xref: /linux/fs/btrfs/block-group.c (revision 9cc8d0ecdd2aad42e377e971e3bb114339df609e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group)
27 {
28 	struct btrfs_fs_info *fs_info = block_group->fs_info;
29 
30 	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36 
37 /*
38  * Return target flags in extended format or 0 if restripe for this chunk_type
39  * is not in progress
40  *
41  * Should be called with balance_lock held
42  */
43 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 	const struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 	u64 target = 0;
47 
48 	if (!bctl)
49 		return 0;
50 
51 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 	}
61 
62 	return target;
63 }
64 
65 /*
66  * @flags: available profiles in extended format (see ctree.h)
67  *
68  * Return reduced profile in chunk format.  If profile changing is in progress
69  * (either running or paused) picks the target profile (if it's already
70  * available), otherwise falls back to plain reducing.
71  */
72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 	u64 num_devices = fs_info->fs_devices->rw_devices;
75 	u64 target;
76 	u64 raid_type;
77 	u64 allowed = 0;
78 
79 	/*
80 	 * See if restripe for this chunk_type is in progress, if so try to
81 	 * reduce to the target profile
82 	 */
83 	spin_lock(&fs_info->balance_lock);
84 	target = get_restripe_target(fs_info, flags);
85 	if (target) {
86 		spin_unlock(&fs_info->balance_lock);
87 		return extended_to_chunk(target);
88 	}
89 	spin_unlock(&fs_info->balance_lock);
90 
91 	/* First, mask out the RAID levels which aren't possible */
92 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 			allowed |= btrfs_raid_array[raid_type].bg_flag;
95 	}
96 	allowed &= flags;
97 
98 	/* Select the highest-redundancy RAID level. */
99 	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 		allowed = BTRFS_BLOCK_GROUP_RAID6;
103 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 		allowed = BTRFS_BLOCK_GROUP_RAID5;
107 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 		allowed = BTRFS_BLOCK_GROUP_RAID10;
109 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 		allowed = BTRFS_BLOCK_GROUP_RAID1;
111 	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 		allowed = BTRFS_BLOCK_GROUP_DUP;
113 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 		allowed = BTRFS_BLOCK_GROUP_RAID0;
115 
116 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117 
118 	return extended_to_chunk(flags | allowed);
119 }
120 
121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 	unsigned seq;
124 	u64 flags;
125 
126 	do {
127 		flags = orig_flags;
128 		seq = read_seqbegin(&fs_info->profiles_lock);
129 
130 		if (flags & BTRFS_BLOCK_GROUP_DATA)
131 			flags |= fs_info->avail_data_alloc_bits;
132 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 			flags |= fs_info->avail_system_alloc_bits;
134 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 			flags |= fs_info->avail_metadata_alloc_bits;
136 	} while (read_seqretry(&fs_info->profiles_lock, seq));
137 
138 	return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140 
141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 	refcount_inc(&cache->refs);
144 }
145 
146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 	if (refcount_dec_and_test(&cache->refs)) {
149 		WARN_ON(cache->pinned > 0);
150 		/*
151 		 * If there was a failure to cleanup a log tree, very likely due
152 		 * to an IO failure on a writeback attempt of one or more of its
153 		 * extent buffers, we could not do proper (and cheap) unaccounting
154 		 * of their reserved space, so don't warn on reserved > 0 in that
155 		 * case.
156 		 */
157 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 			WARN_ON(cache->reserved > 0);
160 
161 		/*
162 		 * A block_group shouldn't be on the discard_list anymore.
163 		 * Remove the block_group from the discard_list to prevent us
164 		 * from causing a panic due to NULL pointer dereference.
165 		 */
166 		if (WARN_ON(!list_empty(&cache->discard_list)))
167 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 						  cache);
169 
170 		kfree(cache->free_space_ctl);
171 		btrfs_free_chunk_map(cache->physical_map);
172 		kfree(cache);
173 	}
174 }
175 
176 /*
177  * This adds the block group to the fs_info rb tree for the block group cache
178  */
179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 				       struct btrfs_block_group *block_group)
181 {
182 	struct rb_node **p;
183 	struct rb_node *parent = NULL;
184 	struct btrfs_block_group *cache;
185 	bool leftmost = true;
186 
187 	ASSERT(block_group->length != 0);
188 
189 	write_lock(&info->block_group_cache_lock);
190 	p = &info->block_group_cache_tree.rb_root.rb_node;
191 
192 	while (*p) {
193 		parent = *p;
194 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 		if (block_group->start < cache->start) {
196 			p = &(*p)->rb_left;
197 		} else if (block_group->start > cache->start) {
198 			p = &(*p)->rb_right;
199 			leftmost = false;
200 		} else {
201 			write_unlock(&info->block_group_cache_lock);
202 			return -EEXIST;
203 		}
204 	}
205 
206 	rb_link_node(&block_group->cache_node, parent, p);
207 	rb_insert_color_cached(&block_group->cache_node,
208 			       &info->block_group_cache_tree, leftmost);
209 
210 	write_unlock(&info->block_group_cache_lock);
211 
212 	return 0;
213 }
214 
215 /*
216  * This will return the block group at or after bytenr if contains is 0, else
217  * it will return the block group that contains the bytenr
218  */
219 static struct btrfs_block_group *block_group_cache_tree_search(
220 		struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 	struct btrfs_block_group *cache, *ret = NULL;
223 	struct rb_node *n;
224 	u64 end, start;
225 
226 	read_lock(&info->block_group_cache_lock);
227 	n = info->block_group_cache_tree.rb_root.rb_node;
228 
229 	while (n) {
230 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 		end = cache->start + cache->length - 1;
232 		start = cache->start;
233 
234 		if (bytenr < start) {
235 			if (!contains && (!ret || start < ret->start))
236 				ret = cache;
237 			n = n->rb_left;
238 		} else if (bytenr > start) {
239 			if (contains && bytenr <= end) {
240 				ret = cache;
241 				break;
242 			}
243 			n = n->rb_right;
244 		} else {
245 			ret = cache;
246 			break;
247 		}
248 	}
249 	if (ret)
250 		btrfs_get_block_group(ret);
251 	read_unlock(&info->block_group_cache_lock);
252 
253 	return ret;
254 }
255 
256 /*
257  * Return the block group that starts at or after bytenr
258  */
259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 		struct btrfs_fs_info *info, u64 bytenr)
261 {
262 	return block_group_cache_tree_search(info, bytenr, 0);
263 }
264 
265 /*
266  * Return the block group that contains the given bytenr
267  */
268 struct btrfs_block_group *btrfs_lookup_block_group(
269 		struct btrfs_fs_info *info, u64 bytenr)
270 {
271 	return block_group_cache_tree_search(info, bytenr, 1);
272 }
273 
274 struct btrfs_block_group *btrfs_next_block_group(
275 		struct btrfs_block_group *cache)
276 {
277 	struct btrfs_fs_info *fs_info = cache->fs_info;
278 	struct rb_node *node;
279 
280 	read_lock(&fs_info->block_group_cache_lock);
281 
282 	/* If our block group was removed, we need a full search. */
283 	if (RB_EMPTY_NODE(&cache->cache_node)) {
284 		const u64 next_bytenr = cache->start + cache->length;
285 
286 		read_unlock(&fs_info->block_group_cache_lock);
287 		btrfs_put_block_group(cache);
288 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 	}
290 	node = rb_next(&cache->cache_node);
291 	btrfs_put_block_group(cache);
292 	if (node) {
293 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 		btrfs_get_block_group(cache);
295 	} else
296 		cache = NULL;
297 	read_unlock(&fs_info->block_group_cache_lock);
298 	return cache;
299 }
300 
301 /*
302  * Check if we can do a NOCOW write for a given extent.
303  *
304  * @fs_info:       The filesystem information object.
305  * @bytenr:        Logical start address of the extent.
306  *
307  * Check if we can do a NOCOW write for the given extent, and increments the
308  * number of NOCOW writers in the block group that contains the extent, as long
309  * as the block group exists and it's currently not in read-only mode.
310  *
311  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312  *          is responsible for calling btrfs_dec_nocow_writers() later.
313  *
314  *          Or NULL if we can not do a NOCOW write
315  */
316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 						  u64 bytenr)
318 {
319 	struct btrfs_block_group *bg;
320 	bool can_nocow = true;
321 
322 	bg = btrfs_lookup_block_group(fs_info, bytenr);
323 	if (!bg)
324 		return NULL;
325 
326 	spin_lock(&bg->lock);
327 	if (bg->ro)
328 		can_nocow = false;
329 	else
330 		atomic_inc(&bg->nocow_writers);
331 	spin_unlock(&bg->lock);
332 
333 	if (!can_nocow) {
334 		btrfs_put_block_group(bg);
335 		return NULL;
336 	}
337 
338 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
339 	return bg;
340 }
341 
342 /*
343  * Decrement the number of NOCOW writers in a block group.
344  *
345  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346  * and on the block group returned by that call. Typically this is called after
347  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348  * relocation.
349  *
350  * After this call, the caller should not use the block group anymore. It it wants
351  * to use it, then it should get a reference on it before calling this function.
352  */
353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 	if (atomic_dec_and_test(&bg->nocow_writers))
356 		wake_up_var(&bg->nocow_writers);
357 
358 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 	btrfs_put_block_group(bg);
360 }
361 
362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366 
367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 					const u64 start)
369 {
370 	struct btrfs_block_group *bg;
371 
372 	bg = btrfs_lookup_block_group(fs_info, start);
373 	ASSERT(bg);
374 	if (atomic_dec_and_test(&bg->reservations))
375 		wake_up_var(&bg->reservations);
376 	btrfs_put_block_group(bg);
377 }
378 
379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 	struct btrfs_space_info *space_info = bg->space_info;
382 
383 	ASSERT(bg->ro);
384 
385 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 		return;
387 
388 	/*
389 	 * Our block group is read only but before we set it to read only,
390 	 * some task might have had allocated an extent from it already, but it
391 	 * has not yet created a respective ordered extent (and added it to a
392 	 * root's list of ordered extents).
393 	 * Therefore wait for any task currently allocating extents, since the
394 	 * block group's reservations counter is incremented while a read lock
395 	 * on the groups' semaphore is held and decremented after releasing
396 	 * the read access on that semaphore and creating the ordered extent.
397 	 */
398 	down_write(&space_info->groups_sem);
399 	up_write(&space_info->groups_sem);
400 
401 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403 
404 struct btrfs_caching_control *btrfs_get_caching_control(
405 		struct btrfs_block_group *cache)
406 {
407 	struct btrfs_caching_control *ctl;
408 
409 	spin_lock(&cache->lock);
410 	if (!cache->caching_ctl) {
411 		spin_unlock(&cache->lock);
412 		return NULL;
413 	}
414 
415 	ctl = cache->caching_ctl;
416 	refcount_inc(&ctl->count);
417 	spin_unlock(&cache->lock);
418 	return ctl;
419 }
420 
421 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 	if (refcount_dec_and_test(&ctl->count))
424 		kfree(ctl);
425 }
426 
427 /*
428  * When we wait for progress in the block group caching, its because our
429  * allocation attempt failed at least once.  So, we must sleep and let some
430  * progress happen before we try again.
431  *
432  * This function will sleep at least once waiting for new free space to show
433  * up, and then it will check the block group free space numbers for our min
434  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
435  * a free extent of a given size, but this is a good start.
436  *
437  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438  * any of the information in this block group.
439  */
440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 					   u64 num_bytes)
442 {
443 	struct btrfs_caching_control *caching_ctl;
444 	int progress;
445 
446 	caching_ctl = btrfs_get_caching_control(cache);
447 	if (!caching_ctl)
448 		return;
449 
450 	/*
451 	 * We've already failed to allocate from this block group, so even if
452 	 * there's enough space in the block group it isn't contiguous enough to
453 	 * allow for an allocation, so wait for at least the next wakeup tick,
454 	 * or for the thing to be done.
455 	 */
456 	progress = atomic_read(&caching_ctl->progress);
457 
458 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
459 		   (progress != atomic_read(&caching_ctl->progress) &&
460 		    (cache->free_space_ctl->free_space >= num_bytes)));
461 
462 	btrfs_put_caching_control(caching_ctl);
463 }
464 
465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466 				       struct btrfs_caching_control *caching_ctl)
467 {
468 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470 }
471 
472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
473 {
474 	struct btrfs_caching_control *caching_ctl;
475 	int ret;
476 
477 	caching_ctl = btrfs_get_caching_control(cache);
478 	if (!caching_ctl)
479 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
480 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
481 	btrfs_put_caching_control(caching_ctl);
482 	return ret;
483 }
484 
485 #ifdef CONFIG_BTRFS_DEBUG
486 static void fragment_free_space(struct btrfs_block_group *block_group)
487 {
488 	struct btrfs_fs_info *fs_info = block_group->fs_info;
489 	u64 start = block_group->start;
490 	u64 len = block_group->length;
491 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492 		fs_info->nodesize : fs_info->sectorsize;
493 	u64 step = chunk << 1;
494 
495 	while (len > chunk) {
496 		btrfs_remove_free_space(block_group, start, chunk);
497 		start += step;
498 		if (len < step)
499 			len = 0;
500 		else
501 			len -= step;
502 	}
503 }
504 #endif
505 
506 /*
507  * Add a free space range to the in memory free space cache of a block group.
508  * This checks if the range contains super block locations and any such
509  * locations are not added to the free space cache.
510  *
511  * @block_group:      The target block group.
512  * @start:            Start offset of the range.
513  * @end:              End offset of the range (exclusive).
514  * @total_added_ret:  Optional pointer to return the total amount of space
515  *                    added to the block group's free space cache.
516  *
517  * Returns 0 on success or < 0 on error.
518  */
519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
520 			     u64 end, u64 *total_added_ret)
521 {
522 	struct btrfs_fs_info *info = block_group->fs_info;
523 	u64 extent_start, extent_end, size;
524 	int ret;
525 
526 	if (total_added_ret)
527 		*total_added_ret = 0;
528 
529 	while (start < end) {
530 		if (!find_first_extent_bit(&info->excluded_extents, start,
531 					   &extent_start, &extent_end,
532 					   EXTENT_DIRTY | EXTENT_UPTODATE,
533 					   NULL))
534 			break;
535 
536 		if (extent_start <= start) {
537 			start = extent_end + 1;
538 		} else if (extent_start > start && extent_start < end) {
539 			size = extent_start - start;
540 			ret = btrfs_add_free_space_async_trimmed(block_group,
541 								 start, size);
542 			if (ret)
543 				return ret;
544 			if (total_added_ret)
545 				*total_added_ret += size;
546 			start = extent_end + 1;
547 		} else {
548 			break;
549 		}
550 	}
551 
552 	if (start < end) {
553 		size = end - start;
554 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
555 							 size);
556 		if (ret)
557 			return ret;
558 		if (total_added_ret)
559 			*total_added_ret += size;
560 	}
561 
562 	return 0;
563 }
564 
565 /*
566  * Get an arbitrary extent item index / max_index through the block group
567  *
568  * @block_group   the block group to sample from
569  * @index:        the integral step through the block group to grab from
570  * @max_index:    the granularity of the sampling
571  * @key:          return value parameter for the item we find
572  *
573  * Pre-conditions on indices:
574  * 0 <= index <= max_index
575  * 0 < max_index
576  *
577  * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578  * error code on error.
579  */
580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
581 					  struct btrfs_block_group *block_group,
582 					  int index, int max_index,
583 					  struct btrfs_key *found_key)
584 {
585 	struct btrfs_fs_info *fs_info = block_group->fs_info;
586 	struct btrfs_root *extent_root;
587 	u64 search_offset;
588 	u64 search_end = block_group->start + block_group->length;
589 	struct btrfs_path *path;
590 	struct btrfs_key search_key;
591 	int ret = 0;
592 
593 	ASSERT(index >= 0);
594 	ASSERT(index <= max_index);
595 	ASSERT(max_index > 0);
596 	lockdep_assert_held(&caching_ctl->mutex);
597 	lockdep_assert_held_read(&fs_info->commit_root_sem);
598 
599 	path = btrfs_alloc_path();
600 	if (!path)
601 		return -ENOMEM;
602 
603 	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
604 						       BTRFS_SUPER_INFO_OFFSET));
605 
606 	path->skip_locking = 1;
607 	path->search_commit_root = 1;
608 	path->reada = READA_FORWARD;
609 
610 	search_offset = index * div_u64(block_group->length, max_index);
611 	search_key.objectid = block_group->start + search_offset;
612 	search_key.type = BTRFS_EXTENT_ITEM_KEY;
613 	search_key.offset = 0;
614 
615 	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
616 		/* Success; sampled an extent item in the block group */
617 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
618 		    found_key->objectid >= block_group->start &&
619 		    found_key->objectid + found_key->offset <= search_end)
620 			break;
621 
622 		/* We can't possibly find a valid extent item anymore */
623 		if (found_key->objectid >= search_end) {
624 			ret = 1;
625 			break;
626 		}
627 	}
628 
629 	lockdep_assert_held(&caching_ctl->mutex);
630 	lockdep_assert_held_read(&fs_info->commit_root_sem);
631 	btrfs_free_path(path);
632 	return ret;
633 }
634 
635 /*
636  * Best effort attempt to compute a block group's size class while caching it.
637  *
638  * @block_group: the block group we are caching
639  *
640  * We cannot infer the size class while adding free space extents, because that
641  * logic doesn't care about contiguous file extents (it doesn't differentiate
642  * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643  * file extent items. Reading all of them is quite wasteful, because usually
644  * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645  * them at even steps through the block group and pick the smallest size class
646  * we see. Since size class is best effort, and not guaranteed in general,
647  * inaccuracy is acceptable.
648  *
649  * To be more explicit about why this algorithm makes sense:
650  *
651  * If we are caching in a block group from disk, then there are three major cases
652  * to consider:
653  * 1. the block group is well behaved and all extents in it are the same size
654  *    class.
655  * 2. the block group is mostly one size class with rare exceptions for last
656  *    ditch allocations
657  * 3. the block group was populated before size classes and can have a totally
658  *    arbitrary mix of size classes.
659  *
660  * In case 1, looking at any extent in the block group will yield the correct
661  * result. For the mixed cases, taking the minimum size class seems like a good
662  * approximation, since gaps from frees will be usable to the size class. For
663  * 2., a small handful of file extents is likely to yield the right answer. For
664  * 3, we can either read every file extent, or admit that this is best effort
665  * anyway and try to stay fast.
666  *
667  * Returns: 0 on success, negative error code on error.
668  */
669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
670 				       struct btrfs_block_group *block_group)
671 {
672 	struct btrfs_fs_info *fs_info = block_group->fs_info;
673 	struct btrfs_key key;
674 	int i;
675 	u64 min_size = block_group->length;
676 	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
677 	int ret;
678 
679 	if (!btrfs_block_group_should_use_size_class(block_group))
680 		return 0;
681 
682 	lockdep_assert_held(&caching_ctl->mutex);
683 	lockdep_assert_held_read(&fs_info->commit_root_sem);
684 	for (i = 0; i < 5; ++i) {
685 		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
686 		if (ret < 0)
687 			goto out;
688 		if (ret > 0)
689 			continue;
690 		min_size = min_t(u64, min_size, key.offset);
691 		size_class = btrfs_calc_block_group_size_class(min_size);
692 	}
693 	if (size_class != BTRFS_BG_SZ_NONE) {
694 		spin_lock(&block_group->lock);
695 		block_group->size_class = size_class;
696 		spin_unlock(&block_group->lock);
697 	}
698 out:
699 	return ret;
700 }
701 
702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
703 {
704 	struct btrfs_block_group *block_group = caching_ctl->block_group;
705 	struct btrfs_fs_info *fs_info = block_group->fs_info;
706 	struct btrfs_root *extent_root;
707 	struct btrfs_path *path;
708 	struct extent_buffer *leaf;
709 	struct btrfs_key key;
710 	u64 total_found = 0;
711 	u64 last = 0;
712 	u32 nritems;
713 	int ret;
714 	bool wakeup = true;
715 
716 	path = btrfs_alloc_path();
717 	if (!path)
718 		return -ENOMEM;
719 
720 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
721 	extent_root = btrfs_extent_root(fs_info, last);
722 
723 #ifdef CONFIG_BTRFS_DEBUG
724 	/*
725 	 * If we're fragmenting we don't want to make anybody think we can
726 	 * allocate from this block group until we've had a chance to fragment
727 	 * the free space.
728 	 */
729 	if (btrfs_should_fragment_free_space(block_group))
730 		wakeup = false;
731 #endif
732 	/*
733 	 * We don't want to deadlock with somebody trying to allocate a new
734 	 * extent for the extent root while also trying to search the extent
735 	 * root to add free space.  So we skip locking and search the commit
736 	 * root, since its read-only
737 	 */
738 	path->skip_locking = 1;
739 	path->search_commit_root = 1;
740 	path->reada = READA_FORWARD;
741 
742 	key.objectid = last;
743 	key.offset = 0;
744 	key.type = BTRFS_EXTENT_ITEM_KEY;
745 
746 next:
747 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
748 	if (ret < 0)
749 		goto out;
750 
751 	leaf = path->nodes[0];
752 	nritems = btrfs_header_nritems(leaf);
753 
754 	while (1) {
755 		if (btrfs_fs_closing(fs_info) > 1) {
756 			last = (u64)-1;
757 			break;
758 		}
759 
760 		if (path->slots[0] < nritems) {
761 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762 		} else {
763 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
764 			if (ret)
765 				break;
766 
767 			if (need_resched() ||
768 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
769 				btrfs_release_path(path);
770 				up_read(&fs_info->commit_root_sem);
771 				mutex_unlock(&caching_ctl->mutex);
772 				cond_resched();
773 				mutex_lock(&caching_ctl->mutex);
774 				down_read(&fs_info->commit_root_sem);
775 				goto next;
776 			}
777 
778 			ret = btrfs_next_leaf(extent_root, path);
779 			if (ret < 0)
780 				goto out;
781 			if (ret)
782 				break;
783 			leaf = path->nodes[0];
784 			nritems = btrfs_header_nritems(leaf);
785 			continue;
786 		}
787 
788 		if (key.objectid < last) {
789 			key.objectid = last;
790 			key.offset = 0;
791 			key.type = BTRFS_EXTENT_ITEM_KEY;
792 			btrfs_release_path(path);
793 			goto next;
794 		}
795 
796 		if (key.objectid < block_group->start) {
797 			path->slots[0]++;
798 			continue;
799 		}
800 
801 		if (key.objectid >= block_group->start + block_group->length)
802 			break;
803 
804 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
805 		    key.type == BTRFS_METADATA_ITEM_KEY) {
806 			u64 space_added;
807 
808 			ret = btrfs_add_new_free_space(block_group, last,
809 						       key.objectid, &space_added);
810 			if (ret)
811 				goto out;
812 			total_found += space_added;
813 			if (key.type == BTRFS_METADATA_ITEM_KEY)
814 				last = key.objectid +
815 					fs_info->nodesize;
816 			else
817 				last = key.objectid + key.offset;
818 
819 			if (total_found > CACHING_CTL_WAKE_UP) {
820 				total_found = 0;
821 				if (wakeup) {
822 					atomic_inc(&caching_ctl->progress);
823 					wake_up(&caching_ctl->wait);
824 				}
825 			}
826 		}
827 		path->slots[0]++;
828 	}
829 
830 	ret = btrfs_add_new_free_space(block_group, last,
831 				       block_group->start + block_group->length,
832 				       NULL);
833 out:
834 	btrfs_free_path(path);
835 	return ret;
836 }
837 
838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
839 {
840 	clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
841 			  bg->start + bg->length - 1, EXTENT_UPTODATE);
842 }
843 
844 static noinline void caching_thread(struct btrfs_work *work)
845 {
846 	struct btrfs_block_group *block_group;
847 	struct btrfs_fs_info *fs_info;
848 	struct btrfs_caching_control *caching_ctl;
849 	int ret;
850 
851 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
852 	block_group = caching_ctl->block_group;
853 	fs_info = block_group->fs_info;
854 
855 	mutex_lock(&caching_ctl->mutex);
856 	down_read(&fs_info->commit_root_sem);
857 
858 	load_block_group_size_class(caching_ctl, block_group);
859 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
860 		ret = load_free_space_cache(block_group);
861 		if (ret == 1) {
862 			ret = 0;
863 			goto done;
864 		}
865 
866 		/*
867 		 * We failed to load the space cache, set ourselves to
868 		 * CACHE_STARTED and carry on.
869 		 */
870 		spin_lock(&block_group->lock);
871 		block_group->cached = BTRFS_CACHE_STARTED;
872 		spin_unlock(&block_group->lock);
873 		wake_up(&caching_ctl->wait);
874 	}
875 
876 	/*
877 	 * If we are in the transaction that populated the free space tree we
878 	 * can't actually cache from the free space tree as our commit root and
879 	 * real root are the same, so we could change the contents of the blocks
880 	 * while caching.  Instead do the slow caching in this case, and after
881 	 * the transaction has committed we will be safe.
882 	 */
883 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
884 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
885 		ret = load_free_space_tree(caching_ctl);
886 	else
887 		ret = load_extent_tree_free(caching_ctl);
888 done:
889 	spin_lock(&block_group->lock);
890 	block_group->caching_ctl = NULL;
891 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
892 	spin_unlock(&block_group->lock);
893 
894 #ifdef CONFIG_BTRFS_DEBUG
895 	if (btrfs_should_fragment_free_space(block_group)) {
896 		u64 bytes_used;
897 
898 		spin_lock(&block_group->space_info->lock);
899 		spin_lock(&block_group->lock);
900 		bytes_used = block_group->length - block_group->used;
901 		block_group->space_info->bytes_used += bytes_used >> 1;
902 		spin_unlock(&block_group->lock);
903 		spin_unlock(&block_group->space_info->lock);
904 		fragment_free_space(block_group);
905 	}
906 #endif
907 
908 	up_read(&fs_info->commit_root_sem);
909 	btrfs_free_excluded_extents(block_group);
910 	mutex_unlock(&caching_ctl->mutex);
911 
912 	wake_up(&caching_ctl->wait);
913 
914 	btrfs_put_caching_control(caching_ctl);
915 	btrfs_put_block_group(block_group);
916 }
917 
918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
919 {
920 	struct btrfs_fs_info *fs_info = cache->fs_info;
921 	struct btrfs_caching_control *caching_ctl = NULL;
922 	int ret = 0;
923 
924 	/* Allocator for zoned filesystems does not use the cache at all */
925 	if (btrfs_is_zoned(fs_info))
926 		return 0;
927 
928 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
929 	if (!caching_ctl)
930 		return -ENOMEM;
931 
932 	INIT_LIST_HEAD(&caching_ctl->list);
933 	mutex_init(&caching_ctl->mutex);
934 	init_waitqueue_head(&caching_ctl->wait);
935 	caching_ctl->block_group = cache;
936 	refcount_set(&caching_ctl->count, 2);
937 	atomic_set(&caching_ctl->progress, 0);
938 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
939 
940 	spin_lock(&cache->lock);
941 	if (cache->cached != BTRFS_CACHE_NO) {
942 		kfree(caching_ctl);
943 
944 		caching_ctl = cache->caching_ctl;
945 		if (caching_ctl)
946 			refcount_inc(&caching_ctl->count);
947 		spin_unlock(&cache->lock);
948 		goto out;
949 	}
950 	WARN_ON(cache->caching_ctl);
951 	cache->caching_ctl = caching_ctl;
952 	cache->cached = BTRFS_CACHE_STARTED;
953 	spin_unlock(&cache->lock);
954 
955 	write_lock(&fs_info->block_group_cache_lock);
956 	refcount_inc(&caching_ctl->count);
957 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
958 	write_unlock(&fs_info->block_group_cache_lock);
959 
960 	btrfs_get_block_group(cache);
961 
962 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
963 out:
964 	if (wait && caching_ctl)
965 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
966 	if (caching_ctl)
967 		btrfs_put_caching_control(caching_ctl);
968 
969 	return ret;
970 }
971 
972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
973 {
974 	u64 extra_flags = chunk_to_extended(flags) &
975 				BTRFS_EXTENDED_PROFILE_MASK;
976 
977 	write_seqlock(&fs_info->profiles_lock);
978 	if (flags & BTRFS_BLOCK_GROUP_DATA)
979 		fs_info->avail_data_alloc_bits &= ~extra_flags;
980 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
981 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
982 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
983 		fs_info->avail_system_alloc_bits &= ~extra_flags;
984 	write_sequnlock(&fs_info->profiles_lock);
985 }
986 
987 /*
988  * Clear incompat bits for the following feature(s):
989  *
990  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991  *            in the whole filesystem
992  *
993  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
994  */
995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
996 {
997 	bool found_raid56 = false;
998 	bool found_raid1c34 = false;
999 
1000 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1003 		struct list_head *head = &fs_info->space_info;
1004 		struct btrfs_space_info *sinfo;
1005 
1006 		list_for_each_entry_rcu(sinfo, head, list) {
1007 			down_read(&sinfo->groups_sem);
1008 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1009 				found_raid56 = true;
1010 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1011 				found_raid56 = true;
1012 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013 				found_raid1c34 = true;
1014 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015 				found_raid1c34 = true;
1016 			up_read(&sinfo->groups_sem);
1017 		}
1018 		if (!found_raid56)
1019 			btrfs_clear_fs_incompat(fs_info, RAID56);
1020 		if (!found_raid1c34)
1021 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
1022 	}
1023 }
1024 
1025 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1026 {
1027 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1028 		return fs_info->block_group_root;
1029 	return btrfs_extent_root(fs_info, 0);
1030 }
1031 
1032 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1033 				   struct btrfs_path *path,
1034 				   struct btrfs_block_group *block_group)
1035 {
1036 	struct btrfs_fs_info *fs_info = trans->fs_info;
1037 	struct btrfs_root *root;
1038 	struct btrfs_key key;
1039 	int ret;
1040 
1041 	root = btrfs_block_group_root(fs_info);
1042 	key.objectid = block_group->start;
1043 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1044 	key.offset = block_group->length;
1045 
1046 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1047 	if (ret > 0)
1048 		ret = -ENOENT;
1049 	if (ret < 0)
1050 		return ret;
1051 
1052 	ret = btrfs_del_item(trans, root, path);
1053 	return ret;
1054 }
1055 
1056 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1057 			     struct btrfs_chunk_map *map)
1058 {
1059 	struct btrfs_fs_info *fs_info = trans->fs_info;
1060 	struct btrfs_path *path;
1061 	struct btrfs_block_group *block_group;
1062 	struct btrfs_free_cluster *cluster;
1063 	struct inode *inode;
1064 	struct kobject *kobj = NULL;
1065 	int ret;
1066 	int index;
1067 	int factor;
1068 	struct btrfs_caching_control *caching_ctl = NULL;
1069 	bool remove_map;
1070 	bool remove_rsv = false;
1071 
1072 	block_group = btrfs_lookup_block_group(fs_info, map->start);
1073 	if (!block_group)
1074 		return -ENOENT;
1075 
1076 	BUG_ON(!block_group->ro);
1077 
1078 	trace_btrfs_remove_block_group(block_group);
1079 	/*
1080 	 * Free the reserved super bytes from this block group before
1081 	 * remove it.
1082 	 */
1083 	btrfs_free_excluded_extents(block_group);
1084 	btrfs_free_ref_tree_range(fs_info, block_group->start,
1085 				  block_group->length);
1086 
1087 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1088 	factor = btrfs_bg_type_to_factor(block_group->flags);
1089 
1090 	/* make sure this block group isn't part of an allocation cluster */
1091 	cluster = &fs_info->data_alloc_cluster;
1092 	spin_lock(&cluster->refill_lock);
1093 	btrfs_return_cluster_to_free_space(block_group, cluster);
1094 	spin_unlock(&cluster->refill_lock);
1095 
1096 	/*
1097 	 * make sure this block group isn't part of a metadata
1098 	 * allocation cluster
1099 	 */
1100 	cluster = &fs_info->meta_alloc_cluster;
1101 	spin_lock(&cluster->refill_lock);
1102 	btrfs_return_cluster_to_free_space(block_group, cluster);
1103 	spin_unlock(&cluster->refill_lock);
1104 
1105 	btrfs_clear_treelog_bg(block_group);
1106 	btrfs_clear_data_reloc_bg(block_group);
1107 
1108 	path = btrfs_alloc_path();
1109 	if (!path) {
1110 		ret = -ENOMEM;
1111 		goto out;
1112 	}
1113 
1114 	/*
1115 	 * get the inode first so any iput calls done for the io_list
1116 	 * aren't the final iput (no unlinks allowed now)
1117 	 */
1118 	inode = lookup_free_space_inode(block_group, path);
1119 
1120 	mutex_lock(&trans->transaction->cache_write_mutex);
1121 	/*
1122 	 * Make sure our free space cache IO is done before removing the
1123 	 * free space inode
1124 	 */
1125 	spin_lock(&trans->transaction->dirty_bgs_lock);
1126 	if (!list_empty(&block_group->io_list)) {
1127 		list_del_init(&block_group->io_list);
1128 
1129 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1130 
1131 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1132 		btrfs_wait_cache_io(trans, block_group, path);
1133 		btrfs_put_block_group(block_group);
1134 		spin_lock(&trans->transaction->dirty_bgs_lock);
1135 	}
1136 
1137 	if (!list_empty(&block_group->dirty_list)) {
1138 		list_del_init(&block_group->dirty_list);
1139 		remove_rsv = true;
1140 		btrfs_put_block_group(block_group);
1141 	}
1142 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1143 	mutex_unlock(&trans->transaction->cache_write_mutex);
1144 
1145 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1146 	if (ret)
1147 		goto out;
1148 
1149 	write_lock(&fs_info->block_group_cache_lock);
1150 	rb_erase_cached(&block_group->cache_node,
1151 			&fs_info->block_group_cache_tree);
1152 	RB_CLEAR_NODE(&block_group->cache_node);
1153 
1154 	/* Once for the block groups rbtree */
1155 	btrfs_put_block_group(block_group);
1156 
1157 	write_unlock(&fs_info->block_group_cache_lock);
1158 
1159 	down_write(&block_group->space_info->groups_sem);
1160 	/*
1161 	 * we must use list_del_init so people can check to see if they
1162 	 * are still on the list after taking the semaphore
1163 	 */
1164 	list_del_init(&block_group->list);
1165 	if (list_empty(&block_group->space_info->block_groups[index])) {
1166 		kobj = block_group->space_info->block_group_kobjs[index];
1167 		block_group->space_info->block_group_kobjs[index] = NULL;
1168 		clear_avail_alloc_bits(fs_info, block_group->flags);
1169 	}
1170 	up_write(&block_group->space_info->groups_sem);
1171 	clear_incompat_bg_bits(fs_info, block_group->flags);
1172 	if (kobj) {
1173 		kobject_del(kobj);
1174 		kobject_put(kobj);
1175 	}
1176 
1177 	if (block_group->cached == BTRFS_CACHE_STARTED)
1178 		btrfs_wait_block_group_cache_done(block_group);
1179 
1180 	write_lock(&fs_info->block_group_cache_lock);
1181 	caching_ctl = btrfs_get_caching_control(block_group);
1182 	if (!caching_ctl) {
1183 		struct btrfs_caching_control *ctl;
1184 
1185 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1186 			if (ctl->block_group == block_group) {
1187 				caching_ctl = ctl;
1188 				refcount_inc(&caching_ctl->count);
1189 				break;
1190 			}
1191 		}
1192 	}
1193 	if (caching_ctl)
1194 		list_del_init(&caching_ctl->list);
1195 	write_unlock(&fs_info->block_group_cache_lock);
1196 
1197 	if (caching_ctl) {
1198 		/* Once for the caching bgs list and once for us. */
1199 		btrfs_put_caching_control(caching_ctl);
1200 		btrfs_put_caching_control(caching_ctl);
1201 	}
1202 
1203 	spin_lock(&trans->transaction->dirty_bgs_lock);
1204 	WARN_ON(!list_empty(&block_group->dirty_list));
1205 	WARN_ON(!list_empty(&block_group->io_list));
1206 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1207 
1208 	btrfs_remove_free_space_cache(block_group);
1209 
1210 	spin_lock(&block_group->space_info->lock);
1211 	list_del_init(&block_group->ro_list);
1212 
1213 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1214 		WARN_ON(block_group->space_info->total_bytes
1215 			< block_group->length);
1216 		WARN_ON(block_group->space_info->bytes_readonly
1217 			< block_group->length - block_group->zone_unusable);
1218 		WARN_ON(block_group->space_info->bytes_zone_unusable
1219 			< block_group->zone_unusable);
1220 		WARN_ON(block_group->space_info->disk_total
1221 			< block_group->length * factor);
1222 	}
1223 	block_group->space_info->total_bytes -= block_group->length;
1224 	block_group->space_info->bytes_readonly -=
1225 		(block_group->length - block_group->zone_unusable);
1226 	btrfs_space_info_update_bytes_zone_unusable(fs_info, block_group->space_info,
1227 						    -block_group->zone_unusable);
1228 	block_group->space_info->disk_total -= block_group->length * factor;
1229 
1230 	spin_unlock(&block_group->space_info->lock);
1231 
1232 	/*
1233 	 * Remove the free space for the block group from the free space tree
1234 	 * and the block group's item from the extent tree before marking the
1235 	 * block group as removed. This is to prevent races with tasks that
1236 	 * freeze and unfreeze a block group, this task and another task
1237 	 * allocating a new block group - the unfreeze task ends up removing
1238 	 * the block group's extent map before the task calling this function
1239 	 * deletes the block group item from the extent tree, allowing for
1240 	 * another task to attempt to create another block group with the same
1241 	 * item key (and failing with -EEXIST and a transaction abort).
1242 	 */
1243 	ret = remove_block_group_free_space(trans, block_group);
1244 	if (ret)
1245 		goto out;
1246 
1247 	ret = remove_block_group_item(trans, path, block_group);
1248 	if (ret < 0)
1249 		goto out;
1250 
1251 	spin_lock(&block_group->lock);
1252 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1253 
1254 	/*
1255 	 * At this point trimming or scrub can't start on this block group,
1256 	 * because we removed the block group from the rbtree
1257 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1258 	 * even if someone already got this block group before we removed it
1259 	 * from the rbtree, they have already incremented block_group->frozen -
1260 	 * if they didn't, for the trimming case they won't find any free space
1261 	 * entries because we already removed them all when we called
1262 	 * btrfs_remove_free_space_cache().
1263 	 *
1264 	 * And we must not remove the chunk map from the fs_info->mapping_tree
1265 	 * to prevent the same logical address range and physical device space
1266 	 * ranges from being reused for a new block group. This is needed to
1267 	 * avoid races with trimming and scrub.
1268 	 *
1269 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1270 	 * completely transactionless, so while it is trimming a range the
1271 	 * currently running transaction might finish and a new one start,
1272 	 * allowing for new block groups to be created that can reuse the same
1273 	 * physical device locations unless we take this special care.
1274 	 *
1275 	 * There may also be an implicit trim operation if the file system
1276 	 * is mounted with -odiscard. The same protections must remain
1277 	 * in place until the extents have been discarded completely when
1278 	 * the transaction commit has completed.
1279 	 */
1280 	remove_map = (atomic_read(&block_group->frozen) == 0);
1281 	spin_unlock(&block_group->lock);
1282 
1283 	if (remove_map)
1284 		btrfs_remove_chunk_map(fs_info, map);
1285 
1286 out:
1287 	/* Once for the lookup reference */
1288 	btrfs_put_block_group(block_group);
1289 	if (remove_rsv)
1290 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1291 	btrfs_free_path(path);
1292 	return ret;
1293 }
1294 
1295 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1296 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1297 {
1298 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1299 	struct btrfs_chunk_map *map;
1300 	unsigned int num_items;
1301 
1302 	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1303 	ASSERT(map != NULL);
1304 	ASSERT(map->start == chunk_offset);
1305 
1306 	/*
1307 	 * We need to reserve 3 + N units from the metadata space info in order
1308 	 * to remove a block group (done at btrfs_remove_chunk() and at
1309 	 * btrfs_remove_block_group()), which are used for:
1310 	 *
1311 	 * 1 unit for adding the free space inode's orphan (located in the tree
1312 	 * of tree roots).
1313 	 * 1 unit for deleting the block group item (located in the extent
1314 	 * tree).
1315 	 * 1 unit for deleting the free space item (located in tree of tree
1316 	 * roots).
1317 	 * N units for deleting N device extent items corresponding to each
1318 	 * stripe (located in the device tree).
1319 	 *
1320 	 * In order to remove a block group we also need to reserve units in the
1321 	 * system space info in order to update the chunk tree (update one or
1322 	 * more device items and remove one chunk item), but this is done at
1323 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1324 	 */
1325 	num_items = 3 + map->num_stripes;
1326 	btrfs_free_chunk_map(map);
1327 
1328 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1329 }
1330 
1331 /*
1332  * Mark block group @cache read-only, so later write won't happen to block
1333  * group @cache.
1334  *
1335  * If @force is not set, this function will only mark the block group readonly
1336  * if we have enough free space (1M) in other metadata/system block groups.
1337  * If @force is not set, this function will mark the block group readonly
1338  * without checking free space.
1339  *
1340  * NOTE: This function doesn't care if other block groups can contain all the
1341  * data in this block group. That check should be done by relocation routine,
1342  * not this function.
1343  */
1344 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1345 {
1346 	struct btrfs_space_info *sinfo = cache->space_info;
1347 	u64 num_bytes;
1348 	int ret = -ENOSPC;
1349 
1350 	spin_lock(&sinfo->lock);
1351 	spin_lock(&cache->lock);
1352 
1353 	if (cache->swap_extents) {
1354 		ret = -ETXTBSY;
1355 		goto out;
1356 	}
1357 
1358 	if (cache->ro) {
1359 		cache->ro++;
1360 		ret = 0;
1361 		goto out;
1362 	}
1363 
1364 	num_bytes = cache->length - cache->reserved - cache->pinned -
1365 		    cache->bytes_super - cache->zone_unusable - cache->used;
1366 
1367 	/*
1368 	 * Data never overcommits, even in mixed mode, so do just the straight
1369 	 * check of left over space in how much we have allocated.
1370 	 */
1371 	if (force) {
1372 		ret = 0;
1373 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1374 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1375 
1376 		/*
1377 		 * Here we make sure if we mark this bg RO, we still have enough
1378 		 * free space as buffer.
1379 		 */
1380 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1381 			ret = 0;
1382 	} else {
1383 		/*
1384 		 * We overcommit metadata, so we need to do the
1385 		 * btrfs_can_overcommit check here, and we need to pass in
1386 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1387 		 * leeway to allow us to mark this block group as read only.
1388 		 */
1389 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1390 					 BTRFS_RESERVE_NO_FLUSH))
1391 			ret = 0;
1392 	}
1393 
1394 	if (!ret) {
1395 		sinfo->bytes_readonly += num_bytes;
1396 		if (btrfs_is_zoned(cache->fs_info)) {
1397 			/* Migrate zone_unusable bytes to readonly */
1398 			sinfo->bytes_readonly += cache->zone_unusable;
1399 			btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
1400 								    -cache->zone_unusable);
1401 			cache->zone_unusable = 0;
1402 		}
1403 		cache->ro++;
1404 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1405 	}
1406 out:
1407 	spin_unlock(&cache->lock);
1408 	spin_unlock(&sinfo->lock);
1409 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1410 		btrfs_info(cache->fs_info,
1411 			"unable to make block group %llu ro", cache->start);
1412 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1413 	}
1414 	return ret;
1415 }
1416 
1417 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1418 				 const struct btrfs_block_group *bg)
1419 {
1420 	struct btrfs_fs_info *fs_info = trans->fs_info;
1421 	struct btrfs_transaction *prev_trans = NULL;
1422 	const u64 start = bg->start;
1423 	const u64 end = start + bg->length - 1;
1424 	int ret;
1425 
1426 	spin_lock(&fs_info->trans_lock);
1427 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1428 		prev_trans = list_last_entry(&trans->transaction->list,
1429 					     struct btrfs_transaction, list);
1430 		refcount_inc(&prev_trans->use_count);
1431 	}
1432 	spin_unlock(&fs_info->trans_lock);
1433 
1434 	/*
1435 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1436 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1437 	 * task might be running finish_extent_commit() for the previous
1438 	 * transaction N - 1, and have seen a range belonging to the block
1439 	 * group in pinned_extents before we were able to clear the whole block
1440 	 * group range from pinned_extents. This means that task can lookup for
1441 	 * the block group after we unpinned it from pinned_extents and removed
1442 	 * it, leading to an error at unpin_extent_range().
1443 	 */
1444 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1445 	if (prev_trans) {
1446 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1447 					EXTENT_DIRTY);
1448 		if (ret)
1449 			goto out;
1450 	}
1451 
1452 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1453 				EXTENT_DIRTY);
1454 out:
1455 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1456 	if (prev_trans)
1457 		btrfs_put_transaction(prev_trans);
1458 
1459 	return ret == 0;
1460 }
1461 
1462 /*
1463  * Process the unused_bgs list and remove any that don't have any allocated
1464  * space inside of them.
1465  */
1466 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1467 {
1468 	LIST_HEAD(retry_list);
1469 	struct btrfs_block_group *block_group;
1470 	struct btrfs_space_info *space_info;
1471 	struct btrfs_trans_handle *trans;
1472 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1473 	int ret = 0;
1474 
1475 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1476 		return;
1477 
1478 	if (btrfs_fs_closing(fs_info))
1479 		return;
1480 
1481 	/*
1482 	 * Long running balances can keep us blocked here for eternity, so
1483 	 * simply skip deletion if we're unable to get the mutex.
1484 	 */
1485 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1486 		return;
1487 
1488 	spin_lock(&fs_info->unused_bgs_lock);
1489 	while (!list_empty(&fs_info->unused_bgs)) {
1490 		u64 used;
1491 		int trimming;
1492 
1493 		block_group = list_first_entry(&fs_info->unused_bgs,
1494 					       struct btrfs_block_group,
1495 					       bg_list);
1496 		list_del_init(&block_group->bg_list);
1497 
1498 		space_info = block_group->space_info;
1499 
1500 		if (ret || btrfs_mixed_space_info(space_info)) {
1501 			btrfs_put_block_group(block_group);
1502 			continue;
1503 		}
1504 		spin_unlock(&fs_info->unused_bgs_lock);
1505 
1506 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1507 
1508 		/* Don't want to race with allocators so take the groups_sem */
1509 		down_write(&space_info->groups_sem);
1510 
1511 		/*
1512 		 * Async discard moves the final block group discard to be prior
1513 		 * to the unused_bgs code path.  Therefore, if it's not fully
1514 		 * trimmed, punt it back to the async discard lists.
1515 		 */
1516 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1517 		    !btrfs_is_free_space_trimmed(block_group)) {
1518 			trace_btrfs_skip_unused_block_group(block_group);
1519 			up_write(&space_info->groups_sem);
1520 			/* Requeue if we failed because of async discard */
1521 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1522 						 block_group);
1523 			goto next;
1524 		}
1525 
1526 		spin_lock(&space_info->lock);
1527 		spin_lock(&block_group->lock);
1528 		if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1529 		    list_is_singular(&block_group->list)) {
1530 			/*
1531 			 * We want to bail if we made new allocations or have
1532 			 * outstanding allocations in this block group.  We do
1533 			 * the ro check in case balance is currently acting on
1534 			 * this block group.
1535 			 *
1536 			 * Also bail out if this is the only block group for its
1537 			 * type, because otherwise we would lose profile
1538 			 * information from fs_info->avail_*_alloc_bits and the
1539 			 * next block group of this type would be created with a
1540 			 * "single" profile (even if we're in a raid fs) because
1541 			 * fs_info->avail_*_alloc_bits would be 0.
1542 			 */
1543 			trace_btrfs_skip_unused_block_group(block_group);
1544 			spin_unlock(&block_group->lock);
1545 			spin_unlock(&space_info->lock);
1546 			up_write(&space_info->groups_sem);
1547 			goto next;
1548 		}
1549 
1550 		/*
1551 		 * The block group may be unused but there may be space reserved
1552 		 * accounting with the existence of that block group, that is,
1553 		 * space_info->bytes_may_use was incremented by a task but no
1554 		 * space was yet allocated from the block group by the task.
1555 		 * That space may or may not be allocated, as we are generally
1556 		 * pessimistic about space reservation for metadata as well as
1557 		 * for data when using compression (as we reserve space based on
1558 		 * the worst case, when data can't be compressed, and before
1559 		 * actually attempting compression, before starting writeback).
1560 		 *
1561 		 * So check if the total space of the space_info minus the size
1562 		 * of this block group is less than the used space of the
1563 		 * space_info - if that's the case, then it means we have tasks
1564 		 * that might be relying on the block group in order to allocate
1565 		 * extents, and add back the block group to the unused list when
1566 		 * we finish, so that we retry later in case no tasks ended up
1567 		 * needing to allocate extents from the block group.
1568 		 */
1569 		used = btrfs_space_info_used(space_info, true);
1570 		if (space_info->total_bytes - block_group->length < used &&
1571 		    block_group->zone_unusable < block_group->length) {
1572 			/*
1573 			 * Add a reference for the list, compensate for the ref
1574 			 * drop under the "next" label for the
1575 			 * fs_info->unused_bgs list.
1576 			 */
1577 			btrfs_get_block_group(block_group);
1578 			list_add_tail(&block_group->bg_list, &retry_list);
1579 
1580 			trace_btrfs_skip_unused_block_group(block_group);
1581 			spin_unlock(&block_group->lock);
1582 			spin_unlock(&space_info->lock);
1583 			up_write(&space_info->groups_sem);
1584 			goto next;
1585 		}
1586 
1587 		spin_unlock(&block_group->lock);
1588 		spin_unlock(&space_info->lock);
1589 
1590 		/* We don't want to force the issue, only flip if it's ok. */
1591 		ret = inc_block_group_ro(block_group, 0);
1592 		up_write(&space_info->groups_sem);
1593 		if (ret < 0) {
1594 			ret = 0;
1595 			goto next;
1596 		}
1597 
1598 		ret = btrfs_zone_finish(block_group);
1599 		if (ret < 0) {
1600 			btrfs_dec_block_group_ro(block_group);
1601 			if (ret == -EAGAIN)
1602 				ret = 0;
1603 			goto next;
1604 		}
1605 
1606 		/*
1607 		 * Want to do this before we do anything else so we can recover
1608 		 * properly if we fail to join the transaction.
1609 		 */
1610 		trans = btrfs_start_trans_remove_block_group(fs_info,
1611 						     block_group->start);
1612 		if (IS_ERR(trans)) {
1613 			btrfs_dec_block_group_ro(block_group);
1614 			ret = PTR_ERR(trans);
1615 			goto next;
1616 		}
1617 
1618 		/*
1619 		 * We could have pending pinned extents for this block group,
1620 		 * just delete them, we don't care about them anymore.
1621 		 */
1622 		if (!clean_pinned_extents(trans, block_group)) {
1623 			btrfs_dec_block_group_ro(block_group);
1624 			goto end_trans;
1625 		}
1626 
1627 		/*
1628 		 * At this point, the block_group is read only and should fail
1629 		 * new allocations.  However, btrfs_finish_extent_commit() can
1630 		 * cause this block_group to be placed back on the discard
1631 		 * lists because now the block_group isn't fully discarded.
1632 		 * Bail here and try again later after discarding everything.
1633 		 */
1634 		spin_lock(&fs_info->discard_ctl.lock);
1635 		if (!list_empty(&block_group->discard_list)) {
1636 			spin_unlock(&fs_info->discard_ctl.lock);
1637 			btrfs_dec_block_group_ro(block_group);
1638 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1639 						 block_group);
1640 			goto end_trans;
1641 		}
1642 		spin_unlock(&fs_info->discard_ctl.lock);
1643 
1644 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1645 		spin_lock(&space_info->lock);
1646 		spin_lock(&block_group->lock);
1647 
1648 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1649 						     -block_group->pinned);
1650 		space_info->bytes_readonly += block_group->pinned;
1651 		block_group->pinned = 0;
1652 
1653 		spin_unlock(&block_group->lock);
1654 		spin_unlock(&space_info->lock);
1655 
1656 		/*
1657 		 * The normal path here is an unused block group is passed here,
1658 		 * then trimming is handled in the transaction commit path.
1659 		 * Async discard interposes before this to do the trimming
1660 		 * before coming down the unused block group path as trimming
1661 		 * will no longer be done later in the transaction commit path.
1662 		 */
1663 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1664 			goto flip_async;
1665 
1666 		/*
1667 		 * DISCARD can flip during remount. On zoned filesystems, we
1668 		 * need to reset sequential-required zones.
1669 		 */
1670 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1671 				btrfs_is_zoned(fs_info);
1672 
1673 		/* Implicit trim during transaction commit. */
1674 		if (trimming)
1675 			btrfs_freeze_block_group(block_group);
1676 
1677 		/*
1678 		 * Btrfs_remove_chunk will abort the transaction if things go
1679 		 * horribly wrong.
1680 		 */
1681 		ret = btrfs_remove_chunk(trans, block_group->start);
1682 
1683 		if (ret) {
1684 			if (trimming)
1685 				btrfs_unfreeze_block_group(block_group);
1686 			goto end_trans;
1687 		}
1688 
1689 		/*
1690 		 * If we're not mounted with -odiscard, we can just forget
1691 		 * about this block group. Otherwise we'll need to wait
1692 		 * until transaction commit to do the actual discard.
1693 		 */
1694 		if (trimming) {
1695 			spin_lock(&fs_info->unused_bgs_lock);
1696 			/*
1697 			 * A concurrent scrub might have added us to the list
1698 			 * fs_info->unused_bgs, so use a list_move operation
1699 			 * to add the block group to the deleted_bgs list.
1700 			 */
1701 			list_move(&block_group->bg_list,
1702 				  &trans->transaction->deleted_bgs);
1703 			spin_unlock(&fs_info->unused_bgs_lock);
1704 			btrfs_get_block_group(block_group);
1705 		}
1706 end_trans:
1707 		btrfs_end_transaction(trans);
1708 next:
1709 		btrfs_put_block_group(block_group);
1710 		spin_lock(&fs_info->unused_bgs_lock);
1711 	}
1712 	list_splice_tail(&retry_list, &fs_info->unused_bgs);
1713 	spin_unlock(&fs_info->unused_bgs_lock);
1714 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1715 	return;
1716 
1717 flip_async:
1718 	btrfs_end_transaction(trans);
1719 	spin_lock(&fs_info->unused_bgs_lock);
1720 	list_splice_tail(&retry_list, &fs_info->unused_bgs);
1721 	spin_unlock(&fs_info->unused_bgs_lock);
1722 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1723 	btrfs_put_block_group(block_group);
1724 	btrfs_discard_punt_unused_bgs_list(fs_info);
1725 }
1726 
1727 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1728 {
1729 	struct btrfs_fs_info *fs_info = bg->fs_info;
1730 
1731 	spin_lock(&fs_info->unused_bgs_lock);
1732 	if (list_empty(&bg->bg_list)) {
1733 		btrfs_get_block_group(bg);
1734 		trace_btrfs_add_unused_block_group(bg);
1735 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1736 	} else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1737 		/* Pull out the block group from the reclaim_bgs list. */
1738 		trace_btrfs_add_unused_block_group(bg);
1739 		list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1740 	}
1741 	spin_unlock(&fs_info->unused_bgs_lock);
1742 }
1743 
1744 /*
1745  * We want block groups with a low number of used bytes to be in the beginning
1746  * of the list, so they will get reclaimed first.
1747  */
1748 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1749 			   const struct list_head *b)
1750 {
1751 	const struct btrfs_block_group *bg1, *bg2;
1752 
1753 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1754 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1755 
1756 	return bg1->used > bg2->used;
1757 }
1758 
1759 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info)
1760 {
1761 	if (btrfs_is_zoned(fs_info))
1762 		return btrfs_zoned_should_reclaim(fs_info);
1763 	return true;
1764 }
1765 
1766 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed)
1767 {
1768 	const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1769 	u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
1770 	const u64 new_val = bg->used;
1771 	const u64 old_val = new_val + bytes_freed;
1772 
1773 	if (thresh_bytes == 0)
1774 		return false;
1775 
1776 	/*
1777 	 * If we were below the threshold before don't reclaim, we are likely a
1778 	 * brand new block group and we don't want to relocate new block groups.
1779 	 */
1780 	if (old_val < thresh_bytes)
1781 		return false;
1782 	if (new_val >= thresh_bytes)
1783 		return false;
1784 	return true;
1785 }
1786 
1787 void btrfs_reclaim_bgs_work(struct work_struct *work)
1788 {
1789 	struct btrfs_fs_info *fs_info =
1790 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1791 	struct btrfs_block_group *bg;
1792 	struct btrfs_space_info *space_info;
1793 	LIST_HEAD(retry_list);
1794 
1795 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1796 		return;
1797 
1798 	if (btrfs_fs_closing(fs_info))
1799 		return;
1800 
1801 	if (!btrfs_should_reclaim(fs_info))
1802 		return;
1803 
1804 	sb_start_write(fs_info->sb);
1805 
1806 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1807 		sb_end_write(fs_info->sb);
1808 		return;
1809 	}
1810 
1811 	/*
1812 	 * Long running balances can keep us blocked here for eternity, so
1813 	 * simply skip reclaim if we're unable to get the mutex.
1814 	 */
1815 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1816 		btrfs_exclop_finish(fs_info);
1817 		sb_end_write(fs_info->sb);
1818 		return;
1819 	}
1820 
1821 	spin_lock(&fs_info->unused_bgs_lock);
1822 	/*
1823 	 * Sort happens under lock because we can't simply splice it and sort.
1824 	 * The block groups might still be in use and reachable via bg_list,
1825 	 * and their presence in the reclaim_bgs list must be preserved.
1826 	 */
1827 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1828 	while (!list_empty(&fs_info->reclaim_bgs)) {
1829 		u64 zone_unusable;
1830 		u64 reclaimed;
1831 		int ret = 0;
1832 
1833 		bg = list_first_entry(&fs_info->reclaim_bgs,
1834 				      struct btrfs_block_group,
1835 				      bg_list);
1836 		list_del_init(&bg->bg_list);
1837 
1838 		space_info = bg->space_info;
1839 		spin_unlock(&fs_info->unused_bgs_lock);
1840 
1841 		/* Don't race with allocators so take the groups_sem */
1842 		down_write(&space_info->groups_sem);
1843 
1844 		spin_lock(&space_info->lock);
1845 		spin_lock(&bg->lock);
1846 		if (bg->reserved || bg->pinned || bg->ro) {
1847 			/*
1848 			 * We want to bail if we made new allocations or have
1849 			 * outstanding allocations in this block group.  We do
1850 			 * the ro check in case balance is currently acting on
1851 			 * this block group.
1852 			 */
1853 			spin_unlock(&bg->lock);
1854 			spin_unlock(&space_info->lock);
1855 			up_write(&space_info->groups_sem);
1856 			goto next;
1857 		}
1858 		if (bg->used == 0) {
1859 			/*
1860 			 * It is possible that we trigger relocation on a block
1861 			 * group as its extents are deleted and it first goes
1862 			 * below the threshold, then shortly after goes empty.
1863 			 *
1864 			 * In this case, relocating it does delete it, but has
1865 			 * some overhead in relocation specific metadata, looking
1866 			 * for the non-existent extents and running some extra
1867 			 * transactions, which we can avoid by using one of the
1868 			 * other mechanisms for dealing with empty block groups.
1869 			 */
1870 			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1871 				btrfs_mark_bg_unused(bg);
1872 			spin_unlock(&bg->lock);
1873 			spin_unlock(&space_info->lock);
1874 			up_write(&space_info->groups_sem);
1875 			goto next;
1876 
1877 		}
1878 		/*
1879 		 * The block group might no longer meet the reclaim condition by
1880 		 * the time we get around to reclaiming it, so to avoid
1881 		 * reclaiming overly full block_groups, skip reclaiming them.
1882 		 *
1883 		 * Since the decision making process also depends on the amount
1884 		 * being freed, pass in a fake giant value to skip that extra
1885 		 * check, which is more meaningful when adding to the list in
1886 		 * the first place.
1887 		 */
1888 		if (!should_reclaim_block_group(bg, bg->length)) {
1889 			spin_unlock(&bg->lock);
1890 			spin_unlock(&space_info->lock);
1891 			up_write(&space_info->groups_sem);
1892 			goto next;
1893 		}
1894 		spin_unlock(&bg->lock);
1895 		spin_unlock(&space_info->lock);
1896 
1897 		/*
1898 		 * Get out fast, in case we're read-only or unmounting the
1899 		 * filesystem. It is OK to drop block groups from the list even
1900 		 * for the read-only case. As we did sb_start_write(),
1901 		 * "mount -o remount,ro" won't happen and read-only filesystem
1902 		 * means it is forced read-only due to a fatal error. So, it
1903 		 * never gets back to read-write to let us reclaim again.
1904 		 */
1905 		if (btrfs_need_cleaner_sleep(fs_info)) {
1906 			up_write(&space_info->groups_sem);
1907 			goto next;
1908 		}
1909 
1910 		/*
1911 		 * Cache the zone_unusable value before turning the block group
1912 		 * to read only. As soon as the blog group is read only it's
1913 		 * zone_unusable value gets moved to the block group's read-only
1914 		 * bytes and isn't available for calculations anymore.
1915 		 */
1916 		zone_unusable = bg->zone_unusable;
1917 		ret = inc_block_group_ro(bg, 0);
1918 		up_write(&space_info->groups_sem);
1919 		if (ret < 0)
1920 			goto next;
1921 
1922 		btrfs_info(fs_info,
1923 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1924 				bg->start,
1925 				div64_u64(bg->used * 100, bg->length),
1926 				div64_u64(zone_unusable * 100, bg->length));
1927 		trace_btrfs_reclaim_block_group(bg);
1928 		reclaimed = bg->used;
1929 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1930 		if (ret) {
1931 			btrfs_dec_block_group_ro(bg);
1932 			btrfs_err(fs_info, "error relocating chunk %llu",
1933 				  bg->start);
1934 			reclaimed = 0;
1935 			spin_lock(&space_info->lock);
1936 			space_info->reclaim_errors++;
1937 			if (READ_ONCE(space_info->periodic_reclaim))
1938 				space_info->periodic_reclaim_ready = false;
1939 			spin_unlock(&space_info->lock);
1940 		}
1941 		spin_lock(&space_info->lock);
1942 		space_info->reclaim_count++;
1943 		space_info->reclaim_bytes += reclaimed;
1944 		spin_unlock(&space_info->lock);
1945 
1946 next:
1947 		if (ret && !READ_ONCE(space_info->periodic_reclaim)) {
1948 			/* Refcount held by the reclaim_bgs list after splice. */
1949 			spin_lock(&fs_info->unused_bgs_lock);
1950 			/*
1951 			 * This block group might be added to the unused list
1952 			 * during the above process. Move it back to the
1953 			 * reclaim list otherwise.
1954 			 */
1955 			if (list_empty(&bg->bg_list)) {
1956 				btrfs_get_block_group(bg);
1957 				list_add_tail(&bg->bg_list, &retry_list);
1958 			}
1959 			spin_unlock(&fs_info->unused_bgs_lock);
1960 		}
1961 		btrfs_put_block_group(bg);
1962 
1963 		mutex_unlock(&fs_info->reclaim_bgs_lock);
1964 		/*
1965 		 * Reclaiming all the block groups in the list can take really
1966 		 * long.  Prioritize cleaning up unused block groups.
1967 		 */
1968 		btrfs_delete_unused_bgs(fs_info);
1969 		/*
1970 		 * If we are interrupted by a balance, we can just bail out. The
1971 		 * cleaner thread restart again if necessary.
1972 		 */
1973 		if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1974 			goto end;
1975 		spin_lock(&fs_info->unused_bgs_lock);
1976 	}
1977 	spin_unlock(&fs_info->unused_bgs_lock);
1978 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1979 end:
1980 	spin_lock(&fs_info->unused_bgs_lock);
1981 	list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
1982 	spin_unlock(&fs_info->unused_bgs_lock);
1983 	btrfs_exclop_finish(fs_info);
1984 	sb_end_write(fs_info->sb);
1985 }
1986 
1987 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1988 {
1989 	btrfs_reclaim_sweep(fs_info);
1990 	spin_lock(&fs_info->unused_bgs_lock);
1991 	if (!list_empty(&fs_info->reclaim_bgs))
1992 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1993 	spin_unlock(&fs_info->unused_bgs_lock);
1994 }
1995 
1996 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1997 {
1998 	struct btrfs_fs_info *fs_info = bg->fs_info;
1999 
2000 	spin_lock(&fs_info->unused_bgs_lock);
2001 	if (list_empty(&bg->bg_list)) {
2002 		btrfs_get_block_group(bg);
2003 		trace_btrfs_add_reclaim_block_group(bg);
2004 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
2005 	}
2006 	spin_unlock(&fs_info->unused_bgs_lock);
2007 }
2008 
2009 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key,
2010 			   const struct btrfs_path *path)
2011 {
2012 	struct btrfs_chunk_map *map;
2013 	struct btrfs_block_group_item bg;
2014 	struct extent_buffer *leaf;
2015 	int slot;
2016 	u64 flags;
2017 	int ret = 0;
2018 
2019 	slot = path->slots[0];
2020 	leaf = path->nodes[0];
2021 
2022 	map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2023 	if (!map) {
2024 		btrfs_err(fs_info,
2025 			  "logical %llu len %llu found bg but no related chunk",
2026 			  key->objectid, key->offset);
2027 		return -ENOENT;
2028 	}
2029 
2030 	if (map->start != key->objectid || map->chunk_len != key->offset) {
2031 		btrfs_err(fs_info,
2032 			"block group %llu len %llu mismatch with chunk %llu len %llu",
2033 			  key->objectid, key->offset, map->start, map->chunk_len);
2034 		ret = -EUCLEAN;
2035 		goto out_free_map;
2036 	}
2037 
2038 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2039 			   sizeof(bg));
2040 	flags = btrfs_stack_block_group_flags(&bg) &
2041 		BTRFS_BLOCK_GROUP_TYPE_MASK;
2042 
2043 	if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2044 		btrfs_err(fs_info,
2045 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2046 			  key->objectid, key->offset, flags,
2047 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2048 		ret = -EUCLEAN;
2049 	}
2050 
2051 out_free_map:
2052 	btrfs_free_chunk_map(map);
2053 	return ret;
2054 }
2055 
2056 static int find_first_block_group(struct btrfs_fs_info *fs_info,
2057 				  struct btrfs_path *path,
2058 				  const struct btrfs_key *key)
2059 {
2060 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2061 	int ret;
2062 	struct btrfs_key found_key;
2063 
2064 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
2065 		if (found_key.objectid >= key->objectid &&
2066 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2067 			return read_bg_from_eb(fs_info, &found_key, path);
2068 		}
2069 	}
2070 	return ret;
2071 }
2072 
2073 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2074 {
2075 	u64 extra_flags = chunk_to_extended(flags) &
2076 				BTRFS_EXTENDED_PROFILE_MASK;
2077 
2078 	write_seqlock(&fs_info->profiles_lock);
2079 	if (flags & BTRFS_BLOCK_GROUP_DATA)
2080 		fs_info->avail_data_alloc_bits |= extra_flags;
2081 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
2082 		fs_info->avail_metadata_alloc_bits |= extra_flags;
2083 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2084 		fs_info->avail_system_alloc_bits |= extra_flags;
2085 	write_sequnlock(&fs_info->profiles_lock);
2086 }
2087 
2088 /*
2089  * Map a physical disk address to a list of logical addresses.
2090  *
2091  * @fs_info:       the filesystem
2092  * @chunk_start:   logical address of block group
2093  * @physical:	   physical address to map to logical addresses
2094  * @logical:	   return array of logical addresses which map to @physical
2095  * @naddrs:	   length of @logical
2096  * @stripe_len:    size of IO stripe for the given block group
2097  *
2098  * Maps a particular @physical disk address to a list of @logical addresses.
2099  * Used primarily to exclude those portions of a block group that contain super
2100  * block copies.
2101  */
2102 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2103 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2104 {
2105 	struct btrfs_chunk_map *map;
2106 	u64 *buf;
2107 	u64 bytenr;
2108 	u64 data_stripe_length;
2109 	u64 io_stripe_size;
2110 	int i, nr = 0;
2111 	int ret = 0;
2112 
2113 	map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2114 	if (IS_ERR(map))
2115 		return -EIO;
2116 
2117 	data_stripe_length = map->stripe_size;
2118 	io_stripe_size = BTRFS_STRIPE_LEN;
2119 	chunk_start = map->start;
2120 
2121 	/* For RAID5/6 adjust to a full IO stripe length */
2122 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2123 		io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2124 
2125 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2126 	if (!buf) {
2127 		ret = -ENOMEM;
2128 		goto out;
2129 	}
2130 
2131 	for (i = 0; i < map->num_stripes; i++) {
2132 		bool already_inserted = false;
2133 		u32 stripe_nr;
2134 		u32 offset;
2135 		int j;
2136 
2137 		if (!in_range(physical, map->stripes[i].physical,
2138 			      data_stripe_length))
2139 			continue;
2140 
2141 		stripe_nr = (physical - map->stripes[i].physical) >>
2142 			    BTRFS_STRIPE_LEN_SHIFT;
2143 		offset = (physical - map->stripes[i].physical) &
2144 			 BTRFS_STRIPE_LEN_MASK;
2145 
2146 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2147 				 BTRFS_BLOCK_GROUP_RAID10))
2148 			stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2149 					    map->sub_stripes);
2150 		/*
2151 		 * The remaining case would be for RAID56, multiply by
2152 		 * nr_data_stripes().  Alternatively, just use rmap_len below
2153 		 * instead of map->stripe_len
2154 		 */
2155 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2156 
2157 		/* Ensure we don't add duplicate addresses */
2158 		for (j = 0; j < nr; j++) {
2159 			if (buf[j] == bytenr) {
2160 				already_inserted = true;
2161 				break;
2162 			}
2163 		}
2164 
2165 		if (!already_inserted)
2166 			buf[nr++] = bytenr;
2167 	}
2168 
2169 	*logical = buf;
2170 	*naddrs = nr;
2171 	*stripe_len = io_stripe_size;
2172 out:
2173 	btrfs_free_chunk_map(map);
2174 	return ret;
2175 }
2176 
2177 static int exclude_super_stripes(struct btrfs_block_group *cache)
2178 {
2179 	struct btrfs_fs_info *fs_info = cache->fs_info;
2180 	const bool zoned = btrfs_is_zoned(fs_info);
2181 	u64 bytenr;
2182 	u64 *logical;
2183 	int stripe_len;
2184 	int i, nr, ret;
2185 
2186 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2187 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2188 		cache->bytes_super += stripe_len;
2189 		ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2190 				     cache->start + stripe_len - 1,
2191 				     EXTENT_UPTODATE, NULL);
2192 		if (ret)
2193 			return ret;
2194 	}
2195 
2196 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2197 		bytenr = btrfs_sb_offset(i);
2198 		ret = btrfs_rmap_block(fs_info, cache->start,
2199 				       bytenr, &logical, &nr, &stripe_len);
2200 		if (ret)
2201 			return ret;
2202 
2203 		/* Shouldn't have super stripes in sequential zones */
2204 		if (zoned && nr) {
2205 			kfree(logical);
2206 			btrfs_err(fs_info,
2207 			"zoned: block group %llu must not contain super block",
2208 				  cache->start);
2209 			return -EUCLEAN;
2210 		}
2211 
2212 		while (nr--) {
2213 			u64 len = min_t(u64, stripe_len,
2214 				cache->start + cache->length - logical[nr]);
2215 
2216 			cache->bytes_super += len;
2217 			ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2218 					     logical[nr] + len - 1,
2219 					     EXTENT_UPTODATE, NULL);
2220 			if (ret) {
2221 				kfree(logical);
2222 				return ret;
2223 			}
2224 		}
2225 
2226 		kfree(logical);
2227 	}
2228 	return 0;
2229 }
2230 
2231 static struct btrfs_block_group *btrfs_create_block_group_cache(
2232 		struct btrfs_fs_info *fs_info, u64 start)
2233 {
2234 	struct btrfs_block_group *cache;
2235 
2236 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2237 	if (!cache)
2238 		return NULL;
2239 
2240 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2241 					GFP_NOFS);
2242 	if (!cache->free_space_ctl) {
2243 		kfree(cache);
2244 		return NULL;
2245 	}
2246 
2247 	cache->start = start;
2248 
2249 	cache->fs_info = fs_info;
2250 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2251 
2252 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2253 
2254 	refcount_set(&cache->refs, 1);
2255 	spin_lock_init(&cache->lock);
2256 	init_rwsem(&cache->data_rwsem);
2257 	INIT_LIST_HEAD(&cache->list);
2258 	INIT_LIST_HEAD(&cache->cluster_list);
2259 	INIT_LIST_HEAD(&cache->bg_list);
2260 	INIT_LIST_HEAD(&cache->ro_list);
2261 	INIT_LIST_HEAD(&cache->discard_list);
2262 	INIT_LIST_HEAD(&cache->dirty_list);
2263 	INIT_LIST_HEAD(&cache->io_list);
2264 	INIT_LIST_HEAD(&cache->active_bg_list);
2265 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2266 	atomic_set(&cache->frozen, 0);
2267 	mutex_init(&cache->free_space_lock);
2268 
2269 	return cache;
2270 }
2271 
2272 /*
2273  * Iterate all chunks and verify that each of them has the corresponding block
2274  * group
2275  */
2276 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2277 {
2278 	u64 start = 0;
2279 	int ret = 0;
2280 
2281 	while (1) {
2282 		struct btrfs_chunk_map *map;
2283 		struct btrfs_block_group *bg;
2284 
2285 		/*
2286 		 * btrfs_find_chunk_map() will return the first chunk map
2287 		 * intersecting the range, so setting @length to 1 is enough to
2288 		 * get the first chunk.
2289 		 */
2290 		map = btrfs_find_chunk_map(fs_info, start, 1);
2291 		if (!map)
2292 			break;
2293 
2294 		bg = btrfs_lookup_block_group(fs_info, map->start);
2295 		if (!bg) {
2296 			btrfs_err(fs_info,
2297 	"chunk start=%llu len=%llu doesn't have corresponding block group",
2298 				     map->start, map->chunk_len);
2299 			ret = -EUCLEAN;
2300 			btrfs_free_chunk_map(map);
2301 			break;
2302 		}
2303 		if (bg->start != map->start || bg->length != map->chunk_len ||
2304 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2305 		    (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2306 			btrfs_err(fs_info,
2307 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2308 				map->start, map->chunk_len,
2309 				map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2310 				bg->start, bg->length,
2311 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2312 			ret = -EUCLEAN;
2313 			btrfs_free_chunk_map(map);
2314 			btrfs_put_block_group(bg);
2315 			break;
2316 		}
2317 		start = map->start + map->chunk_len;
2318 		btrfs_free_chunk_map(map);
2319 		btrfs_put_block_group(bg);
2320 	}
2321 	return ret;
2322 }
2323 
2324 static int read_one_block_group(struct btrfs_fs_info *info,
2325 				struct btrfs_block_group_item *bgi,
2326 				const struct btrfs_key *key,
2327 				int need_clear)
2328 {
2329 	struct btrfs_block_group *cache;
2330 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2331 	int ret;
2332 
2333 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2334 
2335 	cache = btrfs_create_block_group_cache(info, key->objectid);
2336 	if (!cache)
2337 		return -ENOMEM;
2338 
2339 	cache->length = key->offset;
2340 	cache->used = btrfs_stack_block_group_used(bgi);
2341 	cache->commit_used = cache->used;
2342 	cache->flags = btrfs_stack_block_group_flags(bgi);
2343 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2344 
2345 	set_free_space_tree_thresholds(cache);
2346 
2347 	if (need_clear) {
2348 		/*
2349 		 * When we mount with old space cache, we need to
2350 		 * set BTRFS_DC_CLEAR and set dirty flag.
2351 		 *
2352 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2353 		 *    truncate the old free space cache inode and
2354 		 *    setup a new one.
2355 		 * b) Setting 'dirty flag' makes sure that we flush
2356 		 *    the new space cache info onto disk.
2357 		 */
2358 		if (btrfs_test_opt(info, SPACE_CACHE))
2359 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2360 	}
2361 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2362 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2363 			btrfs_err(info,
2364 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2365 				  cache->start);
2366 			ret = -EINVAL;
2367 			goto error;
2368 	}
2369 
2370 	ret = btrfs_load_block_group_zone_info(cache, false);
2371 	if (ret) {
2372 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2373 			  cache->start);
2374 		goto error;
2375 	}
2376 
2377 	/*
2378 	 * We need to exclude the super stripes now so that the space info has
2379 	 * super bytes accounted for, otherwise we'll think we have more space
2380 	 * than we actually do.
2381 	 */
2382 	ret = exclude_super_stripes(cache);
2383 	if (ret) {
2384 		/* We may have excluded something, so call this just in case. */
2385 		btrfs_free_excluded_extents(cache);
2386 		goto error;
2387 	}
2388 
2389 	/*
2390 	 * For zoned filesystem, space after the allocation offset is the only
2391 	 * free space for a block group. So, we don't need any caching work.
2392 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2393 	 * zone_unusable space.
2394 	 *
2395 	 * For regular filesystem, check for two cases, either we are full, and
2396 	 * therefore don't need to bother with the caching work since we won't
2397 	 * find any space, or we are empty, and we can just add all the space
2398 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2399 	 * in the full case.
2400 	 */
2401 	if (btrfs_is_zoned(info)) {
2402 		btrfs_calc_zone_unusable(cache);
2403 		/* Should not have any excluded extents. Just in case, though. */
2404 		btrfs_free_excluded_extents(cache);
2405 	} else if (cache->length == cache->used) {
2406 		cache->cached = BTRFS_CACHE_FINISHED;
2407 		btrfs_free_excluded_extents(cache);
2408 	} else if (cache->used == 0) {
2409 		cache->cached = BTRFS_CACHE_FINISHED;
2410 		ret = btrfs_add_new_free_space(cache, cache->start,
2411 					       cache->start + cache->length, NULL);
2412 		btrfs_free_excluded_extents(cache);
2413 		if (ret)
2414 			goto error;
2415 	}
2416 
2417 	ret = btrfs_add_block_group_cache(info, cache);
2418 	if (ret) {
2419 		btrfs_remove_free_space_cache(cache);
2420 		goto error;
2421 	}
2422 	trace_btrfs_add_block_group(info, cache, 0);
2423 	btrfs_add_bg_to_space_info(info, cache);
2424 
2425 	set_avail_alloc_bits(info, cache->flags);
2426 	if (btrfs_chunk_writeable(info, cache->start)) {
2427 		if (cache->used == 0) {
2428 			ASSERT(list_empty(&cache->bg_list));
2429 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2430 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2431 			else
2432 				btrfs_mark_bg_unused(cache);
2433 		}
2434 	} else {
2435 		inc_block_group_ro(cache, 1);
2436 	}
2437 
2438 	return 0;
2439 error:
2440 	btrfs_put_block_group(cache);
2441 	return ret;
2442 }
2443 
2444 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2445 {
2446 	struct rb_node *node;
2447 	int ret = 0;
2448 
2449 	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2450 		struct btrfs_chunk_map *map;
2451 		struct btrfs_block_group *bg;
2452 
2453 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2454 		bg = btrfs_create_block_group_cache(fs_info, map->start);
2455 		if (!bg) {
2456 			ret = -ENOMEM;
2457 			break;
2458 		}
2459 
2460 		/* Fill dummy cache as FULL */
2461 		bg->length = map->chunk_len;
2462 		bg->flags = map->type;
2463 		bg->cached = BTRFS_CACHE_FINISHED;
2464 		bg->used = map->chunk_len;
2465 		bg->flags = map->type;
2466 		ret = btrfs_add_block_group_cache(fs_info, bg);
2467 		/*
2468 		 * We may have some valid block group cache added already, in
2469 		 * that case we skip to the next one.
2470 		 */
2471 		if (ret == -EEXIST) {
2472 			ret = 0;
2473 			btrfs_put_block_group(bg);
2474 			continue;
2475 		}
2476 
2477 		if (ret) {
2478 			btrfs_remove_free_space_cache(bg);
2479 			btrfs_put_block_group(bg);
2480 			break;
2481 		}
2482 
2483 		btrfs_add_bg_to_space_info(fs_info, bg);
2484 
2485 		set_avail_alloc_bits(fs_info, bg->flags);
2486 	}
2487 	if (!ret)
2488 		btrfs_init_global_block_rsv(fs_info);
2489 	return ret;
2490 }
2491 
2492 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2493 {
2494 	struct btrfs_root *root = btrfs_block_group_root(info);
2495 	struct btrfs_path *path;
2496 	int ret;
2497 	struct btrfs_block_group *cache;
2498 	struct btrfs_space_info *space_info;
2499 	struct btrfs_key key;
2500 	int need_clear = 0;
2501 	u64 cache_gen;
2502 
2503 	/*
2504 	 * Either no extent root (with ibadroots rescue option) or we have
2505 	 * unsupported RO options. The fs can never be mounted read-write, so no
2506 	 * need to waste time searching block group items.
2507 	 *
2508 	 * This also allows new extent tree related changes to be RO compat,
2509 	 * no need for a full incompat flag.
2510 	 */
2511 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2512 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2513 		return fill_dummy_bgs(info);
2514 
2515 	key.objectid = 0;
2516 	key.offset = 0;
2517 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2518 	path = btrfs_alloc_path();
2519 	if (!path)
2520 		return -ENOMEM;
2521 
2522 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2523 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2524 	    btrfs_super_generation(info->super_copy) != cache_gen)
2525 		need_clear = 1;
2526 	if (btrfs_test_opt(info, CLEAR_CACHE))
2527 		need_clear = 1;
2528 
2529 	while (1) {
2530 		struct btrfs_block_group_item bgi;
2531 		struct extent_buffer *leaf;
2532 		int slot;
2533 
2534 		ret = find_first_block_group(info, path, &key);
2535 		if (ret > 0)
2536 			break;
2537 		if (ret != 0)
2538 			goto error;
2539 
2540 		leaf = path->nodes[0];
2541 		slot = path->slots[0];
2542 
2543 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2544 				   sizeof(bgi));
2545 
2546 		btrfs_item_key_to_cpu(leaf, &key, slot);
2547 		btrfs_release_path(path);
2548 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2549 		if (ret < 0)
2550 			goto error;
2551 		key.objectid += key.offset;
2552 		key.offset = 0;
2553 	}
2554 	btrfs_release_path(path);
2555 
2556 	list_for_each_entry(space_info, &info->space_info, list) {
2557 		int i;
2558 
2559 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2560 			if (list_empty(&space_info->block_groups[i]))
2561 				continue;
2562 			cache = list_first_entry(&space_info->block_groups[i],
2563 						 struct btrfs_block_group,
2564 						 list);
2565 			btrfs_sysfs_add_block_group_type(cache);
2566 		}
2567 
2568 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2569 		      (BTRFS_BLOCK_GROUP_RAID10 |
2570 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2571 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2572 		       BTRFS_BLOCK_GROUP_DUP)))
2573 			continue;
2574 		/*
2575 		 * Avoid allocating from un-mirrored block group if there are
2576 		 * mirrored block groups.
2577 		 */
2578 		list_for_each_entry(cache,
2579 				&space_info->block_groups[BTRFS_RAID_RAID0],
2580 				list)
2581 			inc_block_group_ro(cache, 1);
2582 		list_for_each_entry(cache,
2583 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2584 				list)
2585 			inc_block_group_ro(cache, 1);
2586 	}
2587 
2588 	btrfs_init_global_block_rsv(info);
2589 	ret = check_chunk_block_group_mappings(info);
2590 error:
2591 	btrfs_free_path(path);
2592 	/*
2593 	 * We've hit some error while reading the extent tree, and have
2594 	 * rescue=ibadroots mount option.
2595 	 * Try to fill the tree using dummy block groups so that the user can
2596 	 * continue to mount and grab their data.
2597 	 */
2598 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2599 		ret = fill_dummy_bgs(info);
2600 	return ret;
2601 }
2602 
2603 /*
2604  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2605  * allocation.
2606  *
2607  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2608  * phases.
2609  */
2610 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2611 				   struct btrfs_block_group *block_group)
2612 {
2613 	struct btrfs_fs_info *fs_info = trans->fs_info;
2614 	struct btrfs_block_group_item bgi;
2615 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2616 	struct btrfs_key key;
2617 	u64 old_commit_used;
2618 	int ret;
2619 
2620 	spin_lock(&block_group->lock);
2621 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2622 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2623 						   block_group->global_root_id);
2624 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2625 	old_commit_used = block_group->commit_used;
2626 	block_group->commit_used = block_group->used;
2627 	key.objectid = block_group->start;
2628 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2629 	key.offset = block_group->length;
2630 	spin_unlock(&block_group->lock);
2631 
2632 	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2633 	if (ret < 0) {
2634 		spin_lock(&block_group->lock);
2635 		block_group->commit_used = old_commit_used;
2636 		spin_unlock(&block_group->lock);
2637 	}
2638 
2639 	return ret;
2640 }
2641 
2642 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2643 			     const struct btrfs_device *device, u64 chunk_offset,
2644 			     u64 start, u64 num_bytes)
2645 {
2646 	struct btrfs_fs_info *fs_info = device->fs_info;
2647 	struct btrfs_root *root = fs_info->dev_root;
2648 	struct btrfs_path *path;
2649 	struct btrfs_dev_extent *extent;
2650 	struct extent_buffer *leaf;
2651 	struct btrfs_key key;
2652 	int ret;
2653 
2654 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2655 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2656 	path = btrfs_alloc_path();
2657 	if (!path)
2658 		return -ENOMEM;
2659 
2660 	key.objectid = device->devid;
2661 	key.type = BTRFS_DEV_EXTENT_KEY;
2662 	key.offset = start;
2663 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2664 	if (ret)
2665 		goto out;
2666 
2667 	leaf = path->nodes[0];
2668 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2669 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2670 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2671 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2672 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2673 
2674 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2675 	btrfs_mark_buffer_dirty(trans, leaf);
2676 out:
2677 	btrfs_free_path(path);
2678 	return ret;
2679 }
2680 
2681 /*
2682  * This function belongs to phase 2.
2683  *
2684  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2685  * phases.
2686  */
2687 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2688 				   u64 chunk_offset, u64 chunk_size)
2689 {
2690 	struct btrfs_fs_info *fs_info = trans->fs_info;
2691 	struct btrfs_device *device;
2692 	struct btrfs_chunk_map *map;
2693 	u64 dev_offset;
2694 	int i;
2695 	int ret = 0;
2696 
2697 	map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2698 	if (IS_ERR(map))
2699 		return PTR_ERR(map);
2700 
2701 	/*
2702 	 * Take the device list mutex to prevent races with the final phase of
2703 	 * a device replace operation that replaces the device object associated
2704 	 * with the map's stripes, because the device object's id can change
2705 	 * at any time during that final phase of the device replace operation
2706 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2707 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2708 	 * resulting in persisting a device extent item with such ID.
2709 	 */
2710 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2711 	for (i = 0; i < map->num_stripes; i++) {
2712 		device = map->stripes[i].dev;
2713 		dev_offset = map->stripes[i].physical;
2714 
2715 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2716 					map->stripe_size);
2717 		if (ret)
2718 			break;
2719 	}
2720 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2721 
2722 	btrfs_free_chunk_map(map);
2723 	return ret;
2724 }
2725 
2726 /*
2727  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2728  * chunk allocation.
2729  *
2730  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2731  * phases.
2732  */
2733 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2734 {
2735 	struct btrfs_fs_info *fs_info = trans->fs_info;
2736 	struct btrfs_block_group *block_group;
2737 	int ret = 0;
2738 
2739 	while (!list_empty(&trans->new_bgs)) {
2740 		int index;
2741 
2742 		block_group = list_first_entry(&trans->new_bgs,
2743 					       struct btrfs_block_group,
2744 					       bg_list);
2745 		if (ret)
2746 			goto next;
2747 
2748 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2749 
2750 		ret = insert_block_group_item(trans, block_group);
2751 		if (ret)
2752 			btrfs_abort_transaction(trans, ret);
2753 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2754 			      &block_group->runtime_flags)) {
2755 			mutex_lock(&fs_info->chunk_mutex);
2756 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2757 			mutex_unlock(&fs_info->chunk_mutex);
2758 			if (ret)
2759 				btrfs_abort_transaction(trans, ret);
2760 		}
2761 		ret = insert_dev_extents(trans, block_group->start,
2762 					 block_group->length);
2763 		if (ret)
2764 			btrfs_abort_transaction(trans, ret);
2765 		add_block_group_free_space(trans, block_group);
2766 
2767 		/*
2768 		 * If we restriped during balance, we may have added a new raid
2769 		 * type, so now add the sysfs entries when it is safe to do so.
2770 		 * We don't have to worry about locking here as it's handled in
2771 		 * btrfs_sysfs_add_block_group_type.
2772 		 */
2773 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2774 			btrfs_sysfs_add_block_group_type(block_group);
2775 
2776 		/* Already aborted the transaction if it failed. */
2777 next:
2778 		btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2779 		list_del_init(&block_group->bg_list);
2780 		clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2781 
2782 		/*
2783 		 * If the block group is still unused, add it to the list of
2784 		 * unused block groups. The block group may have been created in
2785 		 * order to satisfy a space reservation, in which case the
2786 		 * extent allocation only happens later. But often we don't
2787 		 * actually need to allocate space that we previously reserved,
2788 		 * so the block group may become unused for a long time. For
2789 		 * example for metadata we generally reserve space for a worst
2790 		 * possible scenario, but then don't end up allocating all that
2791 		 * space or none at all (due to no need to COW, extent buffers
2792 		 * were already COWed in the current transaction and still
2793 		 * unwritten, tree heights lower than the maximum possible
2794 		 * height, etc). For data we generally reserve the axact amount
2795 		 * of space we are going to allocate later, the exception is
2796 		 * when using compression, as we must reserve space based on the
2797 		 * uncompressed data size, because the compression is only done
2798 		 * when writeback triggered and we don't know how much space we
2799 		 * are actually going to need, so we reserve the uncompressed
2800 		 * size because the data may be incompressible in the worst case.
2801 		 */
2802 		if (ret == 0) {
2803 			bool used;
2804 
2805 			spin_lock(&block_group->lock);
2806 			used = btrfs_is_block_group_used(block_group);
2807 			spin_unlock(&block_group->lock);
2808 
2809 			if (!used)
2810 				btrfs_mark_bg_unused(block_group);
2811 		}
2812 	}
2813 	btrfs_trans_release_chunk_metadata(trans);
2814 }
2815 
2816 /*
2817  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2818  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2819  */
2820 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset)
2821 {
2822 	u64 div = SZ_1G;
2823 	u64 index;
2824 
2825 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2826 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2827 
2828 	/* If we have a smaller fs index based on 128MiB. */
2829 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2830 		div = SZ_128M;
2831 
2832 	offset = div64_u64(offset, div);
2833 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2834 	return index;
2835 }
2836 
2837 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2838 						 u64 type,
2839 						 u64 chunk_offset, u64 size)
2840 {
2841 	struct btrfs_fs_info *fs_info = trans->fs_info;
2842 	struct btrfs_block_group *cache;
2843 	int ret;
2844 
2845 	btrfs_set_log_full_commit(trans);
2846 
2847 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2848 	if (!cache)
2849 		return ERR_PTR(-ENOMEM);
2850 
2851 	/*
2852 	 * Mark it as new before adding it to the rbtree of block groups or any
2853 	 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2854 	 * before the new flag is set.
2855 	 */
2856 	set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2857 
2858 	cache->length = size;
2859 	set_free_space_tree_thresholds(cache);
2860 	cache->flags = type;
2861 	cache->cached = BTRFS_CACHE_FINISHED;
2862 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2863 
2864 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2865 		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2866 
2867 	ret = btrfs_load_block_group_zone_info(cache, true);
2868 	if (ret) {
2869 		btrfs_put_block_group(cache);
2870 		return ERR_PTR(ret);
2871 	}
2872 
2873 	ret = exclude_super_stripes(cache);
2874 	if (ret) {
2875 		/* We may have excluded something, so call this just in case */
2876 		btrfs_free_excluded_extents(cache);
2877 		btrfs_put_block_group(cache);
2878 		return ERR_PTR(ret);
2879 	}
2880 
2881 	ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2882 	btrfs_free_excluded_extents(cache);
2883 	if (ret) {
2884 		btrfs_put_block_group(cache);
2885 		return ERR_PTR(ret);
2886 	}
2887 
2888 	/*
2889 	 * Ensure the corresponding space_info object is created and
2890 	 * assigned to our block group. We want our bg to be added to the rbtree
2891 	 * with its ->space_info set.
2892 	 */
2893 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2894 	ASSERT(cache->space_info);
2895 
2896 	ret = btrfs_add_block_group_cache(fs_info, cache);
2897 	if (ret) {
2898 		btrfs_remove_free_space_cache(cache);
2899 		btrfs_put_block_group(cache);
2900 		return ERR_PTR(ret);
2901 	}
2902 
2903 	/*
2904 	 * Now that our block group has its ->space_info set and is inserted in
2905 	 * the rbtree, update the space info's counters.
2906 	 */
2907 	trace_btrfs_add_block_group(fs_info, cache, 1);
2908 	btrfs_add_bg_to_space_info(fs_info, cache);
2909 	btrfs_update_global_block_rsv(fs_info);
2910 
2911 #ifdef CONFIG_BTRFS_DEBUG
2912 	if (btrfs_should_fragment_free_space(cache)) {
2913 		cache->space_info->bytes_used += size >> 1;
2914 		fragment_free_space(cache);
2915 	}
2916 #endif
2917 
2918 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2919 	btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
2920 
2921 	set_avail_alloc_bits(fs_info, type);
2922 	return cache;
2923 }
2924 
2925 /*
2926  * Mark one block group RO, can be called several times for the same block
2927  * group.
2928  *
2929  * @cache:		the destination block group
2930  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2931  * 			ensure we still have some free space after marking this
2932  * 			block group RO.
2933  */
2934 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2935 			     bool do_chunk_alloc)
2936 {
2937 	struct btrfs_fs_info *fs_info = cache->fs_info;
2938 	struct btrfs_trans_handle *trans;
2939 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2940 	u64 alloc_flags;
2941 	int ret;
2942 	bool dirty_bg_running;
2943 
2944 	/*
2945 	 * This can only happen when we are doing read-only scrub on read-only
2946 	 * mount.
2947 	 * In that case we should not start a new transaction on read-only fs.
2948 	 * Thus here we skip all chunk allocations.
2949 	 */
2950 	if (sb_rdonly(fs_info->sb)) {
2951 		mutex_lock(&fs_info->ro_block_group_mutex);
2952 		ret = inc_block_group_ro(cache, 0);
2953 		mutex_unlock(&fs_info->ro_block_group_mutex);
2954 		return ret;
2955 	}
2956 
2957 	do {
2958 		trans = btrfs_join_transaction(root);
2959 		if (IS_ERR(trans))
2960 			return PTR_ERR(trans);
2961 
2962 		dirty_bg_running = false;
2963 
2964 		/*
2965 		 * We're not allowed to set block groups readonly after the dirty
2966 		 * block group cache has started writing.  If it already started,
2967 		 * back off and let this transaction commit.
2968 		 */
2969 		mutex_lock(&fs_info->ro_block_group_mutex);
2970 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2971 			u64 transid = trans->transid;
2972 
2973 			mutex_unlock(&fs_info->ro_block_group_mutex);
2974 			btrfs_end_transaction(trans);
2975 
2976 			ret = btrfs_wait_for_commit(fs_info, transid);
2977 			if (ret)
2978 				return ret;
2979 			dirty_bg_running = true;
2980 		}
2981 	} while (dirty_bg_running);
2982 
2983 	if (do_chunk_alloc) {
2984 		/*
2985 		 * If we are changing raid levels, try to allocate a
2986 		 * corresponding block group with the new raid level.
2987 		 */
2988 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2989 		if (alloc_flags != cache->flags) {
2990 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2991 						CHUNK_ALLOC_FORCE);
2992 			/*
2993 			 * ENOSPC is allowed here, we may have enough space
2994 			 * already allocated at the new raid level to carry on
2995 			 */
2996 			if (ret == -ENOSPC)
2997 				ret = 0;
2998 			if (ret < 0)
2999 				goto out;
3000 		}
3001 	}
3002 
3003 	ret = inc_block_group_ro(cache, 0);
3004 	if (!ret)
3005 		goto out;
3006 	if (ret == -ETXTBSY)
3007 		goto unlock_out;
3008 
3009 	/*
3010 	 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3011 	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
3012 	 * we still want to try our best to mark the block group read-only.
3013 	 */
3014 	if (!do_chunk_alloc && ret == -ENOSPC &&
3015 	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3016 		goto unlock_out;
3017 
3018 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
3019 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3020 	if (ret < 0)
3021 		goto out;
3022 	/*
3023 	 * We have allocated a new chunk. We also need to activate that chunk to
3024 	 * grant metadata tickets for zoned filesystem.
3025 	 */
3026 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
3027 	if (ret < 0)
3028 		goto out;
3029 
3030 	ret = inc_block_group_ro(cache, 0);
3031 	if (ret == -ETXTBSY)
3032 		goto unlock_out;
3033 out:
3034 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3035 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3036 		mutex_lock(&fs_info->chunk_mutex);
3037 		check_system_chunk(trans, alloc_flags);
3038 		mutex_unlock(&fs_info->chunk_mutex);
3039 	}
3040 unlock_out:
3041 	mutex_unlock(&fs_info->ro_block_group_mutex);
3042 
3043 	btrfs_end_transaction(trans);
3044 	return ret;
3045 }
3046 
3047 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3048 {
3049 	struct btrfs_space_info *sinfo = cache->space_info;
3050 	u64 num_bytes;
3051 
3052 	BUG_ON(!cache->ro);
3053 
3054 	spin_lock(&sinfo->lock);
3055 	spin_lock(&cache->lock);
3056 	if (!--cache->ro) {
3057 		if (btrfs_is_zoned(cache->fs_info)) {
3058 			/* Migrate zone_unusable bytes back */
3059 			cache->zone_unusable =
3060 				(cache->alloc_offset - cache->used - cache->pinned -
3061 				 cache->reserved) +
3062 				(cache->length - cache->zone_capacity);
3063 			btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
3064 								    cache->zone_unusable);
3065 			sinfo->bytes_readonly -= cache->zone_unusable;
3066 		}
3067 		num_bytes = cache->length - cache->reserved -
3068 			    cache->pinned - cache->bytes_super -
3069 			    cache->zone_unusable - cache->used;
3070 		sinfo->bytes_readonly -= num_bytes;
3071 		list_del_init(&cache->ro_list);
3072 	}
3073 	spin_unlock(&cache->lock);
3074 	spin_unlock(&sinfo->lock);
3075 }
3076 
3077 static int update_block_group_item(struct btrfs_trans_handle *trans,
3078 				   struct btrfs_path *path,
3079 				   struct btrfs_block_group *cache)
3080 {
3081 	struct btrfs_fs_info *fs_info = trans->fs_info;
3082 	int ret;
3083 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
3084 	unsigned long bi;
3085 	struct extent_buffer *leaf;
3086 	struct btrfs_block_group_item bgi;
3087 	struct btrfs_key key;
3088 	u64 old_commit_used;
3089 	u64 used;
3090 
3091 	/*
3092 	 * Block group items update can be triggered out of commit transaction
3093 	 * critical section, thus we need a consistent view of used bytes.
3094 	 * We cannot use cache->used directly outside of the spin lock, as it
3095 	 * may be changed.
3096 	 */
3097 	spin_lock(&cache->lock);
3098 	old_commit_used = cache->commit_used;
3099 	used = cache->used;
3100 	/* No change in used bytes, can safely skip it. */
3101 	if (cache->commit_used == used) {
3102 		spin_unlock(&cache->lock);
3103 		return 0;
3104 	}
3105 	cache->commit_used = used;
3106 	spin_unlock(&cache->lock);
3107 
3108 	key.objectid = cache->start;
3109 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3110 	key.offset = cache->length;
3111 
3112 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3113 	if (ret) {
3114 		if (ret > 0)
3115 			ret = -ENOENT;
3116 		goto fail;
3117 	}
3118 
3119 	leaf = path->nodes[0];
3120 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3121 	btrfs_set_stack_block_group_used(&bgi, used);
3122 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
3123 						   cache->global_root_id);
3124 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3125 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3126 	btrfs_mark_buffer_dirty(trans, leaf);
3127 fail:
3128 	btrfs_release_path(path);
3129 	/*
3130 	 * We didn't update the block group item, need to revert commit_used
3131 	 * unless the block group item didn't exist yet - this is to prevent a
3132 	 * race with a concurrent insertion of the block group item, with
3133 	 * insert_block_group_item(), that happened just after we attempted to
3134 	 * update. In that case we would reset commit_used to 0 just after the
3135 	 * insertion set it to a value greater than 0 - if the block group later
3136 	 * becomes with 0 used bytes, we would incorrectly skip its update.
3137 	 */
3138 	if (ret < 0 && ret != -ENOENT) {
3139 		spin_lock(&cache->lock);
3140 		cache->commit_used = old_commit_used;
3141 		spin_unlock(&cache->lock);
3142 	}
3143 	return ret;
3144 
3145 }
3146 
3147 static int cache_save_setup(struct btrfs_block_group *block_group,
3148 			    struct btrfs_trans_handle *trans,
3149 			    struct btrfs_path *path)
3150 {
3151 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3152 	struct inode *inode = NULL;
3153 	struct extent_changeset *data_reserved = NULL;
3154 	u64 alloc_hint = 0;
3155 	int dcs = BTRFS_DC_ERROR;
3156 	u64 cache_size = 0;
3157 	int retries = 0;
3158 	int ret = 0;
3159 
3160 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3161 		return 0;
3162 
3163 	/*
3164 	 * If this block group is smaller than 100 megs don't bother caching the
3165 	 * block group.
3166 	 */
3167 	if (block_group->length < (100 * SZ_1M)) {
3168 		spin_lock(&block_group->lock);
3169 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3170 		spin_unlock(&block_group->lock);
3171 		return 0;
3172 	}
3173 
3174 	if (TRANS_ABORTED(trans))
3175 		return 0;
3176 again:
3177 	inode = lookup_free_space_inode(block_group, path);
3178 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3179 		ret = PTR_ERR(inode);
3180 		btrfs_release_path(path);
3181 		goto out;
3182 	}
3183 
3184 	if (IS_ERR(inode)) {
3185 		BUG_ON(retries);
3186 		retries++;
3187 
3188 		if (block_group->ro)
3189 			goto out_free;
3190 
3191 		ret = create_free_space_inode(trans, block_group, path);
3192 		if (ret)
3193 			goto out_free;
3194 		goto again;
3195 	}
3196 
3197 	/*
3198 	 * We want to set the generation to 0, that way if anything goes wrong
3199 	 * from here on out we know not to trust this cache when we load up next
3200 	 * time.
3201 	 */
3202 	BTRFS_I(inode)->generation = 0;
3203 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
3204 	if (ret) {
3205 		/*
3206 		 * So theoretically we could recover from this, simply set the
3207 		 * super cache generation to 0 so we know to invalidate the
3208 		 * cache, but then we'd have to keep track of the block groups
3209 		 * that fail this way so we know we _have_ to reset this cache
3210 		 * before the next commit or risk reading stale cache.  So to
3211 		 * limit our exposure to horrible edge cases lets just abort the
3212 		 * transaction, this only happens in really bad situations
3213 		 * anyway.
3214 		 */
3215 		btrfs_abort_transaction(trans, ret);
3216 		goto out_put;
3217 	}
3218 	WARN_ON(ret);
3219 
3220 	/* We've already setup this transaction, go ahead and exit */
3221 	if (block_group->cache_generation == trans->transid &&
3222 	    i_size_read(inode)) {
3223 		dcs = BTRFS_DC_SETUP;
3224 		goto out_put;
3225 	}
3226 
3227 	if (i_size_read(inode) > 0) {
3228 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3229 					&fs_info->global_block_rsv);
3230 		if (ret)
3231 			goto out_put;
3232 
3233 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3234 		if (ret)
3235 			goto out_put;
3236 	}
3237 
3238 	spin_lock(&block_group->lock);
3239 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3240 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3241 		/*
3242 		 * don't bother trying to write stuff out _if_
3243 		 * a) we're not cached,
3244 		 * b) we're with nospace_cache mount option,
3245 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3246 		 */
3247 		dcs = BTRFS_DC_WRITTEN;
3248 		spin_unlock(&block_group->lock);
3249 		goto out_put;
3250 	}
3251 	spin_unlock(&block_group->lock);
3252 
3253 	/*
3254 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3255 	 * skip doing the setup, we've already cleared the cache so we're safe.
3256 	 */
3257 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3258 		ret = -ENOSPC;
3259 		goto out_put;
3260 	}
3261 
3262 	/*
3263 	 * Try to preallocate enough space based on how big the block group is.
3264 	 * Keep in mind this has to include any pinned space which could end up
3265 	 * taking up quite a bit since it's not folded into the other space
3266 	 * cache.
3267 	 */
3268 	cache_size = div_u64(block_group->length, SZ_256M);
3269 	if (!cache_size)
3270 		cache_size = 1;
3271 
3272 	cache_size *= 16;
3273 	cache_size *= fs_info->sectorsize;
3274 
3275 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3276 					  cache_size, false);
3277 	if (ret)
3278 		goto out_put;
3279 
3280 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3281 					      cache_size, cache_size,
3282 					      &alloc_hint);
3283 	/*
3284 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3285 	 * of metadata or split extents when writing the cache out, which means
3286 	 * we can enospc if we are heavily fragmented in addition to just normal
3287 	 * out of space conditions.  So if we hit this just skip setting up any
3288 	 * other block groups for this transaction, maybe we'll unpin enough
3289 	 * space the next time around.
3290 	 */
3291 	if (!ret)
3292 		dcs = BTRFS_DC_SETUP;
3293 	else if (ret == -ENOSPC)
3294 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3295 
3296 out_put:
3297 	iput(inode);
3298 out_free:
3299 	btrfs_release_path(path);
3300 out:
3301 	spin_lock(&block_group->lock);
3302 	if (!ret && dcs == BTRFS_DC_SETUP)
3303 		block_group->cache_generation = trans->transid;
3304 	block_group->disk_cache_state = dcs;
3305 	spin_unlock(&block_group->lock);
3306 
3307 	extent_changeset_free(data_reserved);
3308 	return ret;
3309 }
3310 
3311 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3312 {
3313 	struct btrfs_fs_info *fs_info = trans->fs_info;
3314 	struct btrfs_block_group *cache, *tmp;
3315 	struct btrfs_transaction *cur_trans = trans->transaction;
3316 	struct btrfs_path *path;
3317 
3318 	if (list_empty(&cur_trans->dirty_bgs) ||
3319 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3320 		return 0;
3321 
3322 	path = btrfs_alloc_path();
3323 	if (!path)
3324 		return -ENOMEM;
3325 
3326 	/* Could add new block groups, use _safe just in case */
3327 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3328 				 dirty_list) {
3329 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3330 			cache_save_setup(cache, trans, path);
3331 	}
3332 
3333 	btrfs_free_path(path);
3334 	return 0;
3335 }
3336 
3337 /*
3338  * Transaction commit does final block group cache writeback during a critical
3339  * section where nothing is allowed to change the FS.  This is required in
3340  * order for the cache to actually match the block group, but can introduce a
3341  * lot of latency into the commit.
3342  *
3343  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3344  * There's a chance we'll have to redo some of it if the block group changes
3345  * again during the commit, but it greatly reduces the commit latency by
3346  * getting rid of the easy block groups while we're still allowing others to
3347  * join the commit.
3348  */
3349 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3350 {
3351 	struct btrfs_fs_info *fs_info = trans->fs_info;
3352 	struct btrfs_block_group *cache;
3353 	struct btrfs_transaction *cur_trans = trans->transaction;
3354 	int ret = 0;
3355 	int should_put;
3356 	struct btrfs_path *path = NULL;
3357 	LIST_HEAD(dirty);
3358 	struct list_head *io = &cur_trans->io_bgs;
3359 	int loops = 0;
3360 
3361 	spin_lock(&cur_trans->dirty_bgs_lock);
3362 	if (list_empty(&cur_trans->dirty_bgs)) {
3363 		spin_unlock(&cur_trans->dirty_bgs_lock);
3364 		return 0;
3365 	}
3366 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3367 	spin_unlock(&cur_trans->dirty_bgs_lock);
3368 
3369 again:
3370 	/* Make sure all the block groups on our dirty list actually exist */
3371 	btrfs_create_pending_block_groups(trans);
3372 
3373 	if (!path) {
3374 		path = btrfs_alloc_path();
3375 		if (!path) {
3376 			ret = -ENOMEM;
3377 			goto out;
3378 		}
3379 	}
3380 
3381 	/*
3382 	 * cache_write_mutex is here only to save us from balance or automatic
3383 	 * removal of empty block groups deleting this block group while we are
3384 	 * writing out the cache
3385 	 */
3386 	mutex_lock(&trans->transaction->cache_write_mutex);
3387 	while (!list_empty(&dirty)) {
3388 		bool drop_reserve = true;
3389 
3390 		cache = list_first_entry(&dirty, struct btrfs_block_group,
3391 					 dirty_list);
3392 		/*
3393 		 * This can happen if something re-dirties a block group that
3394 		 * is already under IO.  Just wait for it to finish and then do
3395 		 * it all again
3396 		 */
3397 		if (!list_empty(&cache->io_list)) {
3398 			list_del_init(&cache->io_list);
3399 			btrfs_wait_cache_io(trans, cache, path);
3400 			btrfs_put_block_group(cache);
3401 		}
3402 
3403 
3404 		/*
3405 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3406 		 * it should update the cache_state.  Don't delete until after
3407 		 * we wait.
3408 		 *
3409 		 * Since we're not running in the commit critical section
3410 		 * we need the dirty_bgs_lock to protect from update_block_group
3411 		 */
3412 		spin_lock(&cur_trans->dirty_bgs_lock);
3413 		list_del_init(&cache->dirty_list);
3414 		spin_unlock(&cur_trans->dirty_bgs_lock);
3415 
3416 		should_put = 1;
3417 
3418 		cache_save_setup(cache, trans, path);
3419 
3420 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3421 			cache->io_ctl.inode = NULL;
3422 			ret = btrfs_write_out_cache(trans, cache, path);
3423 			if (ret == 0 && cache->io_ctl.inode) {
3424 				should_put = 0;
3425 
3426 				/*
3427 				 * The cache_write_mutex is protecting the
3428 				 * io_list, also refer to the definition of
3429 				 * btrfs_transaction::io_bgs for more details
3430 				 */
3431 				list_add_tail(&cache->io_list, io);
3432 			} else {
3433 				/*
3434 				 * If we failed to write the cache, the
3435 				 * generation will be bad and life goes on
3436 				 */
3437 				ret = 0;
3438 			}
3439 		}
3440 		if (!ret) {
3441 			ret = update_block_group_item(trans, path, cache);
3442 			/*
3443 			 * Our block group might still be attached to the list
3444 			 * of new block groups in the transaction handle of some
3445 			 * other task (struct btrfs_trans_handle->new_bgs). This
3446 			 * means its block group item isn't yet in the extent
3447 			 * tree. If this happens ignore the error, as we will
3448 			 * try again later in the critical section of the
3449 			 * transaction commit.
3450 			 */
3451 			if (ret == -ENOENT) {
3452 				ret = 0;
3453 				spin_lock(&cur_trans->dirty_bgs_lock);
3454 				if (list_empty(&cache->dirty_list)) {
3455 					list_add_tail(&cache->dirty_list,
3456 						      &cur_trans->dirty_bgs);
3457 					btrfs_get_block_group(cache);
3458 					drop_reserve = false;
3459 				}
3460 				spin_unlock(&cur_trans->dirty_bgs_lock);
3461 			} else if (ret) {
3462 				btrfs_abort_transaction(trans, ret);
3463 			}
3464 		}
3465 
3466 		/* If it's not on the io list, we need to put the block group */
3467 		if (should_put)
3468 			btrfs_put_block_group(cache);
3469 		if (drop_reserve)
3470 			btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3471 		/*
3472 		 * Avoid blocking other tasks for too long. It might even save
3473 		 * us from writing caches for block groups that are going to be
3474 		 * removed.
3475 		 */
3476 		mutex_unlock(&trans->transaction->cache_write_mutex);
3477 		if (ret)
3478 			goto out;
3479 		mutex_lock(&trans->transaction->cache_write_mutex);
3480 	}
3481 	mutex_unlock(&trans->transaction->cache_write_mutex);
3482 
3483 	/*
3484 	 * Go through delayed refs for all the stuff we've just kicked off
3485 	 * and then loop back (just once)
3486 	 */
3487 	if (!ret)
3488 		ret = btrfs_run_delayed_refs(trans, 0);
3489 	if (!ret && loops == 0) {
3490 		loops++;
3491 		spin_lock(&cur_trans->dirty_bgs_lock);
3492 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3493 		/*
3494 		 * dirty_bgs_lock protects us from concurrent block group
3495 		 * deletes too (not just cache_write_mutex).
3496 		 */
3497 		if (!list_empty(&dirty)) {
3498 			spin_unlock(&cur_trans->dirty_bgs_lock);
3499 			goto again;
3500 		}
3501 		spin_unlock(&cur_trans->dirty_bgs_lock);
3502 	}
3503 out:
3504 	if (ret < 0) {
3505 		spin_lock(&cur_trans->dirty_bgs_lock);
3506 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3507 		spin_unlock(&cur_trans->dirty_bgs_lock);
3508 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3509 	}
3510 
3511 	btrfs_free_path(path);
3512 	return ret;
3513 }
3514 
3515 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3516 {
3517 	struct btrfs_fs_info *fs_info = trans->fs_info;
3518 	struct btrfs_block_group *cache;
3519 	struct btrfs_transaction *cur_trans = trans->transaction;
3520 	int ret = 0;
3521 	int should_put;
3522 	struct btrfs_path *path;
3523 	struct list_head *io = &cur_trans->io_bgs;
3524 
3525 	path = btrfs_alloc_path();
3526 	if (!path)
3527 		return -ENOMEM;
3528 
3529 	/*
3530 	 * Even though we are in the critical section of the transaction commit,
3531 	 * we can still have concurrent tasks adding elements to this
3532 	 * transaction's list of dirty block groups. These tasks correspond to
3533 	 * endio free space workers started when writeback finishes for a
3534 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3535 	 * allocate new block groups as a result of COWing nodes of the root
3536 	 * tree when updating the free space inode. The writeback for the space
3537 	 * caches is triggered by an earlier call to
3538 	 * btrfs_start_dirty_block_groups() and iterations of the following
3539 	 * loop.
3540 	 * Also we want to do the cache_save_setup first and then run the
3541 	 * delayed refs to make sure we have the best chance at doing this all
3542 	 * in one shot.
3543 	 */
3544 	spin_lock(&cur_trans->dirty_bgs_lock);
3545 	while (!list_empty(&cur_trans->dirty_bgs)) {
3546 		cache = list_first_entry(&cur_trans->dirty_bgs,
3547 					 struct btrfs_block_group,
3548 					 dirty_list);
3549 
3550 		/*
3551 		 * This can happen if cache_save_setup re-dirties a block group
3552 		 * that is already under IO.  Just wait for it to finish and
3553 		 * then do it all again
3554 		 */
3555 		if (!list_empty(&cache->io_list)) {
3556 			spin_unlock(&cur_trans->dirty_bgs_lock);
3557 			list_del_init(&cache->io_list);
3558 			btrfs_wait_cache_io(trans, cache, path);
3559 			btrfs_put_block_group(cache);
3560 			spin_lock(&cur_trans->dirty_bgs_lock);
3561 		}
3562 
3563 		/*
3564 		 * Don't remove from the dirty list until after we've waited on
3565 		 * any pending IO
3566 		 */
3567 		list_del_init(&cache->dirty_list);
3568 		spin_unlock(&cur_trans->dirty_bgs_lock);
3569 		should_put = 1;
3570 
3571 		cache_save_setup(cache, trans, path);
3572 
3573 		if (!ret)
3574 			ret = btrfs_run_delayed_refs(trans, U64_MAX);
3575 
3576 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3577 			cache->io_ctl.inode = NULL;
3578 			ret = btrfs_write_out_cache(trans, cache, path);
3579 			if (ret == 0 && cache->io_ctl.inode) {
3580 				should_put = 0;
3581 				list_add_tail(&cache->io_list, io);
3582 			} else {
3583 				/*
3584 				 * If we failed to write the cache, the
3585 				 * generation will be bad and life goes on
3586 				 */
3587 				ret = 0;
3588 			}
3589 		}
3590 		if (!ret) {
3591 			ret = update_block_group_item(trans, path, cache);
3592 			/*
3593 			 * One of the free space endio workers might have
3594 			 * created a new block group while updating a free space
3595 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3596 			 * and hasn't released its transaction handle yet, in
3597 			 * which case the new block group is still attached to
3598 			 * its transaction handle and its creation has not
3599 			 * finished yet (no block group item in the extent tree
3600 			 * yet, etc). If this is the case, wait for all free
3601 			 * space endio workers to finish and retry. This is a
3602 			 * very rare case so no need for a more efficient and
3603 			 * complex approach.
3604 			 */
3605 			if (ret == -ENOENT) {
3606 				wait_event(cur_trans->writer_wait,
3607 				   atomic_read(&cur_trans->num_writers) == 1);
3608 				ret = update_block_group_item(trans, path, cache);
3609 			}
3610 			if (ret)
3611 				btrfs_abort_transaction(trans, ret);
3612 		}
3613 
3614 		/* If its not on the io list, we need to put the block group */
3615 		if (should_put)
3616 			btrfs_put_block_group(cache);
3617 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3618 		spin_lock(&cur_trans->dirty_bgs_lock);
3619 	}
3620 	spin_unlock(&cur_trans->dirty_bgs_lock);
3621 
3622 	/*
3623 	 * Refer to the definition of io_bgs member for details why it's safe
3624 	 * to use it without any locking
3625 	 */
3626 	while (!list_empty(io)) {
3627 		cache = list_first_entry(io, struct btrfs_block_group,
3628 					 io_list);
3629 		list_del_init(&cache->io_list);
3630 		btrfs_wait_cache_io(trans, cache, path);
3631 		btrfs_put_block_group(cache);
3632 	}
3633 
3634 	btrfs_free_path(path);
3635 	return ret;
3636 }
3637 
3638 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3639 			     u64 bytenr, u64 num_bytes, bool alloc)
3640 {
3641 	struct btrfs_fs_info *info = trans->fs_info;
3642 	struct btrfs_space_info *space_info;
3643 	struct btrfs_block_group *cache;
3644 	u64 old_val;
3645 	bool reclaim = false;
3646 	bool bg_already_dirty = true;
3647 	int factor;
3648 
3649 	/* Block accounting for super block */
3650 	spin_lock(&info->delalloc_root_lock);
3651 	old_val = btrfs_super_bytes_used(info->super_copy);
3652 	if (alloc)
3653 		old_val += num_bytes;
3654 	else
3655 		old_val -= num_bytes;
3656 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3657 	spin_unlock(&info->delalloc_root_lock);
3658 
3659 	cache = btrfs_lookup_block_group(info, bytenr);
3660 	if (!cache)
3661 		return -ENOENT;
3662 
3663 	/* An extent can not span multiple block groups. */
3664 	ASSERT(bytenr + num_bytes <= cache->start + cache->length);
3665 
3666 	space_info = cache->space_info;
3667 	factor = btrfs_bg_type_to_factor(cache->flags);
3668 
3669 	/*
3670 	 * If this block group has free space cache written out, we need to make
3671 	 * sure to load it if we are removing space.  This is because we need
3672 	 * the unpinning stage to actually add the space back to the block group,
3673 	 * otherwise we will leak space.
3674 	 */
3675 	if (!alloc && !btrfs_block_group_done(cache))
3676 		btrfs_cache_block_group(cache, true);
3677 
3678 	spin_lock(&space_info->lock);
3679 	spin_lock(&cache->lock);
3680 
3681 	if (btrfs_test_opt(info, SPACE_CACHE) &&
3682 	    cache->disk_cache_state < BTRFS_DC_CLEAR)
3683 		cache->disk_cache_state = BTRFS_DC_CLEAR;
3684 
3685 	old_val = cache->used;
3686 	if (alloc) {
3687 		old_val += num_bytes;
3688 		cache->used = old_val;
3689 		cache->reserved -= num_bytes;
3690 		cache->reclaim_mark = 0;
3691 		space_info->bytes_reserved -= num_bytes;
3692 		space_info->bytes_used += num_bytes;
3693 		space_info->disk_used += num_bytes * factor;
3694 		if (READ_ONCE(space_info->periodic_reclaim))
3695 			btrfs_space_info_update_reclaimable(space_info, -num_bytes);
3696 		spin_unlock(&cache->lock);
3697 		spin_unlock(&space_info->lock);
3698 	} else {
3699 		old_val -= num_bytes;
3700 		cache->used = old_val;
3701 		cache->pinned += num_bytes;
3702 		btrfs_space_info_update_bytes_pinned(info, space_info, num_bytes);
3703 		space_info->bytes_used -= num_bytes;
3704 		space_info->disk_used -= num_bytes * factor;
3705 		if (READ_ONCE(space_info->periodic_reclaim))
3706 			btrfs_space_info_update_reclaimable(space_info, num_bytes);
3707 		else
3708 			reclaim = should_reclaim_block_group(cache, num_bytes);
3709 
3710 		spin_unlock(&cache->lock);
3711 		spin_unlock(&space_info->lock);
3712 
3713 		set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3714 			       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3715 	}
3716 
3717 	spin_lock(&trans->transaction->dirty_bgs_lock);
3718 	if (list_empty(&cache->dirty_list)) {
3719 		list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3720 		bg_already_dirty = false;
3721 		btrfs_get_block_group(cache);
3722 	}
3723 	spin_unlock(&trans->transaction->dirty_bgs_lock);
3724 
3725 	/*
3726 	 * No longer have used bytes in this block group, queue it for deletion.
3727 	 * We do this after adding the block group to the dirty list to avoid
3728 	 * races between cleaner kthread and space cache writeout.
3729 	 */
3730 	if (!alloc && old_val == 0) {
3731 		if (!btrfs_test_opt(info, DISCARD_ASYNC))
3732 			btrfs_mark_bg_unused(cache);
3733 	} else if (!alloc && reclaim) {
3734 		btrfs_mark_bg_to_reclaim(cache);
3735 	}
3736 
3737 	btrfs_put_block_group(cache);
3738 
3739 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3740 	if (!bg_already_dirty)
3741 		btrfs_inc_delayed_refs_rsv_bg_updates(info);
3742 
3743 	return 0;
3744 }
3745 
3746 /*
3747  * Update the block_group and space info counters.
3748  *
3749  * @cache:	The cache we are manipulating
3750  * @ram_bytes:  The number of bytes of file content, and will be same to
3751  *              @num_bytes except for the compress path.
3752  * @num_bytes:	The number of bytes in question
3753  * @delalloc:   The blocks are allocated for the delalloc write
3754  *
3755  * This is called by the allocator when it reserves space. If this is a
3756  * reservation and the block group has become read only we cannot make the
3757  * reservation and return -EAGAIN, otherwise this function always succeeds.
3758  */
3759 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3760 			     u64 ram_bytes, u64 num_bytes, int delalloc,
3761 			     bool force_wrong_size_class)
3762 {
3763 	struct btrfs_space_info *space_info = cache->space_info;
3764 	enum btrfs_block_group_size_class size_class;
3765 	int ret = 0;
3766 
3767 	spin_lock(&space_info->lock);
3768 	spin_lock(&cache->lock);
3769 	if (cache->ro) {
3770 		ret = -EAGAIN;
3771 		goto out;
3772 	}
3773 
3774 	if (btrfs_block_group_should_use_size_class(cache)) {
3775 		size_class = btrfs_calc_block_group_size_class(num_bytes);
3776 		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3777 		if (ret)
3778 			goto out;
3779 	}
3780 	cache->reserved += num_bytes;
3781 	space_info->bytes_reserved += num_bytes;
3782 	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3783 				      space_info->flags, num_bytes, 1);
3784 	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3785 					      space_info, -ram_bytes);
3786 	if (delalloc)
3787 		cache->delalloc_bytes += num_bytes;
3788 
3789 	/*
3790 	 * Compression can use less space than we reserved, so wake tickets if
3791 	 * that happens.
3792 	 */
3793 	if (num_bytes < ram_bytes)
3794 		btrfs_try_granting_tickets(cache->fs_info, space_info);
3795 out:
3796 	spin_unlock(&cache->lock);
3797 	spin_unlock(&space_info->lock);
3798 	return ret;
3799 }
3800 
3801 /*
3802  * Update the block_group and space info counters.
3803  *
3804  * @cache:      The cache we are manipulating
3805  * @num_bytes:  The number of bytes in question
3806  * @delalloc:   The blocks are allocated for the delalloc write
3807  *
3808  * This is called by somebody who is freeing space that was never actually used
3809  * on disk.  For example if you reserve some space for a new leaf in transaction
3810  * A and before transaction A commits you free that leaf, you call this with
3811  * reserve set to 0 in order to clear the reservation.
3812  */
3813 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3814 			       u64 num_bytes, int delalloc)
3815 {
3816 	struct btrfs_space_info *space_info = cache->space_info;
3817 
3818 	spin_lock(&space_info->lock);
3819 	spin_lock(&cache->lock);
3820 	if (cache->ro)
3821 		space_info->bytes_readonly += num_bytes;
3822 	else if (btrfs_is_zoned(cache->fs_info))
3823 		space_info->bytes_zone_unusable += num_bytes;
3824 	cache->reserved -= num_bytes;
3825 	space_info->bytes_reserved -= num_bytes;
3826 	space_info->max_extent_size = 0;
3827 
3828 	if (delalloc)
3829 		cache->delalloc_bytes -= num_bytes;
3830 	spin_unlock(&cache->lock);
3831 
3832 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3833 	spin_unlock(&space_info->lock);
3834 }
3835 
3836 static void force_metadata_allocation(struct btrfs_fs_info *info)
3837 {
3838 	struct list_head *head = &info->space_info;
3839 	struct btrfs_space_info *found;
3840 
3841 	list_for_each_entry(found, head, list) {
3842 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3843 			found->force_alloc = CHUNK_ALLOC_FORCE;
3844 	}
3845 }
3846 
3847 static int should_alloc_chunk(const struct btrfs_fs_info *fs_info,
3848 			      const struct btrfs_space_info *sinfo, int force)
3849 {
3850 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3851 	u64 thresh;
3852 
3853 	if (force == CHUNK_ALLOC_FORCE)
3854 		return 1;
3855 
3856 	/*
3857 	 * in limited mode, we want to have some free space up to
3858 	 * about 1% of the FS size.
3859 	 */
3860 	if (force == CHUNK_ALLOC_LIMITED) {
3861 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3862 		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3863 
3864 		if (sinfo->total_bytes - bytes_used < thresh)
3865 			return 1;
3866 	}
3867 
3868 	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3869 		return 0;
3870 	return 1;
3871 }
3872 
3873 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3874 {
3875 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3876 
3877 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3878 }
3879 
3880 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3881 {
3882 	struct btrfs_block_group *bg;
3883 	int ret;
3884 
3885 	/*
3886 	 * Check if we have enough space in the system space info because we
3887 	 * will need to update device items in the chunk btree and insert a new
3888 	 * chunk item in the chunk btree as well. This will allocate a new
3889 	 * system block group if needed.
3890 	 */
3891 	check_system_chunk(trans, flags);
3892 
3893 	bg = btrfs_create_chunk(trans, flags);
3894 	if (IS_ERR(bg)) {
3895 		ret = PTR_ERR(bg);
3896 		goto out;
3897 	}
3898 
3899 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3900 	/*
3901 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3902 	 * previously reserved space in the system space_info and allocated one
3903 	 * new system chunk if necessary. However there are three exceptions:
3904 	 *
3905 	 * 1) We may have enough free space in the system space_info but all the
3906 	 *    existing system block groups have a profile which can not be used
3907 	 *    for extent allocation.
3908 	 *
3909 	 *    This happens when mounting in degraded mode. For example we have a
3910 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3911 	 *    using the other device in degraded mode. If we then allocate a chunk,
3912 	 *    we may have enough free space in the existing system space_info, but
3913 	 *    none of the block groups can be used for extent allocation since they
3914 	 *    have a RAID1 profile, and because we are in degraded mode with a
3915 	 *    single device, we are forced to allocate a new system chunk with a
3916 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3917 	 *    block groups and check if they have a usable profile and enough space
3918 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3919 	 *    try again after forcing allocation of a new system chunk. Like this
3920 	 *    we avoid paying the cost of that search in normal circumstances, when
3921 	 *    we were not mounted in degraded mode;
3922 	 *
3923 	 * 2) We had enough free space info the system space_info, and one suitable
3924 	 *    block group to allocate from when we called check_system_chunk()
3925 	 *    above. However right after we called it, the only system block group
3926 	 *    with enough free space got turned into RO mode by a running scrub,
3927 	 *    and in this case we have to allocate a new one and retry. We only
3928 	 *    need do this allocate and retry once, since we have a transaction
3929 	 *    handle and scrub uses the commit root to search for block groups;
3930 	 *
3931 	 * 3) We had one system block group with enough free space when we called
3932 	 *    check_system_chunk(), but after that, right before we tried to
3933 	 *    allocate the last extent buffer we needed, a discard operation came
3934 	 *    in and it temporarily removed the last free space entry from the
3935 	 *    block group (discard removes a free space entry, discards it, and
3936 	 *    then adds back the entry to the block group cache).
3937 	 */
3938 	if (ret == -ENOSPC) {
3939 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3940 		struct btrfs_block_group *sys_bg;
3941 
3942 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3943 		if (IS_ERR(sys_bg)) {
3944 			ret = PTR_ERR(sys_bg);
3945 			btrfs_abort_transaction(trans, ret);
3946 			goto out;
3947 		}
3948 
3949 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3950 		if (ret) {
3951 			btrfs_abort_transaction(trans, ret);
3952 			goto out;
3953 		}
3954 
3955 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3956 		if (ret) {
3957 			btrfs_abort_transaction(trans, ret);
3958 			goto out;
3959 		}
3960 	} else if (ret) {
3961 		btrfs_abort_transaction(trans, ret);
3962 		goto out;
3963 	}
3964 out:
3965 	btrfs_trans_release_chunk_metadata(trans);
3966 
3967 	if (ret)
3968 		return ERR_PTR(ret);
3969 
3970 	btrfs_get_block_group(bg);
3971 	return bg;
3972 }
3973 
3974 /*
3975  * Chunk allocation is done in 2 phases:
3976  *
3977  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3978  *    the chunk, the chunk mapping, create its block group and add the items
3979  *    that belong in the chunk btree to it - more specifically, we need to
3980  *    update device items in the chunk btree and add a new chunk item to it.
3981  *
3982  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3983  *    group item to the extent btree and the device extent items to the devices
3984  *    btree.
3985  *
3986  * This is done to prevent deadlocks. For example when COWing a node from the
3987  * extent btree we are holding a write lock on the node's parent and if we
3988  * trigger chunk allocation and attempted to insert the new block group item
3989  * in the extent btree right way, we could deadlock because the path for the
3990  * insertion can include that parent node. At first glance it seems impossible
3991  * to trigger chunk allocation after starting a transaction since tasks should
3992  * reserve enough transaction units (metadata space), however while that is true
3993  * most of the time, chunk allocation may still be triggered for several reasons:
3994  *
3995  * 1) When reserving metadata, we check if there is enough free space in the
3996  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3997  *    However later when the task actually tries to COW an extent buffer from
3998  *    the extent btree or from the device btree for example, it is forced to
3999  *    allocate a new block group (chunk) because the only one that had enough
4000  *    free space was just turned to RO mode by a running scrub for example (or
4001  *    device replace, block group reclaim thread, etc), so we can not use it
4002  *    for allocating an extent and end up being forced to allocate a new one;
4003  *
4004  * 2) Because we only check that the metadata space_info has enough free bytes,
4005  *    we end up not allocating a new metadata chunk in that case. However if
4006  *    the filesystem was mounted in degraded mode, none of the existing block
4007  *    groups might be suitable for extent allocation due to their incompatible
4008  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
4009  *    use a RAID1 profile, in degraded mode using a single device). In this case
4010  *    when the task attempts to COW some extent buffer of the extent btree for
4011  *    example, it will trigger allocation of a new metadata block group with a
4012  *    suitable profile (SINGLE profile in the example of the degraded mount of
4013  *    the RAID1 filesystem);
4014  *
4015  * 3) The task has reserved enough transaction units / metadata space, but when
4016  *    it attempts to COW an extent buffer from the extent or device btree for
4017  *    example, it does not find any free extent in any metadata block group,
4018  *    therefore forced to try to allocate a new metadata block group.
4019  *    This is because some other task allocated all available extents in the
4020  *    meanwhile - this typically happens with tasks that don't reserve space
4021  *    properly, either intentionally or as a bug. One example where this is
4022  *    done intentionally is fsync, as it does not reserve any transaction units
4023  *    and ends up allocating a variable number of metadata extents for log
4024  *    tree extent buffers;
4025  *
4026  * 4) The task has reserved enough transaction units / metadata space, but right
4027  *    before it tries to allocate the last extent buffer it needs, a discard
4028  *    operation comes in and, temporarily, removes the last free space entry from
4029  *    the only metadata block group that had free space (discard starts by
4030  *    removing a free space entry from a block group, then does the discard
4031  *    operation and, once it's done, it adds back the free space entry to the
4032  *    block group).
4033  *
4034  * We also need this 2 phases setup when adding a device to a filesystem with
4035  * a seed device - we must create new metadata and system chunks without adding
4036  * any of the block group items to the chunk, extent and device btrees. If we
4037  * did not do it this way, we would get ENOSPC when attempting to update those
4038  * btrees, since all the chunks from the seed device are read-only.
4039  *
4040  * Phase 1 does the updates and insertions to the chunk btree because if we had
4041  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4042  * parallel, we risk having too many system chunks allocated by many tasks if
4043  * many tasks reach phase 1 without the previous ones completing phase 2. In the
4044  * extreme case this leads to exhaustion of the system chunk array in the
4045  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4046  * and with RAID filesystems (so we have more device items in the chunk btree).
4047  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4048  * the system chunk array due to concurrent allocations") provides more details.
4049  *
4050  * Allocation of system chunks does not happen through this function. A task that
4051  * needs to update the chunk btree (the only btree that uses system chunks), must
4052  * preallocate chunk space by calling either check_system_chunk() or
4053  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4054  * metadata chunk or when removing a chunk, while the later is used before doing
4055  * a modification to the chunk btree - use cases for the later are adding,
4056  * removing and resizing a device as well as relocation of a system chunk.
4057  * See the comment below for more details.
4058  *
4059  * The reservation of system space, done through check_system_chunk(), as well
4060  * as all the updates and insertions into the chunk btree must be done while
4061  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4062  * an extent buffer from the chunks btree we never trigger allocation of a new
4063  * system chunk, which would result in a deadlock (trying to lock twice an
4064  * extent buffer of the chunk btree, first time before triggering the chunk
4065  * allocation and the second time during chunk allocation while attempting to
4066  * update the chunks btree). The system chunk array is also updated while holding
4067  * that mutex. The same logic applies to removing chunks - we must reserve system
4068  * space, update the chunk btree and the system chunk array in the superblock
4069  * while holding fs_info->chunk_mutex.
4070  *
4071  * This function, btrfs_chunk_alloc(), belongs to phase 1.
4072  *
4073  * If @force is CHUNK_ALLOC_FORCE:
4074  *    - return 1 if it successfully allocates a chunk,
4075  *    - return errors including -ENOSPC otherwise.
4076  * If @force is NOT CHUNK_ALLOC_FORCE:
4077  *    - return 0 if it doesn't need to allocate a new chunk,
4078  *    - return 1 if it successfully allocates a chunk,
4079  *    - return errors including -ENOSPC otherwise.
4080  */
4081 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4082 		      enum btrfs_chunk_alloc_enum force)
4083 {
4084 	struct btrfs_fs_info *fs_info = trans->fs_info;
4085 	struct btrfs_space_info *space_info;
4086 	struct btrfs_block_group *ret_bg;
4087 	bool wait_for_alloc = false;
4088 	bool should_alloc = false;
4089 	bool from_extent_allocation = false;
4090 	int ret = 0;
4091 
4092 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4093 		from_extent_allocation = true;
4094 		force = CHUNK_ALLOC_FORCE;
4095 	}
4096 
4097 	/* Don't re-enter if we're already allocating a chunk */
4098 	if (trans->allocating_chunk)
4099 		return -ENOSPC;
4100 	/*
4101 	 * Allocation of system chunks can not happen through this path, as we
4102 	 * could end up in a deadlock if we are allocating a data or metadata
4103 	 * chunk and there is another task modifying the chunk btree.
4104 	 *
4105 	 * This is because while we are holding the chunk mutex, we will attempt
4106 	 * to add the new chunk item to the chunk btree or update an existing
4107 	 * device item in the chunk btree, while the other task that is modifying
4108 	 * the chunk btree is attempting to COW an extent buffer while holding a
4109 	 * lock on it and on its parent - if the COW operation triggers a system
4110 	 * chunk allocation, then we can deadlock because we are holding the
4111 	 * chunk mutex and we may need to access that extent buffer or its parent
4112 	 * in order to add the chunk item or update a device item.
4113 	 *
4114 	 * Tasks that want to modify the chunk tree should reserve system space
4115 	 * before updating the chunk btree, by calling either
4116 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4117 	 * It's possible that after a task reserves the space, it still ends up
4118 	 * here - this happens in the cases described above at do_chunk_alloc().
4119 	 * The task will have to either retry or fail.
4120 	 */
4121 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4122 		return -ENOSPC;
4123 
4124 	space_info = btrfs_find_space_info(fs_info, flags);
4125 	ASSERT(space_info);
4126 
4127 	do {
4128 		spin_lock(&space_info->lock);
4129 		if (force < space_info->force_alloc)
4130 			force = space_info->force_alloc;
4131 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4132 		if (space_info->full) {
4133 			/* No more free physical space */
4134 			if (should_alloc)
4135 				ret = -ENOSPC;
4136 			else
4137 				ret = 0;
4138 			spin_unlock(&space_info->lock);
4139 			return ret;
4140 		} else if (!should_alloc) {
4141 			spin_unlock(&space_info->lock);
4142 			return 0;
4143 		} else if (space_info->chunk_alloc) {
4144 			/*
4145 			 * Someone is already allocating, so we need to block
4146 			 * until this someone is finished and then loop to
4147 			 * recheck if we should continue with our allocation
4148 			 * attempt.
4149 			 */
4150 			wait_for_alloc = true;
4151 			force = CHUNK_ALLOC_NO_FORCE;
4152 			spin_unlock(&space_info->lock);
4153 			mutex_lock(&fs_info->chunk_mutex);
4154 			mutex_unlock(&fs_info->chunk_mutex);
4155 		} else {
4156 			/* Proceed with allocation */
4157 			space_info->chunk_alloc = 1;
4158 			wait_for_alloc = false;
4159 			spin_unlock(&space_info->lock);
4160 		}
4161 
4162 		cond_resched();
4163 	} while (wait_for_alloc);
4164 
4165 	mutex_lock(&fs_info->chunk_mutex);
4166 	trans->allocating_chunk = true;
4167 
4168 	/*
4169 	 * If we have mixed data/metadata chunks we want to make sure we keep
4170 	 * allocating mixed chunks instead of individual chunks.
4171 	 */
4172 	if (btrfs_mixed_space_info(space_info))
4173 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4174 
4175 	/*
4176 	 * if we're doing a data chunk, go ahead and make sure that
4177 	 * we keep a reasonable number of metadata chunks allocated in the
4178 	 * FS as well.
4179 	 */
4180 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4181 		fs_info->data_chunk_allocations++;
4182 		if (!(fs_info->data_chunk_allocations %
4183 		      fs_info->metadata_ratio))
4184 			force_metadata_allocation(fs_info);
4185 	}
4186 
4187 	ret_bg = do_chunk_alloc(trans, flags);
4188 	trans->allocating_chunk = false;
4189 
4190 	if (IS_ERR(ret_bg)) {
4191 		ret = PTR_ERR(ret_bg);
4192 	} else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4193 		/*
4194 		 * New block group is likely to be used soon. Try to activate
4195 		 * it now. Failure is OK for now.
4196 		 */
4197 		btrfs_zone_activate(ret_bg);
4198 	}
4199 
4200 	if (!ret)
4201 		btrfs_put_block_group(ret_bg);
4202 
4203 	spin_lock(&space_info->lock);
4204 	if (ret < 0) {
4205 		if (ret == -ENOSPC)
4206 			space_info->full = 1;
4207 		else
4208 			goto out;
4209 	} else {
4210 		ret = 1;
4211 		space_info->max_extent_size = 0;
4212 	}
4213 
4214 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4215 out:
4216 	space_info->chunk_alloc = 0;
4217 	spin_unlock(&space_info->lock);
4218 	mutex_unlock(&fs_info->chunk_mutex);
4219 
4220 	return ret;
4221 }
4222 
4223 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type)
4224 {
4225 	u64 num_dev;
4226 
4227 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4228 	if (!num_dev)
4229 		num_dev = fs_info->fs_devices->rw_devices;
4230 
4231 	return num_dev;
4232 }
4233 
4234 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4235 				u64 bytes,
4236 				u64 type)
4237 {
4238 	struct btrfs_fs_info *fs_info = trans->fs_info;
4239 	struct btrfs_space_info *info;
4240 	u64 left;
4241 	int ret = 0;
4242 
4243 	/*
4244 	 * Needed because we can end up allocating a system chunk and for an
4245 	 * atomic and race free space reservation in the chunk block reserve.
4246 	 */
4247 	lockdep_assert_held(&fs_info->chunk_mutex);
4248 
4249 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4250 	spin_lock(&info->lock);
4251 	left = info->total_bytes - btrfs_space_info_used(info, true);
4252 	spin_unlock(&info->lock);
4253 
4254 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4255 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4256 			   left, bytes, type);
4257 		btrfs_dump_space_info(fs_info, info, 0, 0);
4258 	}
4259 
4260 	if (left < bytes) {
4261 		u64 flags = btrfs_system_alloc_profile(fs_info);
4262 		struct btrfs_block_group *bg;
4263 
4264 		/*
4265 		 * Ignore failure to create system chunk. We might end up not
4266 		 * needing it, as we might not need to COW all nodes/leafs from
4267 		 * the paths we visit in the chunk tree (they were already COWed
4268 		 * or created in the current transaction for example).
4269 		 */
4270 		bg = btrfs_create_chunk(trans, flags);
4271 		if (IS_ERR(bg)) {
4272 			ret = PTR_ERR(bg);
4273 		} else {
4274 			/*
4275 			 * We have a new chunk. We also need to activate it for
4276 			 * zoned filesystem.
4277 			 */
4278 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4279 			if (ret < 0)
4280 				return;
4281 
4282 			/*
4283 			 * If we fail to add the chunk item here, we end up
4284 			 * trying again at phase 2 of chunk allocation, at
4285 			 * btrfs_create_pending_block_groups(). So ignore
4286 			 * any error here. An ENOSPC here could happen, due to
4287 			 * the cases described at do_chunk_alloc() - the system
4288 			 * block group we just created was just turned into RO
4289 			 * mode by a scrub for example, or a running discard
4290 			 * temporarily removed its free space entries, etc.
4291 			 */
4292 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4293 		}
4294 	}
4295 
4296 	if (!ret) {
4297 		ret = btrfs_block_rsv_add(fs_info,
4298 					  &fs_info->chunk_block_rsv,
4299 					  bytes, BTRFS_RESERVE_NO_FLUSH);
4300 		if (!ret)
4301 			trans->chunk_bytes_reserved += bytes;
4302 	}
4303 }
4304 
4305 /*
4306  * Reserve space in the system space for allocating or removing a chunk.
4307  * The caller must be holding fs_info->chunk_mutex.
4308  */
4309 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4310 {
4311 	struct btrfs_fs_info *fs_info = trans->fs_info;
4312 	const u64 num_devs = get_profile_num_devs(fs_info, type);
4313 	u64 bytes;
4314 
4315 	/* num_devs device items to update and 1 chunk item to add or remove. */
4316 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4317 		btrfs_calc_insert_metadata_size(fs_info, 1);
4318 
4319 	reserve_chunk_space(trans, bytes, type);
4320 }
4321 
4322 /*
4323  * Reserve space in the system space, if needed, for doing a modification to the
4324  * chunk btree.
4325  *
4326  * @trans:		A transaction handle.
4327  * @is_item_insertion:	Indicate if the modification is for inserting a new item
4328  *			in the chunk btree or if it's for the deletion or update
4329  *			of an existing item.
4330  *
4331  * This is used in a context where we need to update the chunk btree outside
4332  * block group allocation and removal, to avoid a deadlock with a concurrent
4333  * task that is allocating a metadata or data block group and therefore needs to
4334  * update the chunk btree while holding the chunk mutex. After the update to the
4335  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4336  *
4337  */
4338 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4339 				  bool is_item_insertion)
4340 {
4341 	struct btrfs_fs_info *fs_info = trans->fs_info;
4342 	u64 bytes;
4343 
4344 	if (is_item_insertion)
4345 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4346 	else
4347 		bytes = btrfs_calc_metadata_size(fs_info, 1);
4348 
4349 	mutex_lock(&fs_info->chunk_mutex);
4350 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4351 	mutex_unlock(&fs_info->chunk_mutex);
4352 }
4353 
4354 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4355 {
4356 	struct btrfs_block_group *block_group;
4357 
4358 	block_group = btrfs_lookup_first_block_group(info, 0);
4359 	while (block_group) {
4360 		btrfs_wait_block_group_cache_done(block_group);
4361 		spin_lock(&block_group->lock);
4362 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4363 				       &block_group->runtime_flags)) {
4364 			struct btrfs_inode *inode = block_group->inode;
4365 
4366 			block_group->inode = NULL;
4367 			spin_unlock(&block_group->lock);
4368 
4369 			ASSERT(block_group->io_ctl.inode == NULL);
4370 			iput(&inode->vfs_inode);
4371 		} else {
4372 			spin_unlock(&block_group->lock);
4373 		}
4374 		block_group = btrfs_next_block_group(block_group);
4375 	}
4376 }
4377 
4378 /*
4379  * Must be called only after stopping all workers, since we could have block
4380  * group caching kthreads running, and therefore they could race with us if we
4381  * freed the block groups before stopping them.
4382  */
4383 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4384 {
4385 	struct btrfs_block_group *block_group;
4386 	struct btrfs_space_info *space_info;
4387 	struct btrfs_caching_control *caching_ctl;
4388 	struct rb_node *n;
4389 
4390 	if (btrfs_is_zoned(info)) {
4391 		if (info->active_meta_bg) {
4392 			btrfs_put_block_group(info->active_meta_bg);
4393 			info->active_meta_bg = NULL;
4394 		}
4395 		if (info->active_system_bg) {
4396 			btrfs_put_block_group(info->active_system_bg);
4397 			info->active_system_bg = NULL;
4398 		}
4399 	}
4400 
4401 	write_lock(&info->block_group_cache_lock);
4402 	while (!list_empty(&info->caching_block_groups)) {
4403 		caching_ctl = list_entry(info->caching_block_groups.next,
4404 					 struct btrfs_caching_control, list);
4405 		list_del(&caching_ctl->list);
4406 		btrfs_put_caching_control(caching_ctl);
4407 	}
4408 	write_unlock(&info->block_group_cache_lock);
4409 
4410 	spin_lock(&info->unused_bgs_lock);
4411 	while (!list_empty(&info->unused_bgs)) {
4412 		block_group = list_first_entry(&info->unused_bgs,
4413 					       struct btrfs_block_group,
4414 					       bg_list);
4415 		list_del_init(&block_group->bg_list);
4416 		btrfs_put_block_group(block_group);
4417 	}
4418 
4419 	while (!list_empty(&info->reclaim_bgs)) {
4420 		block_group = list_first_entry(&info->reclaim_bgs,
4421 					       struct btrfs_block_group,
4422 					       bg_list);
4423 		list_del_init(&block_group->bg_list);
4424 		btrfs_put_block_group(block_group);
4425 	}
4426 	spin_unlock(&info->unused_bgs_lock);
4427 
4428 	spin_lock(&info->zone_active_bgs_lock);
4429 	while (!list_empty(&info->zone_active_bgs)) {
4430 		block_group = list_first_entry(&info->zone_active_bgs,
4431 					       struct btrfs_block_group,
4432 					       active_bg_list);
4433 		list_del_init(&block_group->active_bg_list);
4434 		btrfs_put_block_group(block_group);
4435 	}
4436 	spin_unlock(&info->zone_active_bgs_lock);
4437 
4438 	write_lock(&info->block_group_cache_lock);
4439 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4440 		block_group = rb_entry(n, struct btrfs_block_group,
4441 				       cache_node);
4442 		rb_erase_cached(&block_group->cache_node,
4443 				&info->block_group_cache_tree);
4444 		RB_CLEAR_NODE(&block_group->cache_node);
4445 		write_unlock(&info->block_group_cache_lock);
4446 
4447 		down_write(&block_group->space_info->groups_sem);
4448 		list_del(&block_group->list);
4449 		up_write(&block_group->space_info->groups_sem);
4450 
4451 		/*
4452 		 * We haven't cached this block group, which means we could
4453 		 * possibly have excluded extents on this block group.
4454 		 */
4455 		if (block_group->cached == BTRFS_CACHE_NO ||
4456 		    block_group->cached == BTRFS_CACHE_ERROR)
4457 			btrfs_free_excluded_extents(block_group);
4458 
4459 		btrfs_remove_free_space_cache(block_group);
4460 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4461 		ASSERT(list_empty(&block_group->dirty_list));
4462 		ASSERT(list_empty(&block_group->io_list));
4463 		ASSERT(list_empty(&block_group->bg_list));
4464 		ASSERT(refcount_read(&block_group->refs) == 1);
4465 		ASSERT(block_group->swap_extents == 0);
4466 		btrfs_put_block_group(block_group);
4467 
4468 		write_lock(&info->block_group_cache_lock);
4469 	}
4470 	write_unlock(&info->block_group_cache_lock);
4471 
4472 	btrfs_release_global_block_rsv(info);
4473 
4474 	while (!list_empty(&info->space_info)) {
4475 		space_info = list_entry(info->space_info.next,
4476 					struct btrfs_space_info,
4477 					list);
4478 
4479 		/*
4480 		 * Do not hide this behind enospc_debug, this is actually
4481 		 * important and indicates a real bug if this happens.
4482 		 */
4483 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4484 			    space_info->bytes_may_use > 0))
4485 			btrfs_dump_space_info(info, space_info, 0, 0);
4486 
4487 		/*
4488 		 * If there was a failure to cleanup a log tree, very likely due
4489 		 * to an IO failure on a writeback attempt of one or more of its
4490 		 * extent buffers, we could not do proper (and cheap) unaccounting
4491 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4492 		 * that case.
4493 		 */
4494 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4495 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4496 			if (WARN_ON(space_info->bytes_reserved > 0))
4497 				btrfs_dump_space_info(info, space_info, 0, 0);
4498 		}
4499 
4500 		WARN_ON(space_info->reclaim_size > 0);
4501 		list_del(&space_info->list);
4502 		btrfs_sysfs_remove_space_info(space_info);
4503 	}
4504 	return 0;
4505 }
4506 
4507 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4508 {
4509 	atomic_inc(&cache->frozen);
4510 }
4511 
4512 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4513 {
4514 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4515 	bool cleanup;
4516 
4517 	spin_lock(&block_group->lock);
4518 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4519 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4520 	spin_unlock(&block_group->lock);
4521 
4522 	if (cleanup) {
4523 		struct btrfs_chunk_map *map;
4524 
4525 		map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4526 		/* Logic error, can't happen. */
4527 		ASSERT(map);
4528 
4529 		btrfs_remove_chunk_map(fs_info, map);
4530 
4531 		/* Once for our lookup reference. */
4532 		btrfs_free_chunk_map(map);
4533 
4534 		/*
4535 		 * We may have left one free space entry and other possible
4536 		 * tasks trimming this block group have left 1 entry each one.
4537 		 * Free them if any.
4538 		 */
4539 		btrfs_remove_free_space_cache(block_group);
4540 	}
4541 }
4542 
4543 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4544 {
4545 	bool ret = true;
4546 
4547 	spin_lock(&bg->lock);
4548 	if (bg->ro)
4549 		ret = false;
4550 	else
4551 		bg->swap_extents++;
4552 	spin_unlock(&bg->lock);
4553 
4554 	return ret;
4555 }
4556 
4557 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4558 {
4559 	spin_lock(&bg->lock);
4560 	ASSERT(!bg->ro);
4561 	ASSERT(bg->swap_extents >= amount);
4562 	bg->swap_extents -= amount;
4563 	spin_unlock(&bg->lock);
4564 }
4565 
4566 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4567 {
4568 	if (size <= SZ_128K)
4569 		return BTRFS_BG_SZ_SMALL;
4570 	if (size <= SZ_8M)
4571 		return BTRFS_BG_SZ_MEDIUM;
4572 	return BTRFS_BG_SZ_LARGE;
4573 }
4574 
4575 /*
4576  * Handle a block group allocating an extent in a size class
4577  *
4578  * @bg:				The block group we allocated in.
4579  * @size_class:			The size class of the allocation.
4580  * @force_wrong_size_class:	Whether we are desperate enough to allow
4581  *				mismatched size classes.
4582  *
4583  * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4584  * case of a race that leads to the wrong size class without
4585  * force_wrong_size_class set.
4586  *
4587  * find_free_extent will skip block groups with a mismatched size class until
4588  * it really needs to avoid ENOSPC. In that case it will set
4589  * force_wrong_size_class. However, if a block group is newly allocated and
4590  * doesn't yet have a size class, then it is possible for two allocations of
4591  * different sizes to race and both try to use it. The loser is caught here and
4592  * has to retry.
4593  */
4594 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4595 				     enum btrfs_block_group_size_class size_class,
4596 				     bool force_wrong_size_class)
4597 {
4598 	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4599 
4600 	/* The new allocation is in the right size class, do nothing */
4601 	if (bg->size_class == size_class)
4602 		return 0;
4603 	/*
4604 	 * The new allocation is in a mismatched size class.
4605 	 * This means one of two things:
4606 	 *
4607 	 * 1. Two tasks in find_free_extent for different size_classes raced
4608 	 *    and hit the same empty block_group. Make the loser try again.
4609 	 * 2. A call to find_free_extent got desperate enough to set
4610 	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4611 	 *    allocation.
4612 	 */
4613 	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4614 		if (force_wrong_size_class)
4615 			return 0;
4616 		return -EAGAIN;
4617 	}
4618 	/*
4619 	 * The happy new block group case: the new allocation is the first
4620 	 * one in the block_group so we set size_class.
4621 	 */
4622 	bg->size_class = size_class;
4623 
4624 	return 0;
4625 }
4626 
4627 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg)
4628 {
4629 	if (btrfs_is_zoned(bg->fs_info))
4630 		return false;
4631 	if (!btrfs_is_block_group_data_only(bg))
4632 		return false;
4633 	return true;
4634 }
4635