1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/list_sort.h> 4 #include "misc.h" 5 #include "ctree.h" 6 #include "block-group.h" 7 #include "space-info.h" 8 #include "disk-io.h" 9 #include "free-space-cache.h" 10 #include "free-space-tree.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 #include "discard.h" 18 #include "raid56.h" 19 #include "zoned.h" 20 21 /* 22 * Return target flags in extended format or 0 if restripe for this chunk_type 23 * is not in progress 24 * 25 * Should be called with balance_lock held 26 */ 27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 28 { 29 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 30 u64 target = 0; 31 32 if (!bctl) 33 return 0; 34 35 if (flags & BTRFS_BLOCK_GROUP_DATA && 36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 44 } 45 46 return target; 47 } 48 49 /* 50 * @flags: available profiles in extended format (see ctree.h) 51 * 52 * Return reduced profile in chunk format. If profile changing is in progress 53 * (either running or paused) picks the target profile (if it's already 54 * available), otherwise falls back to plain reducing. 55 */ 56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 57 { 58 u64 num_devices = fs_info->fs_devices->rw_devices; 59 u64 target; 60 u64 raid_type; 61 u64 allowed = 0; 62 63 /* 64 * See if restripe for this chunk_type is in progress, if so try to 65 * reduce to the target profile 66 */ 67 spin_lock(&fs_info->balance_lock); 68 target = get_restripe_target(fs_info, flags); 69 if (target) { 70 spin_unlock(&fs_info->balance_lock); 71 return extended_to_chunk(target); 72 } 73 spin_unlock(&fs_info->balance_lock); 74 75 /* First, mask out the RAID levels which aren't possible */ 76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 77 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 78 allowed |= btrfs_raid_array[raid_type].bg_flag; 79 } 80 allowed &= flags; 81 82 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 83 allowed = BTRFS_BLOCK_GROUP_RAID6; 84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 85 allowed = BTRFS_BLOCK_GROUP_RAID5; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 87 allowed = BTRFS_BLOCK_GROUP_RAID10; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 89 allowed = BTRFS_BLOCK_GROUP_RAID1; 90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 91 allowed = BTRFS_BLOCK_GROUP_RAID0; 92 93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 94 95 return extended_to_chunk(flags | allowed); 96 } 97 98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 99 { 100 unsigned seq; 101 u64 flags; 102 103 do { 104 flags = orig_flags; 105 seq = read_seqbegin(&fs_info->profiles_lock); 106 107 if (flags & BTRFS_BLOCK_GROUP_DATA) 108 flags |= fs_info->avail_data_alloc_bits; 109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 110 flags |= fs_info->avail_system_alloc_bits; 111 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 112 flags |= fs_info->avail_metadata_alloc_bits; 113 } while (read_seqretry(&fs_info->profiles_lock, seq)); 114 115 return btrfs_reduce_alloc_profile(fs_info, flags); 116 } 117 118 void btrfs_get_block_group(struct btrfs_block_group *cache) 119 { 120 refcount_inc(&cache->refs); 121 } 122 123 void btrfs_put_block_group(struct btrfs_block_group *cache) 124 { 125 if (refcount_dec_and_test(&cache->refs)) { 126 WARN_ON(cache->pinned > 0); 127 /* 128 * If there was a failure to cleanup a log tree, very likely due 129 * to an IO failure on a writeback attempt of one or more of its 130 * extent buffers, we could not do proper (and cheap) unaccounting 131 * of their reserved space, so don't warn on reserved > 0 in that 132 * case. 133 */ 134 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 135 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 136 WARN_ON(cache->reserved > 0); 137 138 /* 139 * A block_group shouldn't be on the discard_list anymore. 140 * Remove the block_group from the discard_list to prevent us 141 * from causing a panic due to NULL pointer dereference. 142 */ 143 if (WARN_ON(!list_empty(&cache->discard_list))) 144 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 145 cache); 146 147 /* 148 * If not empty, someone is still holding mutex of 149 * full_stripe_lock, which can only be released by caller. 150 * And it will definitely cause use-after-free when caller 151 * tries to release full stripe lock. 152 * 153 * No better way to resolve, but only to warn. 154 */ 155 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 156 kfree(cache->free_space_ctl); 157 kfree(cache->physical_map); 158 kfree(cache); 159 } 160 } 161 162 /* 163 * This adds the block group to the fs_info rb tree for the block group cache 164 */ 165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 166 struct btrfs_block_group *block_group) 167 { 168 struct rb_node **p; 169 struct rb_node *parent = NULL; 170 struct btrfs_block_group *cache; 171 bool leftmost = true; 172 173 ASSERT(block_group->length != 0); 174 175 write_lock(&info->block_group_cache_lock); 176 p = &info->block_group_cache_tree.rb_root.rb_node; 177 178 while (*p) { 179 parent = *p; 180 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 181 if (block_group->start < cache->start) { 182 p = &(*p)->rb_left; 183 } else if (block_group->start > cache->start) { 184 p = &(*p)->rb_right; 185 leftmost = false; 186 } else { 187 write_unlock(&info->block_group_cache_lock); 188 return -EEXIST; 189 } 190 } 191 192 rb_link_node(&block_group->cache_node, parent, p); 193 rb_insert_color_cached(&block_group->cache_node, 194 &info->block_group_cache_tree, leftmost); 195 196 write_unlock(&info->block_group_cache_lock); 197 198 return 0; 199 } 200 201 /* 202 * This will return the block group at or after bytenr if contains is 0, else 203 * it will return the block group that contains the bytenr 204 */ 205 static struct btrfs_block_group *block_group_cache_tree_search( 206 struct btrfs_fs_info *info, u64 bytenr, int contains) 207 { 208 struct btrfs_block_group *cache, *ret = NULL; 209 struct rb_node *n; 210 u64 end, start; 211 212 read_lock(&info->block_group_cache_lock); 213 n = info->block_group_cache_tree.rb_root.rb_node; 214 215 while (n) { 216 cache = rb_entry(n, struct btrfs_block_group, cache_node); 217 end = cache->start + cache->length - 1; 218 start = cache->start; 219 220 if (bytenr < start) { 221 if (!contains && (!ret || start < ret->start)) 222 ret = cache; 223 n = n->rb_left; 224 } else if (bytenr > start) { 225 if (contains && bytenr <= end) { 226 ret = cache; 227 break; 228 } 229 n = n->rb_right; 230 } else { 231 ret = cache; 232 break; 233 } 234 } 235 if (ret) 236 btrfs_get_block_group(ret); 237 read_unlock(&info->block_group_cache_lock); 238 239 return ret; 240 } 241 242 /* 243 * Return the block group that starts at or after bytenr 244 */ 245 struct btrfs_block_group *btrfs_lookup_first_block_group( 246 struct btrfs_fs_info *info, u64 bytenr) 247 { 248 return block_group_cache_tree_search(info, bytenr, 0); 249 } 250 251 /* 252 * Return the block group that contains the given bytenr 253 */ 254 struct btrfs_block_group *btrfs_lookup_block_group( 255 struct btrfs_fs_info *info, u64 bytenr) 256 { 257 return block_group_cache_tree_search(info, bytenr, 1); 258 } 259 260 struct btrfs_block_group *btrfs_next_block_group( 261 struct btrfs_block_group *cache) 262 { 263 struct btrfs_fs_info *fs_info = cache->fs_info; 264 struct rb_node *node; 265 266 read_lock(&fs_info->block_group_cache_lock); 267 268 /* If our block group was removed, we need a full search. */ 269 if (RB_EMPTY_NODE(&cache->cache_node)) { 270 const u64 next_bytenr = cache->start + cache->length; 271 272 read_unlock(&fs_info->block_group_cache_lock); 273 btrfs_put_block_group(cache); 274 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 275 } 276 node = rb_next(&cache->cache_node); 277 btrfs_put_block_group(cache); 278 if (node) { 279 cache = rb_entry(node, struct btrfs_block_group, cache_node); 280 btrfs_get_block_group(cache); 281 } else 282 cache = NULL; 283 read_unlock(&fs_info->block_group_cache_lock); 284 return cache; 285 } 286 287 /** 288 * Check if we can do a NOCOW write for a given extent. 289 * 290 * @fs_info: The filesystem information object. 291 * @bytenr: Logical start address of the extent. 292 * 293 * Check if we can do a NOCOW write for the given extent, and increments the 294 * number of NOCOW writers in the block group that contains the extent, as long 295 * as the block group exists and it's currently not in read-only mode. 296 * 297 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 298 * is responsible for calling btrfs_dec_nocow_writers() later. 299 * 300 * Or NULL if we can not do a NOCOW write 301 */ 302 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 303 u64 bytenr) 304 { 305 struct btrfs_block_group *bg; 306 bool can_nocow = true; 307 308 bg = btrfs_lookup_block_group(fs_info, bytenr); 309 if (!bg) 310 return NULL; 311 312 spin_lock(&bg->lock); 313 if (bg->ro) 314 can_nocow = false; 315 else 316 atomic_inc(&bg->nocow_writers); 317 spin_unlock(&bg->lock); 318 319 if (!can_nocow) { 320 btrfs_put_block_group(bg); 321 return NULL; 322 } 323 324 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 325 return bg; 326 } 327 328 /** 329 * Decrement the number of NOCOW writers in a block group. 330 * 331 * @bg: The block group. 332 * 333 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 334 * and on the block group returned by that call. Typically this is called after 335 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 336 * relocation. 337 * 338 * After this call, the caller should not use the block group anymore. It it wants 339 * to use it, then it should get a reference on it before calling this function. 340 */ 341 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 342 { 343 if (atomic_dec_and_test(&bg->nocow_writers)) 344 wake_up_var(&bg->nocow_writers); 345 346 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 347 btrfs_put_block_group(bg); 348 } 349 350 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 351 { 352 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 353 } 354 355 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 356 const u64 start) 357 { 358 struct btrfs_block_group *bg; 359 360 bg = btrfs_lookup_block_group(fs_info, start); 361 ASSERT(bg); 362 if (atomic_dec_and_test(&bg->reservations)) 363 wake_up_var(&bg->reservations); 364 btrfs_put_block_group(bg); 365 } 366 367 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 368 { 369 struct btrfs_space_info *space_info = bg->space_info; 370 371 ASSERT(bg->ro); 372 373 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 374 return; 375 376 /* 377 * Our block group is read only but before we set it to read only, 378 * some task might have had allocated an extent from it already, but it 379 * has not yet created a respective ordered extent (and added it to a 380 * root's list of ordered extents). 381 * Therefore wait for any task currently allocating extents, since the 382 * block group's reservations counter is incremented while a read lock 383 * on the groups' semaphore is held and decremented after releasing 384 * the read access on that semaphore and creating the ordered extent. 385 */ 386 down_write(&space_info->groups_sem); 387 up_write(&space_info->groups_sem); 388 389 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 390 } 391 392 struct btrfs_caching_control *btrfs_get_caching_control( 393 struct btrfs_block_group *cache) 394 { 395 struct btrfs_caching_control *ctl; 396 397 spin_lock(&cache->lock); 398 if (!cache->caching_ctl) { 399 spin_unlock(&cache->lock); 400 return NULL; 401 } 402 403 ctl = cache->caching_ctl; 404 refcount_inc(&ctl->count); 405 spin_unlock(&cache->lock); 406 return ctl; 407 } 408 409 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 410 { 411 if (refcount_dec_and_test(&ctl->count)) 412 kfree(ctl); 413 } 414 415 /* 416 * When we wait for progress in the block group caching, its because our 417 * allocation attempt failed at least once. So, we must sleep and let some 418 * progress happen before we try again. 419 * 420 * This function will sleep at least once waiting for new free space to show 421 * up, and then it will check the block group free space numbers for our min 422 * num_bytes. Another option is to have it go ahead and look in the rbtree for 423 * a free extent of a given size, but this is a good start. 424 * 425 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 426 * any of the information in this block group. 427 */ 428 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 429 u64 num_bytes) 430 { 431 struct btrfs_caching_control *caching_ctl; 432 433 caching_ctl = btrfs_get_caching_control(cache); 434 if (!caching_ctl) 435 return; 436 437 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 438 (cache->free_space_ctl->free_space >= num_bytes)); 439 440 btrfs_put_caching_control(caching_ctl); 441 } 442 443 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 444 struct btrfs_caching_control *caching_ctl) 445 { 446 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 447 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 448 } 449 450 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 451 { 452 struct btrfs_caching_control *caching_ctl; 453 int ret; 454 455 caching_ctl = btrfs_get_caching_control(cache); 456 if (!caching_ctl) 457 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 458 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 459 btrfs_put_caching_control(caching_ctl); 460 return ret; 461 } 462 463 #ifdef CONFIG_BTRFS_DEBUG 464 static void fragment_free_space(struct btrfs_block_group *block_group) 465 { 466 struct btrfs_fs_info *fs_info = block_group->fs_info; 467 u64 start = block_group->start; 468 u64 len = block_group->length; 469 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 470 fs_info->nodesize : fs_info->sectorsize; 471 u64 step = chunk << 1; 472 473 while (len > chunk) { 474 btrfs_remove_free_space(block_group, start, chunk); 475 start += step; 476 if (len < step) 477 len = 0; 478 else 479 len -= step; 480 } 481 } 482 #endif 483 484 /* 485 * This is only called by btrfs_cache_block_group, since we could have freed 486 * extents we need to check the pinned_extents for any extents that can't be 487 * used yet since their free space will be released as soon as the transaction 488 * commits. 489 */ 490 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 491 { 492 struct btrfs_fs_info *info = block_group->fs_info; 493 u64 extent_start, extent_end, size, total_added = 0; 494 int ret; 495 496 while (start < end) { 497 ret = find_first_extent_bit(&info->excluded_extents, start, 498 &extent_start, &extent_end, 499 EXTENT_DIRTY | EXTENT_UPTODATE, 500 NULL); 501 if (ret) 502 break; 503 504 if (extent_start <= start) { 505 start = extent_end + 1; 506 } else if (extent_start > start && extent_start < end) { 507 size = extent_start - start; 508 total_added += size; 509 ret = btrfs_add_free_space_async_trimmed(block_group, 510 start, size); 511 BUG_ON(ret); /* -ENOMEM or logic error */ 512 start = extent_end + 1; 513 } else { 514 break; 515 } 516 } 517 518 if (start < end) { 519 size = end - start; 520 total_added += size; 521 ret = btrfs_add_free_space_async_trimmed(block_group, start, 522 size); 523 BUG_ON(ret); /* -ENOMEM or logic error */ 524 } 525 526 return total_added; 527 } 528 529 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 530 { 531 struct btrfs_block_group *block_group = caching_ctl->block_group; 532 struct btrfs_fs_info *fs_info = block_group->fs_info; 533 struct btrfs_root *extent_root; 534 struct btrfs_path *path; 535 struct extent_buffer *leaf; 536 struct btrfs_key key; 537 u64 total_found = 0; 538 u64 last = 0; 539 u32 nritems; 540 int ret; 541 bool wakeup = true; 542 543 path = btrfs_alloc_path(); 544 if (!path) 545 return -ENOMEM; 546 547 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 548 extent_root = btrfs_extent_root(fs_info, last); 549 550 #ifdef CONFIG_BTRFS_DEBUG 551 /* 552 * If we're fragmenting we don't want to make anybody think we can 553 * allocate from this block group until we've had a chance to fragment 554 * the free space. 555 */ 556 if (btrfs_should_fragment_free_space(block_group)) 557 wakeup = false; 558 #endif 559 /* 560 * We don't want to deadlock with somebody trying to allocate a new 561 * extent for the extent root while also trying to search the extent 562 * root to add free space. So we skip locking and search the commit 563 * root, since its read-only 564 */ 565 path->skip_locking = 1; 566 path->search_commit_root = 1; 567 path->reada = READA_FORWARD; 568 569 key.objectid = last; 570 key.offset = 0; 571 key.type = BTRFS_EXTENT_ITEM_KEY; 572 573 next: 574 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 575 if (ret < 0) 576 goto out; 577 578 leaf = path->nodes[0]; 579 nritems = btrfs_header_nritems(leaf); 580 581 while (1) { 582 if (btrfs_fs_closing(fs_info) > 1) { 583 last = (u64)-1; 584 break; 585 } 586 587 if (path->slots[0] < nritems) { 588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 589 } else { 590 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 591 if (ret) 592 break; 593 594 if (need_resched() || 595 rwsem_is_contended(&fs_info->commit_root_sem)) { 596 btrfs_release_path(path); 597 up_read(&fs_info->commit_root_sem); 598 mutex_unlock(&caching_ctl->mutex); 599 cond_resched(); 600 mutex_lock(&caching_ctl->mutex); 601 down_read(&fs_info->commit_root_sem); 602 goto next; 603 } 604 605 ret = btrfs_next_leaf(extent_root, path); 606 if (ret < 0) 607 goto out; 608 if (ret) 609 break; 610 leaf = path->nodes[0]; 611 nritems = btrfs_header_nritems(leaf); 612 continue; 613 } 614 615 if (key.objectid < last) { 616 key.objectid = last; 617 key.offset = 0; 618 key.type = BTRFS_EXTENT_ITEM_KEY; 619 btrfs_release_path(path); 620 goto next; 621 } 622 623 if (key.objectid < block_group->start) { 624 path->slots[0]++; 625 continue; 626 } 627 628 if (key.objectid >= block_group->start + block_group->length) 629 break; 630 631 if (key.type == BTRFS_EXTENT_ITEM_KEY || 632 key.type == BTRFS_METADATA_ITEM_KEY) { 633 total_found += add_new_free_space(block_group, last, 634 key.objectid); 635 if (key.type == BTRFS_METADATA_ITEM_KEY) 636 last = key.objectid + 637 fs_info->nodesize; 638 else 639 last = key.objectid + key.offset; 640 641 if (total_found > CACHING_CTL_WAKE_UP) { 642 total_found = 0; 643 if (wakeup) 644 wake_up(&caching_ctl->wait); 645 } 646 } 647 path->slots[0]++; 648 } 649 ret = 0; 650 651 total_found += add_new_free_space(block_group, last, 652 block_group->start + block_group->length); 653 654 out: 655 btrfs_free_path(path); 656 return ret; 657 } 658 659 static noinline void caching_thread(struct btrfs_work *work) 660 { 661 struct btrfs_block_group *block_group; 662 struct btrfs_fs_info *fs_info; 663 struct btrfs_caching_control *caching_ctl; 664 int ret; 665 666 caching_ctl = container_of(work, struct btrfs_caching_control, work); 667 block_group = caching_ctl->block_group; 668 fs_info = block_group->fs_info; 669 670 mutex_lock(&caching_ctl->mutex); 671 down_read(&fs_info->commit_root_sem); 672 673 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 674 ret = load_free_space_cache(block_group); 675 if (ret == 1) { 676 ret = 0; 677 goto done; 678 } 679 680 /* 681 * We failed to load the space cache, set ourselves to 682 * CACHE_STARTED and carry on. 683 */ 684 spin_lock(&block_group->lock); 685 block_group->cached = BTRFS_CACHE_STARTED; 686 spin_unlock(&block_group->lock); 687 wake_up(&caching_ctl->wait); 688 } 689 690 /* 691 * If we are in the transaction that populated the free space tree we 692 * can't actually cache from the free space tree as our commit root and 693 * real root are the same, so we could change the contents of the blocks 694 * while caching. Instead do the slow caching in this case, and after 695 * the transaction has committed we will be safe. 696 */ 697 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 698 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 699 ret = load_free_space_tree(caching_ctl); 700 else 701 ret = load_extent_tree_free(caching_ctl); 702 done: 703 spin_lock(&block_group->lock); 704 block_group->caching_ctl = NULL; 705 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 706 spin_unlock(&block_group->lock); 707 708 #ifdef CONFIG_BTRFS_DEBUG 709 if (btrfs_should_fragment_free_space(block_group)) { 710 u64 bytes_used; 711 712 spin_lock(&block_group->space_info->lock); 713 spin_lock(&block_group->lock); 714 bytes_used = block_group->length - block_group->used; 715 block_group->space_info->bytes_used += bytes_used >> 1; 716 spin_unlock(&block_group->lock); 717 spin_unlock(&block_group->space_info->lock); 718 fragment_free_space(block_group); 719 } 720 #endif 721 722 up_read(&fs_info->commit_root_sem); 723 btrfs_free_excluded_extents(block_group); 724 mutex_unlock(&caching_ctl->mutex); 725 726 wake_up(&caching_ctl->wait); 727 728 btrfs_put_caching_control(caching_ctl); 729 btrfs_put_block_group(block_group); 730 } 731 732 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 733 { 734 struct btrfs_fs_info *fs_info = cache->fs_info; 735 struct btrfs_caching_control *caching_ctl = NULL; 736 int ret = 0; 737 738 /* Allocator for zoned filesystems does not use the cache at all */ 739 if (btrfs_is_zoned(fs_info)) 740 return 0; 741 742 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 743 if (!caching_ctl) 744 return -ENOMEM; 745 746 INIT_LIST_HEAD(&caching_ctl->list); 747 mutex_init(&caching_ctl->mutex); 748 init_waitqueue_head(&caching_ctl->wait); 749 caching_ctl->block_group = cache; 750 refcount_set(&caching_ctl->count, 2); 751 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 752 753 spin_lock(&cache->lock); 754 if (cache->cached != BTRFS_CACHE_NO) { 755 kfree(caching_ctl); 756 757 caching_ctl = cache->caching_ctl; 758 if (caching_ctl) 759 refcount_inc(&caching_ctl->count); 760 spin_unlock(&cache->lock); 761 goto out; 762 } 763 WARN_ON(cache->caching_ctl); 764 cache->caching_ctl = caching_ctl; 765 cache->cached = BTRFS_CACHE_STARTED; 766 spin_unlock(&cache->lock); 767 768 write_lock(&fs_info->block_group_cache_lock); 769 refcount_inc(&caching_ctl->count); 770 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 771 write_unlock(&fs_info->block_group_cache_lock); 772 773 btrfs_get_block_group(cache); 774 775 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 776 out: 777 /* REVIEW */ 778 if (wait && caching_ctl) 779 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 780 /* wait_event(caching_ctl->wait, space_cache_v1_done(cache)); */ 781 if (caching_ctl) 782 btrfs_put_caching_control(caching_ctl); 783 784 return ret; 785 } 786 787 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 788 { 789 u64 extra_flags = chunk_to_extended(flags) & 790 BTRFS_EXTENDED_PROFILE_MASK; 791 792 write_seqlock(&fs_info->profiles_lock); 793 if (flags & BTRFS_BLOCK_GROUP_DATA) 794 fs_info->avail_data_alloc_bits &= ~extra_flags; 795 if (flags & BTRFS_BLOCK_GROUP_METADATA) 796 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 797 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 798 fs_info->avail_system_alloc_bits &= ~extra_flags; 799 write_sequnlock(&fs_info->profiles_lock); 800 } 801 802 /* 803 * Clear incompat bits for the following feature(s): 804 * 805 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 806 * in the whole filesystem 807 * 808 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 809 */ 810 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 811 { 812 bool found_raid56 = false; 813 bool found_raid1c34 = false; 814 815 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 816 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 817 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 818 struct list_head *head = &fs_info->space_info; 819 struct btrfs_space_info *sinfo; 820 821 list_for_each_entry_rcu(sinfo, head, list) { 822 down_read(&sinfo->groups_sem); 823 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 824 found_raid56 = true; 825 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 826 found_raid56 = true; 827 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 828 found_raid1c34 = true; 829 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 830 found_raid1c34 = true; 831 up_read(&sinfo->groups_sem); 832 } 833 if (!found_raid56) 834 btrfs_clear_fs_incompat(fs_info, RAID56); 835 if (!found_raid1c34) 836 btrfs_clear_fs_incompat(fs_info, RAID1C34); 837 } 838 } 839 840 static int remove_block_group_item(struct btrfs_trans_handle *trans, 841 struct btrfs_path *path, 842 struct btrfs_block_group *block_group) 843 { 844 struct btrfs_fs_info *fs_info = trans->fs_info; 845 struct btrfs_root *root; 846 struct btrfs_key key; 847 int ret; 848 849 root = btrfs_block_group_root(fs_info); 850 key.objectid = block_group->start; 851 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 852 key.offset = block_group->length; 853 854 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 855 if (ret > 0) 856 ret = -ENOENT; 857 if (ret < 0) 858 return ret; 859 860 ret = btrfs_del_item(trans, root, path); 861 return ret; 862 } 863 864 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 865 u64 group_start, struct extent_map *em) 866 { 867 struct btrfs_fs_info *fs_info = trans->fs_info; 868 struct btrfs_path *path; 869 struct btrfs_block_group *block_group; 870 struct btrfs_free_cluster *cluster; 871 struct inode *inode; 872 struct kobject *kobj = NULL; 873 int ret; 874 int index; 875 int factor; 876 struct btrfs_caching_control *caching_ctl = NULL; 877 bool remove_em; 878 bool remove_rsv = false; 879 880 block_group = btrfs_lookup_block_group(fs_info, group_start); 881 BUG_ON(!block_group); 882 BUG_ON(!block_group->ro); 883 884 trace_btrfs_remove_block_group(block_group); 885 /* 886 * Free the reserved super bytes from this block group before 887 * remove it. 888 */ 889 btrfs_free_excluded_extents(block_group); 890 btrfs_free_ref_tree_range(fs_info, block_group->start, 891 block_group->length); 892 893 index = btrfs_bg_flags_to_raid_index(block_group->flags); 894 factor = btrfs_bg_type_to_factor(block_group->flags); 895 896 /* make sure this block group isn't part of an allocation cluster */ 897 cluster = &fs_info->data_alloc_cluster; 898 spin_lock(&cluster->refill_lock); 899 btrfs_return_cluster_to_free_space(block_group, cluster); 900 spin_unlock(&cluster->refill_lock); 901 902 /* 903 * make sure this block group isn't part of a metadata 904 * allocation cluster 905 */ 906 cluster = &fs_info->meta_alloc_cluster; 907 spin_lock(&cluster->refill_lock); 908 btrfs_return_cluster_to_free_space(block_group, cluster); 909 spin_unlock(&cluster->refill_lock); 910 911 btrfs_clear_treelog_bg(block_group); 912 btrfs_clear_data_reloc_bg(block_group); 913 914 path = btrfs_alloc_path(); 915 if (!path) { 916 ret = -ENOMEM; 917 goto out; 918 } 919 920 /* 921 * get the inode first so any iput calls done for the io_list 922 * aren't the final iput (no unlinks allowed now) 923 */ 924 inode = lookup_free_space_inode(block_group, path); 925 926 mutex_lock(&trans->transaction->cache_write_mutex); 927 /* 928 * Make sure our free space cache IO is done before removing the 929 * free space inode 930 */ 931 spin_lock(&trans->transaction->dirty_bgs_lock); 932 if (!list_empty(&block_group->io_list)) { 933 list_del_init(&block_group->io_list); 934 935 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 936 937 spin_unlock(&trans->transaction->dirty_bgs_lock); 938 btrfs_wait_cache_io(trans, block_group, path); 939 btrfs_put_block_group(block_group); 940 spin_lock(&trans->transaction->dirty_bgs_lock); 941 } 942 943 if (!list_empty(&block_group->dirty_list)) { 944 list_del_init(&block_group->dirty_list); 945 remove_rsv = true; 946 btrfs_put_block_group(block_group); 947 } 948 spin_unlock(&trans->transaction->dirty_bgs_lock); 949 mutex_unlock(&trans->transaction->cache_write_mutex); 950 951 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 952 if (ret) 953 goto out; 954 955 write_lock(&fs_info->block_group_cache_lock); 956 rb_erase_cached(&block_group->cache_node, 957 &fs_info->block_group_cache_tree); 958 RB_CLEAR_NODE(&block_group->cache_node); 959 960 /* Once for the block groups rbtree */ 961 btrfs_put_block_group(block_group); 962 963 write_unlock(&fs_info->block_group_cache_lock); 964 965 down_write(&block_group->space_info->groups_sem); 966 /* 967 * we must use list_del_init so people can check to see if they 968 * are still on the list after taking the semaphore 969 */ 970 list_del_init(&block_group->list); 971 if (list_empty(&block_group->space_info->block_groups[index])) { 972 kobj = block_group->space_info->block_group_kobjs[index]; 973 block_group->space_info->block_group_kobjs[index] = NULL; 974 clear_avail_alloc_bits(fs_info, block_group->flags); 975 } 976 up_write(&block_group->space_info->groups_sem); 977 clear_incompat_bg_bits(fs_info, block_group->flags); 978 if (kobj) { 979 kobject_del(kobj); 980 kobject_put(kobj); 981 } 982 983 if (block_group->cached == BTRFS_CACHE_STARTED) 984 btrfs_wait_block_group_cache_done(block_group); 985 986 write_lock(&fs_info->block_group_cache_lock); 987 caching_ctl = btrfs_get_caching_control(block_group); 988 if (!caching_ctl) { 989 struct btrfs_caching_control *ctl; 990 991 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 992 if (ctl->block_group == block_group) { 993 caching_ctl = ctl; 994 refcount_inc(&caching_ctl->count); 995 break; 996 } 997 } 998 } 999 if (caching_ctl) 1000 list_del_init(&caching_ctl->list); 1001 write_unlock(&fs_info->block_group_cache_lock); 1002 1003 if (caching_ctl) { 1004 /* Once for the caching bgs list and once for us. */ 1005 btrfs_put_caching_control(caching_ctl); 1006 btrfs_put_caching_control(caching_ctl); 1007 } 1008 1009 spin_lock(&trans->transaction->dirty_bgs_lock); 1010 WARN_ON(!list_empty(&block_group->dirty_list)); 1011 WARN_ON(!list_empty(&block_group->io_list)); 1012 spin_unlock(&trans->transaction->dirty_bgs_lock); 1013 1014 btrfs_remove_free_space_cache(block_group); 1015 1016 spin_lock(&block_group->space_info->lock); 1017 list_del_init(&block_group->ro_list); 1018 1019 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1020 WARN_ON(block_group->space_info->total_bytes 1021 < block_group->length); 1022 WARN_ON(block_group->space_info->bytes_readonly 1023 < block_group->length - block_group->zone_unusable); 1024 WARN_ON(block_group->space_info->bytes_zone_unusable 1025 < block_group->zone_unusable); 1026 WARN_ON(block_group->space_info->disk_total 1027 < block_group->length * factor); 1028 WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 1029 &block_group->runtime_flags) && 1030 block_group->space_info->active_total_bytes 1031 < block_group->length); 1032 } 1033 block_group->space_info->total_bytes -= block_group->length; 1034 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1035 block_group->space_info->active_total_bytes -= block_group->length; 1036 block_group->space_info->bytes_readonly -= 1037 (block_group->length - block_group->zone_unusable); 1038 block_group->space_info->bytes_zone_unusable -= 1039 block_group->zone_unusable; 1040 block_group->space_info->disk_total -= block_group->length * factor; 1041 1042 spin_unlock(&block_group->space_info->lock); 1043 1044 /* 1045 * Remove the free space for the block group from the free space tree 1046 * and the block group's item from the extent tree before marking the 1047 * block group as removed. This is to prevent races with tasks that 1048 * freeze and unfreeze a block group, this task and another task 1049 * allocating a new block group - the unfreeze task ends up removing 1050 * the block group's extent map before the task calling this function 1051 * deletes the block group item from the extent tree, allowing for 1052 * another task to attempt to create another block group with the same 1053 * item key (and failing with -EEXIST and a transaction abort). 1054 */ 1055 ret = remove_block_group_free_space(trans, block_group); 1056 if (ret) 1057 goto out; 1058 1059 ret = remove_block_group_item(trans, path, block_group); 1060 if (ret < 0) 1061 goto out; 1062 1063 spin_lock(&block_group->lock); 1064 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1065 1066 /* 1067 * At this point trimming or scrub can't start on this block group, 1068 * because we removed the block group from the rbtree 1069 * fs_info->block_group_cache_tree so no one can't find it anymore and 1070 * even if someone already got this block group before we removed it 1071 * from the rbtree, they have already incremented block_group->frozen - 1072 * if they didn't, for the trimming case they won't find any free space 1073 * entries because we already removed them all when we called 1074 * btrfs_remove_free_space_cache(). 1075 * 1076 * And we must not remove the extent map from the fs_info->mapping_tree 1077 * to prevent the same logical address range and physical device space 1078 * ranges from being reused for a new block group. This is needed to 1079 * avoid races with trimming and scrub. 1080 * 1081 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1082 * completely transactionless, so while it is trimming a range the 1083 * currently running transaction might finish and a new one start, 1084 * allowing for new block groups to be created that can reuse the same 1085 * physical device locations unless we take this special care. 1086 * 1087 * There may also be an implicit trim operation if the file system 1088 * is mounted with -odiscard. The same protections must remain 1089 * in place until the extents have been discarded completely when 1090 * the transaction commit has completed. 1091 */ 1092 remove_em = (atomic_read(&block_group->frozen) == 0); 1093 spin_unlock(&block_group->lock); 1094 1095 if (remove_em) { 1096 struct extent_map_tree *em_tree; 1097 1098 em_tree = &fs_info->mapping_tree; 1099 write_lock(&em_tree->lock); 1100 remove_extent_mapping(em_tree, em); 1101 write_unlock(&em_tree->lock); 1102 /* once for the tree */ 1103 free_extent_map(em); 1104 } 1105 1106 out: 1107 /* Once for the lookup reference */ 1108 btrfs_put_block_group(block_group); 1109 if (remove_rsv) 1110 btrfs_delayed_refs_rsv_release(fs_info, 1); 1111 btrfs_free_path(path); 1112 return ret; 1113 } 1114 1115 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1116 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1117 { 1118 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1119 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1120 struct extent_map *em; 1121 struct map_lookup *map; 1122 unsigned int num_items; 1123 1124 read_lock(&em_tree->lock); 1125 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1126 read_unlock(&em_tree->lock); 1127 ASSERT(em && em->start == chunk_offset); 1128 1129 /* 1130 * We need to reserve 3 + N units from the metadata space info in order 1131 * to remove a block group (done at btrfs_remove_chunk() and at 1132 * btrfs_remove_block_group()), which are used for: 1133 * 1134 * 1 unit for adding the free space inode's orphan (located in the tree 1135 * of tree roots). 1136 * 1 unit for deleting the block group item (located in the extent 1137 * tree). 1138 * 1 unit for deleting the free space item (located in tree of tree 1139 * roots). 1140 * N units for deleting N device extent items corresponding to each 1141 * stripe (located in the device tree). 1142 * 1143 * In order to remove a block group we also need to reserve units in the 1144 * system space info in order to update the chunk tree (update one or 1145 * more device items and remove one chunk item), but this is done at 1146 * btrfs_remove_chunk() through a call to check_system_chunk(). 1147 */ 1148 map = em->map_lookup; 1149 num_items = 3 + map->num_stripes; 1150 free_extent_map(em); 1151 1152 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1153 } 1154 1155 /* 1156 * Mark block group @cache read-only, so later write won't happen to block 1157 * group @cache. 1158 * 1159 * If @force is not set, this function will only mark the block group readonly 1160 * if we have enough free space (1M) in other metadata/system block groups. 1161 * If @force is not set, this function will mark the block group readonly 1162 * without checking free space. 1163 * 1164 * NOTE: This function doesn't care if other block groups can contain all the 1165 * data in this block group. That check should be done by relocation routine, 1166 * not this function. 1167 */ 1168 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1169 { 1170 struct btrfs_space_info *sinfo = cache->space_info; 1171 u64 num_bytes; 1172 int ret = -ENOSPC; 1173 1174 spin_lock(&sinfo->lock); 1175 spin_lock(&cache->lock); 1176 1177 if (cache->swap_extents) { 1178 ret = -ETXTBSY; 1179 goto out; 1180 } 1181 1182 if (cache->ro) { 1183 cache->ro++; 1184 ret = 0; 1185 goto out; 1186 } 1187 1188 num_bytes = cache->length - cache->reserved - cache->pinned - 1189 cache->bytes_super - cache->zone_unusable - cache->used; 1190 1191 /* 1192 * Data never overcommits, even in mixed mode, so do just the straight 1193 * check of left over space in how much we have allocated. 1194 */ 1195 if (force) { 1196 ret = 0; 1197 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1198 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1199 1200 /* 1201 * Here we make sure if we mark this bg RO, we still have enough 1202 * free space as buffer. 1203 */ 1204 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1205 ret = 0; 1206 } else { 1207 /* 1208 * We overcommit metadata, so we need to do the 1209 * btrfs_can_overcommit check here, and we need to pass in 1210 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1211 * leeway to allow us to mark this block group as read only. 1212 */ 1213 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1214 BTRFS_RESERVE_NO_FLUSH)) 1215 ret = 0; 1216 } 1217 1218 if (!ret) { 1219 sinfo->bytes_readonly += num_bytes; 1220 if (btrfs_is_zoned(cache->fs_info)) { 1221 /* Migrate zone_unusable bytes to readonly */ 1222 sinfo->bytes_readonly += cache->zone_unusable; 1223 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1224 cache->zone_unusable = 0; 1225 } 1226 cache->ro++; 1227 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1228 } 1229 out: 1230 spin_unlock(&cache->lock); 1231 spin_unlock(&sinfo->lock); 1232 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1233 btrfs_info(cache->fs_info, 1234 "unable to make block group %llu ro", cache->start); 1235 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1236 } 1237 return ret; 1238 } 1239 1240 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1241 struct btrfs_block_group *bg) 1242 { 1243 struct btrfs_fs_info *fs_info = bg->fs_info; 1244 struct btrfs_transaction *prev_trans = NULL; 1245 const u64 start = bg->start; 1246 const u64 end = start + bg->length - 1; 1247 int ret; 1248 1249 spin_lock(&fs_info->trans_lock); 1250 if (trans->transaction->list.prev != &fs_info->trans_list) { 1251 prev_trans = list_last_entry(&trans->transaction->list, 1252 struct btrfs_transaction, list); 1253 refcount_inc(&prev_trans->use_count); 1254 } 1255 spin_unlock(&fs_info->trans_lock); 1256 1257 /* 1258 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1259 * btrfs_finish_extent_commit(). If we are at transaction N, another 1260 * task might be running finish_extent_commit() for the previous 1261 * transaction N - 1, and have seen a range belonging to the block 1262 * group in pinned_extents before we were able to clear the whole block 1263 * group range from pinned_extents. This means that task can lookup for 1264 * the block group after we unpinned it from pinned_extents and removed 1265 * it, leading to a BUG_ON() at unpin_extent_range(). 1266 */ 1267 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1268 if (prev_trans) { 1269 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1270 EXTENT_DIRTY); 1271 if (ret) 1272 goto out; 1273 } 1274 1275 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1276 EXTENT_DIRTY); 1277 out: 1278 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1279 if (prev_trans) 1280 btrfs_put_transaction(prev_trans); 1281 1282 return ret == 0; 1283 } 1284 1285 /* 1286 * Process the unused_bgs list and remove any that don't have any allocated 1287 * space inside of them. 1288 */ 1289 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1290 { 1291 struct btrfs_block_group *block_group; 1292 struct btrfs_space_info *space_info; 1293 struct btrfs_trans_handle *trans; 1294 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1295 int ret = 0; 1296 1297 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1298 return; 1299 1300 if (btrfs_fs_closing(fs_info)) 1301 return; 1302 1303 /* 1304 * Long running balances can keep us blocked here for eternity, so 1305 * simply skip deletion if we're unable to get the mutex. 1306 */ 1307 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1308 return; 1309 1310 spin_lock(&fs_info->unused_bgs_lock); 1311 while (!list_empty(&fs_info->unused_bgs)) { 1312 int trimming; 1313 1314 block_group = list_first_entry(&fs_info->unused_bgs, 1315 struct btrfs_block_group, 1316 bg_list); 1317 list_del_init(&block_group->bg_list); 1318 1319 space_info = block_group->space_info; 1320 1321 if (ret || btrfs_mixed_space_info(space_info)) { 1322 btrfs_put_block_group(block_group); 1323 continue; 1324 } 1325 spin_unlock(&fs_info->unused_bgs_lock); 1326 1327 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1328 1329 /* Don't want to race with allocators so take the groups_sem */ 1330 down_write(&space_info->groups_sem); 1331 1332 /* 1333 * Async discard moves the final block group discard to be prior 1334 * to the unused_bgs code path. Therefore, if it's not fully 1335 * trimmed, punt it back to the async discard lists. 1336 */ 1337 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1338 !btrfs_is_free_space_trimmed(block_group)) { 1339 trace_btrfs_skip_unused_block_group(block_group); 1340 up_write(&space_info->groups_sem); 1341 /* Requeue if we failed because of async discard */ 1342 btrfs_discard_queue_work(&fs_info->discard_ctl, 1343 block_group); 1344 goto next; 1345 } 1346 1347 spin_lock(&block_group->lock); 1348 if (block_group->reserved || block_group->pinned || 1349 block_group->used || block_group->ro || 1350 list_is_singular(&block_group->list)) { 1351 /* 1352 * We want to bail if we made new allocations or have 1353 * outstanding allocations in this block group. We do 1354 * the ro check in case balance is currently acting on 1355 * this block group. 1356 */ 1357 trace_btrfs_skip_unused_block_group(block_group); 1358 spin_unlock(&block_group->lock); 1359 up_write(&space_info->groups_sem); 1360 goto next; 1361 } 1362 spin_unlock(&block_group->lock); 1363 1364 /* We don't want to force the issue, only flip if it's ok. */ 1365 ret = inc_block_group_ro(block_group, 0); 1366 up_write(&space_info->groups_sem); 1367 if (ret < 0) { 1368 ret = 0; 1369 goto next; 1370 } 1371 1372 ret = btrfs_zone_finish(block_group); 1373 if (ret < 0) { 1374 btrfs_dec_block_group_ro(block_group); 1375 if (ret == -EAGAIN) 1376 ret = 0; 1377 goto next; 1378 } 1379 1380 /* 1381 * Want to do this before we do anything else so we can recover 1382 * properly if we fail to join the transaction. 1383 */ 1384 trans = btrfs_start_trans_remove_block_group(fs_info, 1385 block_group->start); 1386 if (IS_ERR(trans)) { 1387 btrfs_dec_block_group_ro(block_group); 1388 ret = PTR_ERR(trans); 1389 goto next; 1390 } 1391 1392 /* 1393 * We could have pending pinned extents for this block group, 1394 * just delete them, we don't care about them anymore. 1395 */ 1396 if (!clean_pinned_extents(trans, block_group)) { 1397 btrfs_dec_block_group_ro(block_group); 1398 goto end_trans; 1399 } 1400 1401 /* 1402 * At this point, the block_group is read only and should fail 1403 * new allocations. However, btrfs_finish_extent_commit() can 1404 * cause this block_group to be placed back on the discard 1405 * lists because now the block_group isn't fully discarded. 1406 * Bail here and try again later after discarding everything. 1407 */ 1408 spin_lock(&fs_info->discard_ctl.lock); 1409 if (!list_empty(&block_group->discard_list)) { 1410 spin_unlock(&fs_info->discard_ctl.lock); 1411 btrfs_dec_block_group_ro(block_group); 1412 btrfs_discard_queue_work(&fs_info->discard_ctl, 1413 block_group); 1414 goto end_trans; 1415 } 1416 spin_unlock(&fs_info->discard_ctl.lock); 1417 1418 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1419 spin_lock(&space_info->lock); 1420 spin_lock(&block_group->lock); 1421 1422 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1423 -block_group->pinned); 1424 space_info->bytes_readonly += block_group->pinned; 1425 block_group->pinned = 0; 1426 1427 spin_unlock(&block_group->lock); 1428 spin_unlock(&space_info->lock); 1429 1430 /* 1431 * The normal path here is an unused block group is passed here, 1432 * then trimming is handled in the transaction commit path. 1433 * Async discard interposes before this to do the trimming 1434 * before coming down the unused block group path as trimming 1435 * will no longer be done later in the transaction commit path. 1436 */ 1437 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1438 goto flip_async; 1439 1440 /* 1441 * DISCARD can flip during remount. On zoned filesystems, we 1442 * need to reset sequential-required zones. 1443 */ 1444 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1445 btrfs_is_zoned(fs_info); 1446 1447 /* Implicit trim during transaction commit. */ 1448 if (trimming) 1449 btrfs_freeze_block_group(block_group); 1450 1451 /* 1452 * Btrfs_remove_chunk will abort the transaction if things go 1453 * horribly wrong. 1454 */ 1455 ret = btrfs_remove_chunk(trans, block_group->start); 1456 1457 if (ret) { 1458 if (trimming) 1459 btrfs_unfreeze_block_group(block_group); 1460 goto end_trans; 1461 } 1462 1463 /* 1464 * If we're not mounted with -odiscard, we can just forget 1465 * about this block group. Otherwise we'll need to wait 1466 * until transaction commit to do the actual discard. 1467 */ 1468 if (trimming) { 1469 spin_lock(&fs_info->unused_bgs_lock); 1470 /* 1471 * A concurrent scrub might have added us to the list 1472 * fs_info->unused_bgs, so use a list_move operation 1473 * to add the block group to the deleted_bgs list. 1474 */ 1475 list_move(&block_group->bg_list, 1476 &trans->transaction->deleted_bgs); 1477 spin_unlock(&fs_info->unused_bgs_lock); 1478 btrfs_get_block_group(block_group); 1479 } 1480 end_trans: 1481 btrfs_end_transaction(trans); 1482 next: 1483 btrfs_put_block_group(block_group); 1484 spin_lock(&fs_info->unused_bgs_lock); 1485 } 1486 spin_unlock(&fs_info->unused_bgs_lock); 1487 mutex_unlock(&fs_info->reclaim_bgs_lock); 1488 return; 1489 1490 flip_async: 1491 btrfs_end_transaction(trans); 1492 mutex_unlock(&fs_info->reclaim_bgs_lock); 1493 btrfs_put_block_group(block_group); 1494 btrfs_discard_punt_unused_bgs_list(fs_info); 1495 } 1496 1497 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1498 { 1499 struct btrfs_fs_info *fs_info = bg->fs_info; 1500 1501 spin_lock(&fs_info->unused_bgs_lock); 1502 if (list_empty(&bg->bg_list)) { 1503 btrfs_get_block_group(bg); 1504 trace_btrfs_add_unused_block_group(bg); 1505 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1506 } 1507 spin_unlock(&fs_info->unused_bgs_lock); 1508 } 1509 1510 /* 1511 * We want block groups with a low number of used bytes to be in the beginning 1512 * of the list, so they will get reclaimed first. 1513 */ 1514 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1515 const struct list_head *b) 1516 { 1517 const struct btrfs_block_group *bg1, *bg2; 1518 1519 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1520 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1521 1522 return bg1->used > bg2->used; 1523 } 1524 1525 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1526 { 1527 if (btrfs_is_zoned(fs_info)) 1528 return btrfs_zoned_should_reclaim(fs_info); 1529 return true; 1530 } 1531 1532 void btrfs_reclaim_bgs_work(struct work_struct *work) 1533 { 1534 struct btrfs_fs_info *fs_info = 1535 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1536 struct btrfs_block_group *bg; 1537 struct btrfs_space_info *space_info; 1538 1539 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1540 return; 1541 1542 if (btrfs_fs_closing(fs_info)) 1543 return; 1544 1545 if (!btrfs_should_reclaim(fs_info)) 1546 return; 1547 1548 sb_start_write(fs_info->sb); 1549 1550 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1551 sb_end_write(fs_info->sb); 1552 return; 1553 } 1554 1555 /* 1556 * Long running balances can keep us blocked here for eternity, so 1557 * simply skip reclaim if we're unable to get the mutex. 1558 */ 1559 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1560 btrfs_exclop_finish(fs_info); 1561 sb_end_write(fs_info->sb); 1562 return; 1563 } 1564 1565 spin_lock(&fs_info->unused_bgs_lock); 1566 /* 1567 * Sort happens under lock because we can't simply splice it and sort. 1568 * The block groups might still be in use and reachable via bg_list, 1569 * and their presence in the reclaim_bgs list must be preserved. 1570 */ 1571 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1572 while (!list_empty(&fs_info->reclaim_bgs)) { 1573 u64 zone_unusable; 1574 int ret = 0; 1575 1576 bg = list_first_entry(&fs_info->reclaim_bgs, 1577 struct btrfs_block_group, 1578 bg_list); 1579 list_del_init(&bg->bg_list); 1580 1581 space_info = bg->space_info; 1582 spin_unlock(&fs_info->unused_bgs_lock); 1583 1584 /* Don't race with allocators so take the groups_sem */ 1585 down_write(&space_info->groups_sem); 1586 1587 spin_lock(&bg->lock); 1588 if (bg->reserved || bg->pinned || bg->ro) { 1589 /* 1590 * We want to bail if we made new allocations or have 1591 * outstanding allocations in this block group. We do 1592 * the ro check in case balance is currently acting on 1593 * this block group. 1594 */ 1595 spin_unlock(&bg->lock); 1596 up_write(&space_info->groups_sem); 1597 goto next; 1598 } 1599 spin_unlock(&bg->lock); 1600 1601 /* Get out fast, in case we're unmounting the filesystem */ 1602 if (btrfs_fs_closing(fs_info)) { 1603 up_write(&space_info->groups_sem); 1604 goto next; 1605 } 1606 1607 /* 1608 * Cache the zone_unusable value before turning the block group 1609 * to read only. As soon as the blog group is read only it's 1610 * zone_unusable value gets moved to the block group's read-only 1611 * bytes and isn't available for calculations anymore. 1612 */ 1613 zone_unusable = bg->zone_unusable; 1614 ret = inc_block_group_ro(bg, 0); 1615 up_write(&space_info->groups_sem); 1616 if (ret < 0) 1617 goto next; 1618 1619 btrfs_info(fs_info, 1620 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1621 bg->start, div_u64(bg->used * 100, bg->length), 1622 div64_u64(zone_unusable * 100, bg->length)); 1623 trace_btrfs_reclaim_block_group(bg); 1624 ret = btrfs_relocate_chunk(fs_info, bg->start); 1625 if (ret) { 1626 btrfs_dec_block_group_ro(bg); 1627 btrfs_err(fs_info, "error relocating chunk %llu", 1628 bg->start); 1629 } 1630 1631 next: 1632 btrfs_put_block_group(bg); 1633 spin_lock(&fs_info->unused_bgs_lock); 1634 } 1635 spin_unlock(&fs_info->unused_bgs_lock); 1636 mutex_unlock(&fs_info->reclaim_bgs_lock); 1637 btrfs_exclop_finish(fs_info); 1638 sb_end_write(fs_info->sb); 1639 } 1640 1641 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1642 { 1643 spin_lock(&fs_info->unused_bgs_lock); 1644 if (!list_empty(&fs_info->reclaim_bgs)) 1645 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1646 spin_unlock(&fs_info->unused_bgs_lock); 1647 } 1648 1649 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1650 { 1651 struct btrfs_fs_info *fs_info = bg->fs_info; 1652 1653 spin_lock(&fs_info->unused_bgs_lock); 1654 if (list_empty(&bg->bg_list)) { 1655 btrfs_get_block_group(bg); 1656 trace_btrfs_add_reclaim_block_group(bg); 1657 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1658 } 1659 spin_unlock(&fs_info->unused_bgs_lock); 1660 } 1661 1662 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1663 struct btrfs_path *path) 1664 { 1665 struct extent_map_tree *em_tree; 1666 struct extent_map *em; 1667 struct btrfs_block_group_item bg; 1668 struct extent_buffer *leaf; 1669 int slot; 1670 u64 flags; 1671 int ret = 0; 1672 1673 slot = path->slots[0]; 1674 leaf = path->nodes[0]; 1675 1676 em_tree = &fs_info->mapping_tree; 1677 read_lock(&em_tree->lock); 1678 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1679 read_unlock(&em_tree->lock); 1680 if (!em) { 1681 btrfs_err(fs_info, 1682 "logical %llu len %llu found bg but no related chunk", 1683 key->objectid, key->offset); 1684 return -ENOENT; 1685 } 1686 1687 if (em->start != key->objectid || em->len != key->offset) { 1688 btrfs_err(fs_info, 1689 "block group %llu len %llu mismatch with chunk %llu len %llu", 1690 key->objectid, key->offset, em->start, em->len); 1691 ret = -EUCLEAN; 1692 goto out_free_em; 1693 } 1694 1695 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1696 sizeof(bg)); 1697 flags = btrfs_stack_block_group_flags(&bg) & 1698 BTRFS_BLOCK_GROUP_TYPE_MASK; 1699 1700 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1701 btrfs_err(fs_info, 1702 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1703 key->objectid, key->offset, flags, 1704 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1705 ret = -EUCLEAN; 1706 } 1707 1708 out_free_em: 1709 free_extent_map(em); 1710 return ret; 1711 } 1712 1713 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1714 struct btrfs_path *path, 1715 struct btrfs_key *key) 1716 { 1717 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1718 int ret; 1719 struct btrfs_key found_key; 1720 1721 btrfs_for_each_slot(root, key, &found_key, path, ret) { 1722 if (found_key.objectid >= key->objectid && 1723 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1724 return read_bg_from_eb(fs_info, &found_key, path); 1725 } 1726 } 1727 return ret; 1728 } 1729 1730 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1731 { 1732 u64 extra_flags = chunk_to_extended(flags) & 1733 BTRFS_EXTENDED_PROFILE_MASK; 1734 1735 write_seqlock(&fs_info->profiles_lock); 1736 if (flags & BTRFS_BLOCK_GROUP_DATA) 1737 fs_info->avail_data_alloc_bits |= extra_flags; 1738 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1739 fs_info->avail_metadata_alloc_bits |= extra_flags; 1740 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1741 fs_info->avail_system_alloc_bits |= extra_flags; 1742 write_sequnlock(&fs_info->profiles_lock); 1743 } 1744 1745 /** 1746 * Map a physical disk address to a list of logical addresses 1747 * 1748 * @fs_info: the filesystem 1749 * @chunk_start: logical address of block group 1750 * @bdev: physical device to resolve, can be NULL to indicate any device 1751 * @physical: physical address to map to logical addresses 1752 * @logical: return array of logical addresses which map to @physical 1753 * @naddrs: length of @logical 1754 * @stripe_len: size of IO stripe for the given block group 1755 * 1756 * Maps a particular @physical disk address to a list of @logical addresses. 1757 * Used primarily to exclude those portions of a block group that contain super 1758 * block copies. 1759 */ 1760 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1761 struct block_device *bdev, u64 physical, u64 **logical, 1762 int *naddrs, int *stripe_len) 1763 { 1764 struct extent_map *em; 1765 struct map_lookup *map; 1766 u64 *buf; 1767 u64 bytenr; 1768 u64 data_stripe_length; 1769 u64 io_stripe_size; 1770 int i, nr = 0; 1771 int ret = 0; 1772 1773 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1774 if (IS_ERR(em)) 1775 return -EIO; 1776 1777 map = em->map_lookup; 1778 data_stripe_length = em->orig_block_len; 1779 io_stripe_size = map->stripe_len; 1780 chunk_start = em->start; 1781 1782 /* For RAID5/6 adjust to a full IO stripe length */ 1783 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1784 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1785 1786 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1787 if (!buf) { 1788 ret = -ENOMEM; 1789 goto out; 1790 } 1791 1792 for (i = 0; i < map->num_stripes; i++) { 1793 bool already_inserted = false; 1794 u64 stripe_nr; 1795 u64 offset; 1796 int j; 1797 1798 if (!in_range(physical, map->stripes[i].physical, 1799 data_stripe_length)) 1800 continue; 1801 1802 if (bdev && map->stripes[i].dev->bdev != bdev) 1803 continue; 1804 1805 stripe_nr = physical - map->stripes[i].physical; 1806 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 1807 1808 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 1809 BTRFS_BLOCK_GROUP_RAID10)) { 1810 stripe_nr = stripe_nr * map->num_stripes + i; 1811 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1812 } 1813 /* 1814 * The remaining case would be for RAID56, multiply by 1815 * nr_data_stripes(). Alternatively, just use rmap_len below 1816 * instead of map->stripe_len 1817 */ 1818 1819 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 1820 1821 /* Ensure we don't add duplicate addresses */ 1822 for (j = 0; j < nr; j++) { 1823 if (buf[j] == bytenr) { 1824 already_inserted = true; 1825 break; 1826 } 1827 } 1828 1829 if (!already_inserted) 1830 buf[nr++] = bytenr; 1831 } 1832 1833 *logical = buf; 1834 *naddrs = nr; 1835 *stripe_len = io_stripe_size; 1836 out: 1837 free_extent_map(em); 1838 return ret; 1839 } 1840 1841 static int exclude_super_stripes(struct btrfs_block_group *cache) 1842 { 1843 struct btrfs_fs_info *fs_info = cache->fs_info; 1844 const bool zoned = btrfs_is_zoned(fs_info); 1845 u64 bytenr; 1846 u64 *logical; 1847 int stripe_len; 1848 int i, nr, ret; 1849 1850 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1851 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1852 cache->bytes_super += stripe_len; 1853 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1854 stripe_len); 1855 if (ret) 1856 return ret; 1857 } 1858 1859 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1860 bytenr = btrfs_sb_offset(i); 1861 ret = btrfs_rmap_block(fs_info, cache->start, NULL, 1862 bytenr, &logical, &nr, &stripe_len); 1863 if (ret) 1864 return ret; 1865 1866 /* Shouldn't have super stripes in sequential zones */ 1867 if (zoned && nr) { 1868 btrfs_err(fs_info, 1869 "zoned: block group %llu must not contain super block", 1870 cache->start); 1871 return -EUCLEAN; 1872 } 1873 1874 while (nr--) { 1875 u64 len = min_t(u64, stripe_len, 1876 cache->start + cache->length - logical[nr]); 1877 1878 cache->bytes_super += len; 1879 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1880 len); 1881 if (ret) { 1882 kfree(logical); 1883 return ret; 1884 } 1885 } 1886 1887 kfree(logical); 1888 } 1889 return 0; 1890 } 1891 1892 static struct btrfs_block_group *btrfs_create_block_group_cache( 1893 struct btrfs_fs_info *fs_info, u64 start) 1894 { 1895 struct btrfs_block_group *cache; 1896 1897 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1898 if (!cache) 1899 return NULL; 1900 1901 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1902 GFP_NOFS); 1903 if (!cache->free_space_ctl) { 1904 kfree(cache); 1905 return NULL; 1906 } 1907 1908 cache->start = start; 1909 1910 cache->fs_info = fs_info; 1911 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1912 1913 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1914 1915 refcount_set(&cache->refs, 1); 1916 spin_lock_init(&cache->lock); 1917 init_rwsem(&cache->data_rwsem); 1918 INIT_LIST_HEAD(&cache->list); 1919 INIT_LIST_HEAD(&cache->cluster_list); 1920 INIT_LIST_HEAD(&cache->bg_list); 1921 INIT_LIST_HEAD(&cache->ro_list); 1922 INIT_LIST_HEAD(&cache->discard_list); 1923 INIT_LIST_HEAD(&cache->dirty_list); 1924 INIT_LIST_HEAD(&cache->io_list); 1925 INIT_LIST_HEAD(&cache->active_bg_list); 1926 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 1927 atomic_set(&cache->frozen, 0); 1928 mutex_init(&cache->free_space_lock); 1929 cache->full_stripe_locks_root.root = RB_ROOT; 1930 mutex_init(&cache->full_stripe_locks_root.lock); 1931 1932 return cache; 1933 } 1934 1935 /* 1936 * Iterate all chunks and verify that each of them has the corresponding block 1937 * group 1938 */ 1939 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1940 { 1941 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1942 struct extent_map *em; 1943 struct btrfs_block_group *bg; 1944 u64 start = 0; 1945 int ret = 0; 1946 1947 while (1) { 1948 read_lock(&map_tree->lock); 1949 /* 1950 * lookup_extent_mapping will return the first extent map 1951 * intersecting the range, so setting @len to 1 is enough to 1952 * get the first chunk. 1953 */ 1954 em = lookup_extent_mapping(map_tree, start, 1); 1955 read_unlock(&map_tree->lock); 1956 if (!em) 1957 break; 1958 1959 bg = btrfs_lookup_block_group(fs_info, em->start); 1960 if (!bg) { 1961 btrfs_err(fs_info, 1962 "chunk start=%llu len=%llu doesn't have corresponding block group", 1963 em->start, em->len); 1964 ret = -EUCLEAN; 1965 free_extent_map(em); 1966 break; 1967 } 1968 if (bg->start != em->start || bg->length != em->len || 1969 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1970 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1971 btrfs_err(fs_info, 1972 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1973 em->start, em->len, 1974 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1975 bg->start, bg->length, 1976 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1977 ret = -EUCLEAN; 1978 free_extent_map(em); 1979 btrfs_put_block_group(bg); 1980 break; 1981 } 1982 start = em->start + em->len; 1983 free_extent_map(em); 1984 btrfs_put_block_group(bg); 1985 } 1986 return ret; 1987 } 1988 1989 static int read_one_block_group(struct btrfs_fs_info *info, 1990 struct btrfs_block_group_item *bgi, 1991 const struct btrfs_key *key, 1992 int need_clear) 1993 { 1994 struct btrfs_block_group *cache; 1995 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1996 int ret; 1997 1998 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1999 2000 cache = btrfs_create_block_group_cache(info, key->objectid); 2001 if (!cache) 2002 return -ENOMEM; 2003 2004 cache->length = key->offset; 2005 cache->used = btrfs_stack_block_group_used(bgi); 2006 cache->flags = btrfs_stack_block_group_flags(bgi); 2007 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2008 2009 set_free_space_tree_thresholds(cache); 2010 2011 if (need_clear) { 2012 /* 2013 * When we mount with old space cache, we need to 2014 * set BTRFS_DC_CLEAR and set dirty flag. 2015 * 2016 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2017 * truncate the old free space cache inode and 2018 * setup a new one. 2019 * b) Setting 'dirty flag' makes sure that we flush 2020 * the new space cache info onto disk. 2021 */ 2022 if (btrfs_test_opt(info, SPACE_CACHE)) 2023 cache->disk_cache_state = BTRFS_DC_CLEAR; 2024 } 2025 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2026 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2027 btrfs_err(info, 2028 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2029 cache->start); 2030 ret = -EINVAL; 2031 goto error; 2032 } 2033 2034 ret = btrfs_load_block_group_zone_info(cache, false); 2035 if (ret) { 2036 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2037 cache->start); 2038 goto error; 2039 } 2040 2041 /* 2042 * We need to exclude the super stripes now so that the space info has 2043 * super bytes accounted for, otherwise we'll think we have more space 2044 * than we actually do. 2045 */ 2046 ret = exclude_super_stripes(cache); 2047 if (ret) { 2048 /* We may have excluded something, so call this just in case. */ 2049 btrfs_free_excluded_extents(cache); 2050 goto error; 2051 } 2052 2053 /* 2054 * For zoned filesystem, space after the allocation offset is the only 2055 * free space for a block group. So, we don't need any caching work. 2056 * btrfs_calc_zone_unusable() will set the amount of free space and 2057 * zone_unusable space. 2058 * 2059 * For regular filesystem, check for two cases, either we are full, and 2060 * therefore don't need to bother with the caching work since we won't 2061 * find any space, or we are empty, and we can just add all the space 2062 * in and be done with it. This saves us _a_lot_ of time, particularly 2063 * in the full case. 2064 */ 2065 if (btrfs_is_zoned(info)) { 2066 btrfs_calc_zone_unusable(cache); 2067 /* Should not have any excluded extents. Just in case, though. */ 2068 btrfs_free_excluded_extents(cache); 2069 } else if (cache->length == cache->used) { 2070 cache->cached = BTRFS_CACHE_FINISHED; 2071 btrfs_free_excluded_extents(cache); 2072 } else if (cache->used == 0) { 2073 cache->cached = BTRFS_CACHE_FINISHED; 2074 add_new_free_space(cache, cache->start, 2075 cache->start + cache->length); 2076 btrfs_free_excluded_extents(cache); 2077 } 2078 2079 ret = btrfs_add_block_group_cache(info, cache); 2080 if (ret) { 2081 btrfs_remove_free_space_cache(cache); 2082 goto error; 2083 } 2084 trace_btrfs_add_block_group(info, cache, 0); 2085 btrfs_add_bg_to_space_info(info, cache); 2086 2087 set_avail_alloc_bits(info, cache->flags); 2088 if (btrfs_chunk_writeable(info, cache->start)) { 2089 if (cache->used == 0) { 2090 ASSERT(list_empty(&cache->bg_list)); 2091 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2092 btrfs_discard_queue_work(&info->discard_ctl, cache); 2093 else 2094 btrfs_mark_bg_unused(cache); 2095 } 2096 } else { 2097 inc_block_group_ro(cache, 1); 2098 } 2099 2100 return 0; 2101 error: 2102 btrfs_put_block_group(cache); 2103 return ret; 2104 } 2105 2106 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2107 { 2108 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2109 struct rb_node *node; 2110 int ret = 0; 2111 2112 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2113 struct extent_map *em; 2114 struct map_lookup *map; 2115 struct btrfs_block_group *bg; 2116 2117 em = rb_entry(node, struct extent_map, rb_node); 2118 map = em->map_lookup; 2119 bg = btrfs_create_block_group_cache(fs_info, em->start); 2120 if (!bg) { 2121 ret = -ENOMEM; 2122 break; 2123 } 2124 2125 /* Fill dummy cache as FULL */ 2126 bg->length = em->len; 2127 bg->flags = map->type; 2128 bg->cached = BTRFS_CACHE_FINISHED; 2129 bg->used = em->len; 2130 bg->flags = map->type; 2131 ret = btrfs_add_block_group_cache(fs_info, bg); 2132 /* 2133 * We may have some valid block group cache added already, in 2134 * that case we skip to the next one. 2135 */ 2136 if (ret == -EEXIST) { 2137 ret = 0; 2138 btrfs_put_block_group(bg); 2139 continue; 2140 } 2141 2142 if (ret) { 2143 btrfs_remove_free_space_cache(bg); 2144 btrfs_put_block_group(bg); 2145 break; 2146 } 2147 2148 btrfs_add_bg_to_space_info(fs_info, bg); 2149 2150 set_avail_alloc_bits(fs_info, bg->flags); 2151 } 2152 if (!ret) 2153 btrfs_init_global_block_rsv(fs_info); 2154 return ret; 2155 } 2156 2157 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2158 { 2159 struct btrfs_root *root = btrfs_block_group_root(info); 2160 struct btrfs_path *path; 2161 int ret; 2162 struct btrfs_block_group *cache; 2163 struct btrfs_space_info *space_info; 2164 struct btrfs_key key; 2165 int need_clear = 0; 2166 u64 cache_gen; 2167 2168 /* 2169 * Either no extent root (with ibadroots rescue option) or we have 2170 * unsupported RO options. The fs can never be mounted read-write, so no 2171 * need to waste time searching block group items. 2172 * 2173 * This also allows new extent tree related changes to be RO compat, 2174 * no need for a full incompat flag. 2175 */ 2176 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2177 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2178 return fill_dummy_bgs(info); 2179 2180 key.objectid = 0; 2181 key.offset = 0; 2182 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2183 path = btrfs_alloc_path(); 2184 if (!path) 2185 return -ENOMEM; 2186 2187 cache_gen = btrfs_super_cache_generation(info->super_copy); 2188 if (btrfs_test_opt(info, SPACE_CACHE) && 2189 btrfs_super_generation(info->super_copy) != cache_gen) 2190 need_clear = 1; 2191 if (btrfs_test_opt(info, CLEAR_CACHE)) 2192 need_clear = 1; 2193 2194 while (1) { 2195 struct btrfs_block_group_item bgi; 2196 struct extent_buffer *leaf; 2197 int slot; 2198 2199 ret = find_first_block_group(info, path, &key); 2200 if (ret > 0) 2201 break; 2202 if (ret != 0) 2203 goto error; 2204 2205 leaf = path->nodes[0]; 2206 slot = path->slots[0]; 2207 2208 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2209 sizeof(bgi)); 2210 2211 btrfs_item_key_to_cpu(leaf, &key, slot); 2212 btrfs_release_path(path); 2213 ret = read_one_block_group(info, &bgi, &key, need_clear); 2214 if (ret < 0) 2215 goto error; 2216 key.objectid += key.offset; 2217 key.offset = 0; 2218 } 2219 btrfs_release_path(path); 2220 2221 list_for_each_entry(space_info, &info->space_info, list) { 2222 int i; 2223 2224 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2225 if (list_empty(&space_info->block_groups[i])) 2226 continue; 2227 cache = list_first_entry(&space_info->block_groups[i], 2228 struct btrfs_block_group, 2229 list); 2230 btrfs_sysfs_add_block_group_type(cache); 2231 } 2232 2233 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2234 (BTRFS_BLOCK_GROUP_RAID10 | 2235 BTRFS_BLOCK_GROUP_RAID1_MASK | 2236 BTRFS_BLOCK_GROUP_RAID56_MASK | 2237 BTRFS_BLOCK_GROUP_DUP))) 2238 continue; 2239 /* 2240 * Avoid allocating from un-mirrored block group if there are 2241 * mirrored block groups. 2242 */ 2243 list_for_each_entry(cache, 2244 &space_info->block_groups[BTRFS_RAID_RAID0], 2245 list) 2246 inc_block_group_ro(cache, 1); 2247 list_for_each_entry(cache, 2248 &space_info->block_groups[BTRFS_RAID_SINGLE], 2249 list) 2250 inc_block_group_ro(cache, 1); 2251 } 2252 2253 btrfs_init_global_block_rsv(info); 2254 ret = check_chunk_block_group_mappings(info); 2255 error: 2256 btrfs_free_path(path); 2257 /* 2258 * We've hit some error while reading the extent tree, and have 2259 * rescue=ibadroots mount option. 2260 * Try to fill the tree using dummy block groups so that the user can 2261 * continue to mount and grab their data. 2262 */ 2263 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2264 ret = fill_dummy_bgs(info); 2265 return ret; 2266 } 2267 2268 /* 2269 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2270 * allocation. 2271 * 2272 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2273 * phases. 2274 */ 2275 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2276 struct btrfs_block_group *block_group) 2277 { 2278 struct btrfs_fs_info *fs_info = trans->fs_info; 2279 struct btrfs_block_group_item bgi; 2280 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2281 struct btrfs_key key; 2282 2283 spin_lock(&block_group->lock); 2284 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2285 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2286 block_group->global_root_id); 2287 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2288 key.objectid = block_group->start; 2289 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2290 key.offset = block_group->length; 2291 spin_unlock(&block_group->lock); 2292 2293 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2294 } 2295 2296 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2297 struct btrfs_device *device, u64 chunk_offset, 2298 u64 start, u64 num_bytes) 2299 { 2300 struct btrfs_fs_info *fs_info = device->fs_info; 2301 struct btrfs_root *root = fs_info->dev_root; 2302 struct btrfs_path *path; 2303 struct btrfs_dev_extent *extent; 2304 struct extent_buffer *leaf; 2305 struct btrfs_key key; 2306 int ret; 2307 2308 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2309 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2310 path = btrfs_alloc_path(); 2311 if (!path) 2312 return -ENOMEM; 2313 2314 key.objectid = device->devid; 2315 key.type = BTRFS_DEV_EXTENT_KEY; 2316 key.offset = start; 2317 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2318 if (ret) 2319 goto out; 2320 2321 leaf = path->nodes[0]; 2322 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2323 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2324 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2325 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2326 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2327 2328 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2329 btrfs_mark_buffer_dirty(leaf); 2330 out: 2331 btrfs_free_path(path); 2332 return ret; 2333 } 2334 2335 /* 2336 * This function belongs to phase 2. 2337 * 2338 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2339 * phases. 2340 */ 2341 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2342 u64 chunk_offset, u64 chunk_size) 2343 { 2344 struct btrfs_fs_info *fs_info = trans->fs_info; 2345 struct btrfs_device *device; 2346 struct extent_map *em; 2347 struct map_lookup *map; 2348 u64 dev_offset; 2349 u64 stripe_size; 2350 int i; 2351 int ret = 0; 2352 2353 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2354 if (IS_ERR(em)) 2355 return PTR_ERR(em); 2356 2357 map = em->map_lookup; 2358 stripe_size = em->orig_block_len; 2359 2360 /* 2361 * Take the device list mutex to prevent races with the final phase of 2362 * a device replace operation that replaces the device object associated 2363 * with the map's stripes, because the device object's id can change 2364 * at any time during that final phase of the device replace operation 2365 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2366 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2367 * resulting in persisting a device extent item with such ID. 2368 */ 2369 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2370 for (i = 0; i < map->num_stripes; i++) { 2371 device = map->stripes[i].dev; 2372 dev_offset = map->stripes[i].physical; 2373 2374 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2375 stripe_size); 2376 if (ret) 2377 break; 2378 } 2379 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2380 2381 free_extent_map(em); 2382 return ret; 2383 } 2384 2385 /* 2386 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2387 * chunk allocation. 2388 * 2389 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2390 * phases. 2391 */ 2392 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2393 { 2394 struct btrfs_fs_info *fs_info = trans->fs_info; 2395 struct btrfs_block_group *block_group; 2396 int ret = 0; 2397 2398 while (!list_empty(&trans->new_bgs)) { 2399 int index; 2400 2401 block_group = list_first_entry(&trans->new_bgs, 2402 struct btrfs_block_group, 2403 bg_list); 2404 if (ret) 2405 goto next; 2406 2407 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2408 2409 ret = insert_block_group_item(trans, block_group); 2410 if (ret) 2411 btrfs_abort_transaction(trans, ret); 2412 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2413 &block_group->runtime_flags)) { 2414 mutex_lock(&fs_info->chunk_mutex); 2415 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2416 mutex_unlock(&fs_info->chunk_mutex); 2417 if (ret) 2418 btrfs_abort_transaction(trans, ret); 2419 } 2420 ret = insert_dev_extents(trans, block_group->start, 2421 block_group->length); 2422 if (ret) 2423 btrfs_abort_transaction(trans, ret); 2424 add_block_group_free_space(trans, block_group); 2425 2426 /* 2427 * If we restriped during balance, we may have added a new raid 2428 * type, so now add the sysfs entries when it is safe to do so. 2429 * We don't have to worry about locking here as it's handled in 2430 * btrfs_sysfs_add_block_group_type. 2431 */ 2432 if (block_group->space_info->block_group_kobjs[index] == NULL) 2433 btrfs_sysfs_add_block_group_type(block_group); 2434 2435 /* Already aborted the transaction if it failed. */ 2436 next: 2437 btrfs_delayed_refs_rsv_release(fs_info, 1); 2438 list_del_init(&block_group->bg_list); 2439 } 2440 btrfs_trans_release_chunk_metadata(trans); 2441 } 2442 2443 /* 2444 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2445 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2446 */ 2447 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2448 { 2449 u64 div = SZ_1G; 2450 u64 index; 2451 2452 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2453 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2454 2455 /* If we have a smaller fs index based on 128MiB. */ 2456 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2457 div = SZ_128M; 2458 2459 offset = div64_u64(offset, div); 2460 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2461 return index; 2462 } 2463 2464 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2465 u64 bytes_used, u64 type, 2466 u64 chunk_offset, u64 size) 2467 { 2468 struct btrfs_fs_info *fs_info = trans->fs_info; 2469 struct btrfs_block_group *cache; 2470 int ret; 2471 2472 btrfs_set_log_full_commit(trans); 2473 2474 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2475 if (!cache) 2476 return ERR_PTR(-ENOMEM); 2477 2478 cache->length = size; 2479 set_free_space_tree_thresholds(cache); 2480 cache->used = bytes_used; 2481 cache->flags = type; 2482 cache->cached = BTRFS_CACHE_FINISHED; 2483 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2484 2485 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2486 cache->needs_free_space = 1; 2487 2488 ret = btrfs_load_block_group_zone_info(cache, true); 2489 if (ret) { 2490 btrfs_put_block_group(cache); 2491 return ERR_PTR(ret); 2492 } 2493 2494 ret = exclude_super_stripes(cache); 2495 if (ret) { 2496 /* We may have excluded something, so call this just in case */ 2497 btrfs_free_excluded_extents(cache); 2498 btrfs_put_block_group(cache); 2499 return ERR_PTR(ret); 2500 } 2501 2502 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2503 2504 btrfs_free_excluded_extents(cache); 2505 2506 /* 2507 * Ensure the corresponding space_info object is created and 2508 * assigned to our block group. We want our bg to be added to the rbtree 2509 * with its ->space_info set. 2510 */ 2511 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2512 ASSERT(cache->space_info); 2513 2514 ret = btrfs_add_block_group_cache(fs_info, cache); 2515 if (ret) { 2516 btrfs_remove_free_space_cache(cache); 2517 btrfs_put_block_group(cache); 2518 return ERR_PTR(ret); 2519 } 2520 2521 /* 2522 * Now that our block group has its ->space_info set and is inserted in 2523 * the rbtree, update the space info's counters. 2524 */ 2525 trace_btrfs_add_block_group(fs_info, cache, 1); 2526 btrfs_add_bg_to_space_info(fs_info, cache); 2527 btrfs_update_global_block_rsv(fs_info); 2528 2529 #ifdef CONFIG_BTRFS_DEBUG 2530 if (btrfs_should_fragment_free_space(cache)) { 2531 u64 new_bytes_used = size - bytes_used; 2532 2533 cache->space_info->bytes_used += new_bytes_used >> 1; 2534 fragment_free_space(cache); 2535 } 2536 #endif 2537 2538 list_add_tail(&cache->bg_list, &trans->new_bgs); 2539 trans->delayed_ref_updates++; 2540 btrfs_update_delayed_refs_rsv(trans); 2541 2542 set_avail_alloc_bits(fs_info, type); 2543 return cache; 2544 } 2545 2546 /* 2547 * Mark one block group RO, can be called several times for the same block 2548 * group. 2549 * 2550 * @cache: the destination block group 2551 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2552 * ensure we still have some free space after marking this 2553 * block group RO. 2554 */ 2555 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2556 bool do_chunk_alloc) 2557 { 2558 struct btrfs_fs_info *fs_info = cache->fs_info; 2559 struct btrfs_trans_handle *trans; 2560 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2561 u64 alloc_flags; 2562 int ret; 2563 bool dirty_bg_running; 2564 2565 /* 2566 * This can only happen when we are doing read-only scrub on read-only 2567 * mount. 2568 * In that case we should not start a new transaction on read-only fs. 2569 * Thus here we skip all chunk allocations. 2570 */ 2571 if (sb_rdonly(fs_info->sb)) { 2572 mutex_lock(&fs_info->ro_block_group_mutex); 2573 ret = inc_block_group_ro(cache, 0); 2574 mutex_unlock(&fs_info->ro_block_group_mutex); 2575 return ret; 2576 } 2577 2578 do { 2579 trans = btrfs_join_transaction(root); 2580 if (IS_ERR(trans)) 2581 return PTR_ERR(trans); 2582 2583 dirty_bg_running = false; 2584 2585 /* 2586 * We're not allowed to set block groups readonly after the dirty 2587 * block group cache has started writing. If it already started, 2588 * back off and let this transaction commit. 2589 */ 2590 mutex_lock(&fs_info->ro_block_group_mutex); 2591 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2592 u64 transid = trans->transid; 2593 2594 mutex_unlock(&fs_info->ro_block_group_mutex); 2595 btrfs_end_transaction(trans); 2596 2597 ret = btrfs_wait_for_commit(fs_info, transid); 2598 if (ret) 2599 return ret; 2600 dirty_bg_running = true; 2601 } 2602 } while (dirty_bg_running); 2603 2604 if (do_chunk_alloc) { 2605 /* 2606 * If we are changing raid levels, try to allocate a 2607 * corresponding block group with the new raid level. 2608 */ 2609 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2610 if (alloc_flags != cache->flags) { 2611 ret = btrfs_chunk_alloc(trans, alloc_flags, 2612 CHUNK_ALLOC_FORCE); 2613 /* 2614 * ENOSPC is allowed here, we may have enough space 2615 * already allocated at the new raid level to carry on 2616 */ 2617 if (ret == -ENOSPC) 2618 ret = 0; 2619 if (ret < 0) 2620 goto out; 2621 } 2622 } 2623 2624 ret = inc_block_group_ro(cache, 0); 2625 if (!do_chunk_alloc || ret == -ETXTBSY) 2626 goto unlock_out; 2627 if (!ret) 2628 goto out; 2629 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2630 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2631 if (ret < 0) 2632 goto out; 2633 /* 2634 * We have allocated a new chunk. We also need to activate that chunk to 2635 * grant metadata tickets for zoned filesystem. 2636 */ 2637 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2638 if (ret < 0) 2639 goto out; 2640 2641 ret = inc_block_group_ro(cache, 0); 2642 if (ret == -ETXTBSY) 2643 goto unlock_out; 2644 out: 2645 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2646 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2647 mutex_lock(&fs_info->chunk_mutex); 2648 check_system_chunk(trans, alloc_flags); 2649 mutex_unlock(&fs_info->chunk_mutex); 2650 } 2651 unlock_out: 2652 mutex_unlock(&fs_info->ro_block_group_mutex); 2653 2654 btrfs_end_transaction(trans); 2655 return ret; 2656 } 2657 2658 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2659 { 2660 struct btrfs_space_info *sinfo = cache->space_info; 2661 u64 num_bytes; 2662 2663 BUG_ON(!cache->ro); 2664 2665 spin_lock(&sinfo->lock); 2666 spin_lock(&cache->lock); 2667 if (!--cache->ro) { 2668 if (btrfs_is_zoned(cache->fs_info)) { 2669 /* Migrate zone_unusable bytes back */ 2670 cache->zone_unusable = 2671 (cache->alloc_offset - cache->used) + 2672 (cache->length - cache->zone_capacity); 2673 sinfo->bytes_zone_unusable += cache->zone_unusable; 2674 sinfo->bytes_readonly -= cache->zone_unusable; 2675 } 2676 num_bytes = cache->length - cache->reserved - 2677 cache->pinned - cache->bytes_super - 2678 cache->zone_unusable - cache->used; 2679 sinfo->bytes_readonly -= num_bytes; 2680 list_del_init(&cache->ro_list); 2681 } 2682 spin_unlock(&cache->lock); 2683 spin_unlock(&sinfo->lock); 2684 } 2685 2686 static int update_block_group_item(struct btrfs_trans_handle *trans, 2687 struct btrfs_path *path, 2688 struct btrfs_block_group *cache) 2689 { 2690 struct btrfs_fs_info *fs_info = trans->fs_info; 2691 int ret; 2692 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2693 unsigned long bi; 2694 struct extent_buffer *leaf; 2695 struct btrfs_block_group_item bgi; 2696 struct btrfs_key key; 2697 2698 key.objectid = cache->start; 2699 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2700 key.offset = cache->length; 2701 2702 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2703 if (ret) { 2704 if (ret > 0) 2705 ret = -ENOENT; 2706 goto fail; 2707 } 2708 2709 leaf = path->nodes[0]; 2710 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2711 btrfs_set_stack_block_group_used(&bgi, cache->used); 2712 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2713 cache->global_root_id); 2714 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2715 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2716 btrfs_mark_buffer_dirty(leaf); 2717 fail: 2718 btrfs_release_path(path); 2719 return ret; 2720 2721 } 2722 2723 static int cache_save_setup(struct btrfs_block_group *block_group, 2724 struct btrfs_trans_handle *trans, 2725 struct btrfs_path *path) 2726 { 2727 struct btrfs_fs_info *fs_info = block_group->fs_info; 2728 struct btrfs_root *root = fs_info->tree_root; 2729 struct inode *inode = NULL; 2730 struct extent_changeset *data_reserved = NULL; 2731 u64 alloc_hint = 0; 2732 int dcs = BTRFS_DC_ERROR; 2733 u64 cache_size = 0; 2734 int retries = 0; 2735 int ret = 0; 2736 2737 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2738 return 0; 2739 2740 /* 2741 * If this block group is smaller than 100 megs don't bother caching the 2742 * block group. 2743 */ 2744 if (block_group->length < (100 * SZ_1M)) { 2745 spin_lock(&block_group->lock); 2746 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2747 spin_unlock(&block_group->lock); 2748 return 0; 2749 } 2750 2751 if (TRANS_ABORTED(trans)) 2752 return 0; 2753 again: 2754 inode = lookup_free_space_inode(block_group, path); 2755 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2756 ret = PTR_ERR(inode); 2757 btrfs_release_path(path); 2758 goto out; 2759 } 2760 2761 if (IS_ERR(inode)) { 2762 BUG_ON(retries); 2763 retries++; 2764 2765 if (block_group->ro) 2766 goto out_free; 2767 2768 ret = create_free_space_inode(trans, block_group, path); 2769 if (ret) 2770 goto out_free; 2771 goto again; 2772 } 2773 2774 /* 2775 * We want to set the generation to 0, that way if anything goes wrong 2776 * from here on out we know not to trust this cache when we load up next 2777 * time. 2778 */ 2779 BTRFS_I(inode)->generation = 0; 2780 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2781 if (ret) { 2782 /* 2783 * So theoretically we could recover from this, simply set the 2784 * super cache generation to 0 so we know to invalidate the 2785 * cache, but then we'd have to keep track of the block groups 2786 * that fail this way so we know we _have_ to reset this cache 2787 * before the next commit or risk reading stale cache. So to 2788 * limit our exposure to horrible edge cases lets just abort the 2789 * transaction, this only happens in really bad situations 2790 * anyway. 2791 */ 2792 btrfs_abort_transaction(trans, ret); 2793 goto out_put; 2794 } 2795 WARN_ON(ret); 2796 2797 /* We've already setup this transaction, go ahead and exit */ 2798 if (block_group->cache_generation == trans->transid && 2799 i_size_read(inode)) { 2800 dcs = BTRFS_DC_SETUP; 2801 goto out_put; 2802 } 2803 2804 if (i_size_read(inode) > 0) { 2805 ret = btrfs_check_trunc_cache_free_space(fs_info, 2806 &fs_info->global_block_rsv); 2807 if (ret) 2808 goto out_put; 2809 2810 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2811 if (ret) 2812 goto out_put; 2813 } 2814 2815 spin_lock(&block_group->lock); 2816 if (block_group->cached != BTRFS_CACHE_FINISHED || 2817 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2818 /* 2819 * don't bother trying to write stuff out _if_ 2820 * a) we're not cached, 2821 * b) we're with nospace_cache mount option, 2822 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2823 */ 2824 dcs = BTRFS_DC_WRITTEN; 2825 spin_unlock(&block_group->lock); 2826 goto out_put; 2827 } 2828 spin_unlock(&block_group->lock); 2829 2830 /* 2831 * We hit an ENOSPC when setting up the cache in this transaction, just 2832 * skip doing the setup, we've already cleared the cache so we're safe. 2833 */ 2834 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2835 ret = -ENOSPC; 2836 goto out_put; 2837 } 2838 2839 /* 2840 * Try to preallocate enough space based on how big the block group is. 2841 * Keep in mind this has to include any pinned space which could end up 2842 * taking up quite a bit since it's not folded into the other space 2843 * cache. 2844 */ 2845 cache_size = div_u64(block_group->length, SZ_256M); 2846 if (!cache_size) 2847 cache_size = 1; 2848 2849 cache_size *= 16; 2850 cache_size *= fs_info->sectorsize; 2851 2852 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2853 cache_size, false); 2854 if (ret) 2855 goto out_put; 2856 2857 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 2858 cache_size, cache_size, 2859 &alloc_hint); 2860 /* 2861 * Our cache requires contiguous chunks so that we don't modify a bunch 2862 * of metadata or split extents when writing the cache out, which means 2863 * we can enospc if we are heavily fragmented in addition to just normal 2864 * out of space conditions. So if we hit this just skip setting up any 2865 * other block groups for this transaction, maybe we'll unpin enough 2866 * space the next time around. 2867 */ 2868 if (!ret) 2869 dcs = BTRFS_DC_SETUP; 2870 else if (ret == -ENOSPC) 2871 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2872 2873 out_put: 2874 iput(inode); 2875 out_free: 2876 btrfs_release_path(path); 2877 out: 2878 spin_lock(&block_group->lock); 2879 if (!ret && dcs == BTRFS_DC_SETUP) 2880 block_group->cache_generation = trans->transid; 2881 block_group->disk_cache_state = dcs; 2882 spin_unlock(&block_group->lock); 2883 2884 extent_changeset_free(data_reserved); 2885 return ret; 2886 } 2887 2888 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2889 { 2890 struct btrfs_fs_info *fs_info = trans->fs_info; 2891 struct btrfs_block_group *cache, *tmp; 2892 struct btrfs_transaction *cur_trans = trans->transaction; 2893 struct btrfs_path *path; 2894 2895 if (list_empty(&cur_trans->dirty_bgs) || 2896 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2897 return 0; 2898 2899 path = btrfs_alloc_path(); 2900 if (!path) 2901 return -ENOMEM; 2902 2903 /* Could add new block groups, use _safe just in case */ 2904 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2905 dirty_list) { 2906 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2907 cache_save_setup(cache, trans, path); 2908 } 2909 2910 btrfs_free_path(path); 2911 return 0; 2912 } 2913 2914 /* 2915 * Transaction commit does final block group cache writeback during a critical 2916 * section where nothing is allowed to change the FS. This is required in 2917 * order for the cache to actually match the block group, but can introduce a 2918 * lot of latency into the commit. 2919 * 2920 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2921 * There's a chance we'll have to redo some of it if the block group changes 2922 * again during the commit, but it greatly reduces the commit latency by 2923 * getting rid of the easy block groups while we're still allowing others to 2924 * join the commit. 2925 */ 2926 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2927 { 2928 struct btrfs_fs_info *fs_info = trans->fs_info; 2929 struct btrfs_block_group *cache; 2930 struct btrfs_transaction *cur_trans = trans->transaction; 2931 int ret = 0; 2932 int should_put; 2933 struct btrfs_path *path = NULL; 2934 LIST_HEAD(dirty); 2935 struct list_head *io = &cur_trans->io_bgs; 2936 int loops = 0; 2937 2938 spin_lock(&cur_trans->dirty_bgs_lock); 2939 if (list_empty(&cur_trans->dirty_bgs)) { 2940 spin_unlock(&cur_trans->dirty_bgs_lock); 2941 return 0; 2942 } 2943 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2944 spin_unlock(&cur_trans->dirty_bgs_lock); 2945 2946 again: 2947 /* Make sure all the block groups on our dirty list actually exist */ 2948 btrfs_create_pending_block_groups(trans); 2949 2950 if (!path) { 2951 path = btrfs_alloc_path(); 2952 if (!path) { 2953 ret = -ENOMEM; 2954 goto out; 2955 } 2956 } 2957 2958 /* 2959 * cache_write_mutex is here only to save us from balance or automatic 2960 * removal of empty block groups deleting this block group while we are 2961 * writing out the cache 2962 */ 2963 mutex_lock(&trans->transaction->cache_write_mutex); 2964 while (!list_empty(&dirty)) { 2965 bool drop_reserve = true; 2966 2967 cache = list_first_entry(&dirty, struct btrfs_block_group, 2968 dirty_list); 2969 /* 2970 * This can happen if something re-dirties a block group that 2971 * is already under IO. Just wait for it to finish and then do 2972 * it all again 2973 */ 2974 if (!list_empty(&cache->io_list)) { 2975 list_del_init(&cache->io_list); 2976 btrfs_wait_cache_io(trans, cache, path); 2977 btrfs_put_block_group(cache); 2978 } 2979 2980 2981 /* 2982 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2983 * it should update the cache_state. Don't delete until after 2984 * we wait. 2985 * 2986 * Since we're not running in the commit critical section 2987 * we need the dirty_bgs_lock to protect from update_block_group 2988 */ 2989 spin_lock(&cur_trans->dirty_bgs_lock); 2990 list_del_init(&cache->dirty_list); 2991 spin_unlock(&cur_trans->dirty_bgs_lock); 2992 2993 should_put = 1; 2994 2995 cache_save_setup(cache, trans, path); 2996 2997 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2998 cache->io_ctl.inode = NULL; 2999 ret = btrfs_write_out_cache(trans, cache, path); 3000 if (ret == 0 && cache->io_ctl.inode) { 3001 should_put = 0; 3002 3003 /* 3004 * The cache_write_mutex is protecting the 3005 * io_list, also refer to the definition of 3006 * btrfs_transaction::io_bgs for more details 3007 */ 3008 list_add_tail(&cache->io_list, io); 3009 } else { 3010 /* 3011 * If we failed to write the cache, the 3012 * generation will be bad and life goes on 3013 */ 3014 ret = 0; 3015 } 3016 } 3017 if (!ret) { 3018 ret = update_block_group_item(trans, path, cache); 3019 /* 3020 * Our block group might still be attached to the list 3021 * of new block groups in the transaction handle of some 3022 * other task (struct btrfs_trans_handle->new_bgs). This 3023 * means its block group item isn't yet in the extent 3024 * tree. If this happens ignore the error, as we will 3025 * try again later in the critical section of the 3026 * transaction commit. 3027 */ 3028 if (ret == -ENOENT) { 3029 ret = 0; 3030 spin_lock(&cur_trans->dirty_bgs_lock); 3031 if (list_empty(&cache->dirty_list)) { 3032 list_add_tail(&cache->dirty_list, 3033 &cur_trans->dirty_bgs); 3034 btrfs_get_block_group(cache); 3035 drop_reserve = false; 3036 } 3037 spin_unlock(&cur_trans->dirty_bgs_lock); 3038 } else if (ret) { 3039 btrfs_abort_transaction(trans, ret); 3040 } 3041 } 3042 3043 /* If it's not on the io list, we need to put the block group */ 3044 if (should_put) 3045 btrfs_put_block_group(cache); 3046 if (drop_reserve) 3047 btrfs_delayed_refs_rsv_release(fs_info, 1); 3048 /* 3049 * Avoid blocking other tasks for too long. It might even save 3050 * us from writing caches for block groups that are going to be 3051 * removed. 3052 */ 3053 mutex_unlock(&trans->transaction->cache_write_mutex); 3054 if (ret) 3055 goto out; 3056 mutex_lock(&trans->transaction->cache_write_mutex); 3057 } 3058 mutex_unlock(&trans->transaction->cache_write_mutex); 3059 3060 /* 3061 * Go through delayed refs for all the stuff we've just kicked off 3062 * and then loop back (just once) 3063 */ 3064 if (!ret) 3065 ret = btrfs_run_delayed_refs(trans, 0); 3066 if (!ret && loops == 0) { 3067 loops++; 3068 spin_lock(&cur_trans->dirty_bgs_lock); 3069 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3070 /* 3071 * dirty_bgs_lock protects us from concurrent block group 3072 * deletes too (not just cache_write_mutex). 3073 */ 3074 if (!list_empty(&dirty)) { 3075 spin_unlock(&cur_trans->dirty_bgs_lock); 3076 goto again; 3077 } 3078 spin_unlock(&cur_trans->dirty_bgs_lock); 3079 } 3080 out: 3081 if (ret < 0) { 3082 spin_lock(&cur_trans->dirty_bgs_lock); 3083 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3084 spin_unlock(&cur_trans->dirty_bgs_lock); 3085 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3086 } 3087 3088 btrfs_free_path(path); 3089 return ret; 3090 } 3091 3092 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3093 { 3094 struct btrfs_fs_info *fs_info = trans->fs_info; 3095 struct btrfs_block_group *cache; 3096 struct btrfs_transaction *cur_trans = trans->transaction; 3097 int ret = 0; 3098 int should_put; 3099 struct btrfs_path *path; 3100 struct list_head *io = &cur_trans->io_bgs; 3101 3102 path = btrfs_alloc_path(); 3103 if (!path) 3104 return -ENOMEM; 3105 3106 /* 3107 * Even though we are in the critical section of the transaction commit, 3108 * we can still have concurrent tasks adding elements to this 3109 * transaction's list of dirty block groups. These tasks correspond to 3110 * endio free space workers started when writeback finishes for a 3111 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3112 * allocate new block groups as a result of COWing nodes of the root 3113 * tree when updating the free space inode. The writeback for the space 3114 * caches is triggered by an earlier call to 3115 * btrfs_start_dirty_block_groups() and iterations of the following 3116 * loop. 3117 * Also we want to do the cache_save_setup first and then run the 3118 * delayed refs to make sure we have the best chance at doing this all 3119 * in one shot. 3120 */ 3121 spin_lock(&cur_trans->dirty_bgs_lock); 3122 while (!list_empty(&cur_trans->dirty_bgs)) { 3123 cache = list_first_entry(&cur_trans->dirty_bgs, 3124 struct btrfs_block_group, 3125 dirty_list); 3126 3127 /* 3128 * This can happen if cache_save_setup re-dirties a block group 3129 * that is already under IO. Just wait for it to finish and 3130 * then do it all again 3131 */ 3132 if (!list_empty(&cache->io_list)) { 3133 spin_unlock(&cur_trans->dirty_bgs_lock); 3134 list_del_init(&cache->io_list); 3135 btrfs_wait_cache_io(trans, cache, path); 3136 btrfs_put_block_group(cache); 3137 spin_lock(&cur_trans->dirty_bgs_lock); 3138 } 3139 3140 /* 3141 * Don't remove from the dirty list until after we've waited on 3142 * any pending IO 3143 */ 3144 list_del_init(&cache->dirty_list); 3145 spin_unlock(&cur_trans->dirty_bgs_lock); 3146 should_put = 1; 3147 3148 cache_save_setup(cache, trans, path); 3149 3150 if (!ret) 3151 ret = btrfs_run_delayed_refs(trans, 3152 (unsigned long) -1); 3153 3154 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3155 cache->io_ctl.inode = NULL; 3156 ret = btrfs_write_out_cache(trans, cache, path); 3157 if (ret == 0 && cache->io_ctl.inode) { 3158 should_put = 0; 3159 list_add_tail(&cache->io_list, io); 3160 } else { 3161 /* 3162 * If we failed to write the cache, the 3163 * generation will be bad and life goes on 3164 */ 3165 ret = 0; 3166 } 3167 } 3168 if (!ret) { 3169 ret = update_block_group_item(trans, path, cache); 3170 /* 3171 * One of the free space endio workers might have 3172 * created a new block group while updating a free space 3173 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3174 * and hasn't released its transaction handle yet, in 3175 * which case the new block group is still attached to 3176 * its transaction handle and its creation has not 3177 * finished yet (no block group item in the extent tree 3178 * yet, etc). If this is the case, wait for all free 3179 * space endio workers to finish and retry. This is a 3180 * very rare case so no need for a more efficient and 3181 * complex approach. 3182 */ 3183 if (ret == -ENOENT) { 3184 wait_event(cur_trans->writer_wait, 3185 atomic_read(&cur_trans->num_writers) == 1); 3186 ret = update_block_group_item(trans, path, cache); 3187 } 3188 if (ret) 3189 btrfs_abort_transaction(trans, ret); 3190 } 3191 3192 /* If its not on the io list, we need to put the block group */ 3193 if (should_put) 3194 btrfs_put_block_group(cache); 3195 btrfs_delayed_refs_rsv_release(fs_info, 1); 3196 spin_lock(&cur_trans->dirty_bgs_lock); 3197 } 3198 spin_unlock(&cur_trans->dirty_bgs_lock); 3199 3200 /* 3201 * Refer to the definition of io_bgs member for details why it's safe 3202 * to use it without any locking 3203 */ 3204 while (!list_empty(io)) { 3205 cache = list_first_entry(io, struct btrfs_block_group, 3206 io_list); 3207 list_del_init(&cache->io_list); 3208 btrfs_wait_cache_io(trans, cache, path); 3209 btrfs_put_block_group(cache); 3210 } 3211 3212 btrfs_free_path(path); 3213 return ret; 3214 } 3215 3216 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg, 3217 u64 bytes_freed) 3218 { 3219 const struct btrfs_space_info *space_info = bg->space_info; 3220 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 3221 const u64 new_val = bg->used; 3222 const u64 old_val = new_val + bytes_freed; 3223 u64 thresh; 3224 3225 if (reclaim_thresh == 0) 3226 return false; 3227 3228 thresh = div_factor_fine(bg->length, reclaim_thresh); 3229 3230 /* 3231 * If we were below the threshold before don't reclaim, we are likely a 3232 * brand new block group and we don't want to relocate new block groups. 3233 */ 3234 if (old_val < thresh) 3235 return false; 3236 if (new_val >= thresh) 3237 return false; 3238 return true; 3239 } 3240 3241 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3242 u64 bytenr, u64 num_bytes, bool alloc) 3243 { 3244 struct btrfs_fs_info *info = trans->fs_info; 3245 struct btrfs_block_group *cache = NULL; 3246 u64 total = num_bytes; 3247 u64 old_val; 3248 u64 byte_in_group; 3249 int factor; 3250 int ret = 0; 3251 3252 /* Block accounting for super block */ 3253 spin_lock(&info->delalloc_root_lock); 3254 old_val = btrfs_super_bytes_used(info->super_copy); 3255 if (alloc) 3256 old_val += num_bytes; 3257 else 3258 old_val -= num_bytes; 3259 btrfs_set_super_bytes_used(info->super_copy, old_val); 3260 spin_unlock(&info->delalloc_root_lock); 3261 3262 while (total) { 3263 bool reclaim; 3264 3265 cache = btrfs_lookup_block_group(info, bytenr); 3266 if (!cache) { 3267 ret = -ENOENT; 3268 break; 3269 } 3270 factor = btrfs_bg_type_to_factor(cache->flags); 3271 3272 /* 3273 * If this block group has free space cache written out, we 3274 * need to make sure to load it if we are removing space. This 3275 * is because we need the unpinning stage to actually add the 3276 * space back to the block group, otherwise we will leak space. 3277 */ 3278 if (!alloc && !btrfs_block_group_done(cache)) 3279 btrfs_cache_block_group(cache, true); 3280 3281 byte_in_group = bytenr - cache->start; 3282 WARN_ON(byte_in_group > cache->length); 3283 3284 spin_lock(&cache->space_info->lock); 3285 spin_lock(&cache->lock); 3286 3287 if (btrfs_test_opt(info, SPACE_CACHE) && 3288 cache->disk_cache_state < BTRFS_DC_CLEAR) 3289 cache->disk_cache_state = BTRFS_DC_CLEAR; 3290 3291 old_val = cache->used; 3292 num_bytes = min(total, cache->length - byte_in_group); 3293 if (alloc) { 3294 old_val += num_bytes; 3295 cache->used = old_val; 3296 cache->reserved -= num_bytes; 3297 cache->space_info->bytes_reserved -= num_bytes; 3298 cache->space_info->bytes_used += num_bytes; 3299 cache->space_info->disk_used += num_bytes * factor; 3300 spin_unlock(&cache->lock); 3301 spin_unlock(&cache->space_info->lock); 3302 } else { 3303 old_val -= num_bytes; 3304 cache->used = old_val; 3305 cache->pinned += num_bytes; 3306 btrfs_space_info_update_bytes_pinned(info, 3307 cache->space_info, num_bytes); 3308 cache->space_info->bytes_used -= num_bytes; 3309 cache->space_info->disk_used -= num_bytes * factor; 3310 3311 reclaim = should_reclaim_block_group(cache, num_bytes); 3312 spin_unlock(&cache->lock); 3313 spin_unlock(&cache->space_info->lock); 3314 3315 set_extent_dirty(&trans->transaction->pinned_extents, 3316 bytenr, bytenr + num_bytes - 1, 3317 GFP_NOFS | __GFP_NOFAIL); 3318 } 3319 3320 spin_lock(&trans->transaction->dirty_bgs_lock); 3321 if (list_empty(&cache->dirty_list)) { 3322 list_add_tail(&cache->dirty_list, 3323 &trans->transaction->dirty_bgs); 3324 trans->delayed_ref_updates++; 3325 btrfs_get_block_group(cache); 3326 } 3327 spin_unlock(&trans->transaction->dirty_bgs_lock); 3328 3329 /* 3330 * No longer have used bytes in this block group, queue it for 3331 * deletion. We do this after adding the block group to the 3332 * dirty list to avoid races between cleaner kthread and space 3333 * cache writeout. 3334 */ 3335 if (!alloc && old_val == 0) { 3336 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3337 btrfs_mark_bg_unused(cache); 3338 } else if (!alloc && reclaim) { 3339 btrfs_mark_bg_to_reclaim(cache); 3340 } 3341 3342 btrfs_put_block_group(cache); 3343 total -= num_bytes; 3344 bytenr += num_bytes; 3345 } 3346 3347 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3348 btrfs_update_delayed_refs_rsv(trans); 3349 return ret; 3350 } 3351 3352 /** 3353 * btrfs_add_reserved_bytes - update the block_group and space info counters 3354 * @cache: The cache we are manipulating 3355 * @ram_bytes: The number of bytes of file content, and will be same to 3356 * @num_bytes except for the compress path. 3357 * @num_bytes: The number of bytes in question 3358 * @delalloc: The blocks are allocated for the delalloc write 3359 * 3360 * This is called by the allocator when it reserves space. If this is a 3361 * reservation and the block group has become read only we cannot make the 3362 * reservation and return -EAGAIN, otherwise this function always succeeds. 3363 */ 3364 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3365 u64 ram_bytes, u64 num_bytes, int delalloc) 3366 { 3367 struct btrfs_space_info *space_info = cache->space_info; 3368 int ret = 0; 3369 3370 spin_lock(&space_info->lock); 3371 spin_lock(&cache->lock); 3372 if (cache->ro) { 3373 ret = -EAGAIN; 3374 } else { 3375 cache->reserved += num_bytes; 3376 space_info->bytes_reserved += num_bytes; 3377 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3378 space_info->flags, num_bytes, 1); 3379 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3380 space_info, -ram_bytes); 3381 if (delalloc) 3382 cache->delalloc_bytes += num_bytes; 3383 3384 /* 3385 * Compression can use less space than we reserved, so wake 3386 * tickets if that happens 3387 */ 3388 if (num_bytes < ram_bytes) 3389 btrfs_try_granting_tickets(cache->fs_info, space_info); 3390 } 3391 spin_unlock(&cache->lock); 3392 spin_unlock(&space_info->lock); 3393 return ret; 3394 } 3395 3396 /** 3397 * btrfs_free_reserved_bytes - update the block_group and space info counters 3398 * @cache: The cache we are manipulating 3399 * @num_bytes: The number of bytes in question 3400 * @delalloc: The blocks are allocated for the delalloc write 3401 * 3402 * This is called by somebody who is freeing space that was never actually used 3403 * on disk. For example if you reserve some space for a new leaf in transaction 3404 * A and before transaction A commits you free that leaf, you call this with 3405 * reserve set to 0 in order to clear the reservation. 3406 */ 3407 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3408 u64 num_bytes, int delalloc) 3409 { 3410 struct btrfs_space_info *space_info = cache->space_info; 3411 3412 spin_lock(&space_info->lock); 3413 spin_lock(&cache->lock); 3414 if (cache->ro) 3415 space_info->bytes_readonly += num_bytes; 3416 cache->reserved -= num_bytes; 3417 space_info->bytes_reserved -= num_bytes; 3418 space_info->max_extent_size = 0; 3419 3420 if (delalloc) 3421 cache->delalloc_bytes -= num_bytes; 3422 spin_unlock(&cache->lock); 3423 3424 btrfs_try_granting_tickets(cache->fs_info, space_info); 3425 spin_unlock(&space_info->lock); 3426 } 3427 3428 static void force_metadata_allocation(struct btrfs_fs_info *info) 3429 { 3430 struct list_head *head = &info->space_info; 3431 struct btrfs_space_info *found; 3432 3433 list_for_each_entry(found, head, list) { 3434 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3435 found->force_alloc = CHUNK_ALLOC_FORCE; 3436 } 3437 } 3438 3439 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3440 struct btrfs_space_info *sinfo, int force) 3441 { 3442 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3443 u64 thresh; 3444 3445 if (force == CHUNK_ALLOC_FORCE) 3446 return 1; 3447 3448 /* 3449 * in limited mode, we want to have some free space up to 3450 * about 1% of the FS size. 3451 */ 3452 if (force == CHUNK_ALLOC_LIMITED) { 3453 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3454 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3455 3456 if (sinfo->total_bytes - bytes_used < thresh) 3457 return 1; 3458 } 3459 3460 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3461 return 0; 3462 return 1; 3463 } 3464 3465 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3466 { 3467 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3468 3469 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3470 } 3471 3472 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3473 { 3474 struct btrfs_block_group *bg; 3475 int ret; 3476 3477 /* 3478 * Check if we have enough space in the system space info because we 3479 * will need to update device items in the chunk btree and insert a new 3480 * chunk item in the chunk btree as well. This will allocate a new 3481 * system block group if needed. 3482 */ 3483 check_system_chunk(trans, flags); 3484 3485 bg = btrfs_create_chunk(trans, flags); 3486 if (IS_ERR(bg)) { 3487 ret = PTR_ERR(bg); 3488 goto out; 3489 } 3490 3491 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3492 /* 3493 * Normally we are not expected to fail with -ENOSPC here, since we have 3494 * previously reserved space in the system space_info and allocated one 3495 * new system chunk if necessary. However there are three exceptions: 3496 * 3497 * 1) We may have enough free space in the system space_info but all the 3498 * existing system block groups have a profile which can not be used 3499 * for extent allocation. 3500 * 3501 * This happens when mounting in degraded mode. For example we have a 3502 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3503 * using the other device in degraded mode. If we then allocate a chunk, 3504 * we may have enough free space in the existing system space_info, but 3505 * none of the block groups can be used for extent allocation since they 3506 * have a RAID1 profile, and because we are in degraded mode with a 3507 * single device, we are forced to allocate a new system chunk with a 3508 * SINGLE profile. Making check_system_chunk() iterate over all system 3509 * block groups and check if they have a usable profile and enough space 3510 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3511 * try again after forcing allocation of a new system chunk. Like this 3512 * we avoid paying the cost of that search in normal circumstances, when 3513 * we were not mounted in degraded mode; 3514 * 3515 * 2) We had enough free space info the system space_info, and one suitable 3516 * block group to allocate from when we called check_system_chunk() 3517 * above. However right after we called it, the only system block group 3518 * with enough free space got turned into RO mode by a running scrub, 3519 * and in this case we have to allocate a new one and retry. We only 3520 * need do this allocate and retry once, since we have a transaction 3521 * handle and scrub uses the commit root to search for block groups; 3522 * 3523 * 3) We had one system block group with enough free space when we called 3524 * check_system_chunk(), but after that, right before we tried to 3525 * allocate the last extent buffer we needed, a discard operation came 3526 * in and it temporarily removed the last free space entry from the 3527 * block group (discard removes a free space entry, discards it, and 3528 * then adds back the entry to the block group cache). 3529 */ 3530 if (ret == -ENOSPC) { 3531 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3532 struct btrfs_block_group *sys_bg; 3533 3534 sys_bg = btrfs_create_chunk(trans, sys_flags); 3535 if (IS_ERR(sys_bg)) { 3536 ret = PTR_ERR(sys_bg); 3537 btrfs_abort_transaction(trans, ret); 3538 goto out; 3539 } 3540 3541 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3542 if (ret) { 3543 btrfs_abort_transaction(trans, ret); 3544 goto out; 3545 } 3546 3547 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3548 if (ret) { 3549 btrfs_abort_transaction(trans, ret); 3550 goto out; 3551 } 3552 } else if (ret) { 3553 btrfs_abort_transaction(trans, ret); 3554 goto out; 3555 } 3556 out: 3557 btrfs_trans_release_chunk_metadata(trans); 3558 3559 if (ret) 3560 return ERR_PTR(ret); 3561 3562 btrfs_get_block_group(bg); 3563 return bg; 3564 } 3565 3566 /* 3567 * Chunk allocation is done in 2 phases: 3568 * 3569 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3570 * the chunk, the chunk mapping, create its block group and add the items 3571 * that belong in the chunk btree to it - more specifically, we need to 3572 * update device items in the chunk btree and add a new chunk item to it. 3573 * 3574 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3575 * group item to the extent btree and the device extent items to the devices 3576 * btree. 3577 * 3578 * This is done to prevent deadlocks. For example when COWing a node from the 3579 * extent btree we are holding a write lock on the node's parent and if we 3580 * trigger chunk allocation and attempted to insert the new block group item 3581 * in the extent btree right way, we could deadlock because the path for the 3582 * insertion can include that parent node. At first glance it seems impossible 3583 * to trigger chunk allocation after starting a transaction since tasks should 3584 * reserve enough transaction units (metadata space), however while that is true 3585 * most of the time, chunk allocation may still be triggered for several reasons: 3586 * 3587 * 1) When reserving metadata, we check if there is enough free space in the 3588 * metadata space_info and therefore don't trigger allocation of a new chunk. 3589 * However later when the task actually tries to COW an extent buffer from 3590 * the extent btree or from the device btree for example, it is forced to 3591 * allocate a new block group (chunk) because the only one that had enough 3592 * free space was just turned to RO mode by a running scrub for example (or 3593 * device replace, block group reclaim thread, etc), so we can not use it 3594 * for allocating an extent and end up being forced to allocate a new one; 3595 * 3596 * 2) Because we only check that the metadata space_info has enough free bytes, 3597 * we end up not allocating a new metadata chunk in that case. However if 3598 * the filesystem was mounted in degraded mode, none of the existing block 3599 * groups might be suitable for extent allocation due to their incompatible 3600 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3601 * use a RAID1 profile, in degraded mode using a single device). In this case 3602 * when the task attempts to COW some extent buffer of the extent btree for 3603 * example, it will trigger allocation of a new metadata block group with a 3604 * suitable profile (SINGLE profile in the example of the degraded mount of 3605 * the RAID1 filesystem); 3606 * 3607 * 3) The task has reserved enough transaction units / metadata space, but when 3608 * it attempts to COW an extent buffer from the extent or device btree for 3609 * example, it does not find any free extent in any metadata block group, 3610 * therefore forced to try to allocate a new metadata block group. 3611 * This is because some other task allocated all available extents in the 3612 * meanwhile - this typically happens with tasks that don't reserve space 3613 * properly, either intentionally or as a bug. One example where this is 3614 * done intentionally is fsync, as it does not reserve any transaction units 3615 * and ends up allocating a variable number of metadata extents for log 3616 * tree extent buffers; 3617 * 3618 * 4) The task has reserved enough transaction units / metadata space, but right 3619 * before it tries to allocate the last extent buffer it needs, a discard 3620 * operation comes in and, temporarily, removes the last free space entry from 3621 * the only metadata block group that had free space (discard starts by 3622 * removing a free space entry from a block group, then does the discard 3623 * operation and, once it's done, it adds back the free space entry to the 3624 * block group). 3625 * 3626 * We also need this 2 phases setup when adding a device to a filesystem with 3627 * a seed device - we must create new metadata and system chunks without adding 3628 * any of the block group items to the chunk, extent and device btrees. If we 3629 * did not do it this way, we would get ENOSPC when attempting to update those 3630 * btrees, since all the chunks from the seed device are read-only. 3631 * 3632 * Phase 1 does the updates and insertions to the chunk btree because if we had 3633 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3634 * parallel, we risk having too many system chunks allocated by many tasks if 3635 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3636 * extreme case this leads to exhaustion of the system chunk array in the 3637 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3638 * and with RAID filesystems (so we have more device items in the chunk btree). 3639 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3640 * the system chunk array due to concurrent allocations") provides more details. 3641 * 3642 * Allocation of system chunks does not happen through this function. A task that 3643 * needs to update the chunk btree (the only btree that uses system chunks), must 3644 * preallocate chunk space by calling either check_system_chunk() or 3645 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3646 * metadata chunk or when removing a chunk, while the later is used before doing 3647 * a modification to the chunk btree - use cases for the later are adding, 3648 * removing and resizing a device as well as relocation of a system chunk. 3649 * See the comment below for more details. 3650 * 3651 * The reservation of system space, done through check_system_chunk(), as well 3652 * as all the updates and insertions into the chunk btree must be done while 3653 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3654 * an extent buffer from the chunks btree we never trigger allocation of a new 3655 * system chunk, which would result in a deadlock (trying to lock twice an 3656 * extent buffer of the chunk btree, first time before triggering the chunk 3657 * allocation and the second time during chunk allocation while attempting to 3658 * update the chunks btree). The system chunk array is also updated while holding 3659 * that mutex. The same logic applies to removing chunks - we must reserve system 3660 * space, update the chunk btree and the system chunk array in the superblock 3661 * while holding fs_info->chunk_mutex. 3662 * 3663 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3664 * 3665 * If @force is CHUNK_ALLOC_FORCE: 3666 * - return 1 if it successfully allocates a chunk, 3667 * - return errors including -ENOSPC otherwise. 3668 * If @force is NOT CHUNK_ALLOC_FORCE: 3669 * - return 0 if it doesn't need to allocate a new chunk, 3670 * - return 1 if it successfully allocates a chunk, 3671 * - return errors including -ENOSPC otherwise. 3672 */ 3673 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3674 enum btrfs_chunk_alloc_enum force) 3675 { 3676 struct btrfs_fs_info *fs_info = trans->fs_info; 3677 struct btrfs_space_info *space_info; 3678 struct btrfs_block_group *ret_bg; 3679 bool wait_for_alloc = false; 3680 bool should_alloc = false; 3681 bool from_extent_allocation = false; 3682 int ret = 0; 3683 3684 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 3685 from_extent_allocation = true; 3686 force = CHUNK_ALLOC_FORCE; 3687 } 3688 3689 /* Don't re-enter if we're already allocating a chunk */ 3690 if (trans->allocating_chunk) 3691 return -ENOSPC; 3692 /* 3693 * Allocation of system chunks can not happen through this path, as we 3694 * could end up in a deadlock if we are allocating a data or metadata 3695 * chunk and there is another task modifying the chunk btree. 3696 * 3697 * This is because while we are holding the chunk mutex, we will attempt 3698 * to add the new chunk item to the chunk btree or update an existing 3699 * device item in the chunk btree, while the other task that is modifying 3700 * the chunk btree is attempting to COW an extent buffer while holding a 3701 * lock on it and on its parent - if the COW operation triggers a system 3702 * chunk allocation, then we can deadlock because we are holding the 3703 * chunk mutex and we may need to access that extent buffer or its parent 3704 * in order to add the chunk item or update a device item. 3705 * 3706 * Tasks that want to modify the chunk tree should reserve system space 3707 * before updating the chunk btree, by calling either 3708 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 3709 * It's possible that after a task reserves the space, it still ends up 3710 * here - this happens in the cases described above at do_chunk_alloc(). 3711 * The task will have to either retry or fail. 3712 */ 3713 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3714 return -ENOSPC; 3715 3716 space_info = btrfs_find_space_info(fs_info, flags); 3717 ASSERT(space_info); 3718 3719 do { 3720 spin_lock(&space_info->lock); 3721 if (force < space_info->force_alloc) 3722 force = space_info->force_alloc; 3723 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3724 if (space_info->full) { 3725 /* No more free physical space */ 3726 if (should_alloc) 3727 ret = -ENOSPC; 3728 else 3729 ret = 0; 3730 spin_unlock(&space_info->lock); 3731 return ret; 3732 } else if (!should_alloc) { 3733 spin_unlock(&space_info->lock); 3734 return 0; 3735 } else if (space_info->chunk_alloc) { 3736 /* 3737 * Someone is already allocating, so we need to block 3738 * until this someone is finished and then loop to 3739 * recheck if we should continue with our allocation 3740 * attempt. 3741 */ 3742 wait_for_alloc = true; 3743 force = CHUNK_ALLOC_NO_FORCE; 3744 spin_unlock(&space_info->lock); 3745 mutex_lock(&fs_info->chunk_mutex); 3746 mutex_unlock(&fs_info->chunk_mutex); 3747 } else { 3748 /* Proceed with allocation */ 3749 space_info->chunk_alloc = 1; 3750 wait_for_alloc = false; 3751 spin_unlock(&space_info->lock); 3752 } 3753 3754 cond_resched(); 3755 } while (wait_for_alloc); 3756 3757 mutex_lock(&fs_info->chunk_mutex); 3758 trans->allocating_chunk = true; 3759 3760 /* 3761 * If we have mixed data/metadata chunks we want to make sure we keep 3762 * allocating mixed chunks instead of individual chunks. 3763 */ 3764 if (btrfs_mixed_space_info(space_info)) 3765 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3766 3767 /* 3768 * if we're doing a data chunk, go ahead and make sure that 3769 * we keep a reasonable number of metadata chunks allocated in the 3770 * FS as well. 3771 */ 3772 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3773 fs_info->data_chunk_allocations++; 3774 if (!(fs_info->data_chunk_allocations % 3775 fs_info->metadata_ratio)) 3776 force_metadata_allocation(fs_info); 3777 } 3778 3779 ret_bg = do_chunk_alloc(trans, flags); 3780 trans->allocating_chunk = false; 3781 3782 if (IS_ERR(ret_bg)) { 3783 ret = PTR_ERR(ret_bg); 3784 } else if (from_extent_allocation) { 3785 /* 3786 * New block group is likely to be used soon. Try to activate 3787 * it now. Failure is OK for now. 3788 */ 3789 btrfs_zone_activate(ret_bg); 3790 } 3791 3792 if (!ret) 3793 btrfs_put_block_group(ret_bg); 3794 3795 spin_lock(&space_info->lock); 3796 if (ret < 0) { 3797 if (ret == -ENOSPC) 3798 space_info->full = 1; 3799 else 3800 goto out; 3801 } else { 3802 ret = 1; 3803 space_info->max_extent_size = 0; 3804 } 3805 3806 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3807 out: 3808 space_info->chunk_alloc = 0; 3809 spin_unlock(&space_info->lock); 3810 mutex_unlock(&fs_info->chunk_mutex); 3811 3812 return ret; 3813 } 3814 3815 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3816 { 3817 u64 num_dev; 3818 3819 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3820 if (!num_dev) 3821 num_dev = fs_info->fs_devices->rw_devices; 3822 3823 return num_dev; 3824 } 3825 3826 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 3827 u64 bytes, 3828 u64 type) 3829 { 3830 struct btrfs_fs_info *fs_info = trans->fs_info; 3831 struct btrfs_space_info *info; 3832 u64 left; 3833 int ret = 0; 3834 3835 /* 3836 * Needed because we can end up allocating a system chunk and for an 3837 * atomic and race free space reservation in the chunk block reserve. 3838 */ 3839 lockdep_assert_held(&fs_info->chunk_mutex); 3840 3841 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3842 spin_lock(&info->lock); 3843 left = info->total_bytes - btrfs_space_info_used(info, true); 3844 spin_unlock(&info->lock); 3845 3846 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3847 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3848 left, bytes, type); 3849 btrfs_dump_space_info(fs_info, info, 0, 0); 3850 } 3851 3852 if (left < bytes) { 3853 u64 flags = btrfs_system_alloc_profile(fs_info); 3854 struct btrfs_block_group *bg; 3855 3856 /* 3857 * Ignore failure to create system chunk. We might end up not 3858 * needing it, as we might not need to COW all nodes/leafs from 3859 * the paths we visit in the chunk tree (they were already COWed 3860 * or created in the current transaction for example). 3861 */ 3862 bg = btrfs_create_chunk(trans, flags); 3863 if (IS_ERR(bg)) { 3864 ret = PTR_ERR(bg); 3865 } else { 3866 /* 3867 * We have a new chunk. We also need to activate it for 3868 * zoned filesystem. 3869 */ 3870 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 3871 if (ret < 0) 3872 return; 3873 3874 /* 3875 * If we fail to add the chunk item here, we end up 3876 * trying again at phase 2 of chunk allocation, at 3877 * btrfs_create_pending_block_groups(). So ignore 3878 * any error here. An ENOSPC here could happen, due to 3879 * the cases described at do_chunk_alloc() - the system 3880 * block group we just created was just turned into RO 3881 * mode by a scrub for example, or a running discard 3882 * temporarily removed its free space entries, etc. 3883 */ 3884 btrfs_chunk_alloc_add_chunk_item(trans, bg); 3885 } 3886 } 3887 3888 if (!ret) { 3889 ret = btrfs_block_rsv_add(fs_info, 3890 &fs_info->chunk_block_rsv, 3891 bytes, BTRFS_RESERVE_NO_FLUSH); 3892 if (!ret) 3893 trans->chunk_bytes_reserved += bytes; 3894 } 3895 } 3896 3897 /* 3898 * Reserve space in the system space for allocating or removing a chunk. 3899 * The caller must be holding fs_info->chunk_mutex. 3900 */ 3901 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3902 { 3903 struct btrfs_fs_info *fs_info = trans->fs_info; 3904 const u64 num_devs = get_profile_num_devs(fs_info, type); 3905 u64 bytes; 3906 3907 /* num_devs device items to update and 1 chunk item to add or remove. */ 3908 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 3909 btrfs_calc_insert_metadata_size(fs_info, 1); 3910 3911 reserve_chunk_space(trans, bytes, type); 3912 } 3913 3914 /* 3915 * Reserve space in the system space, if needed, for doing a modification to the 3916 * chunk btree. 3917 * 3918 * @trans: A transaction handle. 3919 * @is_item_insertion: Indicate if the modification is for inserting a new item 3920 * in the chunk btree or if it's for the deletion or update 3921 * of an existing item. 3922 * 3923 * This is used in a context where we need to update the chunk btree outside 3924 * block group allocation and removal, to avoid a deadlock with a concurrent 3925 * task that is allocating a metadata or data block group and therefore needs to 3926 * update the chunk btree while holding the chunk mutex. After the update to the 3927 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 3928 * 3929 */ 3930 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 3931 bool is_item_insertion) 3932 { 3933 struct btrfs_fs_info *fs_info = trans->fs_info; 3934 u64 bytes; 3935 3936 if (is_item_insertion) 3937 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 3938 else 3939 bytes = btrfs_calc_metadata_size(fs_info, 1); 3940 3941 mutex_lock(&fs_info->chunk_mutex); 3942 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 3943 mutex_unlock(&fs_info->chunk_mutex); 3944 } 3945 3946 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3947 { 3948 struct btrfs_block_group *block_group; 3949 3950 block_group = btrfs_lookup_first_block_group(info, 0); 3951 while (block_group) { 3952 btrfs_wait_block_group_cache_done(block_group); 3953 spin_lock(&block_group->lock); 3954 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 3955 &block_group->runtime_flags)) { 3956 struct inode *inode = block_group->inode; 3957 3958 block_group->inode = NULL; 3959 spin_unlock(&block_group->lock); 3960 3961 ASSERT(block_group->io_ctl.inode == NULL); 3962 iput(inode); 3963 } else { 3964 spin_unlock(&block_group->lock); 3965 } 3966 block_group = btrfs_next_block_group(block_group); 3967 } 3968 } 3969 3970 /* 3971 * Must be called only after stopping all workers, since we could have block 3972 * group caching kthreads running, and therefore they could race with us if we 3973 * freed the block groups before stopping them. 3974 */ 3975 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3976 { 3977 struct btrfs_block_group *block_group; 3978 struct btrfs_space_info *space_info; 3979 struct btrfs_caching_control *caching_ctl; 3980 struct rb_node *n; 3981 3982 write_lock(&info->block_group_cache_lock); 3983 while (!list_empty(&info->caching_block_groups)) { 3984 caching_ctl = list_entry(info->caching_block_groups.next, 3985 struct btrfs_caching_control, list); 3986 list_del(&caching_ctl->list); 3987 btrfs_put_caching_control(caching_ctl); 3988 } 3989 write_unlock(&info->block_group_cache_lock); 3990 3991 spin_lock(&info->unused_bgs_lock); 3992 while (!list_empty(&info->unused_bgs)) { 3993 block_group = list_first_entry(&info->unused_bgs, 3994 struct btrfs_block_group, 3995 bg_list); 3996 list_del_init(&block_group->bg_list); 3997 btrfs_put_block_group(block_group); 3998 } 3999 4000 while (!list_empty(&info->reclaim_bgs)) { 4001 block_group = list_first_entry(&info->reclaim_bgs, 4002 struct btrfs_block_group, 4003 bg_list); 4004 list_del_init(&block_group->bg_list); 4005 btrfs_put_block_group(block_group); 4006 } 4007 spin_unlock(&info->unused_bgs_lock); 4008 4009 spin_lock(&info->zone_active_bgs_lock); 4010 while (!list_empty(&info->zone_active_bgs)) { 4011 block_group = list_first_entry(&info->zone_active_bgs, 4012 struct btrfs_block_group, 4013 active_bg_list); 4014 list_del_init(&block_group->active_bg_list); 4015 btrfs_put_block_group(block_group); 4016 } 4017 spin_unlock(&info->zone_active_bgs_lock); 4018 4019 write_lock(&info->block_group_cache_lock); 4020 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4021 block_group = rb_entry(n, struct btrfs_block_group, 4022 cache_node); 4023 rb_erase_cached(&block_group->cache_node, 4024 &info->block_group_cache_tree); 4025 RB_CLEAR_NODE(&block_group->cache_node); 4026 write_unlock(&info->block_group_cache_lock); 4027 4028 down_write(&block_group->space_info->groups_sem); 4029 list_del(&block_group->list); 4030 up_write(&block_group->space_info->groups_sem); 4031 4032 /* 4033 * We haven't cached this block group, which means we could 4034 * possibly have excluded extents on this block group. 4035 */ 4036 if (block_group->cached == BTRFS_CACHE_NO || 4037 block_group->cached == BTRFS_CACHE_ERROR) 4038 btrfs_free_excluded_extents(block_group); 4039 4040 btrfs_remove_free_space_cache(block_group); 4041 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4042 ASSERT(list_empty(&block_group->dirty_list)); 4043 ASSERT(list_empty(&block_group->io_list)); 4044 ASSERT(list_empty(&block_group->bg_list)); 4045 ASSERT(refcount_read(&block_group->refs) == 1); 4046 ASSERT(block_group->swap_extents == 0); 4047 btrfs_put_block_group(block_group); 4048 4049 write_lock(&info->block_group_cache_lock); 4050 } 4051 write_unlock(&info->block_group_cache_lock); 4052 4053 btrfs_release_global_block_rsv(info); 4054 4055 while (!list_empty(&info->space_info)) { 4056 space_info = list_entry(info->space_info.next, 4057 struct btrfs_space_info, 4058 list); 4059 4060 /* 4061 * Do not hide this behind enospc_debug, this is actually 4062 * important and indicates a real bug if this happens. 4063 */ 4064 if (WARN_ON(space_info->bytes_pinned > 0 || 4065 space_info->bytes_may_use > 0)) 4066 btrfs_dump_space_info(info, space_info, 0, 0); 4067 4068 /* 4069 * If there was a failure to cleanup a log tree, very likely due 4070 * to an IO failure on a writeback attempt of one or more of its 4071 * extent buffers, we could not do proper (and cheap) unaccounting 4072 * of their reserved space, so don't warn on bytes_reserved > 0 in 4073 * that case. 4074 */ 4075 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4076 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4077 if (WARN_ON(space_info->bytes_reserved > 0)) 4078 btrfs_dump_space_info(info, space_info, 0, 0); 4079 } 4080 4081 WARN_ON(space_info->reclaim_size > 0); 4082 list_del(&space_info->list); 4083 btrfs_sysfs_remove_space_info(space_info); 4084 } 4085 return 0; 4086 } 4087 4088 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4089 { 4090 atomic_inc(&cache->frozen); 4091 } 4092 4093 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4094 { 4095 struct btrfs_fs_info *fs_info = block_group->fs_info; 4096 struct extent_map_tree *em_tree; 4097 struct extent_map *em; 4098 bool cleanup; 4099 4100 spin_lock(&block_group->lock); 4101 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4102 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4103 spin_unlock(&block_group->lock); 4104 4105 if (cleanup) { 4106 em_tree = &fs_info->mapping_tree; 4107 write_lock(&em_tree->lock); 4108 em = lookup_extent_mapping(em_tree, block_group->start, 4109 1); 4110 BUG_ON(!em); /* logic error, can't happen */ 4111 remove_extent_mapping(em_tree, em); 4112 write_unlock(&em_tree->lock); 4113 4114 /* once for us and once for the tree */ 4115 free_extent_map(em); 4116 free_extent_map(em); 4117 4118 /* 4119 * We may have left one free space entry and other possible 4120 * tasks trimming this block group have left 1 entry each one. 4121 * Free them if any. 4122 */ 4123 btrfs_remove_free_space_cache(block_group); 4124 } 4125 } 4126 4127 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4128 { 4129 bool ret = true; 4130 4131 spin_lock(&bg->lock); 4132 if (bg->ro) 4133 ret = false; 4134 else 4135 bg->swap_extents++; 4136 spin_unlock(&bg->lock); 4137 4138 return ret; 4139 } 4140 4141 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4142 { 4143 spin_lock(&bg->lock); 4144 ASSERT(!bg->ro); 4145 ASSERT(bg->swap_extents >= amount); 4146 bg->swap_extents -= amount; 4147 spin_unlock(&bg->lock); 4148 } 4149