1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 99 allowed = BTRFS_BLOCK_GROUP_RAID6; 100 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 101 allowed = BTRFS_BLOCK_GROUP_RAID5; 102 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 103 allowed = BTRFS_BLOCK_GROUP_RAID10; 104 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 105 allowed = BTRFS_BLOCK_GROUP_RAID1; 106 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 107 allowed = BTRFS_BLOCK_GROUP_RAID0; 108 109 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 110 111 return extended_to_chunk(flags | allowed); 112 } 113 114 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 115 { 116 unsigned seq; 117 u64 flags; 118 119 do { 120 flags = orig_flags; 121 seq = read_seqbegin(&fs_info->profiles_lock); 122 123 if (flags & BTRFS_BLOCK_GROUP_DATA) 124 flags |= fs_info->avail_data_alloc_bits; 125 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 126 flags |= fs_info->avail_system_alloc_bits; 127 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 128 flags |= fs_info->avail_metadata_alloc_bits; 129 } while (read_seqretry(&fs_info->profiles_lock, seq)); 130 131 return btrfs_reduce_alloc_profile(fs_info, flags); 132 } 133 134 void btrfs_get_block_group(struct btrfs_block_group *cache) 135 { 136 refcount_inc(&cache->refs); 137 } 138 139 void btrfs_put_block_group(struct btrfs_block_group *cache) 140 { 141 if (refcount_dec_and_test(&cache->refs)) { 142 WARN_ON(cache->pinned > 0); 143 /* 144 * If there was a failure to cleanup a log tree, very likely due 145 * to an IO failure on a writeback attempt of one or more of its 146 * extent buffers, we could not do proper (and cheap) unaccounting 147 * of their reserved space, so don't warn on reserved > 0 in that 148 * case. 149 */ 150 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 151 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 152 WARN_ON(cache->reserved > 0); 153 154 /* 155 * A block_group shouldn't be on the discard_list anymore. 156 * Remove the block_group from the discard_list to prevent us 157 * from causing a panic due to NULL pointer dereference. 158 */ 159 if (WARN_ON(!list_empty(&cache->discard_list))) 160 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 161 cache); 162 163 /* 164 * If not empty, someone is still holding mutex of 165 * full_stripe_lock, which can only be released by caller. 166 * And it will definitely cause use-after-free when caller 167 * tries to release full stripe lock. 168 * 169 * No better way to resolve, but only to warn. 170 */ 171 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 172 kfree(cache->free_space_ctl); 173 kfree(cache->physical_map); 174 kfree(cache); 175 } 176 } 177 178 /* 179 * This adds the block group to the fs_info rb tree for the block group cache 180 */ 181 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 182 struct btrfs_block_group *block_group) 183 { 184 struct rb_node **p; 185 struct rb_node *parent = NULL; 186 struct btrfs_block_group *cache; 187 bool leftmost = true; 188 189 ASSERT(block_group->length != 0); 190 191 write_lock(&info->block_group_cache_lock); 192 p = &info->block_group_cache_tree.rb_root.rb_node; 193 194 while (*p) { 195 parent = *p; 196 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 197 if (block_group->start < cache->start) { 198 p = &(*p)->rb_left; 199 } else if (block_group->start > cache->start) { 200 p = &(*p)->rb_right; 201 leftmost = false; 202 } else { 203 write_unlock(&info->block_group_cache_lock); 204 return -EEXIST; 205 } 206 } 207 208 rb_link_node(&block_group->cache_node, parent, p); 209 rb_insert_color_cached(&block_group->cache_node, 210 &info->block_group_cache_tree, leftmost); 211 212 write_unlock(&info->block_group_cache_lock); 213 214 return 0; 215 } 216 217 /* 218 * This will return the block group at or after bytenr if contains is 0, else 219 * it will return the block group that contains the bytenr 220 */ 221 static struct btrfs_block_group *block_group_cache_tree_search( 222 struct btrfs_fs_info *info, u64 bytenr, int contains) 223 { 224 struct btrfs_block_group *cache, *ret = NULL; 225 struct rb_node *n; 226 u64 end, start; 227 228 read_lock(&info->block_group_cache_lock); 229 n = info->block_group_cache_tree.rb_root.rb_node; 230 231 while (n) { 232 cache = rb_entry(n, struct btrfs_block_group, cache_node); 233 end = cache->start + cache->length - 1; 234 start = cache->start; 235 236 if (bytenr < start) { 237 if (!contains && (!ret || start < ret->start)) 238 ret = cache; 239 n = n->rb_left; 240 } else if (bytenr > start) { 241 if (contains && bytenr <= end) { 242 ret = cache; 243 break; 244 } 245 n = n->rb_right; 246 } else { 247 ret = cache; 248 break; 249 } 250 } 251 if (ret) 252 btrfs_get_block_group(ret); 253 read_unlock(&info->block_group_cache_lock); 254 255 return ret; 256 } 257 258 /* 259 * Return the block group that starts at or after bytenr 260 */ 261 struct btrfs_block_group *btrfs_lookup_first_block_group( 262 struct btrfs_fs_info *info, u64 bytenr) 263 { 264 return block_group_cache_tree_search(info, bytenr, 0); 265 } 266 267 /* 268 * Return the block group that contains the given bytenr 269 */ 270 struct btrfs_block_group *btrfs_lookup_block_group( 271 struct btrfs_fs_info *info, u64 bytenr) 272 { 273 return block_group_cache_tree_search(info, bytenr, 1); 274 } 275 276 struct btrfs_block_group *btrfs_next_block_group( 277 struct btrfs_block_group *cache) 278 { 279 struct btrfs_fs_info *fs_info = cache->fs_info; 280 struct rb_node *node; 281 282 read_lock(&fs_info->block_group_cache_lock); 283 284 /* If our block group was removed, we need a full search. */ 285 if (RB_EMPTY_NODE(&cache->cache_node)) { 286 const u64 next_bytenr = cache->start + cache->length; 287 288 read_unlock(&fs_info->block_group_cache_lock); 289 btrfs_put_block_group(cache); 290 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 291 } 292 node = rb_next(&cache->cache_node); 293 btrfs_put_block_group(cache); 294 if (node) { 295 cache = rb_entry(node, struct btrfs_block_group, cache_node); 296 btrfs_get_block_group(cache); 297 } else 298 cache = NULL; 299 read_unlock(&fs_info->block_group_cache_lock); 300 return cache; 301 } 302 303 /* 304 * Check if we can do a NOCOW write for a given extent. 305 * 306 * @fs_info: The filesystem information object. 307 * @bytenr: Logical start address of the extent. 308 * 309 * Check if we can do a NOCOW write for the given extent, and increments the 310 * number of NOCOW writers in the block group that contains the extent, as long 311 * as the block group exists and it's currently not in read-only mode. 312 * 313 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 314 * is responsible for calling btrfs_dec_nocow_writers() later. 315 * 316 * Or NULL if we can not do a NOCOW write 317 */ 318 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 319 u64 bytenr) 320 { 321 struct btrfs_block_group *bg; 322 bool can_nocow = true; 323 324 bg = btrfs_lookup_block_group(fs_info, bytenr); 325 if (!bg) 326 return NULL; 327 328 spin_lock(&bg->lock); 329 if (bg->ro) 330 can_nocow = false; 331 else 332 atomic_inc(&bg->nocow_writers); 333 spin_unlock(&bg->lock); 334 335 if (!can_nocow) { 336 btrfs_put_block_group(bg); 337 return NULL; 338 } 339 340 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 341 return bg; 342 } 343 344 /* 345 * Decrement the number of NOCOW writers in a block group. 346 * 347 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 348 * and on the block group returned by that call. Typically this is called after 349 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 350 * relocation. 351 * 352 * After this call, the caller should not use the block group anymore. It it wants 353 * to use it, then it should get a reference on it before calling this function. 354 */ 355 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 356 { 357 if (atomic_dec_and_test(&bg->nocow_writers)) 358 wake_up_var(&bg->nocow_writers); 359 360 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 361 btrfs_put_block_group(bg); 362 } 363 364 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 365 { 366 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 367 } 368 369 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 370 const u64 start) 371 { 372 struct btrfs_block_group *bg; 373 374 bg = btrfs_lookup_block_group(fs_info, start); 375 ASSERT(bg); 376 if (atomic_dec_and_test(&bg->reservations)) 377 wake_up_var(&bg->reservations); 378 btrfs_put_block_group(bg); 379 } 380 381 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 382 { 383 struct btrfs_space_info *space_info = bg->space_info; 384 385 ASSERT(bg->ro); 386 387 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 388 return; 389 390 /* 391 * Our block group is read only but before we set it to read only, 392 * some task might have had allocated an extent from it already, but it 393 * has not yet created a respective ordered extent (and added it to a 394 * root's list of ordered extents). 395 * Therefore wait for any task currently allocating extents, since the 396 * block group's reservations counter is incremented while a read lock 397 * on the groups' semaphore is held and decremented after releasing 398 * the read access on that semaphore and creating the ordered extent. 399 */ 400 down_write(&space_info->groups_sem); 401 up_write(&space_info->groups_sem); 402 403 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 404 } 405 406 struct btrfs_caching_control *btrfs_get_caching_control( 407 struct btrfs_block_group *cache) 408 { 409 struct btrfs_caching_control *ctl; 410 411 spin_lock(&cache->lock); 412 if (!cache->caching_ctl) { 413 spin_unlock(&cache->lock); 414 return NULL; 415 } 416 417 ctl = cache->caching_ctl; 418 refcount_inc(&ctl->count); 419 spin_unlock(&cache->lock); 420 return ctl; 421 } 422 423 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 424 { 425 if (refcount_dec_and_test(&ctl->count)) 426 kfree(ctl); 427 } 428 429 /* 430 * When we wait for progress in the block group caching, its because our 431 * allocation attempt failed at least once. So, we must sleep and let some 432 * progress happen before we try again. 433 * 434 * This function will sleep at least once waiting for new free space to show 435 * up, and then it will check the block group free space numbers for our min 436 * num_bytes. Another option is to have it go ahead and look in the rbtree for 437 * a free extent of a given size, but this is a good start. 438 * 439 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 440 * any of the information in this block group. 441 */ 442 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 443 u64 num_bytes) 444 { 445 struct btrfs_caching_control *caching_ctl; 446 447 caching_ctl = btrfs_get_caching_control(cache); 448 if (!caching_ctl) 449 return; 450 451 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 452 (cache->free_space_ctl->free_space >= num_bytes)); 453 454 btrfs_put_caching_control(caching_ctl); 455 } 456 457 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 458 struct btrfs_caching_control *caching_ctl) 459 { 460 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 461 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 462 } 463 464 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 465 { 466 struct btrfs_caching_control *caching_ctl; 467 int ret; 468 469 caching_ctl = btrfs_get_caching_control(cache); 470 if (!caching_ctl) 471 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 472 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 473 btrfs_put_caching_control(caching_ctl); 474 return ret; 475 } 476 477 #ifdef CONFIG_BTRFS_DEBUG 478 static void fragment_free_space(struct btrfs_block_group *block_group) 479 { 480 struct btrfs_fs_info *fs_info = block_group->fs_info; 481 u64 start = block_group->start; 482 u64 len = block_group->length; 483 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 484 fs_info->nodesize : fs_info->sectorsize; 485 u64 step = chunk << 1; 486 487 while (len > chunk) { 488 btrfs_remove_free_space(block_group, start, chunk); 489 start += step; 490 if (len < step) 491 len = 0; 492 else 493 len -= step; 494 } 495 } 496 #endif 497 498 /* 499 * This is only called by btrfs_cache_block_group, since we could have freed 500 * extents we need to check the pinned_extents for any extents that can't be 501 * used yet since their free space will be released as soon as the transaction 502 * commits. 503 */ 504 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 505 { 506 struct btrfs_fs_info *info = block_group->fs_info; 507 u64 extent_start, extent_end, size, total_added = 0; 508 int ret; 509 510 while (start < end) { 511 ret = find_first_extent_bit(&info->excluded_extents, start, 512 &extent_start, &extent_end, 513 EXTENT_DIRTY | EXTENT_UPTODATE, 514 NULL); 515 if (ret) 516 break; 517 518 if (extent_start <= start) { 519 start = extent_end + 1; 520 } else if (extent_start > start && extent_start < end) { 521 size = extent_start - start; 522 total_added += size; 523 ret = btrfs_add_free_space_async_trimmed(block_group, 524 start, size); 525 BUG_ON(ret); /* -ENOMEM or logic error */ 526 start = extent_end + 1; 527 } else { 528 break; 529 } 530 } 531 532 if (start < end) { 533 size = end - start; 534 total_added += size; 535 ret = btrfs_add_free_space_async_trimmed(block_group, start, 536 size); 537 BUG_ON(ret); /* -ENOMEM or logic error */ 538 } 539 540 return total_added; 541 } 542 543 /* 544 * Get an arbitrary extent item index / max_index through the block group 545 * 546 * @block_group the block group to sample from 547 * @index: the integral step through the block group to grab from 548 * @max_index: the granularity of the sampling 549 * @key: return value parameter for the item we find 550 * 551 * Pre-conditions on indices: 552 * 0 <= index <= max_index 553 * 0 < max_index 554 * 555 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 556 * error code on error. 557 */ 558 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 559 struct btrfs_block_group *block_group, 560 int index, int max_index, 561 struct btrfs_key *found_key) 562 { 563 struct btrfs_fs_info *fs_info = block_group->fs_info; 564 struct btrfs_root *extent_root; 565 u64 search_offset; 566 u64 search_end = block_group->start + block_group->length; 567 struct btrfs_path *path; 568 struct btrfs_key search_key; 569 int ret = 0; 570 571 ASSERT(index >= 0); 572 ASSERT(index <= max_index); 573 ASSERT(max_index > 0); 574 lockdep_assert_held(&caching_ctl->mutex); 575 lockdep_assert_held_read(&fs_info->commit_root_sem); 576 577 path = btrfs_alloc_path(); 578 if (!path) 579 return -ENOMEM; 580 581 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 582 BTRFS_SUPER_INFO_OFFSET)); 583 584 path->skip_locking = 1; 585 path->search_commit_root = 1; 586 path->reada = READA_FORWARD; 587 588 search_offset = index * div_u64(block_group->length, max_index); 589 search_key.objectid = block_group->start + search_offset; 590 search_key.type = BTRFS_EXTENT_ITEM_KEY; 591 search_key.offset = 0; 592 593 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 594 /* Success; sampled an extent item in the block group */ 595 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 596 found_key->objectid >= block_group->start && 597 found_key->objectid + found_key->offset <= search_end) 598 break; 599 600 /* We can't possibly find a valid extent item anymore */ 601 if (found_key->objectid >= search_end) { 602 ret = 1; 603 break; 604 } 605 } 606 607 lockdep_assert_held(&caching_ctl->mutex); 608 lockdep_assert_held_read(&fs_info->commit_root_sem); 609 btrfs_free_path(path); 610 return ret; 611 } 612 613 /* 614 * Best effort attempt to compute a block group's size class while caching it. 615 * 616 * @block_group: the block group we are caching 617 * 618 * We cannot infer the size class while adding free space extents, because that 619 * logic doesn't care about contiguous file extents (it doesn't differentiate 620 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 621 * file extent items. Reading all of them is quite wasteful, because usually 622 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 623 * them at even steps through the block group and pick the smallest size class 624 * we see. Since size class is best effort, and not guaranteed in general, 625 * inaccuracy is acceptable. 626 * 627 * To be more explicit about why this algorithm makes sense: 628 * 629 * If we are caching in a block group from disk, then there are three major cases 630 * to consider: 631 * 1. the block group is well behaved and all extents in it are the same size 632 * class. 633 * 2. the block group is mostly one size class with rare exceptions for last 634 * ditch allocations 635 * 3. the block group was populated before size classes and can have a totally 636 * arbitrary mix of size classes. 637 * 638 * In case 1, looking at any extent in the block group will yield the correct 639 * result. For the mixed cases, taking the minimum size class seems like a good 640 * approximation, since gaps from frees will be usable to the size class. For 641 * 2., a small handful of file extents is likely to yield the right answer. For 642 * 3, we can either read every file extent, or admit that this is best effort 643 * anyway and try to stay fast. 644 * 645 * Returns: 0 on success, negative error code on error. 646 */ 647 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 648 struct btrfs_block_group *block_group) 649 { 650 struct btrfs_fs_info *fs_info = block_group->fs_info; 651 struct btrfs_key key; 652 int i; 653 u64 min_size = block_group->length; 654 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 655 int ret; 656 657 if (!btrfs_block_group_should_use_size_class(block_group)) 658 return 0; 659 660 lockdep_assert_held(&caching_ctl->mutex); 661 lockdep_assert_held_read(&fs_info->commit_root_sem); 662 for (i = 0; i < 5; ++i) { 663 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 664 if (ret < 0) 665 goto out; 666 if (ret > 0) 667 continue; 668 min_size = min_t(u64, min_size, key.offset); 669 size_class = btrfs_calc_block_group_size_class(min_size); 670 } 671 if (size_class != BTRFS_BG_SZ_NONE) { 672 spin_lock(&block_group->lock); 673 block_group->size_class = size_class; 674 spin_unlock(&block_group->lock); 675 } 676 out: 677 return ret; 678 } 679 680 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 681 { 682 struct btrfs_block_group *block_group = caching_ctl->block_group; 683 struct btrfs_fs_info *fs_info = block_group->fs_info; 684 struct btrfs_root *extent_root; 685 struct btrfs_path *path; 686 struct extent_buffer *leaf; 687 struct btrfs_key key; 688 u64 total_found = 0; 689 u64 last = 0; 690 u32 nritems; 691 int ret; 692 bool wakeup = true; 693 694 path = btrfs_alloc_path(); 695 if (!path) 696 return -ENOMEM; 697 698 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 699 extent_root = btrfs_extent_root(fs_info, last); 700 701 #ifdef CONFIG_BTRFS_DEBUG 702 /* 703 * If we're fragmenting we don't want to make anybody think we can 704 * allocate from this block group until we've had a chance to fragment 705 * the free space. 706 */ 707 if (btrfs_should_fragment_free_space(block_group)) 708 wakeup = false; 709 #endif 710 /* 711 * We don't want to deadlock with somebody trying to allocate a new 712 * extent for the extent root while also trying to search the extent 713 * root to add free space. So we skip locking and search the commit 714 * root, since its read-only 715 */ 716 path->skip_locking = 1; 717 path->search_commit_root = 1; 718 path->reada = READA_FORWARD; 719 720 key.objectid = last; 721 key.offset = 0; 722 key.type = BTRFS_EXTENT_ITEM_KEY; 723 724 next: 725 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 726 if (ret < 0) 727 goto out; 728 729 leaf = path->nodes[0]; 730 nritems = btrfs_header_nritems(leaf); 731 732 while (1) { 733 if (btrfs_fs_closing(fs_info) > 1) { 734 last = (u64)-1; 735 break; 736 } 737 738 if (path->slots[0] < nritems) { 739 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 740 } else { 741 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 742 if (ret) 743 break; 744 745 if (need_resched() || 746 rwsem_is_contended(&fs_info->commit_root_sem)) { 747 btrfs_release_path(path); 748 up_read(&fs_info->commit_root_sem); 749 mutex_unlock(&caching_ctl->mutex); 750 cond_resched(); 751 mutex_lock(&caching_ctl->mutex); 752 down_read(&fs_info->commit_root_sem); 753 goto next; 754 } 755 756 ret = btrfs_next_leaf(extent_root, path); 757 if (ret < 0) 758 goto out; 759 if (ret) 760 break; 761 leaf = path->nodes[0]; 762 nritems = btrfs_header_nritems(leaf); 763 continue; 764 } 765 766 if (key.objectid < last) { 767 key.objectid = last; 768 key.offset = 0; 769 key.type = BTRFS_EXTENT_ITEM_KEY; 770 btrfs_release_path(path); 771 goto next; 772 } 773 774 if (key.objectid < block_group->start) { 775 path->slots[0]++; 776 continue; 777 } 778 779 if (key.objectid >= block_group->start + block_group->length) 780 break; 781 782 if (key.type == BTRFS_EXTENT_ITEM_KEY || 783 key.type == BTRFS_METADATA_ITEM_KEY) { 784 total_found += add_new_free_space(block_group, last, 785 key.objectid); 786 if (key.type == BTRFS_METADATA_ITEM_KEY) 787 last = key.objectid + 788 fs_info->nodesize; 789 else 790 last = key.objectid + key.offset; 791 792 if (total_found > CACHING_CTL_WAKE_UP) { 793 total_found = 0; 794 if (wakeup) 795 wake_up(&caching_ctl->wait); 796 } 797 } 798 path->slots[0]++; 799 } 800 ret = 0; 801 802 total_found += add_new_free_space(block_group, last, 803 block_group->start + block_group->length); 804 805 out: 806 btrfs_free_path(path); 807 return ret; 808 } 809 810 static noinline void caching_thread(struct btrfs_work *work) 811 { 812 struct btrfs_block_group *block_group; 813 struct btrfs_fs_info *fs_info; 814 struct btrfs_caching_control *caching_ctl; 815 int ret; 816 817 caching_ctl = container_of(work, struct btrfs_caching_control, work); 818 block_group = caching_ctl->block_group; 819 fs_info = block_group->fs_info; 820 821 mutex_lock(&caching_ctl->mutex); 822 down_read(&fs_info->commit_root_sem); 823 824 load_block_group_size_class(caching_ctl, block_group); 825 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 826 ret = load_free_space_cache(block_group); 827 if (ret == 1) { 828 ret = 0; 829 goto done; 830 } 831 832 /* 833 * We failed to load the space cache, set ourselves to 834 * CACHE_STARTED and carry on. 835 */ 836 spin_lock(&block_group->lock); 837 block_group->cached = BTRFS_CACHE_STARTED; 838 spin_unlock(&block_group->lock); 839 wake_up(&caching_ctl->wait); 840 } 841 842 /* 843 * If we are in the transaction that populated the free space tree we 844 * can't actually cache from the free space tree as our commit root and 845 * real root are the same, so we could change the contents of the blocks 846 * while caching. Instead do the slow caching in this case, and after 847 * the transaction has committed we will be safe. 848 */ 849 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 850 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 851 ret = load_free_space_tree(caching_ctl); 852 else 853 ret = load_extent_tree_free(caching_ctl); 854 done: 855 spin_lock(&block_group->lock); 856 block_group->caching_ctl = NULL; 857 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 858 spin_unlock(&block_group->lock); 859 860 #ifdef CONFIG_BTRFS_DEBUG 861 if (btrfs_should_fragment_free_space(block_group)) { 862 u64 bytes_used; 863 864 spin_lock(&block_group->space_info->lock); 865 spin_lock(&block_group->lock); 866 bytes_used = block_group->length - block_group->used; 867 block_group->space_info->bytes_used += bytes_used >> 1; 868 spin_unlock(&block_group->lock); 869 spin_unlock(&block_group->space_info->lock); 870 fragment_free_space(block_group); 871 } 872 #endif 873 874 up_read(&fs_info->commit_root_sem); 875 btrfs_free_excluded_extents(block_group); 876 mutex_unlock(&caching_ctl->mutex); 877 878 wake_up(&caching_ctl->wait); 879 880 btrfs_put_caching_control(caching_ctl); 881 btrfs_put_block_group(block_group); 882 } 883 884 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 885 { 886 struct btrfs_fs_info *fs_info = cache->fs_info; 887 struct btrfs_caching_control *caching_ctl = NULL; 888 int ret = 0; 889 890 /* Allocator for zoned filesystems does not use the cache at all */ 891 if (btrfs_is_zoned(fs_info)) 892 return 0; 893 894 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 895 if (!caching_ctl) 896 return -ENOMEM; 897 898 INIT_LIST_HEAD(&caching_ctl->list); 899 mutex_init(&caching_ctl->mutex); 900 init_waitqueue_head(&caching_ctl->wait); 901 caching_ctl->block_group = cache; 902 refcount_set(&caching_ctl->count, 2); 903 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 904 905 spin_lock(&cache->lock); 906 if (cache->cached != BTRFS_CACHE_NO) { 907 kfree(caching_ctl); 908 909 caching_ctl = cache->caching_ctl; 910 if (caching_ctl) 911 refcount_inc(&caching_ctl->count); 912 spin_unlock(&cache->lock); 913 goto out; 914 } 915 WARN_ON(cache->caching_ctl); 916 cache->caching_ctl = caching_ctl; 917 cache->cached = BTRFS_CACHE_STARTED; 918 spin_unlock(&cache->lock); 919 920 write_lock(&fs_info->block_group_cache_lock); 921 refcount_inc(&caching_ctl->count); 922 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 923 write_unlock(&fs_info->block_group_cache_lock); 924 925 btrfs_get_block_group(cache); 926 927 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 928 out: 929 if (wait && caching_ctl) 930 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 931 if (caching_ctl) 932 btrfs_put_caching_control(caching_ctl); 933 934 return ret; 935 } 936 937 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 938 { 939 u64 extra_flags = chunk_to_extended(flags) & 940 BTRFS_EXTENDED_PROFILE_MASK; 941 942 write_seqlock(&fs_info->profiles_lock); 943 if (flags & BTRFS_BLOCK_GROUP_DATA) 944 fs_info->avail_data_alloc_bits &= ~extra_flags; 945 if (flags & BTRFS_BLOCK_GROUP_METADATA) 946 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 947 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 948 fs_info->avail_system_alloc_bits &= ~extra_flags; 949 write_sequnlock(&fs_info->profiles_lock); 950 } 951 952 /* 953 * Clear incompat bits for the following feature(s): 954 * 955 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 956 * in the whole filesystem 957 * 958 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 959 */ 960 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 961 { 962 bool found_raid56 = false; 963 bool found_raid1c34 = false; 964 965 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 966 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 967 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 968 struct list_head *head = &fs_info->space_info; 969 struct btrfs_space_info *sinfo; 970 971 list_for_each_entry_rcu(sinfo, head, list) { 972 down_read(&sinfo->groups_sem); 973 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 974 found_raid56 = true; 975 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 976 found_raid56 = true; 977 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 978 found_raid1c34 = true; 979 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 980 found_raid1c34 = true; 981 up_read(&sinfo->groups_sem); 982 } 983 if (!found_raid56) 984 btrfs_clear_fs_incompat(fs_info, RAID56); 985 if (!found_raid1c34) 986 btrfs_clear_fs_incompat(fs_info, RAID1C34); 987 } 988 } 989 990 static int remove_block_group_item(struct btrfs_trans_handle *trans, 991 struct btrfs_path *path, 992 struct btrfs_block_group *block_group) 993 { 994 struct btrfs_fs_info *fs_info = trans->fs_info; 995 struct btrfs_root *root; 996 struct btrfs_key key; 997 int ret; 998 999 root = btrfs_block_group_root(fs_info); 1000 key.objectid = block_group->start; 1001 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1002 key.offset = block_group->length; 1003 1004 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1005 if (ret > 0) 1006 ret = -ENOENT; 1007 if (ret < 0) 1008 return ret; 1009 1010 ret = btrfs_del_item(trans, root, path); 1011 return ret; 1012 } 1013 1014 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1015 u64 group_start, struct extent_map *em) 1016 { 1017 struct btrfs_fs_info *fs_info = trans->fs_info; 1018 struct btrfs_path *path; 1019 struct btrfs_block_group *block_group; 1020 struct btrfs_free_cluster *cluster; 1021 struct inode *inode; 1022 struct kobject *kobj = NULL; 1023 int ret; 1024 int index; 1025 int factor; 1026 struct btrfs_caching_control *caching_ctl = NULL; 1027 bool remove_em; 1028 bool remove_rsv = false; 1029 1030 block_group = btrfs_lookup_block_group(fs_info, group_start); 1031 BUG_ON(!block_group); 1032 BUG_ON(!block_group->ro); 1033 1034 trace_btrfs_remove_block_group(block_group); 1035 /* 1036 * Free the reserved super bytes from this block group before 1037 * remove it. 1038 */ 1039 btrfs_free_excluded_extents(block_group); 1040 btrfs_free_ref_tree_range(fs_info, block_group->start, 1041 block_group->length); 1042 1043 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1044 factor = btrfs_bg_type_to_factor(block_group->flags); 1045 1046 /* make sure this block group isn't part of an allocation cluster */ 1047 cluster = &fs_info->data_alloc_cluster; 1048 spin_lock(&cluster->refill_lock); 1049 btrfs_return_cluster_to_free_space(block_group, cluster); 1050 spin_unlock(&cluster->refill_lock); 1051 1052 /* 1053 * make sure this block group isn't part of a metadata 1054 * allocation cluster 1055 */ 1056 cluster = &fs_info->meta_alloc_cluster; 1057 spin_lock(&cluster->refill_lock); 1058 btrfs_return_cluster_to_free_space(block_group, cluster); 1059 spin_unlock(&cluster->refill_lock); 1060 1061 btrfs_clear_treelog_bg(block_group); 1062 btrfs_clear_data_reloc_bg(block_group); 1063 1064 path = btrfs_alloc_path(); 1065 if (!path) { 1066 ret = -ENOMEM; 1067 goto out; 1068 } 1069 1070 /* 1071 * get the inode first so any iput calls done for the io_list 1072 * aren't the final iput (no unlinks allowed now) 1073 */ 1074 inode = lookup_free_space_inode(block_group, path); 1075 1076 mutex_lock(&trans->transaction->cache_write_mutex); 1077 /* 1078 * Make sure our free space cache IO is done before removing the 1079 * free space inode 1080 */ 1081 spin_lock(&trans->transaction->dirty_bgs_lock); 1082 if (!list_empty(&block_group->io_list)) { 1083 list_del_init(&block_group->io_list); 1084 1085 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1086 1087 spin_unlock(&trans->transaction->dirty_bgs_lock); 1088 btrfs_wait_cache_io(trans, block_group, path); 1089 btrfs_put_block_group(block_group); 1090 spin_lock(&trans->transaction->dirty_bgs_lock); 1091 } 1092 1093 if (!list_empty(&block_group->dirty_list)) { 1094 list_del_init(&block_group->dirty_list); 1095 remove_rsv = true; 1096 btrfs_put_block_group(block_group); 1097 } 1098 spin_unlock(&trans->transaction->dirty_bgs_lock); 1099 mutex_unlock(&trans->transaction->cache_write_mutex); 1100 1101 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1102 if (ret) 1103 goto out; 1104 1105 write_lock(&fs_info->block_group_cache_lock); 1106 rb_erase_cached(&block_group->cache_node, 1107 &fs_info->block_group_cache_tree); 1108 RB_CLEAR_NODE(&block_group->cache_node); 1109 1110 /* Once for the block groups rbtree */ 1111 btrfs_put_block_group(block_group); 1112 1113 write_unlock(&fs_info->block_group_cache_lock); 1114 1115 down_write(&block_group->space_info->groups_sem); 1116 /* 1117 * we must use list_del_init so people can check to see if they 1118 * are still on the list after taking the semaphore 1119 */ 1120 list_del_init(&block_group->list); 1121 if (list_empty(&block_group->space_info->block_groups[index])) { 1122 kobj = block_group->space_info->block_group_kobjs[index]; 1123 block_group->space_info->block_group_kobjs[index] = NULL; 1124 clear_avail_alloc_bits(fs_info, block_group->flags); 1125 } 1126 up_write(&block_group->space_info->groups_sem); 1127 clear_incompat_bg_bits(fs_info, block_group->flags); 1128 if (kobj) { 1129 kobject_del(kobj); 1130 kobject_put(kobj); 1131 } 1132 1133 if (block_group->cached == BTRFS_CACHE_STARTED) 1134 btrfs_wait_block_group_cache_done(block_group); 1135 1136 write_lock(&fs_info->block_group_cache_lock); 1137 caching_ctl = btrfs_get_caching_control(block_group); 1138 if (!caching_ctl) { 1139 struct btrfs_caching_control *ctl; 1140 1141 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1142 if (ctl->block_group == block_group) { 1143 caching_ctl = ctl; 1144 refcount_inc(&caching_ctl->count); 1145 break; 1146 } 1147 } 1148 } 1149 if (caching_ctl) 1150 list_del_init(&caching_ctl->list); 1151 write_unlock(&fs_info->block_group_cache_lock); 1152 1153 if (caching_ctl) { 1154 /* Once for the caching bgs list and once for us. */ 1155 btrfs_put_caching_control(caching_ctl); 1156 btrfs_put_caching_control(caching_ctl); 1157 } 1158 1159 spin_lock(&trans->transaction->dirty_bgs_lock); 1160 WARN_ON(!list_empty(&block_group->dirty_list)); 1161 WARN_ON(!list_empty(&block_group->io_list)); 1162 spin_unlock(&trans->transaction->dirty_bgs_lock); 1163 1164 btrfs_remove_free_space_cache(block_group); 1165 1166 spin_lock(&block_group->space_info->lock); 1167 list_del_init(&block_group->ro_list); 1168 1169 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1170 WARN_ON(block_group->space_info->total_bytes 1171 < block_group->length); 1172 WARN_ON(block_group->space_info->bytes_readonly 1173 < block_group->length - block_group->zone_unusable); 1174 WARN_ON(block_group->space_info->bytes_zone_unusable 1175 < block_group->zone_unusable); 1176 WARN_ON(block_group->space_info->disk_total 1177 < block_group->length * factor); 1178 WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 1179 &block_group->runtime_flags) && 1180 block_group->space_info->active_total_bytes 1181 < block_group->length); 1182 } 1183 block_group->space_info->total_bytes -= block_group->length; 1184 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1185 block_group->space_info->active_total_bytes -= block_group->length; 1186 block_group->space_info->bytes_readonly -= 1187 (block_group->length - block_group->zone_unusable); 1188 block_group->space_info->bytes_zone_unusable -= 1189 block_group->zone_unusable; 1190 block_group->space_info->disk_total -= block_group->length * factor; 1191 1192 spin_unlock(&block_group->space_info->lock); 1193 1194 /* 1195 * Remove the free space for the block group from the free space tree 1196 * and the block group's item from the extent tree before marking the 1197 * block group as removed. This is to prevent races with tasks that 1198 * freeze and unfreeze a block group, this task and another task 1199 * allocating a new block group - the unfreeze task ends up removing 1200 * the block group's extent map before the task calling this function 1201 * deletes the block group item from the extent tree, allowing for 1202 * another task to attempt to create another block group with the same 1203 * item key (and failing with -EEXIST and a transaction abort). 1204 */ 1205 ret = remove_block_group_free_space(trans, block_group); 1206 if (ret) 1207 goto out; 1208 1209 ret = remove_block_group_item(trans, path, block_group); 1210 if (ret < 0) 1211 goto out; 1212 1213 spin_lock(&block_group->lock); 1214 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1215 1216 /* 1217 * At this point trimming or scrub can't start on this block group, 1218 * because we removed the block group from the rbtree 1219 * fs_info->block_group_cache_tree so no one can't find it anymore and 1220 * even if someone already got this block group before we removed it 1221 * from the rbtree, they have already incremented block_group->frozen - 1222 * if they didn't, for the trimming case they won't find any free space 1223 * entries because we already removed them all when we called 1224 * btrfs_remove_free_space_cache(). 1225 * 1226 * And we must not remove the extent map from the fs_info->mapping_tree 1227 * to prevent the same logical address range and physical device space 1228 * ranges from being reused for a new block group. This is needed to 1229 * avoid races with trimming and scrub. 1230 * 1231 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1232 * completely transactionless, so while it is trimming a range the 1233 * currently running transaction might finish and a new one start, 1234 * allowing for new block groups to be created that can reuse the same 1235 * physical device locations unless we take this special care. 1236 * 1237 * There may also be an implicit trim operation if the file system 1238 * is mounted with -odiscard. The same protections must remain 1239 * in place until the extents have been discarded completely when 1240 * the transaction commit has completed. 1241 */ 1242 remove_em = (atomic_read(&block_group->frozen) == 0); 1243 spin_unlock(&block_group->lock); 1244 1245 if (remove_em) { 1246 struct extent_map_tree *em_tree; 1247 1248 em_tree = &fs_info->mapping_tree; 1249 write_lock(&em_tree->lock); 1250 remove_extent_mapping(em_tree, em); 1251 write_unlock(&em_tree->lock); 1252 /* once for the tree */ 1253 free_extent_map(em); 1254 } 1255 1256 out: 1257 /* Once for the lookup reference */ 1258 btrfs_put_block_group(block_group); 1259 if (remove_rsv) 1260 btrfs_delayed_refs_rsv_release(fs_info, 1); 1261 btrfs_free_path(path); 1262 return ret; 1263 } 1264 1265 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1266 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1267 { 1268 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1269 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1270 struct extent_map *em; 1271 struct map_lookup *map; 1272 unsigned int num_items; 1273 1274 read_lock(&em_tree->lock); 1275 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1276 read_unlock(&em_tree->lock); 1277 ASSERT(em && em->start == chunk_offset); 1278 1279 /* 1280 * We need to reserve 3 + N units from the metadata space info in order 1281 * to remove a block group (done at btrfs_remove_chunk() and at 1282 * btrfs_remove_block_group()), which are used for: 1283 * 1284 * 1 unit for adding the free space inode's orphan (located in the tree 1285 * of tree roots). 1286 * 1 unit for deleting the block group item (located in the extent 1287 * tree). 1288 * 1 unit for deleting the free space item (located in tree of tree 1289 * roots). 1290 * N units for deleting N device extent items corresponding to each 1291 * stripe (located in the device tree). 1292 * 1293 * In order to remove a block group we also need to reserve units in the 1294 * system space info in order to update the chunk tree (update one or 1295 * more device items and remove one chunk item), but this is done at 1296 * btrfs_remove_chunk() through a call to check_system_chunk(). 1297 */ 1298 map = em->map_lookup; 1299 num_items = 3 + map->num_stripes; 1300 free_extent_map(em); 1301 1302 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1303 } 1304 1305 /* 1306 * Mark block group @cache read-only, so later write won't happen to block 1307 * group @cache. 1308 * 1309 * If @force is not set, this function will only mark the block group readonly 1310 * if we have enough free space (1M) in other metadata/system block groups. 1311 * If @force is not set, this function will mark the block group readonly 1312 * without checking free space. 1313 * 1314 * NOTE: This function doesn't care if other block groups can contain all the 1315 * data in this block group. That check should be done by relocation routine, 1316 * not this function. 1317 */ 1318 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1319 { 1320 struct btrfs_space_info *sinfo = cache->space_info; 1321 u64 num_bytes; 1322 int ret = -ENOSPC; 1323 1324 spin_lock(&sinfo->lock); 1325 spin_lock(&cache->lock); 1326 1327 if (cache->swap_extents) { 1328 ret = -ETXTBSY; 1329 goto out; 1330 } 1331 1332 if (cache->ro) { 1333 cache->ro++; 1334 ret = 0; 1335 goto out; 1336 } 1337 1338 num_bytes = cache->length - cache->reserved - cache->pinned - 1339 cache->bytes_super - cache->zone_unusable - cache->used; 1340 1341 /* 1342 * Data never overcommits, even in mixed mode, so do just the straight 1343 * check of left over space in how much we have allocated. 1344 */ 1345 if (force) { 1346 ret = 0; 1347 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1348 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1349 1350 /* 1351 * Here we make sure if we mark this bg RO, we still have enough 1352 * free space as buffer. 1353 */ 1354 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1355 ret = 0; 1356 } else { 1357 /* 1358 * We overcommit metadata, so we need to do the 1359 * btrfs_can_overcommit check here, and we need to pass in 1360 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1361 * leeway to allow us to mark this block group as read only. 1362 */ 1363 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1364 BTRFS_RESERVE_NO_FLUSH)) 1365 ret = 0; 1366 } 1367 1368 if (!ret) { 1369 sinfo->bytes_readonly += num_bytes; 1370 if (btrfs_is_zoned(cache->fs_info)) { 1371 /* Migrate zone_unusable bytes to readonly */ 1372 sinfo->bytes_readonly += cache->zone_unusable; 1373 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1374 cache->zone_unusable = 0; 1375 } 1376 cache->ro++; 1377 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1378 } 1379 out: 1380 spin_unlock(&cache->lock); 1381 spin_unlock(&sinfo->lock); 1382 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1383 btrfs_info(cache->fs_info, 1384 "unable to make block group %llu ro", cache->start); 1385 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1386 } 1387 return ret; 1388 } 1389 1390 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1391 struct btrfs_block_group *bg) 1392 { 1393 struct btrfs_fs_info *fs_info = bg->fs_info; 1394 struct btrfs_transaction *prev_trans = NULL; 1395 const u64 start = bg->start; 1396 const u64 end = start + bg->length - 1; 1397 int ret; 1398 1399 spin_lock(&fs_info->trans_lock); 1400 if (trans->transaction->list.prev != &fs_info->trans_list) { 1401 prev_trans = list_last_entry(&trans->transaction->list, 1402 struct btrfs_transaction, list); 1403 refcount_inc(&prev_trans->use_count); 1404 } 1405 spin_unlock(&fs_info->trans_lock); 1406 1407 /* 1408 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1409 * btrfs_finish_extent_commit(). If we are at transaction N, another 1410 * task might be running finish_extent_commit() for the previous 1411 * transaction N - 1, and have seen a range belonging to the block 1412 * group in pinned_extents before we were able to clear the whole block 1413 * group range from pinned_extents. This means that task can lookup for 1414 * the block group after we unpinned it from pinned_extents and removed 1415 * it, leading to a BUG_ON() at unpin_extent_range(). 1416 */ 1417 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1418 if (prev_trans) { 1419 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1420 EXTENT_DIRTY); 1421 if (ret) 1422 goto out; 1423 } 1424 1425 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1426 EXTENT_DIRTY); 1427 out: 1428 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1429 if (prev_trans) 1430 btrfs_put_transaction(prev_trans); 1431 1432 return ret == 0; 1433 } 1434 1435 /* 1436 * Process the unused_bgs list and remove any that don't have any allocated 1437 * space inside of them. 1438 */ 1439 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1440 { 1441 struct btrfs_block_group *block_group; 1442 struct btrfs_space_info *space_info; 1443 struct btrfs_trans_handle *trans; 1444 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1445 int ret = 0; 1446 1447 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1448 return; 1449 1450 if (btrfs_fs_closing(fs_info)) 1451 return; 1452 1453 /* 1454 * Long running balances can keep us blocked here for eternity, so 1455 * simply skip deletion if we're unable to get the mutex. 1456 */ 1457 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1458 return; 1459 1460 spin_lock(&fs_info->unused_bgs_lock); 1461 while (!list_empty(&fs_info->unused_bgs)) { 1462 int trimming; 1463 1464 block_group = list_first_entry(&fs_info->unused_bgs, 1465 struct btrfs_block_group, 1466 bg_list); 1467 list_del_init(&block_group->bg_list); 1468 1469 space_info = block_group->space_info; 1470 1471 if (ret || btrfs_mixed_space_info(space_info)) { 1472 btrfs_put_block_group(block_group); 1473 continue; 1474 } 1475 spin_unlock(&fs_info->unused_bgs_lock); 1476 1477 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1478 1479 /* Don't want to race with allocators so take the groups_sem */ 1480 down_write(&space_info->groups_sem); 1481 1482 /* 1483 * Async discard moves the final block group discard to be prior 1484 * to the unused_bgs code path. Therefore, if it's not fully 1485 * trimmed, punt it back to the async discard lists. 1486 */ 1487 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1488 !btrfs_is_free_space_trimmed(block_group)) { 1489 trace_btrfs_skip_unused_block_group(block_group); 1490 up_write(&space_info->groups_sem); 1491 /* Requeue if we failed because of async discard */ 1492 btrfs_discard_queue_work(&fs_info->discard_ctl, 1493 block_group); 1494 goto next; 1495 } 1496 1497 spin_lock(&block_group->lock); 1498 if (block_group->reserved || block_group->pinned || 1499 block_group->used || block_group->ro || 1500 list_is_singular(&block_group->list)) { 1501 /* 1502 * We want to bail if we made new allocations or have 1503 * outstanding allocations in this block group. We do 1504 * the ro check in case balance is currently acting on 1505 * this block group. 1506 */ 1507 trace_btrfs_skip_unused_block_group(block_group); 1508 spin_unlock(&block_group->lock); 1509 up_write(&space_info->groups_sem); 1510 goto next; 1511 } 1512 spin_unlock(&block_group->lock); 1513 1514 /* We don't want to force the issue, only flip if it's ok. */ 1515 ret = inc_block_group_ro(block_group, 0); 1516 up_write(&space_info->groups_sem); 1517 if (ret < 0) { 1518 ret = 0; 1519 goto next; 1520 } 1521 1522 ret = btrfs_zone_finish(block_group); 1523 if (ret < 0) { 1524 btrfs_dec_block_group_ro(block_group); 1525 if (ret == -EAGAIN) 1526 ret = 0; 1527 goto next; 1528 } 1529 1530 /* 1531 * Want to do this before we do anything else so we can recover 1532 * properly if we fail to join the transaction. 1533 */ 1534 trans = btrfs_start_trans_remove_block_group(fs_info, 1535 block_group->start); 1536 if (IS_ERR(trans)) { 1537 btrfs_dec_block_group_ro(block_group); 1538 ret = PTR_ERR(trans); 1539 goto next; 1540 } 1541 1542 /* 1543 * We could have pending pinned extents for this block group, 1544 * just delete them, we don't care about them anymore. 1545 */ 1546 if (!clean_pinned_extents(trans, block_group)) { 1547 btrfs_dec_block_group_ro(block_group); 1548 goto end_trans; 1549 } 1550 1551 /* 1552 * At this point, the block_group is read only and should fail 1553 * new allocations. However, btrfs_finish_extent_commit() can 1554 * cause this block_group to be placed back on the discard 1555 * lists because now the block_group isn't fully discarded. 1556 * Bail here and try again later after discarding everything. 1557 */ 1558 spin_lock(&fs_info->discard_ctl.lock); 1559 if (!list_empty(&block_group->discard_list)) { 1560 spin_unlock(&fs_info->discard_ctl.lock); 1561 btrfs_dec_block_group_ro(block_group); 1562 btrfs_discard_queue_work(&fs_info->discard_ctl, 1563 block_group); 1564 goto end_trans; 1565 } 1566 spin_unlock(&fs_info->discard_ctl.lock); 1567 1568 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1569 spin_lock(&space_info->lock); 1570 spin_lock(&block_group->lock); 1571 1572 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1573 -block_group->pinned); 1574 space_info->bytes_readonly += block_group->pinned; 1575 block_group->pinned = 0; 1576 1577 spin_unlock(&block_group->lock); 1578 spin_unlock(&space_info->lock); 1579 1580 /* 1581 * The normal path here is an unused block group is passed here, 1582 * then trimming is handled in the transaction commit path. 1583 * Async discard interposes before this to do the trimming 1584 * before coming down the unused block group path as trimming 1585 * will no longer be done later in the transaction commit path. 1586 */ 1587 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1588 goto flip_async; 1589 1590 /* 1591 * DISCARD can flip during remount. On zoned filesystems, we 1592 * need to reset sequential-required zones. 1593 */ 1594 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1595 btrfs_is_zoned(fs_info); 1596 1597 /* Implicit trim during transaction commit. */ 1598 if (trimming) 1599 btrfs_freeze_block_group(block_group); 1600 1601 /* 1602 * Btrfs_remove_chunk will abort the transaction if things go 1603 * horribly wrong. 1604 */ 1605 ret = btrfs_remove_chunk(trans, block_group->start); 1606 1607 if (ret) { 1608 if (trimming) 1609 btrfs_unfreeze_block_group(block_group); 1610 goto end_trans; 1611 } 1612 1613 /* 1614 * If we're not mounted with -odiscard, we can just forget 1615 * about this block group. Otherwise we'll need to wait 1616 * until transaction commit to do the actual discard. 1617 */ 1618 if (trimming) { 1619 spin_lock(&fs_info->unused_bgs_lock); 1620 /* 1621 * A concurrent scrub might have added us to the list 1622 * fs_info->unused_bgs, so use a list_move operation 1623 * to add the block group to the deleted_bgs list. 1624 */ 1625 list_move(&block_group->bg_list, 1626 &trans->transaction->deleted_bgs); 1627 spin_unlock(&fs_info->unused_bgs_lock); 1628 btrfs_get_block_group(block_group); 1629 } 1630 end_trans: 1631 btrfs_end_transaction(trans); 1632 next: 1633 btrfs_put_block_group(block_group); 1634 spin_lock(&fs_info->unused_bgs_lock); 1635 } 1636 spin_unlock(&fs_info->unused_bgs_lock); 1637 mutex_unlock(&fs_info->reclaim_bgs_lock); 1638 return; 1639 1640 flip_async: 1641 btrfs_end_transaction(trans); 1642 mutex_unlock(&fs_info->reclaim_bgs_lock); 1643 btrfs_put_block_group(block_group); 1644 btrfs_discard_punt_unused_bgs_list(fs_info); 1645 } 1646 1647 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1648 { 1649 struct btrfs_fs_info *fs_info = bg->fs_info; 1650 1651 spin_lock(&fs_info->unused_bgs_lock); 1652 if (list_empty(&bg->bg_list)) { 1653 btrfs_get_block_group(bg); 1654 trace_btrfs_add_unused_block_group(bg); 1655 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1656 } 1657 spin_unlock(&fs_info->unused_bgs_lock); 1658 } 1659 1660 /* 1661 * We want block groups with a low number of used bytes to be in the beginning 1662 * of the list, so they will get reclaimed first. 1663 */ 1664 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1665 const struct list_head *b) 1666 { 1667 const struct btrfs_block_group *bg1, *bg2; 1668 1669 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1670 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1671 1672 return bg1->used > bg2->used; 1673 } 1674 1675 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1676 { 1677 if (btrfs_is_zoned(fs_info)) 1678 return btrfs_zoned_should_reclaim(fs_info); 1679 return true; 1680 } 1681 1682 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1683 { 1684 const struct btrfs_space_info *space_info = bg->space_info; 1685 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 1686 const u64 new_val = bg->used; 1687 const u64 old_val = new_val + bytes_freed; 1688 u64 thresh; 1689 1690 if (reclaim_thresh == 0) 1691 return false; 1692 1693 thresh = mult_perc(bg->length, reclaim_thresh); 1694 1695 /* 1696 * If we were below the threshold before don't reclaim, we are likely a 1697 * brand new block group and we don't want to relocate new block groups. 1698 */ 1699 if (old_val < thresh) 1700 return false; 1701 if (new_val >= thresh) 1702 return false; 1703 return true; 1704 } 1705 1706 void btrfs_reclaim_bgs_work(struct work_struct *work) 1707 { 1708 struct btrfs_fs_info *fs_info = 1709 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1710 struct btrfs_block_group *bg; 1711 struct btrfs_space_info *space_info; 1712 1713 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1714 return; 1715 1716 if (btrfs_fs_closing(fs_info)) 1717 return; 1718 1719 if (!btrfs_should_reclaim(fs_info)) 1720 return; 1721 1722 sb_start_write(fs_info->sb); 1723 1724 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1725 sb_end_write(fs_info->sb); 1726 return; 1727 } 1728 1729 /* 1730 * Long running balances can keep us blocked here for eternity, so 1731 * simply skip reclaim if we're unable to get the mutex. 1732 */ 1733 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1734 btrfs_exclop_finish(fs_info); 1735 sb_end_write(fs_info->sb); 1736 return; 1737 } 1738 1739 spin_lock(&fs_info->unused_bgs_lock); 1740 /* 1741 * Sort happens under lock because we can't simply splice it and sort. 1742 * The block groups might still be in use and reachable via bg_list, 1743 * and their presence in the reclaim_bgs list must be preserved. 1744 */ 1745 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1746 while (!list_empty(&fs_info->reclaim_bgs)) { 1747 u64 zone_unusable; 1748 int ret = 0; 1749 1750 bg = list_first_entry(&fs_info->reclaim_bgs, 1751 struct btrfs_block_group, 1752 bg_list); 1753 list_del_init(&bg->bg_list); 1754 1755 space_info = bg->space_info; 1756 spin_unlock(&fs_info->unused_bgs_lock); 1757 1758 /* Don't race with allocators so take the groups_sem */ 1759 down_write(&space_info->groups_sem); 1760 1761 spin_lock(&bg->lock); 1762 if (bg->reserved || bg->pinned || bg->ro) { 1763 /* 1764 * We want to bail if we made new allocations or have 1765 * outstanding allocations in this block group. We do 1766 * the ro check in case balance is currently acting on 1767 * this block group. 1768 */ 1769 spin_unlock(&bg->lock); 1770 up_write(&space_info->groups_sem); 1771 goto next; 1772 } 1773 if (bg->used == 0) { 1774 /* 1775 * It is possible that we trigger relocation on a block 1776 * group as its extents are deleted and it first goes 1777 * below the threshold, then shortly after goes empty. 1778 * 1779 * In this case, relocating it does delete it, but has 1780 * some overhead in relocation specific metadata, looking 1781 * for the non-existent extents and running some extra 1782 * transactions, which we can avoid by using one of the 1783 * other mechanisms for dealing with empty block groups. 1784 */ 1785 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1786 btrfs_mark_bg_unused(bg); 1787 spin_unlock(&bg->lock); 1788 up_write(&space_info->groups_sem); 1789 goto next; 1790 1791 } 1792 /* 1793 * The block group might no longer meet the reclaim condition by 1794 * the time we get around to reclaiming it, so to avoid 1795 * reclaiming overly full block_groups, skip reclaiming them. 1796 * 1797 * Since the decision making process also depends on the amount 1798 * being freed, pass in a fake giant value to skip that extra 1799 * check, which is more meaningful when adding to the list in 1800 * the first place. 1801 */ 1802 if (!should_reclaim_block_group(bg, bg->length)) { 1803 spin_unlock(&bg->lock); 1804 up_write(&space_info->groups_sem); 1805 goto next; 1806 } 1807 spin_unlock(&bg->lock); 1808 1809 /* Get out fast, in case we're unmounting the filesystem */ 1810 if (btrfs_fs_closing(fs_info)) { 1811 up_write(&space_info->groups_sem); 1812 goto next; 1813 } 1814 1815 /* 1816 * Cache the zone_unusable value before turning the block group 1817 * to read only. As soon as the blog group is read only it's 1818 * zone_unusable value gets moved to the block group's read-only 1819 * bytes and isn't available for calculations anymore. 1820 */ 1821 zone_unusable = bg->zone_unusable; 1822 ret = inc_block_group_ro(bg, 0); 1823 up_write(&space_info->groups_sem); 1824 if (ret < 0) 1825 goto next; 1826 1827 btrfs_info(fs_info, 1828 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1829 bg->start, 1830 div64_u64(bg->used * 100, bg->length), 1831 div64_u64(zone_unusable * 100, bg->length)); 1832 trace_btrfs_reclaim_block_group(bg); 1833 ret = btrfs_relocate_chunk(fs_info, bg->start); 1834 if (ret) { 1835 btrfs_dec_block_group_ro(bg); 1836 btrfs_err(fs_info, "error relocating chunk %llu", 1837 bg->start); 1838 } 1839 1840 next: 1841 btrfs_put_block_group(bg); 1842 spin_lock(&fs_info->unused_bgs_lock); 1843 } 1844 spin_unlock(&fs_info->unused_bgs_lock); 1845 mutex_unlock(&fs_info->reclaim_bgs_lock); 1846 btrfs_exclop_finish(fs_info); 1847 sb_end_write(fs_info->sb); 1848 } 1849 1850 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1851 { 1852 spin_lock(&fs_info->unused_bgs_lock); 1853 if (!list_empty(&fs_info->reclaim_bgs)) 1854 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1855 spin_unlock(&fs_info->unused_bgs_lock); 1856 } 1857 1858 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1859 { 1860 struct btrfs_fs_info *fs_info = bg->fs_info; 1861 1862 spin_lock(&fs_info->unused_bgs_lock); 1863 if (list_empty(&bg->bg_list)) { 1864 btrfs_get_block_group(bg); 1865 trace_btrfs_add_reclaim_block_group(bg); 1866 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1867 } 1868 spin_unlock(&fs_info->unused_bgs_lock); 1869 } 1870 1871 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1872 struct btrfs_path *path) 1873 { 1874 struct extent_map_tree *em_tree; 1875 struct extent_map *em; 1876 struct btrfs_block_group_item bg; 1877 struct extent_buffer *leaf; 1878 int slot; 1879 u64 flags; 1880 int ret = 0; 1881 1882 slot = path->slots[0]; 1883 leaf = path->nodes[0]; 1884 1885 em_tree = &fs_info->mapping_tree; 1886 read_lock(&em_tree->lock); 1887 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1888 read_unlock(&em_tree->lock); 1889 if (!em) { 1890 btrfs_err(fs_info, 1891 "logical %llu len %llu found bg but no related chunk", 1892 key->objectid, key->offset); 1893 return -ENOENT; 1894 } 1895 1896 if (em->start != key->objectid || em->len != key->offset) { 1897 btrfs_err(fs_info, 1898 "block group %llu len %llu mismatch with chunk %llu len %llu", 1899 key->objectid, key->offset, em->start, em->len); 1900 ret = -EUCLEAN; 1901 goto out_free_em; 1902 } 1903 1904 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1905 sizeof(bg)); 1906 flags = btrfs_stack_block_group_flags(&bg) & 1907 BTRFS_BLOCK_GROUP_TYPE_MASK; 1908 1909 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1910 btrfs_err(fs_info, 1911 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1912 key->objectid, key->offset, flags, 1913 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1914 ret = -EUCLEAN; 1915 } 1916 1917 out_free_em: 1918 free_extent_map(em); 1919 return ret; 1920 } 1921 1922 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1923 struct btrfs_path *path, 1924 struct btrfs_key *key) 1925 { 1926 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1927 int ret; 1928 struct btrfs_key found_key; 1929 1930 btrfs_for_each_slot(root, key, &found_key, path, ret) { 1931 if (found_key.objectid >= key->objectid && 1932 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1933 return read_bg_from_eb(fs_info, &found_key, path); 1934 } 1935 } 1936 return ret; 1937 } 1938 1939 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1940 { 1941 u64 extra_flags = chunk_to_extended(flags) & 1942 BTRFS_EXTENDED_PROFILE_MASK; 1943 1944 write_seqlock(&fs_info->profiles_lock); 1945 if (flags & BTRFS_BLOCK_GROUP_DATA) 1946 fs_info->avail_data_alloc_bits |= extra_flags; 1947 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1948 fs_info->avail_metadata_alloc_bits |= extra_flags; 1949 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1950 fs_info->avail_system_alloc_bits |= extra_flags; 1951 write_sequnlock(&fs_info->profiles_lock); 1952 } 1953 1954 /* 1955 * Map a physical disk address to a list of logical addresses. 1956 * 1957 * @fs_info: the filesystem 1958 * @chunk_start: logical address of block group 1959 * @physical: physical address to map to logical addresses 1960 * @logical: return array of logical addresses which map to @physical 1961 * @naddrs: length of @logical 1962 * @stripe_len: size of IO stripe for the given block group 1963 * 1964 * Maps a particular @physical disk address to a list of @logical addresses. 1965 * Used primarily to exclude those portions of a block group that contain super 1966 * block copies. 1967 */ 1968 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1969 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 1970 { 1971 struct extent_map *em; 1972 struct map_lookup *map; 1973 u64 *buf; 1974 u64 bytenr; 1975 u64 data_stripe_length; 1976 u64 io_stripe_size; 1977 int i, nr = 0; 1978 int ret = 0; 1979 1980 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1981 if (IS_ERR(em)) 1982 return -EIO; 1983 1984 map = em->map_lookup; 1985 data_stripe_length = em->orig_block_len; 1986 io_stripe_size = map->stripe_len; 1987 chunk_start = em->start; 1988 1989 /* For RAID5/6 adjust to a full IO stripe length */ 1990 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1991 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1992 1993 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1994 if (!buf) { 1995 ret = -ENOMEM; 1996 goto out; 1997 } 1998 1999 for (i = 0; i < map->num_stripes; i++) { 2000 bool already_inserted = false; 2001 u64 stripe_nr; 2002 u64 offset; 2003 int j; 2004 2005 if (!in_range(physical, map->stripes[i].physical, 2006 data_stripe_length)) 2007 continue; 2008 2009 stripe_nr = physical - map->stripes[i].physical; 2010 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 2011 2012 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2013 BTRFS_BLOCK_GROUP_RAID10)) { 2014 stripe_nr = stripe_nr * map->num_stripes + i; 2015 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 2016 } 2017 /* 2018 * The remaining case would be for RAID56, multiply by 2019 * nr_data_stripes(). Alternatively, just use rmap_len below 2020 * instead of map->stripe_len 2021 */ 2022 2023 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2024 2025 /* Ensure we don't add duplicate addresses */ 2026 for (j = 0; j < nr; j++) { 2027 if (buf[j] == bytenr) { 2028 already_inserted = true; 2029 break; 2030 } 2031 } 2032 2033 if (!already_inserted) 2034 buf[nr++] = bytenr; 2035 } 2036 2037 *logical = buf; 2038 *naddrs = nr; 2039 *stripe_len = io_stripe_size; 2040 out: 2041 free_extent_map(em); 2042 return ret; 2043 } 2044 2045 static int exclude_super_stripes(struct btrfs_block_group *cache) 2046 { 2047 struct btrfs_fs_info *fs_info = cache->fs_info; 2048 const bool zoned = btrfs_is_zoned(fs_info); 2049 u64 bytenr; 2050 u64 *logical; 2051 int stripe_len; 2052 int i, nr, ret; 2053 2054 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2055 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2056 cache->bytes_super += stripe_len; 2057 ret = btrfs_add_excluded_extent(fs_info, cache->start, 2058 stripe_len); 2059 if (ret) 2060 return ret; 2061 } 2062 2063 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2064 bytenr = btrfs_sb_offset(i); 2065 ret = btrfs_rmap_block(fs_info, cache->start, 2066 bytenr, &logical, &nr, &stripe_len); 2067 if (ret) 2068 return ret; 2069 2070 /* Shouldn't have super stripes in sequential zones */ 2071 if (zoned && nr) { 2072 btrfs_err(fs_info, 2073 "zoned: block group %llu must not contain super block", 2074 cache->start); 2075 return -EUCLEAN; 2076 } 2077 2078 while (nr--) { 2079 u64 len = min_t(u64, stripe_len, 2080 cache->start + cache->length - logical[nr]); 2081 2082 cache->bytes_super += len; 2083 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 2084 len); 2085 if (ret) { 2086 kfree(logical); 2087 return ret; 2088 } 2089 } 2090 2091 kfree(logical); 2092 } 2093 return 0; 2094 } 2095 2096 static struct btrfs_block_group *btrfs_create_block_group_cache( 2097 struct btrfs_fs_info *fs_info, u64 start) 2098 { 2099 struct btrfs_block_group *cache; 2100 2101 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2102 if (!cache) 2103 return NULL; 2104 2105 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2106 GFP_NOFS); 2107 if (!cache->free_space_ctl) { 2108 kfree(cache); 2109 return NULL; 2110 } 2111 2112 cache->start = start; 2113 2114 cache->fs_info = fs_info; 2115 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2116 2117 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2118 2119 refcount_set(&cache->refs, 1); 2120 spin_lock_init(&cache->lock); 2121 init_rwsem(&cache->data_rwsem); 2122 INIT_LIST_HEAD(&cache->list); 2123 INIT_LIST_HEAD(&cache->cluster_list); 2124 INIT_LIST_HEAD(&cache->bg_list); 2125 INIT_LIST_HEAD(&cache->ro_list); 2126 INIT_LIST_HEAD(&cache->discard_list); 2127 INIT_LIST_HEAD(&cache->dirty_list); 2128 INIT_LIST_HEAD(&cache->io_list); 2129 INIT_LIST_HEAD(&cache->active_bg_list); 2130 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2131 atomic_set(&cache->frozen, 0); 2132 mutex_init(&cache->free_space_lock); 2133 cache->full_stripe_locks_root.root = RB_ROOT; 2134 mutex_init(&cache->full_stripe_locks_root.lock); 2135 2136 return cache; 2137 } 2138 2139 /* 2140 * Iterate all chunks and verify that each of them has the corresponding block 2141 * group 2142 */ 2143 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2144 { 2145 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2146 struct extent_map *em; 2147 struct btrfs_block_group *bg; 2148 u64 start = 0; 2149 int ret = 0; 2150 2151 while (1) { 2152 read_lock(&map_tree->lock); 2153 /* 2154 * lookup_extent_mapping will return the first extent map 2155 * intersecting the range, so setting @len to 1 is enough to 2156 * get the first chunk. 2157 */ 2158 em = lookup_extent_mapping(map_tree, start, 1); 2159 read_unlock(&map_tree->lock); 2160 if (!em) 2161 break; 2162 2163 bg = btrfs_lookup_block_group(fs_info, em->start); 2164 if (!bg) { 2165 btrfs_err(fs_info, 2166 "chunk start=%llu len=%llu doesn't have corresponding block group", 2167 em->start, em->len); 2168 ret = -EUCLEAN; 2169 free_extent_map(em); 2170 break; 2171 } 2172 if (bg->start != em->start || bg->length != em->len || 2173 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2174 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2175 btrfs_err(fs_info, 2176 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2177 em->start, em->len, 2178 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2179 bg->start, bg->length, 2180 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2181 ret = -EUCLEAN; 2182 free_extent_map(em); 2183 btrfs_put_block_group(bg); 2184 break; 2185 } 2186 start = em->start + em->len; 2187 free_extent_map(em); 2188 btrfs_put_block_group(bg); 2189 } 2190 return ret; 2191 } 2192 2193 static int read_one_block_group(struct btrfs_fs_info *info, 2194 struct btrfs_block_group_item *bgi, 2195 const struct btrfs_key *key, 2196 int need_clear) 2197 { 2198 struct btrfs_block_group *cache; 2199 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2200 int ret; 2201 2202 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2203 2204 cache = btrfs_create_block_group_cache(info, key->objectid); 2205 if (!cache) 2206 return -ENOMEM; 2207 2208 cache->length = key->offset; 2209 cache->used = btrfs_stack_block_group_used(bgi); 2210 cache->commit_used = cache->used; 2211 cache->flags = btrfs_stack_block_group_flags(bgi); 2212 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2213 2214 set_free_space_tree_thresholds(cache); 2215 2216 if (need_clear) { 2217 /* 2218 * When we mount with old space cache, we need to 2219 * set BTRFS_DC_CLEAR and set dirty flag. 2220 * 2221 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2222 * truncate the old free space cache inode and 2223 * setup a new one. 2224 * b) Setting 'dirty flag' makes sure that we flush 2225 * the new space cache info onto disk. 2226 */ 2227 if (btrfs_test_opt(info, SPACE_CACHE)) 2228 cache->disk_cache_state = BTRFS_DC_CLEAR; 2229 } 2230 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2231 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2232 btrfs_err(info, 2233 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2234 cache->start); 2235 ret = -EINVAL; 2236 goto error; 2237 } 2238 2239 ret = btrfs_load_block_group_zone_info(cache, false); 2240 if (ret) { 2241 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2242 cache->start); 2243 goto error; 2244 } 2245 2246 /* 2247 * We need to exclude the super stripes now so that the space info has 2248 * super bytes accounted for, otherwise we'll think we have more space 2249 * than we actually do. 2250 */ 2251 ret = exclude_super_stripes(cache); 2252 if (ret) { 2253 /* We may have excluded something, so call this just in case. */ 2254 btrfs_free_excluded_extents(cache); 2255 goto error; 2256 } 2257 2258 /* 2259 * For zoned filesystem, space after the allocation offset is the only 2260 * free space for a block group. So, we don't need any caching work. 2261 * btrfs_calc_zone_unusable() will set the amount of free space and 2262 * zone_unusable space. 2263 * 2264 * For regular filesystem, check for two cases, either we are full, and 2265 * therefore don't need to bother with the caching work since we won't 2266 * find any space, or we are empty, and we can just add all the space 2267 * in and be done with it. This saves us _a_lot_ of time, particularly 2268 * in the full case. 2269 */ 2270 if (btrfs_is_zoned(info)) { 2271 btrfs_calc_zone_unusable(cache); 2272 /* Should not have any excluded extents. Just in case, though. */ 2273 btrfs_free_excluded_extents(cache); 2274 } else if (cache->length == cache->used) { 2275 cache->cached = BTRFS_CACHE_FINISHED; 2276 btrfs_free_excluded_extents(cache); 2277 } else if (cache->used == 0) { 2278 cache->cached = BTRFS_CACHE_FINISHED; 2279 add_new_free_space(cache, cache->start, 2280 cache->start + cache->length); 2281 btrfs_free_excluded_extents(cache); 2282 } 2283 2284 ret = btrfs_add_block_group_cache(info, cache); 2285 if (ret) { 2286 btrfs_remove_free_space_cache(cache); 2287 goto error; 2288 } 2289 trace_btrfs_add_block_group(info, cache, 0); 2290 btrfs_add_bg_to_space_info(info, cache); 2291 2292 set_avail_alloc_bits(info, cache->flags); 2293 if (btrfs_chunk_writeable(info, cache->start)) { 2294 if (cache->used == 0) { 2295 ASSERT(list_empty(&cache->bg_list)); 2296 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2297 btrfs_discard_queue_work(&info->discard_ctl, cache); 2298 else 2299 btrfs_mark_bg_unused(cache); 2300 } 2301 } else { 2302 inc_block_group_ro(cache, 1); 2303 } 2304 2305 return 0; 2306 error: 2307 btrfs_put_block_group(cache); 2308 return ret; 2309 } 2310 2311 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2312 { 2313 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2314 struct rb_node *node; 2315 int ret = 0; 2316 2317 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2318 struct extent_map *em; 2319 struct map_lookup *map; 2320 struct btrfs_block_group *bg; 2321 2322 em = rb_entry(node, struct extent_map, rb_node); 2323 map = em->map_lookup; 2324 bg = btrfs_create_block_group_cache(fs_info, em->start); 2325 if (!bg) { 2326 ret = -ENOMEM; 2327 break; 2328 } 2329 2330 /* Fill dummy cache as FULL */ 2331 bg->length = em->len; 2332 bg->flags = map->type; 2333 bg->cached = BTRFS_CACHE_FINISHED; 2334 bg->used = em->len; 2335 bg->flags = map->type; 2336 ret = btrfs_add_block_group_cache(fs_info, bg); 2337 /* 2338 * We may have some valid block group cache added already, in 2339 * that case we skip to the next one. 2340 */ 2341 if (ret == -EEXIST) { 2342 ret = 0; 2343 btrfs_put_block_group(bg); 2344 continue; 2345 } 2346 2347 if (ret) { 2348 btrfs_remove_free_space_cache(bg); 2349 btrfs_put_block_group(bg); 2350 break; 2351 } 2352 2353 btrfs_add_bg_to_space_info(fs_info, bg); 2354 2355 set_avail_alloc_bits(fs_info, bg->flags); 2356 } 2357 if (!ret) 2358 btrfs_init_global_block_rsv(fs_info); 2359 return ret; 2360 } 2361 2362 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2363 { 2364 struct btrfs_root *root = btrfs_block_group_root(info); 2365 struct btrfs_path *path; 2366 int ret; 2367 struct btrfs_block_group *cache; 2368 struct btrfs_space_info *space_info; 2369 struct btrfs_key key; 2370 int need_clear = 0; 2371 u64 cache_gen; 2372 2373 /* 2374 * Either no extent root (with ibadroots rescue option) or we have 2375 * unsupported RO options. The fs can never be mounted read-write, so no 2376 * need to waste time searching block group items. 2377 * 2378 * This also allows new extent tree related changes to be RO compat, 2379 * no need for a full incompat flag. 2380 */ 2381 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2382 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2383 return fill_dummy_bgs(info); 2384 2385 key.objectid = 0; 2386 key.offset = 0; 2387 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2388 path = btrfs_alloc_path(); 2389 if (!path) 2390 return -ENOMEM; 2391 2392 cache_gen = btrfs_super_cache_generation(info->super_copy); 2393 if (btrfs_test_opt(info, SPACE_CACHE) && 2394 btrfs_super_generation(info->super_copy) != cache_gen) 2395 need_clear = 1; 2396 if (btrfs_test_opt(info, CLEAR_CACHE)) 2397 need_clear = 1; 2398 2399 while (1) { 2400 struct btrfs_block_group_item bgi; 2401 struct extent_buffer *leaf; 2402 int slot; 2403 2404 ret = find_first_block_group(info, path, &key); 2405 if (ret > 0) 2406 break; 2407 if (ret != 0) 2408 goto error; 2409 2410 leaf = path->nodes[0]; 2411 slot = path->slots[0]; 2412 2413 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2414 sizeof(bgi)); 2415 2416 btrfs_item_key_to_cpu(leaf, &key, slot); 2417 btrfs_release_path(path); 2418 ret = read_one_block_group(info, &bgi, &key, need_clear); 2419 if (ret < 0) 2420 goto error; 2421 key.objectid += key.offset; 2422 key.offset = 0; 2423 } 2424 btrfs_release_path(path); 2425 2426 list_for_each_entry(space_info, &info->space_info, list) { 2427 int i; 2428 2429 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2430 if (list_empty(&space_info->block_groups[i])) 2431 continue; 2432 cache = list_first_entry(&space_info->block_groups[i], 2433 struct btrfs_block_group, 2434 list); 2435 btrfs_sysfs_add_block_group_type(cache); 2436 } 2437 2438 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2439 (BTRFS_BLOCK_GROUP_RAID10 | 2440 BTRFS_BLOCK_GROUP_RAID1_MASK | 2441 BTRFS_BLOCK_GROUP_RAID56_MASK | 2442 BTRFS_BLOCK_GROUP_DUP))) 2443 continue; 2444 /* 2445 * Avoid allocating from un-mirrored block group if there are 2446 * mirrored block groups. 2447 */ 2448 list_for_each_entry(cache, 2449 &space_info->block_groups[BTRFS_RAID_RAID0], 2450 list) 2451 inc_block_group_ro(cache, 1); 2452 list_for_each_entry(cache, 2453 &space_info->block_groups[BTRFS_RAID_SINGLE], 2454 list) 2455 inc_block_group_ro(cache, 1); 2456 } 2457 2458 btrfs_init_global_block_rsv(info); 2459 ret = check_chunk_block_group_mappings(info); 2460 error: 2461 btrfs_free_path(path); 2462 /* 2463 * We've hit some error while reading the extent tree, and have 2464 * rescue=ibadroots mount option. 2465 * Try to fill the tree using dummy block groups so that the user can 2466 * continue to mount and grab their data. 2467 */ 2468 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2469 ret = fill_dummy_bgs(info); 2470 return ret; 2471 } 2472 2473 /* 2474 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2475 * allocation. 2476 * 2477 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2478 * phases. 2479 */ 2480 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2481 struct btrfs_block_group *block_group) 2482 { 2483 struct btrfs_fs_info *fs_info = trans->fs_info; 2484 struct btrfs_block_group_item bgi; 2485 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2486 struct btrfs_key key; 2487 u64 old_commit_used; 2488 int ret; 2489 2490 spin_lock(&block_group->lock); 2491 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2492 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2493 block_group->global_root_id); 2494 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2495 old_commit_used = block_group->commit_used; 2496 block_group->commit_used = block_group->used; 2497 key.objectid = block_group->start; 2498 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2499 key.offset = block_group->length; 2500 spin_unlock(&block_group->lock); 2501 2502 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2503 if (ret < 0) { 2504 spin_lock(&block_group->lock); 2505 block_group->commit_used = old_commit_used; 2506 spin_unlock(&block_group->lock); 2507 } 2508 2509 return ret; 2510 } 2511 2512 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2513 struct btrfs_device *device, u64 chunk_offset, 2514 u64 start, u64 num_bytes) 2515 { 2516 struct btrfs_fs_info *fs_info = device->fs_info; 2517 struct btrfs_root *root = fs_info->dev_root; 2518 struct btrfs_path *path; 2519 struct btrfs_dev_extent *extent; 2520 struct extent_buffer *leaf; 2521 struct btrfs_key key; 2522 int ret; 2523 2524 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2525 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2526 path = btrfs_alloc_path(); 2527 if (!path) 2528 return -ENOMEM; 2529 2530 key.objectid = device->devid; 2531 key.type = BTRFS_DEV_EXTENT_KEY; 2532 key.offset = start; 2533 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2534 if (ret) 2535 goto out; 2536 2537 leaf = path->nodes[0]; 2538 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2539 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2540 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2541 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2542 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2543 2544 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2545 btrfs_mark_buffer_dirty(leaf); 2546 out: 2547 btrfs_free_path(path); 2548 return ret; 2549 } 2550 2551 /* 2552 * This function belongs to phase 2. 2553 * 2554 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2555 * phases. 2556 */ 2557 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2558 u64 chunk_offset, u64 chunk_size) 2559 { 2560 struct btrfs_fs_info *fs_info = trans->fs_info; 2561 struct btrfs_device *device; 2562 struct extent_map *em; 2563 struct map_lookup *map; 2564 u64 dev_offset; 2565 u64 stripe_size; 2566 int i; 2567 int ret = 0; 2568 2569 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2570 if (IS_ERR(em)) 2571 return PTR_ERR(em); 2572 2573 map = em->map_lookup; 2574 stripe_size = em->orig_block_len; 2575 2576 /* 2577 * Take the device list mutex to prevent races with the final phase of 2578 * a device replace operation that replaces the device object associated 2579 * with the map's stripes, because the device object's id can change 2580 * at any time during that final phase of the device replace operation 2581 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2582 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2583 * resulting in persisting a device extent item with such ID. 2584 */ 2585 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2586 for (i = 0; i < map->num_stripes; i++) { 2587 device = map->stripes[i].dev; 2588 dev_offset = map->stripes[i].physical; 2589 2590 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2591 stripe_size); 2592 if (ret) 2593 break; 2594 } 2595 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2596 2597 free_extent_map(em); 2598 return ret; 2599 } 2600 2601 /* 2602 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2603 * chunk allocation. 2604 * 2605 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2606 * phases. 2607 */ 2608 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2609 { 2610 struct btrfs_fs_info *fs_info = trans->fs_info; 2611 struct btrfs_block_group *block_group; 2612 int ret = 0; 2613 2614 while (!list_empty(&trans->new_bgs)) { 2615 int index; 2616 2617 block_group = list_first_entry(&trans->new_bgs, 2618 struct btrfs_block_group, 2619 bg_list); 2620 if (ret) 2621 goto next; 2622 2623 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2624 2625 ret = insert_block_group_item(trans, block_group); 2626 if (ret) 2627 btrfs_abort_transaction(trans, ret); 2628 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2629 &block_group->runtime_flags)) { 2630 mutex_lock(&fs_info->chunk_mutex); 2631 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2632 mutex_unlock(&fs_info->chunk_mutex); 2633 if (ret) 2634 btrfs_abort_transaction(trans, ret); 2635 } 2636 ret = insert_dev_extents(trans, block_group->start, 2637 block_group->length); 2638 if (ret) 2639 btrfs_abort_transaction(trans, ret); 2640 add_block_group_free_space(trans, block_group); 2641 2642 /* 2643 * If we restriped during balance, we may have added a new raid 2644 * type, so now add the sysfs entries when it is safe to do so. 2645 * We don't have to worry about locking here as it's handled in 2646 * btrfs_sysfs_add_block_group_type. 2647 */ 2648 if (block_group->space_info->block_group_kobjs[index] == NULL) 2649 btrfs_sysfs_add_block_group_type(block_group); 2650 2651 /* Already aborted the transaction if it failed. */ 2652 next: 2653 btrfs_delayed_refs_rsv_release(fs_info, 1); 2654 list_del_init(&block_group->bg_list); 2655 } 2656 btrfs_trans_release_chunk_metadata(trans); 2657 } 2658 2659 /* 2660 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2661 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2662 */ 2663 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2664 { 2665 u64 div = SZ_1G; 2666 u64 index; 2667 2668 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2669 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2670 2671 /* If we have a smaller fs index based on 128MiB. */ 2672 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2673 div = SZ_128M; 2674 2675 offset = div64_u64(offset, div); 2676 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2677 return index; 2678 } 2679 2680 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2681 u64 bytes_used, u64 type, 2682 u64 chunk_offset, u64 size) 2683 { 2684 struct btrfs_fs_info *fs_info = trans->fs_info; 2685 struct btrfs_block_group *cache; 2686 int ret; 2687 2688 btrfs_set_log_full_commit(trans); 2689 2690 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2691 if (!cache) 2692 return ERR_PTR(-ENOMEM); 2693 2694 cache->length = size; 2695 set_free_space_tree_thresholds(cache); 2696 cache->used = bytes_used; 2697 cache->flags = type; 2698 cache->cached = BTRFS_CACHE_FINISHED; 2699 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2700 2701 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2702 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2703 2704 ret = btrfs_load_block_group_zone_info(cache, true); 2705 if (ret) { 2706 btrfs_put_block_group(cache); 2707 return ERR_PTR(ret); 2708 } 2709 2710 ret = exclude_super_stripes(cache); 2711 if (ret) { 2712 /* We may have excluded something, so call this just in case */ 2713 btrfs_free_excluded_extents(cache); 2714 btrfs_put_block_group(cache); 2715 return ERR_PTR(ret); 2716 } 2717 2718 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2719 2720 btrfs_free_excluded_extents(cache); 2721 2722 /* 2723 * Ensure the corresponding space_info object is created and 2724 * assigned to our block group. We want our bg to be added to the rbtree 2725 * with its ->space_info set. 2726 */ 2727 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2728 ASSERT(cache->space_info); 2729 2730 ret = btrfs_add_block_group_cache(fs_info, cache); 2731 if (ret) { 2732 btrfs_remove_free_space_cache(cache); 2733 btrfs_put_block_group(cache); 2734 return ERR_PTR(ret); 2735 } 2736 2737 /* 2738 * Now that our block group has its ->space_info set and is inserted in 2739 * the rbtree, update the space info's counters. 2740 */ 2741 trace_btrfs_add_block_group(fs_info, cache, 1); 2742 btrfs_add_bg_to_space_info(fs_info, cache); 2743 btrfs_update_global_block_rsv(fs_info); 2744 2745 #ifdef CONFIG_BTRFS_DEBUG 2746 if (btrfs_should_fragment_free_space(cache)) { 2747 u64 new_bytes_used = size - bytes_used; 2748 2749 cache->space_info->bytes_used += new_bytes_used >> 1; 2750 fragment_free_space(cache); 2751 } 2752 #endif 2753 2754 list_add_tail(&cache->bg_list, &trans->new_bgs); 2755 trans->delayed_ref_updates++; 2756 btrfs_update_delayed_refs_rsv(trans); 2757 2758 set_avail_alloc_bits(fs_info, type); 2759 return cache; 2760 } 2761 2762 /* 2763 * Mark one block group RO, can be called several times for the same block 2764 * group. 2765 * 2766 * @cache: the destination block group 2767 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2768 * ensure we still have some free space after marking this 2769 * block group RO. 2770 */ 2771 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2772 bool do_chunk_alloc) 2773 { 2774 struct btrfs_fs_info *fs_info = cache->fs_info; 2775 struct btrfs_trans_handle *trans; 2776 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2777 u64 alloc_flags; 2778 int ret; 2779 bool dirty_bg_running; 2780 2781 /* 2782 * This can only happen when we are doing read-only scrub on read-only 2783 * mount. 2784 * In that case we should not start a new transaction on read-only fs. 2785 * Thus here we skip all chunk allocations. 2786 */ 2787 if (sb_rdonly(fs_info->sb)) { 2788 mutex_lock(&fs_info->ro_block_group_mutex); 2789 ret = inc_block_group_ro(cache, 0); 2790 mutex_unlock(&fs_info->ro_block_group_mutex); 2791 return ret; 2792 } 2793 2794 do { 2795 trans = btrfs_join_transaction(root); 2796 if (IS_ERR(trans)) 2797 return PTR_ERR(trans); 2798 2799 dirty_bg_running = false; 2800 2801 /* 2802 * We're not allowed to set block groups readonly after the dirty 2803 * block group cache has started writing. If it already started, 2804 * back off and let this transaction commit. 2805 */ 2806 mutex_lock(&fs_info->ro_block_group_mutex); 2807 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2808 u64 transid = trans->transid; 2809 2810 mutex_unlock(&fs_info->ro_block_group_mutex); 2811 btrfs_end_transaction(trans); 2812 2813 ret = btrfs_wait_for_commit(fs_info, transid); 2814 if (ret) 2815 return ret; 2816 dirty_bg_running = true; 2817 } 2818 } while (dirty_bg_running); 2819 2820 if (do_chunk_alloc) { 2821 /* 2822 * If we are changing raid levels, try to allocate a 2823 * corresponding block group with the new raid level. 2824 */ 2825 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2826 if (alloc_flags != cache->flags) { 2827 ret = btrfs_chunk_alloc(trans, alloc_flags, 2828 CHUNK_ALLOC_FORCE); 2829 /* 2830 * ENOSPC is allowed here, we may have enough space 2831 * already allocated at the new raid level to carry on 2832 */ 2833 if (ret == -ENOSPC) 2834 ret = 0; 2835 if (ret < 0) 2836 goto out; 2837 } 2838 } 2839 2840 ret = inc_block_group_ro(cache, 0); 2841 if (!do_chunk_alloc || ret == -ETXTBSY) 2842 goto unlock_out; 2843 if (!ret) 2844 goto out; 2845 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2846 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2847 if (ret < 0) 2848 goto out; 2849 /* 2850 * We have allocated a new chunk. We also need to activate that chunk to 2851 * grant metadata tickets for zoned filesystem. 2852 */ 2853 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2854 if (ret < 0) 2855 goto out; 2856 2857 ret = inc_block_group_ro(cache, 0); 2858 if (ret == -ETXTBSY) 2859 goto unlock_out; 2860 out: 2861 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2862 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2863 mutex_lock(&fs_info->chunk_mutex); 2864 check_system_chunk(trans, alloc_flags); 2865 mutex_unlock(&fs_info->chunk_mutex); 2866 } 2867 unlock_out: 2868 mutex_unlock(&fs_info->ro_block_group_mutex); 2869 2870 btrfs_end_transaction(trans); 2871 return ret; 2872 } 2873 2874 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2875 { 2876 struct btrfs_space_info *sinfo = cache->space_info; 2877 u64 num_bytes; 2878 2879 BUG_ON(!cache->ro); 2880 2881 spin_lock(&sinfo->lock); 2882 spin_lock(&cache->lock); 2883 if (!--cache->ro) { 2884 if (btrfs_is_zoned(cache->fs_info)) { 2885 /* Migrate zone_unusable bytes back */ 2886 cache->zone_unusable = 2887 (cache->alloc_offset - cache->used) + 2888 (cache->length - cache->zone_capacity); 2889 sinfo->bytes_zone_unusable += cache->zone_unusable; 2890 sinfo->bytes_readonly -= cache->zone_unusable; 2891 } 2892 num_bytes = cache->length - cache->reserved - 2893 cache->pinned - cache->bytes_super - 2894 cache->zone_unusable - cache->used; 2895 sinfo->bytes_readonly -= num_bytes; 2896 list_del_init(&cache->ro_list); 2897 } 2898 spin_unlock(&cache->lock); 2899 spin_unlock(&sinfo->lock); 2900 } 2901 2902 static int update_block_group_item(struct btrfs_trans_handle *trans, 2903 struct btrfs_path *path, 2904 struct btrfs_block_group *cache) 2905 { 2906 struct btrfs_fs_info *fs_info = trans->fs_info; 2907 int ret; 2908 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2909 unsigned long bi; 2910 struct extent_buffer *leaf; 2911 struct btrfs_block_group_item bgi; 2912 struct btrfs_key key; 2913 u64 old_commit_used; 2914 u64 used; 2915 2916 /* 2917 * Block group items update can be triggered out of commit transaction 2918 * critical section, thus we need a consistent view of used bytes. 2919 * We cannot use cache->used directly outside of the spin lock, as it 2920 * may be changed. 2921 */ 2922 spin_lock(&cache->lock); 2923 old_commit_used = cache->commit_used; 2924 used = cache->used; 2925 /* No change in used bytes, can safely skip it. */ 2926 if (cache->commit_used == used) { 2927 spin_unlock(&cache->lock); 2928 return 0; 2929 } 2930 cache->commit_used = used; 2931 spin_unlock(&cache->lock); 2932 2933 key.objectid = cache->start; 2934 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2935 key.offset = cache->length; 2936 2937 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2938 if (ret) { 2939 if (ret > 0) 2940 ret = -ENOENT; 2941 goto fail; 2942 } 2943 2944 leaf = path->nodes[0]; 2945 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2946 btrfs_set_stack_block_group_used(&bgi, used); 2947 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2948 cache->global_root_id); 2949 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2950 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2951 btrfs_mark_buffer_dirty(leaf); 2952 fail: 2953 btrfs_release_path(path); 2954 /* We didn't update the block group item, need to revert @commit_used. */ 2955 if (ret < 0) { 2956 spin_lock(&cache->lock); 2957 cache->commit_used = old_commit_used; 2958 spin_unlock(&cache->lock); 2959 } 2960 return ret; 2961 2962 } 2963 2964 static int cache_save_setup(struct btrfs_block_group *block_group, 2965 struct btrfs_trans_handle *trans, 2966 struct btrfs_path *path) 2967 { 2968 struct btrfs_fs_info *fs_info = block_group->fs_info; 2969 struct btrfs_root *root = fs_info->tree_root; 2970 struct inode *inode = NULL; 2971 struct extent_changeset *data_reserved = NULL; 2972 u64 alloc_hint = 0; 2973 int dcs = BTRFS_DC_ERROR; 2974 u64 cache_size = 0; 2975 int retries = 0; 2976 int ret = 0; 2977 2978 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2979 return 0; 2980 2981 /* 2982 * If this block group is smaller than 100 megs don't bother caching the 2983 * block group. 2984 */ 2985 if (block_group->length < (100 * SZ_1M)) { 2986 spin_lock(&block_group->lock); 2987 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2988 spin_unlock(&block_group->lock); 2989 return 0; 2990 } 2991 2992 if (TRANS_ABORTED(trans)) 2993 return 0; 2994 again: 2995 inode = lookup_free_space_inode(block_group, path); 2996 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2997 ret = PTR_ERR(inode); 2998 btrfs_release_path(path); 2999 goto out; 3000 } 3001 3002 if (IS_ERR(inode)) { 3003 BUG_ON(retries); 3004 retries++; 3005 3006 if (block_group->ro) 3007 goto out_free; 3008 3009 ret = create_free_space_inode(trans, block_group, path); 3010 if (ret) 3011 goto out_free; 3012 goto again; 3013 } 3014 3015 /* 3016 * We want to set the generation to 0, that way if anything goes wrong 3017 * from here on out we know not to trust this cache when we load up next 3018 * time. 3019 */ 3020 BTRFS_I(inode)->generation = 0; 3021 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3022 if (ret) { 3023 /* 3024 * So theoretically we could recover from this, simply set the 3025 * super cache generation to 0 so we know to invalidate the 3026 * cache, but then we'd have to keep track of the block groups 3027 * that fail this way so we know we _have_ to reset this cache 3028 * before the next commit or risk reading stale cache. So to 3029 * limit our exposure to horrible edge cases lets just abort the 3030 * transaction, this only happens in really bad situations 3031 * anyway. 3032 */ 3033 btrfs_abort_transaction(trans, ret); 3034 goto out_put; 3035 } 3036 WARN_ON(ret); 3037 3038 /* We've already setup this transaction, go ahead and exit */ 3039 if (block_group->cache_generation == trans->transid && 3040 i_size_read(inode)) { 3041 dcs = BTRFS_DC_SETUP; 3042 goto out_put; 3043 } 3044 3045 if (i_size_read(inode) > 0) { 3046 ret = btrfs_check_trunc_cache_free_space(fs_info, 3047 &fs_info->global_block_rsv); 3048 if (ret) 3049 goto out_put; 3050 3051 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3052 if (ret) 3053 goto out_put; 3054 } 3055 3056 spin_lock(&block_group->lock); 3057 if (block_group->cached != BTRFS_CACHE_FINISHED || 3058 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3059 /* 3060 * don't bother trying to write stuff out _if_ 3061 * a) we're not cached, 3062 * b) we're with nospace_cache mount option, 3063 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3064 */ 3065 dcs = BTRFS_DC_WRITTEN; 3066 spin_unlock(&block_group->lock); 3067 goto out_put; 3068 } 3069 spin_unlock(&block_group->lock); 3070 3071 /* 3072 * We hit an ENOSPC when setting up the cache in this transaction, just 3073 * skip doing the setup, we've already cleared the cache so we're safe. 3074 */ 3075 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3076 ret = -ENOSPC; 3077 goto out_put; 3078 } 3079 3080 /* 3081 * Try to preallocate enough space based on how big the block group is. 3082 * Keep in mind this has to include any pinned space which could end up 3083 * taking up quite a bit since it's not folded into the other space 3084 * cache. 3085 */ 3086 cache_size = div_u64(block_group->length, SZ_256M); 3087 if (!cache_size) 3088 cache_size = 1; 3089 3090 cache_size *= 16; 3091 cache_size *= fs_info->sectorsize; 3092 3093 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3094 cache_size, false); 3095 if (ret) 3096 goto out_put; 3097 3098 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3099 cache_size, cache_size, 3100 &alloc_hint); 3101 /* 3102 * Our cache requires contiguous chunks so that we don't modify a bunch 3103 * of metadata or split extents when writing the cache out, which means 3104 * we can enospc if we are heavily fragmented in addition to just normal 3105 * out of space conditions. So if we hit this just skip setting up any 3106 * other block groups for this transaction, maybe we'll unpin enough 3107 * space the next time around. 3108 */ 3109 if (!ret) 3110 dcs = BTRFS_DC_SETUP; 3111 else if (ret == -ENOSPC) 3112 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3113 3114 out_put: 3115 iput(inode); 3116 out_free: 3117 btrfs_release_path(path); 3118 out: 3119 spin_lock(&block_group->lock); 3120 if (!ret && dcs == BTRFS_DC_SETUP) 3121 block_group->cache_generation = trans->transid; 3122 block_group->disk_cache_state = dcs; 3123 spin_unlock(&block_group->lock); 3124 3125 extent_changeset_free(data_reserved); 3126 return ret; 3127 } 3128 3129 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3130 { 3131 struct btrfs_fs_info *fs_info = trans->fs_info; 3132 struct btrfs_block_group *cache, *tmp; 3133 struct btrfs_transaction *cur_trans = trans->transaction; 3134 struct btrfs_path *path; 3135 3136 if (list_empty(&cur_trans->dirty_bgs) || 3137 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3138 return 0; 3139 3140 path = btrfs_alloc_path(); 3141 if (!path) 3142 return -ENOMEM; 3143 3144 /* Could add new block groups, use _safe just in case */ 3145 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3146 dirty_list) { 3147 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3148 cache_save_setup(cache, trans, path); 3149 } 3150 3151 btrfs_free_path(path); 3152 return 0; 3153 } 3154 3155 /* 3156 * Transaction commit does final block group cache writeback during a critical 3157 * section where nothing is allowed to change the FS. This is required in 3158 * order for the cache to actually match the block group, but can introduce a 3159 * lot of latency into the commit. 3160 * 3161 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3162 * There's a chance we'll have to redo some of it if the block group changes 3163 * again during the commit, but it greatly reduces the commit latency by 3164 * getting rid of the easy block groups while we're still allowing others to 3165 * join the commit. 3166 */ 3167 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3168 { 3169 struct btrfs_fs_info *fs_info = trans->fs_info; 3170 struct btrfs_block_group *cache; 3171 struct btrfs_transaction *cur_trans = trans->transaction; 3172 int ret = 0; 3173 int should_put; 3174 struct btrfs_path *path = NULL; 3175 LIST_HEAD(dirty); 3176 struct list_head *io = &cur_trans->io_bgs; 3177 int loops = 0; 3178 3179 spin_lock(&cur_trans->dirty_bgs_lock); 3180 if (list_empty(&cur_trans->dirty_bgs)) { 3181 spin_unlock(&cur_trans->dirty_bgs_lock); 3182 return 0; 3183 } 3184 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3185 spin_unlock(&cur_trans->dirty_bgs_lock); 3186 3187 again: 3188 /* Make sure all the block groups on our dirty list actually exist */ 3189 btrfs_create_pending_block_groups(trans); 3190 3191 if (!path) { 3192 path = btrfs_alloc_path(); 3193 if (!path) { 3194 ret = -ENOMEM; 3195 goto out; 3196 } 3197 } 3198 3199 /* 3200 * cache_write_mutex is here only to save us from balance or automatic 3201 * removal of empty block groups deleting this block group while we are 3202 * writing out the cache 3203 */ 3204 mutex_lock(&trans->transaction->cache_write_mutex); 3205 while (!list_empty(&dirty)) { 3206 bool drop_reserve = true; 3207 3208 cache = list_first_entry(&dirty, struct btrfs_block_group, 3209 dirty_list); 3210 /* 3211 * This can happen if something re-dirties a block group that 3212 * is already under IO. Just wait for it to finish and then do 3213 * it all again 3214 */ 3215 if (!list_empty(&cache->io_list)) { 3216 list_del_init(&cache->io_list); 3217 btrfs_wait_cache_io(trans, cache, path); 3218 btrfs_put_block_group(cache); 3219 } 3220 3221 3222 /* 3223 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3224 * it should update the cache_state. Don't delete until after 3225 * we wait. 3226 * 3227 * Since we're not running in the commit critical section 3228 * we need the dirty_bgs_lock to protect from update_block_group 3229 */ 3230 spin_lock(&cur_trans->dirty_bgs_lock); 3231 list_del_init(&cache->dirty_list); 3232 spin_unlock(&cur_trans->dirty_bgs_lock); 3233 3234 should_put = 1; 3235 3236 cache_save_setup(cache, trans, path); 3237 3238 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3239 cache->io_ctl.inode = NULL; 3240 ret = btrfs_write_out_cache(trans, cache, path); 3241 if (ret == 0 && cache->io_ctl.inode) { 3242 should_put = 0; 3243 3244 /* 3245 * The cache_write_mutex is protecting the 3246 * io_list, also refer to the definition of 3247 * btrfs_transaction::io_bgs for more details 3248 */ 3249 list_add_tail(&cache->io_list, io); 3250 } else { 3251 /* 3252 * If we failed to write the cache, the 3253 * generation will be bad and life goes on 3254 */ 3255 ret = 0; 3256 } 3257 } 3258 if (!ret) { 3259 ret = update_block_group_item(trans, path, cache); 3260 /* 3261 * Our block group might still be attached to the list 3262 * of new block groups in the transaction handle of some 3263 * other task (struct btrfs_trans_handle->new_bgs). This 3264 * means its block group item isn't yet in the extent 3265 * tree. If this happens ignore the error, as we will 3266 * try again later in the critical section of the 3267 * transaction commit. 3268 */ 3269 if (ret == -ENOENT) { 3270 ret = 0; 3271 spin_lock(&cur_trans->dirty_bgs_lock); 3272 if (list_empty(&cache->dirty_list)) { 3273 list_add_tail(&cache->dirty_list, 3274 &cur_trans->dirty_bgs); 3275 btrfs_get_block_group(cache); 3276 drop_reserve = false; 3277 } 3278 spin_unlock(&cur_trans->dirty_bgs_lock); 3279 } else if (ret) { 3280 btrfs_abort_transaction(trans, ret); 3281 } 3282 } 3283 3284 /* If it's not on the io list, we need to put the block group */ 3285 if (should_put) 3286 btrfs_put_block_group(cache); 3287 if (drop_reserve) 3288 btrfs_delayed_refs_rsv_release(fs_info, 1); 3289 /* 3290 * Avoid blocking other tasks for too long. It might even save 3291 * us from writing caches for block groups that are going to be 3292 * removed. 3293 */ 3294 mutex_unlock(&trans->transaction->cache_write_mutex); 3295 if (ret) 3296 goto out; 3297 mutex_lock(&trans->transaction->cache_write_mutex); 3298 } 3299 mutex_unlock(&trans->transaction->cache_write_mutex); 3300 3301 /* 3302 * Go through delayed refs for all the stuff we've just kicked off 3303 * and then loop back (just once) 3304 */ 3305 if (!ret) 3306 ret = btrfs_run_delayed_refs(trans, 0); 3307 if (!ret && loops == 0) { 3308 loops++; 3309 spin_lock(&cur_trans->dirty_bgs_lock); 3310 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3311 /* 3312 * dirty_bgs_lock protects us from concurrent block group 3313 * deletes too (not just cache_write_mutex). 3314 */ 3315 if (!list_empty(&dirty)) { 3316 spin_unlock(&cur_trans->dirty_bgs_lock); 3317 goto again; 3318 } 3319 spin_unlock(&cur_trans->dirty_bgs_lock); 3320 } 3321 out: 3322 if (ret < 0) { 3323 spin_lock(&cur_trans->dirty_bgs_lock); 3324 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3325 spin_unlock(&cur_trans->dirty_bgs_lock); 3326 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3327 } 3328 3329 btrfs_free_path(path); 3330 return ret; 3331 } 3332 3333 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3334 { 3335 struct btrfs_fs_info *fs_info = trans->fs_info; 3336 struct btrfs_block_group *cache; 3337 struct btrfs_transaction *cur_trans = trans->transaction; 3338 int ret = 0; 3339 int should_put; 3340 struct btrfs_path *path; 3341 struct list_head *io = &cur_trans->io_bgs; 3342 3343 path = btrfs_alloc_path(); 3344 if (!path) 3345 return -ENOMEM; 3346 3347 /* 3348 * Even though we are in the critical section of the transaction commit, 3349 * we can still have concurrent tasks adding elements to this 3350 * transaction's list of dirty block groups. These tasks correspond to 3351 * endio free space workers started when writeback finishes for a 3352 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3353 * allocate new block groups as a result of COWing nodes of the root 3354 * tree when updating the free space inode. The writeback for the space 3355 * caches is triggered by an earlier call to 3356 * btrfs_start_dirty_block_groups() and iterations of the following 3357 * loop. 3358 * Also we want to do the cache_save_setup first and then run the 3359 * delayed refs to make sure we have the best chance at doing this all 3360 * in one shot. 3361 */ 3362 spin_lock(&cur_trans->dirty_bgs_lock); 3363 while (!list_empty(&cur_trans->dirty_bgs)) { 3364 cache = list_first_entry(&cur_trans->dirty_bgs, 3365 struct btrfs_block_group, 3366 dirty_list); 3367 3368 /* 3369 * This can happen if cache_save_setup re-dirties a block group 3370 * that is already under IO. Just wait for it to finish and 3371 * then do it all again 3372 */ 3373 if (!list_empty(&cache->io_list)) { 3374 spin_unlock(&cur_trans->dirty_bgs_lock); 3375 list_del_init(&cache->io_list); 3376 btrfs_wait_cache_io(trans, cache, path); 3377 btrfs_put_block_group(cache); 3378 spin_lock(&cur_trans->dirty_bgs_lock); 3379 } 3380 3381 /* 3382 * Don't remove from the dirty list until after we've waited on 3383 * any pending IO 3384 */ 3385 list_del_init(&cache->dirty_list); 3386 spin_unlock(&cur_trans->dirty_bgs_lock); 3387 should_put = 1; 3388 3389 cache_save_setup(cache, trans, path); 3390 3391 if (!ret) 3392 ret = btrfs_run_delayed_refs(trans, 3393 (unsigned long) -1); 3394 3395 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3396 cache->io_ctl.inode = NULL; 3397 ret = btrfs_write_out_cache(trans, cache, path); 3398 if (ret == 0 && cache->io_ctl.inode) { 3399 should_put = 0; 3400 list_add_tail(&cache->io_list, io); 3401 } else { 3402 /* 3403 * If we failed to write the cache, the 3404 * generation will be bad and life goes on 3405 */ 3406 ret = 0; 3407 } 3408 } 3409 if (!ret) { 3410 ret = update_block_group_item(trans, path, cache); 3411 /* 3412 * One of the free space endio workers might have 3413 * created a new block group while updating a free space 3414 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3415 * and hasn't released its transaction handle yet, in 3416 * which case the new block group is still attached to 3417 * its transaction handle and its creation has not 3418 * finished yet (no block group item in the extent tree 3419 * yet, etc). If this is the case, wait for all free 3420 * space endio workers to finish and retry. This is a 3421 * very rare case so no need for a more efficient and 3422 * complex approach. 3423 */ 3424 if (ret == -ENOENT) { 3425 wait_event(cur_trans->writer_wait, 3426 atomic_read(&cur_trans->num_writers) == 1); 3427 ret = update_block_group_item(trans, path, cache); 3428 } 3429 if (ret) 3430 btrfs_abort_transaction(trans, ret); 3431 } 3432 3433 /* If its not on the io list, we need to put the block group */ 3434 if (should_put) 3435 btrfs_put_block_group(cache); 3436 btrfs_delayed_refs_rsv_release(fs_info, 1); 3437 spin_lock(&cur_trans->dirty_bgs_lock); 3438 } 3439 spin_unlock(&cur_trans->dirty_bgs_lock); 3440 3441 /* 3442 * Refer to the definition of io_bgs member for details why it's safe 3443 * to use it without any locking 3444 */ 3445 while (!list_empty(io)) { 3446 cache = list_first_entry(io, struct btrfs_block_group, 3447 io_list); 3448 list_del_init(&cache->io_list); 3449 btrfs_wait_cache_io(trans, cache, path); 3450 btrfs_put_block_group(cache); 3451 } 3452 3453 btrfs_free_path(path); 3454 return ret; 3455 } 3456 3457 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3458 u64 bytenr, u64 num_bytes, bool alloc) 3459 { 3460 struct btrfs_fs_info *info = trans->fs_info; 3461 struct btrfs_block_group *cache = NULL; 3462 u64 total = num_bytes; 3463 u64 old_val; 3464 u64 byte_in_group; 3465 int factor; 3466 int ret = 0; 3467 3468 /* Block accounting for super block */ 3469 spin_lock(&info->delalloc_root_lock); 3470 old_val = btrfs_super_bytes_used(info->super_copy); 3471 if (alloc) 3472 old_val += num_bytes; 3473 else 3474 old_val -= num_bytes; 3475 btrfs_set_super_bytes_used(info->super_copy, old_val); 3476 spin_unlock(&info->delalloc_root_lock); 3477 3478 while (total) { 3479 bool reclaim = false; 3480 3481 cache = btrfs_lookup_block_group(info, bytenr); 3482 if (!cache) { 3483 ret = -ENOENT; 3484 break; 3485 } 3486 factor = btrfs_bg_type_to_factor(cache->flags); 3487 3488 /* 3489 * If this block group has free space cache written out, we 3490 * need to make sure to load it if we are removing space. This 3491 * is because we need the unpinning stage to actually add the 3492 * space back to the block group, otherwise we will leak space. 3493 */ 3494 if (!alloc && !btrfs_block_group_done(cache)) 3495 btrfs_cache_block_group(cache, true); 3496 3497 byte_in_group = bytenr - cache->start; 3498 WARN_ON(byte_in_group > cache->length); 3499 3500 spin_lock(&cache->space_info->lock); 3501 spin_lock(&cache->lock); 3502 3503 if (btrfs_test_opt(info, SPACE_CACHE) && 3504 cache->disk_cache_state < BTRFS_DC_CLEAR) 3505 cache->disk_cache_state = BTRFS_DC_CLEAR; 3506 3507 old_val = cache->used; 3508 num_bytes = min(total, cache->length - byte_in_group); 3509 if (alloc) { 3510 old_val += num_bytes; 3511 cache->used = old_val; 3512 cache->reserved -= num_bytes; 3513 cache->space_info->bytes_reserved -= num_bytes; 3514 cache->space_info->bytes_used += num_bytes; 3515 cache->space_info->disk_used += num_bytes * factor; 3516 spin_unlock(&cache->lock); 3517 spin_unlock(&cache->space_info->lock); 3518 } else { 3519 old_val -= num_bytes; 3520 cache->used = old_val; 3521 cache->pinned += num_bytes; 3522 btrfs_space_info_update_bytes_pinned(info, 3523 cache->space_info, num_bytes); 3524 cache->space_info->bytes_used -= num_bytes; 3525 cache->space_info->disk_used -= num_bytes * factor; 3526 3527 reclaim = should_reclaim_block_group(cache, num_bytes); 3528 3529 spin_unlock(&cache->lock); 3530 spin_unlock(&cache->space_info->lock); 3531 3532 set_extent_dirty(&trans->transaction->pinned_extents, 3533 bytenr, bytenr + num_bytes - 1, 3534 GFP_NOFS | __GFP_NOFAIL); 3535 } 3536 3537 spin_lock(&trans->transaction->dirty_bgs_lock); 3538 if (list_empty(&cache->dirty_list)) { 3539 list_add_tail(&cache->dirty_list, 3540 &trans->transaction->dirty_bgs); 3541 trans->delayed_ref_updates++; 3542 btrfs_get_block_group(cache); 3543 } 3544 spin_unlock(&trans->transaction->dirty_bgs_lock); 3545 3546 /* 3547 * No longer have used bytes in this block group, queue it for 3548 * deletion. We do this after adding the block group to the 3549 * dirty list to avoid races between cleaner kthread and space 3550 * cache writeout. 3551 */ 3552 if (!alloc && old_val == 0) { 3553 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3554 btrfs_mark_bg_unused(cache); 3555 } else if (!alloc && reclaim) { 3556 btrfs_mark_bg_to_reclaim(cache); 3557 } 3558 3559 btrfs_put_block_group(cache); 3560 total -= num_bytes; 3561 bytenr += num_bytes; 3562 } 3563 3564 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3565 btrfs_update_delayed_refs_rsv(trans); 3566 return ret; 3567 } 3568 3569 /* 3570 * Update the block_group and space info counters. 3571 * 3572 * @cache: The cache we are manipulating 3573 * @ram_bytes: The number of bytes of file content, and will be same to 3574 * @num_bytes except for the compress path. 3575 * @num_bytes: The number of bytes in question 3576 * @delalloc: The blocks are allocated for the delalloc write 3577 * 3578 * This is called by the allocator when it reserves space. If this is a 3579 * reservation and the block group has become read only we cannot make the 3580 * reservation and return -EAGAIN, otherwise this function always succeeds. 3581 */ 3582 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3583 u64 ram_bytes, u64 num_bytes, int delalloc, 3584 bool force_wrong_size_class) 3585 { 3586 struct btrfs_space_info *space_info = cache->space_info; 3587 enum btrfs_block_group_size_class size_class; 3588 int ret = 0; 3589 3590 spin_lock(&space_info->lock); 3591 spin_lock(&cache->lock); 3592 if (cache->ro) { 3593 ret = -EAGAIN; 3594 goto out; 3595 } 3596 3597 if (btrfs_block_group_should_use_size_class(cache)) { 3598 size_class = btrfs_calc_block_group_size_class(num_bytes); 3599 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3600 if (ret) 3601 goto out; 3602 } 3603 cache->reserved += num_bytes; 3604 space_info->bytes_reserved += num_bytes; 3605 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3606 space_info->flags, num_bytes, 1); 3607 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3608 space_info, -ram_bytes); 3609 if (delalloc) 3610 cache->delalloc_bytes += num_bytes; 3611 3612 /* 3613 * Compression can use less space than we reserved, so wake tickets if 3614 * that happens. 3615 */ 3616 if (num_bytes < ram_bytes) 3617 btrfs_try_granting_tickets(cache->fs_info, space_info); 3618 out: 3619 spin_unlock(&cache->lock); 3620 spin_unlock(&space_info->lock); 3621 return ret; 3622 } 3623 3624 /* 3625 * Update the block_group and space info counters. 3626 * 3627 * @cache: The cache we are manipulating 3628 * @num_bytes: The number of bytes in question 3629 * @delalloc: The blocks are allocated for the delalloc write 3630 * 3631 * This is called by somebody who is freeing space that was never actually used 3632 * on disk. For example if you reserve some space for a new leaf in transaction 3633 * A and before transaction A commits you free that leaf, you call this with 3634 * reserve set to 0 in order to clear the reservation. 3635 */ 3636 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3637 u64 num_bytes, int delalloc) 3638 { 3639 struct btrfs_space_info *space_info = cache->space_info; 3640 3641 spin_lock(&space_info->lock); 3642 spin_lock(&cache->lock); 3643 if (cache->ro) 3644 space_info->bytes_readonly += num_bytes; 3645 cache->reserved -= num_bytes; 3646 space_info->bytes_reserved -= num_bytes; 3647 space_info->max_extent_size = 0; 3648 3649 if (delalloc) 3650 cache->delalloc_bytes -= num_bytes; 3651 spin_unlock(&cache->lock); 3652 3653 btrfs_try_granting_tickets(cache->fs_info, space_info); 3654 spin_unlock(&space_info->lock); 3655 } 3656 3657 static void force_metadata_allocation(struct btrfs_fs_info *info) 3658 { 3659 struct list_head *head = &info->space_info; 3660 struct btrfs_space_info *found; 3661 3662 list_for_each_entry(found, head, list) { 3663 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3664 found->force_alloc = CHUNK_ALLOC_FORCE; 3665 } 3666 } 3667 3668 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3669 struct btrfs_space_info *sinfo, int force) 3670 { 3671 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3672 u64 thresh; 3673 3674 if (force == CHUNK_ALLOC_FORCE) 3675 return 1; 3676 3677 /* 3678 * in limited mode, we want to have some free space up to 3679 * about 1% of the FS size. 3680 */ 3681 if (force == CHUNK_ALLOC_LIMITED) { 3682 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3683 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3684 3685 if (sinfo->total_bytes - bytes_used < thresh) 3686 return 1; 3687 } 3688 3689 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3690 return 0; 3691 return 1; 3692 } 3693 3694 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3695 { 3696 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3697 3698 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3699 } 3700 3701 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3702 { 3703 struct btrfs_block_group *bg; 3704 int ret; 3705 3706 /* 3707 * Check if we have enough space in the system space info because we 3708 * will need to update device items in the chunk btree and insert a new 3709 * chunk item in the chunk btree as well. This will allocate a new 3710 * system block group if needed. 3711 */ 3712 check_system_chunk(trans, flags); 3713 3714 bg = btrfs_create_chunk(trans, flags); 3715 if (IS_ERR(bg)) { 3716 ret = PTR_ERR(bg); 3717 goto out; 3718 } 3719 3720 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3721 /* 3722 * Normally we are not expected to fail with -ENOSPC here, since we have 3723 * previously reserved space in the system space_info and allocated one 3724 * new system chunk if necessary. However there are three exceptions: 3725 * 3726 * 1) We may have enough free space in the system space_info but all the 3727 * existing system block groups have a profile which can not be used 3728 * for extent allocation. 3729 * 3730 * This happens when mounting in degraded mode. For example we have a 3731 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3732 * using the other device in degraded mode. If we then allocate a chunk, 3733 * we may have enough free space in the existing system space_info, but 3734 * none of the block groups can be used for extent allocation since they 3735 * have a RAID1 profile, and because we are in degraded mode with a 3736 * single device, we are forced to allocate a new system chunk with a 3737 * SINGLE profile. Making check_system_chunk() iterate over all system 3738 * block groups and check if they have a usable profile and enough space 3739 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3740 * try again after forcing allocation of a new system chunk. Like this 3741 * we avoid paying the cost of that search in normal circumstances, when 3742 * we were not mounted in degraded mode; 3743 * 3744 * 2) We had enough free space info the system space_info, and one suitable 3745 * block group to allocate from when we called check_system_chunk() 3746 * above. However right after we called it, the only system block group 3747 * with enough free space got turned into RO mode by a running scrub, 3748 * and in this case we have to allocate a new one and retry. We only 3749 * need do this allocate and retry once, since we have a transaction 3750 * handle and scrub uses the commit root to search for block groups; 3751 * 3752 * 3) We had one system block group with enough free space when we called 3753 * check_system_chunk(), but after that, right before we tried to 3754 * allocate the last extent buffer we needed, a discard operation came 3755 * in and it temporarily removed the last free space entry from the 3756 * block group (discard removes a free space entry, discards it, and 3757 * then adds back the entry to the block group cache). 3758 */ 3759 if (ret == -ENOSPC) { 3760 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3761 struct btrfs_block_group *sys_bg; 3762 3763 sys_bg = btrfs_create_chunk(trans, sys_flags); 3764 if (IS_ERR(sys_bg)) { 3765 ret = PTR_ERR(sys_bg); 3766 btrfs_abort_transaction(trans, ret); 3767 goto out; 3768 } 3769 3770 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3771 if (ret) { 3772 btrfs_abort_transaction(trans, ret); 3773 goto out; 3774 } 3775 3776 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3777 if (ret) { 3778 btrfs_abort_transaction(trans, ret); 3779 goto out; 3780 } 3781 } else if (ret) { 3782 btrfs_abort_transaction(trans, ret); 3783 goto out; 3784 } 3785 out: 3786 btrfs_trans_release_chunk_metadata(trans); 3787 3788 if (ret) 3789 return ERR_PTR(ret); 3790 3791 btrfs_get_block_group(bg); 3792 return bg; 3793 } 3794 3795 /* 3796 * Chunk allocation is done in 2 phases: 3797 * 3798 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3799 * the chunk, the chunk mapping, create its block group and add the items 3800 * that belong in the chunk btree to it - more specifically, we need to 3801 * update device items in the chunk btree and add a new chunk item to it. 3802 * 3803 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3804 * group item to the extent btree and the device extent items to the devices 3805 * btree. 3806 * 3807 * This is done to prevent deadlocks. For example when COWing a node from the 3808 * extent btree we are holding a write lock on the node's parent and if we 3809 * trigger chunk allocation and attempted to insert the new block group item 3810 * in the extent btree right way, we could deadlock because the path for the 3811 * insertion can include that parent node. At first glance it seems impossible 3812 * to trigger chunk allocation after starting a transaction since tasks should 3813 * reserve enough transaction units (metadata space), however while that is true 3814 * most of the time, chunk allocation may still be triggered for several reasons: 3815 * 3816 * 1) When reserving metadata, we check if there is enough free space in the 3817 * metadata space_info and therefore don't trigger allocation of a new chunk. 3818 * However later when the task actually tries to COW an extent buffer from 3819 * the extent btree or from the device btree for example, it is forced to 3820 * allocate a new block group (chunk) because the only one that had enough 3821 * free space was just turned to RO mode by a running scrub for example (or 3822 * device replace, block group reclaim thread, etc), so we can not use it 3823 * for allocating an extent and end up being forced to allocate a new one; 3824 * 3825 * 2) Because we only check that the metadata space_info has enough free bytes, 3826 * we end up not allocating a new metadata chunk in that case. However if 3827 * the filesystem was mounted in degraded mode, none of the existing block 3828 * groups might be suitable for extent allocation due to their incompatible 3829 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3830 * use a RAID1 profile, in degraded mode using a single device). In this case 3831 * when the task attempts to COW some extent buffer of the extent btree for 3832 * example, it will trigger allocation of a new metadata block group with a 3833 * suitable profile (SINGLE profile in the example of the degraded mount of 3834 * the RAID1 filesystem); 3835 * 3836 * 3) The task has reserved enough transaction units / metadata space, but when 3837 * it attempts to COW an extent buffer from the extent or device btree for 3838 * example, it does not find any free extent in any metadata block group, 3839 * therefore forced to try to allocate a new metadata block group. 3840 * This is because some other task allocated all available extents in the 3841 * meanwhile - this typically happens with tasks that don't reserve space 3842 * properly, either intentionally or as a bug. One example where this is 3843 * done intentionally is fsync, as it does not reserve any transaction units 3844 * and ends up allocating a variable number of metadata extents for log 3845 * tree extent buffers; 3846 * 3847 * 4) The task has reserved enough transaction units / metadata space, but right 3848 * before it tries to allocate the last extent buffer it needs, a discard 3849 * operation comes in and, temporarily, removes the last free space entry from 3850 * the only metadata block group that had free space (discard starts by 3851 * removing a free space entry from a block group, then does the discard 3852 * operation and, once it's done, it adds back the free space entry to the 3853 * block group). 3854 * 3855 * We also need this 2 phases setup when adding a device to a filesystem with 3856 * a seed device - we must create new metadata and system chunks without adding 3857 * any of the block group items to the chunk, extent and device btrees. If we 3858 * did not do it this way, we would get ENOSPC when attempting to update those 3859 * btrees, since all the chunks from the seed device are read-only. 3860 * 3861 * Phase 1 does the updates and insertions to the chunk btree because if we had 3862 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3863 * parallel, we risk having too many system chunks allocated by many tasks if 3864 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3865 * extreme case this leads to exhaustion of the system chunk array in the 3866 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3867 * and with RAID filesystems (so we have more device items in the chunk btree). 3868 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3869 * the system chunk array due to concurrent allocations") provides more details. 3870 * 3871 * Allocation of system chunks does not happen through this function. A task that 3872 * needs to update the chunk btree (the only btree that uses system chunks), must 3873 * preallocate chunk space by calling either check_system_chunk() or 3874 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3875 * metadata chunk or when removing a chunk, while the later is used before doing 3876 * a modification to the chunk btree - use cases for the later are adding, 3877 * removing and resizing a device as well as relocation of a system chunk. 3878 * See the comment below for more details. 3879 * 3880 * The reservation of system space, done through check_system_chunk(), as well 3881 * as all the updates and insertions into the chunk btree must be done while 3882 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3883 * an extent buffer from the chunks btree we never trigger allocation of a new 3884 * system chunk, which would result in a deadlock (trying to lock twice an 3885 * extent buffer of the chunk btree, first time before triggering the chunk 3886 * allocation and the second time during chunk allocation while attempting to 3887 * update the chunks btree). The system chunk array is also updated while holding 3888 * that mutex. The same logic applies to removing chunks - we must reserve system 3889 * space, update the chunk btree and the system chunk array in the superblock 3890 * while holding fs_info->chunk_mutex. 3891 * 3892 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3893 * 3894 * If @force is CHUNK_ALLOC_FORCE: 3895 * - return 1 if it successfully allocates a chunk, 3896 * - return errors including -ENOSPC otherwise. 3897 * If @force is NOT CHUNK_ALLOC_FORCE: 3898 * - return 0 if it doesn't need to allocate a new chunk, 3899 * - return 1 if it successfully allocates a chunk, 3900 * - return errors including -ENOSPC otherwise. 3901 */ 3902 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3903 enum btrfs_chunk_alloc_enum force) 3904 { 3905 struct btrfs_fs_info *fs_info = trans->fs_info; 3906 struct btrfs_space_info *space_info; 3907 struct btrfs_block_group *ret_bg; 3908 bool wait_for_alloc = false; 3909 bool should_alloc = false; 3910 bool from_extent_allocation = false; 3911 int ret = 0; 3912 3913 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 3914 from_extent_allocation = true; 3915 force = CHUNK_ALLOC_FORCE; 3916 } 3917 3918 /* Don't re-enter if we're already allocating a chunk */ 3919 if (trans->allocating_chunk) 3920 return -ENOSPC; 3921 /* 3922 * Allocation of system chunks can not happen through this path, as we 3923 * could end up in a deadlock if we are allocating a data or metadata 3924 * chunk and there is another task modifying the chunk btree. 3925 * 3926 * This is because while we are holding the chunk mutex, we will attempt 3927 * to add the new chunk item to the chunk btree or update an existing 3928 * device item in the chunk btree, while the other task that is modifying 3929 * the chunk btree is attempting to COW an extent buffer while holding a 3930 * lock on it and on its parent - if the COW operation triggers a system 3931 * chunk allocation, then we can deadlock because we are holding the 3932 * chunk mutex and we may need to access that extent buffer or its parent 3933 * in order to add the chunk item or update a device item. 3934 * 3935 * Tasks that want to modify the chunk tree should reserve system space 3936 * before updating the chunk btree, by calling either 3937 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 3938 * It's possible that after a task reserves the space, it still ends up 3939 * here - this happens in the cases described above at do_chunk_alloc(). 3940 * The task will have to either retry or fail. 3941 */ 3942 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3943 return -ENOSPC; 3944 3945 space_info = btrfs_find_space_info(fs_info, flags); 3946 ASSERT(space_info); 3947 3948 do { 3949 spin_lock(&space_info->lock); 3950 if (force < space_info->force_alloc) 3951 force = space_info->force_alloc; 3952 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3953 if (space_info->full) { 3954 /* No more free physical space */ 3955 if (should_alloc) 3956 ret = -ENOSPC; 3957 else 3958 ret = 0; 3959 spin_unlock(&space_info->lock); 3960 return ret; 3961 } else if (!should_alloc) { 3962 spin_unlock(&space_info->lock); 3963 return 0; 3964 } else if (space_info->chunk_alloc) { 3965 /* 3966 * Someone is already allocating, so we need to block 3967 * until this someone is finished and then loop to 3968 * recheck if we should continue with our allocation 3969 * attempt. 3970 */ 3971 wait_for_alloc = true; 3972 force = CHUNK_ALLOC_NO_FORCE; 3973 spin_unlock(&space_info->lock); 3974 mutex_lock(&fs_info->chunk_mutex); 3975 mutex_unlock(&fs_info->chunk_mutex); 3976 } else { 3977 /* Proceed with allocation */ 3978 space_info->chunk_alloc = 1; 3979 wait_for_alloc = false; 3980 spin_unlock(&space_info->lock); 3981 } 3982 3983 cond_resched(); 3984 } while (wait_for_alloc); 3985 3986 mutex_lock(&fs_info->chunk_mutex); 3987 trans->allocating_chunk = true; 3988 3989 /* 3990 * If we have mixed data/metadata chunks we want to make sure we keep 3991 * allocating mixed chunks instead of individual chunks. 3992 */ 3993 if (btrfs_mixed_space_info(space_info)) 3994 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3995 3996 /* 3997 * if we're doing a data chunk, go ahead and make sure that 3998 * we keep a reasonable number of metadata chunks allocated in the 3999 * FS as well. 4000 */ 4001 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4002 fs_info->data_chunk_allocations++; 4003 if (!(fs_info->data_chunk_allocations % 4004 fs_info->metadata_ratio)) 4005 force_metadata_allocation(fs_info); 4006 } 4007 4008 ret_bg = do_chunk_alloc(trans, flags); 4009 trans->allocating_chunk = false; 4010 4011 if (IS_ERR(ret_bg)) { 4012 ret = PTR_ERR(ret_bg); 4013 } else if (from_extent_allocation) { 4014 /* 4015 * New block group is likely to be used soon. Try to activate 4016 * it now. Failure is OK for now. 4017 */ 4018 btrfs_zone_activate(ret_bg); 4019 } 4020 4021 if (!ret) 4022 btrfs_put_block_group(ret_bg); 4023 4024 spin_lock(&space_info->lock); 4025 if (ret < 0) { 4026 if (ret == -ENOSPC) 4027 space_info->full = 1; 4028 else 4029 goto out; 4030 } else { 4031 ret = 1; 4032 space_info->max_extent_size = 0; 4033 } 4034 4035 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4036 out: 4037 space_info->chunk_alloc = 0; 4038 spin_unlock(&space_info->lock); 4039 mutex_unlock(&fs_info->chunk_mutex); 4040 4041 return ret; 4042 } 4043 4044 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4045 { 4046 u64 num_dev; 4047 4048 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4049 if (!num_dev) 4050 num_dev = fs_info->fs_devices->rw_devices; 4051 4052 return num_dev; 4053 } 4054 4055 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4056 u64 bytes, 4057 u64 type) 4058 { 4059 struct btrfs_fs_info *fs_info = trans->fs_info; 4060 struct btrfs_space_info *info; 4061 u64 left; 4062 int ret = 0; 4063 4064 /* 4065 * Needed because we can end up allocating a system chunk and for an 4066 * atomic and race free space reservation in the chunk block reserve. 4067 */ 4068 lockdep_assert_held(&fs_info->chunk_mutex); 4069 4070 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4071 spin_lock(&info->lock); 4072 left = info->total_bytes - btrfs_space_info_used(info, true); 4073 spin_unlock(&info->lock); 4074 4075 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4076 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4077 left, bytes, type); 4078 btrfs_dump_space_info(fs_info, info, 0, 0); 4079 } 4080 4081 if (left < bytes) { 4082 u64 flags = btrfs_system_alloc_profile(fs_info); 4083 struct btrfs_block_group *bg; 4084 4085 /* 4086 * Ignore failure to create system chunk. We might end up not 4087 * needing it, as we might not need to COW all nodes/leafs from 4088 * the paths we visit in the chunk tree (they were already COWed 4089 * or created in the current transaction for example). 4090 */ 4091 bg = btrfs_create_chunk(trans, flags); 4092 if (IS_ERR(bg)) { 4093 ret = PTR_ERR(bg); 4094 } else { 4095 /* 4096 * We have a new chunk. We also need to activate it for 4097 * zoned filesystem. 4098 */ 4099 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4100 if (ret < 0) 4101 return; 4102 4103 /* 4104 * If we fail to add the chunk item here, we end up 4105 * trying again at phase 2 of chunk allocation, at 4106 * btrfs_create_pending_block_groups(). So ignore 4107 * any error here. An ENOSPC here could happen, due to 4108 * the cases described at do_chunk_alloc() - the system 4109 * block group we just created was just turned into RO 4110 * mode by a scrub for example, or a running discard 4111 * temporarily removed its free space entries, etc. 4112 */ 4113 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4114 } 4115 } 4116 4117 if (!ret) { 4118 ret = btrfs_block_rsv_add(fs_info, 4119 &fs_info->chunk_block_rsv, 4120 bytes, BTRFS_RESERVE_NO_FLUSH); 4121 if (!ret) 4122 trans->chunk_bytes_reserved += bytes; 4123 } 4124 } 4125 4126 /* 4127 * Reserve space in the system space for allocating or removing a chunk. 4128 * The caller must be holding fs_info->chunk_mutex. 4129 */ 4130 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4131 { 4132 struct btrfs_fs_info *fs_info = trans->fs_info; 4133 const u64 num_devs = get_profile_num_devs(fs_info, type); 4134 u64 bytes; 4135 4136 /* num_devs device items to update and 1 chunk item to add or remove. */ 4137 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4138 btrfs_calc_insert_metadata_size(fs_info, 1); 4139 4140 reserve_chunk_space(trans, bytes, type); 4141 } 4142 4143 /* 4144 * Reserve space in the system space, if needed, for doing a modification to the 4145 * chunk btree. 4146 * 4147 * @trans: A transaction handle. 4148 * @is_item_insertion: Indicate if the modification is for inserting a new item 4149 * in the chunk btree or if it's for the deletion or update 4150 * of an existing item. 4151 * 4152 * This is used in a context where we need to update the chunk btree outside 4153 * block group allocation and removal, to avoid a deadlock with a concurrent 4154 * task that is allocating a metadata or data block group and therefore needs to 4155 * update the chunk btree while holding the chunk mutex. After the update to the 4156 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4157 * 4158 */ 4159 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4160 bool is_item_insertion) 4161 { 4162 struct btrfs_fs_info *fs_info = trans->fs_info; 4163 u64 bytes; 4164 4165 if (is_item_insertion) 4166 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4167 else 4168 bytes = btrfs_calc_metadata_size(fs_info, 1); 4169 4170 mutex_lock(&fs_info->chunk_mutex); 4171 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4172 mutex_unlock(&fs_info->chunk_mutex); 4173 } 4174 4175 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4176 { 4177 struct btrfs_block_group *block_group; 4178 4179 block_group = btrfs_lookup_first_block_group(info, 0); 4180 while (block_group) { 4181 btrfs_wait_block_group_cache_done(block_group); 4182 spin_lock(&block_group->lock); 4183 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4184 &block_group->runtime_flags)) { 4185 struct inode *inode = block_group->inode; 4186 4187 block_group->inode = NULL; 4188 spin_unlock(&block_group->lock); 4189 4190 ASSERT(block_group->io_ctl.inode == NULL); 4191 iput(inode); 4192 } else { 4193 spin_unlock(&block_group->lock); 4194 } 4195 block_group = btrfs_next_block_group(block_group); 4196 } 4197 } 4198 4199 /* 4200 * Must be called only after stopping all workers, since we could have block 4201 * group caching kthreads running, and therefore they could race with us if we 4202 * freed the block groups before stopping them. 4203 */ 4204 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4205 { 4206 struct btrfs_block_group *block_group; 4207 struct btrfs_space_info *space_info; 4208 struct btrfs_caching_control *caching_ctl; 4209 struct rb_node *n; 4210 4211 write_lock(&info->block_group_cache_lock); 4212 while (!list_empty(&info->caching_block_groups)) { 4213 caching_ctl = list_entry(info->caching_block_groups.next, 4214 struct btrfs_caching_control, list); 4215 list_del(&caching_ctl->list); 4216 btrfs_put_caching_control(caching_ctl); 4217 } 4218 write_unlock(&info->block_group_cache_lock); 4219 4220 spin_lock(&info->unused_bgs_lock); 4221 while (!list_empty(&info->unused_bgs)) { 4222 block_group = list_first_entry(&info->unused_bgs, 4223 struct btrfs_block_group, 4224 bg_list); 4225 list_del_init(&block_group->bg_list); 4226 btrfs_put_block_group(block_group); 4227 } 4228 4229 while (!list_empty(&info->reclaim_bgs)) { 4230 block_group = list_first_entry(&info->reclaim_bgs, 4231 struct btrfs_block_group, 4232 bg_list); 4233 list_del_init(&block_group->bg_list); 4234 btrfs_put_block_group(block_group); 4235 } 4236 spin_unlock(&info->unused_bgs_lock); 4237 4238 spin_lock(&info->zone_active_bgs_lock); 4239 while (!list_empty(&info->zone_active_bgs)) { 4240 block_group = list_first_entry(&info->zone_active_bgs, 4241 struct btrfs_block_group, 4242 active_bg_list); 4243 list_del_init(&block_group->active_bg_list); 4244 btrfs_put_block_group(block_group); 4245 } 4246 spin_unlock(&info->zone_active_bgs_lock); 4247 4248 write_lock(&info->block_group_cache_lock); 4249 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4250 block_group = rb_entry(n, struct btrfs_block_group, 4251 cache_node); 4252 rb_erase_cached(&block_group->cache_node, 4253 &info->block_group_cache_tree); 4254 RB_CLEAR_NODE(&block_group->cache_node); 4255 write_unlock(&info->block_group_cache_lock); 4256 4257 down_write(&block_group->space_info->groups_sem); 4258 list_del(&block_group->list); 4259 up_write(&block_group->space_info->groups_sem); 4260 4261 /* 4262 * We haven't cached this block group, which means we could 4263 * possibly have excluded extents on this block group. 4264 */ 4265 if (block_group->cached == BTRFS_CACHE_NO || 4266 block_group->cached == BTRFS_CACHE_ERROR) 4267 btrfs_free_excluded_extents(block_group); 4268 4269 btrfs_remove_free_space_cache(block_group); 4270 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4271 ASSERT(list_empty(&block_group->dirty_list)); 4272 ASSERT(list_empty(&block_group->io_list)); 4273 ASSERT(list_empty(&block_group->bg_list)); 4274 ASSERT(refcount_read(&block_group->refs) == 1); 4275 ASSERT(block_group->swap_extents == 0); 4276 btrfs_put_block_group(block_group); 4277 4278 write_lock(&info->block_group_cache_lock); 4279 } 4280 write_unlock(&info->block_group_cache_lock); 4281 4282 btrfs_release_global_block_rsv(info); 4283 4284 while (!list_empty(&info->space_info)) { 4285 space_info = list_entry(info->space_info.next, 4286 struct btrfs_space_info, 4287 list); 4288 4289 /* 4290 * Do not hide this behind enospc_debug, this is actually 4291 * important and indicates a real bug if this happens. 4292 */ 4293 if (WARN_ON(space_info->bytes_pinned > 0 || 4294 space_info->bytes_may_use > 0)) 4295 btrfs_dump_space_info(info, space_info, 0, 0); 4296 4297 /* 4298 * If there was a failure to cleanup a log tree, very likely due 4299 * to an IO failure on a writeback attempt of one or more of its 4300 * extent buffers, we could not do proper (and cheap) unaccounting 4301 * of their reserved space, so don't warn on bytes_reserved > 0 in 4302 * that case. 4303 */ 4304 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4305 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4306 if (WARN_ON(space_info->bytes_reserved > 0)) 4307 btrfs_dump_space_info(info, space_info, 0, 0); 4308 } 4309 4310 WARN_ON(space_info->reclaim_size > 0); 4311 list_del(&space_info->list); 4312 btrfs_sysfs_remove_space_info(space_info); 4313 } 4314 return 0; 4315 } 4316 4317 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4318 { 4319 atomic_inc(&cache->frozen); 4320 } 4321 4322 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4323 { 4324 struct btrfs_fs_info *fs_info = block_group->fs_info; 4325 struct extent_map_tree *em_tree; 4326 struct extent_map *em; 4327 bool cleanup; 4328 4329 spin_lock(&block_group->lock); 4330 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4331 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4332 spin_unlock(&block_group->lock); 4333 4334 if (cleanup) { 4335 em_tree = &fs_info->mapping_tree; 4336 write_lock(&em_tree->lock); 4337 em = lookup_extent_mapping(em_tree, block_group->start, 4338 1); 4339 BUG_ON(!em); /* logic error, can't happen */ 4340 remove_extent_mapping(em_tree, em); 4341 write_unlock(&em_tree->lock); 4342 4343 /* once for us and once for the tree */ 4344 free_extent_map(em); 4345 free_extent_map(em); 4346 4347 /* 4348 * We may have left one free space entry and other possible 4349 * tasks trimming this block group have left 1 entry each one. 4350 * Free them if any. 4351 */ 4352 btrfs_remove_free_space_cache(block_group); 4353 } 4354 } 4355 4356 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4357 { 4358 bool ret = true; 4359 4360 spin_lock(&bg->lock); 4361 if (bg->ro) 4362 ret = false; 4363 else 4364 bg->swap_extents++; 4365 spin_unlock(&bg->lock); 4366 4367 return ret; 4368 } 4369 4370 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4371 { 4372 spin_lock(&bg->lock); 4373 ASSERT(!bg->ro); 4374 ASSERT(bg->swap_extents >= amount); 4375 bg->swap_extents -= amount; 4376 spin_unlock(&bg->lock); 4377 } 4378 4379 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4380 { 4381 if (size <= SZ_128K) 4382 return BTRFS_BG_SZ_SMALL; 4383 if (size <= SZ_8M) 4384 return BTRFS_BG_SZ_MEDIUM; 4385 return BTRFS_BG_SZ_LARGE; 4386 } 4387 4388 /* 4389 * Handle a block group allocating an extent in a size class 4390 * 4391 * @bg: The block group we allocated in. 4392 * @size_class: The size class of the allocation. 4393 * @force_wrong_size_class: Whether we are desperate enough to allow 4394 * mismatched size classes. 4395 * 4396 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4397 * case of a race that leads to the wrong size class without 4398 * force_wrong_size_class set. 4399 * 4400 * find_free_extent will skip block groups with a mismatched size class until 4401 * it really needs to avoid ENOSPC. In that case it will set 4402 * force_wrong_size_class. However, if a block group is newly allocated and 4403 * doesn't yet have a size class, then it is possible for two allocations of 4404 * different sizes to race and both try to use it. The loser is caught here and 4405 * has to retry. 4406 */ 4407 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4408 enum btrfs_block_group_size_class size_class, 4409 bool force_wrong_size_class) 4410 { 4411 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4412 4413 /* The new allocation is in the right size class, do nothing */ 4414 if (bg->size_class == size_class) 4415 return 0; 4416 /* 4417 * The new allocation is in a mismatched size class. 4418 * This means one of two things: 4419 * 4420 * 1. Two tasks in find_free_extent for different size_classes raced 4421 * and hit the same empty block_group. Make the loser try again. 4422 * 2. A call to find_free_extent got desperate enough to set 4423 * 'force_wrong_slab'. Don't change the size_class, but allow the 4424 * allocation. 4425 */ 4426 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4427 if (force_wrong_size_class) 4428 return 0; 4429 return -EAGAIN; 4430 } 4431 /* 4432 * The happy new block group case: the new allocation is the first 4433 * one in the block_group so we set size_class. 4434 */ 4435 bg->size_class = size_class; 4436 4437 return 0; 4438 } 4439 4440 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg) 4441 { 4442 if (btrfs_is_zoned(bg->fs_info)) 4443 return false; 4444 if (!btrfs_is_block_group_data_only(bg)) 4445 return false; 4446 return true; 4447 } 4448