xref: /linux/fs/btrfs/block-group.c (revision 7effbd18e496a954540fb6319db0d87d28a70496)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 	struct btrfs_fs_info *fs_info = block_group->fs_info;
29 
30 	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36 
37 /*
38  * Return target flags in extended format or 0 if restripe for this chunk_type
39  * is not in progress
40  *
41  * Should be called with balance_lock held
42  */
43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 	u64 target = 0;
47 
48 	if (!bctl)
49 		return 0;
50 
51 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 	}
61 
62 	return target;
63 }
64 
65 /*
66  * @flags: available profiles in extended format (see ctree.h)
67  *
68  * Return reduced profile in chunk format.  If profile changing is in progress
69  * (either running or paused) picks the target profile (if it's already
70  * available), otherwise falls back to plain reducing.
71  */
72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 	u64 num_devices = fs_info->fs_devices->rw_devices;
75 	u64 target;
76 	u64 raid_type;
77 	u64 allowed = 0;
78 
79 	/*
80 	 * See if restripe for this chunk_type is in progress, if so try to
81 	 * reduce to the target profile
82 	 */
83 	spin_lock(&fs_info->balance_lock);
84 	target = get_restripe_target(fs_info, flags);
85 	if (target) {
86 		spin_unlock(&fs_info->balance_lock);
87 		return extended_to_chunk(target);
88 	}
89 	spin_unlock(&fs_info->balance_lock);
90 
91 	/* First, mask out the RAID levels which aren't possible */
92 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 			allowed |= btrfs_raid_array[raid_type].bg_flag;
95 	}
96 	allowed &= flags;
97 
98 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
99 		allowed = BTRFS_BLOCK_GROUP_RAID6;
100 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
101 		allowed = BTRFS_BLOCK_GROUP_RAID5;
102 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
103 		allowed = BTRFS_BLOCK_GROUP_RAID10;
104 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
105 		allowed = BTRFS_BLOCK_GROUP_RAID1;
106 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
107 		allowed = BTRFS_BLOCK_GROUP_RAID0;
108 
109 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
110 
111 	return extended_to_chunk(flags | allowed);
112 }
113 
114 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
115 {
116 	unsigned seq;
117 	u64 flags;
118 
119 	do {
120 		flags = orig_flags;
121 		seq = read_seqbegin(&fs_info->profiles_lock);
122 
123 		if (flags & BTRFS_BLOCK_GROUP_DATA)
124 			flags |= fs_info->avail_data_alloc_bits;
125 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
126 			flags |= fs_info->avail_system_alloc_bits;
127 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
128 			flags |= fs_info->avail_metadata_alloc_bits;
129 	} while (read_seqretry(&fs_info->profiles_lock, seq));
130 
131 	return btrfs_reduce_alloc_profile(fs_info, flags);
132 }
133 
134 void btrfs_get_block_group(struct btrfs_block_group *cache)
135 {
136 	refcount_inc(&cache->refs);
137 }
138 
139 void btrfs_put_block_group(struct btrfs_block_group *cache)
140 {
141 	if (refcount_dec_and_test(&cache->refs)) {
142 		WARN_ON(cache->pinned > 0);
143 		/*
144 		 * If there was a failure to cleanup a log tree, very likely due
145 		 * to an IO failure on a writeback attempt of one or more of its
146 		 * extent buffers, we could not do proper (and cheap) unaccounting
147 		 * of their reserved space, so don't warn on reserved > 0 in that
148 		 * case.
149 		 */
150 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
151 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
152 			WARN_ON(cache->reserved > 0);
153 
154 		/*
155 		 * A block_group shouldn't be on the discard_list anymore.
156 		 * Remove the block_group from the discard_list to prevent us
157 		 * from causing a panic due to NULL pointer dereference.
158 		 */
159 		if (WARN_ON(!list_empty(&cache->discard_list)))
160 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
161 						  cache);
162 
163 		/*
164 		 * If not empty, someone is still holding mutex of
165 		 * full_stripe_lock, which can only be released by caller.
166 		 * And it will definitely cause use-after-free when caller
167 		 * tries to release full stripe lock.
168 		 *
169 		 * No better way to resolve, but only to warn.
170 		 */
171 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
172 		kfree(cache->free_space_ctl);
173 		kfree(cache->physical_map);
174 		kfree(cache);
175 	}
176 }
177 
178 /*
179  * This adds the block group to the fs_info rb tree for the block group cache
180  */
181 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
182 				       struct btrfs_block_group *block_group)
183 {
184 	struct rb_node **p;
185 	struct rb_node *parent = NULL;
186 	struct btrfs_block_group *cache;
187 	bool leftmost = true;
188 
189 	ASSERT(block_group->length != 0);
190 
191 	write_lock(&info->block_group_cache_lock);
192 	p = &info->block_group_cache_tree.rb_root.rb_node;
193 
194 	while (*p) {
195 		parent = *p;
196 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
197 		if (block_group->start < cache->start) {
198 			p = &(*p)->rb_left;
199 		} else if (block_group->start > cache->start) {
200 			p = &(*p)->rb_right;
201 			leftmost = false;
202 		} else {
203 			write_unlock(&info->block_group_cache_lock);
204 			return -EEXIST;
205 		}
206 	}
207 
208 	rb_link_node(&block_group->cache_node, parent, p);
209 	rb_insert_color_cached(&block_group->cache_node,
210 			       &info->block_group_cache_tree, leftmost);
211 
212 	write_unlock(&info->block_group_cache_lock);
213 
214 	return 0;
215 }
216 
217 /*
218  * This will return the block group at or after bytenr if contains is 0, else
219  * it will return the block group that contains the bytenr
220  */
221 static struct btrfs_block_group *block_group_cache_tree_search(
222 		struct btrfs_fs_info *info, u64 bytenr, int contains)
223 {
224 	struct btrfs_block_group *cache, *ret = NULL;
225 	struct rb_node *n;
226 	u64 end, start;
227 
228 	read_lock(&info->block_group_cache_lock);
229 	n = info->block_group_cache_tree.rb_root.rb_node;
230 
231 	while (n) {
232 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
233 		end = cache->start + cache->length - 1;
234 		start = cache->start;
235 
236 		if (bytenr < start) {
237 			if (!contains && (!ret || start < ret->start))
238 				ret = cache;
239 			n = n->rb_left;
240 		} else if (bytenr > start) {
241 			if (contains && bytenr <= end) {
242 				ret = cache;
243 				break;
244 			}
245 			n = n->rb_right;
246 		} else {
247 			ret = cache;
248 			break;
249 		}
250 	}
251 	if (ret)
252 		btrfs_get_block_group(ret);
253 	read_unlock(&info->block_group_cache_lock);
254 
255 	return ret;
256 }
257 
258 /*
259  * Return the block group that starts at or after bytenr
260  */
261 struct btrfs_block_group *btrfs_lookup_first_block_group(
262 		struct btrfs_fs_info *info, u64 bytenr)
263 {
264 	return block_group_cache_tree_search(info, bytenr, 0);
265 }
266 
267 /*
268  * Return the block group that contains the given bytenr
269  */
270 struct btrfs_block_group *btrfs_lookup_block_group(
271 		struct btrfs_fs_info *info, u64 bytenr)
272 {
273 	return block_group_cache_tree_search(info, bytenr, 1);
274 }
275 
276 struct btrfs_block_group *btrfs_next_block_group(
277 		struct btrfs_block_group *cache)
278 {
279 	struct btrfs_fs_info *fs_info = cache->fs_info;
280 	struct rb_node *node;
281 
282 	read_lock(&fs_info->block_group_cache_lock);
283 
284 	/* If our block group was removed, we need a full search. */
285 	if (RB_EMPTY_NODE(&cache->cache_node)) {
286 		const u64 next_bytenr = cache->start + cache->length;
287 
288 		read_unlock(&fs_info->block_group_cache_lock);
289 		btrfs_put_block_group(cache);
290 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
291 	}
292 	node = rb_next(&cache->cache_node);
293 	btrfs_put_block_group(cache);
294 	if (node) {
295 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
296 		btrfs_get_block_group(cache);
297 	} else
298 		cache = NULL;
299 	read_unlock(&fs_info->block_group_cache_lock);
300 	return cache;
301 }
302 
303 /*
304  * Check if we can do a NOCOW write for a given extent.
305  *
306  * @fs_info:       The filesystem information object.
307  * @bytenr:        Logical start address of the extent.
308  *
309  * Check if we can do a NOCOW write for the given extent, and increments the
310  * number of NOCOW writers in the block group that contains the extent, as long
311  * as the block group exists and it's currently not in read-only mode.
312  *
313  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
314  *          is responsible for calling btrfs_dec_nocow_writers() later.
315  *
316  *          Or NULL if we can not do a NOCOW write
317  */
318 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
319 						  u64 bytenr)
320 {
321 	struct btrfs_block_group *bg;
322 	bool can_nocow = true;
323 
324 	bg = btrfs_lookup_block_group(fs_info, bytenr);
325 	if (!bg)
326 		return NULL;
327 
328 	spin_lock(&bg->lock);
329 	if (bg->ro)
330 		can_nocow = false;
331 	else
332 		atomic_inc(&bg->nocow_writers);
333 	spin_unlock(&bg->lock);
334 
335 	if (!can_nocow) {
336 		btrfs_put_block_group(bg);
337 		return NULL;
338 	}
339 
340 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
341 	return bg;
342 }
343 
344 /*
345  * Decrement the number of NOCOW writers in a block group.
346  *
347  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
348  * and on the block group returned by that call. Typically this is called after
349  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
350  * relocation.
351  *
352  * After this call, the caller should not use the block group anymore. It it wants
353  * to use it, then it should get a reference on it before calling this function.
354  */
355 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
356 {
357 	if (atomic_dec_and_test(&bg->nocow_writers))
358 		wake_up_var(&bg->nocow_writers);
359 
360 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
361 	btrfs_put_block_group(bg);
362 }
363 
364 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
365 {
366 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
367 }
368 
369 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
370 					const u64 start)
371 {
372 	struct btrfs_block_group *bg;
373 
374 	bg = btrfs_lookup_block_group(fs_info, start);
375 	ASSERT(bg);
376 	if (atomic_dec_and_test(&bg->reservations))
377 		wake_up_var(&bg->reservations);
378 	btrfs_put_block_group(bg);
379 }
380 
381 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
382 {
383 	struct btrfs_space_info *space_info = bg->space_info;
384 
385 	ASSERT(bg->ro);
386 
387 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
388 		return;
389 
390 	/*
391 	 * Our block group is read only but before we set it to read only,
392 	 * some task might have had allocated an extent from it already, but it
393 	 * has not yet created a respective ordered extent (and added it to a
394 	 * root's list of ordered extents).
395 	 * Therefore wait for any task currently allocating extents, since the
396 	 * block group's reservations counter is incremented while a read lock
397 	 * on the groups' semaphore is held and decremented after releasing
398 	 * the read access on that semaphore and creating the ordered extent.
399 	 */
400 	down_write(&space_info->groups_sem);
401 	up_write(&space_info->groups_sem);
402 
403 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
404 }
405 
406 struct btrfs_caching_control *btrfs_get_caching_control(
407 		struct btrfs_block_group *cache)
408 {
409 	struct btrfs_caching_control *ctl;
410 
411 	spin_lock(&cache->lock);
412 	if (!cache->caching_ctl) {
413 		spin_unlock(&cache->lock);
414 		return NULL;
415 	}
416 
417 	ctl = cache->caching_ctl;
418 	refcount_inc(&ctl->count);
419 	spin_unlock(&cache->lock);
420 	return ctl;
421 }
422 
423 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
424 {
425 	if (refcount_dec_and_test(&ctl->count))
426 		kfree(ctl);
427 }
428 
429 /*
430  * When we wait for progress in the block group caching, its because our
431  * allocation attempt failed at least once.  So, we must sleep and let some
432  * progress happen before we try again.
433  *
434  * This function will sleep at least once waiting for new free space to show
435  * up, and then it will check the block group free space numbers for our min
436  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
437  * a free extent of a given size, but this is a good start.
438  *
439  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
440  * any of the information in this block group.
441  */
442 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
443 					   u64 num_bytes)
444 {
445 	struct btrfs_caching_control *caching_ctl;
446 
447 	caching_ctl = btrfs_get_caching_control(cache);
448 	if (!caching_ctl)
449 		return;
450 
451 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
452 		   (cache->free_space_ctl->free_space >= num_bytes));
453 
454 	btrfs_put_caching_control(caching_ctl);
455 }
456 
457 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
458 				       struct btrfs_caching_control *caching_ctl)
459 {
460 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
461 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
462 }
463 
464 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
465 {
466 	struct btrfs_caching_control *caching_ctl;
467 	int ret;
468 
469 	caching_ctl = btrfs_get_caching_control(cache);
470 	if (!caching_ctl)
471 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
472 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
473 	btrfs_put_caching_control(caching_ctl);
474 	return ret;
475 }
476 
477 #ifdef CONFIG_BTRFS_DEBUG
478 static void fragment_free_space(struct btrfs_block_group *block_group)
479 {
480 	struct btrfs_fs_info *fs_info = block_group->fs_info;
481 	u64 start = block_group->start;
482 	u64 len = block_group->length;
483 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
484 		fs_info->nodesize : fs_info->sectorsize;
485 	u64 step = chunk << 1;
486 
487 	while (len > chunk) {
488 		btrfs_remove_free_space(block_group, start, chunk);
489 		start += step;
490 		if (len < step)
491 			len = 0;
492 		else
493 			len -= step;
494 	}
495 }
496 #endif
497 
498 /*
499  * This is only called by btrfs_cache_block_group, since we could have freed
500  * extents we need to check the pinned_extents for any extents that can't be
501  * used yet since their free space will be released as soon as the transaction
502  * commits.
503  */
504 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
505 {
506 	struct btrfs_fs_info *info = block_group->fs_info;
507 	u64 extent_start, extent_end, size, total_added = 0;
508 	int ret;
509 
510 	while (start < end) {
511 		ret = find_first_extent_bit(&info->excluded_extents, start,
512 					    &extent_start, &extent_end,
513 					    EXTENT_DIRTY | EXTENT_UPTODATE,
514 					    NULL);
515 		if (ret)
516 			break;
517 
518 		if (extent_start <= start) {
519 			start = extent_end + 1;
520 		} else if (extent_start > start && extent_start < end) {
521 			size = extent_start - start;
522 			total_added += size;
523 			ret = btrfs_add_free_space_async_trimmed(block_group,
524 								 start, size);
525 			BUG_ON(ret); /* -ENOMEM or logic error */
526 			start = extent_end + 1;
527 		} else {
528 			break;
529 		}
530 	}
531 
532 	if (start < end) {
533 		size = end - start;
534 		total_added += size;
535 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
536 							 size);
537 		BUG_ON(ret); /* -ENOMEM or logic error */
538 	}
539 
540 	return total_added;
541 }
542 
543 /*
544  * Get an arbitrary extent item index / max_index through the block group
545  *
546  * @block_group   the block group to sample from
547  * @index:        the integral step through the block group to grab from
548  * @max_index:    the granularity of the sampling
549  * @key:          return value parameter for the item we find
550  *
551  * Pre-conditions on indices:
552  * 0 <= index <= max_index
553  * 0 < max_index
554  *
555  * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
556  * error code on error.
557  */
558 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
559 					  struct btrfs_block_group *block_group,
560 					  int index, int max_index,
561 					  struct btrfs_key *found_key)
562 {
563 	struct btrfs_fs_info *fs_info = block_group->fs_info;
564 	struct btrfs_root *extent_root;
565 	u64 search_offset;
566 	u64 search_end = block_group->start + block_group->length;
567 	struct btrfs_path *path;
568 	struct btrfs_key search_key;
569 	int ret = 0;
570 
571 	ASSERT(index >= 0);
572 	ASSERT(index <= max_index);
573 	ASSERT(max_index > 0);
574 	lockdep_assert_held(&caching_ctl->mutex);
575 	lockdep_assert_held_read(&fs_info->commit_root_sem);
576 
577 	path = btrfs_alloc_path();
578 	if (!path)
579 		return -ENOMEM;
580 
581 	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
582 						       BTRFS_SUPER_INFO_OFFSET));
583 
584 	path->skip_locking = 1;
585 	path->search_commit_root = 1;
586 	path->reada = READA_FORWARD;
587 
588 	search_offset = index * div_u64(block_group->length, max_index);
589 	search_key.objectid = block_group->start + search_offset;
590 	search_key.type = BTRFS_EXTENT_ITEM_KEY;
591 	search_key.offset = 0;
592 
593 	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
594 		/* Success; sampled an extent item in the block group */
595 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
596 		    found_key->objectid >= block_group->start &&
597 		    found_key->objectid + found_key->offset <= search_end)
598 			break;
599 
600 		/* We can't possibly find a valid extent item anymore */
601 		if (found_key->objectid >= search_end) {
602 			ret = 1;
603 			break;
604 		}
605 	}
606 
607 	lockdep_assert_held(&caching_ctl->mutex);
608 	lockdep_assert_held_read(&fs_info->commit_root_sem);
609 	btrfs_free_path(path);
610 	return ret;
611 }
612 
613 /*
614  * Best effort attempt to compute a block group's size class while caching it.
615  *
616  * @block_group: the block group we are caching
617  *
618  * We cannot infer the size class while adding free space extents, because that
619  * logic doesn't care about contiguous file extents (it doesn't differentiate
620  * between a 100M extent and 100 contiguous 1M extents). So we need to read the
621  * file extent items. Reading all of them is quite wasteful, because usually
622  * only a handful are enough to give a good answer. Therefore, we just grab 5 of
623  * them at even steps through the block group and pick the smallest size class
624  * we see. Since size class is best effort, and not guaranteed in general,
625  * inaccuracy is acceptable.
626  *
627  * To be more explicit about why this algorithm makes sense:
628  *
629  * If we are caching in a block group from disk, then there are three major cases
630  * to consider:
631  * 1. the block group is well behaved and all extents in it are the same size
632  *    class.
633  * 2. the block group is mostly one size class with rare exceptions for last
634  *    ditch allocations
635  * 3. the block group was populated before size classes and can have a totally
636  *    arbitrary mix of size classes.
637  *
638  * In case 1, looking at any extent in the block group will yield the correct
639  * result. For the mixed cases, taking the minimum size class seems like a good
640  * approximation, since gaps from frees will be usable to the size class. For
641  * 2., a small handful of file extents is likely to yield the right answer. For
642  * 3, we can either read every file extent, or admit that this is best effort
643  * anyway and try to stay fast.
644  *
645  * Returns: 0 on success, negative error code on error.
646  */
647 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
648 				       struct btrfs_block_group *block_group)
649 {
650 	struct btrfs_fs_info *fs_info = block_group->fs_info;
651 	struct btrfs_key key;
652 	int i;
653 	u64 min_size = block_group->length;
654 	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
655 	int ret;
656 
657 	if (!btrfs_block_group_should_use_size_class(block_group))
658 		return 0;
659 
660 	lockdep_assert_held(&caching_ctl->mutex);
661 	lockdep_assert_held_read(&fs_info->commit_root_sem);
662 	for (i = 0; i < 5; ++i) {
663 		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
664 		if (ret < 0)
665 			goto out;
666 		if (ret > 0)
667 			continue;
668 		min_size = min_t(u64, min_size, key.offset);
669 		size_class = btrfs_calc_block_group_size_class(min_size);
670 	}
671 	if (size_class != BTRFS_BG_SZ_NONE) {
672 		spin_lock(&block_group->lock);
673 		block_group->size_class = size_class;
674 		spin_unlock(&block_group->lock);
675 	}
676 out:
677 	return ret;
678 }
679 
680 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
681 {
682 	struct btrfs_block_group *block_group = caching_ctl->block_group;
683 	struct btrfs_fs_info *fs_info = block_group->fs_info;
684 	struct btrfs_root *extent_root;
685 	struct btrfs_path *path;
686 	struct extent_buffer *leaf;
687 	struct btrfs_key key;
688 	u64 total_found = 0;
689 	u64 last = 0;
690 	u32 nritems;
691 	int ret;
692 	bool wakeup = true;
693 
694 	path = btrfs_alloc_path();
695 	if (!path)
696 		return -ENOMEM;
697 
698 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
699 	extent_root = btrfs_extent_root(fs_info, last);
700 
701 #ifdef CONFIG_BTRFS_DEBUG
702 	/*
703 	 * If we're fragmenting we don't want to make anybody think we can
704 	 * allocate from this block group until we've had a chance to fragment
705 	 * the free space.
706 	 */
707 	if (btrfs_should_fragment_free_space(block_group))
708 		wakeup = false;
709 #endif
710 	/*
711 	 * We don't want to deadlock with somebody trying to allocate a new
712 	 * extent for the extent root while also trying to search the extent
713 	 * root to add free space.  So we skip locking and search the commit
714 	 * root, since its read-only
715 	 */
716 	path->skip_locking = 1;
717 	path->search_commit_root = 1;
718 	path->reada = READA_FORWARD;
719 
720 	key.objectid = last;
721 	key.offset = 0;
722 	key.type = BTRFS_EXTENT_ITEM_KEY;
723 
724 next:
725 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
726 	if (ret < 0)
727 		goto out;
728 
729 	leaf = path->nodes[0];
730 	nritems = btrfs_header_nritems(leaf);
731 
732 	while (1) {
733 		if (btrfs_fs_closing(fs_info) > 1) {
734 			last = (u64)-1;
735 			break;
736 		}
737 
738 		if (path->slots[0] < nritems) {
739 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
740 		} else {
741 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
742 			if (ret)
743 				break;
744 
745 			if (need_resched() ||
746 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
747 				btrfs_release_path(path);
748 				up_read(&fs_info->commit_root_sem);
749 				mutex_unlock(&caching_ctl->mutex);
750 				cond_resched();
751 				mutex_lock(&caching_ctl->mutex);
752 				down_read(&fs_info->commit_root_sem);
753 				goto next;
754 			}
755 
756 			ret = btrfs_next_leaf(extent_root, path);
757 			if (ret < 0)
758 				goto out;
759 			if (ret)
760 				break;
761 			leaf = path->nodes[0];
762 			nritems = btrfs_header_nritems(leaf);
763 			continue;
764 		}
765 
766 		if (key.objectid < last) {
767 			key.objectid = last;
768 			key.offset = 0;
769 			key.type = BTRFS_EXTENT_ITEM_KEY;
770 			btrfs_release_path(path);
771 			goto next;
772 		}
773 
774 		if (key.objectid < block_group->start) {
775 			path->slots[0]++;
776 			continue;
777 		}
778 
779 		if (key.objectid >= block_group->start + block_group->length)
780 			break;
781 
782 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
783 		    key.type == BTRFS_METADATA_ITEM_KEY) {
784 			total_found += add_new_free_space(block_group, last,
785 							  key.objectid);
786 			if (key.type == BTRFS_METADATA_ITEM_KEY)
787 				last = key.objectid +
788 					fs_info->nodesize;
789 			else
790 				last = key.objectid + key.offset;
791 
792 			if (total_found > CACHING_CTL_WAKE_UP) {
793 				total_found = 0;
794 				if (wakeup)
795 					wake_up(&caching_ctl->wait);
796 			}
797 		}
798 		path->slots[0]++;
799 	}
800 	ret = 0;
801 
802 	total_found += add_new_free_space(block_group, last,
803 				block_group->start + block_group->length);
804 
805 out:
806 	btrfs_free_path(path);
807 	return ret;
808 }
809 
810 static noinline void caching_thread(struct btrfs_work *work)
811 {
812 	struct btrfs_block_group *block_group;
813 	struct btrfs_fs_info *fs_info;
814 	struct btrfs_caching_control *caching_ctl;
815 	int ret;
816 
817 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
818 	block_group = caching_ctl->block_group;
819 	fs_info = block_group->fs_info;
820 
821 	mutex_lock(&caching_ctl->mutex);
822 	down_read(&fs_info->commit_root_sem);
823 
824 	load_block_group_size_class(caching_ctl, block_group);
825 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
826 		ret = load_free_space_cache(block_group);
827 		if (ret == 1) {
828 			ret = 0;
829 			goto done;
830 		}
831 
832 		/*
833 		 * We failed to load the space cache, set ourselves to
834 		 * CACHE_STARTED and carry on.
835 		 */
836 		spin_lock(&block_group->lock);
837 		block_group->cached = BTRFS_CACHE_STARTED;
838 		spin_unlock(&block_group->lock);
839 		wake_up(&caching_ctl->wait);
840 	}
841 
842 	/*
843 	 * If we are in the transaction that populated the free space tree we
844 	 * can't actually cache from the free space tree as our commit root and
845 	 * real root are the same, so we could change the contents of the blocks
846 	 * while caching.  Instead do the slow caching in this case, and after
847 	 * the transaction has committed we will be safe.
848 	 */
849 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
850 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
851 		ret = load_free_space_tree(caching_ctl);
852 	else
853 		ret = load_extent_tree_free(caching_ctl);
854 done:
855 	spin_lock(&block_group->lock);
856 	block_group->caching_ctl = NULL;
857 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
858 	spin_unlock(&block_group->lock);
859 
860 #ifdef CONFIG_BTRFS_DEBUG
861 	if (btrfs_should_fragment_free_space(block_group)) {
862 		u64 bytes_used;
863 
864 		spin_lock(&block_group->space_info->lock);
865 		spin_lock(&block_group->lock);
866 		bytes_used = block_group->length - block_group->used;
867 		block_group->space_info->bytes_used += bytes_used >> 1;
868 		spin_unlock(&block_group->lock);
869 		spin_unlock(&block_group->space_info->lock);
870 		fragment_free_space(block_group);
871 	}
872 #endif
873 
874 	up_read(&fs_info->commit_root_sem);
875 	btrfs_free_excluded_extents(block_group);
876 	mutex_unlock(&caching_ctl->mutex);
877 
878 	wake_up(&caching_ctl->wait);
879 
880 	btrfs_put_caching_control(caching_ctl);
881 	btrfs_put_block_group(block_group);
882 }
883 
884 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
885 {
886 	struct btrfs_fs_info *fs_info = cache->fs_info;
887 	struct btrfs_caching_control *caching_ctl = NULL;
888 	int ret = 0;
889 
890 	/* Allocator for zoned filesystems does not use the cache at all */
891 	if (btrfs_is_zoned(fs_info))
892 		return 0;
893 
894 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
895 	if (!caching_ctl)
896 		return -ENOMEM;
897 
898 	INIT_LIST_HEAD(&caching_ctl->list);
899 	mutex_init(&caching_ctl->mutex);
900 	init_waitqueue_head(&caching_ctl->wait);
901 	caching_ctl->block_group = cache;
902 	refcount_set(&caching_ctl->count, 2);
903 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
904 
905 	spin_lock(&cache->lock);
906 	if (cache->cached != BTRFS_CACHE_NO) {
907 		kfree(caching_ctl);
908 
909 		caching_ctl = cache->caching_ctl;
910 		if (caching_ctl)
911 			refcount_inc(&caching_ctl->count);
912 		spin_unlock(&cache->lock);
913 		goto out;
914 	}
915 	WARN_ON(cache->caching_ctl);
916 	cache->caching_ctl = caching_ctl;
917 	cache->cached = BTRFS_CACHE_STARTED;
918 	spin_unlock(&cache->lock);
919 
920 	write_lock(&fs_info->block_group_cache_lock);
921 	refcount_inc(&caching_ctl->count);
922 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
923 	write_unlock(&fs_info->block_group_cache_lock);
924 
925 	btrfs_get_block_group(cache);
926 
927 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
928 out:
929 	if (wait && caching_ctl)
930 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
931 	if (caching_ctl)
932 		btrfs_put_caching_control(caching_ctl);
933 
934 	return ret;
935 }
936 
937 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
938 {
939 	u64 extra_flags = chunk_to_extended(flags) &
940 				BTRFS_EXTENDED_PROFILE_MASK;
941 
942 	write_seqlock(&fs_info->profiles_lock);
943 	if (flags & BTRFS_BLOCK_GROUP_DATA)
944 		fs_info->avail_data_alloc_bits &= ~extra_flags;
945 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
946 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
947 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
948 		fs_info->avail_system_alloc_bits &= ~extra_flags;
949 	write_sequnlock(&fs_info->profiles_lock);
950 }
951 
952 /*
953  * Clear incompat bits for the following feature(s):
954  *
955  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
956  *            in the whole filesystem
957  *
958  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
959  */
960 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
961 {
962 	bool found_raid56 = false;
963 	bool found_raid1c34 = false;
964 
965 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
966 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
967 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
968 		struct list_head *head = &fs_info->space_info;
969 		struct btrfs_space_info *sinfo;
970 
971 		list_for_each_entry_rcu(sinfo, head, list) {
972 			down_read(&sinfo->groups_sem);
973 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
974 				found_raid56 = true;
975 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
976 				found_raid56 = true;
977 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
978 				found_raid1c34 = true;
979 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
980 				found_raid1c34 = true;
981 			up_read(&sinfo->groups_sem);
982 		}
983 		if (!found_raid56)
984 			btrfs_clear_fs_incompat(fs_info, RAID56);
985 		if (!found_raid1c34)
986 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
987 	}
988 }
989 
990 static int remove_block_group_item(struct btrfs_trans_handle *trans,
991 				   struct btrfs_path *path,
992 				   struct btrfs_block_group *block_group)
993 {
994 	struct btrfs_fs_info *fs_info = trans->fs_info;
995 	struct btrfs_root *root;
996 	struct btrfs_key key;
997 	int ret;
998 
999 	root = btrfs_block_group_root(fs_info);
1000 	key.objectid = block_group->start;
1001 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1002 	key.offset = block_group->length;
1003 
1004 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1005 	if (ret > 0)
1006 		ret = -ENOENT;
1007 	if (ret < 0)
1008 		return ret;
1009 
1010 	ret = btrfs_del_item(trans, root, path);
1011 	return ret;
1012 }
1013 
1014 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1015 			     u64 group_start, struct extent_map *em)
1016 {
1017 	struct btrfs_fs_info *fs_info = trans->fs_info;
1018 	struct btrfs_path *path;
1019 	struct btrfs_block_group *block_group;
1020 	struct btrfs_free_cluster *cluster;
1021 	struct inode *inode;
1022 	struct kobject *kobj = NULL;
1023 	int ret;
1024 	int index;
1025 	int factor;
1026 	struct btrfs_caching_control *caching_ctl = NULL;
1027 	bool remove_em;
1028 	bool remove_rsv = false;
1029 
1030 	block_group = btrfs_lookup_block_group(fs_info, group_start);
1031 	BUG_ON(!block_group);
1032 	BUG_ON(!block_group->ro);
1033 
1034 	trace_btrfs_remove_block_group(block_group);
1035 	/*
1036 	 * Free the reserved super bytes from this block group before
1037 	 * remove it.
1038 	 */
1039 	btrfs_free_excluded_extents(block_group);
1040 	btrfs_free_ref_tree_range(fs_info, block_group->start,
1041 				  block_group->length);
1042 
1043 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1044 	factor = btrfs_bg_type_to_factor(block_group->flags);
1045 
1046 	/* make sure this block group isn't part of an allocation cluster */
1047 	cluster = &fs_info->data_alloc_cluster;
1048 	spin_lock(&cluster->refill_lock);
1049 	btrfs_return_cluster_to_free_space(block_group, cluster);
1050 	spin_unlock(&cluster->refill_lock);
1051 
1052 	/*
1053 	 * make sure this block group isn't part of a metadata
1054 	 * allocation cluster
1055 	 */
1056 	cluster = &fs_info->meta_alloc_cluster;
1057 	spin_lock(&cluster->refill_lock);
1058 	btrfs_return_cluster_to_free_space(block_group, cluster);
1059 	spin_unlock(&cluster->refill_lock);
1060 
1061 	btrfs_clear_treelog_bg(block_group);
1062 	btrfs_clear_data_reloc_bg(block_group);
1063 
1064 	path = btrfs_alloc_path();
1065 	if (!path) {
1066 		ret = -ENOMEM;
1067 		goto out;
1068 	}
1069 
1070 	/*
1071 	 * get the inode first so any iput calls done for the io_list
1072 	 * aren't the final iput (no unlinks allowed now)
1073 	 */
1074 	inode = lookup_free_space_inode(block_group, path);
1075 
1076 	mutex_lock(&trans->transaction->cache_write_mutex);
1077 	/*
1078 	 * Make sure our free space cache IO is done before removing the
1079 	 * free space inode
1080 	 */
1081 	spin_lock(&trans->transaction->dirty_bgs_lock);
1082 	if (!list_empty(&block_group->io_list)) {
1083 		list_del_init(&block_group->io_list);
1084 
1085 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1086 
1087 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1088 		btrfs_wait_cache_io(trans, block_group, path);
1089 		btrfs_put_block_group(block_group);
1090 		spin_lock(&trans->transaction->dirty_bgs_lock);
1091 	}
1092 
1093 	if (!list_empty(&block_group->dirty_list)) {
1094 		list_del_init(&block_group->dirty_list);
1095 		remove_rsv = true;
1096 		btrfs_put_block_group(block_group);
1097 	}
1098 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1099 	mutex_unlock(&trans->transaction->cache_write_mutex);
1100 
1101 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1102 	if (ret)
1103 		goto out;
1104 
1105 	write_lock(&fs_info->block_group_cache_lock);
1106 	rb_erase_cached(&block_group->cache_node,
1107 			&fs_info->block_group_cache_tree);
1108 	RB_CLEAR_NODE(&block_group->cache_node);
1109 
1110 	/* Once for the block groups rbtree */
1111 	btrfs_put_block_group(block_group);
1112 
1113 	write_unlock(&fs_info->block_group_cache_lock);
1114 
1115 	down_write(&block_group->space_info->groups_sem);
1116 	/*
1117 	 * we must use list_del_init so people can check to see if they
1118 	 * are still on the list after taking the semaphore
1119 	 */
1120 	list_del_init(&block_group->list);
1121 	if (list_empty(&block_group->space_info->block_groups[index])) {
1122 		kobj = block_group->space_info->block_group_kobjs[index];
1123 		block_group->space_info->block_group_kobjs[index] = NULL;
1124 		clear_avail_alloc_bits(fs_info, block_group->flags);
1125 	}
1126 	up_write(&block_group->space_info->groups_sem);
1127 	clear_incompat_bg_bits(fs_info, block_group->flags);
1128 	if (kobj) {
1129 		kobject_del(kobj);
1130 		kobject_put(kobj);
1131 	}
1132 
1133 	if (block_group->cached == BTRFS_CACHE_STARTED)
1134 		btrfs_wait_block_group_cache_done(block_group);
1135 
1136 	write_lock(&fs_info->block_group_cache_lock);
1137 	caching_ctl = btrfs_get_caching_control(block_group);
1138 	if (!caching_ctl) {
1139 		struct btrfs_caching_control *ctl;
1140 
1141 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1142 			if (ctl->block_group == block_group) {
1143 				caching_ctl = ctl;
1144 				refcount_inc(&caching_ctl->count);
1145 				break;
1146 			}
1147 		}
1148 	}
1149 	if (caching_ctl)
1150 		list_del_init(&caching_ctl->list);
1151 	write_unlock(&fs_info->block_group_cache_lock);
1152 
1153 	if (caching_ctl) {
1154 		/* Once for the caching bgs list and once for us. */
1155 		btrfs_put_caching_control(caching_ctl);
1156 		btrfs_put_caching_control(caching_ctl);
1157 	}
1158 
1159 	spin_lock(&trans->transaction->dirty_bgs_lock);
1160 	WARN_ON(!list_empty(&block_group->dirty_list));
1161 	WARN_ON(!list_empty(&block_group->io_list));
1162 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1163 
1164 	btrfs_remove_free_space_cache(block_group);
1165 
1166 	spin_lock(&block_group->space_info->lock);
1167 	list_del_init(&block_group->ro_list);
1168 
1169 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1170 		WARN_ON(block_group->space_info->total_bytes
1171 			< block_group->length);
1172 		WARN_ON(block_group->space_info->bytes_readonly
1173 			< block_group->length - block_group->zone_unusable);
1174 		WARN_ON(block_group->space_info->bytes_zone_unusable
1175 			< block_group->zone_unusable);
1176 		WARN_ON(block_group->space_info->disk_total
1177 			< block_group->length * factor);
1178 		WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1179 				 &block_group->runtime_flags) &&
1180 			block_group->space_info->active_total_bytes
1181 			< block_group->length);
1182 	}
1183 	block_group->space_info->total_bytes -= block_group->length;
1184 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1185 		block_group->space_info->active_total_bytes -= block_group->length;
1186 	block_group->space_info->bytes_readonly -=
1187 		(block_group->length - block_group->zone_unusable);
1188 	block_group->space_info->bytes_zone_unusable -=
1189 		block_group->zone_unusable;
1190 	block_group->space_info->disk_total -= block_group->length * factor;
1191 
1192 	spin_unlock(&block_group->space_info->lock);
1193 
1194 	/*
1195 	 * Remove the free space for the block group from the free space tree
1196 	 * and the block group's item from the extent tree before marking the
1197 	 * block group as removed. This is to prevent races with tasks that
1198 	 * freeze and unfreeze a block group, this task and another task
1199 	 * allocating a new block group - the unfreeze task ends up removing
1200 	 * the block group's extent map before the task calling this function
1201 	 * deletes the block group item from the extent tree, allowing for
1202 	 * another task to attempt to create another block group with the same
1203 	 * item key (and failing with -EEXIST and a transaction abort).
1204 	 */
1205 	ret = remove_block_group_free_space(trans, block_group);
1206 	if (ret)
1207 		goto out;
1208 
1209 	ret = remove_block_group_item(trans, path, block_group);
1210 	if (ret < 0)
1211 		goto out;
1212 
1213 	spin_lock(&block_group->lock);
1214 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1215 
1216 	/*
1217 	 * At this point trimming or scrub can't start on this block group,
1218 	 * because we removed the block group from the rbtree
1219 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1220 	 * even if someone already got this block group before we removed it
1221 	 * from the rbtree, they have already incremented block_group->frozen -
1222 	 * if they didn't, for the trimming case they won't find any free space
1223 	 * entries because we already removed them all when we called
1224 	 * btrfs_remove_free_space_cache().
1225 	 *
1226 	 * And we must not remove the extent map from the fs_info->mapping_tree
1227 	 * to prevent the same logical address range and physical device space
1228 	 * ranges from being reused for a new block group. This is needed to
1229 	 * avoid races with trimming and scrub.
1230 	 *
1231 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1232 	 * completely transactionless, so while it is trimming a range the
1233 	 * currently running transaction might finish and a new one start,
1234 	 * allowing for new block groups to be created that can reuse the same
1235 	 * physical device locations unless we take this special care.
1236 	 *
1237 	 * There may also be an implicit trim operation if the file system
1238 	 * is mounted with -odiscard. The same protections must remain
1239 	 * in place until the extents have been discarded completely when
1240 	 * the transaction commit has completed.
1241 	 */
1242 	remove_em = (atomic_read(&block_group->frozen) == 0);
1243 	spin_unlock(&block_group->lock);
1244 
1245 	if (remove_em) {
1246 		struct extent_map_tree *em_tree;
1247 
1248 		em_tree = &fs_info->mapping_tree;
1249 		write_lock(&em_tree->lock);
1250 		remove_extent_mapping(em_tree, em);
1251 		write_unlock(&em_tree->lock);
1252 		/* once for the tree */
1253 		free_extent_map(em);
1254 	}
1255 
1256 out:
1257 	/* Once for the lookup reference */
1258 	btrfs_put_block_group(block_group);
1259 	if (remove_rsv)
1260 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1261 	btrfs_free_path(path);
1262 	return ret;
1263 }
1264 
1265 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1266 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1267 {
1268 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1269 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1270 	struct extent_map *em;
1271 	struct map_lookup *map;
1272 	unsigned int num_items;
1273 
1274 	read_lock(&em_tree->lock);
1275 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1276 	read_unlock(&em_tree->lock);
1277 	ASSERT(em && em->start == chunk_offset);
1278 
1279 	/*
1280 	 * We need to reserve 3 + N units from the metadata space info in order
1281 	 * to remove a block group (done at btrfs_remove_chunk() and at
1282 	 * btrfs_remove_block_group()), which are used for:
1283 	 *
1284 	 * 1 unit for adding the free space inode's orphan (located in the tree
1285 	 * of tree roots).
1286 	 * 1 unit for deleting the block group item (located in the extent
1287 	 * tree).
1288 	 * 1 unit for deleting the free space item (located in tree of tree
1289 	 * roots).
1290 	 * N units for deleting N device extent items corresponding to each
1291 	 * stripe (located in the device tree).
1292 	 *
1293 	 * In order to remove a block group we also need to reserve units in the
1294 	 * system space info in order to update the chunk tree (update one or
1295 	 * more device items and remove one chunk item), but this is done at
1296 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1297 	 */
1298 	map = em->map_lookup;
1299 	num_items = 3 + map->num_stripes;
1300 	free_extent_map(em);
1301 
1302 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1303 }
1304 
1305 /*
1306  * Mark block group @cache read-only, so later write won't happen to block
1307  * group @cache.
1308  *
1309  * If @force is not set, this function will only mark the block group readonly
1310  * if we have enough free space (1M) in other metadata/system block groups.
1311  * If @force is not set, this function will mark the block group readonly
1312  * without checking free space.
1313  *
1314  * NOTE: This function doesn't care if other block groups can contain all the
1315  * data in this block group. That check should be done by relocation routine,
1316  * not this function.
1317  */
1318 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1319 {
1320 	struct btrfs_space_info *sinfo = cache->space_info;
1321 	u64 num_bytes;
1322 	int ret = -ENOSPC;
1323 
1324 	spin_lock(&sinfo->lock);
1325 	spin_lock(&cache->lock);
1326 
1327 	if (cache->swap_extents) {
1328 		ret = -ETXTBSY;
1329 		goto out;
1330 	}
1331 
1332 	if (cache->ro) {
1333 		cache->ro++;
1334 		ret = 0;
1335 		goto out;
1336 	}
1337 
1338 	num_bytes = cache->length - cache->reserved - cache->pinned -
1339 		    cache->bytes_super - cache->zone_unusable - cache->used;
1340 
1341 	/*
1342 	 * Data never overcommits, even in mixed mode, so do just the straight
1343 	 * check of left over space in how much we have allocated.
1344 	 */
1345 	if (force) {
1346 		ret = 0;
1347 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1348 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1349 
1350 		/*
1351 		 * Here we make sure if we mark this bg RO, we still have enough
1352 		 * free space as buffer.
1353 		 */
1354 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1355 			ret = 0;
1356 	} else {
1357 		/*
1358 		 * We overcommit metadata, so we need to do the
1359 		 * btrfs_can_overcommit check here, and we need to pass in
1360 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1361 		 * leeway to allow us to mark this block group as read only.
1362 		 */
1363 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1364 					 BTRFS_RESERVE_NO_FLUSH))
1365 			ret = 0;
1366 	}
1367 
1368 	if (!ret) {
1369 		sinfo->bytes_readonly += num_bytes;
1370 		if (btrfs_is_zoned(cache->fs_info)) {
1371 			/* Migrate zone_unusable bytes to readonly */
1372 			sinfo->bytes_readonly += cache->zone_unusable;
1373 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1374 			cache->zone_unusable = 0;
1375 		}
1376 		cache->ro++;
1377 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1378 	}
1379 out:
1380 	spin_unlock(&cache->lock);
1381 	spin_unlock(&sinfo->lock);
1382 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1383 		btrfs_info(cache->fs_info,
1384 			"unable to make block group %llu ro", cache->start);
1385 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1386 	}
1387 	return ret;
1388 }
1389 
1390 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1391 				 struct btrfs_block_group *bg)
1392 {
1393 	struct btrfs_fs_info *fs_info = bg->fs_info;
1394 	struct btrfs_transaction *prev_trans = NULL;
1395 	const u64 start = bg->start;
1396 	const u64 end = start + bg->length - 1;
1397 	int ret;
1398 
1399 	spin_lock(&fs_info->trans_lock);
1400 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1401 		prev_trans = list_last_entry(&trans->transaction->list,
1402 					     struct btrfs_transaction, list);
1403 		refcount_inc(&prev_trans->use_count);
1404 	}
1405 	spin_unlock(&fs_info->trans_lock);
1406 
1407 	/*
1408 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1409 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1410 	 * task might be running finish_extent_commit() for the previous
1411 	 * transaction N - 1, and have seen a range belonging to the block
1412 	 * group in pinned_extents before we were able to clear the whole block
1413 	 * group range from pinned_extents. This means that task can lookup for
1414 	 * the block group after we unpinned it from pinned_extents and removed
1415 	 * it, leading to a BUG_ON() at unpin_extent_range().
1416 	 */
1417 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1418 	if (prev_trans) {
1419 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1420 					EXTENT_DIRTY);
1421 		if (ret)
1422 			goto out;
1423 	}
1424 
1425 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1426 				EXTENT_DIRTY);
1427 out:
1428 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1429 	if (prev_trans)
1430 		btrfs_put_transaction(prev_trans);
1431 
1432 	return ret == 0;
1433 }
1434 
1435 /*
1436  * Process the unused_bgs list and remove any that don't have any allocated
1437  * space inside of them.
1438  */
1439 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1440 {
1441 	struct btrfs_block_group *block_group;
1442 	struct btrfs_space_info *space_info;
1443 	struct btrfs_trans_handle *trans;
1444 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1445 	int ret = 0;
1446 
1447 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1448 		return;
1449 
1450 	if (btrfs_fs_closing(fs_info))
1451 		return;
1452 
1453 	/*
1454 	 * Long running balances can keep us blocked here for eternity, so
1455 	 * simply skip deletion if we're unable to get the mutex.
1456 	 */
1457 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1458 		return;
1459 
1460 	spin_lock(&fs_info->unused_bgs_lock);
1461 	while (!list_empty(&fs_info->unused_bgs)) {
1462 		int trimming;
1463 
1464 		block_group = list_first_entry(&fs_info->unused_bgs,
1465 					       struct btrfs_block_group,
1466 					       bg_list);
1467 		list_del_init(&block_group->bg_list);
1468 
1469 		space_info = block_group->space_info;
1470 
1471 		if (ret || btrfs_mixed_space_info(space_info)) {
1472 			btrfs_put_block_group(block_group);
1473 			continue;
1474 		}
1475 		spin_unlock(&fs_info->unused_bgs_lock);
1476 
1477 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1478 
1479 		/* Don't want to race with allocators so take the groups_sem */
1480 		down_write(&space_info->groups_sem);
1481 
1482 		/*
1483 		 * Async discard moves the final block group discard to be prior
1484 		 * to the unused_bgs code path.  Therefore, if it's not fully
1485 		 * trimmed, punt it back to the async discard lists.
1486 		 */
1487 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1488 		    !btrfs_is_free_space_trimmed(block_group)) {
1489 			trace_btrfs_skip_unused_block_group(block_group);
1490 			up_write(&space_info->groups_sem);
1491 			/* Requeue if we failed because of async discard */
1492 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1493 						 block_group);
1494 			goto next;
1495 		}
1496 
1497 		spin_lock(&block_group->lock);
1498 		if (block_group->reserved || block_group->pinned ||
1499 		    block_group->used || block_group->ro ||
1500 		    list_is_singular(&block_group->list)) {
1501 			/*
1502 			 * We want to bail if we made new allocations or have
1503 			 * outstanding allocations in this block group.  We do
1504 			 * the ro check in case balance is currently acting on
1505 			 * this block group.
1506 			 */
1507 			trace_btrfs_skip_unused_block_group(block_group);
1508 			spin_unlock(&block_group->lock);
1509 			up_write(&space_info->groups_sem);
1510 			goto next;
1511 		}
1512 		spin_unlock(&block_group->lock);
1513 
1514 		/* We don't want to force the issue, only flip if it's ok. */
1515 		ret = inc_block_group_ro(block_group, 0);
1516 		up_write(&space_info->groups_sem);
1517 		if (ret < 0) {
1518 			ret = 0;
1519 			goto next;
1520 		}
1521 
1522 		ret = btrfs_zone_finish(block_group);
1523 		if (ret < 0) {
1524 			btrfs_dec_block_group_ro(block_group);
1525 			if (ret == -EAGAIN)
1526 				ret = 0;
1527 			goto next;
1528 		}
1529 
1530 		/*
1531 		 * Want to do this before we do anything else so we can recover
1532 		 * properly if we fail to join the transaction.
1533 		 */
1534 		trans = btrfs_start_trans_remove_block_group(fs_info,
1535 						     block_group->start);
1536 		if (IS_ERR(trans)) {
1537 			btrfs_dec_block_group_ro(block_group);
1538 			ret = PTR_ERR(trans);
1539 			goto next;
1540 		}
1541 
1542 		/*
1543 		 * We could have pending pinned extents for this block group,
1544 		 * just delete them, we don't care about them anymore.
1545 		 */
1546 		if (!clean_pinned_extents(trans, block_group)) {
1547 			btrfs_dec_block_group_ro(block_group);
1548 			goto end_trans;
1549 		}
1550 
1551 		/*
1552 		 * At this point, the block_group is read only and should fail
1553 		 * new allocations.  However, btrfs_finish_extent_commit() can
1554 		 * cause this block_group to be placed back on the discard
1555 		 * lists because now the block_group isn't fully discarded.
1556 		 * Bail here and try again later after discarding everything.
1557 		 */
1558 		spin_lock(&fs_info->discard_ctl.lock);
1559 		if (!list_empty(&block_group->discard_list)) {
1560 			spin_unlock(&fs_info->discard_ctl.lock);
1561 			btrfs_dec_block_group_ro(block_group);
1562 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1563 						 block_group);
1564 			goto end_trans;
1565 		}
1566 		spin_unlock(&fs_info->discard_ctl.lock);
1567 
1568 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1569 		spin_lock(&space_info->lock);
1570 		spin_lock(&block_group->lock);
1571 
1572 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1573 						     -block_group->pinned);
1574 		space_info->bytes_readonly += block_group->pinned;
1575 		block_group->pinned = 0;
1576 
1577 		spin_unlock(&block_group->lock);
1578 		spin_unlock(&space_info->lock);
1579 
1580 		/*
1581 		 * The normal path here is an unused block group is passed here,
1582 		 * then trimming is handled in the transaction commit path.
1583 		 * Async discard interposes before this to do the trimming
1584 		 * before coming down the unused block group path as trimming
1585 		 * will no longer be done later in the transaction commit path.
1586 		 */
1587 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1588 			goto flip_async;
1589 
1590 		/*
1591 		 * DISCARD can flip during remount. On zoned filesystems, we
1592 		 * need to reset sequential-required zones.
1593 		 */
1594 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1595 				btrfs_is_zoned(fs_info);
1596 
1597 		/* Implicit trim during transaction commit. */
1598 		if (trimming)
1599 			btrfs_freeze_block_group(block_group);
1600 
1601 		/*
1602 		 * Btrfs_remove_chunk will abort the transaction if things go
1603 		 * horribly wrong.
1604 		 */
1605 		ret = btrfs_remove_chunk(trans, block_group->start);
1606 
1607 		if (ret) {
1608 			if (trimming)
1609 				btrfs_unfreeze_block_group(block_group);
1610 			goto end_trans;
1611 		}
1612 
1613 		/*
1614 		 * If we're not mounted with -odiscard, we can just forget
1615 		 * about this block group. Otherwise we'll need to wait
1616 		 * until transaction commit to do the actual discard.
1617 		 */
1618 		if (trimming) {
1619 			spin_lock(&fs_info->unused_bgs_lock);
1620 			/*
1621 			 * A concurrent scrub might have added us to the list
1622 			 * fs_info->unused_bgs, so use a list_move operation
1623 			 * to add the block group to the deleted_bgs list.
1624 			 */
1625 			list_move(&block_group->bg_list,
1626 				  &trans->transaction->deleted_bgs);
1627 			spin_unlock(&fs_info->unused_bgs_lock);
1628 			btrfs_get_block_group(block_group);
1629 		}
1630 end_trans:
1631 		btrfs_end_transaction(trans);
1632 next:
1633 		btrfs_put_block_group(block_group);
1634 		spin_lock(&fs_info->unused_bgs_lock);
1635 	}
1636 	spin_unlock(&fs_info->unused_bgs_lock);
1637 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1638 	return;
1639 
1640 flip_async:
1641 	btrfs_end_transaction(trans);
1642 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1643 	btrfs_put_block_group(block_group);
1644 	btrfs_discard_punt_unused_bgs_list(fs_info);
1645 }
1646 
1647 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1648 {
1649 	struct btrfs_fs_info *fs_info = bg->fs_info;
1650 
1651 	spin_lock(&fs_info->unused_bgs_lock);
1652 	if (list_empty(&bg->bg_list)) {
1653 		btrfs_get_block_group(bg);
1654 		trace_btrfs_add_unused_block_group(bg);
1655 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1656 	}
1657 	spin_unlock(&fs_info->unused_bgs_lock);
1658 }
1659 
1660 /*
1661  * We want block groups with a low number of used bytes to be in the beginning
1662  * of the list, so they will get reclaimed first.
1663  */
1664 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1665 			   const struct list_head *b)
1666 {
1667 	const struct btrfs_block_group *bg1, *bg2;
1668 
1669 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1670 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1671 
1672 	return bg1->used > bg2->used;
1673 }
1674 
1675 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1676 {
1677 	if (btrfs_is_zoned(fs_info))
1678 		return btrfs_zoned_should_reclaim(fs_info);
1679 	return true;
1680 }
1681 
1682 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1683 {
1684 	const struct btrfs_space_info *space_info = bg->space_info;
1685 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1686 	const u64 new_val = bg->used;
1687 	const u64 old_val = new_val + bytes_freed;
1688 	u64 thresh;
1689 
1690 	if (reclaim_thresh == 0)
1691 		return false;
1692 
1693 	thresh = mult_perc(bg->length, reclaim_thresh);
1694 
1695 	/*
1696 	 * If we were below the threshold before don't reclaim, we are likely a
1697 	 * brand new block group and we don't want to relocate new block groups.
1698 	 */
1699 	if (old_val < thresh)
1700 		return false;
1701 	if (new_val >= thresh)
1702 		return false;
1703 	return true;
1704 }
1705 
1706 void btrfs_reclaim_bgs_work(struct work_struct *work)
1707 {
1708 	struct btrfs_fs_info *fs_info =
1709 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1710 	struct btrfs_block_group *bg;
1711 	struct btrfs_space_info *space_info;
1712 
1713 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1714 		return;
1715 
1716 	if (btrfs_fs_closing(fs_info))
1717 		return;
1718 
1719 	if (!btrfs_should_reclaim(fs_info))
1720 		return;
1721 
1722 	sb_start_write(fs_info->sb);
1723 
1724 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1725 		sb_end_write(fs_info->sb);
1726 		return;
1727 	}
1728 
1729 	/*
1730 	 * Long running balances can keep us blocked here for eternity, so
1731 	 * simply skip reclaim if we're unable to get the mutex.
1732 	 */
1733 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1734 		btrfs_exclop_finish(fs_info);
1735 		sb_end_write(fs_info->sb);
1736 		return;
1737 	}
1738 
1739 	spin_lock(&fs_info->unused_bgs_lock);
1740 	/*
1741 	 * Sort happens under lock because we can't simply splice it and sort.
1742 	 * The block groups might still be in use and reachable via bg_list,
1743 	 * and their presence in the reclaim_bgs list must be preserved.
1744 	 */
1745 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1746 	while (!list_empty(&fs_info->reclaim_bgs)) {
1747 		u64 zone_unusable;
1748 		int ret = 0;
1749 
1750 		bg = list_first_entry(&fs_info->reclaim_bgs,
1751 				      struct btrfs_block_group,
1752 				      bg_list);
1753 		list_del_init(&bg->bg_list);
1754 
1755 		space_info = bg->space_info;
1756 		spin_unlock(&fs_info->unused_bgs_lock);
1757 
1758 		/* Don't race with allocators so take the groups_sem */
1759 		down_write(&space_info->groups_sem);
1760 
1761 		spin_lock(&bg->lock);
1762 		if (bg->reserved || bg->pinned || bg->ro) {
1763 			/*
1764 			 * We want to bail if we made new allocations or have
1765 			 * outstanding allocations in this block group.  We do
1766 			 * the ro check in case balance is currently acting on
1767 			 * this block group.
1768 			 */
1769 			spin_unlock(&bg->lock);
1770 			up_write(&space_info->groups_sem);
1771 			goto next;
1772 		}
1773 		if (bg->used == 0) {
1774 			/*
1775 			 * It is possible that we trigger relocation on a block
1776 			 * group as its extents are deleted and it first goes
1777 			 * below the threshold, then shortly after goes empty.
1778 			 *
1779 			 * In this case, relocating it does delete it, but has
1780 			 * some overhead in relocation specific metadata, looking
1781 			 * for the non-existent extents and running some extra
1782 			 * transactions, which we can avoid by using one of the
1783 			 * other mechanisms for dealing with empty block groups.
1784 			 */
1785 			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1786 				btrfs_mark_bg_unused(bg);
1787 			spin_unlock(&bg->lock);
1788 			up_write(&space_info->groups_sem);
1789 			goto next;
1790 
1791 		}
1792 		/*
1793 		 * The block group might no longer meet the reclaim condition by
1794 		 * the time we get around to reclaiming it, so to avoid
1795 		 * reclaiming overly full block_groups, skip reclaiming them.
1796 		 *
1797 		 * Since the decision making process also depends on the amount
1798 		 * being freed, pass in a fake giant value to skip that extra
1799 		 * check, which is more meaningful when adding to the list in
1800 		 * the first place.
1801 		 */
1802 		if (!should_reclaim_block_group(bg, bg->length)) {
1803 			spin_unlock(&bg->lock);
1804 			up_write(&space_info->groups_sem);
1805 			goto next;
1806 		}
1807 		spin_unlock(&bg->lock);
1808 
1809 		/* Get out fast, in case we're unmounting the filesystem */
1810 		if (btrfs_fs_closing(fs_info)) {
1811 			up_write(&space_info->groups_sem);
1812 			goto next;
1813 		}
1814 
1815 		/*
1816 		 * Cache the zone_unusable value before turning the block group
1817 		 * to read only. As soon as the blog group is read only it's
1818 		 * zone_unusable value gets moved to the block group's read-only
1819 		 * bytes and isn't available for calculations anymore.
1820 		 */
1821 		zone_unusable = bg->zone_unusable;
1822 		ret = inc_block_group_ro(bg, 0);
1823 		up_write(&space_info->groups_sem);
1824 		if (ret < 0)
1825 			goto next;
1826 
1827 		btrfs_info(fs_info,
1828 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1829 				bg->start,
1830 				div64_u64(bg->used * 100, bg->length),
1831 				div64_u64(zone_unusable * 100, bg->length));
1832 		trace_btrfs_reclaim_block_group(bg);
1833 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1834 		if (ret) {
1835 			btrfs_dec_block_group_ro(bg);
1836 			btrfs_err(fs_info, "error relocating chunk %llu",
1837 				  bg->start);
1838 		}
1839 
1840 next:
1841 		btrfs_put_block_group(bg);
1842 		spin_lock(&fs_info->unused_bgs_lock);
1843 	}
1844 	spin_unlock(&fs_info->unused_bgs_lock);
1845 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1846 	btrfs_exclop_finish(fs_info);
1847 	sb_end_write(fs_info->sb);
1848 }
1849 
1850 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1851 {
1852 	spin_lock(&fs_info->unused_bgs_lock);
1853 	if (!list_empty(&fs_info->reclaim_bgs))
1854 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1855 	spin_unlock(&fs_info->unused_bgs_lock);
1856 }
1857 
1858 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1859 {
1860 	struct btrfs_fs_info *fs_info = bg->fs_info;
1861 
1862 	spin_lock(&fs_info->unused_bgs_lock);
1863 	if (list_empty(&bg->bg_list)) {
1864 		btrfs_get_block_group(bg);
1865 		trace_btrfs_add_reclaim_block_group(bg);
1866 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1867 	}
1868 	spin_unlock(&fs_info->unused_bgs_lock);
1869 }
1870 
1871 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1872 			   struct btrfs_path *path)
1873 {
1874 	struct extent_map_tree *em_tree;
1875 	struct extent_map *em;
1876 	struct btrfs_block_group_item bg;
1877 	struct extent_buffer *leaf;
1878 	int slot;
1879 	u64 flags;
1880 	int ret = 0;
1881 
1882 	slot = path->slots[0];
1883 	leaf = path->nodes[0];
1884 
1885 	em_tree = &fs_info->mapping_tree;
1886 	read_lock(&em_tree->lock);
1887 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1888 	read_unlock(&em_tree->lock);
1889 	if (!em) {
1890 		btrfs_err(fs_info,
1891 			  "logical %llu len %llu found bg but no related chunk",
1892 			  key->objectid, key->offset);
1893 		return -ENOENT;
1894 	}
1895 
1896 	if (em->start != key->objectid || em->len != key->offset) {
1897 		btrfs_err(fs_info,
1898 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1899 			key->objectid, key->offset, em->start, em->len);
1900 		ret = -EUCLEAN;
1901 		goto out_free_em;
1902 	}
1903 
1904 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1905 			   sizeof(bg));
1906 	flags = btrfs_stack_block_group_flags(&bg) &
1907 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1908 
1909 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1910 		btrfs_err(fs_info,
1911 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1912 			  key->objectid, key->offset, flags,
1913 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1914 		ret = -EUCLEAN;
1915 	}
1916 
1917 out_free_em:
1918 	free_extent_map(em);
1919 	return ret;
1920 }
1921 
1922 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1923 				  struct btrfs_path *path,
1924 				  struct btrfs_key *key)
1925 {
1926 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1927 	int ret;
1928 	struct btrfs_key found_key;
1929 
1930 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1931 		if (found_key.objectid >= key->objectid &&
1932 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1933 			return read_bg_from_eb(fs_info, &found_key, path);
1934 		}
1935 	}
1936 	return ret;
1937 }
1938 
1939 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1940 {
1941 	u64 extra_flags = chunk_to_extended(flags) &
1942 				BTRFS_EXTENDED_PROFILE_MASK;
1943 
1944 	write_seqlock(&fs_info->profiles_lock);
1945 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1946 		fs_info->avail_data_alloc_bits |= extra_flags;
1947 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1948 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1949 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1950 		fs_info->avail_system_alloc_bits |= extra_flags;
1951 	write_sequnlock(&fs_info->profiles_lock);
1952 }
1953 
1954 /*
1955  * Map a physical disk address to a list of logical addresses.
1956  *
1957  * @fs_info:       the filesystem
1958  * @chunk_start:   logical address of block group
1959  * @physical:	   physical address to map to logical addresses
1960  * @logical:	   return array of logical addresses which map to @physical
1961  * @naddrs:	   length of @logical
1962  * @stripe_len:    size of IO stripe for the given block group
1963  *
1964  * Maps a particular @physical disk address to a list of @logical addresses.
1965  * Used primarily to exclude those portions of a block group that contain super
1966  * block copies.
1967  */
1968 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1969 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1970 {
1971 	struct extent_map *em;
1972 	struct map_lookup *map;
1973 	u64 *buf;
1974 	u64 bytenr;
1975 	u64 data_stripe_length;
1976 	u64 io_stripe_size;
1977 	int i, nr = 0;
1978 	int ret = 0;
1979 
1980 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1981 	if (IS_ERR(em))
1982 		return -EIO;
1983 
1984 	map = em->map_lookup;
1985 	data_stripe_length = em->orig_block_len;
1986 	io_stripe_size = map->stripe_len;
1987 	chunk_start = em->start;
1988 
1989 	/* For RAID5/6 adjust to a full IO stripe length */
1990 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1991 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1992 
1993 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1994 	if (!buf) {
1995 		ret = -ENOMEM;
1996 		goto out;
1997 	}
1998 
1999 	for (i = 0; i < map->num_stripes; i++) {
2000 		bool already_inserted = false;
2001 		u64 stripe_nr;
2002 		u64 offset;
2003 		int j;
2004 
2005 		if (!in_range(physical, map->stripes[i].physical,
2006 			      data_stripe_length))
2007 			continue;
2008 
2009 		stripe_nr = physical - map->stripes[i].physical;
2010 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
2011 
2012 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2013 				 BTRFS_BLOCK_GROUP_RAID10)) {
2014 			stripe_nr = stripe_nr * map->num_stripes + i;
2015 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
2016 		}
2017 		/*
2018 		 * The remaining case would be for RAID56, multiply by
2019 		 * nr_data_stripes().  Alternatively, just use rmap_len below
2020 		 * instead of map->stripe_len
2021 		 */
2022 
2023 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2024 
2025 		/* Ensure we don't add duplicate addresses */
2026 		for (j = 0; j < nr; j++) {
2027 			if (buf[j] == bytenr) {
2028 				already_inserted = true;
2029 				break;
2030 			}
2031 		}
2032 
2033 		if (!already_inserted)
2034 			buf[nr++] = bytenr;
2035 	}
2036 
2037 	*logical = buf;
2038 	*naddrs = nr;
2039 	*stripe_len = io_stripe_size;
2040 out:
2041 	free_extent_map(em);
2042 	return ret;
2043 }
2044 
2045 static int exclude_super_stripes(struct btrfs_block_group *cache)
2046 {
2047 	struct btrfs_fs_info *fs_info = cache->fs_info;
2048 	const bool zoned = btrfs_is_zoned(fs_info);
2049 	u64 bytenr;
2050 	u64 *logical;
2051 	int stripe_len;
2052 	int i, nr, ret;
2053 
2054 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2055 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2056 		cache->bytes_super += stripe_len;
2057 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
2058 						stripe_len);
2059 		if (ret)
2060 			return ret;
2061 	}
2062 
2063 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2064 		bytenr = btrfs_sb_offset(i);
2065 		ret = btrfs_rmap_block(fs_info, cache->start,
2066 				       bytenr, &logical, &nr, &stripe_len);
2067 		if (ret)
2068 			return ret;
2069 
2070 		/* Shouldn't have super stripes in sequential zones */
2071 		if (zoned && nr) {
2072 			btrfs_err(fs_info,
2073 			"zoned: block group %llu must not contain super block",
2074 				  cache->start);
2075 			return -EUCLEAN;
2076 		}
2077 
2078 		while (nr--) {
2079 			u64 len = min_t(u64, stripe_len,
2080 				cache->start + cache->length - logical[nr]);
2081 
2082 			cache->bytes_super += len;
2083 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
2084 							len);
2085 			if (ret) {
2086 				kfree(logical);
2087 				return ret;
2088 			}
2089 		}
2090 
2091 		kfree(logical);
2092 	}
2093 	return 0;
2094 }
2095 
2096 static struct btrfs_block_group *btrfs_create_block_group_cache(
2097 		struct btrfs_fs_info *fs_info, u64 start)
2098 {
2099 	struct btrfs_block_group *cache;
2100 
2101 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2102 	if (!cache)
2103 		return NULL;
2104 
2105 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2106 					GFP_NOFS);
2107 	if (!cache->free_space_ctl) {
2108 		kfree(cache);
2109 		return NULL;
2110 	}
2111 
2112 	cache->start = start;
2113 
2114 	cache->fs_info = fs_info;
2115 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2116 
2117 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2118 
2119 	refcount_set(&cache->refs, 1);
2120 	spin_lock_init(&cache->lock);
2121 	init_rwsem(&cache->data_rwsem);
2122 	INIT_LIST_HEAD(&cache->list);
2123 	INIT_LIST_HEAD(&cache->cluster_list);
2124 	INIT_LIST_HEAD(&cache->bg_list);
2125 	INIT_LIST_HEAD(&cache->ro_list);
2126 	INIT_LIST_HEAD(&cache->discard_list);
2127 	INIT_LIST_HEAD(&cache->dirty_list);
2128 	INIT_LIST_HEAD(&cache->io_list);
2129 	INIT_LIST_HEAD(&cache->active_bg_list);
2130 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2131 	atomic_set(&cache->frozen, 0);
2132 	mutex_init(&cache->free_space_lock);
2133 	cache->full_stripe_locks_root.root = RB_ROOT;
2134 	mutex_init(&cache->full_stripe_locks_root.lock);
2135 
2136 	return cache;
2137 }
2138 
2139 /*
2140  * Iterate all chunks and verify that each of them has the corresponding block
2141  * group
2142  */
2143 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2144 {
2145 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2146 	struct extent_map *em;
2147 	struct btrfs_block_group *bg;
2148 	u64 start = 0;
2149 	int ret = 0;
2150 
2151 	while (1) {
2152 		read_lock(&map_tree->lock);
2153 		/*
2154 		 * lookup_extent_mapping will return the first extent map
2155 		 * intersecting the range, so setting @len to 1 is enough to
2156 		 * get the first chunk.
2157 		 */
2158 		em = lookup_extent_mapping(map_tree, start, 1);
2159 		read_unlock(&map_tree->lock);
2160 		if (!em)
2161 			break;
2162 
2163 		bg = btrfs_lookup_block_group(fs_info, em->start);
2164 		if (!bg) {
2165 			btrfs_err(fs_info,
2166 	"chunk start=%llu len=%llu doesn't have corresponding block group",
2167 				     em->start, em->len);
2168 			ret = -EUCLEAN;
2169 			free_extent_map(em);
2170 			break;
2171 		}
2172 		if (bg->start != em->start || bg->length != em->len ||
2173 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2174 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2175 			btrfs_err(fs_info,
2176 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2177 				em->start, em->len,
2178 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2179 				bg->start, bg->length,
2180 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2181 			ret = -EUCLEAN;
2182 			free_extent_map(em);
2183 			btrfs_put_block_group(bg);
2184 			break;
2185 		}
2186 		start = em->start + em->len;
2187 		free_extent_map(em);
2188 		btrfs_put_block_group(bg);
2189 	}
2190 	return ret;
2191 }
2192 
2193 static int read_one_block_group(struct btrfs_fs_info *info,
2194 				struct btrfs_block_group_item *bgi,
2195 				const struct btrfs_key *key,
2196 				int need_clear)
2197 {
2198 	struct btrfs_block_group *cache;
2199 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2200 	int ret;
2201 
2202 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2203 
2204 	cache = btrfs_create_block_group_cache(info, key->objectid);
2205 	if (!cache)
2206 		return -ENOMEM;
2207 
2208 	cache->length = key->offset;
2209 	cache->used = btrfs_stack_block_group_used(bgi);
2210 	cache->commit_used = cache->used;
2211 	cache->flags = btrfs_stack_block_group_flags(bgi);
2212 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2213 
2214 	set_free_space_tree_thresholds(cache);
2215 
2216 	if (need_clear) {
2217 		/*
2218 		 * When we mount with old space cache, we need to
2219 		 * set BTRFS_DC_CLEAR and set dirty flag.
2220 		 *
2221 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2222 		 *    truncate the old free space cache inode and
2223 		 *    setup a new one.
2224 		 * b) Setting 'dirty flag' makes sure that we flush
2225 		 *    the new space cache info onto disk.
2226 		 */
2227 		if (btrfs_test_opt(info, SPACE_CACHE))
2228 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2229 	}
2230 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2231 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2232 			btrfs_err(info,
2233 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2234 				  cache->start);
2235 			ret = -EINVAL;
2236 			goto error;
2237 	}
2238 
2239 	ret = btrfs_load_block_group_zone_info(cache, false);
2240 	if (ret) {
2241 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2242 			  cache->start);
2243 		goto error;
2244 	}
2245 
2246 	/*
2247 	 * We need to exclude the super stripes now so that the space info has
2248 	 * super bytes accounted for, otherwise we'll think we have more space
2249 	 * than we actually do.
2250 	 */
2251 	ret = exclude_super_stripes(cache);
2252 	if (ret) {
2253 		/* We may have excluded something, so call this just in case. */
2254 		btrfs_free_excluded_extents(cache);
2255 		goto error;
2256 	}
2257 
2258 	/*
2259 	 * For zoned filesystem, space after the allocation offset is the only
2260 	 * free space for a block group. So, we don't need any caching work.
2261 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2262 	 * zone_unusable space.
2263 	 *
2264 	 * For regular filesystem, check for two cases, either we are full, and
2265 	 * therefore don't need to bother with the caching work since we won't
2266 	 * find any space, or we are empty, and we can just add all the space
2267 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2268 	 * in the full case.
2269 	 */
2270 	if (btrfs_is_zoned(info)) {
2271 		btrfs_calc_zone_unusable(cache);
2272 		/* Should not have any excluded extents. Just in case, though. */
2273 		btrfs_free_excluded_extents(cache);
2274 	} else if (cache->length == cache->used) {
2275 		cache->cached = BTRFS_CACHE_FINISHED;
2276 		btrfs_free_excluded_extents(cache);
2277 	} else if (cache->used == 0) {
2278 		cache->cached = BTRFS_CACHE_FINISHED;
2279 		add_new_free_space(cache, cache->start,
2280 				   cache->start + cache->length);
2281 		btrfs_free_excluded_extents(cache);
2282 	}
2283 
2284 	ret = btrfs_add_block_group_cache(info, cache);
2285 	if (ret) {
2286 		btrfs_remove_free_space_cache(cache);
2287 		goto error;
2288 	}
2289 	trace_btrfs_add_block_group(info, cache, 0);
2290 	btrfs_add_bg_to_space_info(info, cache);
2291 
2292 	set_avail_alloc_bits(info, cache->flags);
2293 	if (btrfs_chunk_writeable(info, cache->start)) {
2294 		if (cache->used == 0) {
2295 			ASSERT(list_empty(&cache->bg_list));
2296 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2297 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2298 			else
2299 				btrfs_mark_bg_unused(cache);
2300 		}
2301 	} else {
2302 		inc_block_group_ro(cache, 1);
2303 	}
2304 
2305 	return 0;
2306 error:
2307 	btrfs_put_block_group(cache);
2308 	return ret;
2309 }
2310 
2311 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2312 {
2313 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2314 	struct rb_node *node;
2315 	int ret = 0;
2316 
2317 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2318 		struct extent_map *em;
2319 		struct map_lookup *map;
2320 		struct btrfs_block_group *bg;
2321 
2322 		em = rb_entry(node, struct extent_map, rb_node);
2323 		map = em->map_lookup;
2324 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2325 		if (!bg) {
2326 			ret = -ENOMEM;
2327 			break;
2328 		}
2329 
2330 		/* Fill dummy cache as FULL */
2331 		bg->length = em->len;
2332 		bg->flags = map->type;
2333 		bg->cached = BTRFS_CACHE_FINISHED;
2334 		bg->used = em->len;
2335 		bg->flags = map->type;
2336 		ret = btrfs_add_block_group_cache(fs_info, bg);
2337 		/*
2338 		 * We may have some valid block group cache added already, in
2339 		 * that case we skip to the next one.
2340 		 */
2341 		if (ret == -EEXIST) {
2342 			ret = 0;
2343 			btrfs_put_block_group(bg);
2344 			continue;
2345 		}
2346 
2347 		if (ret) {
2348 			btrfs_remove_free_space_cache(bg);
2349 			btrfs_put_block_group(bg);
2350 			break;
2351 		}
2352 
2353 		btrfs_add_bg_to_space_info(fs_info, bg);
2354 
2355 		set_avail_alloc_bits(fs_info, bg->flags);
2356 	}
2357 	if (!ret)
2358 		btrfs_init_global_block_rsv(fs_info);
2359 	return ret;
2360 }
2361 
2362 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2363 {
2364 	struct btrfs_root *root = btrfs_block_group_root(info);
2365 	struct btrfs_path *path;
2366 	int ret;
2367 	struct btrfs_block_group *cache;
2368 	struct btrfs_space_info *space_info;
2369 	struct btrfs_key key;
2370 	int need_clear = 0;
2371 	u64 cache_gen;
2372 
2373 	/*
2374 	 * Either no extent root (with ibadroots rescue option) or we have
2375 	 * unsupported RO options. The fs can never be mounted read-write, so no
2376 	 * need to waste time searching block group items.
2377 	 *
2378 	 * This also allows new extent tree related changes to be RO compat,
2379 	 * no need for a full incompat flag.
2380 	 */
2381 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2382 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2383 		return fill_dummy_bgs(info);
2384 
2385 	key.objectid = 0;
2386 	key.offset = 0;
2387 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2388 	path = btrfs_alloc_path();
2389 	if (!path)
2390 		return -ENOMEM;
2391 
2392 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2393 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2394 	    btrfs_super_generation(info->super_copy) != cache_gen)
2395 		need_clear = 1;
2396 	if (btrfs_test_opt(info, CLEAR_CACHE))
2397 		need_clear = 1;
2398 
2399 	while (1) {
2400 		struct btrfs_block_group_item bgi;
2401 		struct extent_buffer *leaf;
2402 		int slot;
2403 
2404 		ret = find_first_block_group(info, path, &key);
2405 		if (ret > 0)
2406 			break;
2407 		if (ret != 0)
2408 			goto error;
2409 
2410 		leaf = path->nodes[0];
2411 		slot = path->slots[0];
2412 
2413 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2414 				   sizeof(bgi));
2415 
2416 		btrfs_item_key_to_cpu(leaf, &key, slot);
2417 		btrfs_release_path(path);
2418 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2419 		if (ret < 0)
2420 			goto error;
2421 		key.objectid += key.offset;
2422 		key.offset = 0;
2423 	}
2424 	btrfs_release_path(path);
2425 
2426 	list_for_each_entry(space_info, &info->space_info, list) {
2427 		int i;
2428 
2429 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2430 			if (list_empty(&space_info->block_groups[i]))
2431 				continue;
2432 			cache = list_first_entry(&space_info->block_groups[i],
2433 						 struct btrfs_block_group,
2434 						 list);
2435 			btrfs_sysfs_add_block_group_type(cache);
2436 		}
2437 
2438 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2439 		      (BTRFS_BLOCK_GROUP_RAID10 |
2440 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2441 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2442 		       BTRFS_BLOCK_GROUP_DUP)))
2443 			continue;
2444 		/*
2445 		 * Avoid allocating from un-mirrored block group if there are
2446 		 * mirrored block groups.
2447 		 */
2448 		list_for_each_entry(cache,
2449 				&space_info->block_groups[BTRFS_RAID_RAID0],
2450 				list)
2451 			inc_block_group_ro(cache, 1);
2452 		list_for_each_entry(cache,
2453 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2454 				list)
2455 			inc_block_group_ro(cache, 1);
2456 	}
2457 
2458 	btrfs_init_global_block_rsv(info);
2459 	ret = check_chunk_block_group_mappings(info);
2460 error:
2461 	btrfs_free_path(path);
2462 	/*
2463 	 * We've hit some error while reading the extent tree, and have
2464 	 * rescue=ibadroots mount option.
2465 	 * Try to fill the tree using dummy block groups so that the user can
2466 	 * continue to mount and grab their data.
2467 	 */
2468 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2469 		ret = fill_dummy_bgs(info);
2470 	return ret;
2471 }
2472 
2473 /*
2474  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2475  * allocation.
2476  *
2477  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2478  * phases.
2479  */
2480 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2481 				   struct btrfs_block_group *block_group)
2482 {
2483 	struct btrfs_fs_info *fs_info = trans->fs_info;
2484 	struct btrfs_block_group_item bgi;
2485 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2486 	struct btrfs_key key;
2487 	u64 old_commit_used;
2488 	int ret;
2489 
2490 	spin_lock(&block_group->lock);
2491 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2492 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2493 						   block_group->global_root_id);
2494 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2495 	old_commit_used = block_group->commit_used;
2496 	block_group->commit_used = block_group->used;
2497 	key.objectid = block_group->start;
2498 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2499 	key.offset = block_group->length;
2500 	spin_unlock(&block_group->lock);
2501 
2502 	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2503 	if (ret < 0) {
2504 		spin_lock(&block_group->lock);
2505 		block_group->commit_used = old_commit_used;
2506 		spin_unlock(&block_group->lock);
2507 	}
2508 
2509 	return ret;
2510 }
2511 
2512 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2513 			    struct btrfs_device *device, u64 chunk_offset,
2514 			    u64 start, u64 num_bytes)
2515 {
2516 	struct btrfs_fs_info *fs_info = device->fs_info;
2517 	struct btrfs_root *root = fs_info->dev_root;
2518 	struct btrfs_path *path;
2519 	struct btrfs_dev_extent *extent;
2520 	struct extent_buffer *leaf;
2521 	struct btrfs_key key;
2522 	int ret;
2523 
2524 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2525 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2526 	path = btrfs_alloc_path();
2527 	if (!path)
2528 		return -ENOMEM;
2529 
2530 	key.objectid = device->devid;
2531 	key.type = BTRFS_DEV_EXTENT_KEY;
2532 	key.offset = start;
2533 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2534 	if (ret)
2535 		goto out;
2536 
2537 	leaf = path->nodes[0];
2538 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2539 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2540 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2541 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2542 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2543 
2544 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2545 	btrfs_mark_buffer_dirty(leaf);
2546 out:
2547 	btrfs_free_path(path);
2548 	return ret;
2549 }
2550 
2551 /*
2552  * This function belongs to phase 2.
2553  *
2554  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2555  * phases.
2556  */
2557 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2558 				   u64 chunk_offset, u64 chunk_size)
2559 {
2560 	struct btrfs_fs_info *fs_info = trans->fs_info;
2561 	struct btrfs_device *device;
2562 	struct extent_map *em;
2563 	struct map_lookup *map;
2564 	u64 dev_offset;
2565 	u64 stripe_size;
2566 	int i;
2567 	int ret = 0;
2568 
2569 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2570 	if (IS_ERR(em))
2571 		return PTR_ERR(em);
2572 
2573 	map = em->map_lookup;
2574 	stripe_size = em->orig_block_len;
2575 
2576 	/*
2577 	 * Take the device list mutex to prevent races with the final phase of
2578 	 * a device replace operation that replaces the device object associated
2579 	 * with the map's stripes, because the device object's id can change
2580 	 * at any time during that final phase of the device replace operation
2581 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2582 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2583 	 * resulting in persisting a device extent item with such ID.
2584 	 */
2585 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2586 	for (i = 0; i < map->num_stripes; i++) {
2587 		device = map->stripes[i].dev;
2588 		dev_offset = map->stripes[i].physical;
2589 
2590 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2591 				       stripe_size);
2592 		if (ret)
2593 			break;
2594 	}
2595 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2596 
2597 	free_extent_map(em);
2598 	return ret;
2599 }
2600 
2601 /*
2602  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2603  * chunk allocation.
2604  *
2605  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2606  * phases.
2607  */
2608 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2609 {
2610 	struct btrfs_fs_info *fs_info = trans->fs_info;
2611 	struct btrfs_block_group *block_group;
2612 	int ret = 0;
2613 
2614 	while (!list_empty(&trans->new_bgs)) {
2615 		int index;
2616 
2617 		block_group = list_first_entry(&trans->new_bgs,
2618 					       struct btrfs_block_group,
2619 					       bg_list);
2620 		if (ret)
2621 			goto next;
2622 
2623 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2624 
2625 		ret = insert_block_group_item(trans, block_group);
2626 		if (ret)
2627 			btrfs_abort_transaction(trans, ret);
2628 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2629 			      &block_group->runtime_flags)) {
2630 			mutex_lock(&fs_info->chunk_mutex);
2631 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2632 			mutex_unlock(&fs_info->chunk_mutex);
2633 			if (ret)
2634 				btrfs_abort_transaction(trans, ret);
2635 		}
2636 		ret = insert_dev_extents(trans, block_group->start,
2637 					 block_group->length);
2638 		if (ret)
2639 			btrfs_abort_transaction(trans, ret);
2640 		add_block_group_free_space(trans, block_group);
2641 
2642 		/*
2643 		 * If we restriped during balance, we may have added a new raid
2644 		 * type, so now add the sysfs entries when it is safe to do so.
2645 		 * We don't have to worry about locking here as it's handled in
2646 		 * btrfs_sysfs_add_block_group_type.
2647 		 */
2648 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2649 			btrfs_sysfs_add_block_group_type(block_group);
2650 
2651 		/* Already aborted the transaction if it failed. */
2652 next:
2653 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2654 		list_del_init(&block_group->bg_list);
2655 	}
2656 	btrfs_trans_release_chunk_metadata(trans);
2657 }
2658 
2659 /*
2660  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2661  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2662  */
2663 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2664 {
2665 	u64 div = SZ_1G;
2666 	u64 index;
2667 
2668 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2669 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2670 
2671 	/* If we have a smaller fs index based on 128MiB. */
2672 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2673 		div = SZ_128M;
2674 
2675 	offset = div64_u64(offset, div);
2676 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2677 	return index;
2678 }
2679 
2680 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2681 						 u64 bytes_used, u64 type,
2682 						 u64 chunk_offset, u64 size)
2683 {
2684 	struct btrfs_fs_info *fs_info = trans->fs_info;
2685 	struct btrfs_block_group *cache;
2686 	int ret;
2687 
2688 	btrfs_set_log_full_commit(trans);
2689 
2690 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2691 	if (!cache)
2692 		return ERR_PTR(-ENOMEM);
2693 
2694 	cache->length = size;
2695 	set_free_space_tree_thresholds(cache);
2696 	cache->used = bytes_used;
2697 	cache->flags = type;
2698 	cache->cached = BTRFS_CACHE_FINISHED;
2699 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2700 
2701 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2702 		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2703 
2704 	ret = btrfs_load_block_group_zone_info(cache, true);
2705 	if (ret) {
2706 		btrfs_put_block_group(cache);
2707 		return ERR_PTR(ret);
2708 	}
2709 
2710 	ret = exclude_super_stripes(cache);
2711 	if (ret) {
2712 		/* We may have excluded something, so call this just in case */
2713 		btrfs_free_excluded_extents(cache);
2714 		btrfs_put_block_group(cache);
2715 		return ERR_PTR(ret);
2716 	}
2717 
2718 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2719 
2720 	btrfs_free_excluded_extents(cache);
2721 
2722 	/*
2723 	 * Ensure the corresponding space_info object is created and
2724 	 * assigned to our block group. We want our bg to be added to the rbtree
2725 	 * with its ->space_info set.
2726 	 */
2727 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2728 	ASSERT(cache->space_info);
2729 
2730 	ret = btrfs_add_block_group_cache(fs_info, cache);
2731 	if (ret) {
2732 		btrfs_remove_free_space_cache(cache);
2733 		btrfs_put_block_group(cache);
2734 		return ERR_PTR(ret);
2735 	}
2736 
2737 	/*
2738 	 * Now that our block group has its ->space_info set and is inserted in
2739 	 * the rbtree, update the space info's counters.
2740 	 */
2741 	trace_btrfs_add_block_group(fs_info, cache, 1);
2742 	btrfs_add_bg_to_space_info(fs_info, cache);
2743 	btrfs_update_global_block_rsv(fs_info);
2744 
2745 #ifdef CONFIG_BTRFS_DEBUG
2746 	if (btrfs_should_fragment_free_space(cache)) {
2747 		u64 new_bytes_used = size - bytes_used;
2748 
2749 		cache->space_info->bytes_used += new_bytes_used >> 1;
2750 		fragment_free_space(cache);
2751 	}
2752 #endif
2753 
2754 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2755 	trans->delayed_ref_updates++;
2756 	btrfs_update_delayed_refs_rsv(trans);
2757 
2758 	set_avail_alloc_bits(fs_info, type);
2759 	return cache;
2760 }
2761 
2762 /*
2763  * Mark one block group RO, can be called several times for the same block
2764  * group.
2765  *
2766  * @cache:		the destination block group
2767  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2768  * 			ensure we still have some free space after marking this
2769  * 			block group RO.
2770  */
2771 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2772 			     bool do_chunk_alloc)
2773 {
2774 	struct btrfs_fs_info *fs_info = cache->fs_info;
2775 	struct btrfs_trans_handle *trans;
2776 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2777 	u64 alloc_flags;
2778 	int ret;
2779 	bool dirty_bg_running;
2780 
2781 	/*
2782 	 * This can only happen when we are doing read-only scrub on read-only
2783 	 * mount.
2784 	 * In that case we should not start a new transaction on read-only fs.
2785 	 * Thus here we skip all chunk allocations.
2786 	 */
2787 	if (sb_rdonly(fs_info->sb)) {
2788 		mutex_lock(&fs_info->ro_block_group_mutex);
2789 		ret = inc_block_group_ro(cache, 0);
2790 		mutex_unlock(&fs_info->ro_block_group_mutex);
2791 		return ret;
2792 	}
2793 
2794 	do {
2795 		trans = btrfs_join_transaction(root);
2796 		if (IS_ERR(trans))
2797 			return PTR_ERR(trans);
2798 
2799 		dirty_bg_running = false;
2800 
2801 		/*
2802 		 * We're not allowed to set block groups readonly after the dirty
2803 		 * block group cache has started writing.  If it already started,
2804 		 * back off and let this transaction commit.
2805 		 */
2806 		mutex_lock(&fs_info->ro_block_group_mutex);
2807 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2808 			u64 transid = trans->transid;
2809 
2810 			mutex_unlock(&fs_info->ro_block_group_mutex);
2811 			btrfs_end_transaction(trans);
2812 
2813 			ret = btrfs_wait_for_commit(fs_info, transid);
2814 			if (ret)
2815 				return ret;
2816 			dirty_bg_running = true;
2817 		}
2818 	} while (dirty_bg_running);
2819 
2820 	if (do_chunk_alloc) {
2821 		/*
2822 		 * If we are changing raid levels, try to allocate a
2823 		 * corresponding block group with the new raid level.
2824 		 */
2825 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2826 		if (alloc_flags != cache->flags) {
2827 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2828 						CHUNK_ALLOC_FORCE);
2829 			/*
2830 			 * ENOSPC is allowed here, we may have enough space
2831 			 * already allocated at the new raid level to carry on
2832 			 */
2833 			if (ret == -ENOSPC)
2834 				ret = 0;
2835 			if (ret < 0)
2836 				goto out;
2837 		}
2838 	}
2839 
2840 	ret = inc_block_group_ro(cache, 0);
2841 	if (!do_chunk_alloc || ret == -ETXTBSY)
2842 		goto unlock_out;
2843 	if (!ret)
2844 		goto out;
2845 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2846 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2847 	if (ret < 0)
2848 		goto out;
2849 	/*
2850 	 * We have allocated a new chunk. We also need to activate that chunk to
2851 	 * grant metadata tickets for zoned filesystem.
2852 	 */
2853 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2854 	if (ret < 0)
2855 		goto out;
2856 
2857 	ret = inc_block_group_ro(cache, 0);
2858 	if (ret == -ETXTBSY)
2859 		goto unlock_out;
2860 out:
2861 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2862 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2863 		mutex_lock(&fs_info->chunk_mutex);
2864 		check_system_chunk(trans, alloc_flags);
2865 		mutex_unlock(&fs_info->chunk_mutex);
2866 	}
2867 unlock_out:
2868 	mutex_unlock(&fs_info->ro_block_group_mutex);
2869 
2870 	btrfs_end_transaction(trans);
2871 	return ret;
2872 }
2873 
2874 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2875 {
2876 	struct btrfs_space_info *sinfo = cache->space_info;
2877 	u64 num_bytes;
2878 
2879 	BUG_ON(!cache->ro);
2880 
2881 	spin_lock(&sinfo->lock);
2882 	spin_lock(&cache->lock);
2883 	if (!--cache->ro) {
2884 		if (btrfs_is_zoned(cache->fs_info)) {
2885 			/* Migrate zone_unusable bytes back */
2886 			cache->zone_unusable =
2887 				(cache->alloc_offset - cache->used) +
2888 				(cache->length - cache->zone_capacity);
2889 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2890 			sinfo->bytes_readonly -= cache->zone_unusable;
2891 		}
2892 		num_bytes = cache->length - cache->reserved -
2893 			    cache->pinned - cache->bytes_super -
2894 			    cache->zone_unusable - cache->used;
2895 		sinfo->bytes_readonly -= num_bytes;
2896 		list_del_init(&cache->ro_list);
2897 	}
2898 	spin_unlock(&cache->lock);
2899 	spin_unlock(&sinfo->lock);
2900 }
2901 
2902 static int update_block_group_item(struct btrfs_trans_handle *trans,
2903 				   struct btrfs_path *path,
2904 				   struct btrfs_block_group *cache)
2905 {
2906 	struct btrfs_fs_info *fs_info = trans->fs_info;
2907 	int ret;
2908 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2909 	unsigned long bi;
2910 	struct extent_buffer *leaf;
2911 	struct btrfs_block_group_item bgi;
2912 	struct btrfs_key key;
2913 	u64 old_commit_used;
2914 	u64 used;
2915 
2916 	/*
2917 	 * Block group items update can be triggered out of commit transaction
2918 	 * critical section, thus we need a consistent view of used bytes.
2919 	 * We cannot use cache->used directly outside of the spin lock, as it
2920 	 * may be changed.
2921 	 */
2922 	spin_lock(&cache->lock);
2923 	old_commit_used = cache->commit_used;
2924 	used = cache->used;
2925 	/* No change in used bytes, can safely skip it. */
2926 	if (cache->commit_used == used) {
2927 		spin_unlock(&cache->lock);
2928 		return 0;
2929 	}
2930 	cache->commit_used = used;
2931 	spin_unlock(&cache->lock);
2932 
2933 	key.objectid = cache->start;
2934 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2935 	key.offset = cache->length;
2936 
2937 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2938 	if (ret) {
2939 		if (ret > 0)
2940 			ret = -ENOENT;
2941 		goto fail;
2942 	}
2943 
2944 	leaf = path->nodes[0];
2945 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2946 	btrfs_set_stack_block_group_used(&bgi, used);
2947 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2948 						   cache->global_root_id);
2949 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2950 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2951 	btrfs_mark_buffer_dirty(leaf);
2952 fail:
2953 	btrfs_release_path(path);
2954 	/* We didn't update the block group item, need to revert @commit_used. */
2955 	if (ret < 0) {
2956 		spin_lock(&cache->lock);
2957 		cache->commit_used = old_commit_used;
2958 		spin_unlock(&cache->lock);
2959 	}
2960 	return ret;
2961 
2962 }
2963 
2964 static int cache_save_setup(struct btrfs_block_group *block_group,
2965 			    struct btrfs_trans_handle *trans,
2966 			    struct btrfs_path *path)
2967 {
2968 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2969 	struct btrfs_root *root = fs_info->tree_root;
2970 	struct inode *inode = NULL;
2971 	struct extent_changeset *data_reserved = NULL;
2972 	u64 alloc_hint = 0;
2973 	int dcs = BTRFS_DC_ERROR;
2974 	u64 cache_size = 0;
2975 	int retries = 0;
2976 	int ret = 0;
2977 
2978 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2979 		return 0;
2980 
2981 	/*
2982 	 * If this block group is smaller than 100 megs don't bother caching the
2983 	 * block group.
2984 	 */
2985 	if (block_group->length < (100 * SZ_1M)) {
2986 		spin_lock(&block_group->lock);
2987 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2988 		spin_unlock(&block_group->lock);
2989 		return 0;
2990 	}
2991 
2992 	if (TRANS_ABORTED(trans))
2993 		return 0;
2994 again:
2995 	inode = lookup_free_space_inode(block_group, path);
2996 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2997 		ret = PTR_ERR(inode);
2998 		btrfs_release_path(path);
2999 		goto out;
3000 	}
3001 
3002 	if (IS_ERR(inode)) {
3003 		BUG_ON(retries);
3004 		retries++;
3005 
3006 		if (block_group->ro)
3007 			goto out_free;
3008 
3009 		ret = create_free_space_inode(trans, block_group, path);
3010 		if (ret)
3011 			goto out_free;
3012 		goto again;
3013 	}
3014 
3015 	/*
3016 	 * We want to set the generation to 0, that way if anything goes wrong
3017 	 * from here on out we know not to trust this cache when we load up next
3018 	 * time.
3019 	 */
3020 	BTRFS_I(inode)->generation = 0;
3021 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3022 	if (ret) {
3023 		/*
3024 		 * So theoretically we could recover from this, simply set the
3025 		 * super cache generation to 0 so we know to invalidate the
3026 		 * cache, but then we'd have to keep track of the block groups
3027 		 * that fail this way so we know we _have_ to reset this cache
3028 		 * before the next commit or risk reading stale cache.  So to
3029 		 * limit our exposure to horrible edge cases lets just abort the
3030 		 * transaction, this only happens in really bad situations
3031 		 * anyway.
3032 		 */
3033 		btrfs_abort_transaction(trans, ret);
3034 		goto out_put;
3035 	}
3036 	WARN_ON(ret);
3037 
3038 	/* We've already setup this transaction, go ahead and exit */
3039 	if (block_group->cache_generation == trans->transid &&
3040 	    i_size_read(inode)) {
3041 		dcs = BTRFS_DC_SETUP;
3042 		goto out_put;
3043 	}
3044 
3045 	if (i_size_read(inode) > 0) {
3046 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3047 					&fs_info->global_block_rsv);
3048 		if (ret)
3049 			goto out_put;
3050 
3051 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3052 		if (ret)
3053 			goto out_put;
3054 	}
3055 
3056 	spin_lock(&block_group->lock);
3057 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3058 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3059 		/*
3060 		 * don't bother trying to write stuff out _if_
3061 		 * a) we're not cached,
3062 		 * b) we're with nospace_cache mount option,
3063 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3064 		 */
3065 		dcs = BTRFS_DC_WRITTEN;
3066 		spin_unlock(&block_group->lock);
3067 		goto out_put;
3068 	}
3069 	spin_unlock(&block_group->lock);
3070 
3071 	/*
3072 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3073 	 * skip doing the setup, we've already cleared the cache so we're safe.
3074 	 */
3075 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3076 		ret = -ENOSPC;
3077 		goto out_put;
3078 	}
3079 
3080 	/*
3081 	 * Try to preallocate enough space based on how big the block group is.
3082 	 * Keep in mind this has to include any pinned space which could end up
3083 	 * taking up quite a bit since it's not folded into the other space
3084 	 * cache.
3085 	 */
3086 	cache_size = div_u64(block_group->length, SZ_256M);
3087 	if (!cache_size)
3088 		cache_size = 1;
3089 
3090 	cache_size *= 16;
3091 	cache_size *= fs_info->sectorsize;
3092 
3093 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3094 					  cache_size, false);
3095 	if (ret)
3096 		goto out_put;
3097 
3098 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3099 					      cache_size, cache_size,
3100 					      &alloc_hint);
3101 	/*
3102 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3103 	 * of metadata or split extents when writing the cache out, which means
3104 	 * we can enospc if we are heavily fragmented in addition to just normal
3105 	 * out of space conditions.  So if we hit this just skip setting up any
3106 	 * other block groups for this transaction, maybe we'll unpin enough
3107 	 * space the next time around.
3108 	 */
3109 	if (!ret)
3110 		dcs = BTRFS_DC_SETUP;
3111 	else if (ret == -ENOSPC)
3112 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3113 
3114 out_put:
3115 	iput(inode);
3116 out_free:
3117 	btrfs_release_path(path);
3118 out:
3119 	spin_lock(&block_group->lock);
3120 	if (!ret && dcs == BTRFS_DC_SETUP)
3121 		block_group->cache_generation = trans->transid;
3122 	block_group->disk_cache_state = dcs;
3123 	spin_unlock(&block_group->lock);
3124 
3125 	extent_changeset_free(data_reserved);
3126 	return ret;
3127 }
3128 
3129 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3130 {
3131 	struct btrfs_fs_info *fs_info = trans->fs_info;
3132 	struct btrfs_block_group *cache, *tmp;
3133 	struct btrfs_transaction *cur_trans = trans->transaction;
3134 	struct btrfs_path *path;
3135 
3136 	if (list_empty(&cur_trans->dirty_bgs) ||
3137 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3138 		return 0;
3139 
3140 	path = btrfs_alloc_path();
3141 	if (!path)
3142 		return -ENOMEM;
3143 
3144 	/* Could add new block groups, use _safe just in case */
3145 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3146 				 dirty_list) {
3147 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3148 			cache_save_setup(cache, trans, path);
3149 	}
3150 
3151 	btrfs_free_path(path);
3152 	return 0;
3153 }
3154 
3155 /*
3156  * Transaction commit does final block group cache writeback during a critical
3157  * section where nothing is allowed to change the FS.  This is required in
3158  * order for the cache to actually match the block group, but can introduce a
3159  * lot of latency into the commit.
3160  *
3161  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3162  * There's a chance we'll have to redo some of it if the block group changes
3163  * again during the commit, but it greatly reduces the commit latency by
3164  * getting rid of the easy block groups while we're still allowing others to
3165  * join the commit.
3166  */
3167 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3168 {
3169 	struct btrfs_fs_info *fs_info = trans->fs_info;
3170 	struct btrfs_block_group *cache;
3171 	struct btrfs_transaction *cur_trans = trans->transaction;
3172 	int ret = 0;
3173 	int should_put;
3174 	struct btrfs_path *path = NULL;
3175 	LIST_HEAD(dirty);
3176 	struct list_head *io = &cur_trans->io_bgs;
3177 	int loops = 0;
3178 
3179 	spin_lock(&cur_trans->dirty_bgs_lock);
3180 	if (list_empty(&cur_trans->dirty_bgs)) {
3181 		spin_unlock(&cur_trans->dirty_bgs_lock);
3182 		return 0;
3183 	}
3184 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3185 	spin_unlock(&cur_trans->dirty_bgs_lock);
3186 
3187 again:
3188 	/* Make sure all the block groups on our dirty list actually exist */
3189 	btrfs_create_pending_block_groups(trans);
3190 
3191 	if (!path) {
3192 		path = btrfs_alloc_path();
3193 		if (!path) {
3194 			ret = -ENOMEM;
3195 			goto out;
3196 		}
3197 	}
3198 
3199 	/*
3200 	 * cache_write_mutex is here only to save us from balance or automatic
3201 	 * removal of empty block groups deleting this block group while we are
3202 	 * writing out the cache
3203 	 */
3204 	mutex_lock(&trans->transaction->cache_write_mutex);
3205 	while (!list_empty(&dirty)) {
3206 		bool drop_reserve = true;
3207 
3208 		cache = list_first_entry(&dirty, struct btrfs_block_group,
3209 					 dirty_list);
3210 		/*
3211 		 * This can happen if something re-dirties a block group that
3212 		 * is already under IO.  Just wait for it to finish and then do
3213 		 * it all again
3214 		 */
3215 		if (!list_empty(&cache->io_list)) {
3216 			list_del_init(&cache->io_list);
3217 			btrfs_wait_cache_io(trans, cache, path);
3218 			btrfs_put_block_group(cache);
3219 		}
3220 
3221 
3222 		/*
3223 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3224 		 * it should update the cache_state.  Don't delete until after
3225 		 * we wait.
3226 		 *
3227 		 * Since we're not running in the commit critical section
3228 		 * we need the dirty_bgs_lock to protect from update_block_group
3229 		 */
3230 		spin_lock(&cur_trans->dirty_bgs_lock);
3231 		list_del_init(&cache->dirty_list);
3232 		spin_unlock(&cur_trans->dirty_bgs_lock);
3233 
3234 		should_put = 1;
3235 
3236 		cache_save_setup(cache, trans, path);
3237 
3238 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3239 			cache->io_ctl.inode = NULL;
3240 			ret = btrfs_write_out_cache(trans, cache, path);
3241 			if (ret == 0 && cache->io_ctl.inode) {
3242 				should_put = 0;
3243 
3244 				/*
3245 				 * The cache_write_mutex is protecting the
3246 				 * io_list, also refer to the definition of
3247 				 * btrfs_transaction::io_bgs for more details
3248 				 */
3249 				list_add_tail(&cache->io_list, io);
3250 			} else {
3251 				/*
3252 				 * If we failed to write the cache, the
3253 				 * generation will be bad and life goes on
3254 				 */
3255 				ret = 0;
3256 			}
3257 		}
3258 		if (!ret) {
3259 			ret = update_block_group_item(trans, path, cache);
3260 			/*
3261 			 * Our block group might still be attached to the list
3262 			 * of new block groups in the transaction handle of some
3263 			 * other task (struct btrfs_trans_handle->new_bgs). This
3264 			 * means its block group item isn't yet in the extent
3265 			 * tree. If this happens ignore the error, as we will
3266 			 * try again later in the critical section of the
3267 			 * transaction commit.
3268 			 */
3269 			if (ret == -ENOENT) {
3270 				ret = 0;
3271 				spin_lock(&cur_trans->dirty_bgs_lock);
3272 				if (list_empty(&cache->dirty_list)) {
3273 					list_add_tail(&cache->dirty_list,
3274 						      &cur_trans->dirty_bgs);
3275 					btrfs_get_block_group(cache);
3276 					drop_reserve = false;
3277 				}
3278 				spin_unlock(&cur_trans->dirty_bgs_lock);
3279 			} else if (ret) {
3280 				btrfs_abort_transaction(trans, ret);
3281 			}
3282 		}
3283 
3284 		/* If it's not on the io list, we need to put the block group */
3285 		if (should_put)
3286 			btrfs_put_block_group(cache);
3287 		if (drop_reserve)
3288 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3289 		/*
3290 		 * Avoid blocking other tasks for too long. It might even save
3291 		 * us from writing caches for block groups that are going to be
3292 		 * removed.
3293 		 */
3294 		mutex_unlock(&trans->transaction->cache_write_mutex);
3295 		if (ret)
3296 			goto out;
3297 		mutex_lock(&trans->transaction->cache_write_mutex);
3298 	}
3299 	mutex_unlock(&trans->transaction->cache_write_mutex);
3300 
3301 	/*
3302 	 * Go through delayed refs for all the stuff we've just kicked off
3303 	 * and then loop back (just once)
3304 	 */
3305 	if (!ret)
3306 		ret = btrfs_run_delayed_refs(trans, 0);
3307 	if (!ret && loops == 0) {
3308 		loops++;
3309 		spin_lock(&cur_trans->dirty_bgs_lock);
3310 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3311 		/*
3312 		 * dirty_bgs_lock protects us from concurrent block group
3313 		 * deletes too (not just cache_write_mutex).
3314 		 */
3315 		if (!list_empty(&dirty)) {
3316 			spin_unlock(&cur_trans->dirty_bgs_lock);
3317 			goto again;
3318 		}
3319 		spin_unlock(&cur_trans->dirty_bgs_lock);
3320 	}
3321 out:
3322 	if (ret < 0) {
3323 		spin_lock(&cur_trans->dirty_bgs_lock);
3324 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3325 		spin_unlock(&cur_trans->dirty_bgs_lock);
3326 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3327 	}
3328 
3329 	btrfs_free_path(path);
3330 	return ret;
3331 }
3332 
3333 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3334 {
3335 	struct btrfs_fs_info *fs_info = trans->fs_info;
3336 	struct btrfs_block_group *cache;
3337 	struct btrfs_transaction *cur_trans = trans->transaction;
3338 	int ret = 0;
3339 	int should_put;
3340 	struct btrfs_path *path;
3341 	struct list_head *io = &cur_trans->io_bgs;
3342 
3343 	path = btrfs_alloc_path();
3344 	if (!path)
3345 		return -ENOMEM;
3346 
3347 	/*
3348 	 * Even though we are in the critical section of the transaction commit,
3349 	 * we can still have concurrent tasks adding elements to this
3350 	 * transaction's list of dirty block groups. These tasks correspond to
3351 	 * endio free space workers started when writeback finishes for a
3352 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3353 	 * allocate new block groups as a result of COWing nodes of the root
3354 	 * tree when updating the free space inode. The writeback for the space
3355 	 * caches is triggered by an earlier call to
3356 	 * btrfs_start_dirty_block_groups() and iterations of the following
3357 	 * loop.
3358 	 * Also we want to do the cache_save_setup first and then run the
3359 	 * delayed refs to make sure we have the best chance at doing this all
3360 	 * in one shot.
3361 	 */
3362 	spin_lock(&cur_trans->dirty_bgs_lock);
3363 	while (!list_empty(&cur_trans->dirty_bgs)) {
3364 		cache = list_first_entry(&cur_trans->dirty_bgs,
3365 					 struct btrfs_block_group,
3366 					 dirty_list);
3367 
3368 		/*
3369 		 * This can happen if cache_save_setup re-dirties a block group
3370 		 * that is already under IO.  Just wait for it to finish and
3371 		 * then do it all again
3372 		 */
3373 		if (!list_empty(&cache->io_list)) {
3374 			spin_unlock(&cur_trans->dirty_bgs_lock);
3375 			list_del_init(&cache->io_list);
3376 			btrfs_wait_cache_io(trans, cache, path);
3377 			btrfs_put_block_group(cache);
3378 			spin_lock(&cur_trans->dirty_bgs_lock);
3379 		}
3380 
3381 		/*
3382 		 * Don't remove from the dirty list until after we've waited on
3383 		 * any pending IO
3384 		 */
3385 		list_del_init(&cache->dirty_list);
3386 		spin_unlock(&cur_trans->dirty_bgs_lock);
3387 		should_put = 1;
3388 
3389 		cache_save_setup(cache, trans, path);
3390 
3391 		if (!ret)
3392 			ret = btrfs_run_delayed_refs(trans,
3393 						     (unsigned long) -1);
3394 
3395 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3396 			cache->io_ctl.inode = NULL;
3397 			ret = btrfs_write_out_cache(trans, cache, path);
3398 			if (ret == 0 && cache->io_ctl.inode) {
3399 				should_put = 0;
3400 				list_add_tail(&cache->io_list, io);
3401 			} else {
3402 				/*
3403 				 * If we failed to write the cache, the
3404 				 * generation will be bad and life goes on
3405 				 */
3406 				ret = 0;
3407 			}
3408 		}
3409 		if (!ret) {
3410 			ret = update_block_group_item(trans, path, cache);
3411 			/*
3412 			 * One of the free space endio workers might have
3413 			 * created a new block group while updating a free space
3414 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3415 			 * and hasn't released its transaction handle yet, in
3416 			 * which case the new block group is still attached to
3417 			 * its transaction handle and its creation has not
3418 			 * finished yet (no block group item in the extent tree
3419 			 * yet, etc). If this is the case, wait for all free
3420 			 * space endio workers to finish and retry. This is a
3421 			 * very rare case so no need for a more efficient and
3422 			 * complex approach.
3423 			 */
3424 			if (ret == -ENOENT) {
3425 				wait_event(cur_trans->writer_wait,
3426 				   atomic_read(&cur_trans->num_writers) == 1);
3427 				ret = update_block_group_item(trans, path, cache);
3428 			}
3429 			if (ret)
3430 				btrfs_abort_transaction(trans, ret);
3431 		}
3432 
3433 		/* If its not on the io list, we need to put the block group */
3434 		if (should_put)
3435 			btrfs_put_block_group(cache);
3436 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3437 		spin_lock(&cur_trans->dirty_bgs_lock);
3438 	}
3439 	spin_unlock(&cur_trans->dirty_bgs_lock);
3440 
3441 	/*
3442 	 * Refer to the definition of io_bgs member for details why it's safe
3443 	 * to use it without any locking
3444 	 */
3445 	while (!list_empty(io)) {
3446 		cache = list_first_entry(io, struct btrfs_block_group,
3447 					 io_list);
3448 		list_del_init(&cache->io_list);
3449 		btrfs_wait_cache_io(trans, cache, path);
3450 		btrfs_put_block_group(cache);
3451 	}
3452 
3453 	btrfs_free_path(path);
3454 	return ret;
3455 }
3456 
3457 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3458 			     u64 bytenr, u64 num_bytes, bool alloc)
3459 {
3460 	struct btrfs_fs_info *info = trans->fs_info;
3461 	struct btrfs_block_group *cache = NULL;
3462 	u64 total = num_bytes;
3463 	u64 old_val;
3464 	u64 byte_in_group;
3465 	int factor;
3466 	int ret = 0;
3467 
3468 	/* Block accounting for super block */
3469 	spin_lock(&info->delalloc_root_lock);
3470 	old_val = btrfs_super_bytes_used(info->super_copy);
3471 	if (alloc)
3472 		old_val += num_bytes;
3473 	else
3474 		old_val -= num_bytes;
3475 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3476 	spin_unlock(&info->delalloc_root_lock);
3477 
3478 	while (total) {
3479 		bool reclaim = false;
3480 
3481 		cache = btrfs_lookup_block_group(info, bytenr);
3482 		if (!cache) {
3483 			ret = -ENOENT;
3484 			break;
3485 		}
3486 		factor = btrfs_bg_type_to_factor(cache->flags);
3487 
3488 		/*
3489 		 * If this block group has free space cache written out, we
3490 		 * need to make sure to load it if we are removing space.  This
3491 		 * is because we need the unpinning stage to actually add the
3492 		 * space back to the block group, otherwise we will leak space.
3493 		 */
3494 		if (!alloc && !btrfs_block_group_done(cache))
3495 			btrfs_cache_block_group(cache, true);
3496 
3497 		byte_in_group = bytenr - cache->start;
3498 		WARN_ON(byte_in_group > cache->length);
3499 
3500 		spin_lock(&cache->space_info->lock);
3501 		spin_lock(&cache->lock);
3502 
3503 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3504 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3505 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3506 
3507 		old_val = cache->used;
3508 		num_bytes = min(total, cache->length - byte_in_group);
3509 		if (alloc) {
3510 			old_val += num_bytes;
3511 			cache->used = old_val;
3512 			cache->reserved -= num_bytes;
3513 			cache->space_info->bytes_reserved -= num_bytes;
3514 			cache->space_info->bytes_used += num_bytes;
3515 			cache->space_info->disk_used += num_bytes * factor;
3516 			spin_unlock(&cache->lock);
3517 			spin_unlock(&cache->space_info->lock);
3518 		} else {
3519 			old_val -= num_bytes;
3520 			cache->used = old_val;
3521 			cache->pinned += num_bytes;
3522 			btrfs_space_info_update_bytes_pinned(info,
3523 					cache->space_info, num_bytes);
3524 			cache->space_info->bytes_used -= num_bytes;
3525 			cache->space_info->disk_used -= num_bytes * factor;
3526 
3527 			reclaim = should_reclaim_block_group(cache, num_bytes);
3528 
3529 			spin_unlock(&cache->lock);
3530 			spin_unlock(&cache->space_info->lock);
3531 
3532 			set_extent_dirty(&trans->transaction->pinned_extents,
3533 					 bytenr, bytenr + num_bytes - 1,
3534 					 GFP_NOFS | __GFP_NOFAIL);
3535 		}
3536 
3537 		spin_lock(&trans->transaction->dirty_bgs_lock);
3538 		if (list_empty(&cache->dirty_list)) {
3539 			list_add_tail(&cache->dirty_list,
3540 				      &trans->transaction->dirty_bgs);
3541 			trans->delayed_ref_updates++;
3542 			btrfs_get_block_group(cache);
3543 		}
3544 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3545 
3546 		/*
3547 		 * No longer have used bytes in this block group, queue it for
3548 		 * deletion. We do this after adding the block group to the
3549 		 * dirty list to avoid races between cleaner kthread and space
3550 		 * cache writeout.
3551 		 */
3552 		if (!alloc && old_val == 0) {
3553 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3554 				btrfs_mark_bg_unused(cache);
3555 		} else if (!alloc && reclaim) {
3556 			btrfs_mark_bg_to_reclaim(cache);
3557 		}
3558 
3559 		btrfs_put_block_group(cache);
3560 		total -= num_bytes;
3561 		bytenr += num_bytes;
3562 	}
3563 
3564 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3565 	btrfs_update_delayed_refs_rsv(trans);
3566 	return ret;
3567 }
3568 
3569 /*
3570  * Update the block_group and space info counters.
3571  *
3572  * @cache:	The cache we are manipulating
3573  * @ram_bytes:  The number of bytes of file content, and will be same to
3574  *              @num_bytes except for the compress path.
3575  * @num_bytes:	The number of bytes in question
3576  * @delalloc:   The blocks are allocated for the delalloc write
3577  *
3578  * This is called by the allocator when it reserves space. If this is a
3579  * reservation and the block group has become read only we cannot make the
3580  * reservation and return -EAGAIN, otherwise this function always succeeds.
3581  */
3582 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3583 			     u64 ram_bytes, u64 num_bytes, int delalloc,
3584 			     bool force_wrong_size_class)
3585 {
3586 	struct btrfs_space_info *space_info = cache->space_info;
3587 	enum btrfs_block_group_size_class size_class;
3588 	int ret = 0;
3589 
3590 	spin_lock(&space_info->lock);
3591 	spin_lock(&cache->lock);
3592 	if (cache->ro) {
3593 		ret = -EAGAIN;
3594 		goto out;
3595 	}
3596 
3597 	if (btrfs_block_group_should_use_size_class(cache)) {
3598 		size_class = btrfs_calc_block_group_size_class(num_bytes);
3599 		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3600 		if (ret)
3601 			goto out;
3602 	}
3603 	cache->reserved += num_bytes;
3604 	space_info->bytes_reserved += num_bytes;
3605 	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3606 				      space_info->flags, num_bytes, 1);
3607 	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3608 					      space_info, -ram_bytes);
3609 	if (delalloc)
3610 		cache->delalloc_bytes += num_bytes;
3611 
3612 	/*
3613 	 * Compression can use less space than we reserved, so wake tickets if
3614 	 * that happens.
3615 	 */
3616 	if (num_bytes < ram_bytes)
3617 		btrfs_try_granting_tickets(cache->fs_info, space_info);
3618 out:
3619 	spin_unlock(&cache->lock);
3620 	spin_unlock(&space_info->lock);
3621 	return ret;
3622 }
3623 
3624 /*
3625  * Update the block_group and space info counters.
3626  *
3627  * @cache:      The cache we are manipulating
3628  * @num_bytes:  The number of bytes in question
3629  * @delalloc:   The blocks are allocated for the delalloc write
3630  *
3631  * This is called by somebody who is freeing space that was never actually used
3632  * on disk.  For example if you reserve some space for a new leaf in transaction
3633  * A and before transaction A commits you free that leaf, you call this with
3634  * reserve set to 0 in order to clear the reservation.
3635  */
3636 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3637 			       u64 num_bytes, int delalloc)
3638 {
3639 	struct btrfs_space_info *space_info = cache->space_info;
3640 
3641 	spin_lock(&space_info->lock);
3642 	spin_lock(&cache->lock);
3643 	if (cache->ro)
3644 		space_info->bytes_readonly += num_bytes;
3645 	cache->reserved -= num_bytes;
3646 	space_info->bytes_reserved -= num_bytes;
3647 	space_info->max_extent_size = 0;
3648 
3649 	if (delalloc)
3650 		cache->delalloc_bytes -= num_bytes;
3651 	spin_unlock(&cache->lock);
3652 
3653 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3654 	spin_unlock(&space_info->lock);
3655 }
3656 
3657 static void force_metadata_allocation(struct btrfs_fs_info *info)
3658 {
3659 	struct list_head *head = &info->space_info;
3660 	struct btrfs_space_info *found;
3661 
3662 	list_for_each_entry(found, head, list) {
3663 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3664 			found->force_alloc = CHUNK_ALLOC_FORCE;
3665 	}
3666 }
3667 
3668 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3669 			      struct btrfs_space_info *sinfo, int force)
3670 {
3671 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3672 	u64 thresh;
3673 
3674 	if (force == CHUNK_ALLOC_FORCE)
3675 		return 1;
3676 
3677 	/*
3678 	 * in limited mode, we want to have some free space up to
3679 	 * about 1% of the FS size.
3680 	 */
3681 	if (force == CHUNK_ALLOC_LIMITED) {
3682 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3683 		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3684 
3685 		if (sinfo->total_bytes - bytes_used < thresh)
3686 			return 1;
3687 	}
3688 
3689 	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3690 		return 0;
3691 	return 1;
3692 }
3693 
3694 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3695 {
3696 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3697 
3698 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3699 }
3700 
3701 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3702 {
3703 	struct btrfs_block_group *bg;
3704 	int ret;
3705 
3706 	/*
3707 	 * Check if we have enough space in the system space info because we
3708 	 * will need to update device items in the chunk btree and insert a new
3709 	 * chunk item in the chunk btree as well. This will allocate a new
3710 	 * system block group if needed.
3711 	 */
3712 	check_system_chunk(trans, flags);
3713 
3714 	bg = btrfs_create_chunk(trans, flags);
3715 	if (IS_ERR(bg)) {
3716 		ret = PTR_ERR(bg);
3717 		goto out;
3718 	}
3719 
3720 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3721 	/*
3722 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3723 	 * previously reserved space in the system space_info and allocated one
3724 	 * new system chunk if necessary. However there are three exceptions:
3725 	 *
3726 	 * 1) We may have enough free space in the system space_info but all the
3727 	 *    existing system block groups have a profile which can not be used
3728 	 *    for extent allocation.
3729 	 *
3730 	 *    This happens when mounting in degraded mode. For example we have a
3731 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3732 	 *    using the other device in degraded mode. If we then allocate a chunk,
3733 	 *    we may have enough free space in the existing system space_info, but
3734 	 *    none of the block groups can be used for extent allocation since they
3735 	 *    have a RAID1 profile, and because we are in degraded mode with a
3736 	 *    single device, we are forced to allocate a new system chunk with a
3737 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3738 	 *    block groups and check if they have a usable profile and enough space
3739 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3740 	 *    try again after forcing allocation of a new system chunk. Like this
3741 	 *    we avoid paying the cost of that search in normal circumstances, when
3742 	 *    we were not mounted in degraded mode;
3743 	 *
3744 	 * 2) We had enough free space info the system space_info, and one suitable
3745 	 *    block group to allocate from when we called check_system_chunk()
3746 	 *    above. However right after we called it, the only system block group
3747 	 *    with enough free space got turned into RO mode by a running scrub,
3748 	 *    and in this case we have to allocate a new one and retry. We only
3749 	 *    need do this allocate and retry once, since we have a transaction
3750 	 *    handle and scrub uses the commit root to search for block groups;
3751 	 *
3752 	 * 3) We had one system block group with enough free space when we called
3753 	 *    check_system_chunk(), but after that, right before we tried to
3754 	 *    allocate the last extent buffer we needed, a discard operation came
3755 	 *    in and it temporarily removed the last free space entry from the
3756 	 *    block group (discard removes a free space entry, discards it, and
3757 	 *    then adds back the entry to the block group cache).
3758 	 */
3759 	if (ret == -ENOSPC) {
3760 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3761 		struct btrfs_block_group *sys_bg;
3762 
3763 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3764 		if (IS_ERR(sys_bg)) {
3765 			ret = PTR_ERR(sys_bg);
3766 			btrfs_abort_transaction(trans, ret);
3767 			goto out;
3768 		}
3769 
3770 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3771 		if (ret) {
3772 			btrfs_abort_transaction(trans, ret);
3773 			goto out;
3774 		}
3775 
3776 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3777 		if (ret) {
3778 			btrfs_abort_transaction(trans, ret);
3779 			goto out;
3780 		}
3781 	} else if (ret) {
3782 		btrfs_abort_transaction(trans, ret);
3783 		goto out;
3784 	}
3785 out:
3786 	btrfs_trans_release_chunk_metadata(trans);
3787 
3788 	if (ret)
3789 		return ERR_PTR(ret);
3790 
3791 	btrfs_get_block_group(bg);
3792 	return bg;
3793 }
3794 
3795 /*
3796  * Chunk allocation is done in 2 phases:
3797  *
3798  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3799  *    the chunk, the chunk mapping, create its block group and add the items
3800  *    that belong in the chunk btree to it - more specifically, we need to
3801  *    update device items in the chunk btree and add a new chunk item to it.
3802  *
3803  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3804  *    group item to the extent btree and the device extent items to the devices
3805  *    btree.
3806  *
3807  * This is done to prevent deadlocks. For example when COWing a node from the
3808  * extent btree we are holding a write lock on the node's parent and if we
3809  * trigger chunk allocation and attempted to insert the new block group item
3810  * in the extent btree right way, we could deadlock because the path for the
3811  * insertion can include that parent node. At first glance it seems impossible
3812  * to trigger chunk allocation after starting a transaction since tasks should
3813  * reserve enough transaction units (metadata space), however while that is true
3814  * most of the time, chunk allocation may still be triggered for several reasons:
3815  *
3816  * 1) When reserving metadata, we check if there is enough free space in the
3817  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3818  *    However later when the task actually tries to COW an extent buffer from
3819  *    the extent btree or from the device btree for example, it is forced to
3820  *    allocate a new block group (chunk) because the only one that had enough
3821  *    free space was just turned to RO mode by a running scrub for example (or
3822  *    device replace, block group reclaim thread, etc), so we can not use it
3823  *    for allocating an extent and end up being forced to allocate a new one;
3824  *
3825  * 2) Because we only check that the metadata space_info has enough free bytes,
3826  *    we end up not allocating a new metadata chunk in that case. However if
3827  *    the filesystem was mounted in degraded mode, none of the existing block
3828  *    groups might be suitable for extent allocation due to their incompatible
3829  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3830  *    use a RAID1 profile, in degraded mode using a single device). In this case
3831  *    when the task attempts to COW some extent buffer of the extent btree for
3832  *    example, it will trigger allocation of a new metadata block group with a
3833  *    suitable profile (SINGLE profile in the example of the degraded mount of
3834  *    the RAID1 filesystem);
3835  *
3836  * 3) The task has reserved enough transaction units / metadata space, but when
3837  *    it attempts to COW an extent buffer from the extent or device btree for
3838  *    example, it does not find any free extent in any metadata block group,
3839  *    therefore forced to try to allocate a new metadata block group.
3840  *    This is because some other task allocated all available extents in the
3841  *    meanwhile - this typically happens with tasks that don't reserve space
3842  *    properly, either intentionally or as a bug. One example where this is
3843  *    done intentionally is fsync, as it does not reserve any transaction units
3844  *    and ends up allocating a variable number of metadata extents for log
3845  *    tree extent buffers;
3846  *
3847  * 4) The task has reserved enough transaction units / metadata space, but right
3848  *    before it tries to allocate the last extent buffer it needs, a discard
3849  *    operation comes in and, temporarily, removes the last free space entry from
3850  *    the only metadata block group that had free space (discard starts by
3851  *    removing a free space entry from a block group, then does the discard
3852  *    operation and, once it's done, it adds back the free space entry to the
3853  *    block group).
3854  *
3855  * We also need this 2 phases setup when adding a device to a filesystem with
3856  * a seed device - we must create new metadata and system chunks without adding
3857  * any of the block group items to the chunk, extent and device btrees. If we
3858  * did not do it this way, we would get ENOSPC when attempting to update those
3859  * btrees, since all the chunks from the seed device are read-only.
3860  *
3861  * Phase 1 does the updates and insertions to the chunk btree because if we had
3862  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3863  * parallel, we risk having too many system chunks allocated by many tasks if
3864  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3865  * extreme case this leads to exhaustion of the system chunk array in the
3866  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3867  * and with RAID filesystems (so we have more device items in the chunk btree).
3868  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3869  * the system chunk array due to concurrent allocations") provides more details.
3870  *
3871  * Allocation of system chunks does not happen through this function. A task that
3872  * needs to update the chunk btree (the only btree that uses system chunks), must
3873  * preallocate chunk space by calling either check_system_chunk() or
3874  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3875  * metadata chunk or when removing a chunk, while the later is used before doing
3876  * a modification to the chunk btree - use cases for the later are adding,
3877  * removing and resizing a device as well as relocation of a system chunk.
3878  * See the comment below for more details.
3879  *
3880  * The reservation of system space, done through check_system_chunk(), as well
3881  * as all the updates and insertions into the chunk btree must be done while
3882  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3883  * an extent buffer from the chunks btree we never trigger allocation of a new
3884  * system chunk, which would result in a deadlock (trying to lock twice an
3885  * extent buffer of the chunk btree, first time before triggering the chunk
3886  * allocation and the second time during chunk allocation while attempting to
3887  * update the chunks btree). The system chunk array is also updated while holding
3888  * that mutex. The same logic applies to removing chunks - we must reserve system
3889  * space, update the chunk btree and the system chunk array in the superblock
3890  * while holding fs_info->chunk_mutex.
3891  *
3892  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3893  *
3894  * If @force is CHUNK_ALLOC_FORCE:
3895  *    - return 1 if it successfully allocates a chunk,
3896  *    - return errors including -ENOSPC otherwise.
3897  * If @force is NOT CHUNK_ALLOC_FORCE:
3898  *    - return 0 if it doesn't need to allocate a new chunk,
3899  *    - return 1 if it successfully allocates a chunk,
3900  *    - return errors including -ENOSPC otherwise.
3901  */
3902 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3903 		      enum btrfs_chunk_alloc_enum force)
3904 {
3905 	struct btrfs_fs_info *fs_info = trans->fs_info;
3906 	struct btrfs_space_info *space_info;
3907 	struct btrfs_block_group *ret_bg;
3908 	bool wait_for_alloc = false;
3909 	bool should_alloc = false;
3910 	bool from_extent_allocation = false;
3911 	int ret = 0;
3912 
3913 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3914 		from_extent_allocation = true;
3915 		force = CHUNK_ALLOC_FORCE;
3916 	}
3917 
3918 	/* Don't re-enter if we're already allocating a chunk */
3919 	if (trans->allocating_chunk)
3920 		return -ENOSPC;
3921 	/*
3922 	 * Allocation of system chunks can not happen through this path, as we
3923 	 * could end up in a deadlock if we are allocating a data or metadata
3924 	 * chunk and there is another task modifying the chunk btree.
3925 	 *
3926 	 * This is because while we are holding the chunk mutex, we will attempt
3927 	 * to add the new chunk item to the chunk btree or update an existing
3928 	 * device item in the chunk btree, while the other task that is modifying
3929 	 * the chunk btree is attempting to COW an extent buffer while holding a
3930 	 * lock on it and on its parent - if the COW operation triggers a system
3931 	 * chunk allocation, then we can deadlock because we are holding the
3932 	 * chunk mutex and we may need to access that extent buffer or its parent
3933 	 * in order to add the chunk item or update a device item.
3934 	 *
3935 	 * Tasks that want to modify the chunk tree should reserve system space
3936 	 * before updating the chunk btree, by calling either
3937 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3938 	 * It's possible that after a task reserves the space, it still ends up
3939 	 * here - this happens in the cases described above at do_chunk_alloc().
3940 	 * The task will have to either retry or fail.
3941 	 */
3942 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3943 		return -ENOSPC;
3944 
3945 	space_info = btrfs_find_space_info(fs_info, flags);
3946 	ASSERT(space_info);
3947 
3948 	do {
3949 		spin_lock(&space_info->lock);
3950 		if (force < space_info->force_alloc)
3951 			force = space_info->force_alloc;
3952 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3953 		if (space_info->full) {
3954 			/* No more free physical space */
3955 			if (should_alloc)
3956 				ret = -ENOSPC;
3957 			else
3958 				ret = 0;
3959 			spin_unlock(&space_info->lock);
3960 			return ret;
3961 		} else if (!should_alloc) {
3962 			spin_unlock(&space_info->lock);
3963 			return 0;
3964 		} else if (space_info->chunk_alloc) {
3965 			/*
3966 			 * Someone is already allocating, so we need to block
3967 			 * until this someone is finished and then loop to
3968 			 * recheck if we should continue with our allocation
3969 			 * attempt.
3970 			 */
3971 			wait_for_alloc = true;
3972 			force = CHUNK_ALLOC_NO_FORCE;
3973 			spin_unlock(&space_info->lock);
3974 			mutex_lock(&fs_info->chunk_mutex);
3975 			mutex_unlock(&fs_info->chunk_mutex);
3976 		} else {
3977 			/* Proceed with allocation */
3978 			space_info->chunk_alloc = 1;
3979 			wait_for_alloc = false;
3980 			spin_unlock(&space_info->lock);
3981 		}
3982 
3983 		cond_resched();
3984 	} while (wait_for_alloc);
3985 
3986 	mutex_lock(&fs_info->chunk_mutex);
3987 	trans->allocating_chunk = true;
3988 
3989 	/*
3990 	 * If we have mixed data/metadata chunks we want to make sure we keep
3991 	 * allocating mixed chunks instead of individual chunks.
3992 	 */
3993 	if (btrfs_mixed_space_info(space_info))
3994 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3995 
3996 	/*
3997 	 * if we're doing a data chunk, go ahead and make sure that
3998 	 * we keep a reasonable number of metadata chunks allocated in the
3999 	 * FS as well.
4000 	 */
4001 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4002 		fs_info->data_chunk_allocations++;
4003 		if (!(fs_info->data_chunk_allocations %
4004 		      fs_info->metadata_ratio))
4005 			force_metadata_allocation(fs_info);
4006 	}
4007 
4008 	ret_bg = do_chunk_alloc(trans, flags);
4009 	trans->allocating_chunk = false;
4010 
4011 	if (IS_ERR(ret_bg)) {
4012 		ret = PTR_ERR(ret_bg);
4013 	} else if (from_extent_allocation) {
4014 		/*
4015 		 * New block group is likely to be used soon. Try to activate
4016 		 * it now. Failure is OK for now.
4017 		 */
4018 		btrfs_zone_activate(ret_bg);
4019 	}
4020 
4021 	if (!ret)
4022 		btrfs_put_block_group(ret_bg);
4023 
4024 	spin_lock(&space_info->lock);
4025 	if (ret < 0) {
4026 		if (ret == -ENOSPC)
4027 			space_info->full = 1;
4028 		else
4029 			goto out;
4030 	} else {
4031 		ret = 1;
4032 		space_info->max_extent_size = 0;
4033 	}
4034 
4035 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4036 out:
4037 	space_info->chunk_alloc = 0;
4038 	spin_unlock(&space_info->lock);
4039 	mutex_unlock(&fs_info->chunk_mutex);
4040 
4041 	return ret;
4042 }
4043 
4044 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4045 {
4046 	u64 num_dev;
4047 
4048 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4049 	if (!num_dev)
4050 		num_dev = fs_info->fs_devices->rw_devices;
4051 
4052 	return num_dev;
4053 }
4054 
4055 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4056 				u64 bytes,
4057 				u64 type)
4058 {
4059 	struct btrfs_fs_info *fs_info = trans->fs_info;
4060 	struct btrfs_space_info *info;
4061 	u64 left;
4062 	int ret = 0;
4063 
4064 	/*
4065 	 * Needed because we can end up allocating a system chunk and for an
4066 	 * atomic and race free space reservation in the chunk block reserve.
4067 	 */
4068 	lockdep_assert_held(&fs_info->chunk_mutex);
4069 
4070 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4071 	spin_lock(&info->lock);
4072 	left = info->total_bytes - btrfs_space_info_used(info, true);
4073 	spin_unlock(&info->lock);
4074 
4075 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4076 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4077 			   left, bytes, type);
4078 		btrfs_dump_space_info(fs_info, info, 0, 0);
4079 	}
4080 
4081 	if (left < bytes) {
4082 		u64 flags = btrfs_system_alloc_profile(fs_info);
4083 		struct btrfs_block_group *bg;
4084 
4085 		/*
4086 		 * Ignore failure to create system chunk. We might end up not
4087 		 * needing it, as we might not need to COW all nodes/leafs from
4088 		 * the paths we visit in the chunk tree (they were already COWed
4089 		 * or created in the current transaction for example).
4090 		 */
4091 		bg = btrfs_create_chunk(trans, flags);
4092 		if (IS_ERR(bg)) {
4093 			ret = PTR_ERR(bg);
4094 		} else {
4095 			/*
4096 			 * We have a new chunk. We also need to activate it for
4097 			 * zoned filesystem.
4098 			 */
4099 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4100 			if (ret < 0)
4101 				return;
4102 
4103 			/*
4104 			 * If we fail to add the chunk item here, we end up
4105 			 * trying again at phase 2 of chunk allocation, at
4106 			 * btrfs_create_pending_block_groups(). So ignore
4107 			 * any error here. An ENOSPC here could happen, due to
4108 			 * the cases described at do_chunk_alloc() - the system
4109 			 * block group we just created was just turned into RO
4110 			 * mode by a scrub for example, or a running discard
4111 			 * temporarily removed its free space entries, etc.
4112 			 */
4113 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4114 		}
4115 	}
4116 
4117 	if (!ret) {
4118 		ret = btrfs_block_rsv_add(fs_info,
4119 					  &fs_info->chunk_block_rsv,
4120 					  bytes, BTRFS_RESERVE_NO_FLUSH);
4121 		if (!ret)
4122 			trans->chunk_bytes_reserved += bytes;
4123 	}
4124 }
4125 
4126 /*
4127  * Reserve space in the system space for allocating or removing a chunk.
4128  * The caller must be holding fs_info->chunk_mutex.
4129  */
4130 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4131 {
4132 	struct btrfs_fs_info *fs_info = trans->fs_info;
4133 	const u64 num_devs = get_profile_num_devs(fs_info, type);
4134 	u64 bytes;
4135 
4136 	/* num_devs device items to update and 1 chunk item to add or remove. */
4137 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4138 		btrfs_calc_insert_metadata_size(fs_info, 1);
4139 
4140 	reserve_chunk_space(trans, bytes, type);
4141 }
4142 
4143 /*
4144  * Reserve space in the system space, if needed, for doing a modification to the
4145  * chunk btree.
4146  *
4147  * @trans:		A transaction handle.
4148  * @is_item_insertion:	Indicate if the modification is for inserting a new item
4149  *			in the chunk btree or if it's for the deletion or update
4150  *			of an existing item.
4151  *
4152  * This is used in a context where we need to update the chunk btree outside
4153  * block group allocation and removal, to avoid a deadlock with a concurrent
4154  * task that is allocating a metadata or data block group and therefore needs to
4155  * update the chunk btree while holding the chunk mutex. After the update to the
4156  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4157  *
4158  */
4159 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4160 				  bool is_item_insertion)
4161 {
4162 	struct btrfs_fs_info *fs_info = trans->fs_info;
4163 	u64 bytes;
4164 
4165 	if (is_item_insertion)
4166 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4167 	else
4168 		bytes = btrfs_calc_metadata_size(fs_info, 1);
4169 
4170 	mutex_lock(&fs_info->chunk_mutex);
4171 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4172 	mutex_unlock(&fs_info->chunk_mutex);
4173 }
4174 
4175 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4176 {
4177 	struct btrfs_block_group *block_group;
4178 
4179 	block_group = btrfs_lookup_first_block_group(info, 0);
4180 	while (block_group) {
4181 		btrfs_wait_block_group_cache_done(block_group);
4182 		spin_lock(&block_group->lock);
4183 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4184 				       &block_group->runtime_flags)) {
4185 			struct inode *inode = block_group->inode;
4186 
4187 			block_group->inode = NULL;
4188 			spin_unlock(&block_group->lock);
4189 
4190 			ASSERT(block_group->io_ctl.inode == NULL);
4191 			iput(inode);
4192 		} else {
4193 			spin_unlock(&block_group->lock);
4194 		}
4195 		block_group = btrfs_next_block_group(block_group);
4196 	}
4197 }
4198 
4199 /*
4200  * Must be called only after stopping all workers, since we could have block
4201  * group caching kthreads running, and therefore they could race with us if we
4202  * freed the block groups before stopping them.
4203  */
4204 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4205 {
4206 	struct btrfs_block_group *block_group;
4207 	struct btrfs_space_info *space_info;
4208 	struct btrfs_caching_control *caching_ctl;
4209 	struct rb_node *n;
4210 
4211 	write_lock(&info->block_group_cache_lock);
4212 	while (!list_empty(&info->caching_block_groups)) {
4213 		caching_ctl = list_entry(info->caching_block_groups.next,
4214 					 struct btrfs_caching_control, list);
4215 		list_del(&caching_ctl->list);
4216 		btrfs_put_caching_control(caching_ctl);
4217 	}
4218 	write_unlock(&info->block_group_cache_lock);
4219 
4220 	spin_lock(&info->unused_bgs_lock);
4221 	while (!list_empty(&info->unused_bgs)) {
4222 		block_group = list_first_entry(&info->unused_bgs,
4223 					       struct btrfs_block_group,
4224 					       bg_list);
4225 		list_del_init(&block_group->bg_list);
4226 		btrfs_put_block_group(block_group);
4227 	}
4228 
4229 	while (!list_empty(&info->reclaim_bgs)) {
4230 		block_group = list_first_entry(&info->reclaim_bgs,
4231 					       struct btrfs_block_group,
4232 					       bg_list);
4233 		list_del_init(&block_group->bg_list);
4234 		btrfs_put_block_group(block_group);
4235 	}
4236 	spin_unlock(&info->unused_bgs_lock);
4237 
4238 	spin_lock(&info->zone_active_bgs_lock);
4239 	while (!list_empty(&info->zone_active_bgs)) {
4240 		block_group = list_first_entry(&info->zone_active_bgs,
4241 					       struct btrfs_block_group,
4242 					       active_bg_list);
4243 		list_del_init(&block_group->active_bg_list);
4244 		btrfs_put_block_group(block_group);
4245 	}
4246 	spin_unlock(&info->zone_active_bgs_lock);
4247 
4248 	write_lock(&info->block_group_cache_lock);
4249 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4250 		block_group = rb_entry(n, struct btrfs_block_group,
4251 				       cache_node);
4252 		rb_erase_cached(&block_group->cache_node,
4253 				&info->block_group_cache_tree);
4254 		RB_CLEAR_NODE(&block_group->cache_node);
4255 		write_unlock(&info->block_group_cache_lock);
4256 
4257 		down_write(&block_group->space_info->groups_sem);
4258 		list_del(&block_group->list);
4259 		up_write(&block_group->space_info->groups_sem);
4260 
4261 		/*
4262 		 * We haven't cached this block group, which means we could
4263 		 * possibly have excluded extents on this block group.
4264 		 */
4265 		if (block_group->cached == BTRFS_CACHE_NO ||
4266 		    block_group->cached == BTRFS_CACHE_ERROR)
4267 			btrfs_free_excluded_extents(block_group);
4268 
4269 		btrfs_remove_free_space_cache(block_group);
4270 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4271 		ASSERT(list_empty(&block_group->dirty_list));
4272 		ASSERT(list_empty(&block_group->io_list));
4273 		ASSERT(list_empty(&block_group->bg_list));
4274 		ASSERT(refcount_read(&block_group->refs) == 1);
4275 		ASSERT(block_group->swap_extents == 0);
4276 		btrfs_put_block_group(block_group);
4277 
4278 		write_lock(&info->block_group_cache_lock);
4279 	}
4280 	write_unlock(&info->block_group_cache_lock);
4281 
4282 	btrfs_release_global_block_rsv(info);
4283 
4284 	while (!list_empty(&info->space_info)) {
4285 		space_info = list_entry(info->space_info.next,
4286 					struct btrfs_space_info,
4287 					list);
4288 
4289 		/*
4290 		 * Do not hide this behind enospc_debug, this is actually
4291 		 * important and indicates a real bug if this happens.
4292 		 */
4293 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4294 			    space_info->bytes_may_use > 0))
4295 			btrfs_dump_space_info(info, space_info, 0, 0);
4296 
4297 		/*
4298 		 * If there was a failure to cleanup a log tree, very likely due
4299 		 * to an IO failure on a writeback attempt of one or more of its
4300 		 * extent buffers, we could not do proper (and cheap) unaccounting
4301 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4302 		 * that case.
4303 		 */
4304 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4305 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4306 			if (WARN_ON(space_info->bytes_reserved > 0))
4307 				btrfs_dump_space_info(info, space_info, 0, 0);
4308 		}
4309 
4310 		WARN_ON(space_info->reclaim_size > 0);
4311 		list_del(&space_info->list);
4312 		btrfs_sysfs_remove_space_info(space_info);
4313 	}
4314 	return 0;
4315 }
4316 
4317 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4318 {
4319 	atomic_inc(&cache->frozen);
4320 }
4321 
4322 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4323 {
4324 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4325 	struct extent_map_tree *em_tree;
4326 	struct extent_map *em;
4327 	bool cleanup;
4328 
4329 	spin_lock(&block_group->lock);
4330 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4331 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4332 	spin_unlock(&block_group->lock);
4333 
4334 	if (cleanup) {
4335 		em_tree = &fs_info->mapping_tree;
4336 		write_lock(&em_tree->lock);
4337 		em = lookup_extent_mapping(em_tree, block_group->start,
4338 					   1);
4339 		BUG_ON(!em); /* logic error, can't happen */
4340 		remove_extent_mapping(em_tree, em);
4341 		write_unlock(&em_tree->lock);
4342 
4343 		/* once for us and once for the tree */
4344 		free_extent_map(em);
4345 		free_extent_map(em);
4346 
4347 		/*
4348 		 * We may have left one free space entry and other possible
4349 		 * tasks trimming this block group have left 1 entry each one.
4350 		 * Free them if any.
4351 		 */
4352 		btrfs_remove_free_space_cache(block_group);
4353 	}
4354 }
4355 
4356 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4357 {
4358 	bool ret = true;
4359 
4360 	spin_lock(&bg->lock);
4361 	if (bg->ro)
4362 		ret = false;
4363 	else
4364 		bg->swap_extents++;
4365 	spin_unlock(&bg->lock);
4366 
4367 	return ret;
4368 }
4369 
4370 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4371 {
4372 	spin_lock(&bg->lock);
4373 	ASSERT(!bg->ro);
4374 	ASSERT(bg->swap_extents >= amount);
4375 	bg->swap_extents -= amount;
4376 	spin_unlock(&bg->lock);
4377 }
4378 
4379 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4380 {
4381 	if (size <= SZ_128K)
4382 		return BTRFS_BG_SZ_SMALL;
4383 	if (size <= SZ_8M)
4384 		return BTRFS_BG_SZ_MEDIUM;
4385 	return BTRFS_BG_SZ_LARGE;
4386 }
4387 
4388 /*
4389  * Handle a block group allocating an extent in a size class
4390  *
4391  * @bg:				The block group we allocated in.
4392  * @size_class:			The size class of the allocation.
4393  * @force_wrong_size_class:	Whether we are desperate enough to allow
4394  *				mismatched size classes.
4395  *
4396  * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4397  * case of a race that leads to the wrong size class without
4398  * force_wrong_size_class set.
4399  *
4400  * find_free_extent will skip block groups with a mismatched size class until
4401  * it really needs to avoid ENOSPC. In that case it will set
4402  * force_wrong_size_class. However, if a block group is newly allocated and
4403  * doesn't yet have a size class, then it is possible for two allocations of
4404  * different sizes to race and both try to use it. The loser is caught here and
4405  * has to retry.
4406  */
4407 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4408 				     enum btrfs_block_group_size_class size_class,
4409 				     bool force_wrong_size_class)
4410 {
4411 	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4412 
4413 	/* The new allocation is in the right size class, do nothing */
4414 	if (bg->size_class == size_class)
4415 		return 0;
4416 	/*
4417 	 * The new allocation is in a mismatched size class.
4418 	 * This means one of two things:
4419 	 *
4420 	 * 1. Two tasks in find_free_extent for different size_classes raced
4421 	 *    and hit the same empty block_group. Make the loser try again.
4422 	 * 2. A call to find_free_extent got desperate enough to set
4423 	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4424 	 *    allocation.
4425 	 */
4426 	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4427 		if (force_wrong_size_class)
4428 			return 0;
4429 		return -EAGAIN;
4430 	}
4431 	/*
4432 	 * The happy new block group case: the new allocation is the first
4433 	 * one in the block_group so we set size_class.
4434 	 */
4435 	bg->size_class = size_class;
4436 
4437 	return 0;
4438 }
4439 
4440 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4441 {
4442 	if (btrfs_is_zoned(bg->fs_info))
4443 		return false;
4444 	if (!btrfs_is_block_group_data_only(bg))
4445 		return false;
4446 	return true;
4447 }
4448