xref: /linux/fs/btrfs/block-group.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20 
21 /*
22  * Return target flags in extended format or 0 if restripe for this chunk_type
23  * is not in progress
24  *
25  * Should be called with balance_lock held
26  */
27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
28 {
29 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 	u64 target = 0;
31 
32 	if (!bctl)
33 		return 0;
34 
35 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 	}
45 
46 	return target;
47 }
48 
49 /*
50  * @flags: available profiles in extended format (see ctree.h)
51  *
52  * Return reduced profile in chunk format.  If profile changing is in progress
53  * (either running or paused) picks the target profile (if it's already
54  * available), otherwise falls back to plain reducing.
55  */
56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 	u64 num_devices = fs_info->fs_devices->rw_devices;
59 	u64 target;
60 	u64 raid_type;
61 	u64 allowed = 0;
62 
63 	/*
64 	 * See if restripe for this chunk_type is in progress, if so try to
65 	 * reduce to the target profile
66 	 */
67 	spin_lock(&fs_info->balance_lock);
68 	target = get_restripe_target(fs_info, flags);
69 	if (target) {
70 		spin_unlock(&fs_info->balance_lock);
71 		return extended_to_chunk(target);
72 	}
73 	spin_unlock(&fs_info->balance_lock);
74 
75 	/* First, mask out the RAID levels which aren't possible */
76 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 			allowed |= btrfs_raid_array[raid_type].bg_flag;
79 	}
80 	allowed &= flags;
81 
82 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 		allowed = BTRFS_BLOCK_GROUP_RAID6;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 		allowed = BTRFS_BLOCK_GROUP_RAID5;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 		allowed = BTRFS_BLOCK_GROUP_RAID10;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 		allowed = BTRFS_BLOCK_GROUP_RAID1;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 		allowed = BTRFS_BLOCK_GROUP_RAID0;
92 
93 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94 
95 	return extended_to_chunk(flags | allowed);
96 }
97 
98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 	unsigned seq;
101 	u64 flags;
102 
103 	do {
104 		flags = orig_flags;
105 		seq = read_seqbegin(&fs_info->profiles_lock);
106 
107 		if (flags & BTRFS_BLOCK_GROUP_DATA)
108 			flags |= fs_info->avail_data_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 			flags |= fs_info->avail_system_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 			flags |= fs_info->avail_metadata_alloc_bits;
113 	} while (read_seqretry(&fs_info->profiles_lock, seq));
114 
115 	return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117 
118 void btrfs_get_block_group(struct btrfs_block_group *cache)
119 {
120 	refcount_inc(&cache->refs);
121 }
122 
123 void btrfs_put_block_group(struct btrfs_block_group *cache)
124 {
125 	if (refcount_dec_and_test(&cache->refs)) {
126 		WARN_ON(cache->pinned > 0);
127 		/*
128 		 * If there was a failure to cleanup a log tree, very likely due
129 		 * to an IO failure on a writeback attempt of one or more of its
130 		 * extent buffers, we could not do proper (and cheap) unaccounting
131 		 * of their reserved space, so don't warn on reserved > 0 in that
132 		 * case.
133 		 */
134 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 			WARN_ON(cache->reserved > 0);
137 
138 		/*
139 		 * A block_group shouldn't be on the discard_list anymore.
140 		 * Remove the block_group from the discard_list to prevent us
141 		 * from causing a panic due to NULL pointer dereference.
142 		 */
143 		if (WARN_ON(!list_empty(&cache->discard_list)))
144 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
145 						  cache);
146 
147 		/*
148 		 * If not empty, someone is still holding mutex of
149 		 * full_stripe_lock, which can only be released by caller.
150 		 * And it will definitely cause use-after-free when caller
151 		 * tries to release full stripe lock.
152 		 *
153 		 * No better way to resolve, but only to warn.
154 		 */
155 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 		kfree(cache->free_space_ctl);
157 		kfree(cache->physical_map);
158 		kfree(cache);
159 	}
160 }
161 
162 /*
163  * This adds the block group to the fs_info rb tree for the block group cache
164  */
165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
166 				       struct btrfs_block_group *block_group)
167 {
168 	struct rb_node **p;
169 	struct rb_node *parent = NULL;
170 	struct btrfs_block_group *cache;
171 
172 	ASSERT(block_group->length != 0);
173 
174 	spin_lock(&info->block_group_cache_lock);
175 	p = &info->block_group_cache_tree.rb_node;
176 
177 	while (*p) {
178 		parent = *p;
179 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
180 		if (block_group->start < cache->start) {
181 			p = &(*p)->rb_left;
182 		} else if (block_group->start > cache->start) {
183 			p = &(*p)->rb_right;
184 		} else {
185 			spin_unlock(&info->block_group_cache_lock);
186 			return -EEXIST;
187 		}
188 	}
189 
190 	rb_link_node(&block_group->cache_node, parent, p);
191 	rb_insert_color(&block_group->cache_node,
192 			&info->block_group_cache_tree);
193 
194 	if (info->first_logical_byte > block_group->start)
195 		info->first_logical_byte = block_group->start;
196 
197 	spin_unlock(&info->block_group_cache_lock);
198 
199 	return 0;
200 }
201 
202 /*
203  * This will return the block group at or after bytenr if contains is 0, else
204  * it will return the block group that contains the bytenr
205  */
206 static struct btrfs_block_group *block_group_cache_tree_search(
207 		struct btrfs_fs_info *info, u64 bytenr, int contains)
208 {
209 	struct btrfs_block_group *cache, *ret = NULL;
210 	struct rb_node *n;
211 	u64 end, start;
212 
213 	spin_lock(&info->block_group_cache_lock);
214 	n = info->block_group_cache_tree.rb_node;
215 
216 	while (n) {
217 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
218 		end = cache->start + cache->length - 1;
219 		start = cache->start;
220 
221 		if (bytenr < start) {
222 			if (!contains && (!ret || start < ret->start))
223 				ret = cache;
224 			n = n->rb_left;
225 		} else if (bytenr > start) {
226 			if (contains && bytenr <= end) {
227 				ret = cache;
228 				break;
229 			}
230 			n = n->rb_right;
231 		} else {
232 			ret = cache;
233 			break;
234 		}
235 	}
236 	if (ret) {
237 		btrfs_get_block_group(ret);
238 		if (bytenr == 0 && info->first_logical_byte > ret->start)
239 			info->first_logical_byte = ret->start;
240 	}
241 	spin_unlock(&info->block_group_cache_lock);
242 
243 	return ret;
244 }
245 
246 /*
247  * Return the block group that starts at or after bytenr
248  */
249 struct btrfs_block_group *btrfs_lookup_first_block_group(
250 		struct btrfs_fs_info *info, u64 bytenr)
251 {
252 	return block_group_cache_tree_search(info, bytenr, 0);
253 }
254 
255 /*
256  * Return the block group that contains the given bytenr
257  */
258 struct btrfs_block_group *btrfs_lookup_block_group(
259 		struct btrfs_fs_info *info, u64 bytenr)
260 {
261 	return block_group_cache_tree_search(info, bytenr, 1);
262 }
263 
264 struct btrfs_block_group *btrfs_next_block_group(
265 		struct btrfs_block_group *cache)
266 {
267 	struct btrfs_fs_info *fs_info = cache->fs_info;
268 	struct rb_node *node;
269 
270 	spin_lock(&fs_info->block_group_cache_lock);
271 
272 	/* If our block group was removed, we need a full search. */
273 	if (RB_EMPTY_NODE(&cache->cache_node)) {
274 		const u64 next_bytenr = cache->start + cache->length;
275 
276 		spin_unlock(&fs_info->block_group_cache_lock);
277 		btrfs_put_block_group(cache);
278 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
279 	}
280 	node = rb_next(&cache->cache_node);
281 	btrfs_put_block_group(cache);
282 	if (node) {
283 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
284 		btrfs_get_block_group(cache);
285 	} else
286 		cache = NULL;
287 	spin_unlock(&fs_info->block_group_cache_lock);
288 	return cache;
289 }
290 
291 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
292 {
293 	struct btrfs_block_group *bg;
294 	bool ret = true;
295 
296 	bg = btrfs_lookup_block_group(fs_info, bytenr);
297 	if (!bg)
298 		return false;
299 
300 	spin_lock(&bg->lock);
301 	if (bg->ro)
302 		ret = false;
303 	else
304 		atomic_inc(&bg->nocow_writers);
305 	spin_unlock(&bg->lock);
306 
307 	/* No put on block group, done by btrfs_dec_nocow_writers */
308 	if (!ret)
309 		btrfs_put_block_group(bg);
310 
311 	return ret;
312 }
313 
314 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
315 {
316 	struct btrfs_block_group *bg;
317 
318 	bg = btrfs_lookup_block_group(fs_info, bytenr);
319 	ASSERT(bg);
320 	if (atomic_dec_and_test(&bg->nocow_writers))
321 		wake_up_var(&bg->nocow_writers);
322 	/*
323 	 * Once for our lookup and once for the lookup done by a previous call
324 	 * to btrfs_inc_nocow_writers()
325 	 */
326 	btrfs_put_block_group(bg);
327 	btrfs_put_block_group(bg);
328 }
329 
330 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
331 {
332 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
333 }
334 
335 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
336 					const u64 start)
337 {
338 	struct btrfs_block_group *bg;
339 
340 	bg = btrfs_lookup_block_group(fs_info, start);
341 	ASSERT(bg);
342 	if (atomic_dec_and_test(&bg->reservations))
343 		wake_up_var(&bg->reservations);
344 	btrfs_put_block_group(bg);
345 }
346 
347 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
348 {
349 	struct btrfs_space_info *space_info = bg->space_info;
350 
351 	ASSERT(bg->ro);
352 
353 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
354 		return;
355 
356 	/*
357 	 * Our block group is read only but before we set it to read only,
358 	 * some task might have had allocated an extent from it already, but it
359 	 * has not yet created a respective ordered extent (and added it to a
360 	 * root's list of ordered extents).
361 	 * Therefore wait for any task currently allocating extents, since the
362 	 * block group's reservations counter is incremented while a read lock
363 	 * on the groups' semaphore is held and decremented after releasing
364 	 * the read access on that semaphore and creating the ordered extent.
365 	 */
366 	down_write(&space_info->groups_sem);
367 	up_write(&space_info->groups_sem);
368 
369 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
370 }
371 
372 struct btrfs_caching_control *btrfs_get_caching_control(
373 		struct btrfs_block_group *cache)
374 {
375 	struct btrfs_caching_control *ctl;
376 
377 	spin_lock(&cache->lock);
378 	if (!cache->caching_ctl) {
379 		spin_unlock(&cache->lock);
380 		return NULL;
381 	}
382 
383 	ctl = cache->caching_ctl;
384 	refcount_inc(&ctl->count);
385 	spin_unlock(&cache->lock);
386 	return ctl;
387 }
388 
389 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
390 {
391 	if (refcount_dec_and_test(&ctl->count))
392 		kfree(ctl);
393 }
394 
395 /*
396  * When we wait for progress in the block group caching, its because our
397  * allocation attempt failed at least once.  So, we must sleep and let some
398  * progress happen before we try again.
399  *
400  * This function will sleep at least once waiting for new free space to show
401  * up, and then it will check the block group free space numbers for our min
402  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
403  * a free extent of a given size, but this is a good start.
404  *
405  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
406  * any of the information in this block group.
407  */
408 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
409 					   u64 num_bytes)
410 {
411 	struct btrfs_caching_control *caching_ctl;
412 
413 	caching_ctl = btrfs_get_caching_control(cache);
414 	if (!caching_ctl)
415 		return;
416 
417 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
418 		   (cache->free_space_ctl->free_space >= num_bytes));
419 
420 	btrfs_put_caching_control(caching_ctl);
421 }
422 
423 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
424 {
425 	struct btrfs_caching_control *caching_ctl;
426 	int ret = 0;
427 
428 	caching_ctl = btrfs_get_caching_control(cache);
429 	if (!caching_ctl)
430 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
431 
432 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
433 	if (cache->cached == BTRFS_CACHE_ERROR)
434 		ret = -EIO;
435 	btrfs_put_caching_control(caching_ctl);
436 	return ret;
437 }
438 
439 static bool space_cache_v1_done(struct btrfs_block_group *cache)
440 {
441 	bool ret;
442 
443 	spin_lock(&cache->lock);
444 	ret = cache->cached != BTRFS_CACHE_FAST;
445 	spin_unlock(&cache->lock);
446 
447 	return ret;
448 }
449 
450 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
451 				struct btrfs_caching_control *caching_ctl)
452 {
453 	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
454 }
455 
456 #ifdef CONFIG_BTRFS_DEBUG
457 static void fragment_free_space(struct btrfs_block_group *block_group)
458 {
459 	struct btrfs_fs_info *fs_info = block_group->fs_info;
460 	u64 start = block_group->start;
461 	u64 len = block_group->length;
462 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
463 		fs_info->nodesize : fs_info->sectorsize;
464 	u64 step = chunk << 1;
465 
466 	while (len > chunk) {
467 		btrfs_remove_free_space(block_group, start, chunk);
468 		start += step;
469 		if (len < step)
470 			len = 0;
471 		else
472 			len -= step;
473 	}
474 }
475 #endif
476 
477 /*
478  * This is only called by btrfs_cache_block_group, since we could have freed
479  * extents we need to check the pinned_extents for any extents that can't be
480  * used yet since their free space will be released as soon as the transaction
481  * commits.
482  */
483 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
484 {
485 	struct btrfs_fs_info *info = block_group->fs_info;
486 	u64 extent_start, extent_end, size, total_added = 0;
487 	int ret;
488 
489 	while (start < end) {
490 		ret = find_first_extent_bit(&info->excluded_extents, start,
491 					    &extent_start, &extent_end,
492 					    EXTENT_DIRTY | EXTENT_UPTODATE,
493 					    NULL);
494 		if (ret)
495 			break;
496 
497 		if (extent_start <= start) {
498 			start = extent_end + 1;
499 		} else if (extent_start > start && extent_start < end) {
500 			size = extent_start - start;
501 			total_added += size;
502 			ret = btrfs_add_free_space_async_trimmed(block_group,
503 								 start, size);
504 			BUG_ON(ret); /* -ENOMEM or logic error */
505 			start = extent_end + 1;
506 		} else {
507 			break;
508 		}
509 	}
510 
511 	if (start < end) {
512 		size = end - start;
513 		total_added += size;
514 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
515 							 size);
516 		BUG_ON(ret); /* -ENOMEM or logic error */
517 	}
518 
519 	return total_added;
520 }
521 
522 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
523 {
524 	struct btrfs_block_group *block_group = caching_ctl->block_group;
525 	struct btrfs_fs_info *fs_info = block_group->fs_info;
526 	struct btrfs_root *extent_root;
527 	struct btrfs_path *path;
528 	struct extent_buffer *leaf;
529 	struct btrfs_key key;
530 	u64 total_found = 0;
531 	u64 last = 0;
532 	u32 nritems;
533 	int ret;
534 	bool wakeup = true;
535 
536 	path = btrfs_alloc_path();
537 	if (!path)
538 		return -ENOMEM;
539 
540 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
541 	extent_root = btrfs_extent_root(fs_info, last);
542 
543 #ifdef CONFIG_BTRFS_DEBUG
544 	/*
545 	 * If we're fragmenting we don't want to make anybody think we can
546 	 * allocate from this block group until we've had a chance to fragment
547 	 * the free space.
548 	 */
549 	if (btrfs_should_fragment_free_space(block_group))
550 		wakeup = false;
551 #endif
552 	/*
553 	 * We don't want to deadlock with somebody trying to allocate a new
554 	 * extent for the extent root while also trying to search the extent
555 	 * root to add free space.  So we skip locking and search the commit
556 	 * root, since its read-only
557 	 */
558 	path->skip_locking = 1;
559 	path->search_commit_root = 1;
560 	path->reada = READA_FORWARD;
561 
562 	key.objectid = last;
563 	key.offset = 0;
564 	key.type = BTRFS_EXTENT_ITEM_KEY;
565 
566 next:
567 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
568 	if (ret < 0)
569 		goto out;
570 
571 	leaf = path->nodes[0];
572 	nritems = btrfs_header_nritems(leaf);
573 
574 	while (1) {
575 		if (btrfs_fs_closing(fs_info) > 1) {
576 			last = (u64)-1;
577 			break;
578 		}
579 
580 		if (path->slots[0] < nritems) {
581 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
582 		} else {
583 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
584 			if (ret)
585 				break;
586 
587 			if (need_resched() ||
588 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
589 				if (wakeup)
590 					caching_ctl->progress = last;
591 				btrfs_release_path(path);
592 				up_read(&fs_info->commit_root_sem);
593 				mutex_unlock(&caching_ctl->mutex);
594 				cond_resched();
595 				mutex_lock(&caching_ctl->mutex);
596 				down_read(&fs_info->commit_root_sem);
597 				goto next;
598 			}
599 
600 			ret = btrfs_next_leaf(extent_root, path);
601 			if (ret < 0)
602 				goto out;
603 			if (ret)
604 				break;
605 			leaf = path->nodes[0];
606 			nritems = btrfs_header_nritems(leaf);
607 			continue;
608 		}
609 
610 		if (key.objectid < last) {
611 			key.objectid = last;
612 			key.offset = 0;
613 			key.type = BTRFS_EXTENT_ITEM_KEY;
614 
615 			if (wakeup)
616 				caching_ctl->progress = last;
617 			btrfs_release_path(path);
618 			goto next;
619 		}
620 
621 		if (key.objectid < block_group->start) {
622 			path->slots[0]++;
623 			continue;
624 		}
625 
626 		if (key.objectid >= block_group->start + block_group->length)
627 			break;
628 
629 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
630 		    key.type == BTRFS_METADATA_ITEM_KEY) {
631 			total_found += add_new_free_space(block_group, last,
632 							  key.objectid);
633 			if (key.type == BTRFS_METADATA_ITEM_KEY)
634 				last = key.objectid +
635 					fs_info->nodesize;
636 			else
637 				last = key.objectid + key.offset;
638 
639 			if (total_found > CACHING_CTL_WAKE_UP) {
640 				total_found = 0;
641 				if (wakeup)
642 					wake_up(&caching_ctl->wait);
643 			}
644 		}
645 		path->slots[0]++;
646 	}
647 	ret = 0;
648 
649 	total_found += add_new_free_space(block_group, last,
650 				block_group->start + block_group->length);
651 	caching_ctl->progress = (u64)-1;
652 
653 out:
654 	btrfs_free_path(path);
655 	return ret;
656 }
657 
658 static noinline void caching_thread(struct btrfs_work *work)
659 {
660 	struct btrfs_block_group *block_group;
661 	struct btrfs_fs_info *fs_info;
662 	struct btrfs_caching_control *caching_ctl;
663 	int ret;
664 
665 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
666 	block_group = caching_ctl->block_group;
667 	fs_info = block_group->fs_info;
668 
669 	mutex_lock(&caching_ctl->mutex);
670 	down_read(&fs_info->commit_root_sem);
671 
672 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
673 		ret = load_free_space_cache(block_group);
674 		if (ret == 1) {
675 			ret = 0;
676 			goto done;
677 		}
678 
679 		/*
680 		 * We failed to load the space cache, set ourselves to
681 		 * CACHE_STARTED and carry on.
682 		 */
683 		spin_lock(&block_group->lock);
684 		block_group->cached = BTRFS_CACHE_STARTED;
685 		spin_unlock(&block_group->lock);
686 		wake_up(&caching_ctl->wait);
687 	}
688 
689 	/*
690 	 * If we are in the transaction that populated the free space tree we
691 	 * can't actually cache from the free space tree as our commit root and
692 	 * real root are the same, so we could change the contents of the blocks
693 	 * while caching.  Instead do the slow caching in this case, and after
694 	 * the transaction has committed we will be safe.
695 	 */
696 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
697 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
698 		ret = load_free_space_tree(caching_ctl);
699 	else
700 		ret = load_extent_tree_free(caching_ctl);
701 done:
702 	spin_lock(&block_group->lock);
703 	block_group->caching_ctl = NULL;
704 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
705 	spin_unlock(&block_group->lock);
706 
707 #ifdef CONFIG_BTRFS_DEBUG
708 	if (btrfs_should_fragment_free_space(block_group)) {
709 		u64 bytes_used;
710 
711 		spin_lock(&block_group->space_info->lock);
712 		spin_lock(&block_group->lock);
713 		bytes_used = block_group->length - block_group->used;
714 		block_group->space_info->bytes_used += bytes_used >> 1;
715 		spin_unlock(&block_group->lock);
716 		spin_unlock(&block_group->space_info->lock);
717 		fragment_free_space(block_group);
718 	}
719 #endif
720 
721 	caching_ctl->progress = (u64)-1;
722 
723 	up_read(&fs_info->commit_root_sem);
724 	btrfs_free_excluded_extents(block_group);
725 	mutex_unlock(&caching_ctl->mutex);
726 
727 	wake_up(&caching_ctl->wait);
728 
729 	btrfs_put_caching_control(caching_ctl);
730 	btrfs_put_block_group(block_group);
731 }
732 
733 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
734 {
735 	DEFINE_WAIT(wait);
736 	struct btrfs_fs_info *fs_info = cache->fs_info;
737 	struct btrfs_caching_control *caching_ctl = NULL;
738 	int ret = 0;
739 
740 	/* Allocator for zoned filesystems does not use the cache at all */
741 	if (btrfs_is_zoned(fs_info))
742 		return 0;
743 
744 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
745 	if (!caching_ctl)
746 		return -ENOMEM;
747 
748 	INIT_LIST_HEAD(&caching_ctl->list);
749 	mutex_init(&caching_ctl->mutex);
750 	init_waitqueue_head(&caching_ctl->wait);
751 	caching_ctl->block_group = cache;
752 	caching_ctl->progress = cache->start;
753 	refcount_set(&caching_ctl->count, 2);
754 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
755 
756 	spin_lock(&cache->lock);
757 	if (cache->cached != BTRFS_CACHE_NO) {
758 		kfree(caching_ctl);
759 
760 		caching_ctl = cache->caching_ctl;
761 		if (caching_ctl)
762 			refcount_inc(&caching_ctl->count);
763 		spin_unlock(&cache->lock);
764 		goto out;
765 	}
766 	WARN_ON(cache->caching_ctl);
767 	cache->caching_ctl = caching_ctl;
768 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
769 		cache->cached = BTRFS_CACHE_FAST;
770 	else
771 		cache->cached = BTRFS_CACHE_STARTED;
772 	cache->has_caching_ctl = 1;
773 	spin_unlock(&cache->lock);
774 
775 	spin_lock(&fs_info->block_group_cache_lock);
776 	refcount_inc(&caching_ctl->count);
777 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
778 	spin_unlock(&fs_info->block_group_cache_lock);
779 
780 	btrfs_get_block_group(cache);
781 
782 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
783 out:
784 	if (load_cache_only && caching_ctl)
785 		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
786 	if (caching_ctl)
787 		btrfs_put_caching_control(caching_ctl);
788 
789 	return ret;
790 }
791 
792 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
793 {
794 	u64 extra_flags = chunk_to_extended(flags) &
795 				BTRFS_EXTENDED_PROFILE_MASK;
796 
797 	write_seqlock(&fs_info->profiles_lock);
798 	if (flags & BTRFS_BLOCK_GROUP_DATA)
799 		fs_info->avail_data_alloc_bits &= ~extra_flags;
800 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
801 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
802 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
803 		fs_info->avail_system_alloc_bits &= ~extra_flags;
804 	write_sequnlock(&fs_info->profiles_lock);
805 }
806 
807 /*
808  * Clear incompat bits for the following feature(s):
809  *
810  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
811  *            in the whole filesystem
812  *
813  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
814  */
815 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
816 {
817 	bool found_raid56 = false;
818 	bool found_raid1c34 = false;
819 
820 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
821 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
822 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
823 		struct list_head *head = &fs_info->space_info;
824 		struct btrfs_space_info *sinfo;
825 
826 		list_for_each_entry_rcu(sinfo, head, list) {
827 			down_read(&sinfo->groups_sem);
828 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
829 				found_raid56 = true;
830 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
831 				found_raid56 = true;
832 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
833 				found_raid1c34 = true;
834 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
835 				found_raid1c34 = true;
836 			up_read(&sinfo->groups_sem);
837 		}
838 		if (!found_raid56)
839 			btrfs_clear_fs_incompat(fs_info, RAID56);
840 		if (!found_raid1c34)
841 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
842 	}
843 }
844 
845 static int remove_block_group_item(struct btrfs_trans_handle *trans,
846 				   struct btrfs_path *path,
847 				   struct btrfs_block_group *block_group)
848 {
849 	struct btrfs_fs_info *fs_info = trans->fs_info;
850 	struct btrfs_root *root;
851 	struct btrfs_key key;
852 	int ret;
853 
854 	root = btrfs_block_group_root(fs_info);
855 	key.objectid = block_group->start;
856 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
857 	key.offset = block_group->length;
858 
859 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
860 	if (ret > 0)
861 		ret = -ENOENT;
862 	if (ret < 0)
863 		return ret;
864 
865 	ret = btrfs_del_item(trans, root, path);
866 	return ret;
867 }
868 
869 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
870 			     u64 group_start, struct extent_map *em)
871 {
872 	struct btrfs_fs_info *fs_info = trans->fs_info;
873 	struct btrfs_path *path;
874 	struct btrfs_block_group *block_group;
875 	struct btrfs_free_cluster *cluster;
876 	struct inode *inode;
877 	struct kobject *kobj = NULL;
878 	int ret;
879 	int index;
880 	int factor;
881 	struct btrfs_caching_control *caching_ctl = NULL;
882 	bool remove_em;
883 	bool remove_rsv = false;
884 
885 	block_group = btrfs_lookup_block_group(fs_info, group_start);
886 	BUG_ON(!block_group);
887 	BUG_ON(!block_group->ro);
888 
889 	trace_btrfs_remove_block_group(block_group);
890 	/*
891 	 * Free the reserved super bytes from this block group before
892 	 * remove it.
893 	 */
894 	btrfs_free_excluded_extents(block_group);
895 	btrfs_free_ref_tree_range(fs_info, block_group->start,
896 				  block_group->length);
897 
898 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
899 	factor = btrfs_bg_type_to_factor(block_group->flags);
900 
901 	/* make sure this block group isn't part of an allocation cluster */
902 	cluster = &fs_info->data_alloc_cluster;
903 	spin_lock(&cluster->refill_lock);
904 	btrfs_return_cluster_to_free_space(block_group, cluster);
905 	spin_unlock(&cluster->refill_lock);
906 
907 	/*
908 	 * make sure this block group isn't part of a metadata
909 	 * allocation cluster
910 	 */
911 	cluster = &fs_info->meta_alloc_cluster;
912 	spin_lock(&cluster->refill_lock);
913 	btrfs_return_cluster_to_free_space(block_group, cluster);
914 	spin_unlock(&cluster->refill_lock);
915 
916 	btrfs_clear_treelog_bg(block_group);
917 	btrfs_clear_data_reloc_bg(block_group);
918 
919 	path = btrfs_alloc_path();
920 	if (!path) {
921 		ret = -ENOMEM;
922 		goto out;
923 	}
924 
925 	/*
926 	 * get the inode first so any iput calls done for the io_list
927 	 * aren't the final iput (no unlinks allowed now)
928 	 */
929 	inode = lookup_free_space_inode(block_group, path);
930 
931 	mutex_lock(&trans->transaction->cache_write_mutex);
932 	/*
933 	 * Make sure our free space cache IO is done before removing the
934 	 * free space inode
935 	 */
936 	spin_lock(&trans->transaction->dirty_bgs_lock);
937 	if (!list_empty(&block_group->io_list)) {
938 		list_del_init(&block_group->io_list);
939 
940 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
941 
942 		spin_unlock(&trans->transaction->dirty_bgs_lock);
943 		btrfs_wait_cache_io(trans, block_group, path);
944 		btrfs_put_block_group(block_group);
945 		spin_lock(&trans->transaction->dirty_bgs_lock);
946 	}
947 
948 	if (!list_empty(&block_group->dirty_list)) {
949 		list_del_init(&block_group->dirty_list);
950 		remove_rsv = true;
951 		btrfs_put_block_group(block_group);
952 	}
953 	spin_unlock(&trans->transaction->dirty_bgs_lock);
954 	mutex_unlock(&trans->transaction->cache_write_mutex);
955 
956 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
957 	if (ret)
958 		goto out;
959 
960 	spin_lock(&fs_info->block_group_cache_lock);
961 	rb_erase(&block_group->cache_node,
962 		 &fs_info->block_group_cache_tree);
963 	RB_CLEAR_NODE(&block_group->cache_node);
964 
965 	/* Once for the block groups rbtree */
966 	btrfs_put_block_group(block_group);
967 
968 	if (fs_info->first_logical_byte == block_group->start)
969 		fs_info->first_logical_byte = (u64)-1;
970 	spin_unlock(&fs_info->block_group_cache_lock);
971 
972 	down_write(&block_group->space_info->groups_sem);
973 	/*
974 	 * we must use list_del_init so people can check to see if they
975 	 * are still on the list after taking the semaphore
976 	 */
977 	list_del_init(&block_group->list);
978 	if (list_empty(&block_group->space_info->block_groups[index])) {
979 		kobj = block_group->space_info->block_group_kobjs[index];
980 		block_group->space_info->block_group_kobjs[index] = NULL;
981 		clear_avail_alloc_bits(fs_info, block_group->flags);
982 	}
983 	up_write(&block_group->space_info->groups_sem);
984 	clear_incompat_bg_bits(fs_info, block_group->flags);
985 	if (kobj) {
986 		kobject_del(kobj);
987 		kobject_put(kobj);
988 	}
989 
990 	if (block_group->has_caching_ctl)
991 		caching_ctl = btrfs_get_caching_control(block_group);
992 	if (block_group->cached == BTRFS_CACHE_STARTED)
993 		btrfs_wait_block_group_cache_done(block_group);
994 	if (block_group->has_caching_ctl) {
995 		spin_lock(&fs_info->block_group_cache_lock);
996 		if (!caching_ctl) {
997 			struct btrfs_caching_control *ctl;
998 
999 			list_for_each_entry(ctl,
1000 				    &fs_info->caching_block_groups, list)
1001 				if (ctl->block_group == block_group) {
1002 					caching_ctl = ctl;
1003 					refcount_inc(&caching_ctl->count);
1004 					break;
1005 				}
1006 		}
1007 		if (caching_ctl)
1008 			list_del_init(&caching_ctl->list);
1009 		spin_unlock(&fs_info->block_group_cache_lock);
1010 		if (caching_ctl) {
1011 			/* Once for the caching bgs list and once for us. */
1012 			btrfs_put_caching_control(caching_ctl);
1013 			btrfs_put_caching_control(caching_ctl);
1014 		}
1015 	}
1016 
1017 	spin_lock(&trans->transaction->dirty_bgs_lock);
1018 	WARN_ON(!list_empty(&block_group->dirty_list));
1019 	WARN_ON(!list_empty(&block_group->io_list));
1020 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1021 
1022 	btrfs_remove_free_space_cache(block_group);
1023 
1024 	spin_lock(&block_group->space_info->lock);
1025 	list_del_init(&block_group->ro_list);
1026 
1027 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1028 		WARN_ON(block_group->space_info->total_bytes
1029 			< block_group->length);
1030 		WARN_ON(block_group->space_info->bytes_readonly
1031 			< block_group->length - block_group->zone_unusable);
1032 		WARN_ON(block_group->space_info->bytes_zone_unusable
1033 			< block_group->zone_unusable);
1034 		WARN_ON(block_group->space_info->disk_total
1035 			< block_group->length * factor);
1036 	}
1037 	block_group->space_info->total_bytes -= block_group->length;
1038 	block_group->space_info->bytes_readonly -=
1039 		(block_group->length - block_group->zone_unusable);
1040 	block_group->space_info->bytes_zone_unusable -=
1041 		block_group->zone_unusable;
1042 	block_group->space_info->disk_total -= block_group->length * factor;
1043 
1044 	spin_unlock(&block_group->space_info->lock);
1045 
1046 	/*
1047 	 * Remove the free space for the block group from the free space tree
1048 	 * and the block group's item from the extent tree before marking the
1049 	 * block group as removed. This is to prevent races with tasks that
1050 	 * freeze and unfreeze a block group, this task and another task
1051 	 * allocating a new block group - the unfreeze task ends up removing
1052 	 * the block group's extent map before the task calling this function
1053 	 * deletes the block group item from the extent tree, allowing for
1054 	 * another task to attempt to create another block group with the same
1055 	 * item key (and failing with -EEXIST and a transaction abort).
1056 	 */
1057 	ret = remove_block_group_free_space(trans, block_group);
1058 	if (ret)
1059 		goto out;
1060 
1061 	ret = remove_block_group_item(trans, path, block_group);
1062 	if (ret < 0)
1063 		goto out;
1064 
1065 	spin_lock(&block_group->lock);
1066 	block_group->removed = 1;
1067 	/*
1068 	 * At this point trimming or scrub can't start on this block group,
1069 	 * because we removed the block group from the rbtree
1070 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1071 	 * even if someone already got this block group before we removed it
1072 	 * from the rbtree, they have already incremented block_group->frozen -
1073 	 * if they didn't, for the trimming case they won't find any free space
1074 	 * entries because we already removed them all when we called
1075 	 * btrfs_remove_free_space_cache().
1076 	 *
1077 	 * And we must not remove the extent map from the fs_info->mapping_tree
1078 	 * to prevent the same logical address range and physical device space
1079 	 * ranges from being reused for a new block group. This is needed to
1080 	 * avoid races with trimming and scrub.
1081 	 *
1082 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1083 	 * completely transactionless, so while it is trimming a range the
1084 	 * currently running transaction might finish and a new one start,
1085 	 * allowing for new block groups to be created that can reuse the same
1086 	 * physical device locations unless we take this special care.
1087 	 *
1088 	 * There may also be an implicit trim operation if the file system
1089 	 * is mounted with -odiscard. The same protections must remain
1090 	 * in place until the extents have been discarded completely when
1091 	 * the transaction commit has completed.
1092 	 */
1093 	remove_em = (atomic_read(&block_group->frozen) == 0);
1094 	spin_unlock(&block_group->lock);
1095 
1096 	if (remove_em) {
1097 		struct extent_map_tree *em_tree;
1098 
1099 		em_tree = &fs_info->mapping_tree;
1100 		write_lock(&em_tree->lock);
1101 		remove_extent_mapping(em_tree, em);
1102 		write_unlock(&em_tree->lock);
1103 		/* once for the tree */
1104 		free_extent_map(em);
1105 	}
1106 
1107 out:
1108 	/* Once for the lookup reference */
1109 	btrfs_put_block_group(block_group);
1110 	if (remove_rsv)
1111 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1112 	btrfs_free_path(path);
1113 	return ret;
1114 }
1115 
1116 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1117 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1118 {
1119 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1120 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1121 	struct extent_map *em;
1122 	struct map_lookup *map;
1123 	unsigned int num_items;
1124 
1125 	read_lock(&em_tree->lock);
1126 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1127 	read_unlock(&em_tree->lock);
1128 	ASSERT(em && em->start == chunk_offset);
1129 
1130 	/*
1131 	 * We need to reserve 3 + N units from the metadata space info in order
1132 	 * to remove a block group (done at btrfs_remove_chunk() and at
1133 	 * btrfs_remove_block_group()), which are used for:
1134 	 *
1135 	 * 1 unit for adding the free space inode's orphan (located in the tree
1136 	 * of tree roots).
1137 	 * 1 unit for deleting the block group item (located in the extent
1138 	 * tree).
1139 	 * 1 unit for deleting the free space item (located in tree of tree
1140 	 * roots).
1141 	 * N units for deleting N device extent items corresponding to each
1142 	 * stripe (located in the device tree).
1143 	 *
1144 	 * In order to remove a block group we also need to reserve units in the
1145 	 * system space info in order to update the chunk tree (update one or
1146 	 * more device items and remove one chunk item), but this is done at
1147 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1148 	 */
1149 	map = em->map_lookup;
1150 	num_items = 3 + map->num_stripes;
1151 	free_extent_map(em);
1152 
1153 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1154 }
1155 
1156 /*
1157  * Mark block group @cache read-only, so later write won't happen to block
1158  * group @cache.
1159  *
1160  * If @force is not set, this function will only mark the block group readonly
1161  * if we have enough free space (1M) in other metadata/system block groups.
1162  * If @force is not set, this function will mark the block group readonly
1163  * without checking free space.
1164  *
1165  * NOTE: This function doesn't care if other block groups can contain all the
1166  * data in this block group. That check should be done by relocation routine,
1167  * not this function.
1168  */
1169 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1170 {
1171 	struct btrfs_space_info *sinfo = cache->space_info;
1172 	u64 num_bytes;
1173 	int ret = -ENOSPC;
1174 
1175 	spin_lock(&sinfo->lock);
1176 	spin_lock(&cache->lock);
1177 
1178 	if (cache->swap_extents) {
1179 		ret = -ETXTBSY;
1180 		goto out;
1181 	}
1182 
1183 	if (cache->ro) {
1184 		cache->ro++;
1185 		ret = 0;
1186 		goto out;
1187 	}
1188 
1189 	num_bytes = cache->length - cache->reserved - cache->pinned -
1190 		    cache->bytes_super - cache->zone_unusable - cache->used;
1191 
1192 	/*
1193 	 * Data never overcommits, even in mixed mode, so do just the straight
1194 	 * check of left over space in how much we have allocated.
1195 	 */
1196 	if (force) {
1197 		ret = 0;
1198 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1199 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1200 
1201 		/*
1202 		 * Here we make sure if we mark this bg RO, we still have enough
1203 		 * free space as buffer.
1204 		 */
1205 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1206 			ret = 0;
1207 	} else {
1208 		/*
1209 		 * We overcommit metadata, so we need to do the
1210 		 * btrfs_can_overcommit check here, and we need to pass in
1211 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1212 		 * leeway to allow us to mark this block group as read only.
1213 		 */
1214 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1215 					 BTRFS_RESERVE_NO_FLUSH))
1216 			ret = 0;
1217 	}
1218 
1219 	if (!ret) {
1220 		sinfo->bytes_readonly += num_bytes;
1221 		if (btrfs_is_zoned(cache->fs_info)) {
1222 			/* Migrate zone_unusable bytes to readonly */
1223 			sinfo->bytes_readonly += cache->zone_unusable;
1224 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1225 			cache->zone_unusable = 0;
1226 		}
1227 		cache->ro++;
1228 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1229 	}
1230 out:
1231 	spin_unlock(&cache->lock);
1232 	spin_unlock(&sinfo->lock);
1233 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1234 		btrfs_info(cache->fs_info,
1235 			"unable to make block group %llu ro", cache->start);
1236 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1237 	}
1238 	return ret;
1239 }
1240 
1241 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1242 				 struct btrfs_block_group *bg)
1243 {
1244 	struct btrfs_fs_info *fs_info = bg->fs_info;
1245 	struct btrfs_transaction *prev_trans = NULL;
1246 	const u64 start = bg->start;
1247 	const u64 end = start + bg->length - 1;
1248 	int ret;
1249 
1250 	spin_lock(&fs_info->trans_lock);
1251 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1252 		prev_trans = list_last_entry(&trans->transaction->list,
1253 					     struct btrfs_transaction, list);
1254 		refcount_inc(&prev_trans->use_count);
1255 	}
1256 	spin_unlock(&fs_info->trans_lock);
1257 
1258 	/*
1259 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1260 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1261 	 * task might be running finish_extent_commit() for the previous
1262 	 * transaction N - 1, and have seen a range belonging to the block
1263 	 * group in pinned_extents before we were able to clear the whole block
1264 	 * group range from pinned_extents. This means that task can lookup for
1265 	 * the block group after we unpinned it from pinned_extents and removed
1266 	 * it, leading to a BUG_ON() at unpin_extent_range().
1267 	 */
1268 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1269 	if (prev_trans) {
1270 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1271 					EXTENT_DIRTY);
1272 		if (ret)
1273 			goto out;
1274 	}
1275 
1276 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1277 				EXTENT_DIRTY);
1278 out:
1279 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1280 	if (prev_trans)
1281 		btrfs_put_transaction(prev_trans);
1282 
1283 	return ret == 0;
1284 }
1285 
1286 /*
1287  * Process the unused_bgs list and remove any that don't have any allocated
1288  * space inside of them.
1289  */
1290 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1291 {
1292 	struct btrfs_block_group *block_group;
1293 	struct btrfs_space_info *space_info;
1294 	struct btrfs_trans_handle *trans;
1295 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1296 	int ret = 0;
1297 
1298 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1299 		return;
1300 
1301 	/*
1302 	 * Long running balances can keep us blocked here for eternity, so
1303 	 * simply skip deletion if we're unable to get the mutex.
1304 	 */
1305 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1306 		return;
1307 
1308 	spin_lock(&fs_info->unused_bgs_lock);
1309 	while (!list_empty(&fs_info->unused_bgs)) {
1310 		int trimming;
1311 
1312 		block_group = list_first_entry(&fs_info->unused_bgs,
1313 					       struct btrfs_block_group,
1314 					       bg_list);
1315 		list_del_init(&block_group->bg_list);
1316 
1317 		space_info = block_group->space_info;
1318 
1319 		if (ret || btrfs_mixed_space_info(space_info)) {
1320 			btrfs_put_block_group(block_group);
1321 			continue;
1322 		}
1323 		spin_unlock(&fs_info->unused_bgs_lock);
1324 
1325 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1326 
1327 		/* Don't want to race with allocators so take the groups_sem */
1328 		down_write(&space_info->groups_sem);
1329 
1330 		/*
1331 		 * Async discard moves the final block group discard to be prior
1332 		 * to the unused_bgs code path.  Therefore, if it's not fully
1333 		 * trimmed, punt it back to the async discard lists.
1334 		 */
1335 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1336 		    !btrfs_is_free_space_trimmed(block_group)) {
1337 			trace_btrfs_skip_unused_block_group(block_group);
1338 			up_write(&space_info->groups_sem);
1339 			/* Requeue if we failed because of async discard */
1340 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1341 						 block_group);
1342 			goto next;
1343 		}
1344 
1345 		spin_lock(&block_group->lock);
1346 		if (block_group->reserved || block_group->pinned ||
1347 		    block_group->used || block_group->ro ||
1348 		    list_is_singular(&block_group->list)) {
1349 			/*
1350 			 * We want to bail if we made new allocations or have
1351 			 * outstanding allocations in this block group.  We do
1352 			 * the ro check in case balance is currently acting on
1353 			 * this block group.
1354 			 */
1355 			trace_btrfs_skip_unused_block_group(block_group);
1356 			spin_unlock(&block_group->lock);
1357 			up_write(&space_info->groups_sem);
1358 			goto next;
1359 		}
1360 		spin_unlock(&block_group->lock);
1361 
1362 		/* We don't want to force the issue, only flip if it's ok. */
1363 		ret = inc_block_group_ro(block_group, 0);
1364 		up_write(&space_info->groups_sem);
1365 		if (ret < 0) {
1366 			ret = 0;
1367 			goto next;
1368 		}
1369 
1370 		/*
1371 		 * Want to do this before we do anything else so we can recover
1372 		 * properly if we fail to join the transaction.
1373 		 */
1374 		trans = btrfs_start_trans_remove_block_group(fs_info,
1375 						     block_group->start);
1376 		if (IS_ERR(trans)) {
1377 			btrfs_dec_block_group_ro(block_group);
1378 			ret = PTR_ERR(trans);
1379 			goto next;
1380 		}
1381 
1382 		/*
1383 		 * We could have pending pinned extents for this block group,
1384 		 * just delete them, we don't care about them anymore.
1385 		 */
1386 		if (!clean_pinned_extents(trans, block_group)) {
1387 			btrfs_dec_block_group_ro(block_group);
1388 			goto end_trans;
1389 		}
1390 
1391 		/*
1392 		 * At this point, the block_group is read only and should fail
1393 		 * new allocations.  However, btrfs_finish_extent_commit() can
1394 		 * cause this block_group to be placed back on the discard
1395 		 * lists because now the block_group isn't fully discarded.
1396 		 * Bail here and try again later after discarding everything.
1397 		 */
1398 		spin_lock(&fs_info->discard_ctl.lock);
1399 		if (!list_empty(&block_group->discard_list)) {
1400 			spin_unlock(&fs_info->discard_ctl.lock);
1401 			btrfs_dec_block_group_ro(block_group);
1402 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1403 						 block_group);
1404 			goto end_trans;
1405 		}
1406 		spin_unlock(&fs_info->discard_ctl.lock);
1407 
1408 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1409 		spin_lock(&space_info->lock);
1410 		spin_lock(&block_group->lock);
1411 
1412 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1413 						     -block_group->pinned);
1414 		space_info->bytes_readonly += block_group->pinned;
1415 		block_group->pinned = 0;
1416 
1417 		spin_unlock(&block_group->lock);
1418 		spin_unlock(&space_info->lock);
1419 
1420 		/*
1421 		 * The normal path here is an unused block group is passed here,
1422 		 * then trimming is handled in the transaction commit path.
1423 		 * Async discard interposes before this to do the trimming
1424 		 * before coming down the unused block group path as trimming
1425 		 * will no longer be done later in the transaction commit path.
1426 		 */
1427 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1428 			goto flip_async;
1429 
1430 		/*
1431 		 * DISCARD can flip during remount. On zoned filesystems, we
1432 		 * need to reset sequential-required zones.
1433 		 */
1434 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1435 				btrfs_is_zoned(fs_info);
1436 
1437 		/* Implicit trim during transaction commit. */
1438 		if (trimming)
1439 			btrfs_freeze_block_group(block_group);
1440 
1441 		/*
1442 		 * Btrfs_remove_chunk will abort the transaction if things go
1443 		 * horribly wrong.
1444 		 */
1445 		ret = btrfs_remove_chunk(trans, block_group->start);
1446 
1447 		if (ret) {
1448 			if (trimming)
1449 				btrfs_unfreeze_block_group(block_group);
1450 			goto end_trans;
1451 		}
1452 
1453 		/*
1454 		 * If we're not mounted with -odiscard, we can just forget
1455 		 * about this block group. Otherwise we'll need to wait
1456 		 * until transaction commit to do the actual discard.
1457 		 */
1458 		if (trimming) {
1459 			spin_lock(&fs_info->unused_bgs_lock);
1460 			/*
1461 			 * A concurrent scrub might have added us to the list
1462 			 * fs_info->unused_bgs, so use a list_move operation
1463 			 * to add the block group to the deleted_bgs list.
1464 			 */
1465 			list_move(&block_group->bg_list,
1466 				  &trans->transaction->deleted_bgs);
1467 			spin_unlock(&fs_info->unused_bgs_lock);
1468 			btrfs_get_block_group(block_group);
1469 		}
1470 end_trans:
1471 		btrfs_end_transaction(trans);
1472 next:
1473 		btrfs_put_block_group(block_group);
1474 		spin_lock(&fs_info->unused_bgs_lock);
1475 	}
1476 	spin_unlock(&fs_info->unused_bgs_lock);
1477 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1478 	return;
1479 
1480 flip_async:
1481 	btrfs_end_transaction(trans);
1482 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1483 	btrfs_put_block_group(block_group);
1484 	btrfs_discard_punt_unused_bgs_list(fs_info);
1485 }
1486 
1487 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1488 {
1489 	struct btrfs_fs_info *fs_info = bg->fs_info;
1490 
1491 	spin_lock(&fs_info->unused_bgs_lock);
1492 	if (list_empty(&bg->bg_list)) {
1493 		btrfs_get_block_group(bg);
1494 		trace_btrfs_add_unused_block_group(bg);
1495 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1496 	}
1497 	spin_unlock(&fs_info->unused_bgs_lock);
1498 }
1499 
1500 /*
1501  * We want block groups with a low number of used bytes to be in the beginning
1502  * of the list, so they will get reclaimed first.
1503  */
1504 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1505 			   const struct list_head *b)
1506 {
1507 	const struct btrfs_block_group *bg1, *bg2;
1508 
1509 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1510 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1511 
1512 	return bg1->used > bg2->used;
1513 }
1514 
1515 void btrfs_reclaim_bgs_work(struct work_struct *work)
1516 {
1517 	struct btrfs_fs_info *fs_info =
1518 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1519 	struct btrfs_block_group *bg;
1520 	struct btrfs_space_info *space_info;
1521 
1522 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1523 		return;
1524 
1525 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1526 		return;
1527 
1528 	/*
1529 	 * Long running balances can keep us blocked here for eternity, so
1530 	 * simply skip reclaim if we're unable to get the mutex.
1531 	 */
1532 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1533 		btrfs_exclop_finish(fs_info);
1534 		return;
1535 	}
1536 
1537 	spin_lock(&fs_info->unused_bgs_lock);
1538 	/*
1539 	 * Sort happens under lock because we can't simply splice it and sort.
1540 	 * The block groups might still be in use and reachable via bg_list,
1541 	 * and their presence in the reclaim_bgs list must be preserved.
1542 	 */
1543 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1544 	while (!list_empty(&fs_info->reclaim_bgs)) {
1545 		u64 zone_unusable;
1546 		int ret = 0;
1547 
1548 		bg = list_first_entry(&fs_info->reclaim_bgs,
1549 				      struct btrfs_block_group,
1550 				      bg_list);
1551 		list_del_init(&bg->bg_list);
1552 
1553 		space_info = bg->space_info;
1554 		spin_unlock(&fs_info->unused_bgs_lock);
1555 
1556 		/* Don't race with allocators so take the groups_sem */
1557 		down_write(&space_info->groups_sem);
1558 
1559 		spin_lock(&bg->lock);
1560 		if (bg->reserved || bg->pinned || bg->ro) {
1561 			/*
1562 			 * We want to bail if we made new allocations or have
1563 			 * outstanding allocations in this block group.  We do
1564 			 * the ro check in case balance is currently acting on
1565 			 * this block group.
1566 			 */
1567 			spin_unlock(&bg->lock);
1568 			up_write(&space_info->groups_sem);
1569 			goto next;
1570 		}
1571 		spin_unlock(&bg->lock);
1572 
1573 		/* Get out fast, in case we're unmounting the filesystem */
1574 		if (btrfs_fs_closing(fs_info)) {
1575 			up_write(&space_info->groups_sem);
1576 			goto next;
1577 		}
1578 
1579 		/*
1580 		 * Cache the zone_unusable value before turning the block group
1581 		 * to read only. As soon as the blog group is read only it's
1582 		 * zone_unusable value gets moved to the block group's read-only
1583 		 * bytes and isn't available for calculations anymore.
1584 		 */
1585 		zone_unusable = bg->zone_unusable;
1586 		ret = inc_block_group_ro(bg, 0);
1587 		up_write(&space_info->groups_sem);
1588 		if (ret < 0)
1589 			goto next;
1590 
1591 		btrfs_info(fs_info,
1592 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1593 				bg->start, div_u64(bg->used * 100, bg->length),
1594 				div64_u64(zone_unusable * 100, bg->length));
1595 		trace_btrfs_reclaim_block_group(bg);
1596 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1597 		if (ret)
1598 			btrfs_err(fs_info, "error relocating chunk %llu",
1599 				  bg->start);
1600 
1601 next:
1602 		btrfs_put_block_group(bg);
1603 		spin_lock(&fs_info->unused_bgs_lock);
1604 	}
1605 	spin_unlock(&fs_info->unused_bgs_lock);
1606 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1607 	btrfs_exclop_finish(fs_info);
1608 }
1609 
1610 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1611 {
1612 	spin_lock(&fs_info->unused_bgs_lock);
1613 	if (!list_empty(&fs_info->reclaim_bgs))
1614 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1615 	spin_unlock(&fs_info->unused_bgs_lock);
1616 }
1617 
1618 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1619 {
1620 	struct btrfs_fs_info *fs_info = bg->fs_info;
1621 
1622 	spin_lock(&fs_info->unused_bgs_lock);
1623 	if (list_empty(&bg->bg_list)) {
1624 		btrfs_get_block_group(bg);
1625 		trace_btrfs_add_reclaim_block_group(bg);
1626 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1627 	}
1628 	spin_unlock(&fs_info->unused_bgs_lock);
1629 }
1630 
1631 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1632 			   struct btrfs_path *path)
1633 {
1634 	struct extent_map_tree *em_tree;
1635 	struct extent_map *em;
1636 	struct btrfs_block_group_item bg;
1637 	struct extent_buffer *leaf;
1638 	int slot;
1639 	u64 flags;
1640 	int ret = 0;
1641 
1642 	slot = path->slots[0];
1643 	leaf = path->nodes[0];
1644 
1645 	em_tree = &fs_info->mapping_tree;
1646 	read_lock(&em_tree->lock);
1647 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1648 	read_unlock(&em_tree->lock);
1649 	if (!em) {
1650 		btrfs_err(fs_info,
1651 			  "logical %llu len %llu found bg but no related chunk",
1652 			  key->objectid, key->offset);
1653 		return -ENOENT;
1654 	}
1655 
1656 	if (em->start != key->objectid || em->len != key->offset) {
1657 		btrfs_err(fs_info,
1658 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1659 			key->objectid, key->offset, em->start, em->len);
1660 		ret = -EUCLEAN;
1661 		goto out_free_em;
1662 	}
1663 
1664 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1665 			   sizeof(bg));
1666 	flags = btrfs_stack_block_group_flags(&bg) &
1667 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1668 
1669 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1670 		btrfs_err(fs_info,
1671 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1672 			  key->objectid, key->offset, flags,
1673 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1674 		ret = -EUCLEAN;
1675 	}
1676 
1677 out_free_em:
1678 	free_extent_map(em);
1679 	return ret;
1680 }
1681 
1682 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1683 				  struct btrfs_path *path,
1684 				  struct btrfs_key *key)
1685 {
1686 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1687 	int ret;
1688 	struct btrfs_key found_key;
1689 	struct extent_buffer *leaf;
1690 	int slot;
1691 
1692 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1693 	if (ret < 0)
1694 		return ret;
1695 
1696 	while (1) {
1697 		slot = path->slots[0];
1698 		leaf = path->nodes[0];
1699 		if (slot >= btrfs_header_nritems(leaf)) {
1700 			ret = btrfs_next_leaf(root, path);
1701 			if (ret == 0)
1702 				continue;
1703 			if (ret < 0)
1704 				goto out;
1705 			break;
1706 		}
1707 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1708 
1709 		if (found_key.objectid >= key->objectid &&
1710 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1711 			ret = read_bg_from_eb(fs_info, &found_key, path);
1712 			break;
1713 		}
1714 
1715 		path->slots[0]++;
1716 	}
1717 out:
1718 	return ret;
1719 }
1720 
1721 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1722 {
1723 	u64 extra_flags = chunk_to_extended(flags) &
1724 				BTRFS_EXTENDED_PROFILE_MASK;
1725 
1726 	write_seqlock(&fs_info->profiles_lock);
1727 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1728 		fs_info->avail_data_alloc_bits |= extra_flags;
1729 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1730 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1731 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1732 		fs_info->avail_system_alloc_bits |= extra_flags;
1733 	write_sequnlock(&fs_info->profiles_lock);
1734 }
1735 
1736 /**
1737  * Map a physical disk address to a list of logical addresses
1738  *
1739  * @fs_info:       the filesystem
1740  * @chunk_start:   logical address of block group
1741  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1742  * @physical:	   physical address to map to logical addresses
1743  * @logical:	   return array of logical addresses which map to @physical
1744  * @naddrs:	   length of @logical
1745  * @stripe_len:    size of IO stripe for the given block group
1746  *
1747  * Maps a particular @physical disk address to a list of @logical addresses.
1748  * Used primarily to exclude those portions of a block group that contain super
1749  * block copies.
1750  */
1751 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1752 		     struct block_device *bdev, u64 physical, u64 **logical,
1753 		     int *naddrs, int *stripe_len)
1754 {
1755 	struct extent_map *em;
1756 	struct map_lookup *map;
1757 	u64 *buf;
1758 	u64 bytenr;
1759 	u64 data_stripe_length;
1760 	u64 io_stripe_size;
1761 	int i, nr = 0;
1762 	int ret = 0;
1763 
1764 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1765 	if (IS_ERR(em))
1766 		return -EIO;
1767 
1768 	map = em->map_lookup;
1769 	data_stripe_length = em->orig_block_len;
1770 	io_stripe_size = map->stripe_len;
1771 	chunk_start = em->start;
1772 
1773 	/* For RAID5/6 adjust to a full IO stripe length */
1774 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1775 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1776 
1777 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1778 	if (!buf) {
1779 		ret = -ENOMEM;
1780 		goto out;
1781 	}
1782 
1783 	for (i = 0; i < map->num_stripes; i++) {
1784 		bool already_inserted = false;
1785 		u64 stripe_nr;
1786 		u64 offset;
1787 		int j;
1788 
1789 		if (!in_range(physical, map->stripes[i].physical,
1790 			      data_stripe_length))
1791 			continue;
1792 
1793 		if (bdev && map->stripes[i].dev->bdev != bdev)
1794 			continue;
1795 
1796 		stripe_nr = physical - map->stripes[i].physical;
1797 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1798 
1799 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1800 			stripe_nr = stripe_nr * map->num_stripes + i;
1801 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1802 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1803 			stripe_nr = stripe_nr * map->num_stripes + i;
1804 		}
1805 		/*
1806 		 * The remaining case would be for RAID56, multiply by
1807 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1808 		 * instead of map->stripe_len
1809 		 */
1810 
1811 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1812 
1813 		/* Ensure we don't add duplicate addresses */
1814 		for (j = 0; j < nr; j++) {
1815 			if (buf[j] == bytenr) {
1816 				already_inserted = true;
1817 				break;
1818 			}
1819 		}
1820 
1821 		if (!already_inserted)
1822 			buf[nr++] = bytenr;
1823 	}
1824 
1825 	*logical = buf;
1826 	*naddrs = nr;
1827 	*stripe_len = io_stripe_size;
1828 out:
1829 	free_extent_map(em);
1830 	return ret;
1831 }
1832 
1833 static int exclude_super_stripes(struct btrfs_block_group *cache)
1834 {
1835 	struct btrfs_fs_info *fs_info = cache->fs_info;
1836 	const bool zoned = btrfs_is_zoned(fs_info);
1837 	u64 bytenr;
1838 	u64 *logical;
1839 	int stripe_len;
1840 	int i, nr, ret;
1841 
1842 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1843 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1844 		cache->bytes_super += stripe_len;
1845 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1846 						stripe_len);
1847 		if (ret)
1848 			return ret;
1849 	}
1850 
1851 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1852 		bytenr = btrfs_sb_offset(i);
1853 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1854 				       bytenr, &logical, &nr, &stripe_len);
1855 		if (ret)
1856 			return ret;
1857 
1858 		/* Shouldn't have super stripes in sequential zones */
1859 		if (zoned && nr) {
1860 			btrfs_err(fs_info,
1861 			"zoned: block group %llu must not contain super block",
1862 				  cache->start);
1863 			return -EUCLEAN;
1864 		}
1865 
1866 		while (nr--) {
1867 			u64 len = min_t(u64, stripe_len,
1868 				cache->start + cache->length - logical[nr]);
1869 
1870 			cache->bytes_super += len;
1871 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1872 							len);
1873 			if (ret) {
1874 				kfree(logical);
1875 				return ret;
1876 			}
1877 		}
1878 
1879 		kfree(logical);
1880 	}
1881 	return 0;
1882 }
1883 
1884 static void link_block_group(struct btrfs_block_group *cache)
1885 {
1886 	struct btrfs_space_info *space_info = cache->space_info;
1887 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1888 
1889 	down_write(&space_info->groups_sem);
1890 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1891 	up_write(&space_info->groups_sem);
1892 }
1893 
1894 static struct btrfs_block_group *btrfs_create_block_group_cache(
1895 		struct btrfs_fs_info *fs_info, u64 start)
1896 {
1897 	struct btrfs_block_group *cache;
1898 
1899 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1900 	if (!cache)
1901 		return NULL;
1902 
1903 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1904 					GFP_NOFS);
1905 	if (!cache->free_space_ctl) {
1906 		kfree(cache);
1907 		return NULL;
1908 	}
1909 
1910 	cache->start = start;
1911 
1912 	cache->fs_info = fs_info;
1913 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1914 
1915 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1916 
1917 	refcount_set(&cache->refs, 1);
1918 	spin_lock_init(&cache->lock);
1919 	init_rwsem(&cache->data_rwsem);
1920 	INIT_LIST_HEAD(&cache->list);
1921 	INIT_LIST_HEAD(&cache->cluster_list);
1922 	INIT_LIST_HEAD(&cache->bg_list);
1923 	INIT_LIST_HEAD(&cache->ro_list);
1924 	INIT_LIST_HEAD(&cache->discard_list);
1925 	INIT_LIST_HEAD(&cache->dirty_list);
1926 	INIT_LIST_HEAD(&cache->io_list);
1927 	INIT_LIST_HEAD(&cache->active_bg_list);
1928 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1929 	atomic_set(&cache->frozen, 0);
1930 	mutex_init(&cache->free_space_lock);
1931 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1932 
1933 	return cache;
1934 }
1935 
1936 /*
1937  * Iterate all chunks and verify that each of them has the corresponding block
1938  * group
1939  */
1940 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1941 {
1942 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1943 	struct extent_map *em;
1944 	struct btrfs_block_group *bg;
1945 	u64 start = 0;
1946 	int ret = 0;
1947 
1948 	while (1) {
1949 		read_lock(&map_tree->lock);
1950 		/*
1951 		 * lookup_extent_mapping will return the first extent map
1952 		 * intersecting the range, so setting @len to 1 is enough to
1953 		 * get the first chunk.
1954 		 */
1955 		em = lookup_extent_mapping(map_tree, start, 1);
1956 		read_unlock(&map_tree->lock);
1957 		if (!em)
1958 			break;
1959 
1960 		bg = btrfs_lookup_block_group(fs_info, em->start);
1961 		if (!bg) {
1962 			btrfs_err(fs_info,
1963 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1964 				     em->start, em->len);
1965 			ret = -EUCLEAN;
1966 			free_extent_map(em);
1967 			break;
1968 		}
1969 		if (bg->start != em->start || bg->length != em->len ||
1970 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1971 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1972 			btrfs_err(fs_info,
1973 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1974 				em->start, em->len,
1975 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1976 				bg->start, bg->length,
1977 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1978 			ret = -EUCLEAN;
1979 			free_extent_map(em);
1980 			btrfs_put_block_group(bg);
1981 			break;
1982 		}
1983 		start = em->start + em->len;
1984 		free_extent_map(em);
1985 		btrfs_put_block_group(bg);
1986 	}
1987 	return ret;
1988 }
1989 
1990 static int read_one_block_group(struct btrfs_fs_info *info,
1991 				struct btrfs_block_group_item *bgi,
1992 				const struct btrfs_key *key,
1993 				int need_clear)
1994 {
1995 	struct btrfs_block_group *cache;
1996 	struct btrfs_space_info *space_info;
1997 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1998 	int ret;
1999 
2000 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2001 
2002 	cache = btrfs_create_block_group_cache(info, key->objectid);
2003 	if (!cache)
2004 		return -ENOMEM;
2005 
2006 	cache->length = key->offset;
2007 	cache->used = btrfs_stack_block_group_used(bgi);
2008 	cache->flags = btrfs_stack_block_group_flags(bgi);
2009 
2010 	set_free_space_tree_thresholds(cache);
2011 
2012 	if (need_clear) {
2013 		/*
2014 		 * When we mount with old space cache, we need to
2015 		 * set BTRFS_DC_CLEAR and set dirty flag.
2016 		 *
2017 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2018 		 *    truncate the old free space cache inode and
2019 		 *    setup a new one.
2020 		 * b) Setting 'dirty flag' makes sure that we flush
2021 		 *    the new space cache info onto disk.
2022 		 */
2023 		if (btrfs_test_opt(info, SPACE_CACHE))
2024 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2025 	}
2026 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2027 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2028 			btrfs_err(info,
2029 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2030 				  cache->start);
2031 			ret = -EINVAL;
2032 			goto error;
2033 	}
2034 
2035 	ret = btrfs_load_block_group_zone_info(cache, false);
2036 	if (ret) {
2037 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2038 			  cache->start);
2039 		goto error;
2040 	}
2041 
2042 	/*
2043 	 * We need to exclude the super stripes now so that the space info has
2044 	 * super bytes accounted for, otherwise we'll think we have more space
2045 	 * than we actually do.
2046 	 */
2047 	ret = exclude_super_stripes(cache);
2048 	if (ret) {
2049 		/* We may have excluded something, so call this just in case. */
2050 		btrfs_free_excluded_extents(cache);
2051 		goto error;
2052 	}
2053 
2054 	/*
2055 	 * For zoned filesystem, space after the allocation offset is the only
2056 	 * free space for a block group. So, we don't need any caching work.
2057 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2058 	 * zone_unusable space.
2059 	 *
2060 	 * For regular filesystem, check for two cases, either we are full, and
2061 	 * therefore don't need to bother with the caching work since we won't
2062 	 * find any space, or we are empty, and we can just add all the space
2063 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2064 	 * in the full case.
2065 	 */
2066 	if (btrfs_is_zoned(info)) {
2067 		btrfs_calc_zone_unusable(cache);
2068 		/* Should not have any excluded extents. Just in case, though. */
2069 		btrfs_free_excluded_extents(cache);
2070 	} else if (cache->length == cache->used) {
2071 		cache->last_byte_to_unpin = (u64)-1;
2072 		cache->cached = BTRFS_CACHE_FINISHED;
2073 		btrfs_free_excluded_extents(cache);
2074 	} else if (cache->used == 0) {
2075 		cache->last_byte_to_unpin = (u64)-1;
2076 		cache->cached = BTRFS_CACHE_FINISHED;
2077 		add_new_free_space(cache, cache->start,
2078 				   cache->start + cache->length);
2079 		btrfs_free_excluded_extents(cache);
2080 	}
2081 
2082 	ret = btrfs_add_block_group_cache(info, cache);
2083 	if (ret) {
2084 		btrfs_remove_free_space_cache(cache);
2085 		goto error;
2086 	}
2087 	trace_btrfs_add_block_group(info, cache, 0);
2088 	btrfs_update_space_info(info, cache->flags, cache->length,
2089 				cache->used, cache->bytes_super,
2090 				cache->zone_unusable, &space_info);
2091 
2092 	cache->space_info = space_info;
2093 
2094 	link_block_group(cache);
2095 
2096 	set_avail_alloc_bits(info, cache->flags);
2097 	if (btrfs_chunk_writeable(info, cache->start)) {
2098 		if (cache->used == 0) {
2099 			ASSERT(list_empty(&cache->bg_list));
2100 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2101 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2102 			else
2103 				btrfs_mark_bg_unused(cache);
2104 		}
2105 	} else {
2106 		inc_block_group_ro(cache, 1);
2107 	}
2108 
2109 	return 0;
2110 error:
2111 	btrfs_put_block_group(cache);
2112 	return ret;
2113 }
2114 
2115 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2116 {
2117 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2118 	struct btrfs_space_info *space_info;
2119 	struct rb_node *node;
2120 	int ret = 0;
2121 
2122 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2123 		struct extent_map *em;
2124 		struct map_lookup *map;
2125 		struct btrfs_block_group *bg;
2126 
2127 		em = rb_entry(node, struct extent_map, rb_node);
2128 		map = em->map_lookup;
2129 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2130 		if (!bg) {
2131 			ret = -ENOMEM;
2132 			break;
2133 		}
2134 
2135 		/* Fill dummy cache as FULL */
2136 		bg->length = em->len;
2137 		bg->flags = map->type;
2138 		bg->last_byte_to_unpin = (u64)-1;
2139 		bg->cached = BTRFS_CACHE_FINISHED;
2140 		bg->used = em->len;
2141 		bg->flags = map->type;
2142 		ret = btrfs_add_block_group_cache(fs_info, bg);
2143 		/*
2144 		 * We may have some valid block group cache added already, in
2145 		 * that case we skip to the next one.
2146 		 */
2147 		if (ret == -EEXIST) {
2148 			ret = 0;
2149 			btrfs_put_block_group(bg);
2150 			continue;
2151 		}
2152 
2153 		if (ret) {
2154 			btrfs_remove_free_space_cache(bg);
2155 			btrfs_put_block_group(bg);
2156 			break;
2157 		}
2158 
2159 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2160 					0, 0, &space_info);
2161 		bg->space_info = space_info;
2162 		link_block_group(bg);
2163 
2164 		set_avail_alloc_bits(fs_info, bg->flags);
2165 	}
2166 	if (!ret)
2167 		btrfs_init_global_block_rsv(fs_info);
2168 	return ret;
2169 }
2170 
2171 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2172 {
2173 	struct btrfs_root *root = btrfs_block_group_root(info);
2174 	struct btrfs_path *path;
2175 	int ret;
2176 	struct btrfs_block_group *cache;
2177 	struct btrfs_space_info *space_info;
2178 	struct btrfs_key key;
2179 	int need_clear = 0;
2180 	u64 cache_gen;
2181 
2182 	if (!root)
2183 		return fill_dummy_bgs(info);
2184 
2185 	key.objectid = 0;
2186 	key.offset = 0;
2187 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2188 	path = btrfs_alloc_path();
2189 	if (!path)
2190 		return -ENOMEM;
2191 
2192 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2193 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2194 	    btrfs_super_generation(info->super_copy) != cache_gen)
2195 		need_clear = 1;
2196 	if (btrfs_test_opt(info, CLEAR_CACHE))
2197 		need_clear = 1;
2198 
2199 	while (1) {
2200 		struct btrfs_block_group_item bgi;
2201 		struct extent_buffer *leaf;
2202 		int slot;
2203 
2204 		ret = find_first_block_group(info, path, &key);
2205 		if (ret > 0)
2206 			break;
2207 		if (ret != 0)
2208 			goto error;
2209 
2210 		leaf = path->nodes[0];
2211 		slot = path->slots[0];
2212 
2213 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2214 				   sizeof(bgi));
2215 
2216 		btrfs_item_key_to_cpu(leaf, &key, slot);
2217 		btrfs_release_path(path);
2218 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2219 		if (ret < 0)
2220 			goto error;
2221 		key.objectid += key.offset;
2222 		key.offset = 0;
2223 	}
2224 	btrfs_release_path(path);
2225 
2226 	list_for_each_entry(space_info, &info->space_info, list) {
2227 		int i;
2228 
2229 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2230 			if (list_empty(&space_info->block_groups[i]))
2231 				continue;
2232 			cache = list_first_entry(&space_info->block_groups[i],
2233 						 struct btrfs_block_group,
2234 						 list);
2235 			btrfs_sysfs_add_block_group_type(cache);
2236 		}
2237 
2238 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2239 		      (BTRFS_BLOCK_GROUP_RAID10 |
2240 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2241 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2242 		       BTRFS_BLOCK_GROUP_DUP)))
2243 			continue;
2244 		/*
2245 		 * Avoid allocating from un-mirrored block group if there are
2246 		 * mirrored block groups.
2247 		 */
2248 		list_for_each_entry(cache,
2249 				&space_info->block_groups[BTRFS_RAID_RAID0],
2250 				list)
2251 			inc_block_group_ro(cache, 1);
2252 		list_for_each_entry(cache,
2253 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2254 				list)
2255 			inc_block_group_ro(cache, 1);
2256 	}
2257 
2258 	btrfs_init_global_block_rsv(info);
2259 	ret = check_chunk_block_group_mappings(info);
2260 error:
2261 	btrfs_free_path(path);
2262 	/*
2263 	 * We've hit some error while reading the extent tree, and have
2264 	 * rescue=ibadroots mount option.
2265 	 * Try to fill the tree using dummy block groups so that the user can
2266 	 * continue to mount and grab their data.
2267 	 */
2268 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2269 		ret = fill_dummy_bgs(info);
2270 	return ret;
2271 }
2272 
2273 /*
2274  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2275  * allocation.
2276  *
2277  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2278  * phases.
2279  */
2280 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2281 				   struct btrfs_block_group *block_group)
2282 {
2283 	struct btrfs_fs_info *fs_info = trans->fs_info;
2284 	struct btrfs_block_group_item bgi;
2285 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2286 	struct btrfs_key key;
2287 
2288 	spin_lock(&block_group->lock);
2289 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2290 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2291 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2292 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2293 	key.objectid = block_group->start;
2294 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2295 	key.offset = block_group->length;
2296 	spin_unlock(&block_group->lock);
2297 
2298 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2299 }
2300 
2301 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2302 			    struct btrfs_device *device, u64 chunk_offset,
2303 			    u64 start, u64 num_bytes)
2304 {
2305 	struct btrfs_fs_info *fs_info = device->fs_info;
2306 	struct btrfs_root *root = fs_info->dev_root;
2307 	struct btrfs_path *path;
2308 	struct btrfs_dev_extent *extent;
2309 	struct extent_buffer *leaf;
2310 	struct btrfs_key key;
2311 	int ret;
2312 
2313 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2314 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2315 	path = btrfs_alloc_path();
2316 	if (!path)
2317 		return -ENOMEM;
2318 
2319 	key.objectid = device->devid;
2320 	key.type = BTRFS_DEV_EXTENT_KEY;
2321 	key.offset = start;
2322 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2323 	if (ret)
2324 		goto out;
2325 
2326 	leaf = path->nodes[0];
2327 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2328 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2329 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2330 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2331 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2332 
2333 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2334 	btrfs_mark_buffer_dirty(leaf);
2335 out:
2336 	btrfs_free_path(path);
2337 	return ret;
2338 }
2339 
2340 /*
2341  * This function belongs to phase 2.
2342  *
2343  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2344  * phases.
2345  */
2346 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2347 				   u64 chunk_offset, u64 chunk_size)
2348 {
2349 	struct btrfs_fs_info *fs_info = trans->fs_info;
2350 	struct btrfs_device *device;
2351 	struct extent_map *em;
2352 	struct map_lookup *map;
2353 	u64 dev_offset;
2354 	u64 stripe_size;
2355 	int i;
2356 	int ret = 0;
2357 
2358 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2359 	if (IS_ERR(em))
2360 		return PTR_ERR(em);
2361 
2362 	map = em->map_lookup;
2363 	stripe_size = em->orig_block_len;
2364 
2365 	/*
2366 	 * Take the device list mutex to prevent races with the final phase of
2367 	 * a device replace operation that replaces the device object associated
2368 	 * with the map's stripes, because the device object's id can change
2369 	 * at any time during that final phase of the device replace operation
2370 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2371 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2372 	 * resulting in persisting a device extent item with such ID.
2373 	 */
2374 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2375 	for (i = 0; i < map->num_stripes; i++) {
2376 		device = map->stripes[i].dev;
2377 		dev_offset = map->stripes[i].physical;
2378 
2379 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2380 				       stripe_size);
2381 		if (ret)
2382 			break;
2383 	}
2384 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2385 
2386 	free_extent_map(em);
2387 	return ret;
2388 }
2389 
2390 /*
2391  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2392  * chunk allocation.
2393  *
2394  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2395  * phases.
2396  */
2397 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2398 {
2399 	struct btrfs_fs_info *fs_info = trans->fs_info;
2400 	struct btrfs_block_group *block_group;
2401 	int ret = 0;
2402 
2403 	while (!list_empty(&trans->new_bgs)) {
2404 		int index;
2405 
2406 		block_group = list_first_entry(&trans->new_bgs,
2407 					       struct btrfs_block_group,
2408 					       bg_list);
2409 		if (ret)
2410 			goto next;
2411 
2412 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2413 
2414 		ret = insert_block_group_item(trans, block_group);
2415 		if (ret)
2416 			btrfs_abort_transaction(trans, ret);
2417 		if (!block_group->chunk_item_inserted) {
2418 			mutex_lock(&fs_info->chunk_mutex);
2419 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2420 			mutex_unlock(&fs_info->chunk_mutex);
2421 			if (ret)
2422 				btrfs_abort_transaction(trans, ret);
2423 		}
2424 		ret = insert_dev_extents(trans, block_group->start,
2425 					 block_group->length);
2426 		if (ret)
2427 			btrfs_abort_transaction(trans, ret);
2428 		add_block_group_free_space(trans, block_group);
2429 
2430 		/*
2431 		 * If we restriped during balance, we may have added a new raid
2432 		 * type, so now add the sysfs entries when it is safe to do so.
2433 		 * We don't have to worry about locking here as it's handled in
2434 		 * btrfs_sysfs_add_block_group_type.
2435 		 */
2436 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2437 			btrfs_sysfs_add_block_group_type(block_group);
2438 
2439 		/* Already aborted the transaction if it failed. */
2440 next:
2441 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2442 		list_del_init(&block_group->bg_list);
2443 	}
2444 	btrfs_trans_release_chunk_metadata(trans);
2445 }
2446 
2447 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2448 						 u64 bytes_used, u64 type,
2449 						 u64 chunk_offset, u64 size)
2450 {
2451 	struct btrfs_fs_info *fs_info = trans->fs_info;
2452 	struct btrfs_block_group *cache;
2453 	int ret;
2454 
2455 	btrfs_set_log_full_commit(trans);
2456 
2457 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2458 	if (!cache)
2459 		return ERR_PTR(-ENOMEM);
2460 
2461 	cache->length = size;
2462 	set_free_space_tree_thresholds(cache);
2463 	cache->used = bytes_used;
2464 	cache->flags = type;
2465 	cache->last_byte_to_unpin = (u64)-1;
2466 	cache->cached = BTRFS_CACHE_FINISHED;
2467 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2468 		cache->needs_free_space = 1;
2469 
2470 	ret = btrfs_load_block_group_zone_info(cache, true);
2471 	if (ret) {
2472 		btrfs_put_block_group(cache);
2473 		return ERR_PTR(ret);
2474 	}
2475 
2476 	/*
2477 	 * New block group is likely to be used soon. Try to activate it now.
2478 	 * Failure is OK for now.
2479 	 */
2480 	btrfs_zone_activate(cache);
2481 
2482 	ret = exclude_super_stripes(cache);
2483 	if (ret) {
2484 		/* We may have excluded something, so call this just in case */
2485 		btrfs_free_excluded_extents(cache);
2486 		btrfs_put_block_group(cache);
2487 		return ERR_PTR(ret);
2488 	}
2489 
2490 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2491 
2492 	btrfs_free_excluded_extents(cache);
2493 
2494 #ifdef CONFIG_BTRFS_DEBUG
2495 	if (btrfs_should_fragment_free_space(cache)) {
2496 		u64 new_bytes_used = size - bytes_used;
2497 
2498 		bytes_used += new_bytes_used >> 1;
2499 		fragment_free_space(cache);
2500 	}
2501 #endif
2502 	/*
2503 	 * Ensure the corresponding space_info object is created and
2504 	 * assigned to our block group. We want our bg to be added to the rbtree
2505 	 * with its ->space_info set.
2506 	 */
2507 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2508 	ASSERT(cache->space_info);
2509 
2510 	ret = btrfs_add_block_group_cache(fs_info, cache);
2511 	if (ret) {
2512 		btrfs_remove_free_space_cache(cache);
2513 		btrfs_put_block_group(cache);
2514 		return ERR_PTR(ret);
2515 	}
2516 
2517 	/*
2518 	 * Now that our block group has its ->space_info set and is inserted in
2519 	 * the rbtree, update the space info's counters.
2520 	 */
2521 	trace_btrfs_add_block_group(fs_info, cache, 1);
2522 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2523 				cache->bytes_super, cache->zone_unusable,
2524 				&cache->space_info);
2525 	btrfs_update_global_block_rsv(fs_info);
2526 
2527 	link_block_group(cache);
2528 
2529 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2530 	trans->delayed_ref_updates++;
2531 	btrfs_update_delayed_refs_rsv(trans);
2532 
2533 	set_avail_alloc_bits(fs_info, type);
2534 	return cache;
2535 }
2536 
2537 /*
2538  * Mark one block group RO, can be called several times for the same block
2539  * group.
2540  *
2541  * @cache:		the destination block group
2542  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2543  * 			ensure we still have some free space after marking this
2544  * 			block group RO.
2545  */
2546 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2547 			     bool do_chunk_alloc)
2548 {
2549 	struct btrfs_fs_info *fs_info = cache->fs_info;
2550 	struct btrfs_trans_handle *trans;
2551 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2552 	u64 alloc_flags;
2553 	int ret;
2554 	bool dirty_bg_running;
2555 
2556 	/*
2557 	 * This can only happen when we are doing read-only scrub on read-only
2558 	 * mount.
2559 	 * In that case we should not start a new transaction on read-only fs.
2560 	 * Thus here we skip all chunk allocations.
2561 	 */
2562 	if (sb_rdonly(fs_info->sb)) {
2563 		mutex_lock(&fs_info->ro_block_group_mutex);
2564 		ret = inc_block_group_ro(cache, 0);
2565 		mutex_unlock(&fs_info->ro_block_group_mutex);
2566 		return ret;
2567 	}
2568 
2569 	do {
2570 		trans = btrfs_join_transaction(root);
2571 		if (IS_ERR(trans))
2572 			return PTR_ERR(trans);
2573 
2574 		dirty_bg_running = false;
2575 
2576 		/*
2577 		 * We're not allowed to set block groups readonly after the dirty
2578 		 * block group cache has started writing.  If it already started,
2579 		 * back off and let this transaction commit.
2580 		 */
2581 		mutex_lock(&fs_info->ro_block_group_mutex);
2582 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2583 			u64 transid = trans->transid;
2584 
2585 			mutex_unlock(&fs_info->ro_block_group_mutex);
2586 			btrfs_end_transaction(trans);
2587 
2588 			ret = btrfs_wait_for_commit(fs_info, transid);
2589 			if (ret)
2590 				return ret;
2591 			dirty_bg_running = true;
2592 		}
2593 	} while (dirty_bg_running);
2594 
2595 	if (do_chunk_alloc) {
2596 		/*
2597 		 * If we are changing raid levels, try to allocate a
2598 		 * corresponding block group with the new raid level.
2599 		 */
2600 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2601 		if (alloc_flags != cache->flags) {
2602 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2603 						CHUNK_ALLOC_FORCE);
2604 			/*
2605 			 * ENOSPC is allowed here, we may have enough space
2606 			 * already allocated at the new raid level to carry on
2607 			 */
2608 			if (ret == -ENOSPC)
2609 				ret = 0;
2610 			if (ret < 0)
2611 				goto out;
2612 		}
2613 	}
2614 
2615 	ret = inc_block_group_ro(cache, 0);
2616 	if (!do_chunk_alloc || ret == -ETXTBSY)
2617 		goto unlock_out;
2618 	if (!ret)
2619 		goto out;
2620 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2621 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2622 	if (ret < 0)
2623 		goto out;
2624 	ret = inc_block_group_ro(cache, 0);
2625 	if (ret == -ETXTBSY)
2626 		goto unlock_out;
2627 out:
2628 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2629 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2630 		mutex_lock(&fs_info->chunk_mutex);
2631 		check_system_chunk(trans, alloc_flags);
2632 		mutex_unlock(&fs_info->chunk_mutex);
2633 	}
2634 unlock_out:
2635 	mutex_unlock(&fs_info->ro_block_group_mutex);
2636 
2637 	btrfs_end_transaction(trans);
2638 	return ret;
2639 }
2640 
2641 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2642 {
2643 	struct btrfs_space_info *sinfo = cache->space_info;
2644 	u64 num_bytes;
2645 
2646 	BUG_ON(!cache->ro);
2647 
2648 	spin_lock(&sinfo->lock);
2649 	spin_lock(&cache->lock);
2650 	if (!--cache->ro) {
2651 		if (btrfs_is_zoned(cache->fs_info)) {
2652 			/* Migrate zone_unusable bytes back */
2653 			cache->zone_unusable =
2654 				(cache->alloc_offset - cache->used) +
2655 				(cache->length - cache->zone_capacity);
2656 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2657 			sinfo->bytes_readonly -= cache->zone_unusable;
2658 		}
2659 		num_bytes = cache->length - cache->reserved -
2660 			    cache->pinned - cache->bytes_super -
2661 			    cache->zone_unusable - cache->used;
2662 		sinfo->bytes_readonly -= num_bytes;
2663 		list_del_init(&cache->ro_list);
2664 	}
2665 	spin_unlock(&cache->lock);
2666 	spin_unlock(&sinfo->lock);
2667 }
2668 
2669 static int update_block_group_item(struct btrfs_trans_handle *trans,
2670 				   struct btrfs_path *path,
2671 				   struct btrfs_block_group *cache)
2672 {
2673 	struct btrfs_fs_info *fs_info = trans->fs_info;
2674 	int ret;
2675 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2676 	unsigned long bi;
2677 	struct extent_buffer *leaf;
2678 	struct btrfs_block_group_item bgi;
2679 	struct btrfs_key key;
2680 
2681 	key.objectid = cache->start;
2682 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2683 	key.offset = cache->length;
2684 
2685 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2686 	if (ret) {
2687 		if (ret > 0)
2688 			ret = -ENOENT;
2689 		goto fail;
2690 	}
2691 
2692 	leaf = path->nodes[0];
2693 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2694 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2695 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2696 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2697 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2698 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2699 	btrfs_mark_buffer_dirty(leaf);
2700 fail:
2701 	btrfs_release_path(path);
2702 	return ret;
2703 
2704 }
2705 
2706 static int cache_save_setup(struct btrfs_block_group *block_group,
2707 			    struct btrfs_trans_handle *trans,
2708 			    struct btrfs_path *path)
2709 {
2710 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2711 	struct btrfs_root *root = fs_info->tree_root;
2712 	struct inode *inode = NULL;
2713 	struct extent_changeset *data_reserved = NULL;
2714 	u64 alloc_hint = 0;
2715 	int dcs = BTRFS_DC_ERROR;
2716 	u64 cache_size = 0;
2717 	int retries = 0;
2718 	int ret = 0;
2719 
2720 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2721 		return 0;
2722 
2723 	/*
2724 	 * If this block group is smaller than 100 megs don't bother caching the
2725 	 * block group.
2726 	 */
2727 	if (block_group->length < (100 * SZ_1M)) {
2728 		spin_lock(&block_group->lock);
2729 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2730 		spin_unlock(&block_group->lock);
2731 		return 0;
2732 	}
2733 
2734 	if (TRANS_ABORTED(trans))
2735 		return 0;
2736 again:
2737 	inode = lookup_free_space_inode(block_group, path);
2738 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2739 		ret = PTR_ERR(inode);
2740 		btrfs_release_path(path);
2741 		goto out;
2742 	}
2743 
2744 	if (IS_ERR(inode)) {
2745 		BUG_ON(retries);
2746 		retries++;
2747 
2748 		if (block_group->ro)
2749 			goto out_free;
2750 
2751 		ret = create_free_space_inode(trans, block_group, path);
2752 		if (ret)
2753 			goto out_free;
2754 		goto again;
2755 	}
2756 
2757 	/*
2758 	 * We want to set the generation to 0, that way if anything goes wrong
2759 	 * from here on out we know not to trust this cache when we load up next
2760 	 * time.
2761 	 */
2762 	BTRFS_I(inode)->generation = 0;
2763 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2764 	if (ret) {
2765 		/*
2766 		 * So theoretically we could recover from this, simply set the
2767 		 * super cache generation to 0 so we know to invalidate the
2768 		 * cache, but then we'd have to keep track of the block groups
2769 		 * that fail this way so we know we _have_ to reset this cache
2770 		 * before the next commit or risk reading stale cache.  So to
2771 		 * limit our exposure to horrible edge cases lets just abort the
2772 		 * transaction, this only happens in really bad situations
2773 		 * anyway.
2774 		 */
2775 		btrfs_abort_transaction(trans, ret);
2776 		goto out_put;
2777 	}
2778 	WARN_ON(ret);
2779 
2780 	/* We've already setup this transaction, go ahead and exit */
2781 	if (block_group->cache_generation == trans->transid &&
2782 	    i_size_read(inode)) {
2783 		dcs = BTRFS_DC_SETUP;
2784 		goto out_put;
2785 	}
2786 
2787 	if (i_size_read(inode) > 0) {
2788 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2789 					&fs_info->global_block_rsv);
2790 		if (ret)
2791 			goto out_put;
2792 
2793 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2794 		if (ret)
2795 			goto out_put;
2796 	}
2797 
2798 	spin_lock(&block_group->lock);
2799 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2800 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2801 		/*
2802 		 * don't bother trying to write stuff out _if_
2803 		 * a) we're not cached,
2804 		 * b) we're with nospace_cache mount option,
2805 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2806 		 */
2807 		dcs = BTRFS_DC_WRITTEN;
2808 		spin_unlock(&block_group->lock);
2809 		goto out_put;
2810 	}
2811 	spin_unlock(&block_group->lock);
2812 
2813 	/*
2814 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2815 	 * skip doing the setup, we've already cleared the cache so we're safe.
2816 	 */
2817 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2818 		ret = -ENOSPC;
2819 		goto out_put;
2820 	}
2821 
2822 	/*
2823 	 * Try to preallocate enough space based on how big the block group is.
2824 	 * Keep in mind this has to include any pinned space which could end up
2825 	 * taking up quite a bit since it's not folded into the other space
2826 	 * cache.
2827 	 */
2828 	cache_size = div_u64(block_group->length, SZ_256M);
2829 	if (!cache_size)
2830 		cache_size = 1;
2831 
2832 	cache_size *= 16;
2833 	cache_size *= fs_info->sectorsize;
2834 
2835 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2836 					  cache_size);
2837 	if (ret)
2838 		goto out_put;
2839 
2840 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2841 					      cache_size, cache_size,
2842 					      &alloc_hint);
2843 	/*
2844 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2845 	 * of metadata or split extents when writing the cache out, which means
2846 	 * we can enospc if we are heavily fragmented in addition to just normal
2847 	 * out of space conditions.  So if we hit this just skip setting up any
2848 	 * other block groups for this transaction, maybe we'll unpin enough
2849 	 * space the next time around.
2850 	 */
2851 	if (!ret)
2852 		dcs = BTRFS_DC_SETUP;
2853 	else if (ret == -ENOSPC)
2854 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2855 
2856 out_put:
2857 	iput(inode);
2858 out_free:
2859 	btrfs_release_path(path);
2860 out:
2861 	spin_lock(&block_group->lock);
2862 	if (!ret && dcs == BTRFS_DC_SETUP)
2863 		block_group->cache_generation = trans->transid;
2864 	block_group->disk_cache_state = dcs;
2865 	spin_unlock(&block_group->lock);
2866 
2867 	extent_changeset_free(data_reserved);
2868 	return ret;
2869 }
2870 
2871 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2872 {
2873 	struct btrfs_fs_info *fs_info = trans->fs_info;
2874 	struct btrfs_block_group *cache, *tmp;
2875 	struct btrfs_transaction *cur_trans = trans->transaction;
2876 	struct btrfs_path *path;
2877 
2878 	if (list_empty(&cur_trans->dirty_bgs) ||
2879 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2880 		return 0;
2881 
2882 	path = btrfs_alloc_path();
2883 	if (!path)
2884 		return -ENOMEM;
2885 
2886 	/* Could add new block groups, use _safe just in case */
2887 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2888 				 dirty_list) {
2889 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2890 			cache_save_setup(cache, trans, path);
2891 	}
2892 
2893 	btrfs_free_path(path);
2894 	return 0;
2895 }
2896 
2897 /*
2898  * Transaction commit does final block group cache writeback during a critical
2899  * section where nothing is allowed to change the FS.  This is required in
2900  * order for the cache to actually match the block group, but can introduce a
2901  * lot of latency into the commit.
2902  *
2903  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2904  * There's a chance we'll have to redo some of it if the block group changes
2905  * again during the commit, but it greatly reduces the commit latency by
2906  * getting rid of the easy block groups while we're still allowing others to
2907  * join the commit.
2908  */
2909 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2910 {
2911 	struct btrfs_fs_info *fs_info = trans->fs_info;
2912 	struct btrfs_block_group *cache;
2913 	struct btrfs_transaction *cur_trans = trans->transaction;
2914 	int ret = 0;
2915 	int should_put;
2916 	struct btrfs_path *path = NULL;
2917 	LIST_HEAD(dirty);
2918 	struct list_head *io = &cur_trans->io_bgs;
2919 	int num_started = 0;
2920 	int loops = 0;
2921 
2922 	spin_lock(&cur_trans->dirty_bgs_lock);
2923 	if (list_empty(&cur_trans->dirty_bgs)) {
2924 		spin_unlock(&cur_trans->dirty_bgs_lock);
2925 		return 0;
2926 	}
2927 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2928 	spin_unlock(&cur_trans->dirty_bgs_lock);
2929 
2930 again:
2931 	/* Make sure all the block groups on our dirty list actually exist */
2932 	btrfs_create_pending_block_groups(trans);
2933 
2934 	if (!path) {
2935 		path = btrfs_alloc_path();
2936 		if (!path) {
2937 			ret = -ENOMEM;
2938 			goto out;
2939 		}
2940 	}
2941 
2942 	/*
2943 	 * cache_write_mutex is here only to save us from balance or automatic
2944 	 * removal of empty block groups deleting this block group while we are
2945 	 * writing out the cache
2946 	 */
2947 	mutex_lock(&trans->transaction->cache_write_mutex);
2948 	while (!list_empty(&dirty)) {
2949 		bool drop_reserve = true;
2950 
2951 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2952 					 dirty_list);
2953 		/*
2954 		 * This can happen if something re-dirties a block group that
2955 		 * is already under IO.  Just wait for it to finish and then do
2956 		 * it all again
2957 		 */
2958 		if (!list_empty(&cache->io_list)) {
2959 			list_del_init(&cache->io_list);
2960 			btrfs_wait_cache_io(trans, cache, path);
2961 			btrfs_put_block_group(cache);
2962 		}
2963 
2964 
2965 		/*
2966 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2967 		 * it should update the cache_state.  Don't delete until after
2968 		 * we wait.
2969 		 *
2970 		 * Since we're not running in the commit critical section
2971 		 * we need the dirty_bgs_lock to protect from update_block_group
2972 		 */
2973 		spin_lock(&cur_trans->dirty_bgs_lock);
2974 		list_del_init(&cache->dirty_list);
2975 		spin_unlock(&cur_trans->dirty_bgs_lock);
2976 
2977 		should_put = 1;
2978 
2979 		cache_save_setup(cache, trans, path);
2980 
2981 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2982 			cache->io_ctl.inode = NULL;
2983 			ret = btrfs_write_out_cache(trans, cache, path);
2984 			if (ret == 0 && cache->io_ctl.inode) {
2985 				num_started++;
2986 				should_put = 0;
2987 
2988 				/*
2989 				 * The cache_write_mutex is protecting the
2990 				 * io_list, also refer to the definition of
2991 				 * btrfs_transaction::io_bgs for more details
2992 				 */
2993 				list_add_tail(&cache->io_list, io);
2994 			} else {
2995 				/*
2996 				 * If we failed to write the cache, the
2997 				 * generation will be bad and life goes on
2998 				 */
2999 				ret = 0;
3000 			}
3001 		}
3002 		if (!ret) {
3003 			ret = update_block_group_item(trans, path, cache);
3004 			/*
3005 			 * Our block group might still be attached to the list
3006 			 * of new block groups in the transaction handle of some
3007 			 * other task (struct btrfs_trans_handle->new_bgs). This
3008 			 * means its block group item isn't yet in the extent
3009 			 * tree. If this happens ignore the error, as we will
3010 			 * try again later in the critical section of the
3011 			 * transaction commit.
3012 			 */
3013 			if (ret == -ENOENT) {
3014 				ret = 0;
3015 				spin_lock(&cur_trans->dirty_bgs_lock);
3016 				if (list_empty(&cache->dirty_list)) {
3017 					list_add_tail(&cache->dirty_list,
3018 						      &cur_trans->dirty_bgs);
3019 					btrfs_get_block_group(cache);
3020 					drop_reserve = false;
3021 				}
3022 				spin_unlock(&cur_trans->dirty_bgs_lock);
3023 			} else if (ret) {
3024 				btrfs_abort_transaction(trans, ret);
3025 			}
3026 		}
3027 
3028 		/* If it's not on the io list, we need to put the block group */
3029 		if (should_put)
3030 			btrfs_put_block_group(cache);
3031 		if (drop_reserve)
3032 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3033 		/*
3034 		 * Avoid blocking other tasks for too long. It might even save
3035 		 * us from writing caches for block groups that are going to be
3036 		 * removed.
3037 		 */
3038 		mutex_unlock(&trans->transaction->cache_write_mutex);
3039 		if (ret)
3040 			goto out;
3041 		mutex_lock(&trans->transaction->cache_write_mutex);
3042 	}
3043 	mutex_unlock(&trans->transaction->cache_write_mutex);
3044 
3045 	/*
3046 	 * Go through delayed refs for all the stuff we've just kicked off
3047 	 * and then loop back (just once)
3048 	 */
3049 	if (!ret)
3050 		ret = btrfs_run_delayed_refs(trans, 0);
3051 	if (!ret && loops == 0) {
3052 		loops++;
3053 		spin_lock(&cur_trans->dirty_bgs_lock);
3054 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3055 		/*
3056 		 * dirty_bgs_lock protects us from concurrent block group
3057 		 * deletes too (not just cache_write_mutex).
3058 		 */
3059 		if (!list_empty(&dirty)) {
3060 			spin_unlock(&cur_trans->dirty_bgs_lock);
3061 			goto again;
3062 		}
3063 		spin_unlock(&cur_trans->dirty_bgs_lock);
3064 	}
3065 out:
3066 	if (ret < 0) {
3067 		spin_lock(&cur_trans->dirty_bgs_lock);
3068 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3069 		spin_unlock(&cur_trans->dirty_bgs_lock);
3070 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3071 	}
3072 
3073 	btrfs_free_path(path);
3074 	return ret;
3075 }
3076 
3077 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3078 {
3079 	struct btrfs_fs_info *fs_info = trans->fs_info;
3080 	struct btrfs_block_group *cache;
3081 	struct btrfs_transaction *cur_trans = trans->transaction;
3082 	int ret = 0;
3083 	int should_put;
3084 	struct btrfs_path *path;
3085 	struct list_head *io = &cur_trans->io_bgs;
3086 	int num_started = 0;
3087 
3088 	path = btrfs_alloc_path();
3089 	if (!path)
3090 		return -ENOMEM;
3091 
3092 	/*
3093 	 * Even though we are in the critical section of the transaction commit,
3094 	 * we can still have concurrent tasks adding elements to this
3095 	 * transaction's list of dirty block groups. These tasks correspond to
3096 	 * endio free space workers started when writeback finishes for a
3097 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3098 	 * allocate new block groups as a result of COWing nodes of the root
3099 	 * tree when updating the free space inode. The writeback for the space
3100 	 * caches is triggered by an earlier call to
3101 	 * btrfs_start_dirty_block_groups() and iterations of the following
3102 	 * loop.
3103 	 * Also we want to do the cache_save_setup first and then run the
3104 	 * delayed refs to make sure we have the best chance at doing this all
3105 	 * in one shot.
3106 	 */
3107 	spin_lock(&cur_trans->dirty_bgs_lock);
3108 	while (!list_empty(&cur_trans->dirty_bgs)) {
3109 		cache = list_first_entry(&cur_trans->dirty_bgs,
3110 					 struct btrfs_block_group,
3111 					 dirty_list);
3112 
3113 		/*
3114 		 * This can happen if cache_save_setup re-dirties a block group
3115 		 * that is already under IO.  Just wait for it to finish and
3116 		 * then do it all again
3117 		 */
3118 		if (!list_empty(&cache->io_list)) {
3119 			spin_unlock(&cur_trans->dirty_bgs_lock);
3120 			list_del_init(&cache->io_list);
3121 			btrfs_wait_cache_io(trans, cache, path);
3122 			btrfs_put_block_group(cache);
3123 			spin_lock(&cur_trans->dirty_bgs_lock);
3124 		}
3125 
3126 		/*
3127 		 * Don't remove from the dirty list until after we've waited on
3128 		 * any pending IO
3129 		 */
3130 		list_del_init(&cache->dirty_list);
3131 		spin_unlock(&cur_trans->dirty_bgs_lock);
3132 		should_put = 1;
3133 
3134 		cache_save_setup(cache, trans, path);
3135 
3136 		if (!ret)
3137 			ret = btrfs_run_delayed_refs(trans,
3138 						     (unsigned long) -1);
3139 
3140 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3141 			cache->io_ctl.inode = NULL;
3142 			ret = btrfs_write_out_cache(trans, cache, path);
3143 			if (ret == 0 && cache->io_ctl.inode) {
3144 				num_started++;
3145 				should_put = 0;
3146 				list_add_tail(&cache->io_list, io);
3147 			} else {
3148 				/*
3149 				 * If we failed to write the cache, the
3150 				 * generation will be bad and life goes on
3151 				 */
3152 				ret = 0;
3153 			}
3154 		}
3155 		if (!ret) {
3156 			ret = update_block_group_item(trans, path, cache);
3157 			/*
3158 			 * One of the free space endio workers might have
3159 			 * created a new block group while updating a free space
3160 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3161 			 * and hasn't released its transaction handle yet, in
3162 			 * which case the new block group is still attached to
3163 			 * its transaction handle and its creation has not
3164 			 * finished yet (no block group item in the extent tree
3165 			 * yet, etc). If this is the case, wait for all free
3166 			 * space endio workers to finish and retry. This is a
3167 			 * very rare case so no need for a more efficient and
3168 			 * complex approach.
3169 			 */
3170 			if (ret == -ENOENT) {
3171 				wait_event(cur_trans->writer_wait,
3172 				   atomic_read(&cur_trans->num_writers) == 1);
3173 				ret = update_block_group_item(trans, path, cache);
3174 			}
3175 			if (ret)
3176 				btrfs_abort_transaction(trans, ret);
3177 		}
3178 
3179 		/* If its not on the io list, we need to put the block group */
3180 		if (should_put)
3181 			btrfs_put_block_group(cache);
3182 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3183 		spin_lock(&cur_trans->dirty_bgs_lock);
3184 	}
3185 	spin_unlock(&cur_trans->dirty_bgs_lock);
3186 
3187 	/*
3188 	 * Refer to the definition of io_bgs member for details why it's safe
3189 	 * to use it without any locking
3190 	 */
3191 	while (!list_empty(io)) {
3192 		cache = list_first_entry(io, struct btrfs_block_group,
3193 					 io_list);
3194 		list_del_init(&cache->io_list);
3195 		btrfs_wait_cache_io(trans, cache, path);
3196 		btrfs_put_block_group(cache);
3197 	}
3198 
3199 	btrfs_free_path(path);
3200 	return ret;
3201 }
3202 
3203 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3204 			     u64 bytenr, u64 num_bytes, bool alloc)
3205 {
3206 	struct btrfs_fs_info *info = trans->fs_info;
3207 	struct btrfs_block_group *cache = NULL;
3208 	u64 total = num_bytes;
3209 	u64 old_val;
3210 	u64 byte_in_group;
3211 	int factor;
3212 	int ret = 0;
3213 
3214 	/* Block accounting for super block */
3215 	spin_lock(&info->delalloc_root_lock);
3216 	old_val = btrfs_super_bytes_used(info->super_copy);
3217 	if (alloc)
3218 		old_val += num_bytes;
3219 	else
3220 		old_val -= num_bytes;
3221 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3222 	spin_unlock(&info->delalloc_root_lock);
3223 
3224 	while (total) {
3225 		cache = btrfs_lookup_block_group(info, bytenr);
3226 		if (!cache) {
3227 			ret = -ENOENT;
3228 			break;
3229 		}
3230 		factor = btrfs_bg_type_to_factor(cache->flags);
3231 
3232 		/*
3233 		 * If this block group has free space cache written out, we
3234 		 * need to make sure to load it if we are removing space.  This
3235 		 * is because we need the unpinning stage to actually add the
3236 		 * space back to the block group, otherwise we will leak space.
3237 		 */
3238 		if (!alloc && !btrfs_block_group_done(cache))
3239 			btrfs_cache_block_group(cache, 1);
3240 
3241 		byte_in_group = bytenr - cache->start;
3242 		WARN_ON(byte_in_group > cache->length);
3243 
3244 		spin_lock(&cache->space_info->lock);
3245 		spin_lock(&cache->lock);
3246 
3247 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3248 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3249 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3250 
3251 		old_val = cache->used;
3252 		num_bytes = min(total, cache->length - byte_in_group);
3253 		if (alloc) {
3254 			old_val += num_bytes;
3255 			cache->used = old_val;
3256 			cache->reserved -= num_bytes;
3257 			cache->space_info->bytes_reserved -= num_bytes;
3258 			cache->space_info->bytes_used += num_bytes;
3259 			cache->space_info->disk_used += num_bytes * factor;
3260 			spin_unlock(&cache->lock);
3261 			spin_unlock(&cache->space_info->lock);
3262 		} else {
3263 			old_val -= num_bytes;
3264 			cache->used = old_val;
3265 			cache->pinned += num_bytes;
3266 			btrfs_space_info_update_bytes_pinned(info,
3267 					cache->space_info, num_bytes);
3268 			cache->space_info->bytes_used -= num_bytes;
3269 			cache->space_info->disk_used -= num_bytes * factor;
3270 			spin_unlock(&cache->lock);
3271 			spin_unlock(&cache->space_info->lock);
3272 
3273 			set_extent_dirty(&trans->transaction->pinned_extents,
3274 					 bytenr, bytenr + num_bytes - 1,
3275 					 GFP_NOFS | __GFP_NOFAIL);
3276 		}
3277 
3278 		spin_lock(&trans->transaction->dirty_bgs_lock);
3279 		if (list_empty(&cache->dirty_list)) {
3280 			list_add_tail(&cache->dirty_list,
3281 				      &trans->transaction->dirty_bgs);
3282 			trans->delayed_ref_updates++;
3283 			btrfs_get_block_group(cache);
3284 		}
3285 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3286 
3287 		/*
3288 		 * No longer have used bytes in this block group, queue it for
3289 		 * deletion. We do this after adding the block group to the
3290 		 * dirty list to avoid races between cleaner kthread and space
3291 		 * cache writeout.
3292 		 */
3293 		if (!alloc && old_val == 0) {
3294 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3295 				btrfs_mark_bg_unused(cache);
3296 		}
3297 
3298 		btrfs_put_block_group(cache);
3299 		total -= num_bytes;
3300 		bytenr += num_bytes;
3301 	}
3302 
3303 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3304 	btrfs_update_delayed_refs_rsv(trans);
3305 	return ret;
3306 }
3307 
3308 /**
3309  * btrfs_add_reserved_bytes - update the block_group and space info counters
3310  * @cache:	The cache we are manipulating
3311  * @ram_bytes:  The number of bytes of file content, and will be same to
3312  *              @num_bytes except for the compress path.
3313  * @num_bytes:	The number of bytes in question
3314  * @delalloc:   The blocks are allocated for the delalloc write
3315  *
3316  * This is called by the allocator when it reserves space. If this is a
3317  * reservation and the block group has become read only we cannot make the
3318  * reservation and return -EAGAIN, otherwise this function always succeeds.
3319  */
3320 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3321 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3322 {
3323 	struct btrfs_space_info *space_info = cache->space_info;
3324 	int ret = 0;
3325 
3326 	spin_lock(&space_info->lock);
3327 	spin_lock(&cache->lock);
3328 	if (cache->ro) {
3329 		ret = -EAGAIN;
3330 	} else {
3331 		cache->reserved += num_bytes;
3332 		space_info->bytes_reserved += num_bytes;
3333 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3334 					      space_info->flags, num_bytes, 1);
3335 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3336 						      space_info, -ram_bytes);
3337 		if (delalloc)
3338 			cache->delalloc_bytes += num_bytes;
3339 
3340 		/*
3341 		 * Compression can use less space than we reserved, so wake
3342 		 * tickets if that happens
3343 		 */
3344 		if (num_bytes < ram_bytes)
3345 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3346 	}
3347 	spin_unlock(&cache->lock);
3348 	spin_unlock(&space_info->lock);
3349 	return ret;
3350 }
3351 
3352 /**
3353  * btrfs_free_reserved_bytes - update the block_group and space info counters
3354  * @cache:      The cache we are manipulating
3355  * @num_bytes:  The number of bytes in question
3356  * @delalloc:   The blocks are allocated for the delalloc write
3357  *
3358  * This is called by somebody who is freeing space that was never actually used
3359  * on disk.  For example if you reserve some space for a new leaf in transaction
3360  * A and before transaction A commits you free that leaf, you call this with
3361  * reserve set to 0 in order to clear the reservation.
3362  */
3363 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3364 			       u64 num_bytes, int delalloc)
3365 {
3366 	struct btrfs_space_info *space_info = cache->space_info;
3367 
3368 	spin_lock(&space_info->lock);
3369 	spin_lock(&cache->lock);
3370 	if (cache->ro)
3371 		space_info->bytes_readonly += num_bytes;
3372 	cache->reserved -= num_bytes;
3373 	space_info->bytes_reserved -= num_bytes;
3374 	space_info->max_extent_size = 0;
3375 
3376 	if (delalloc)
3377 		cache->delalloc_bytes -= num_bytes;
3378 	spin_unlock(&cache->lock);
3379 
3380 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3381 	spin_unlock(&space_info->lock);
3382 }
3383 
3384 static void force_metadata_allocation(struct btrfs_fs_info *info)
3385 {
3386 	struct list_head *head = &info->space_info;
3387 	struct btrfs_space_info *found;
3388 
3389 	list_for_each_entry(found, head, list) {
3390 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3391 			found->force_alloc = CHUNK_ALLOC_FORCE;
3392 	}
3393 }
3394 
3395 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3396 			      struct btrfs_space_info *sinfo, int force)
3397 {
3398 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3399 	u64 thresh;
3400 
3401 	if (force == CHUNK_ALLOC_FORCE)
3402 		return 1;
3403 
3404 	/*
3405 	 * in limited mode, we want to have some free space up to
3406 	 * about 1% of the FS size.
3407 	 */
3408 	if (force == CHUNK_ALLOC_LIMITED) {
3409 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3410 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3411 
3412 		if (sinfo->total_bytes - bytes_used < thresh)
3413 			return 1;
3414 	}
3415 
3416 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3417 		return 0;
3418 	return 1;
3419 }
3420 
3421 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3422 {
3423 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3424 
3425 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3426 }
3427 
3428 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3429 {
3430 	struct btrfs_block_group *bg;
3431 	int ret;
3432 
3433 	/*
3434 	 * Check if we have enough space in the system space info because we
3435 	 * will need to update device items in the chunk btree and insert a new
3436 	 * chunk item in the chunk btree as well. This will allocate a new
3437 	 * system block group if needed.
3438 	 */
3439 	check_system_chunk(trans, flags);
3440 
3441 	bg = btrfs_create_chunk(trans, flags);
3442 	if (IS_ERR(bg)) {
3443 		ret = PTR_ERR(bg);
3444 		goto out;
3445 	}
3446 
3447 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3448 	/*
3449 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3450 	 * previously reserved space in the system space_info and allocated one
3451 	 * new system chunk if necessary. However there are three exceptions:
3452 	 *
3453 	 * 1) We may have enough free space in the system space_info but all the
3454 	 *    existing system block groups have a profile which can not be used
3455 	 *    for extent allocation.
3456 	 *
3457 	 *    This happens when mounting in degraded mode. For example we have a
3458 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3459 	 *    using the other device in degraded mode. If we then allocate a chunk,
3460 	 *    we may have enough free space in the existing system space_info, but
3461 	 *    none of the block groups can be used for extent allocation since they
3462 	 *    have a RAID1 profile, and because we are in degraded mode with a
3463 	 *    single device, we are forced to allocate a new system chunk with a
3464 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3465 	 *    block groups and check if they have a usable profile and enough space
3466 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3467 	 *    try again after forcing allocation of a new system chunk. Like this
3468 	 *    we avoid paying the cost of that search in normal circumstances, when
3469 	 *    we were not mounted in degraded mode;
3470 	 *
3471 	 * 2) We had enough free space info the system space_info, and one suitable
3472 	 *    block group to allocate from when we called check_system_chunk()
3473 	 *    above. However right after we called it, the only system block group
3474 	 *    with enough free space got turned into RO mode by a running scrub,
3475 	 *    and in this case we have to allocate a new one and retry. We only
3476 	 *    need do this allocate and retry once, since we have a transaction
3477 	 *    handle and scrub uses the commit root to search for block groups;
3478 	 *
3479 	 * 3) We had one system block group with enough free space when we called
3480 	 *    check_system_chunk(), but after that, right before we tried to
3481 	 *    allocate the last extent buffer we needed, a discard operation came
3482 	 *    in and it temporarily removed the last free space entry from the
3483 	 *    block group (discard removes a free space entry, discards it, and
3484 	 *    then adds back the entry to the block group cache).
3485 	 */
3486 	if (ret == -ENOSPC) {
3487 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3488 		struct btrfs_block_group *sys_bg;
3489 
3490 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3491 		if (IS_ERR(sys_bg)) {
3492 			ret = PTR_ERR(sys_bg);
3493 			btrfs_abort_transaction(trans, ret);
3494 			goto out;
3495 		}
3496 
3497 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3498 		if (ret) {
3499 			btrfs_abort_transaction(trans, ret);
3500 			goto out;
3501 		}
3502 
3503 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3504 		if (ret) {
3505 			btrfs_abort_transaction(trans, ret);
3506 			goto out;
3507 		}
3508 	} else if (ret) {
3509 		btrfs_abort_transaction(trans, ret);
3510 		goto out;
3511 	}
3512 out:
3513 	btrfs_trans_release_chunk_metadata(trans);
3514 
3515 	return ret;
3516 }
3517 
3518 /*
3519  * Chunk allocation is done in 2 phases:
3520  *
3521  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3522  *    the chunk, the chunk mapping, create its block group and add the items
3523  *    that belong in the chunk btree to it - more specifically, we need to
3524  *    update device items in the chunk btree and add a new chunk item to it.
3525  *
3526  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3527  *    group item to the extent btree and the device extent items to the devices
3528  *    btree.
3529  *
3530  * This is done to prevent deadlocks. For example when COWing a node from the
3531  * extent btree we are holding a write lock on the node's parent and if we
3532  * trigger chunk allocation and attempted to insert the new block group item
3533  * in the extent btree right way, we could deadlock because the path for the
3534  * insertion can include that parent node. At first glance it seems impossible
3535  * to trigger chunk allocation after starting a transaction since tasks should
3536  * reserve enough transaction units (metadata space), however while that is true
3537  * most of the time, chunk allocation may still be triggered for several reasons:
3538  *
3539  * 1) When reserving metadata, we check if there is enough free space in the
3540  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3541  *    However later when the task actually tries to COW an extent buffer from
3542  *    the extent btree or from the device btree for example, it is forced to
3543  *    allocate a new block group (chunk) because the only one that had enough
3544  *    free space was just turned to RO mode by a running scrub for example (or
3545  *    device replace, block group reclaim thread, etc), so we can not use it
3546  *    for allocating an extent and end up being forced to allocate a new one;
3547  *
3548  * 2) Because we only check that the metadata space_info has enough free bytes,
3549  *    we end up not allocating a new metadata chunk in that case. However if
3550  *    the filesystem was mounted in degraded mode, none of the existing block
3551  *    groups might be suitable for extent allocation due to their incompatible
3552  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3553  *    use a RAID1 profile, in degraded mode using a single device). In this case
3554  *    when the task attempts to COW some extent buffer of the extent btree for
3555  *    example, it will trigger allocation of a new metadata block group with a
3556  *    suitable profile (SINGLE profile in the example of the degraded mount of
3557  *    the RAID1 filesystem);
3558  *
3559  * 3) The task has reserved enough transaction units / metadata space, but when
3560  *    it attempts to COW an extent buffer from the extent or device btree for
3561  *    example, it does not find any free extent in any metadata block group,
3562  *    therefore forced to try to allocate a new metadata block group.
3563  *    This is because some other task allocated all available extents in the
3564  *    meanwhile - this typically happens with tasks that don't reserve space
3565  *    properly, either intentionally or as a bug. One example where this is
3566  *    done intentionally is fsync, as it does not reserve any transaction units
3567  *    and ends up allocating a variable number of metadata extents for log
3568  *    tree extent buffers;
3569  *
3570  * 4) The task has reserved enough transaction units / metadata space, but right
3571  *    before it tries to allocate the last extent buffer it needs, a discard
3572  *    operation comes in and, temporarily, removes the last free space entry from
3573  *    the only metadata block group that had free space (discard starts by
3574  *    removing a free space entry from a block group, then does the discard
3575  *    operation and, once it's done, it adds back the free space entry to the
3576  *    block group).
3577  *
3578  * We also need this 2 phases setup when adding a device to a filesystem with
3579  * a seed device - we must create new metadata and system chunks without adding
3580  * any of the block group items to the chunk, extent and device btrees. If we
3581  * did not do it this way, we would get ENOSPC when attempting to update those
3582  * btrees, since all the chunks from the seed device are read-only.
3583  *
3584  * Phase 1 does the updates and insertions to the chunk btree because if we had
3585  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3586  * parallel, we risk having too many system chunks allocated by many tasks if
3587  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3588  * extreme case this leads to exhaustion of the system chunk array in the
3589  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3590  * and with RAID filesystems (so we have more device items in the chunk btree).
3591  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3592  * the system chunk array due to concurrent allocations") provides more details.
3593  *
3594  * Allocation of system chunks does not happen through this function. A task that
3595  * needs to update the chunk btree (the only btree that uses system chunks), must
3596  * preallocate chunk space by calling either check_system_chunk() or
3597  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3598  * metadata chunk or when removing a chunk, while the later is used before doing
3599  * a modification to the chunk btree - use cases for the later are adding,
3600  * removing and resizing a device as well as relocation of a system chunk.
3601  * See the comment below for more details.
3602  *
3603  * The reservation of system space, done through check_system_chunk(), as well
3604  * as all the updates and insertions into the chunk btree must be done while
3605  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3606  * an extent buffer from the chunks btree we never trigger allocation of a new
3607  * system chunk, which would result in a deadlock (trying to lock twice an
3608  * extent buffer of the chunk btree, first time before triggering the chunk
3609  * allocation and the second time during chunk allocation while attempting to
3610  * update the chunks btree). The system chunk array is also updated while holding
3611  * that mutex. The same logic applies to removing chunks - we must reserve system
3612  * space, update the chunk btree and the system chunk array in the superblock
3613  * while holding fs_info->chunk_mutex.
3614  *
3615  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3616  *
3617  * If @force is CHUNK_ALLOC_FORCE:
3618  *    - return 1 if it successfully allocates a chunk,
3619  *    - return errors including -ENOSPC otherwise.
3620  * If @force is NOT CHUNK_ALLOC_FORCE:
3621  *    - return 0 if it doesn't need to allocate a new chunk,
3622  *    - return 1 if it successfully allocates a chunk,
3623  *    - return errors including -ENOSPC otherwise.
3624  */
3625 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3626 		      enum btrfs_chunk_alloc_enum force)
3627 {
3628 	struct btrfs_fs_info *fs_info = trans->fs_info;
3629 	struct btrfs_space_info *space_info;
3630 	bool wait_for_alloc = false;
3631 	bool should_alloc = false;
3632 	int ret = 0;
3633 
3634 	/* Don't re-enter if we're already allocating a chunk */
3635 	if (trans->allocating_chunk)
3636 		return -ENOSPC;
3637 	/*
3638 	 * Allocation of system chunks can not happen through this path, as we
3639 	 * could end up in a deadlock if we are allocating a data or metadata
3640 	 * chunk and there is another task modifying the chunk btree.
3641 	 *
3642 	 * This is because while we are holding the chunk mutex, we will attempt
3643 	 * to add the new chunk item to the chunk btree or update an existing
3644 	 * device item in the chunk btree, while the other task that is modifying
3645 	 * the chunk btree is attempting to COW an extent buffer while holding a
3646 	 * lock on it and on its parent - if the COW operation triggers a system
3647 	 * chunk allocation, then we can deadlock because we are holding the
3648 	 * chunk mutex and we may need to access that extent buffer or its parent
3649 	 * in order to add the chunk item or update a device item.
3650 	 *
3651 	 * Tasks that want to modify the chunk tree should reserve system space
3652 	 * before updating the chunk btree, by calling either
3653 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3654 	 * It's possible that after a task reserves the space, it still ends up
3655 	 * here - this happens in the cases described above at do_chunk_alloc().
3656 	 * The task will have to either retry or fail.
3657 	 */
3658 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3659 		return -ENOSPC;
3660 
3661 	space_info = btrfs_find_space_info(fs_info, flags);
3662 	ASSERT(space_info);
3663 
3664 	do {
3665 		spin_lock(&space_info->lock);
3666 		if (force < space_info->force_alloc)
3667 			force = space_info->force_alloc;
3668 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3669 		if (space_info->full) {
3670 			/* No more free physical space */
3671 			if (should_alloc)
3672 				ret = -ENOSPC;
3673 			else
3674 				ret = 0;
3675 			spin_unlock(&space_info->lock);
3676 			return ret;
3677 		} else if (!should_alloc) {
3678 			spin_unlock(&space_info->lock);
3679 			return 0;
3680 		} else if (space_info->chunk_alloc) {
3681 			/*
3682 			 * Someone is already allocating, so we need to block
3683 			 * until this someone is finished and then loop to
3684 			 * recheck if we should continue with our allocation
3685 			 * attempt.
3686 			 */
3687 			wait_for_alloc = true;
3688 			spin_unlock(&space_info->lock);
3689 			mutex_lock(&fs_info->chunk_mutex);
3690 			mutex_unlock(&fs_info->chunk_mutex);
3691 		} else {
3692 			/* Proceed with allocation */
3693 			space_info->chunk_alloc = 1;
3694 			wait_for_alloc = false;
3695 			spin_unlock(&space_info->lock);
3696 		}
3697 
3698 		cond_resched();
3699 	} while (wait_for_alloc);
3700 
3701 	mutex_lock(&fs_info->chunk_mutex);
3702 	trans->allocating_chunk = true;
3703 
3704 	/*
3705 	 * If we have mixed data/metadata chunks we want to make sure we keep
3706 	 * allocating mixed chunks instead of individual chunks.
3707 	 */
3708 	if (btrfs_mixed_space_info(space_info))
3709 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3710 
3711 	/*
3712 	 * if we're doing a data chunk, go ahead and make sure that
3713 	 * we keep a reasonable number of metadata chunks allocated in the
3714 	 * FS as well.
3715 	 */
3716 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3717 		fs_info->data_chunk_allocations++;
3718 		if (!(fs_info->data_chunk_allocations %
3719 		      fs_info->metadata_ratio))
3720 			force_metadata_allocation(fs_info);
3721 	}
3722 
3723 	ret = do_chunk_alloc(trans, flags);
3724 	trans->allocating_chunk = false;
3725 
3726 	spin_lock(&space_info->lock);
3727 	if (ret < 0) {
3728 		if (ret == -ENOSPC)
3729 			space_info->full = 1;
3730 		else
3731 			goto out;
3732 	} else {
3733 		ret = 1;
3734 		space_info->max_extent_size = 0;
3735 	}
3736 
3737 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3738 out:
3739 	space_info->chunk_alloc = 0;
3740 	spin_unlock(&space_info->lock);
3741 	mutex_unlock(&fs_info->chunk_mutex);
3742 
3743 	return ret;
3744 }
3745 
3746 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3747 {
3748 	u64 num_dev;
3749 
3750 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3751 	if (!num_dev)
3752 		num_dev = fs_info->fs_devices->rw_devices;
3753 
3754 	return num_dev;
3755 }
3756 
3757 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3758 				u64 bytes,
3759 				u64 type)
3760 {
3761 	struct btrfs_fs_info *fs_info = trans->fs_info;
3762 	struct btrfs_space_info *info;
3763 	u64 left;
3764 	int ret = 0;
3765 
3766 	/*
3767 	 * Needed because we can end up allocating a system chunk and for an
3768 	 * atomic and race free space reservation in the chunk block reserve.
3769 	 */
3770 	lockdep_assert_held(&fs_info->chunk_mutex);
3771 
3772 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3773 	spin_lock(&info->lock);
3774 	left = info->total_bytes - btrfs_space_info_used(info, true);
3775 	spin_unlock(&info->lock);
3776 
3777 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3778 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3779 			   left, bytes, type);
3780 		btrfs_dump_space_info(fs_info, info, 0, 0);
3781 	}
3782 
3783 	if (left < bytes) {
3784 		u64 flags = btrfs_system_alloc_profile(fs_info);
3785 		struct btrfs_block_group *bg;
3786 
3787 		/*
3788 		 * Ignore failure to create system chunk. We might end up not
3789 		 * needing it, as we might not need to COW all nodes/leafs from
3790 		 * the paths we visit in the chunk tree (they were already COWed
3791 		 * or created in the current transaction for example).
3792 		 */
3793 		bg = btrfs_create_chunk(trans, flags);
3794 		if (IS_ERR(bg)) {
3795 			ret = PTR_ERR(bg);
3796 		} else {
3797 			/*
3798 			 * If we fail to add the chunk item here, we end up
3799 			 * trying again at phase 2 of chunk allocation, at
3800 			 * btrfs_create_pending_block_groups(). So ignore
3801 			 * any error here. An ENOSPC here could happen, due to
3802 			 * the cases described at do_chunk_alloc() - the system
3803 			 * block group we just created was just turned into RO
3804 			 * mode by a scrub for example, or a running discard
3805 			 * temporarily removed its free space entries, etc.
3806 			 */
3807 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3808 		}
3809 	}
3810 
3811 	if (!ret) {
3812 		ret = btrfs_block_rsv_add(fs_info,
3813 					  &fs_info->chunk_block_rsv,
3814 					  bytes, BTRFS_RESERVE_NO_FLUSH);
3815 		if (!ret)
3816 			trans->chunk_bytes_reserved += bytes;
3817 	}
3818 }
3819 
3820 /*
3821  * Reserve space in the system space for allocating or removing a chunk.
3822  * The caller must be holding fs_info->chunk_mutex.
3823  */
3824 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3825 {
3826 	struct btrfs_fs_info *fs_info = trans->fs_info;
3827 	const u64 num_devs = get_profile_num_devs(fs_info, type);
3828 	u64 bytes;
3829 
3830 	/* num_devs device items to update and 1 chunk item to add or remove. */
3831 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3832 		btrfs_calc_insert_metadata_size(fs_info, 1);
3833 
3834 	reserve_chunk_space(trans, bytes, type);
3835 }
3836 
3837 /*
3838  * Reserve space in the system space, if needed, for doing a modification to the
3839  * chunk btree.
3840  *
3841  * @trans:		A transaction handle.
3842  * @is_item_insertion:	Indicate if the modification is for inserting a new item
3843  *			in the chunk btree or if it's for the deletion or update
3844  *			of an existing item.
3845  *
3846  * This is used in a context where we need to update the chunk btree outside
3847  * block group allocation and removal, to avoid a deadlock with a concurrent
3848  * task that is allocating a metadata or data block group and therefore needs to
3849  * update the chunk btree while holding the chunk mutex. After the update to the
3850  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3851  *
3852  */
3853 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3854 				  bool is_item_insertion)
3855 {
3856 	struct btrfs_fs_info *fs_info = trans->fs_info;
3857 	u64 bytes;
3858 
3859 	if (is_item_insertion)
3860 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3861 	else
3862 		bytes = btrfs_calc_metadata_size(fs_info, 1);
3863 
3864 	mutex_lock(&fs_info->chunk_mutex);
3865 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3866 	mutex_unlock(&fs_info->chunk_mutex);
3867 }
3868 
3869 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3870 {
3871 	struct btrfs_block_group *block_group;
3872 	u64 last = 0;
3873 
3874 	while (1) {
3875 		struct inode *inode;
3876 
3877 		block_group = btrfs_lookup_first_block_group(info, last);
3878 		while (block_group) {
3879 			btrfs_wait_block_group_cache_done(block_group);
3880 			spin_lock(&block_group->lock);
3881 			if (block_group->iref)
3882 				break;
3883 			spin_unlock(&block_group->lock);
3884 			block_group = btrfs_next_block_group(block_group);
3885 		}
3886 		if (!block_group) {
3887 			if (last == 0)
3888 				break;
3889 			last = 0;
3890 			continue;
3891 		}
3892 
3893 		inode = block_group->inode;
3894 		block_group->iref = 0;
3895 		block_group->inode = NULL;
3896 		spin_unlock(&block_group->lock);
3897 		ASSERT(block_group->io_ctl.inode == NULL);
3898 		iput(inode);
3899 		last = block_group->start + block_group->length;
3900 		btrfs_put_block_group(block_group);
3901 	}
3902 }
3903 
3904 /*
3905  * Must be called only after stopping all workers, since we could have block
3906  * group caching kthreads running, and therefore they could race with us if we
3907  * freed the block groups before stopping them.
3908  */
3909 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3910 {
3911 	struct btrfs_block_group *block_group;
3912 	struct btrfs_space_info *space_info;
3913 	struct btrfs_caching_control *caching_ctl;
3914 	struct rb_node *n;
3915 
3916 	spin_lock(&info->block_group_cache_lock);
3917 	while (!list_empty(&info->caching_block_groups)) {
3918 		caching_ctl = list_entry(info->caching_block_groups.next,
3919 					 struct btrfs_caching_control, list);
3920 		list_del(&caching_ctl->list);
3921 		btrfs_put_caching_control(caching_ctl);
3922 	}
3923 	spin_unlock(&info->block_group_cache_lock);
3924 
3925 	spin_lock(&info->unused_bgs_lock);
3926 	while (!list_empty(&info->unused_bgs)) {
3927 		block_group = list_first_entry(&info->unused_bgs,
3928 					       struct btrfs_block_group,
3929 					       bg_list);
3930 		list_del_init(&block_group->bg_list);
3931 		btrfs_put_block_group(block_group);
3932 	}
3933 
3934 	while (!list_empty(&info->reclaim_bgs)) {
3935 		block_group = list_first_entry(&info->reclaim_bgs,
3936 					       struct btrfs_block_group,
3937 					       bg_list);
3938 		list_del_init(&block_group->bg_list);
3939 		btrfs_put_block_group(block_group);
3940 	}
3941 	spin_unlock(&info->unused_bgs_lock);
3942 
3943 	spin_lock(&info->zone_active_bgs_lock);
3944 	while (!list_empty(&info->zone_active_bgs)) {
3945 		block_group = list_first_entry(&info->zone_active_bgs,
3946 					       struct btrfs_block_group,
3947 					       active_bg_list);
3948 		list_del_init(&block_group->active_bg_list);
3949 		btrfs_put_block_group(block_group);
3950 	}
3951 	spin_unlock(&info->zone_active_bgs_lock);
3952 
3953 	spin_lock(&info->block_group_cache_lock);
3954 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3955 		block_group = rb_entry(n, struct btrfs_block_group,
3956 				       cache_node);
3957 		rb_erase(&block_group->cache_node,
3958 			 &info->block_group_cache_tree);
3959 		RB_CLEAR_NODE(&block_group->cache_node);
3960 		spin_unlock(&info->block_group_cache_lock);
3961 
3962 		down_write(&block_group->space_info->groups_sem);
3963 		list_del(&block_group->list);
3964 		up_write(&block_group->space_info->groups_sem);
3965 
3966 		/*
3967 		 * We haven't cached this block group, which means we could
3968 		 * possibly have excluded extents on this block group.
3969 		 */
3970 		if (block_group->cached == BTRFS_CACHE_NO ||
3971 		    block_group->cached == BTRFS_CACHE_ERROR)
3972 			btrfs_free_excluded_extents(block_group);
3973 
3974 		btrfs_remove_free_space_cache(block_group);
3975 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3976 		ASSERT(list_empty(&block_group->dirty_list));
3977 		ASSERT(list_empty(&block_group->io_list));
3978 		ASSERT(list_empty(&block_group->bg_list));
3979 		ASSERT(refcount_read(&block_group->refs) == 1);
3980 		ASSERT(block_group->swap_extents == 0);
3981 		btrfs_put_block_group(block_group);
3982 
3983 		spin_lock(&info->block_group_cache_lock);
3984 	}
3985 	spin_unlock(&info->block_group_cache_lock);
3986 
3987 	btrfs_release_global_block_rsv(info);
3988 
3989 	while (!list_empty(&info->space_info)) {
3990 		space_info = list_entry(info->space_info.next,
3991 					struct btrfs_space_info,
3992 					list);
3993 
3994 		/*
3995 		 * Do not hide this behind enospc_debug, this is actually
3996 		 * important and indicates a real bug if this happens.
3997 		 */
3998 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3999 			    space_info->bytes_may_use > 0))
4000 			btrfs_dump_space_info(info, space_info, 0, 0);
4001 
4002 		/*
4003 		 * If there was a failure to cleanup a log tree, very likely due
4004 		 * to an IO failure on a writeback attempt of one or more of its
4005 		 * extent buffers, we could not do proper (and cheap) unaccounting
4006 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4007 		 * that case.
4008 		 */
4009 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4010 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4011 			if (WARN_ON(space_info->bytes_reserved > 0))
4012 				btrfs_dump_space_info(info, space_info, 0, 0);
4013 		}
4014 
4015 		WARN_ON(space_info->reclaim_size > 0);
4016 		list_del(&space_info->list);
4017 		btrfs_sysfs_remove_space_info(space_info);
4018 	}
4019 	return 0;
4020 }
4021 
4022 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4023 {
4024 	atomic_inc(&cache->frozen);
4025 }
4026 
4027 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4028 {
4029 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4030 	struct extent_map_tree *em_tree;
4031 	struct extent_map *em;
4032 	bool cleanup;
4033 
4034 	spin_lock(&block_group->lock);
4035 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4036 		   block_group->removed);
4037 	spin_unlock(&block_group->lock);
4038 
4039 	if (cleanup) {
4040 		em_tree = &fs_info->mapping_tree;
4041 		write_lock(&em_tree->lock);
4042 		em = lookup_extent_mapping(em_tree, block_group->start,
4043 					   1);
4044 		BUG_ON(!em); /* logic error, can't happen */
4045 		remove_extent_mapping(em_tree, em);
4046 		write_unlock(&em_tree->lock);
4047 
4048 		/* once for us and once for the tree */
4049 		free_extent_map(em);
4050 		free_extent_map(em);
4051 
4052 		/*
4053 		 * We may have left one free space entry and other possible
4054 		 * tasks trimming this block group have left 1 entry each one.
4055 		 * Free them if any.
4056 		 */
4057 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
4058 	}
4059 }
4060 
4061 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4062 {
4063 	bool ret = true;
4064 
4065 	spin_lock(&bg->lock);
4066 	if (bg->ro)
4067 		ret = false;
4068 	else
4069 		bg->swap_extents++;
4070 	spin_unlock(&bg->lock);
4071 
4072 	return ret;
4073 }
4074 
4075 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4076 {
4077 	spin_lock(&bg->lock);
4078 	ASSERT(!bg->ro);
4079 	ASSERT(bg->swap_extents >= amount);
4080 	bg->swap_extents -= amount;
4081 	spin_unlock(&bg->lock);
4082 }
4083