, p);
182 	rb_insert_color(&block_group->cache_node,
183 			&info->block_group_cache_tree);
184 
185 	if (info->first_logical_byte > block_group->start)
186 		info->first_logical_byte = block_group->start;
187 
188 	spin_unlock(&info->block_group_cache_lock);
189 
190 	return 0;
191 }
192 
193 /*
194  * This will return the block group at or after bytenr if contains is 0, else
195  * it will return the block group that contains the bytenr
196  */
197 static struct btrfs_block_group *block_group_cache_tree_search(
198 		struct btrfs_fs_info *info, u64 bytenr, int contains)
199 {
200 	struct btrfs_block_group *cache, *ret = NULL;
201 	struct rb_node *n;
202 	u64 end, start;
203 
204 	spin_lock(&info->block_group_cache_lock);
205 	n = info->block_group_cache_tree.rb_node;
206 
207 	while (n) {
208 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
209 		end = cache->start + cache->length - 1;
210 		start = cache->start;
211 
212 		if (bytenr < start) {
213 			if (!contains && (!ret || start < ret->start))
214 				ret = cache;
215 			n = n->rb_left;
216 		} else if (bytenr > start) {
217 			if (contains && bytenr <= end) {
218 				ret = cache;
219 				break;
220 			}
221 			n = n->rb_right;
222 		} else {
223 			ret = cache;
224 			break;
225 		}
226 	}
227 	if (ret) {
228 		btrfs_get_block_group(ret);
229 		if (bytenr == 0 && info->first_logical_byte > ret->start)
230 			info->first_logical_byte = ret->start;
231 	}
232 	spin_unlock(&info->block_group_cache_lock);
233 
234 	return ret;
235 }
236 
237 /*
238  * Return the block group that starts at or after bytenr
239  */
240 struct btrfs_block_group *btrfs_lookup_first_block_group(
241 		struct btrfs_fs_info *info, u64 bytenr)
242 {
243 	return block_group_cache_tree_search(info, bytenr, 0);
244 }
245 
246 /*
247  * Return the block group that contains the given bytenr
248  */
249 struct btrfs_block_group *btrfs_lookup_block_group(
250 		struct btrfs_fs_info *info, u64 bytenr)
251 {
252 	return block_group_cache_tree_search(info, bytenr, 1);
253 }
254 
255 struct btrfs_block_group *btrfs_next_block_group(
256 		struct btrfs_block_group *cache)
257 {
258 	struct btrfs_fs_info *fs_info = cache->fs_info;
259 	struct rb_node *node;
260 
261 	spin_lock(&fs_info->block_group_cache_lock);
262 
263 	/* If our block group was removed, we need a full search. */
264 	if (RB_EMPTY_NODE(&cache->cache_node)) {
265 		const u64 next_bytenr = cache->start + cache->length;
266 
267 		spin_unlock(&fs_info->block_group_cache_lock);
268 		btrfs_put_block_group(cache);
269 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
270 	}
271 	node = rb_next(&cache->cache_node);
272 	btrfs_put_block_group(cache);
273 	if (node) {
274 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
275 		btrfs_get_block_group(cache);
276 	} else
277 		cache = NULL;
278 	spin_unlock(&fs_info->block_group_cache_lock);
279 	return cache;
280 }
281 
282 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
283 {
284 	struct btrfs_block_group *bg;
285 	bool ret = true;
286 
287 	bg = btrfs_lookup_block_group(fs_info, bytenr);
288 	if (!bg)
289 		return false;
290 
291 	spin_lock(&bg->lock);
292 	if (bg->ro)
293 		ret = false;
294 	else
295 		atomic_inc(&bg->nocow_writers);
296 	spin_unlock(&bg->lock);
297 
298 	/* No put on block group, done by btrfs_dec_nocow_writers */
299 	if (!ret)
300 		btrfs_put_block_group(bg);
301 
302 	return ret;
303 }
304 
305 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
306 {
307 	struct btrfs_block_group *bg;
308 
309 	bg = btrfs_lookup_block_group(fs_info, bytenr);
310 	ASSERT(bg);
311 	if (atomic_dec_and_test(&bg->nocow_writers))
312 		wake_up_var(&bg->nocow_writers);
313 	/*
314 	 * Once for our lookup and once for the lookup done by a previous call
315 	 * to btrfs_inc_nocow_writers()
316 	 */
317 	btrfs_put_block_group(bg);
318 	btrfs_put_block_group(bg);
319 }
320 
321 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
322 {
323 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
324 }
325 
326 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
327 					const u64 start)
328 {
329 	struct btrfs_block_group *bg;
330 
331 	bg = btrfs_lookup_block_group(fs_info, start);
332 	ASSERT(bg);
333 	if (atomic_dec_and_test(&bg->reservations))
334 		wake_up_var(&bg->reservations);
335 	btrfs_put_block_group(bg);
336 }
337 
338 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
339 {
340 	struct btrfs_space_info *space_info = bg->space_info;
341 
342 	ASSERT(bg->ro);
343 
344 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
345 		return;
346 
347 	/*
348 	 * Our block group is read only but before we set it to read only,
349 	 * some task might have had allocated an extent from it already, but it
350 	 * has not yet created a respective ordered extent (and added it to a
351 	 * root's list of ordered extents).
352 	 * Therefore wait for any task currently allocating extents, since the
353 	 * block group's reservations counter is incremented while a read lock
354 	 * on the groups' semaphore is held and decremented after releasing
355 	 * the read access on that semaphore and creating the ordered extent.
356 	 */
357 	down_write(&space_info->groups_sem);
358 	up_write(&space_info->groups_sem);
359 
360 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
361 }
362 
363 struct btrfs_caching_control *btrfs_get_caching_control(
364 		struct btrfs_block_group *cache)
365 {
366 	struct btrfs_caching_control *ctl;
367 
368 	spin_lock(&cache->lock);
369 	if (!cache->caching_ctl) {
370 		spin_unlock(&cache->lock);
371 		return NULL;
372 	}
373 
374 	ctl = cache->caching_ctl;
375 	refcount_inc(&ctl->count);
376 	spin_unlock(&cache->lock);
377 	return ctl;
378 }
379 
380 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
381 {
382 	if (refcount_dec_and_test(&ctl->count))
383 		kfree(ctl);
384 }
385 
386 /*
387  * When we wait for progress in the block group caching, its because our
388  * allocation attempt failed at least once.  So, we must sleep and let some
389  * progress happen before we try again.
390  *
391  * This function will sleep at least once waiting for new free space to show
392  * up, and then it will check the block group free space numbers for our min
393  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
394  * a free extent of a given size, but this is a good start.
395  *
396  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
397  * any of the information in this block group.
398  */
399 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
400 					   u64 num_bytes)
401 {
402 	struct btrfs_caching_control *caching_ctl;
403 
404 	caching_ctl = btrfs_get_caching_control(cache);
405 	if (!caching_ctl)
406 		return;
407 
408 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
409 		   (cache->free_space_ctl->free_space >= num_bytes));
410 
411 	btrfs_put_caching_control(caching_ctl);
412 }
413 
414 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
415 {
416 	struct btrfs_caching_control *caching_ctl;
417 	int ret = 0;
418 
419 	caching_ctl = btrfs_get_caching_control(cache);
420 	if (!caching_ctl)
421 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
422 
423 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
424 	if (cache->cached == BTRFS_CACHE_ERROR)
425 		ret = -EIO;
426 	btrfs_put_caching_control(caching_ctl);
427 	return ret;
428 }
429 
430 #ifdef CONFIG_BTRFS_DEBUG
431 static void fragment_free_space(struct btrfs_block_group *block_group)
432 {
433 	struct btrfs_fs_info *fs_info = block_group->fs_info;
434 	u64 start = block_group->start;
435 	u64 len = block_group->length;
436 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
437 		fs_info->nodesize : fs_info->sectorsize;
438 	u64 step = chunk << 1;
439 
440 	while (len > chunk) {
441 		btrfs_remove_free_space(block_group, start, chunk);
442 		start += step;
443 		if (len < step)
444 			len = 0;
445 		else
446 			len -= step;
447 	}
448 }
449 #endif
450 
451 /*
452  * This is only called by btrfs_cache_block_group, since we could have freed
453  * extents we need to check the pinned_extents for any extents that can't be
454  * used yet since their free space will be released as soon as the transaction
455  * commits.
456  */
457 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
458 {
459 	struct btrfs_fs_info *info = block_group->fs_info;
460 	u64 extent_start, extent_end, size, total_added = 0;
461 	int ret;
462 
463 	while (start < end) {
464 		ret = find_first_extent_bit(&info->excluded_extents, start,
465 					    &extent_start, &extent_end,
466 					    EXTENT_DIRTY | EXTENT_UPTODATE,
467 					    NULL);
468 		if (ret)
469 			break;
470 
471 		if (extent_start <= start) {
472 			start = extent_end + 1;
473 		} else if (extent_start > start && extent_start < end) {
474 			size = extent_start - start;
475 			total_added += size;
476 			ret = btrfs_add_free_space_async_trimmed(block_group,
477 								 start, size);
478 			BUG_ON(ret); /* -ENOMEM or logic error */
479 			start = extent_end + 1;
480 		} else {
481 			break;
482 		}
483 	}
484 
485 	if (start < end) {
486 		size = end - start;
487 		total_added += size;
488 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
489 							 size);
490 		BUG_ON(ret); /* -ENOMEM or logic error */
491 	}
492 
493 	return total_added;
494 }
495 
496 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
497 {
498 	struct btrfs_block_group *block_group = caching_ctl->block_group;
499 	struct btrfs_fs_info *fs_info = block_group->fs_info;
500 	struct btrfs_root *extent_root = fs_info->extent_root;
501 	struct btrfs_path *path;
502 	struct extent_buffer *leaf;
503 	struct btrfs_key key;
504 	u64 total_found = 0;
505 	u64 last = 0;
506 	u32 nritems;
507 	int ret;
508 	bool wakeup = true;
509 
510 	path = btrfs_alloc_path();
511 	if (!path)
512 		return -ENOMEM;
513 
514 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
515 
516 #ifdef CONFIG_BTRFS_DEBUG
517 	/*
518 	 * If we're fragmenting we don't want to make anybody think we can
519 	 * allocate from this block group until we've had a chance to fragment
520 	 * the free space.
521 	 */
522 	if (btrfs_should_fragment_free_space(block_group))
523 		wakeup = false;
524 #endif
525 	/*
526 	 * We don't want to deadlock with somebody trying to allocate a new
527 	 * extent for the extent root while also trying to search the extent
528 	 * root to add free space.  So we skip locking and search the commit
529 	 * root, since its read-only
530 	 */
531 	path->skip_locking = 1;
532 	path->search_commit_root = 1;
533 	path->reada = READA_FORWARD;
534 
535 	key.objectid = last;
536 	key.offset = 0;
537 	key.type = BTRFS_EXTENT_ITEM_KEY;
538 
539 next:
540 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
541 	if (ret < 0)
542 		goto out;
543 
544 	leaf = path->nodes[0];
545 	nritems = btrfs_header_nritems(leaf);
546 
547 	while (1) {
548 		if (btrfs_fs_closing(fs_info) > 1) {
549 			last = (u64)-1;
550 			break;
551 		}
552 
553 		if (path->slots[0] < nritems) {
554 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
555 		} else {
556 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
557 			if (ret)
558 				break;
559 
560 			if (need_resched() ||
561 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
562 				if (wakeup)
563 					caching_ctl->progress = last;
564 				btrfs_release_path(path);
565 				up_read(&fs_info->commit_root_sem);
566 				mutex_unlock(&caching_ctl->mutex);
567 				cond_resched();
568 				mutex_lock(&caching_ctl->mutex);
569 				down_read(&fs_info->commit_root_sem);
570 				goto next;
571 			}
572 
573 			ret = btrfs_next_leaf(extent_root, path);
574 			if (ret < 0)
575 				goto out;
576 			if (ret)
577 				break;
578 			leaf = path->nodes[0];
579 			nritems = btrfs_header_nritems(leaf);
580 			continue;
581 		}
582 
583 		if (key.objectid < last) {
584 			key.objectid = last;
585 			key.offset = 0;
586 			key.type = BTRFS_EXTENT_ITEM_KEY;
587 
588 			if (wakeup)
589 				caching_ctl->progress = last;
590 			btrfs_release_path(path);
591 			goto next;
592 		}
593 
594 		if (key.objectid < block_group->start) {
595 			path->slots[0]++;
596 			continue;
597 		}
598 
599 		if (key.objectid >= block_group->start + block_group->length)
600 			break;
601 
602 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
603 		    key.type == BTRFS_METADATA_ITEM_KEY) {
604 			total_found += add_new_free_space(block_group, last,
605 							  key.objectid);
606 			if (key.type == BTRFS_METADATA_ITEM_KEY)
607 				last = key.objectid +
608 					fs_info->nodesize;
609 			else
610 				last = key.objectid + key.offset;
611 
612 			if (total_found > CACHING_CTL_WAKE_UP) {
613 				total_found = 0;
614 				if (wakeup)
615 					wake_up(&caching_ctl->wait);
616 			}
617 		}
618 		path->slots[0]++;
619 	}
620 	ret = 0;
621 
622 	total_found += add_new_free_space(block_group, last,
623 				block_group->start + block_group->length);
624 	caching_ctl->progress = (u64)-1;
625 
626 out:
627 	btrfs_free_path(path);
628 	return ret;
629 }
630 
631 static noinline void caching_thread(struct btrfs_work *work)
632 {
633 	struct btrfs_block_group *block_group;
634 	struct btrfs_fs_info *fs_info;
635 	struct btrfs_caching_control *caching_ctl;
636 	int ret;
637 
638 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
639 	block_group = caching_ctl->block_group;
640 	fs_info = block_group->fs_info;
641 
642 	mutex_lock(&caching_ctl->mutex);
643 	down_read(&fs_info->commit_root_sem);
644 
645 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
646 		ret = load_free_space_tree(caching_ctl);
647 	else
648 		ret = load_extent_tree_free(caching_ctl);
649 
650 	spin_lock(&block_group->lock);
651 	block_group->caching_ctl = NULL;
652 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
653 	spin_unlock(&block_group->lock);
654 
655 #ifdef CONFIG_BTRFS_DEBUG
656 	if (btrfs_should_fragment_free_space(block_group)) {
657 		u64 bytes_used;
658 
659 		spin_lock(&block_group->space_info->lock);
660 		spin_lock(&block_group->lock);
661 		bytes_used = block_group->length - block_group->used;
662 		block_group->space_info->bytes_used += bytes_used >> 1;
663 		spin_unlock(&block_group->lock);
664 		spin_unlock(&block_group->space_info->lock);
665 		fragment_free_space(block_group);
666 	}
667 #endif
668 
669 	caching_ctl->progress = (u64)-1;
670 
671 	up_read(&fs_info->commit_root_sem);
672 	btrfs_free_excluded_extents(block_group);
673 	mutex_unlock(&caching_ctl->mutex);
674 
675 	wake_up(&caching_ctl->wait);
676 
677 	btrfs_put_caching_control(caching_ctl);
678 	btrfs_put_block_group(block_group);
679 }
680 
681 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
682 {
683 	DEFINE_WAIT(wait);
684 	struct btrfs_fs_info *fs_info = cache->fs_info;
685 	struct btrfs_caching_control *caching_ctl;
686 	int ret = 0;
687 
688 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
689 	if (!caching_ctl)
690 		return -ENOMEM;
691 
692 	INIT_LIST_HEAD(&caching_ctl->list);
693 	mutex_init(&caching_ctl->mutex);
694 	init_waitqueue_head(&caching_ctl->wait);
695 	caching_ctl->block_group = cache;
696 	caching_ctl->progress = cache->start;
697 	refcount_set(&caching_ctl->count, 1);
698 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
699 
700 	spin_lock(&cache->lock);
701 	/*
702 	 * This should be a rare occasion, but this could happen I think in the
703 	 * case where one thread starts to load the space cache info, and then
704 	 * some other thread starts a transaction commit which tries to do an
705 	 * allocation while the other thread is still loading the space cache
706 	 * info.  The previous loop should have kept us from choosing this block
707 	 * group, but if we've moved to the state where we will wait on caching
708 	 * block groups we need to first check if we're doing a fast load here,
709 	 * so we can wait for it to finish, otherwise we could end up allocating
710 	 * from a block group who's cache gets evicted for one reason or
711 	 * another.
712 	 */
713 	while (cache->cached == BTRFS_CACHE_FAST) {
714 		struct btrfs_caching_control *ctl;
715 
716 		ctl = cache->caching_ctl;
717 		refcount_inc(&ctl->count);
718 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
719 		spin_unlock(&cache->lock);
720 
721 		schedule();
722 
723 		finish_wait(&ctl->wait, &wait);
724 		btrfs_put_caching_control(ctl);
725 		spin_lock(&cache->lock);
726 	}
727 
728 	if (cache->cached != BTRFS_CACHE_NO) {
729 		spin_unlock(&cache->lock);
730 		kfree(caching_ctl);
731 		return 0;
732 	}
733 	WARN_ON(cache->caching_ctl);
734 	cache->caching_ctl = caching_ctl;
735 	cache->cached = BTRFS_CACHE_FAST;
736 	spin_unlock(&cache->lock);
737 
738 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
739 		mutex_lock(&caching_ctl->mutex);
740 		ret = load_free_space_cache(cache);
741 
742 		spin_lock(&cache->lock);
743 		if (ret == 1) {
744 			cache->caching_ctl = NULL;
745 			cache->cached = BTRFS_CACHE_FINISHED;
746 			cache->last_byte_to_unpin = (u64)-1;
747 			caching_ctl->progress = (u64)-1;
748 		} else {
749 			if (load_cache_only) {
750 				cache->caching_ctl = NULL;
751 				cache->cached = BTRFS_CACHE_NO;
752 			} else {
753 				cache->cached = BTRFS_CACHE_STARTED;
754 				cache->has_caching_ctl = 1;
755 			}
756 		}
757 		spin_unlock(&cache->lock);
758 #ifdef CONFIG_BTRFS_DEBUG
759 		if (ret == 1 &&
760 		    btrfs_should_fragment_free_space(cache)) {
761 			u64 bytes_used;
762 
763 			spin_lock(&cache->space_info->lock);
764 			spin_lock(&cache->lock);
765 			bytes_used = cache->length - cache->used;
766 			cache->space_info->bytes_used += bytes_used >> 1;
767 			spin_unlock(&cache->lock);
768 			spin_unlock(&cache->space_info->lock);
769 			fragment_free_space(cache);
770 		}
771 #endif
772 		mutex_unlock(&caching_ctl->mutex);
773 
774 		wake_up(&caching_ctl->wait);
775 		if (ret == 1) {
776 			btrfs_put_caching_control(caching_ctl);
777 			btrfs_free_excluded_extents(cache);
778 			return 0;
779 		}
780 	} else {
781 		/*
782 		 * We're either using the free space tree or no caching at all.
783 		 * Set cached to the appropriate value and wakeup any waiters.
784 		 */
785 		spin_lock(&cache->lock);
786 		if (load_cache_only) {
787 			cache->caching_ctl = NULL;
788 			cache->cached = BTRFS_CACHE_NO;
789 		} else {
790 			cache->cached = BTRFS_CACHE_STARTED;
791 			cache->has_caching_ctl = 1;
792 		}
793 		spin_unlock(&cache->lock);
794 		wake_up(&caching_ctl->wait);
795 	}
796 
797 	if (load_cache_only) {
798 		btrfs_put_caching_control(caching_ctl);
799 		return 0;
800 	}
801 
802 	down_write(&fs_info->commit_root_sem);
803 	refcount_inc(&caching_ctl->count);
804 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
805 	up_write(&fs_info->commit_root_sem);
806 
807 	btrfs_get_block_group(cache);
808 
809 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
810 
811 	return ret;
812 }
813 
814 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
815 {
816 	u64 extra_flags = chunk_to_extended(flags) &
817 				BTRFS_EXTENDED_PROFILE_MASK;
818 
819 	write_seqlock(&fs_info->profiles_lock);
820 	if (flags & BTRFS_BLOCK_GROUP_DATA)
821 		fs_info->avail_data_alloc_bits &= ~extra_flags;
822 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
823 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
824 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
825 		fs_info->avail_system_alloc_bits &= ~extra_flags;
826 	write_sequnlock(&fs_info->profiles_lock);
827 }
828 
829 /*
830  * Clear incompat bits for the following feature(s):
831  *
832  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
833  *            in the whole filesystem
834  *
835  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
836  */
837 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
838 {
839 	bool found_raid56 = false;
840 	bool found_raid1c34 = false;
841 
842 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
843 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
844 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
845 		struct list_head *head = &fs_info->space_info;
846 		struct btrfs_space_info *sinfo;
847 
848 		list_for_each_entry_rcu(sinfo, head, list) {
849 			down_read(&sinfo->groups_sem);
850 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
851 				found_raid56 = true;
852 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
853 				found_raid56 = true;
854 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
855 				found_raid1c34 = true;
856 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
857 				found_raid1c34 = true;
858 			up_read(&sinfo->groups_sem);
859 		}
860 		if (!found_raid56)
861 			btrfs_clear_fs_incompat(fs_info, RAID56);
862 		if (!found_raid1c34)
863 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
864 	}
865 }
866 
867 static int remove_block_group_item(struct btrfs_trans_handle *trans,
868 				   struct btrfs_path *path,
869 				   struct btrfs_block_group *block_group)
870 {
871 	struct btrfs_fs_info *fs_info = trans->fs_info;
872 	struct btrfs_root *root;
873 	struct btrfs_key key;
874 	int ret;
875 
876 	root = fs_info->extent_root;
877 	key.objectid = block_group->start;
878 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
879 	key.offset = block_group->length;
880 
881 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
882 	if (ret > 0)
883 		ret = -ENOENT;
884 	if (ret < 0)
885 		return ret;
886 
887 	ret = btrfs_del_item(trans, root, path);
888 	return ret;
889 }
890 
891 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
892 			     u64 group_start, struct extent_map *em)
893 {
894 	struct btrfs_fs_info *fs_info = trans->fs_info;
895 	struct btrfs_path *path;
896 	struct btrfs_block_group *block_group;
897 	struct btrfs_free_cluster *cluster;
898 	struct btrfs_root *tree_root = fs_info->tree_root;
899 	struct btrfs_key key;
900 	struct inode *inode;
901 	struct kobject *kobj = NULL;
902 	int ret;
903 	int index;
904 	int factor;
905 	struct btrfs_caching_control *caching_ctl = NULL;
906 	bool remove_em;
907 	bool remove_rsv = false;
908 
909 	block_group = btrfs_lookup_block_group(fs_info, group_start);
910 	BUG_ON(!block_group);
911 	BUG_ON(!block_group->ro);
912 
913 	trace_btrfs_remove_block_group(block_group);
914 	/*
915 	 * Free the reserved super bytes from this block group before
916 	 * remove it.
917 	 */
918 	btrfs_free_excluded_extents(block_group);
919 	btrfs_free_ref_tree_range(fs_info, block_group->start,
920 				  block_group->length);
921 
922 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
923 	factor = btrfs_bg_type_to_factor(block_group->flags);
924 
925 	/* make sure this block group isn't part of an allocation cluster */
926 	cluster = &fs_info->data_alloc_cluster;
927 	spin_lock(&cluster->refill_lock);
928 	btrfs_return_cluster_to_free_space(block_group, cluster);
929 	spin_unlock(&cluster->refill_lock);
930 
931 	/*
932 	 * make sure this block group isn't part of a metadata
933 	 * allocation cluster
934 	 */
935 	cluster = &fs_info->meta_alloc_cluster;
936 	spin_lock(&cluster->refill_lock);
937 	btrfs_return_cluster_to_free_space(block_group, cluster);
938 	spin_unlock(&cluster->refill_lock);
939 
940 	path = btrfs_alloc_path();
941 	if (!path) {
942 		ret = -ENOMEM;
943 		goto out_put_group;
944 	}
945 
946 	/*
947 	 * get the inode first so any iput calls done for the io_list
948 	 * aren't the final iput (no unlinks allowed now)
949 	 */
950 	inode = lookup_free_space_inode(block_group, path);
951 
952 	mutex_lock(&trans->transaction->cache_write_mutex);
953 	/*
954 	 * Make sure our free space cache IO is done before removing the
955 	 * free space inode
956 	 */
957 	spin_lock(&trans->transaction->dirty_bgs_lock);
958 	if (!list_empty(&block_group->io_list)) {
959 		list_del_init(&block_group->io_list);
960 
961 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
962 
963 		spin_unlock(&trans->transaction->dirty_bgs_lock);
964 		btrfs_wait_cache_io(trans, block_group, path);
965 		btrfs_put_block_group(block_group);
966 		spin_lock(&trans->transaction->dirty_bgs_lock);
967 	}
968 
969 	if (!list_empty(&block_group->dirty_list)) {
970 		list_del_init(&block_group->dirty_list);
971 		remove_rsv = true;
972 		btrfs_put_block_group(block_group);
973 	}
974 	spin_unlock(&trans->transaction->dirty_bgs_lock);
975 	mutex_unlock(&trans->transaction->cache_write_mutex);
976 
977 	if (!IS_ERR(inode)) {
978 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
979 		if (ret) {
980 			btrfs_add_delayed_iput(inode);
981 			goto out_put_group;
982 		}
983 		clear_nlink(inode);
984 		/* One for the block groups ref */
985 		spin_lock(&block_group->lock);
986 		if (block_group->iref) {
987 			block_group->iref = 0;
988 			block_group->inode = NULL;
989 			spin_unlock(&block_group->lock);
990 			iput(inode);
991 		} else {
992 			spin_unlock(&block_group->lock);
993 		}
994 		/* One for our lookup ref */
995 		btrfs_add_delayed_iput(inode);
996 	}
997 
998 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
999 	key.type = 0;
1000 	key.offset = block_group->start;
1001 
1002 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
1003 	if (ret < 0)
1004 		goto out_put_group;
1005 	if (ret > 0)
1006 		btrfs_release_path(path);
1007 	if (ret == 0) {
1008 		ret = btrfs_del_item(trans, tree_root, path);
1009 		if (ret)
1010 			goto out_put_group;
1011 		btrfs_release_path(path);
1012 	}
1013 
1014 	spin_lock(&fs_info->block_group_cache_lock);
1015 	rb_erase(&block_group->cache_node,
1016 		 &fs_info->block_group_cache_tree);
1017 	RB_CLEAR_NODE(&block_group->cache_node);
1018 
1019 	if (fs_info->first_logical_byte == block_group->start)
1020 		fs_info->first_logical_byte = (u64)-1;
1021 	spin_unlock(&fs_info->block_group_cache_lock);
1022 
1023 	down_write(&block_group->space_info->groups_sem);
1024 	/*
1025 	 * we must use list_del_init so people can check to see if they
1026 	 * are still on the list after taking the semaphore
1027 	 */
1028 	list_del_init(&block_group->list);
1029 	if (list_empty(&block_group->space_info->block_groups[index])) {
1030 		kobj = block_group->space_info->block_group_kobjs[index];
1031 		block_group->space_info->block_group_kobjs[index] = NULL;
1032 		clear_avail_alloc_bits(fs_info, block_group->flags);
1033 	}
1034 	up_write(&block_group->space_info->groups_sem);
1035 	clear_incompat_bg_bits(fs_info, block_group->flags);
1036 	if (kobj) {
1037 		kobject_del(kobj);
1038 		kobject_put(kobj);
1039 	}
1040 
1041 	if (block_group->has_caching_ctl)
1042 		caching_ctl = btrfs_get_caching_control(block_group);
1043 	if (block_group->cached == BTRFS_CACHE_STARTED)
1044 		btrfs_wait_block_group_cache_done(block_group);
1045 	if (block_group->has_caching_ctl) {
1046 		down_write(&fs_info->commit_root_sem);
1047 		if (!caching_ctl) {
1048 			struct btrfs_caching_control *ctl;
1049 
1050 			list_for_each_entry(ctl,
1051 				    &fs_info->caching_block_groups, list)
1052 				if (ctl->block_group == block_group) {
1053 					caching_ctl = ctl;
1054 					refcount_inc(&caching_ctl->count);
1055 					break;
1056 				}
1057 		}
1058 		if (caching_ctl)
1059 			list_del_init(&caching_ctl->list);
1060 		up_write(&fs_info->commit_root_sem);
1061 		if (caching_ctl) {
1062 			/* Once for the caching bgs list and once for us. */
1063 			btrfs_put_caching_control(caching_ctl);
1064 			btrfs_put_caching_control(caching_ctl);
1065 		}
1066 	}
1067 
1068 	spin_lock(&trans->transaction->dirty_bgs_lock);
1069 	WARN_ON(!list_empty(&block_group->dirty_list));
1070 	WARN_ON(!list_empty(&block_group->io_list));
1071 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1072 
1073 	btrfs_remove_free_space_cache(block_group);
1074 
1075 	spin_lock(&block_group->space_info->lock);
1076 	list_del_init(&block_group->ro_list);
1077 
1078 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1079 		WARN_ON(block_group->space_info->total_bytes
1080 			< block_group->length);
1081 		WARN_ON(block_group->space_info->bytes_readonly
1082 			< block_group->length);
1083 		WARN_ON(block_group->space_info->disk_total
1084 			< block_group->length * factor);
1085 	}
1086 	block_group->space_info->total_bytes -= block_group->length;
1087 	block_group->space_info->bytes_readonly -= block_group->length;
1088 	block_group->space_info->disk_total -= block_group->length * factor;
1089 
1090 	spin_unlock(&block_group->space_info->lock);
1091 
1092 	mutex_lock(&fs_info->chunk_mutex);
1093 	spin_lock(&block_group->lock);
1094 	block_group->removed = 1;
1095 	/*
1096 	 * At this point trimming or scrub can't start on this block group,
1097 	 * because we removed the block group from the rbtree
1098 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1099 	 * even if someone already got this block group before we removed it
1100 	 * from the rbtree, they have already incremented block_group->frozen -
1101 	 * if they didn't, for the trimming case they won't find any free space
1102 	 * entries because we already removed them all when we called
1103 	 * btrfs_remove_free_space_cache().
1104 	 *
1105 	 * And we must not remove the extent map from the fs_info->mapping_tree
1106 	 * to prevent the same logical address range and physical device space
1107 	 * ranges from being reused for a new block group. This is needed to
1108 	 * avoid races with trimming and scrub.
1109 	 *
1110 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1111 	 * completely transactionless, so while it is trimming a range the
1112 	 * currently running transaction might finish and a new one start,
1113 	 * allowing for new block groups to be created that can reuse the same
1114 	 * physical device locations unless we take this special care.
1115 	 *
1116 	 * There may also be an implicit trim operation if the file system
1117 	 * is mounted with -odiscard. The same protections must remain
1118 	 * in place until the extents have been discarded completely when
1119 	 * the transaction commit has completed.
1120 	 */
1121 	remove_em = (atomic_read(&block_group->frozen) == 0);
1122 	spin_unlock(&block_group->lock);
1123 
1124 	mutex_unlock(&fs_info->chunk_mutex);
1125 
1126 	ret = remove_block_group_free_space(trans, block_group);
1127 	if (ret)
1128 		goto out_put_group;
1129 
1130 	/* Once for the block groups rbtree */
1131 	btrfs_put_block_group(block_group);
1132 
1133 	ret = remove_block_group_item(trans, path, block_group);
1134 	if (ret < 0)
1135 		goto out;
1136 
1137 	if (remove_em) {
1138 		struct extent_map_tree *em_tree;
1139 
1140 		em_tree = &fs_info->mapping_tree;
1141 		write_lock(&em_tree->lock);
1142 		remove_extent_mapping(em_tree, em);
1143 		write_unlock(&em_tree->lock);
1144 		/* once for the tree */
1145 		free_extent_map(em);
1146 	}
1147 
1148 out_put_group:
1149 	/* Once for the lookup reference */
1150 	btrfs_put_block_group(block_group);
1151 out:
1152 	if (remove_rsv)
1153 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1154 	btrfs_free_path(path);
1155 	return ret;
1156 }
1157 
1158 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1159 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1160 {
1161 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1162 	struct extent_map *em;
1163 	struct map_lookup *map;
1164 	unsigned int num_items;
1165 
1166 	read_lock(&em_tree->lock);
1167 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1168 	read_unlock(&em_tree->lock);
1169 	ASSERT(em && em->start == chunk_offset);
1170 
1171 	/*
1172 	 * We need to reserve 3 + N units from the metadata space info in order
1173 	 * to remove a block group (done at btrfs_remove_chunk() and at
1174 	 * btrfs_remove_block_group()), which are used for:
1175 	 *
1176 	 * 1 unit for adding the free space inode's orphan (located in the tree
1177 	 * of tree roots).
1178 	 * 1 unit for deleting the block group item (located in the extent
1179 	 * tree).
1180 	 * 1 unit for deleting the free space item (located in tree of tree
1181 	 * roots).
1182 	 * N units for deleting N device extent items corresponding to each
1183 	 * stripe (located in the device tree).
1184 	 *
1185 	 * In order to remove a block group we also need to reserve units in the
1186 	 * system space info in order to update the chunk tree (update one or
1187 	 * more device items and remove one chunk item), but this is done at
1188 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1189 	 */
1190 	map = em->map_lookup;
1191 	num_items = 3 + map->num_stripes;
1192 	free_extent_map(em);
1193 
1194 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1195 							   num_items);
1196 }
1197 
1198 /*
1199  * Mark block group @cache read-only, so later write won't happen to block
1200  * group @cache.
1201  *
1202  * If @force is not set, this function will only mark the block group readonly
1203  * if we have enough free space (1M) in other metadata/system block groups.
1204  * If @force is not set, this function will mark the block group readonly
1205  * without checking free space.
1206  *
1207  * NOTE: This function doesn't care if other block groups can contain all the
1208  * data in this block group. That check should be done by relocation routine,
1209  * not this function.
1210  */
1211 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1212 {
1213 	struct btrfs_space_info *sinfo = cache->space_info;
1214 	u64 num_bytes;
1215 	int ret = -ENOSPC;
1216 
1217 	spin_lock(&sinfo->lock);
1218 	spin_lock(&cache->lock);
1219 
1220 	if (cache->ro) {
1221 		cache->ro++;
1222 		ret = 0;
1223 		goto out;
1224 	}
1225 
1226 	num_bytes = cache->length - cache->reserved - cache->pinned -
1227 		    cache->bytes_super - cache->used;
1228 
1229 	/*
1230 	 * Data never overcommits, even in mixed mode, so do just the straight
1231 	 * check of left over space in how much we have allocated.
1232 	 */
1233 	if (force) {
1234 		ret = 0;
1235 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1236 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1237 
1238 		/*
1239 		 * Here we make sure if we mark this bg RO, we still have enough
1240 		 * free space as buffer.
1241 		 */
1242 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1243 			ret = 0;
1244 	} else {
1245 		/*
1246 		 * We overcommit metadata, so we need to do the
1247 		 * btrfs_can_overcommit check here, and we need to pass in
1248 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1249 		 * leeway to allow us to mark this block group as read only.
1250 		 */
1251 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1252 					 BTRFS_RESERVE_NO_FLUSH))
1253 			ret = 0;
1254 	}
1255 
1256 	if (!ret) {
1257 		sinfo->bytes_readonly += num_bytes;
1258 		cache->ro++;
1259 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1260 	}
1261 out:
1262 	spin_unlock(&cache->lock);
1263 	spin_unlock(&sinfo->lock);
1264 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1265 		btrfs_info(cache->fs_info,
1266 			"unable to make block group %llu ro", cache->start);
1267 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1268 	}
1269 	return ret;
1270 }
1271 
1272 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1273 				 struct btrfs_block_group *bg)
1274 {
1275 	struct btrfs_fs_info *fs_info = bg->fs_info;
1276 	struct btrfs_transaction *prev_trans = NULL;
1277 	const u64 start = bg->start;
1278 	const u64 end = start + bg->length - 1;
1279 	int ret;
1280 
1281 	spin_lock(&fs_info->trans_lock);
1282 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1283 		prev_trans = list_last_entry(&trans->transaction->list,
1284 					     struct btrfs_transaction, list);
1285 		refcount_inc(&prev_trans->use_count);
1286 	}
1287 	spin_unlock(&fs_info->trans_lock);
1288 
1289 	/*
1290 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1291 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1292 	 * task might be running finish_extent_commit() for the previous
1293 	 * transaction N - 1, and have seen a range belonging to the block
1294 	 * group in pinned_extents before we were able to clear the whole block
1295 	 * group range from pinned_extents. This means that task can lookup for
1296 	 * the block group after we unpinned it from pinned_extents and removed
1297 	 * it, leading to a BUG_ON() at unpin_extent_range().
1298 	 */
1299 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1300 	if (prev_trans) {
1301 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1302 					EXTENT_DIRTY);
1303 		if (ret)
1304 			goto out;
1305 	}
1306 
1307 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1308 				EXTENT_DIRTY);
1309 out:
1310 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1311 	if (prev_trans)
1312 		btrfs_put_transaction(prev_trans);
1313 
1314 	return ret == 0;
1315 }
1316 
1317 /*
1318  * Process the unused_bgs list and remove any that don't have any allocated
1319  * space inside of them.
1320  */
1321 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1322 {
1323 	struct btrfs_block_group *block_group;
1324 	struct btrfs_space_info *space_info;
1325 	struct btrfs_trans_handle *trans;
1326 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1327 	int ret = 0;
1328 
1329 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1330 		return;
1331 
1332 	spin_lock(&fs_info->unused_bgs_lock);
1333 	while (!list_empty(&fs_info->unused_bgs)) {
1334 		int trimming;
1335 
1336 		block_group = list_first_entry(&fs_info->unused_bgs,
1337 					       struct btrfs_block_group,
1338 					       bg_list);
1339 		list_del_init(&block_group->bg_list);
1340 
1341 		space_info = block_group->space_info;
1342 
1343 		if (ret || btrfs_mixed_space_info(space_info)) {
1344 			btrfs_put_block_group(block_group);
1345 			continue;
1346 		}
1347 		spin_unlock(&fs_info->unused_bgs_lock);
1348 
1349 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1350 
1351 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1352 
1353 		/* Don't want to race with allocators so take the groups_sem */
1354 		down_write(&space_info->groups_sem);
1355 
1356 		/*
1357 		 * Async discard moves the final block group discard to be prior
1358 		 * to the unused_bgs code path.  Therefore, if it's not fully
1359 		 * trimmed, punt it back to the async discard lists.
1360 		 */
1361 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1362 		    !btrfs_is_free_space_trimmed(block_group)) {
1363 			trace_btrfs_skip_unused_block_group(block_group);
1364 			up_write(&space_info->groups_sem);
1365 			/* Requeue if we failed because of async discard */
1366 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1367 						 block_group);
1368 			goto next;
1369 		}
1370 
1371 		spin_lock(&block_group->lock);
1372 		if (block_group->reserved || block_group->pinned ||
1373 		    block_group->used || block_group->ro ||
1374 		    list_is_singular(&block_group->list)) {
1375 			/*
1376 			 * We want to bail if we made new allocations or have
1377 			 * outstanding allocations in this block group.  We do
1378 			 * the ro check in case balance is currently acting on
1379 			 * this block group.
1380 			 */
1381 			trace_btrfs_skip_unused_block_group(block_group);
1382 			spin_unlock(&block_group->lock);
1383 			up_write(&space_info->groups_sem);
1384 			goto next;
1385 		}
1386 		spin_unlock(&block_group->lock);
1387 
1388 		/* We don't want to force the issue, only flip if it's ok. */
1389 		ret = inc_block_group_ro(block_group, 0);
1390 		up_write(&space_info->groups_sem);
1391 		if (ret < 0) {
1392 			ret = 0;
1393 			goto next;
1394 		}
1395 
1396 		/*
1397 		 * Want to do this before we do anything else so we can recover
1398 		 * properly if we fail to join the transaction.
1399 		 */
1400 		trans = btrfs_start_trans_remove_block_group(fs_info,
1401 						     block_group->start);
1402 		if (IS_ERR(trans)) {
1403 			btrfs_dec_block_group_ro(block_group);
1404 			ret = PTR_ERR(trans);
1405 			goto next;
1406 		}
1407 
1408 		/*
1409 		 * We could have pending pinned extents for this block group,
1410 		 * just delete them, we don't care about them anymore.
1411 		 */
1412 		if (!clean_pinned_extents(trans, block_group)) {
1413 			btrfs_dec_block_group_ro(block_group);
1414 			goto end_trans;
1415 		}
1416 
1417 		/*
1418 		 * At this point, the block_group is read only and should fail
1419 		 * new allocations.  However, btrfs_finish_extent_commit() can
1420 		 * cause this block_group to be placed back on the discard
1421 		 * lists because now the block_group isn't fully discarded.
1422 		 * Bail here and try again later after discarding everything.
1423 		 */
1424 		spin_lock(&fs_info->discard_ctl.lock);
1425 		if (!list_empty(&block_group->discard_list)) {
1426 			spin_unlock(&fs_info->discard_ctl.lock);
1427 			btrfs_dec_block_group_ro(block_group);
1428 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1429 						 block_group);
1430 			goto end_trans;
1431 		}
1432 		spin_unlock(&fs_info->discard_ctl.lock);
1433 
1434 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1435 		spin_lock(&space_info->lock);
1436 		spin_lock(&block_group->lock);
1437 
1438 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1439 						     -block_group->pinned);
1440 		space_info->bytes_readonly += block_group->pinned;
1441 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1442 				   -block_group->pinned,
1443 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1444 		block_group->pinned = 0;
1445 
1446 		spin_unlock(&block_group->lock);
1447 		spin_unlock(&space_info->lock);
1448 
1449 		/*
1450 		 * The normal path here is an unused block group is passed here,
1451 		 * then trimming is handled in the transaction commit path.
1452 		 * Async discard interposes before this to do the trimming
1453 		 * before coming down the unused block group path as trimming
1454 		 * will no longer be done later in the transaction commit path.
1455 		 */
1456 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1457 			goto flip_async;
1458 
1459 		/* DISCARD can flip during remount */
1460 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1461 
1462 		/* Implicit trim during transaction commit. */
1463 		if (trimming)
1464 			btrfs_freeze_block_group(block_group);
1465 
1466 		/*
1467 		 * Btrfs_remove_chunk will abort the transaction if things go
1468 		 * horribly wrong.
1469 		 */
1470 		ret = btrfs_remove_chunk(trans, block_group->start);
1471 
1472 		if (ret) {
1473 			if (trimming)
1474 				btrfs_unfreeze_block_group(block_group);
1475 			goto end_trans;
1476 		}
1477 
1478 		/*
1479 		 * If we're not mounted with -odiscard, we can just forget
1480 		 * about this block group. Otherwise we'll need to wait
1481 		 * until transaction commit to do the actual discard.
1482 		 */
1483 		if (trimming) {
1484 			spin_lock(&fs_info->unused_bgs_lock);
1485 			/*
1486 			 * A concurrent scrub might have added us to the list
1487 			 * fs_info->unused_bgs, so use a list_move operation
1488 			 * to add the block group to the deleted_bgs list.
1489 			 */
1490 			list_move(&block_group->bg_list,
1491 				  &trans->transaction->deleted_bgs);
1492 			spin_unlock(&fs_info->unused_bgs_lock);
1493 			btrfs_get_block_group(block_group);
1494 		}
1495 end_trans:
1496 		btrfs_end_transaction(trans);
1497 next:
1498 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1499 		btrfs_put_block_group(block_group);
1500 		spin_lock(&fs_info->unused_bgs_lock);
1501 	}
1502 	spin_unlock(&fs_info->unused_bgs_lock);
1503 	return;
1504 
1505 flip_async:
1506 	btrfs_end_transaction(trans);
1507 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1508 	btrfs_put_block_group(block_group);
1509 	btrfs_discard_punt_unused_bgs_list(fs_info);
1510 }
1511 
1512 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1513 {
1514 	struct btrfs_fs_info *fs_info = bg->fs_info;
1515 
1516 	spin_lock(&fs_info->unused_bgs_lock);
1517 	if (list_empty(&bg->bg_list)) {
1518 		btrfs_get_block_group(bg);
1519 		trace_btrfs_add_unused_block_group(bg);
1520 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1521 	}
1522 	spin_unlock(&fs_info->unused_bgs_lock);
1523 }
1524 
1525 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1526 				  struct btrfs_path *path,
1527 				  struct btrfs_key *key)
1528 {
1529 	struct btrfs_root *root = fs_info->extent_root;
1530 	int ret = 0;
1531 	struct btrfs_key found_key;
1532 	struct extent_buffer *leaf;
1533 	struct btrfs_block_group_item bg;
1534 	u64 flags;
1535 	int slot;
1536 
1537 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1538 	if (ret < 0)
1539 		goto out;
1540 
1541 	while (1) {
1542 		slot = path->slots[0];
1543 		leaf = path->nodes[0];
1544 		if (slot >= btrfs_header_nritems(leaf)) {
1545 			ret = btrfs_next_leaf(root, path);
1546 			if (ret == 0)
1547 				continue;
1548 			if (ret < 0)
1549 				goto out;
1550 			break;
1551 		}
1552 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1553 
1554 		if (found_key.objectid >= key->objectid &&
1555 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1556 			struct extent_map_tree *em_tree;
1557 			struct extent_map *em;
1558 
1559 			em_tree = &root->fs_info->mapping_tree;
1560 			read_lock(&em_tree->lock);
1561 			em = lookup_extent_mapping(em_tree, found_key.objectid,
1562 						   found_key.offset);
1563 			read_unlock(&em_tree->lock);
1564 			if (!em) {
1565 				btrfs_err(fs_info,
1566 			"logical %llu len %llu found bg but no related chunk",
1567 					  found_key.objectid, found_key.offset);
1568 				ret = -ENOENT;
1569 			} else if (em->start != found_key.objectid ||
1570 				   em->len != found_key.offset) {
1571 				btrfs_err(fs_info,
1572 		"block group %llu len %llu mismatch with chunk %llu len %llu",
1573 					  found_key.objectid, found_key.offset,
1574 					  em->start, em->len);
1575 				ret = -EUCLEAN;
1576 			} else {
1577 				read_extent_buffer(leaf, &bg,
1578 					btrfs_item_ptr_offset(leaf, slot),
1579 					sizeof(bg));
1580 				flags = btrfs_stack_block_group_flags(&bg) &
1581 					BTRFS_BLOCK_GROUP_TYPE_MASK;
1582 
1583 				if (flags != (em->map_lookup->type &
1584 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1585 					btrfs_err(fs_info,
1586 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1587 						found_key.objectid,
1588 						found_key.offset, flags,
1589 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
1590 						 em->map_lookup->type));
1591 					ret = -EUCLEAN;
1592 				} else {
1593 					ret = 0;
1594 				}
1595 			}
1596 			free_extent_map(em);
1597 			goto out;
1598 		}
1599 		path->slots[0]++;
1600 	}
1601 out:
1602 	return ret;
1603 }
1604 
1605 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1606 {
1607 	u64 extra_flags = chunk_to_extended(flags) &
1608 				BTRFS_EXTENDED_PROFILE_MASK;
1609 
1610 	write_seqlock(&fs_info->profiles_lock);
1611 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1612 		fs_info->avail_data_alloc_bits |= extra_flags;
1613 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1614 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1615 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1616 		fs_info->avail_system_alloc_bits |= extra_flags;
1617 	write_sequnlock(&fs_info->profiles_lock);
1618 }
1619 
1620 /**
1621  * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1622  * @chunk_start:   logical address of block group
1623  * @physical:	   physical address to map to logical addresses
1624  * @logical:	   return array of logical addresses which map to @physical
1625  * @naddrs:	   length of @logical
1626  * @stripe_len:    size of IO stripe for the given block group
1627  *
1628  * Maps a particular @physical disk address to a list of @logical addresses.
1629  * Used primarily to exclude those portions of a block group that contain super
1630  * block copies.
1631  */
1632 EXPORT_FOR_TESTS
1633 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1634 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1635 {
1636 	struct extent_map *em;
1637 	struct map_lookup *map;
1638 	u64 *buf;
1639 	u64 bytenr;
1640 	u64 data_stripe_length;
1641 	u64 io_stripe_size;
1642 	int i, nr = 0;
1643 	int ret = 0;
1644 
1645 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1646 	if (IS_ERR(em))
1647 		return -EIO;
1648 
1649 	map = em->map_lookup;
1650 	data_stripe_length = em->len;
1651 	io_stripe_size = map->stripe_len;
1652 
1653 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1654 		data_stripe_length = div_u64(data_stripe_length,
1655 					     map->num_stripes / map->sub_stripes);
1656 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1657 		data_stripe_length = div_u64(data_stripe_length, map->num_stripes);
1658 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1659 		data_stripe_length = div_u64(data_stripe_length,
1660 					     nr_data_stripes(map));
1661 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1662 	}
1663 
1664 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1665 	if (!buf) {
1666 		ret = -ENOMEM;
1667 		goto out;
1668 	}
1669 
1670 	for (i = 0; i < map->num_stripes; i++) {
1671 		bool already_inserted = false;
1672 		u64 stripe_nr;
1673 		int j;
1674 
1675 		if (!in_range(physical, map->stripes[i].physical,
1676 			      data_stripe_length))
1677 			continue;
1678 
1679 		stripe_nr = physical - map->stripes[i].physical;
1680 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1681 
1682 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1683 			stripe_nr = stripe_nr * map->num_stripes + i;
1684 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1685 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1686 			stripe_nr = stripe_nr * map->num_stripes + i;
1687 		}
1688 		/*
1689 		 * The remaining case would be for RAID56, multiply by
1690 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1691 		 * instead of map->stripe_len
1692 		 */
1693 
1694 		bytenr = chunk_start + stripe_nr * io_stripe_size;
1695 
1696 		/* Ensure we don't add duplicate addresses */
1697 		for (j = 0; j < nr; j++) {
1698 			if (buf[j] == bytenr) {
1699 				already_inserted = true;
1700 				break;
1701 			}
1702 		}
1703 
1704 		if (!already_inserted)
1705 			buf[nr++] = bytenr;
1706 	}
1707 
1708 	*logical = buf;
1709 	*naddrs = nr;
1710 	*stripe_len = io_stripe_size;
1711 out:
1712 	free_extent_map(em);
1713 	return ret;
1714 }
1715 
1716 static int exclude_super_stripes(struct btrfs_block_group *cache)
1717 {
1718 	struct btrfs_fs_info *fs_info = cache->fs_info;
1719 	u64 bytenr;
1720 	u64 *logical;
1721 	int stripe_len;
1722 	int i, nr, ret;
1723 
1724 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1725 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1726 		cache->bytes_super += stripe_len;
1727 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1728 						stripe_len);
1729 		if (ret)
1730 			return ret;
1731 	}
1732 
1733 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1734 		bytenr = btrfs_sb_offset(i);
1735 		ret = btrfs_rmap_block(fs_info, cache->start,
1736 				       bytenr, &logical, &nr, &stripe_len);
1737 		if (ret)
1738 			return ret;
1739 
1740 		while (nr--) {
1741 			u64 start, len;
1742 
1743 			if (logical[nr] > cache->start + cache->length)
1744 				continue;
1745 
1746 			if (logical[nr] + stripe_len <= cache->start)
1747 				continue;
1748 
1749 			start = logical[nr];
1750 			if (start < cache->start) {
1751 				start = cache->start;
1752 				len = (logical[nr] + stripe_len) - start;
1753 			} else {
1754 				len = min_t(u64, stripe_len,
1755 					    cache->start + cache->length - start);
1756 			}
1757 
1758 			cache->bytes_super += len;
1759 			ret = btrfs_add_excluded_extent(fs_info, start, len);
1760 			if (ret) {
1761 				kfree(logical);
1762 				return ret;
1763 			}
1764 		}
1765 
1766 		kfree(logical);
1767 	}
1768 	return 0;
1769 }
1770 
1771 static void link_block_group(struct btrfs_block_group *cache)
1772 {
1773 	struct btrfs_space_info *space_info = cache->space_info;
1774 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1775 	bool first = false;
1776 
1777 	down_write(&space_info->groups_sem);
1778 	if (list_empty(&space_info->block_groups[index]))
1779 		first = true;
1780 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1781 	up_write(&space_info->groups_sem);
1782 
1783 	if (first)
1784 		btrfs_sysfs_add_block_group_type(cache);
1785 }
1786 
1787 static struct btrfs_block_group *btrfs_create_block_group_cache(
1788 		struct btrfs_fs_info *fs_info, u64 start)
1789 {
1790 	struct btrfs_block_group *cache;
1791 
1792 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1793 	if (!cache)
1794 		return NULL;
1795 
1796 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1797 					GFP_NOFS);
1798 	if (!cache->free_space_ctl) {
1799 		kfree(cache);
1800 		return NULL;
1801 	}
1802 
1803 	cache->start = start;
1804 
1805 	cache->fs_info = fs_info;
1806 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1807 	set_free_space_tree_thresholds(cache);
1808 
1809 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1810 
1811 	atomic_set(&cache->count, 1);
1812 	spin_lock_init(&cache->lock);
1813 	init_rwsem(&cache->data_rwsem);
1814 	INIT_LIST_HEAD(&cache->list);
1815 	INIT_LIST_HEAD(&cache->cluster_list);
1816 	INIT_LIST_HEAD(&cache->bg_list);
1817 	INIT_LIST_HEAD(&cache->ro_list);
1818 	INIT_LIST_HEAD(&cache->discard_list);
1819 	INIT_LIST_HEAD(&cache->dirty_list);
1820 	INIT_LIST_HEAD(&cache->io_list);
1821 	btrfs_init_free_space_ctl(cache);
1822 	atomic_set(&cache->frozen, 0);
1823 	mutex_init(&cache->free_space_lock);
1824 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1825 
1826 	return cache;
1827 }
1828 
1829 /*
1830  * Iterate all chunks and verify that each of them has the corresponding block
1831  * group
1832  */
1833 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1834 {
1835 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1836 	struct extent_map *em;
1837 	struct btrfs_block_group *bg;
1838 	u64 start = 0;
1839 	int ret = 0;
1840 
1841 	while (1) {
1842 		read_lock(&map_tree->lock);
1843 		/*
1844 		 * lookup_extent_mapping will return the first extent map
1845 		 * intersecting the range, so setting @len to 1 is enough to
1846 		 * get the first chunk.
1847 		 */
1848 		em = lookup_extent_mapping(map_tree, start, 1);
1849 		read_unlock(&map_tree->lock);
1850 		if (!em)
1851 			break;
1852 
1853 		bg = btrfs_lookup_block_group(fs_info, em->start);
1854 		if (!bg) {
1855 			btrfs_err(fs_info,
1856 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1857 				     em->start, em->len);
1858 			ret = -EUCLEAN;
1859 			free_extent_map(em);
1860 			break;
1861 		}
1862 		if (bg->start != em->start || bg->length != em->len ||
1863 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1864 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1865 			btrfs_err(fs_info,
1866 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1867 				em->start, em->len,
1868 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1869 				bg->start, bg->length,
1870 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1871 			ret = -EUCLEAN;
1872 			free_extent_map(em);
1873 			btrfs_put_block_group(bg);
1874 			break;
1875 		}
1876 		start = em->start + em->len;
1877 		free_extent_map(em);
1878 		btrfs_put_block_group(bg);
1879 	}
1880 	return ret;
1881 }
1882 
1883 static int read_block_group_item(struct btrfs_block_group *cache,
1884 				 struct btrfs_path *path,
1885 				 const struct btrfs_key *key)
1886 {
1887 	struct extent_buffer *leaf = path->nodes[0];
1888 	struct btrfs_block_group_item bgi;
1889 	int slot = path->slots[0];
1890 
1891 	cache->length = key->offset;
1892 
1893 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1894 			   sizeof(bgi));
1895 	cache->used = btrfs_stack_block_group_used(&bgi);
1896 	cache->flags = btrfs_stack_block_group_flags(&bgi);
1897 
1898 	return 0;
1899 }
1900 
1901 static int read_one_block_group(struct btrfs_fs_info *info,
1902 				struct btrfs_path *path,
1903 				const struct btrfs_key *key,
1904 				int need_clear)
1905 {
1906 	struct btrfs_block_group *cache;
1907 	struct btrfs_space_info *space_info;
1908 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1909 	int ret;
1910 
1911 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1912 
1913 	cache = btrfs_create_block_group_cache(info, key->objectid);
1914 	if (!cache)
1915 		return -ENOMEM;
1916 
1917 	ret = read_block_group_item(cache, path, key);
1918 	if (ret < 0)
1919 		goto error;
1920 
1921 	if (need_clear) {
1922 		/*
1923 		 * When we mount with old space cache, we need to
1924 		 * set BTRFS_DC_CLEAR and set dirty flag.
1925 		 *
1926 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1927 		 *    truncate the old free space cache inode and
1928 		 *    setup a new one.
1929 		 * b) Setting 'dirty flag' makes sure that we flush
1930 		 *    the new space cache info onto disk.
1931 		 */
1932 		if (btrfs_test_opt(info, SPACE_CACHE))
1933 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1934 	}
1935 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1936 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1937 			btrfs_err(info,
1938 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1939 				  cache->start);
1940 			ret = -EINVAL;
1941 			goto error;
1942 	}
1943 
1944 	/*
1945 	 * We need to exclude the super stripes now so that the space info has
1946 	 * super bytes accounted for, otherwise we'll think we have more space
1947 	 * than we actually do.
1948 	 */
1949 	ret = exclude_super_stripes(cache);
1950 	if (ret) {
1951 		/* We may have excluded something, so call this just in case. */
1952 		btrfs_free_excluded_extents(cache);
1953 		goto error;
1954 	}
1955 
1956 	/*
1957 	 * Check for two cases, either we are full, and therefore don't need
1958 	 * to bother with the caching work since we won't find any space, or we
1959 	 * are empty, and we can just add all the space in and be done with it.
1960 	 * This saves us _a_lot_ of time, particularly in the full case.
1961 	 */
1962 	if (cache->length == cache->used) {
1963 		cache->last_byte_to_unpin = (u64)-1;
1964 		cache->cached = BTRFS_CACHE_FINISHED;
1965 		btrfs_free_excluded_extents(cache);
1966 	} else if (cache->used == 0) {
1967 		cache->last_byte_to_unpin = (u64)-1;
1968 		cache->cached = BTRFS_CACHE_FINISHED;
1969 		add_new_free_space(cache, cache->start,
1970 				   cache->start + cache->length);
1971 		btrfs_free_excluded_extents(cache);
1972 	}
1973 
1974 	ret = btrfs_add_block_group_cache(info, cache);
1975 	if (ret) {
1976 		btrfs_remove_free_space_cache(cache);
1977 		goto error;
1978 	}
1979 	trace_btrfs_add_block_group(info, cache, 0);
1980 	btrfs_update_space_info(info, cache->flags, cache->length,
1981 				cache->used, cache->bytes_super, &space_info);
1982 
1983 	cache->space_info = space_info;
1984 
1985 	link_block_group(cache);
1986 
1987 	set_avail_alloc_bits(info, cache->flags);
1988 	if (btrfs_chunk_readonly(info, cache->start)) {
1989 		inc_block_group_ro(cache, 1);
1990 	} else if (cache->used == 0) {
1991 		ASSERT(list_empty(&cache->bg_list));
1992 		if (btrfs_test_opt(info, DISCARD_ASYNC))
1993 			btrfs_discard_queue_work(&info->discard_ctl, cache);
1994 		else
1995 			btrfs_mark_bg_unused(cache);
1996 	}
1997 	return 0;
1998 error:
1999 	btrfs_put_block_group(cache);
2000 	return ret;
2001 }
2002 
2003 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2004 {
2005 	struct btrfs_path *path;
2006 	int ret;
2007 	struct btrfs_block_group *cache;
2008 	struct btrfs_space_info *space_info;
2009 	struct btrfs_key key;
2010 	int need_clear = 0;
2011 	u64 cache_gen;
2012 
2013 	key.objectid = 0;
2014 	key.offset = 0;
2015 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2016 	path = btrfs_alloc_path();
2017 	if (!path)
2018 		return -ENOMEM;
2019 
2020 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2021 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2022 	    btrfs_super_generation(info->super_copy) != cache_gen)
2023 		need_clear = 1;
2024 	if (btrfs_test_opt(info, CLEAR_CACHE))
2025 		need_clear = 1;
2026 
2027 	while (1) {
2028 		ret = find_first_block_group(info, path, &key);
2029 		if (ret > 0)
2030 			break;
2031 		if (ret != 0)
2032 			goto error;
2033 
2034 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2035 		ret = read_one_block_group(info, path, &key, need_clear);
2036 		if (ret < 0)
2037 			goto error;
2038 		key.objectid += key.offset;
2039 		key.offset = 0;
2040 		btrfs_release_path(path);
2041 	}
2042 
2043 	rcu_read_lock();
2044 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
2045 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2046 		      (BTRFS_BLOCK_GROUP_RAID10 |
2047 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2048 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2049 		       BTRFS_BLOCK_GROUP_DUP)))
2050 			continue;
2051 		/*
2052 		 * Avoid allocating from un-mirrored block group if there are
2053 		 * mirrored block groups.
2054 		 */
2055 		list_for_each_entry(cache,
2056 				&space_info->block_groups[BTRFS_RAID_RAID0],
2057 				list)
2058 			inc_block_group_ro(cache, 1);
2059 		list_for_each_entry(cache,
2060 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2061 				list)
2062 			inc_block_group_ro(cache, 1);
2063 	}
2064 	rcu_read_unlock();
2065 
2066 	btrfs_init_global_block_rsv(info);
2067 	ret = check_chunk_block_group_mappings(info);
2068 error:
2069 	btrfs_free_path(path);
2070 	return ret;
2071 }
2072 
2073 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2074 				   struct btrfs_block_group *block_group)
2075 {
2076 	struct btrfs_fs_info *fs_info = trans->fs_info;
2077 	struct btrfs_block_group_item bgi;
2078 	struct btrfs_root *root;
2079 	struct btrfs_key key;
2080 
2081 	spin_lock(&block_group->lock);
2082 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2083 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2084 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2085 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2086 	key.objectid = block_group->start;
2087 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2088 	key.offset = block_group->length;
2089 	spin_unlock(&block_group->lock);
2090 
2091 	root = fs_info->extent_root;
2092 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2093 }
2094 
2095 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2096 {
2097 	struct btrfs_fs_info *fs_info = trans->fs_info;
2098 	struct btrfs_block_group *block_group;
2099 	int ret = 0;
2100 
2101 	if (!trans->can_flush_pending_bgs)
2102 		return;
2103 
2104 	while (!list_empty(&trans->new_bgs)) {
2105 		block_group = list_first_entry(&trans->new_bgs,
2106 					       struct btrfs_block_group,
2107 					       bg_list);
2108 		if (ret)
2109 			goto next;
2110 
2111 		ret = insert_block_group_item(trans, block_group);
2112 		if (ret)
2113 			btrfs_abort_transaction(trans, ret);
2114 		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2115 					block_group->length);
2116 		if (ret)
2117 			btrfs_abort_transaction(trans, ret);
2118 		add_block_group_free_space(trans, block_group);
2119 		/* Already aborted the transaction if it failed. */
2120 next:
2121 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2122 		list_del_init(&block_group->bg_list);
2123 	}
2124 	btrfs_trans_release_chunk_metadata(trans);
2125 }
2126 
2127 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2128 			   u64 type, u64 chunk_offset, u64 size)
2129 {
2130 	struct btrfs_fs_info *fs_info = trans->fs_info;
2131 	struct btrfs_block_group *cache;
2132 	int ret;
2133 
2134 	btrfs_set_log_full_commit(trans);
2135 
2136 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2137 	if (!cache)
2138 		return -ENOMEM;
2139 
2140 	cache->length = size;
2141 	cache->used = bytes_used;
2142 	cache->flags = type;
2143 	cache->last_byte_to_unpin = (u64)-1;
2144 	cache->cached = BTRFS_CACHE_FINISHED;
2145 	cache->needs_free_space = 1;
2146 	ret = exclude_super_stripes(cache);
2147 	if (ret) {
2148 		/* We may have excluded something, so call this just in case */
2149 		btrfs_free_excluded_extents(cache);
2150 		btrfs_put_block_group(cache);
2151 		return ret;
2152 	}
2153 
2154 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2155 
2156 	btrfs_free_excluded_extents(cache);
2157 
2158 #ifdef CONFIG_BTRFS_DEBUG
2159 	if (btrfs_should_fragment_free_space(cache)) {
2160 		u64 new_bytes_used = size - bytes_used;
2161 
2162 		bytes_used += new_bytes_used >> 1;
2163 		fragment_free_space(cache);
2164 	}
2165 #endif
2166 	/*
2167 	 * Ensure the corresponding space_info object is created and
2168 	 * assigned to our block group. We want our bg to be added to the rbtree
2169 	 * with its ->space_info set.
2170 	 */
2171 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2172 	ASSERT(cache->space_info);
2173 
2174 	ret = btrfs_add_block_group_cache(fs_info, cache);
2175 	if (ret) {
2176 		btrfs_remove_free_space_cache(cache);
2177 		btrfs_put_block_group(cache);
2178 		return ret;
2179 	}
2180 
2181 	/*
2182 	 * Now that our block group has its ->space_info set and is inserted in
2183 	 * the rbtree, update the space info's counters.
2184 	 */
2185 	trace_btrfs_add_block_group(fs_info, cache, 1);
2186 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2187 				cache->bytes_super, &cache->space_info);
2188 	btrfs_update_global_block_rsv(fs_info);
2189 
2190 	link_block_group(cache);
2191 
2192 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2193 	trans->delayed_ref_updates++;
2194 	btrfs_update_delayed_refs_rsv(trans);
2195 
2196 	set_avail_alloc_bits(fs_info, type);
2197 	return 0;
2198 }
2199 
2200 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
2201 {
2202 	u64 num_devices;
2203 	u64 stripped;
2204 
2205 	/*
2206 	 * if restripe for this chunk_type is on pick target profile and
2207 	 * return, otherwise do the usual balance
2208 	 */
2209 	stripped = get_restripe_target(fs_info, flags);
2210 	if (stripped)
2211 		return extended_to_chunk(stripped);
2212 
2213 	num_devices = fs_info->fs_devices->rw_devices;
2214 
2215 	stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
2216 		BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
2217 
2218 	if (num_devices == 1) {
2219 		stripped |= BTRFS_BLOCK_GROUP_DUP;
2220 		stripped = flags & ~stripped;
2221 
2222 		/* turn raid0 into single device chunks */
2223 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
2224 			return stripped;
2225 
2226 		/* turn mirroring into duplication */
2227 		if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2228 			     BTRFS_BLOCK_GROUP_RAID10))
2229 			return stripped | BTRFS_BLOCK_GROUP_DUP;
2230 	} else {
2231 		/* they already had raid on here, just return */
2232 		if (flags & stripped)
2233 			return flags;
2234 
2235 		stripped |= BTRFS_BLOCK_GROUP_DUP;
2236 		stripped = flags & ~stripped;
2237 
2238 		/* switch duplicated blocks with raid1 */
2239 		if (flags & BTRFS_BLOCK_GROUP_DUP)
2240 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
2241 
2242 		/* this is drive concat, leave it alone */
2243 	}
2244 
2245 	return flags;
2246 }
2247 
2248 /*
2249  * Mark one block group RO, can be called several times for the same block
2250  * group.
2251  *
2252  * @cache:		the destination block group
2253  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2254  * 			ensure we still have some free space after marking this
2255  * 			block group RO.
2256  */
2257 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2258 			     bool do_chunk_alloc)
2259 {
2260 	struct btrfs_fs_info *fs_info = cache->fs_info;
2261 	struct btrfs_trans_handle *trans;
2262 	u64 alloc_flags;
2263 	int ret;
2264 
2265 again:
2266 	trans = btrfs_join_transaction(fs_info->extent_root);
2267 	if (IS_ERR(trans))
2268 		return PTR_ERR(trans);
2269 
2270 	/*
2271 	 * we're not allowed to set block groups readonly after the dirty
2272 	 * block groups cache has started writing.  If it already started,
2273 	 * back off and let this transaction commit
2274 	 */
2275 	mutex_lock(&fs_info->ro_block_group_mutex);
2276 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2277 		u64 transid = trans->transid;
2278 
2279 		mutex_unlock(&fs_info->ro_block_group_mutex);
2280 		btrfs_end_transaction(trans);
2281 
2282 		ret = btrfs_wait_for_commit(fs_info, transid);
2283 		if (ret)
2284 			return ret;
2285 		goto again;
2286 	}
2287 
2288 	if (do_chunk_alloc) {
2289 		/*
2290 		 * If we are changing raid levels, try to allocate a
2291 		 * corresponding block group with the new raid level.
2292 		 */
2293 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
2294 		if (alloc_flags != cache->flags) {
2295 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2296 						CHUNK_ALLOC_FORCE);
2297 			/*
2298 			 * ENOSPC is allowed here, we may have enough space
2299 			 * already allocated at the new raid level to carry on
2300 			 */
2301 			if (ret == -ENOSPC)
2302 				ret = 0;
2303 			if (ret < 0)
2304 				goto out;
2305 		}
2306 	}
2307 
2308 	ret = inc_block_group_ro(cache, 0);
2309 	if (!do_chunk_alloc)
2310 		goto unlock_out;
2311 	if (!ret)
2312 		goto out;
2313 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2314 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2315 	if (ret < 0)
2316 		goto out;
2317 	ret = inc_block_group_ro(cache, 0);
2318 out:
2319 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2320 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
2321 		mutex_lock(&fs_info->chunk_mutex);
2322 		check_system_chunk(trans, alloc_flags);
2323 		mutex_unlock(&fs_info->chunk_mutex);
2324 	}
2325 unlock_out:
2326 	mutex_unlock(&fs_info->ro_block_group_mutex);
2327 
2328 	btrfs_end_transaction(trans);
2329 	return ret;
2330 }
2331 
2332 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2333 {
2334 	struct btrfs_space_info *sinfo = cache->space_info;
2335 	u64 num_bytes;
2336 
2337 	BUG_ON(!cache->ro);
2338 
2339 	spin_lock(&sinfo->lock);
2340 	spin_lock(&cache->lock);
2341 	if (!--cache->ro) {
2342 		num_bytes = cache->length - cache->reserved -
2343 			    cache->pinned - cache->bytes_super - cache->used;
2344 		sinfo->bytes_readonly -= num_bytes;
2345 		list_del_init(&cache->ro_list);
2346 	}
2347 	spin_unlock(&cache->lock);
2348 	spin_unlock(&sinfo->lock);
2349 }
2350 
2351 static int update_block_group_item(struct btrfs_trans_handle *trans,
2352 				   struct btrfs_path *path,
2353 				   struct btrfs_block_group *cache)
2354 {
2355 	struct btrfs_fs_info *fs_info = trans->fs_info;
2356 	int ret;
2357 	struct btrfs_root *root = fs_info->extent_root;
2358 	unsigned long bi;
2359 	struct extent_buffer *leaf;
2360 	struct btrfs_block_group_item bgi;
2361 	struct btrfs_key key;
2362 
2363 	key.objectid = cache->start;
2364 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2365 	key.offset = cache->length;
2366 
2367 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2368 	if (ret) {
2369 		if (ret > 0)
2370 			ret = -ENOENT;
2371 		goto fail;
2372 	}
2373 
2374 	leaf = path->nodes[0];
2375 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2376 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2377 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2378 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2379 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2380 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2381 	btrfs_mark_buffer_dirty(leaf);
2382 fail:
2383 	btrfs_release_path(path);
2384 	return ret;
2385 
2386 }
2387 
2388 static int cache_save_setup(struct btrfs_block_group *block_group,
2389 			    struct btrfs_trans_handle *trans,
2390 			    struct btrfs_path *path)
2391 {
2392 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2393 	struct btrfs_root *root = fs_info->tree_root;
2394 	struct inode *inode = NULL;
2395 	struct extent_changeset *data_reserved = NULL;
2396 	u64 alloc_hint = 0;
2397 	int dcs = BTRFS_DC_ERROR;
2398 	u64 num_pages = 0;
2399 	int retries = 0;
2400 	int ret = 0;
2401 
2402 	/*
2403 	 * If this block group is smaller than 100 megs don't bother caching the
2404 	 * block group.
2405 	 */
2406 	if (block_group->length < (100 * SZ_1M)) {
2407 		spin_lock(&block_group->lock);
2408 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2409 		spin_unlock(&block_group->lock);
2410 		return 0;
2411 	}
2412 
2413 	if (TRANS_ABORTED(trans))
2414 		return 0;
2415 again:
2416 	inode = lookup_free_space_inode(block_group, path);
2417 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2418 		ret = PTR_ERR(inode);
2419 		btrfs_release_path(path);
2420 		goto out;
2421 	}
2422 
2423 	if (IS_ERR(inode)) {
2424 		BUG_ON(retries);
2425 		retries++;
2426 
2427 		if (block_group->ro)
2428 			goto out_free;
2429 
2430 		ret = create_free_space_inode(trans, block_group, path);
2431 		if (ret)
2432 			goto out_free;
2433 		goto again;
2434 	}
2435 
2436 	/*
2437 	 * We want to set the generation to 0, that way if anything goes wrong
2438 	 * from here on out we know not to trust this cache when we load up next
2439 	 * time.
2440 	 */
2441 	BTRFS_I(inode)->generation = 0;
2442 	ret = btrfs_update_inode(trans, root, inode);
2443 	if (ret) {
2444 		/*
2445 		 * So theoretically we could recover from this, simply set the
2446 		 * super cache generation to 0 so we know to invalidate the
2447 		 * cache, but then we'd have to keep track of the block groups
2448 		 * that fail this way so we know we _have_ to reset this cache
2449 		 * before the next commit or risk reading stale cache.  So to
2450 		 * limit our exposure to horrible edge cases lets just abort the
2451 		 * transaction, this only happens in really bad situations
2452 		 * anyway.
2453 		 */
2454 		btrfs_abort_transaction(trans, ret);
2455 		goto out_put;
2456 	}
2457 	WARN_ON(ret);
2458 
2459 	/* We've already setup this transaction, go ahead and exit */
2460 	if (block_group->cache_generation == trans->transid &&
2461 	    i_size_read(inode)) {
2462 		dcs = BTRFS_DC_SETUP;
2463 		goto out_put;
2464 	}
2465 
2466 	if (i_size_read(inode) > 0) {
2467 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2468 					&fs_info->global_block_rsv);
2469 		if (ret)
2470 			goto out_put;
2471 
2472 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2473 		if (ret)
2474 			goto out_put;
2475 	}
2476 
2477 	spin_lock(&block_group->lock);
2478 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2479 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2480 		/*
2481 		 * don't bother trying to write stuff out _if_
2482 		 * a) we're not cached,
2483 		 * b) we're with nospace_cache mount option,
2484 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2485 		 */
2486 		dcs = BTRFS_DC_WRITTEN;
2487 		spin_unlock(&block_group->lock);
2488 		goto out_put;
2489 	}
2490 	spin_unlock(&block_group->lock);
2491 
2492 	/*
2493 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2494 	 * skip doing the setup, we've already cleared the cache so we're safe.
2495 	 */
2496 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2497 		ret = -ENOSPC;
2498 		goto out_put;
2499 	}
2500 
2501 	/*
2502 	 * Try to preallocate enough space based on how big the block group is.
2503 	 * Keep in mind this has to include any pinned space which could end up
2504 	 * taking up quite a bit since it's not folded into the other space
2505 	 * cache.
2506 	 */
2507 	num_pages = div_u64(block_group->length, SZ_256M);
2508 	if (!num_pages)
2509 		num_pages = 1;
2510 
2511 	num_pages *= 16;
2512 	num_pages *= PAGE_SIZE;
2513 
2514 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2515 	if (ret)
2516 		goto out_put;
2517 
2518 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2519 					      num_pages, num_pages,
2520 					      &alloc_hint);
2521 	/*
2522 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2523 	 * of metadata or split extents when writing the cache out, which means
2524 	 * we can enospc if we are heavily fragmented in addition to just normal
2525 	 * out of space conditions.  So if we hit this just skip setting up any
2526 	 * other block groups for this transaction, maybe we'll unpin enough
2527 	 * space the next time around.
2528 	 */
2529 	if (!ret)
2530 		dcs = BTRFS_DC_SETUP;
2531 	else if (ret == -ENOSPC)
2532 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2533 
2534 out_put:
2535 	iput(inode);
2536 out_free:
2537 	btrfs_release_path(path);
2538 out:
2539 	spin_lock(&block_group->lock);
2540 	if (!ret && dcs == BTRFS_DC_SETUP)
2541 		block_group->cache_generation = trans->transid;
2542 	block_group->disk_cache_state = dcs;
2543 	spin_unlock(&block_group->lock);
2544 
2545 	extent_changeset_free(data_reserved);
2546 	return ret;
2547 }
2548 
2549 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2550 {
2551 	struct btrfs_fs_info *fs_info = trans->fs_info;
2552 	struct btrfs_block_group *cache, *tmp;
2553 	struct btrfs_transaction *cur_trans = trans->transaction;
2554 	struct btrfs_path *path;
2555 
2556 	if (list_empty(&cur_trans->dirty_bgs) ||
2557 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2558 		return 0;
2559 
2560 	path = btrfs_alloc_path();
2561 	if (!path)
2562 		return -ENOMEM;
2563 
2564 	/* Could add new block groups, use _safe just in case */
2565 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2566 				 dirty_list) {
2567 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2568 			cache_save_setup(cache, trans, path);
2569 	}
2570 
2571 	btrfs_free_path(path);
2572 	return 0;
2573 }
2574 
2575 /*
2576  * Transaction commit does final block group cache writeback during a critical
2577  * section where nothing is allowed to change the FS.  This is required in
2578  * order for the cache to actually match the block group, but can introduce a
2579  * lot of latency into the commit.
2580  *
2581  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2582  * There's a chance we'll have to redo some of it if the block group changes
2583  * again during the commit, but it greatly reduces the commit latency by
2584  * getting rid of the easy block groups while we're still allowing others to
2585  * join the commit.
2586  */
2587 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2588 {
2589 	struct btrfs_fs_info *fs_info = trans->fs_info;
2590 	struct btrfs_block_group *cache;
2591 	struct btrfs_transaction *cur_trans = trans->transaction;
2592 	int ret = 0;
2593 	int should_put;
2594 	struct btrfs_path *path = NULL;
2595 	LIST_HEAD(dirty);
2596 	struct list_head *io = &cur_trans->io_bgs;
2597 	int num_started = 0;
2598 	int loops = 0;
2599 
2600 	spin_lock(&cur_trans->dirty_bgs_lock);
2601 	if (list_empty(&cur_trans->dirty_bgs)) {
2602 		spin_unlock(&cur_trans->dirty_bgs_lock);
2603 		return 0;
2604 	}
2605 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2606 	spin_unlock(&cur_trans->dirty_bgs_lock);
2607 
2608 again:
2609 	/* Make sure all the block groups on our dirty list actually exist */
2610 	btrfs_create_pending_block_groups(trans);
2611 
2612 	if (!path) {
2613 		path = btrfs_alloc_path();
2614 		if (!path)
2615 			return -ENOMEM;
2616 	}
2617 
2618 	/*
2619 	 * cache_write_mutex is here only to save us from balance or automatic
2620 	 * removal of empty block groups deleting this block group while we are
2621 	 * writing out the cache
2622 	 */
2623 	mutex_lock(&trans->transaction->cache_write_mutex);
2624 	while (!list_empty(&dirty)) {
2625 		bool drop_reserve = true;
2626 
2627 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2628 					 dirty_list);
2629 		/*
2630 		 * This can happen if something re-dirties a block group that
2631 		 * is already under IO.  Just wait for it to finish and then do
2632 		 * it all again
2633 		 */
2634 		if (!list_empty(&cache->io_list)) {
2635 			list_del_init(&cache->io_list);
2636 			btrfs_wait_cache_io(trans, cache, path);
2637 			btrfs_put_block_group(cache);
2638 		}
2639 
2640 
2641 		/*
2642 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2643 		 * it should update the cache_state.  Don't delete until after
2644 		 * we wait.
2645 		 *
2646 		 * Since we're not running in the commit critical section
2647 		 * we need the dirty_bgs_lock to protect from update_block_group
2648 		 */
2649 		spin_lock(&cur_trans->dirty_bgs_lock);
2650 		list_del_init(&cache->dirty_list);
2651 		spin_unlock(&cur_trans->dirty_bgs_lock);
2652 
2653 		should_put = 1;
2654 
2655 		cache_save_setup(cache, trans, path);
2656 
2657 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2658 			cache->io_ctl.inode = NULL;
2659 			ret = btrfs_write_out_cache(trans, cache, path);
2660 			if (ret == 0 && cache->io_ctl.inode) {
2661 				num_started++;
2662 				should_put = 0;
2663 
2664 				/*
2665 				 * The cache_write_mutex is protecting the
2666 				 * io_list, also refer to the definition of
2667 				 * btrfs_transaction::io_bgs for more details
2668 				 */
2669 				list_add_tail(&cache->io_list, io);
2670 			} else {
2671 				/*
2672 				 * If we failed to write the cache, the
2673 				 * generation will be bad and life goes on
2674 				 */
2675 				ret = 0;
2676 			}
2677 		}
2678 		if (!ret) {
2679 			ret = update_block_group_item(trans, path, cache);
2680 			/*
2681 			 * Our block group might still be attached to the list
2682 			 * of new block groups in the transaction handle of some
2683 			 * other task (struct btrfs_trans_handle->new_bgs). This
2684 			 * means its block group item isn't yet in the extent
2685 			 * tree. If this happens ignore the error, as we will
2686 			 * try again later in the critical section of the
2687 			 * transaction commit.
2688 			 */
2689 			if (ret == -ENOENT) {
2690 				ret = 0;
2691 				spin_lock(&cur_trans->dirty_bgs_lock);
2692 				if (list_empty(&cache->dirty_list)) {
2693 					list_add_tail(&cache->dirty_list,
2694 						      &cur_trans->dirty_bgs);
2695 					btrfs_get_block_group(cache);
2696 					drop_reserve = false;
2697 				}
2698 				spin_unlock(&cur_trans->dirty_bgs_lock);
2699 			} else if (ret) {
2700 				btrfs_abort_transaction(trans, ret);
2701 			}
2702 		}
2703 
2704 		/* If it's not on the io list, we need to put the block group */
2705 		if (should_put)
2706 			btrfs_put_block_group(cache);
2707 		if (drop_reserve)
2708 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2709 
2710 		if (ret)
2711 			break;
2712 
2713 		/*
2714 		 * Avoid blocking other tasks for too long. It might even save
2715 		 * us from writing caches for block groups that are going to be
2716 		 * removed.
2717 		 */
2718 		mutex_unlock(&trans->transaction->cache_write_mutex);
2719 		mutex_lock(&trans->transaction->cache_write_mutex);
2720 	}
2721 	mutex_unlock(&trans->transaction->cache_write_mutex);
2722 
2723 	/*
2724 	 * Go through delayed refs for all the stuff we've just kicked off
2725 	 * and then loop back (just once)
2726 	 */
2727 	ret = btrfs_run_delayed_refs(trans, 0);
2728 	if (!ret && loops == 0) {
2729 		loops++;
2730 		spin_lock(&cur_trans->dirty_bgs_lock);
2731 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2732 		/*
2733 		 * dirty_bgs_lock protects us from concurrent block group
2734 		 * deletes too (not just cache_write_mutex).
2735 		 */
2736 		if (!list_empty(&dirty)) {
2737 			spin_unlock(&cur_trans->dirty_bgs_lock);
2738 			goto again;
2739 		}
2740 		spin_unlock(&cur_trans->dirty_bgs_lock);
2741 	} else if (ret < 0) {
2742 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2743 	}
2744 
2745 	btrfs_free_path(path);
2746 	return ret;
2747 }
2748 
2749 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2750 {
2751 	struct btrfs_fs_info *fs_info = trans->fs_info;
2752 	struct btrfs_block_group *cache;
2753 	struct btrfs_transaction *cur_trans = trans->transaction;
2754 	int ret = 0;
2755 	int should_put;
2756 	struct btrfs_path *path;
2757 	struct list_head *io = &cur_trans->io_bgs;
2758 	int num_started = 0;
2759 
2760 	path = btrfs_alloc_path();
2761 	if (!path)
2762 		return -ENOMEM;
2763 
2764 	/*
2765 	 * Even though we are in the critical section of the transaction commit,
2766 	 * we can still have concurrent tasks adding elements to this
2767 	 * transaction's list of dirty block groups. These tasks correspond to
2768 	 * endio free space workers started when writeback finishes for a
2769 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2770 	 * allocate new block groups as a result of COWing nodes of the root
2771 	 * tree when updating the free space inode. The writeback for the space
2772 	 * caches is triggered by an earlier call to
2773 	 * btrfs_start_dirty_block_groups() and iterations of the following
2774 	 * loop.
2775 	 * Also we want to do the cache_save_setup first and then run the
2776 	 * delayed refs to make sure we have the best chance at doing this all
2777 	 * in one shot.
2778 	 */
2779 	spin_lock(&cur_trans->dirty_bgs_lock);
2780 	while (!list_empty(&cur_trans->dirty_bgs)) {
2781 		cache = list_first_entry(&cur_trans->dirty_bgs,
2782 					 struct btrfs_block_group,
2783 					 dirty_list);
2784 
2785 		/*
2786 		 * This can happen if cache_save_setup re-dirties a block group
2787 		 * that is already under IO.  Just wait for it to finish and
2788 		 * then do it all again
2789 		 */
2790 		if (!list_empty(&cache->io_list)) {
2791 			spin_unlock(&cur_trans->dirty_bgs_lock);
2792 			list_del_init(&cache->io_list);
2793 			btrfs_wait_cache_io(trans, cache, path);
2794 			btrfs_put_block_group(cache);
2795 			spin_lock(&cur_trans->dirty_bgs_lock);
2796 		}
2797 
2798 		/*
2799 		 * Don't remove from the dirty list until after we've waited on
2800 		 * any pending IO
2801 		 */
2802 		list_del_init(&cache->dirty_list);
2803 		spin_unlock(&cur_trans->dirty_bgs_lock);
2804 		should_put = 1;
2805 
2806 		cache_save_setup(cache, trans, path);
2807 
2808 		if (!ret)
2809 			ret = btrfs_run_delayed_refs(trans,
2810 						     (unsigned long) -1);
2811 
2812 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2813 			cache->io_ctl.inode = NULL;
2814 			ret = btrfs_write_out_cache(trans, cache, path);
2815 			if (ret == 0 && cache->io_ctl.inode) {
2816 				num_started++;
2817 				should_put = 0;
2818 				list_add_tail(&cache->io_list, io);
2819 			} else {
2820 				/*
2821 				 * If we failed to write the cache, the
2822 				 * generation will be bad and life goes on
2823 				 */
2824 				ret = 0;
2825 			}
2826 		}
2827 		if (!ret) {
2828 			ret = update_block_group_item(trans, path, cache);
2829 			/*
2830 			 * One of the free space endio workers might have
2831 			 * created a new block group while updating a free space
2832 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2833 			 * and hasn't released its transaction handle yet, in
2834 			 * which case the new block group is still attached to
2835 			 * its transaction handle and its creation has not
2836 			 * finished yet (no block group item in the extent tree
2837 			 * yet, etc). If this is the case, wait for all free
2838 			 * space endio workers to finish and retry. This is a
2839 			 * a very rare case so no need for a more efficient and
2840 			 * complex approach.
2841 			 */
2842 			if (ret == -ENOENT) {
2843 				wait_event(cur_trans->writer_wait,
2844 				   atomic_read(&cur_trans->num_writers) == 1);
2845 				ret = update_block_group_item(trans, path, cache);
2846 			}
2847 			if (ret)
2848 				btrfs_abort_transaction(trans, ret);
2849 		}
2850 
2851 		/* If its not on the io list, we need to put the block group */
2852 		if (should_put)
2853 			btrfs_put_block_group(cache);
2854 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2855 		spin_lock(&cur_trans->dirty_bgs_lock);
2856 	}
2857 	spin_unlock(&cur_trans->dirty_bgs_lock);
2858 
2859 	/*
2860 	 * Refer to the definition of io_bgs member for details why it's safe
2861 	 * to use it without any locking
2862 	 */
2863 	while (!list_empty(io)) {
2864 		cache = list_first_entry(io, struct btrfs_block_group,
2865 					 io_list);
2866 		list_del_init(&cache->io_list);
2867 		btrfs_wait_cache_io(trans, cache, path);
2868 		btrfs_put_block_group(cache);
2869 	}
2870 
2871 	btrfs_free_path(path);
2872 	return ret;
2873 }
2874 
2875 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2876 			     u64 bytenr, u64 num_bytes, int alloc)
2877 {
2878 	struct btrfs_fs_info *info = trans->fs_info;
2879 	struct btrfs_block_group *cache = NULL;
2880 	u64 total = num_bytes;
2881 	u64 old_val;
2882 	u64 byte_in_group;
2883 	int factor;
2884 	int ret = 0;
2885 
2886 	/* Block accounting for super block */
2887 	spin_lock(&info->delalloc_root_lock);
2888 	old_val = btrfs_super_bytes_used(info->super_copy);
2889 	if (alloc)
2890 		old_val += num_bytes;
2891 	else
2892 		old_val -= num_bytes;
2893 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2894 	spin_unlock(&info->delalloc_root_lock);
2895 
2896 	while (total) {
2897 		cache = btrfs_lookup_block_group(info, bytenr);
2898 		if (!cache) {
2899 			ret = -ENOENT;
2900 			break;
2901 		}
2902 		factor = btrfs_bg_type_to_factor(cache->flags);
2903 
2904 		/*
2905 		 * If this block group has free space cache written out, we
2906 		 * need to make sure to load it if we are removing space.  This
2907 		 * is because we need the unpinning stage to actually add the
2908 		 * space back to the block group, otherwise we will leak space.
2909 		 */
2910 		if (!alloc && !btrfs_block_group_done(cache))
2911 			btrfs_cache_block_group(cache, 1);
2912 
2913 		byte_in_group = bytenr - cache->start;
2914 		WARN_ON(byte_in_group > cache->length);
2915 
2916 		spin_lock(&cache->space_info->lock);
2917 		spin_lock(&cache->lock);
2918 
2919 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2920 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2921 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2922 
2923 		old_val = cache->used;
2924 		num_bytes = min(total, cache->length - byte_in_group);
2925 		if (alloc) {
2926 			old_val += num_bytes;
2927 			cache->used = old_val;
2928 			cache->reserved -= num_bytes;
2929 			cache->space_info->bytes_reserved -= num_bytes;
2930 			cache->space_info->bytes_used += num_bytes;
2931 			cache->space_info->disk_used += num_bytes * factor;
2932 			spin_unlock(&cache->lock);
2933 			spin_unlock(&cache->space_info->lock);
2934 		} else {
2935 			old_val -= num_bytes;
2936 			cache->used = old_val;
2937 			cache->pinned += num_bytes;
2938 			btrfs_space_info_update_bytes_pinned(info,
2939 					cache->space_info, num_bytes);
2940 			cache->space_info->bytes_used -= num_bytes;
2941 			cache->space_info->disk_used -= num_bytes * factor;
2942 			spin_unlock(&cache->lock);
2943 			spin_unlock(&cache->space_info->lock);
2944 
2945 			percpu_counter_add_batch(
2946 					&cache->space_info->total_bytes_pinned,
2947 					num_bytes,
2948 					BTRFS_TOTAL_BYTES_PINNED_BATCH);
2949 			set_extent_dirty(&trans->transaction->pinned_extents,
2950 					 bytenr, bytenr + num_bytes - 1,
2951 					 GFP_NOFS | __GFP_NOFAIL);
2952 		}
2953 
2954 		spin_lock(&trans->transaction->dirty_bgs_lock);
2955 		if (list_empty(&cache->dirty_list)) {
2956 			list_add_tail(&cache->dirty_list,
2957 				      &trans->transaction->dirty_bgs);
2958 			trans->delayed_ref_updates++;
2959 			btrfs_get_block_group(cache);
2960 		}
2961 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2962 
2963 		/*
2964 		 * No longer have used bytes in this block group, queue it for
2965 		 * deletion. We do this after adding the block group to the
2966 		 * dirty list to avoid races between cleaner kthread and space
2967 		 * cache writeout.
2968 		 */
2969 		if (!alloc && old_val == 0) {
2970 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2971 				btrfs_mark_bg_unused(cache);
2972 		}
2973 
2974 		btrfs_put_block_group(cache);
2975 		total -= num_bytes;
2976 		bytenr += num_bytes;
2977 	}
2978 
2979 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2980 	btrfs_update_delayed_refs_rsv(trans);
2981 	return ret;
2982 }
2983 
2984 /**
2985  * btrfs_add_reserved_bytes - update the block_group and space info counters
2986  * @cache:	The cache we are manipulating
2987  * @ram_bytes:  The number of bytes of file content, and will be same to
2988  *              @num_bytes except for the compress path.
2989  * @num_bytes:	The number of bytes in question
2990  * @delalloc:   The blocks are allocated for the delalloc write
2991  *
2992  * This is called by the allocator when it reserves space. If this is a
2993  * reservation and the block group has become read only we cannot make the
2994  * reservation and return -EAGAIN, otherwise this function always succeeds.
2995  */
2996 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2997 			     u64 ram_bytes, u64 num_bytes, int delalloc)
2998 {
2999 	struct btrfs_space_info *space_info = cache->space_info;
3000 	int ret = 0;
3001 
3002 	spin_lock(&space_info->lock);
3003 	spin_lock(&cache->lock);
3004 	if (cache->ro) {
3005 		ret = -EAGAIN;
3006 	} else {
3007 		cache->reserved += num_bytes;
3008 		space_info->bytes_reserved += num_bytes;
3009 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3010 					      space_info->flags, num_bytes, 1);
3011 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3012 						      space_info, -ram_bytes);
3013 		if (delalloc)
3014 			cache->delalloc_bytes += num_bytes;
3015 	}
3016 	spin_unlock(&cache->lock);
3017 	spin_unlock(&space_info->lock);
3018 	return ret;
3019 }
3020 
3021 /**
3022  * btrfs_free_reserved_bytes - update the block_group and space info counters
3023  * @cache:      The cache we are manipulating
3024  * @num_bytes:  The number of bytes in question
3025  * @delalloc:   The blocks are allocated for the delalloc write
3026  *
3027  * This is called by somebody who is freeing space that was never actually used
3028  * on disk.  For example if you reserve some space for a new leaf in transaction
3029  * A and before transaction A commits you free that leaf, you call this with
3030  * reserve set to 0 in order to clear the reservation.
3031  */
3032 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3033 			       u64 num_bytes, int delalloc)
3034 {
3035 	struct btrfs_space_info *space_info = cache->space_info;
3036 
3037 	spin_lock(&space_info->lock);
3038 	spin_lock(&cache->lock);
3039 	if (cache->ro)
3040 		space_info->bytes_readonly += num_bytes;
3041 	cache->reserved -= num_bytes;
3042 	space_info->bytes_reserved -= num_bytes;
3043 	space_info->max_extent_size = 0;
3044 
3045 	if (delalloc)
3046 		cache->delalloc_bytes -= num_bytes;
3047 	spin_unlock(&cache->lock);
3048 	spin_unlock(&space_info->lock);
3049 }
3050 
3051 static void force_metadata_allocation(struct btrfs_fs_info *info)
3052 {
3053 	struct list_head *head = &info->space_info;
3054 	struct btrfs_space_info *found;
3055 
3056 	rcu_read_lock();
3057 	list_for_each_entry_rcu(found, head, list) {
3058 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3059 			found->force_alloc = CHUNK_ALLOC_FORCE;
3060 	}
3061 	rcu_read_unlock();
3062 }
3063 
3064 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3065 			      struct btrfs_space_info *sinfo, int force)
3066 {
3067 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3068 	u64 thresh;
3069 
3070 	if (force == CHUNK_ALLOC_FORCE)
3071 		return 1;
3072 
3073 	/*
3074 	 * in limited mode, we want to have some free space up to
3075 	 * about 1% of the FS size.
3076 	 */
3077 	if (force == CHUNK_ALLOC_LIMITED) {
3078 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3079 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3080 
3081 		if (sinfo->total_bytes - bytes_used < thresh)
3082 			return 1;
3083 	}
3084 
3085 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3086 		return 0;
3087 	return 1;
3088 }
3089 
3090 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3091 {
3092 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3093 
3094 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3095 }
3096 
3097 /*
3098  * If force is CHUNK_ALLOC_FORCE:
3099  *    - return 1 if it successfully allocates a chunk,
3100  *    - return errors including -ENOSPC otherwise.
3101  * If force is NOT CHUNK_ALLOC_FORCE:
3102  *    - return 0 if it doesn't need to allocate a new chunk,
3103  *    - return 1 if it successfully allocates a chunk,
3104  *    - return errors including -ENOSPC otherwise.
3105  */
3106 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3107 		      enum btrfs_chunk_alloc_enum force)
3108 {
3109 	struct btrfs_fs_info *fs_info = trans->fs_info;
3110 	struct btrfs_space_info *space_info;
3111 	bool wait_for_alloc = false;
3112 	bool should_alloc = false;
3113 	int ret = 0;
3114 
3115 	/* Don't re-enter if we're already allocating a chunk */
3116 	if (trans->allocating_chunk)
3117 		return -ENOSPC;
3118 
3119 	space_info = btrfs_find_space_info(fs_info, flags);
3120 	ASSERT(space_info);
3121 
3122 	do {
3123 		spin_lock(&space_info->lock);
3124 		if (force < space_info->force_alloc)
3125 			force = space_info->force_alloc;
3126 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3127 		if (space_info->full) {
3128 			/* No more free physical space */
3129 			if (should_alloc)
3130 				ret = -ENOSPC;
3131 			else
3132 				ret = 0;
3133 			spin_unlock(&space_info->lock);
3134 			return ret;
3135 		} else if (!should_alloc) {
3136 			spin_unlock(&space_info->lock);
3137 			return 0;
3138 		} else if (space_info->chunk_alloc) {
3139 			/*
3140 			 * Someone is already allocating, so we need to block
3141 			 * until this someone is finished and then loop to
3142 			 * recheck if we should continue with our allocation
3143 			 * attempt.
3144 			 */
3145 			wait_for_alloc = true;
3146 			spin_unlock(&space_info->lock);
3147 			mutex_lock(&fs_info->chunk_mutex);
3148 			mutex_unlock(&fs_info->chunk_mutex);
3149 		} else {
3150 			/* Proceed with allocation */
3151 			space_info->chunk_alloc = 1;
3152 			wait_for_alloc = false;
3153 			spin_unlock(&space_info->lock);
3154 		}
3155 
3156 		cond_resched();
3157 	} while (wait_for_alloc);
3158 
3159 	mutex_lock(&fs_info->chunk_mutex);
3160 	trans->allocating_chunk = true;
3161 
3162 	/*
3163 	 * If we have mixed data/metadata chunks we want to make sure we keep
3164 	 * allocating mixed chunks instead of individual chunks.
3165 	 */
3166 	if (btrfs_mixed_space_info(space_info))
3167 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3168 
3169 	/*
3170 	 * if we're doing a data chunk, go ahead and make sure that
3171 	 * we keep a reasonable number of metadata chunks allocated in the
3172 	 * FS as well.
3173 	 */
3174 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3175 		fs_info->data_chunk_allocations++;
3176 		if (!(fs_info->data_chunk_allocations %
3177 		      fs_info->metadata_ratio))
3178 			force_metadata_allocation(fs_info);
3179 	}
3180 
3181 	/*
3182 	 * Check if we have enough space in SYSTEM chunk because we may need
3183 	 * to update devices.
3184 	 */
3185 	check_system_chunk(trans, flags);
3186 
3187 	ret = btrfs_alloc_chunk(trans, flags);
3188 	trans->allocating_chunk = false;
3189 
3190 	spin_lock(&space_info->lock);
3191 	if (ret < 0) {
3192 		if (ret == -ENOSPC)
3193 			space_info->full = 1;
3194 		else
3195 			goto out;
3196 	} else {
3197 		ret = 1;
3198 		space_info->max_extent_size = 0;
3199 	}
3200 
3201 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3202 out:
3203 	space_info->chunk_alloc = 0;
3204 	spin_unlock(&space_info->lock);
3205 	mutex_unlock(&fs_info->chunk_mutex);
3206 	/*
3207 	 * When we allocate a new chunk we reserve space in the chunk block
3208 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3209 	 * add new nodes/leafs to it if we end up needing to do it when
3210 	 * inserting the chunk item and updating device items as part of the
3211 	 * second phase of chunk allocation, performed by
3212 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3213 	 * large number of new block groups to create in our transaction
3214 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3215 	 * in extreme cases - like having a single transaction create many new
3216 	 * block groups when starting to write out the free space caches of all
3217 	 * the block groups that were made dirty during the lifetime of the
3218 	 * transaction.
3219 	 */
3220 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3221 		btrfs_create_pending_block_groups(trans);
3222 
3223 	return ret;
3224 }
3225 
3226 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3227 {
3228 	u64 num_dev;
3229 
3230 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3231 	if (!num_dev)
3232 		num_dev = fs_info->fs_devices->rw_devices;
3233 
3234 	return num_dev;
3235 }
3236 
3237 /*
3238  * Reserve space in the system space for allocating or removing a chunk
3239  */
3240 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3241 {
3242 	struct btrfs_fs_info *fs_info = trans->fs_info;
3243 	struct btrfs_space_info *info;
3244 	u64 left;
3245 	u64 thresh;
3246 	int ret = 0;
3247 	u64 num_devs;
3248 
3249 	/*
3250 	 * Needed because we can end up allocating a system chunk and for an
3251 	 * atomic and race free space reservation in the chunk block reserve.
3252 	 */
3253 	lockdep_assert_held(&fs_info->chunk_mutex);
3254 
3255 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3256 	spin_lock(&info->lock);
3257 	left = info->total_bytes - btrfs_space_info_used(info, true);
3258 	spin_unlock(&info->lock);
3259 
3260 	num_devs = get_profile_num_devs(fs_info, type);
3261 
3262 	/* num_devs device items to update and 1 chunk item to add or remove */
3263 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3264 		btrfs_calc_insert_metadata_size(fs_info, 1);
3265 
3266 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3267 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3268 			   left, thresh, type);
3269 		btrfs_dump_space_info(fs_info, info, 0, 0);
3270 	}
3271 
3272 	if (left < thresh) {
3273 		u64 flags = btrfs_system_alloc_profile(fs_info);
3274 
3275 		/*
3276 		 * Ignore failure to create system chunk. We might end up not
3277 		 * needing it, as we might not need to COW all nodes/leafs from
3278 		 * the paths we visit in the chunk tree (they were already COWed
3279 		 * or created in the current transaction for example).
3280 		 */
3281 		ret = btrfs_alloc_chunk(trans, flags);
3282 	}
3283 
3284 	if (!ret) {
3285 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3286 					  &fs_info->chunk_block_rsv,
3287 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3288 		if (!ret)
3289 			trans->chunk_bytes_reserved += thresh;
3290 	}
3291 }
3292 
3293 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3294 {
3295 	struct btrfs_block_group *block_group;
3296 	u64 last = 0;
3297 
3298 	while (1) {
3299 		struct inode *inode;
3300 
3301 		block_group = btrfs_lookup_first_block_group(info, last);
3302 		while (block_group) {
3303 			btrfs_wait_block_group_cache_done(block_group);
3304 			spin_lock(&block_group->lock);
3305 			if (block_group->iref)
3306 				break;
3307 			spin_unlock(&block_group->lock);
3308 			block_group = btrfs_next_block_group(block_group);
3309 		}
3310 		if (!block_group) {
3311 			if (last == 0)
3312 				break;
3313 			last = 0;
3314 			continue;
3315 		}
3316 
3317 		inode = block_group->inode;
3318 		block_group->iref = 0;
3319 		block_group->inode = NULL;
3320 		spin_unlock(&block_group->lock);
3321 		ASSERT(block_group->io_ctl.inode == NULL);
3322 		iput(inode);
3323 		last = block_group->start + block_group->length;
3324 		btrfs_put_block_group(block_group);
3325 	}
3326 }
3327 
3328 /*
3329  * Must be called only after stopping all workers, since we could have block
3330  * group caching kthreads running, and therefore they could race with us if we
3331  * freed the block groups before stopping them.
3332  */
3333 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3334 {
3335 	struct btrfs_block_group *block_group;
3336 	struct btrfs_space_info *space_info;
3337 	struct btrfs_caching_control *caching_ctl;
3338 	struct rb_node *n;
3339 
3340 	down_write(&info->commit_root_sem);
3341 	while (!list_empty(&info->caching_block_groups)) {
3342 		caching_ctl = list_entry(info->caching_block_groups.next,
3343 					 struct btrfs_caching_control, list);
3344 		list_del(&caching_ctl->list);
3345 		btrfs_put_caching_control(caching_ctl);
3346 	}
3347 	up_write(&info->commit_root_sem);
3348 
3349 	spin_lock(&info->unused_bgs_lock);
3350 	while (!list_empty(&info->unused_bgs)) {
3351 		block_group = list_first_entry(&info->unused_bgs,
3352 					       struct btrfs_block_group,
3353 					       bg_list);
3354 		list_del_init(&block_group->bg_list);
3355 		btrfs_put_block_group(block_group);
3356 	}
3357 	spin_unlock(&info->unused_bgs_lock);
3358 
3359 	spin_lock(&info->block_group_cache_lock);
3360 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3361 		block_group = rb_entry(n, struct btrfs_block_group,
3362 				       cache_node);
3363 		rb_erase(&block_group->cache_node,
3364 			 &info->block_group_cache_tree);
3365 		RB_CLEAR_NODE(&block_group->cache_node);
3366 		spin_unlock(&info->block_group_cache_lock);
3367 
3368 		down_write(&block_group->space_info->groups_sem);
3369 		list_del(&block_group->list);
3370 		up_write(&block_group->space_info->groups_sem);
3371 
3372 		/*
3373 		 * We haven't cached this block group, which means we could
3374 		 * possibly have excluded extents on this block group.
3375 		 */
3376 		if (block_group->cached == BTRFS_CACHE_NO ||
3377 		    block_group->cached == BTRFS_CACHE_ERROR)
3378 			btrfs_free_excluded_extents(block_group);
3379 
3380 		btrfs_remove_free_space_cache(block_group);
3381 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3382 		ASSERT(list_empty(&block_group->dirty_list));
3383 		ASSERT(list_empty(&block_group->io_list));
3384 		ASSERT(list_empty(&block_group->bg_list));
3385 		ASSERT(atomic_read(&block_group->count) == 1);
3386 		btrfs_put_block_group(block_group);
3387 
3388 		spin_lock(&info->block_group_cache_lock);
3389 	}
3390 	spin_unlock(&info->block_group_cache_lock);
3391 
3392 	/*
3393 	 * Now that all the block groups are freed, go through and free all the
3394 	 * space_info structs.  This is only called during the final stages of
3395 	 * unmount, and so we know nobody is using them.  We call
3396 	 * synchronize_rcu() once before we start, just to be on the safe side.
3397 	 */
3398 	synchronize_rcu();
3399 
3400 	btrfs_release_global_block_rsv(info);
3401 
3402 	while (!list_empty(&info->space_info)) {
3403 		space_info = list_entry(info->space_info.next,
3404 					struct btrfs_space_info,
3405 					list);
3406 
3407 		/*
3408 		 * Do not hide this behind enospc_debug, this is actually
3409 		 * important and indicates a real bug if this happens.
3410 		 */
3411 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3412 			    space_info->bytes_reserved > 0 ||
3413 			    space_info->bytes_may_use > 0))
3414 			btrfs_dump_space_info(info, space_info, 0, 0);
3415 		WARN_ON(space_info->reclaim_size > 0);
3416 		list_del(&space_info->list);
3417 		btrfs_sysfs_remove_space_info(space_info);
3418 	}
3419 	return 0;
3420 }
3421 
3422 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3423 {
3424 	atomic_inc(&cache->frozen);
3425 }
3426 
3427 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3428 {
3429 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3430 	struct extent_map_tree *em_tree;
3431 	struct extent_map *em;
3432 	bool cleanup;
3433 
3434 	spin_lock(&block_group->lock);
3435 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3436 		   block_group->removed);
3437 	spin_unlock(&block_group->lock);
3438 
3439 	if (cleanup) {
3440 		mutex_lock(&fs_info->chunk_mutex);
3441 		em_tree = &fs_info->mapping_tree;
3442 		write_lock(&em_tree->lock);
3443 		em = lookup_extent_mapping(em_tree, block_group->start,
3444 					   1);
3445 		BUG_ON(!em); /* logic error, can't happen */
3446 		remove_extent_mapping(em_tree, em);
3447 		write_unlock(&em_tree->lock);
3448 		mutex_unlock(&fs_info->chunk_mutex);
3449 
3450 		/* once for us and once for the tree */
3451 		free_extent_map(em);
3452 		free_extent_map(em);
3453 
3454 		/*
3455 		 * We may have left one free space entry and other possible
3456 		 * tasks trimming this block group have left 1 entry each one.
3457 		 * Free them if any.
3458 		 */
3459 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3460 	}
3461 }
3462