1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 btrfs_free_chunk_map(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 /* 177 * This adds the block group to the fs_info rb tree for the block group cache 178 */ 179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 180 struct btrfs_block_group *block_group) 181 { 182 struct rb_node **p; 183 struct rb_node *parent = NULL; 184 struct btrfs_block_group *cache; 185 bool leftmost = true; 186 187 ASSERT(block_group->length != 0); 188 189 write_lock(&info->block_group_cache_lock); 190 p = &info->block_group_cache_tree.rb_root.rb_node; 191 192 while (*p) { 193 parent = *p; 194 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 195 if (block_group->start < cache->start) { 196 p = &(*p)->rb_left; 197 } else if (block_group->start > cache->start) { 198 p = &(*p)->rb_right; 199 leftmost = false; 200 } else { 201 write_unlock(&info->block_group_cache_lock); 202 return -EEXIST; 203 } 204 } 205 206 rb_link_node(&block_group->cache_node, parent, p); 207 rb_insert_color_cached(&block_group->cache_node, 208 &info->block_group_cache_tree, leftmost); 209 210 write_unlock(&info->block_group_cache_lock); 211 212 return 0; 213 } 214 215 /* 216 * This will return the block group at or after bytenr if contains is 0, else 217 * it will return the block group that contains the bytenr 218 */ 219 static struct btrfs_block_group *block_group_cache_tree_search( 220 struct btrfs_fs_info *info, u64 bytenr, int contains) 221 { 222 struct btrfs_block_group *cache, *ret = NULL; 223 struct rb_node *n; 224 u64 end, start; 225 226 read_lock(&info->block_group_cache_lock); 227 n = info->block_group_cache_tree.rb_root.rb_node; 228 229 while (n) { 230 cache = rb_entry(n, struct btrfs_block_group, cache_node); 231 end = cache->start + cache->length - 1; 232 start = cache->start; 233 234 if (bytenr < start) { 235 if (!contains && (!ret || start < ret->start)) 236 ret = cache; 237 n = n->rb_left; 238 } else if (bytenr > start) { 239 if (contains && bytenr <= end) { 240 ret = cache; 241 break; 242 } 243 n = n->rb_right; 244 } else { 245 ret = cache; 246 break; 247 } 248 } 249 if (ret) 250 btrfs_get_block_group(ret); 251 read_unlock(&info->block_group_cache_lock); 252 253 return ret; 254 } 255 256 /* 257 * Return the block group that starts at or after bytenr 258 */ 259 struct btrfs_block_group *btrfs_lookup_first_block_group( 260 struct btrfs_fs_info *info, u64 bytenr) 261 { 262 return block_group_cache_tree_search(info, bytenr, 0); 263 } 264 265 /* 266 * Return the block group that contains the given bytenr 267 */ 268 struct btrfs_block_group *btrfs_lookup_block_group( 269 struct btrfs_fs_info *info, u64 bytenr) 270 { 271 return block_group_cache_tree_search(info, bytenr, 1); 272 } 273 274 struct btrfs_block_group *btrfs_next_block_group( 275 struct btrfs_block_group *cache) 276 { 277 struct btrfs_fs_info *fs_info = cache->fs_info; 278 struct rb_node *node; 279 280 read_lock(&fs_info->block_group_cache_lock); 281 282 /* If our block group was removed, we need a full search. */ 283 if (RB_EMPTY_NODE(&cache->cache_node)) { 284 const u64 next_bytenr = cache->start + cache->length; 285 286 read_unlock(&fs_info->block_group_cache_lock); 287 btrfs_put_block_group(cache); 288 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 289 } 290 node = rb_next(&cache->cache_node); 291 btrfs_put_block_group(cache); 292 if (node) { 293 cache = rb_entry(node, struct btrfs_block_group, cache_node); 294 btrfs_get_block_group(cache); 295 } else 296 cache = NULL; 297 read_unlock(&fs_info->block_group_cache_lock); 298 return cache; 299 } 300 301 /* 302 * Check if we can do a NOCOW write for a given extent. 303 * 304 * @fs_info: The filesystem information object. 305 * @bytenr: Logical start address of the extent. 306 * 307 * Check if we can do a NOCOW write for the given extent, and increments the 308 * number of NOCOW writers in the block group that contains the extent, as long 309 * as the block group exists and it's currently not in read-only mode. 310 * 311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 312 * is responsible for calling btrfs_dec_nocow_writers() later. 313 * 314 * Or NULL if we can not do a NOCOW write 315 */ 316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 317 u64 bytenr) 318 { 319 struct btrfs_block_group *bg; 320 bool can_nocow = true; 321 322 bg = btrfs_lookup_block_group(fs_info, bytenr); 323 if (!bg) 324 return NULL; 325 326 spin_lock(&bg->lock); 327 if (bg->ro) 328 can_nocow = false; 329 else 330 atomic_inc(&bg->nocow_writers); 331 spin_unlock(&bg->lock); 332 333 if (!can_nocow) { 334 btrfs_put_block_group(bg); 335 return NULL; 336 } 337 338 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 339 return bg; 340 } 341 342 /* 343 * Decrement the number of NOCOW writers in a block group. 344 * 345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 346 * and on the block group returned by that call. Typically this is called after 347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 348 * relocation. 349 * 350 * After this call, the caller should not use the block group anymore. It it wants 351 * to use it, then it should get a reference on it before calling this function. 352 */ 353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 354 { 355 if (atomic_dec_and_test(&bg->nocow_writers)) 356 wake_up_var(&bg->nocow_writers); 357 358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 359 btrfs_put_block_group(bg); 360 } 361 362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 363 { 364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 365 } 366 367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 368 const u64 start) 369 { 370 struct btrfs_block_group *bg; 371 372 bg = btrfs_lookup_block_group(fs_info, start); 373 ASSERT(bg); 374 if (atomic_dec_and_test(&bg->reservations)) 375 wake_up_var(&bg->reservations); 376 btrfs_put_block_group(bg); 377 } 378 379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 380 { 381 struct btrfs_space_info *space_info = bg->space_info; 382 383 ASSERT(bg->ro); 384 385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 386 return; 387 388 /* 389 * Our block group is read only but before we set it to read only, 390 * some task might have had allocated an extent from it already, but it 391 * has not yet created a respective ordered extent (and added it to a 392 * root's list of ordered extents). 393 * Therefore wait for any task currently allocating extents, since the 394 * block group's reservations counter is incremented while a read lock 395 * on the groups' semaphore is held and decremented after releasing 396 * the read access on that semaphore and creating the ordered extent. 397 */ 398 down_write(&space_info->groups_sem); 399 up_write(&space_info->groups_sem); 400 401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 402 } 403 404 struct btrfs_caching_control *btrfs_get_caching_control( 405 struct btrfs_block_group *cache) 406 { 407 struct btrfs_caching_control *ctl; 408 409 spin_lock(&cache->lock); 410 if (!cache->caching_ctl) { 411 spin_unlock(&cache->lock); 412 return NULL; 413 } 414 415 ctl = cache->caching_ctl; 416 refcount_inc(&ctl->count); 417 spin_unlock(&cache->lock); 418 return ctl; 419 } 420 421 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 422 { 423 if (refcount_dec_and_test(&ctl->count)) 424 kfree(ctl); 425 } 426 427 /* 428 * When we wait for progress in the block group caching, its because our 429 * allocation attempt failed at least once. So, we must sleep and let some 430 * progress happen before we try again. 431 * 432 * This function will sleep at least once waiting for new free space to show 433 * up, and then it will check the block group free space numbers for our min 434 * num_bytes. Another option is to have it go ahead and look in the rbtree for 435 * a free extent of a given size, but this is a good start. 436 * 437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 438 * any of the information in this block group. 439 */ 440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 441 u64 num_bytes) 442 { 443 struct btrfs_caching_control *caching_ctl; 444 int progress; 445 446 caching_ctl = btrfs_get_caching_control(cache); 447 if (!caching_ctl) 448 return; 449 450 /* 451 * We've already failed to allocate from this block group, so even if 452 * there's enough space in the block group it isn't contiguous enough to 453 * allow for an allocation, so wait for at least the next wakeup tick, 454 * or for the thing to be done. 455 */ 456 progress = atomic_read(&caching_ctl->progress); 457 458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 459 (progress != atomic_read(&caching_ctl->progress) && 460 (cache->free_space_ctl->free_space >= num_bytes))); 461 462 btrfs_put_caching_control(caching_ctl); 463 } 464 465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 466 struct btrfs_caching_control *caching_ctl) 467 { 468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 470 } 471 472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 473 { 474 struct btrfs_caching_control *caching_ctl; 475 int ret; 476 477 caching_ctl = btrfs_get_caching_control(cache); 478 if (!caching_ctl) 479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 481 btrfs_put_caching_control(caching_ctl); 482 return ret; 483 } 484 485 #ifdef CONFIG_BTRFS_DEBUG 486 static void fragment_free_space(struct btrfs_block_group *block_group) 487 { 488 struct btrfs_fs_info *fs_info = block_group->fs_info; 489 u64 start = block_group->start; 490 u64 len = block_group->length; 491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 492 fs_info->nodesize : fs_info->sectorsize; 493 u64 step = chunk << 1; 494 495 while (len > chunk) { 496 btrfs_remove_free_space(block_group, start, chunk); 497 start += step; 498 if (len < step) 499 len = 0; 500 else 501 len -= step; 502 } 503 } 504 #endif 505 506 /* 507 * Add a free space range to the in memory free space cache of a block group. 508 * This checks if the range contains super block locations and any such 509 * locations are not added to the free space cache. 510 * 511 * @block_group: The target block group. 512 * @start: Start offset of the range. 513 * @end: End offset of the range (exclusive). 514 * @total_added_ret: Optional pointer to return the total amount of space 515 * added to the block group's free space cache. 516 * 517 * Returns 0 on success or < 0 on error. 518 */ 519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 520 u64 end, u64 *total_added_ret) 521 { 522 struct btrfs_fs_info *info = block_group->fs_info; 523 u64 extent_start, extent_end, size; 524 int ret; 525 526 if (total_added_ret) 527 *total_added_ret = 0; 528 529 while (start < end) { 530 if (!find_first_extent_bit(&info->excluded_extents, start, 531 &extent_start, &extent_end, 532 EXTENT_DIRTY | EXTENT_UPTODATE, 533 NULL)) 534 break; 535 536 if (extent_start <= start) { 537 start = extent_end + 1; 538 } else if (extent_start > start && extent_start < end) { 539 size = extent_start - start; 540 ret = btrfs_add_free_space_async_trimmed(block_group, 541 start, size); 542 if (ret) 543 return ret; 544 if (total_added_ret) 545 *total_added_ret += size; 546 start = extent_end + 1; 547 } else { 548 break; 549 } 550 } 551 552 if (start < end) { 553 size = end - start; 554 ret = btrfs_add_free_space_async_trimmed(block_group, start, 555 size); 556 if (ret) 557 return ret; 558 if (total_added_ret) 559 *total_added_ret += size; 560 } 561 562 return 0; 563 } 564 565 /* 566 * Get an arbitrary extent item index / max_index through the block group 567 * 568 * @block_group the block group to sample from 569 * @index: the integral step through the block group to grab from 570 * @max_index: the granularity of the sampling 571 * @key: return value parameter for the item we find 572 * 573 * Pre-conditions on indices: 574 * 0 <= index <= max_index 575 * 0 < max_index 576 * 577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 578 * error code on error. 579 */ 580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 581 struct btrfs_block_group *block_group, 582 int index, int max_index, 583 struct btrfs_key *found_key) 584 { 585 struct btrfs_fs_info *fs_info = block_group->fs_info; 586 struct btrfs_root *extent_root; 587 u64 search_offset; 588 u64 search_end = block_group->start + block_group->length; 589 struct btrfs_path *path; 590 struct btrfs_key search_key; 591 int ret = 0; 592 593 ASSERT(index >= 0); 594 ASSERT(index <= max_index); 595 ASSERT(max_index > 0); 596 lockdep_assert_held(&caching_ctl->mutex); 597 lockdep_assert_held_read(&fs_info->commit_root_sem); 598 599 path = btrfs_alloc_path(); 600 if (!path) 601 return -ENOMEM; 602 603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 604 BTRFS_SUPER_INFO_OFFSET)); 605 606 path->skip_locking = 1; 607 path->search_commit_root = 1; 608 path->reada = READA_FORWARD; 609 610 search_offset = index * div_u64(block_group->length, max_index); 611 search_key.objectid = block_group->start + search_offset; 612 search_key.type = BTRFS_EXTENT_ITEM_KEY; 613 search_key.offset = 0; 614 615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 616 /* Success; sampled an extent item in the block group */ 617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 618 found_key->objectid >= block_group->start && 619 found_key->objectid + found_key->offset <= search_end) 620 break; 621 622 /* We can't possibly find a valid extent item anymore */ 623 if (found_key->objectid >= search_end) { 624 ret = 1; 625 break; 626 } 627 } 628 629 lockdep_assert_held(&caching_ctl->mutex); 630 lockdep_assert_held_read(&fs_info->commit_root_sem); 631 btrfs_free_path(path); 632 return ret; 633 } 634 635 /* 636 * Best effort attempt to compute a block group's size class while caching it. 637 * 638 * @block_group: the block group we are caching 639 * 640 * We cannot infer the size class while adding free space extents, because that 641 * logic doesn't care about contiguous file extents (it doesn't differentiate 642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 643 * file extent items. Reading all of them is quite wasteful, because usually 644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 645 * them at even steps through the block group and pick the smallest size class 646 * we see. Since size class is best effort, and not guaranteed in general, 647 * inaccuracy is acceptable. 648 * 649 * To be more explicit about why this algorithm makes sense: 650 * 651 * If we are caching in a block group from disk, then there are three major cases 652 * to consider: 653 * 1. the block group is well behaved and all extents in it are the same size 654 * class. 655 * 2. the block group is mostly one size class with rare exceptions for last 656 * ditch allocations 657 * 3. the block group was populated before size classes and can have a totally 658 * arbitrary mix of size classes. 659 * 660 * In case 1, looking at any extent in the block group will yield the correct 661 * result. For the mixed cases, taking the minimum size class seems like a good 662 * approximation, since gaps from frees will be usable to the size class. For 663 * 2., a small handful of file extents is likely to yield the right answer. For 664 * 3, we can either read every file extent, or admit that this is best effort 665 * anyway and try to stay fast. 666 * 667 * Returns: 0 on success, negative error code on error. 668 */ 669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 670 struct btrfs_block_group *block_group) 671 { 672 struct btrfs_fs_info *fs_info = block_group->fs_info; 673 struct btrfs_key key; 674 int i; 675 u64 min_size = block_group->length; 676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 677 int ret; 678 679 if (!btrfs_block_group_should_use_size_class(block_group)) 680 return 0; 681 682 lockdep_assert_held(&caching_ctl->mutex); 683 lockdep_assert_held_read(&fs_info->commit_root_sem); 684 for (i = 0; i < 5; ++i) { 685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 686 if (ret < 0) 687 goto out; 688 if (ret > 0) 689 continue; 690 min_size = min_t(u64, min_size, key.offset); 691 size_class = btrfs_calc_block_group_size_class(min_size); 692 } 693 if (size_class != BTRFS_BG_SZ_NONE) { 694 spin_lock(&block_group->lock); 695 block_group->size_class = size_class; 696 spin_unlock(&block_group->lock); 697 } 698 out: 699 return ret; 700 } 701 702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 703 { 704 struct btrfs_block_group *block_group = caching_ctl->block_group; 705 struct btrfs_fs_info *fs_info = block_group->fs_info; 706 struct btrfs_root *extent_root; 707 struct btrfs_path *path; 708 struct extent_buffer *leaf; 709 struct btrfs_key key; 710 u64 total_found = 0; 711 u64 last = 0; 712 u32 nritems; 713 int ret; 714 bool wakeup = true; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 721 extent_root = btrfs_extent_root(fs_info, last); 722 723 #ifdef CONFIG_BTRFS_DEBUG 724 /* 725 * If we're fragmenting we don't want to make anybody think we can 726 * allocate from this block group until we've had a chance to fragment 727 * the free space. 728 */ 729 if (btrfs_should_fragment_free_space(block_group)) 730 wakeup = false; 731 #endif 732 /* 733 * We don't want to deadlock with somebody trying to allocate a new 734 * extent for the extent root while also trying to search the extent 735 * root to add free space. So we skip locking and search the commit 736 * root, since its read-only 737 */ 738 path->skip_locking = 1; 739 path->search_commit_root = 1; 740 path->reada = READA_FORWARD; 741 742 key.objectid = last; 743 key.offset = 0; 744 key.type = BTRFS_EXTENT_ITEM_KEY; 745 746 next: 747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 748 if (ret < 0) 749 goto out; 750 751 leaf = path->nodes[0]; 752 nritems = btrfs_header_nritems(leaf); 753 754 while (1) { 755 if (btrfs_fs_closing(fs_info) > 1) { 756 last = (u64)-1; 757 break; 758 } 759 760 if (path->slots[0] < nritems) { 761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 762 } else { 763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 764 if (ret) 765 break; 766 767 if (need_resched() || 768 rwsem_is_contended(&fs_info->commit_root_sem)) { 769 btrfs_release_path(path); 770 up_read(&fs_info->commit_root_sem); 771 mutex_unlock(&caching_ctl->mutex); 772 cond_resched(); 773 mutex_lock(&caching_ctl->mutex); 774 down_read(&fs_info->commit_root_sem); 775 goto next; 776 } 777 778 ret = btrfs_next_leaf(extent_root, path); 779 if (ret < 0) 780 goto out; 781 if (ret) 782 break; 783 leaf = path->nodes[0]; 784 nritems = btrfs_header_nritems(leaf); 785 continue; 786 } 787 788 if (key.objectid < last) { 789 key.objectid = last; 790 key.offset = 0; 791 key.type = BTRFS_EXTENT_ITEM_KEY; 792 btrfs_release_path(path); 793 goto next; 794 } 795 796 if (key.objectid < block_group->start) { 797 path->slots[0]++; 798 continue; 799 } 800 801 if (key.objectid >= block_group->start + block_group->length) 802 break; 803 804 if (key.type == BTRFS_EXTENT_ITEM_KEY || 805 key.type == BTRFS_METADATA_ITEM_KEY) { 806 u64 space_added; 807 808 ret = btrfs_add_new_free_space(block_group, last, 809 key.objectid, &space_added); 810 if (ret) 811 goto out; 812 total_found += space_added; 813 if (key.type == BTRFS_METADATA_ITEM_KEY) 814 last = key.objectid + 815 fs_info->nodesize; 816 else 817 last = key.objectid + key.offset; 818 819 if (total_found > CACHING_CTL_WAKE_UP) { 820 total_found = 0; 821 if (wakeup) { 822 atomic_inc(&caching_ctl->progress); 823 wake_up(&caching_ctl->wait); 824 } 825 } 826 } 827 path->slots[0]++; 828 } 829 830 ret = btrfs_add_new_free_space(block_group, last, 831 block_group->start + block_group->length, 832 NULL); 833 out: 834 btrfs_free_path(path); 835 return ret; 836 } 837 838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 839 { 840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start, 841 bg->start + bg->length - 1, EXTENT_UPTODATE); 842 } 843 844 static noinline void caching_thread(struct btrfs_work *work) 845 { 846 struct btrfs_block_group *block_group; 847 struct btrfs_fs_info *fs_info; 848 struct btrfs_caching_control *caching_ctl; 849 int ret; 850 851 caching_ctl = container_of(work, struct btrfs_caching_control, work); 852 block_group = caching_ctl->block_group; 853 fs_info = block_group->fs_info; 854 855 mutex_lock(&caching_ctl->mutex); 856 down_read(&fs_info->commit_root_sem); 857 858 load_block_group_size_class(caching_ctl, block_group); 859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 860 ret = load_free_space_cache(block_group); 861 if (ret == 1) { 862 ret = 0; 863 goto done; 864 } 865 866 /* 867 * We failed to load the space cache, set ourselves to 868 * CACHE_STARTED and carry on. 869 */ 870 spin_lock(&block_group->lock); 871 block_group->cached = BTRFS_CACHE_STARTED; 872 spin_unlock(&block_group->lock); 873 wake_up(&caching_ctl->wait); 874 } 875 876 /* 877 * If we are in the transaction that populated the free space tree we 878 * can't actually cache from the free space tree as our commit root and 879 * real root are the same, so we could change the contents of the blocks 880 * while caching. Instead do the slow caching in this case, and after 881 * the transaction has committed we will be safe. 882 */ 883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 885 ret = load_free_space_tree(caching_ctl); 886 else 887 ret = load_extent_tree_free(caching_ctl); 888 done: 889 spin_lock(&block_group->lock); 890 block_group->caching_ctl = NULL; 891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 892 spin_unlock(&block_group->lock); 893 894 #ifdef CONFIG_BTRFS_DEBUG 895 if (btrfs_should_fragment_free_space(block_group)) { 896 u64 bytes_used; 897 898 spin_lock(&block_group->space_info->lock); 899 spin_lock(&block_group->lock); 900 bytes_used = block_group->length - block_group->used; 901 block_group->space_info->bytes_used += bytes_used >> 1; 902 spin_unlock(&block_group->lock); 903 spin_unlock(&block_group->space_info->lock); 904 fragment_free_space(block_group); 905 } 906 #endif 907 908 up_read(&fs_info->commit_root_sem); 909 btrfs_free_excluded_extents(block_group); 910 mutex_unlock(&caching_ctl->mutex); 911 912 wake_up(&caching_ctl->wait); 913 914 btrfs_put_caching_control(caching_ctl); 915 btrfs_put_block_group(block_group); 916 } 917 918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 919 { 920 struct btrfs_fs_info *fs_info = cache->fs_info; 921 struct btrfs_caching_control *caching_ctl = NULL; 922 int ret = 0; 923 924 /* Allocator for zoned filesystems does not use the cache at all */ 925 if (btrfs_is_zoned(fs_info)) 926 return 0; 927 928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 929 if (!caching_ctl) 930 return -ENOMEM; 931 932 INIT_LIST_HEAD(&caching_ctl->list); 933 mutex_init(&caching_ctl->mutex); 934 init_waitqueue_head(&caching_ctl->wait); 935 caching_ctl->block_group = cache; 936 refcount_set(&caching_ctl->count, 2); 937 atomic_set(&caching_ctl->progress, 0); 938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL); 939 940 spin_lock(&cache->lock); 941 if (cache->cached != BTRFS_CACHE_NO) { 942 kfree(caching_ctl); 943 944 caching_ctl = cache->caching_ctl; 945 if (caching_ctl) 946 refcount_inc(&caching_ctl->count); 947 spin_unlock(&cache->lock); 948 goto out; 949 } 950 WARN_ON(cache->caching_ctl); 951 cache->caching_ctl = caching_ctl; 952 cache->cached = BTRFS_CACHE_STARTED; 953 spin_unlock(&cache->lock); 954 955 write_lock(&fs_info->block_group_cache_lock); 956 refcount_inc(&caching_ctl->count); 957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 958 write_unlock(&fs_info->block_group_cache_lock); 959 960 btrfs_get_block_group(cache); 961 962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 963 out: 964 if (wait && caching_ctl) 965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 966 if (caching_ctl) 967 btrfs_put_caching_control(caching_ctl); 968 969 return ret; 970 } 971 972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 973 { 974 u64 extra_flags = chunk_to_extended(flags) & 975 BTRFS_EXTENDED_PROFILE_MASK; 976 977 write_seqlock(&fs_info->profiles_lock); 978 if (flags & BTRFS_BLOCK_GROUP_DATA) 979 fs_info->avail_data_alloc_bits &= ~extra_flags; 980 if (flags & BTRFS_BLOCK_GROUP_METADATA) 981 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 983 fs_info->avail_system_alloc_bits &= ~extra_flags; 984 write_sequnlock(&fs_info->profiles_lock); 985 } 986 987 /* 988 * Clear incompat bits for the following feature(s): 989 * 990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 991 * in the whole filesystem 992 * 993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 994 */ 995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 996 { 997 bool found_raid56 = false; 998 bool found_raid1c34 = false; 999 1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1003 struct list_head *head = &fs_info->space_info; 1004 struct btrfs_space_info *sinfo; 1005 1006 list_for_each_entry_rcu(sinfo, head, list) { 1007 down_read(&sinfo->groups_sem); 1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1009 found_raid56 = true; 1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1011 found_raid56 = true; 1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1013 found_raid1c34 = true; 1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1015 found_raid1c34 = true; 1016 up_read(&sinfo->groups_sem); 1017 } 1018 if (!found_raid56) 1019 btrfs_clear_fs_incompat(fs_info, RAID56); 1020 if (!found_raid1c34) 1021 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1022 } 1023 } 1024 1025 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1026 { 1027 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1028 return fs_info->block_group_root; 1029 return btrfs_extent_root(fs_info, 0); 1030 } 1031 1032 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1033 struct btrfs_path *path, 1034 struct btrfs_block_group *block_group) 1035 { 1036 struct btrfs_fs_info *fs_info = trans->fs_info; 1037 struct btrfs_root *root; 1038 struct btrfs_key key; 1039 int ret; 1040 1041 root = btrfs_block_group_root(fs_info); 1042 key.objectid = block_group->start; 1043 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1044 key.offset = block_group->length; 1045 1046 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1047 if (ret > 0) 1048 ret = -ENOENT; 1049 if (ret < 0) 1050 return ret; 1051 1052 ret = btrfs_del_item(trans, root, path); 1053 return ret; 1054 } 1055 1056 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1057 struct btrfs_chunk_map *map) 1058 { 1059 struct btrfs_fs_info *fs_info = trans->fs_info; 1060 struct btrfs_path *path; 1061 struct btrfs_block_group *block_group; 1062 struct btrfs_free_cluster *cluster; 1063 struct inode *inode; 1064 struct kobject *kobj = NULL; 1065 int ret; 1066 int index; 1067 int factor; 1068 struct btrfs_caching_control *caching_ctl = NULL; 1069 bool remove_map; 1070 bool remove_rsv = false; 1071 1072 block_group = btrfs_lookup_block_group(fs_info, map->start); 1073 if (!block_group) 1074 return -ENOENT; 1075 1076 BUG_ON(!block_group->ro); 1077 1078 trace_btrfs_remove_block_group(block_group); 1079 /* 1080 * Free the reserved super bytes from this block group before 1081 * remove it. 1082 */ 1083 btrfs_free_excluded_extents(block_group); 1084 btrfs_free_ref_tree_range(fs_info, block_group->start, 1085 block_group->length); 1086 1087 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1088 factor = btrfs_bg_type_to_factor(block_group->flags); 1089 1090 /* make sure this block group isn't part of an allocation cluster */ 1091 cluster = &fs_info->data_alloc_cluster; 1092 spin_lock(&cluster->refill_lock); 1093 btrfs_return_cluster_to_free_space(block_group, cluster); 1094 spin_unlock(&cluster->refill_lock); 1095 1096 /* 1097 * make sure this block group isn't part of a metadata 1098 * allocation cluster 1099 */ 1100 cluster = &fs_info->meta_alloc_cluster; 1101 spin_lock(&cluster->refill_lock); 1102 btrfs_return_cluster_to_free_space(block_group, cluster); 1103 spin_unlock(&cluster->refill_lock); 1104 1105 btrfs_clear_treelog_bg(block_group); 1106 btrfs_clear_data_reloc_bg(block_group); 1107 1108 path = btrfs_alloc_path(); 1109 if (!path) { 1110 ret = -ENOMEM; 1111 goto out; 1112 } 1113 1114 /* 1115 * get the inode first so any iput calls done for the io_list 1116 * aren't the final iput (no unlinks allowed now) 1117 */ 1118 inode = lookup_free_space_inode(block_group, path); 1119 1120 mutex_lock(&trans->transaction->cache_write_mutex); 1121 /* 1122 * Make sure our free space cache IO is done before removing the 1123 * free space inode 1124 */ 1125 spin_lock(&trans->transaction->dirty_bgs_lock); 1126 if (!list_empty(&block_group->io_list)) { 1127 list_del_init(&block_group->io_list); 1128 1129 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1130 1131 spin_unlock(&trans->transaction->dirty_bgs_lock); 1132 btrfs_wait_cache_io(trans, block_group, path); 1133 btrfs_put_block_group(block_group); 1134 spin_lock(&trans->transaction->dirty_bgs_lock); 1135 } 1136 1137 if (!list_empty(&block_group->dirty_list)) { 1138 list_del_init(&block_group->dirty_list); 1139 remove_rsv = true; 1140 btrfs_put_block_group(block_group); 1141 } 1142 spin_unlock(&trans->transaction->dirty_bgs_lock); 1143 mutex_unlock(&trans->transaction->cache_write_mutex); 1144 1145 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1146 if (ret) 1147 goto out; 1148 1149 write_lock(&fs_info->block_group_cache_lock); 1150 rb_erase_cached(&block_group->cache_node, 1151 &fs_info->block_group_cache_tree); 1152 RB_CLEAR_NODE(&block_group->cache_node); 1153 1154 /* Once for the block groups rbtree */ 1155 btrfs_put_block_group(block_group); 1156 1157 write_unlock(&fs_info->block_group_cache_lock); 1158 1159 down_write(&block_group->space_info->groups_sem); 1160 /* 1161 * we must use list_del_init so people can check to see if they 1162 * are still on the list after taking the semaphore 1163 */ 1164 list_del_init(&block_group->list); 1165 if (list_empty(&block_group->space_info->block_groups[index])) { 1166 kobj = block_group->space_info->block_group_kobjs[index]; 1167 block_group->space_info->block_group_kobjs[index] = NULL; 1168 clear_avail_alloc_bits(fs_info, block_group->flags); 1169 } 1170 up_write(&block_group->space_info->groups_sem); 1171 clear_incompat_bg_bits(fs_info, block_group->flags); 1172 if (kobj) { 1173 kobject_del(kobj); 1174 kobject_put(kobj); 1175 } 1176 1177 if (block_group->cached == BTRFS_CACHE_STARTED) 1178 btrfs_wait_block_group_cache_done(block_group); 1179 1180 write_lock(&fs_info->block_group_cache_lock); 1181 caching_ctl = btrfs_get_caching_control(block_group); 1182 if (!caching_ctl) { 1183 struct btrfs_caching_control *ctl; 1184 1185 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1186 if (ctl->block_group == block_group) { 1187 caching_ctl = ctl; 1188 refcount_inc(&caching_ctl->count); 1189 break; 1190 } 1191 } 1192 } 1193 if (caching_ctl) 1194 list_del_init(&caching_ctl->list); 1195 write_unlock(&fs_info->block_group_cache_lock); 1196 1197 if (caching_ctl) { 1198 /* Once for the caching bgs list and once for us. */ 1199 btrfs_put_caching_control(caching_ctl); 1200 btrfs_put_caching_control(caching_ctl); 1201 } 1202 1203 spin_lock(&trans->transaction->dirty_bgs_lock); 1204 WARN_ON(!list_empty(&block_group->dirty_list)); 1205 WARN_ON(!list_empty(&block_group->io_list)); 1206 spin_unlock(&trans->transaction->dirty_bgs_lock); 1207 1208 btrfs_remove_free_space_cache(block_group); 1209 1210 spin_lock(&block_group->space_info->lock); 1211 list_del_init(&block_group->ro_list); 1212 1213 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1214 WARN_ON(block_group->space_info->total_bytes 1215 < block_group->length); 1216 WARN_ON(block_group->space_info->bytes_readonly 1217 < block_group->length - block_group->zone_unusable); 1218 WARN_ON(block_group->space_info->bytes_zone_unusable 1219 < block_group->zone_unusable); 1220 WARN_ON(block_group->space_info->disk_total 1221 < block_group->length * factor); 1222 } 1223 block_group->space_info->total_bytes -= block_group->length; 1224 block_group->space_info->bytes_readonly -= 1225 (block_group->length - block_group->zone_unusable); 1226 block_group->space_info->bytes_zone_unusable -= 1227 block_group->zone_unusable; 1228 block_group->space_info->disk_total -= block_group->length * factor; 1229 1230 spin_unlock(&block_group->space_info->lock); 1231 1232 /* 1233 * Remove the free space for the block group from the free space tree 1234 * and the block group's item from the extent tree before marking the 1235 * block group as removed. This is to prevent races with tasks that 1236 * freeze and unfreeze a block group, this task and another task 1237 * allocating a new block group - the unfreeze task ends up removing 1238 * the block group's extent map before the task calling this function 1239 * deletes the block group item from the extent tree, allowing for 1240 * another task to attempt to create another block group with the same 1241 * item key (and failing with -EEXIST and a transaction abort). 1242 */ 1243 ret = remove_block_group_free_space(trans, block_group); 1244 if (ret) 1245 goto out; 1246 1247 ret = remove_block_group_item(trans, path, block_group); 1248 if (ret < 0) 1249 goto out; 1250 1251 spin_lock(&block_group->lock); 1252 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1253 1254 /* 1255 * At this point trimming or scrub can't start on this block group, 1256 * because we removed the block group from the rbtree 1257 * fs_info->block_group_cache_tree so no one can't find it anymore and 1258 * even if someone already got this block group before we removed it 1259 * from the rbtree, they have already incremented block_group->frozen - 1260 * if they didn't, for the trimming case they won't find any free space 1261 * entries because we already removed them all when we called 1262 * btrfs_remove_free_space_cache(). 1263 * 1264 * And we must not remove the chunk map from the fs_info->mapping_tree 1265 * to prevent the same logical address range and physical device space 1266 * ranges from being reused for a new block group. This is needed to 1267 * avoid races with trimming and scrub. 1268 * 1269 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1270 * completely transactionless, so while it is trimming a range the 1271 * currently running transaction might finish and a new one start, 1272 * allowing for new block groups to be created that can reuse the same 1273 * physical device locations unless we take this special care. 1274 * 1275 * There may also be an implicit trim operation if the file system 1276 * is mounted with -odiscard. The same protections must remain 1277 * in place until the extents have been discarded completely when 1278 * the transaction commit has completed. 1279 */ 1280 remove_map = (atomic_read(&block_group->frozen) == 0); 1281 spin_unlock(&block_group->lock); 1282 1283 if (remove_map) 1284 btrfs_remove_chunk_map(fs_info, map); 1285 1286 out: 1287 /* Once for the lookup reference */ 1288 btrfs_put_block_group(block_group); 1289 if (remove_rsv) 1290 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 1291 btrfs_free_path(path); 1292 return ret; 1293 } 1294 1295 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1296 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1297 { 1298 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1299 struct btrfs_chunk_map *map; 1300 unsigned int num_items; 1301 1302 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 1303 ASSERT(map != NULL); 1304 ASSERT(map->start == chunk_offset); 1305 1306 /* 1307 * We need to reserve 3 + N units from the metadata space info in order 1308 * to remove a block group (done at btrfs_remove_chunk() and at 1309 * btrfs_remove_block_group()), which are used for: 1310 * 1311 * 1 unit for adding the free space inode's orphan (located in the tree 1312 * of tree roots). 1313 * 1 unit for deleting the block group item (located in the extent 1314 * tree). 1315 * 1 unit for deleting the free space item (located in tree of tree 1316 * roots). 1317 * N units for deleting N device extent items corresponding to each 1318 * stripe (located in the device tree). 1319 * 1320 * In order to remove a block group we also need to reserve units in the 1321 * system space info in order to update the chunk tree (update one or 1322 * more device items and remove one chunk item), but this is done at 1323 * btrfs_remove_chunk() through a call to check_system_chunk(). 1324 */ 1325 num_items = 3 + map->num_stripes; 1326 btrfs_free_chunk_map(map); 1327 1328 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1329 } 1330 1331 /* 1332 * Mark block group @cache read-only, so later write won't happen to block 1333 * group @cache. 1334 * 1335 * If @force is not set, this function will only mark the block group readonly 1336 * if we have enough free space (1M) in other metadata/system block groups. 1337 * If @force is not set, this function will mark the block group readonly 1338 * without checking free space. 1339 * 1340 * NOTE: This function doesn't care if other block groups can contain all the 1341 * data in this block group. That check should be done by relocation routine, 1342 * not this function. 1343 */ 1344 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1345 { 1346 struct btrfs_space_info *sinfo = cache->space_info; 1347 u64 num_bytes; 1348 int ret = -ENOSPC; 1349 1350 spin_lock(&sinfo->lock); 1351 spin_lock(&cache->lock); 1352 1353 if (cache->swap_extents) { 1354 ret = -ETXTBSY; 1355 goto out; 1356 } 1357 1358 if (cache->ro) { 1359 cache->ro++; 1360 ret = 0; 1361 goto out; 1362 } 1363 1364 num_bytes = cache->length - cache->reserved - cache->pinned - 1365 cache->bytes_super - cache->zone_unusable - cache->used; 1366 1367 /* 1368 * Data never overcommits, even in mixed mode, so do just the straight 1369 * check of left over space in how much we have allocated. 1370 */ 1371 if (force) { 1372 ret = 0; 1373 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1374 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1375 1376 /* 1377 * Here we make sure if we mark this bg RO, we still have enough 1378 * free space as buffer. 1379 */ 1380 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1381 ret = 0; 1382 } else { 1383 /* 1384 * We overcommit metadata, so we need to do the 1385 * btrfs_can_overcommit check here, and we need to pass in 1386 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1387 * leeway to allow us to mark this block group as read only. 1388 */ 1389 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1390 BTRFS_RESERVE_NO_FLUSH)) 1391 ret = 0; 1392 } 1393 1394 if (!ret) { 1395 sinfo->bytes_readonly += num_bytes; 1396 if (btrfs_is_zoned(cache->fs_info)) { 1397 /* Migrate zone_unusable bytes to readonly */ 1398 sinfo->bytes_readonly += cache->zone_unusable; 1399 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1400 cache->zone_unusable = 0; 1401 } 1402 cache->ro++; 1403 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1404 } 1405 out: 1406 spin_unlock(&cache->lock); 1407 spin_unlock(&sinfo->lock); 1408 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1409 btrfs_info(cache->fs_info, 1410 "unable to make block group %llu ro", cache->start); 1411 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1412 } 1413 return ret; 1414 } 1415 1416 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1417 struct btrfs_block_group *bg) 1418 { 1419 struct btrfs_fs_info *fs_info = bg->fs_info; 1420 struct btrfs_transaction *prev_trans = NULL; 1421 const u64 start = bg->start; 1422 const u64 end = start + bg->length - 1; 1423 int ret; 1424 1425 spin_lock(&fs_info->trans_lock); 1426 if (trans->transaction->list.prev != &fs_info->trans_list) { 1427 prev_trans = list_last_entry(&trans->transaction->list, 1428 struct btrfs_transaction, list); 1429 refcount_inc(&prev_trans->use_count); 1430 } 1431 spin_unlock(&fs_info->trans_lock); 1432 1433 /* 1434 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1435 * btrfs_finish_extent_commit(). If we are at transaction N, another 1436 * task might be running finish_extent_commit() for the previous 1437 * transaction N - 1, and have seen a range belonging to the block 1438 * group in pinned_extents before we were able to clear the whole block 1439 * group range from pinned_extents. This means that task can lookup for 1440 * the block group after we unpinned it from pinned_extents and removed 1441 * it, leading to an error at unpin_extent_range(). 1442 */ 1443 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1444 if (prev_trans) { 1445 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1446 EXTENT_DIRTY); 1447 if (ret) 1448 goto out; 1449 } 1450 1451 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1452 EXTENT_DIRTY); 1453 out: 1454 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1455 if (prev_trans) 1456 btrfs_put_transaction(prev_trans); 1457 1458 return ret == 0; 1459 } 1460 1461 /* 1462 * Process the unused_bgs list and remove any that don't have any allocated 1463 * space inside of them. 1464 */ 1465 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1466 { 1467 LIST_HEAD(retry_list); 1468 struct btrfs_block_group *block_group; 1469 struct btrfs_space_info *space_info; 1470 struct btrfs_trans_handle *trans; 1471 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1472 int ret = 0; 1473 1474 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1475 return; 1476 1477 if (btrfs_fs_closing(fs_info)) 1478 return; 1479 1480 /* 1481 * Long running balances can keep us blocked here for eternity, so 1482 * simply skip deletion if we're unable to get the mutex. 1483 */ 1484 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1485 return; 1486 1487 spin_lock(&fs_info->unused_bgs_lock); 1488 while (!list_empty(&fs_info->unused_bgs)) { 1489 u64 used; 1490 int trimming; 1491 1492 block_group = list_first_entry(&fs_info->unused_bgs, 1493 struct btrfs_block_group, 1494 bg_list); 1495 list_del_init(&block_group->bg_list); 1496 1497 space_info = block_group->space_info; 1498 1499 if (ret || btrfs_mixed_space_info(space_info)) { 1500 btrfs_put_block_group(block_group); 1501 continue; 1502 } 1503 spin_unlock(&fs_info->unused_bgs_lock); 1504 1505 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1506 1507 /* Don't want to race with allocators so take the groups_sem */ 1508 down_write(&space_info->groups_sem); 1509 1510 /* 1511 * Async discard moves the final block group discard to be prior 1512 * to the unused_bgs code path. Therefore, if it's not fully 1513 * trimmed, punt it back to the async discard lists. 1514 */ 1515 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1516 !btrfs_is_free_space_trimmed(block_group)) { 1517 trace_btrfs_skip_unused_block_group(block_group); 1518 up_write(&space_info->groups_sem); 1519 /* Requeue if we failed because of async discard */ 1520 btrfs_discard_queue_work(&fs_info->discard_ctl, 1521 block_group); 1522 goto next; 1523 } 1524 1525 spin_lock(&space_info->lock); 1526 spin_lock(&block_group->lock); 1527 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1528 list_is_singular(&block_group->list)) { 1529 /* 1530 * We want to bail if we made new allocations or have 1531 * outstanding allocations in this block group. We do 1532 * the ro check in case balance is currently acting on 1533 * this block group. 1534 * 1535 * Also bail out if this is the only block group for its 1536 * type, because otherwise we would lose profile 1537 * information from fs_info->avail_*_alloc_bits and the 1538 * next block group of this type would be created with a 1539 * "single" profile (even if we're in a raid fs) because 1540 * fs_info->avail_*_alloc_bits would be 0. 1541 */ 1542 trace_btrfs_skip_unused_block_group(block_group); 1543 spin_unlock(&block_group->lock); 1544 spin_unlock(&space_info->lock); 1545 up_write(&space_info->groups_sem); 1546 goto next; 1547 } 1548 1549 /* 1550 * The block group may be unused but there may be space reserved 1551 * accounting with the existence of that block group, that is, 1552 * space_info->bytes_may_use was incremented by a task but no 1553 * space was yet allocated from the block group by the task. 1554 * That space may or may not be allocated, as we are generally 1555 * pessimistic about space reservation for metadata as well as 1556 * for data when using compression (as we reserve space based on 1557 * the worst case, when data can't be compressed, and before 1558 * actually attempting compression, before starting writeback). 1559 * 1560 * So check if the total space of the space_info minus the size 1561 * of this block group is less than the used space of the 1562 * space_info - if that's the case, then it means we have tasks 1563 * that might be relying on the block group in order to allocate 1564 * extents, and add back the block group to the unused list when 1565 * we finish, so that we retry later in case no tasks ended up 1566 * needing to allocate extents from the block group. 1567 */ 1568 used = btrfs_space_info_used(space_info, true); 1569 if (space_info->total_bytes - block_group->length < used && 1570 block_group->zone_unusable < block_group->length) { 1571 /* 1572 * Add a reference for the list, compensate for the ref 1573 * drop under the "next" label for the 1574 * fs_info->unused_bgs list. 1575 */ 1576 btrfs_get_block_group(block_group); 1577 list_add_tail(&block_group->bg_list, &retry_list); 1578 1579 trace_btrfs_skip_unused_block_group(block_group); 1580 spin_unlock(&block_group->lock); 1581 spin_unlock(&space_info->lock); 1582 up_write(&space_info->groups_sem); 1583 goto next; 1584 } 1585 1586 spin_unlock(&block_group->lock); 1587 spin_unlock(&space_info->lock); 1588 1589 /* We don't want to force the issue, only flip if it's ok. */ 1590 ret = inc_block_group_ro(block_group, 0); 1591 up_write(&space_info->groups_sem); 1592 if (ret < 0) { 1593 ret = 0; 1594 goto next; 1595 } 1596 1597 ret = btrfs_zone_finish(block_group); 1598 if (ret < 0) { 1599 btrfs_dec_block_group_ro(block_group); 1600 if (ret == -EAGAIN) 1601 ret = 0; 1602 goto next; 1603 } 1604 1605 /* 1606 * Want to do this before we do anything else so we can recover 1607 * properly if we fail to join the transaction. 1608 */ 1609 trans = btrfs_start_trans_remove_block_group(fs_info, 1610 block_group->start); 1611 if (IS_ERR(trans)) { 1612 btrfs_dec_block_group_ro(block_group); 1613 ret = PTR_ERR(trans); 1614 goto next; 1615 } 1616 1617 /* 1618 * We could have pending pinned extents for this block group, 1619 * just delete them, we don't care about them anymore. 1620 */ 1621 if (!clean_pinned_extents(trans, block_group)) { 1622 btrfs_dec_block_group_ro(block_group); 1623 goto end_trans; 1624 } 1625 1626 /* 1627 * At this point, the block_group is read only and should fail 1628 * new allocations. However, btrfs_finish_extent_commit() can 1629 * cause this block_group to be placed back on the discard 1630 * lists because now the block_group isn't fully discarded. 1631 * Bail here and try again later after discarding everything. 1632 */ 1633 spin_lock(&fs_info->discard_ctl.lock); 1634 if (!list_empty(&block_group->discard_list)) { 1635 spin_unlock(&fs_info->discard_ctl.lock); 1636 btrfs_dec_block_group_ro(block_group); 1637 btrfs_discard_queue_work(&fs_info->discard_ctl, 1638 block_group); 1639 goto end_trans; 1640 } 1641 spin_unlock(&fs_info->discard_ctl.lock); 1642 1643 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1644 spin_lock(&space_info->lock); 1645 spin_lock(&block_group->lock); 1646 1647 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1648 -block_group->pinned); 1649 space_info->bytes_readonly += block_group->pinned; 1650 block_group->pinned = 0; 1651 1652 spin_unlock(&block_group->lock); 1653 spin_unlock(&space_info->lock); 1654 1655 /* 1656 * The normal path here is an unused block group is passed here, 1657 * then trimming is handled in the transaction commit path. 1658 * Async discard interposes before this to do the trimming 1659 * before coming down the unused block group path as trimming 1660 * will no longer be done later in the transaction commit path. 1661 */ 1662 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1663 goto flip_async; 1664 1665 /* 1666 * DISCARD can flip during remount. On zoned filesystems, we 1667 * need to reset sequential-required zones. 1668 */ 1669 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1670 btrfs_is_zoned(fs_info); 1671 1672 /* Implicit trim during transaction commit. */ 1673 if (trimming) 1674 btrfs_freeze_block_group(block_group); 1675 1676 /* 1677 * Btrfs_remove_chunk will abort the transaction if things go 1678 * horribly wrong. 1679 */ 1680 ret = btrfs_remove_chunk(trans, block_group->start); 1681 1682 if (ret) { 1683 if (trimming) 1684 btrfs_unfreeze_block_group(block_group); 1685 goto end_trans; 1686 } 1687 1688 /* 1689 * If we're not mounted with -odiscard, we can just forget 1690 * about this block group. Otherwise we'll need to wait 1691 * until transaction commit to do the actual discard. 1692 */ 1693 if (trimming) { 1694 spin_lock(&fs_info->unused_bgs_lock); 1695 /* 1696 * A concurrent scrub might have added us to the list 1697 * fs_info->unused_bgs, so use a list_move operation 1698 * to add the block group to the deleted_bgs list. 1699 */ 1700 list_move(&block_group->bg_list, 1701 &trans->transaction->deleted_bgs); 1702 spin_unlock(&fs_info->unused_bgs_lock); 1703 btrfs_get_block_group(block_group); 1704 } 1705 end_trans: 1706 btrfs_end_transaction(trans); 1707 next: 1708 btrfs_put_block_group(block_group); 1709 spin_lock(&fs_info->unused_bgs_lock); 1710 } 1711 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1712 spin_unlock(&fs_info->unused_bgs_lock); 1713 mutex_unlock(&fs_info->reclaim_bgs_lock); 1714 return; 1715 1716 flip_async: 1717 btrfs_end_transaction(trans); 1718 spin_lock(&fs_info->unused_bgs_lock); 1719 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1720 spin_unlock(&fs_info->unused_bgs_lock); 1721 mutex_unlock(&fs_info->reclaim_bgs_lock); 1722 btrfs_put_block_group(block_group); 1723 btrfs_discard_punt_unused_bgs_list(fs_info); 1724 } 1725 1726 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1727 { 1728 struct btrfs_fs_info *fs_info = bg->fs_info; 1729 1730 spin_lock(&fs_info->unused_bgs_lock); 1731 if (list_empty(&bg->bg_list)) { 1732 btrfs_get_block_group(bg); 1733 trace_btrfs_add_unused_block_group(bg); 1734 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1735 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1736 /* Pull out the block group from the reclaim_bgs list. */ 1737 trace_btrfs_add_unused_block_group(bg); 1738 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1739 } 1740 spin_unlock(&fs_info->unused_bgs_lock); 1741 } 1742 1743 /* 1744 * We want block groups with a low number of used bytes to be in the beginning 1745 * of the list, so they will get reclaimed first. 1746 */ 1747 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1748 const struct list_head *b) 1749 { 1750 const struct btrfs_block_group *bg1, *bg2; 1751 1752 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1753 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1754 1755 return bg1->used > bg2->used; 1756 } 1757 1758 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1759 { 1760 if (btrfs_is_zoned(fs_info)) 1761 return btrfs_zoned_should_reclaim(fs_info); 1762 return true; 1763 } 1764 1765 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1766 { 1767 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info); 1768 u64 thresh_bytes = mult_perc(bg->length, thresh_pct); 1769 const u64 new_val = bg->used; 1770 const u64 old_val = new_val + bytes_freed; 1771 1772 if (thresh_bytes == 0) 1773 return false; 1774 1775 /* 1776 * If we were below the threshold before don't reclaim, we are likely a 1777 * brand new block group and we don't want to relocate new block groups. 1778 */ 1779 if (old_val < thresh_bytes) 1780 return false; 1781 if (new_val >= thresh_bytes) 1782 return false; 1783 return true; 1784 } 1785 1786 void btrfs_reclaim_bgs_work(struct work_struct *work) 1787 { 1788 struct btrfs_fs_info *fs_info = 1789 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1790 struct btrfs_block_group *bg; 1791 struct btrfs_space_info *space_info; 1792 LIST_HEAD(retry_list); 1793 1794 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1795 return; 1796 1797 if (btrfs_fs_closing(fs_info)) 1798 return; 1799 1800 if (!btrfs_should_reclaim(fs_info)) 1801 return; 1802 1803 sb_start_write(fs_info->sb); 1804 1805 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1806 sb_end_write(fs_info->sb); 1807 return; 1808 } 1809 1810 /* 1811 * Long running balances can keep us blocked here for eternity, so 1812 * simply skip reclaim if we're unable to get the mutex. 1813 */ 1814 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1815 btrfs_exclop_finish(fs_info); 1816 sb_end_write(fs_info->sb); 1817 return; 1818 } 1819 1820 spin_lock(&fs_info->unused_bgs_lock); 1821 /* 1822 * Sort happens under lock because we can't simply splice it and sort. 1823 * The block groups might still be in use and reachable via bg_list, 1824 * and their presence in the reclaim_bgs list must be preserved. 1825 */ 1826 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1827 while (!list_empty(&fs_info->reclaim_bgs)) { 1828 u64 zone_unusable; 1829 u64 reclaimed; 1830 int ret = 0; 1831 1832 bg = list_first_entry(&fs_info->reclaim_bgs, 1833 struct btrfs_block_group, 1834 bg_list); 1835 list_del_init(&bg->bg_list); 1836 1837 space_info = bg->space_info; 1838 spin_unlock(&fs_info->unused_bgs_lock); 1839 1840 /* Don't race with allocators so take the groups_sem */ 1841 down_write(&space_info->groups_sem); 1842 1843 spin_lock(&space_info->lock); 1844 spin_lock(&bg->lock); 1845 if (bg->reserved || bg->pinned || bg->ro) { 1846 /* 1847 * We want to bail if we made new allocations or have 1848 * outstanding allocations in this block group. We do 1849 * the ro check in case balance is currently acting on 1850 * this block group. 1851 */ 1852 spin_unlock(&bg->lock); 1853 spin_unlock(&space_info->lock); 1854 up_write(&space_info->groups_sem); 1855 goto next; 1856 } 1857 if (bg->used == 0) { 1858 /* 1859 * It is possible that we trigger relocation on a block 1860 * group as its extents are deleted and it first goes 1861 * below the threshold, then shortly after goes empty. 1862 * 1863 * In this case, relocating it does delete it, but has 1864 * some overhead in relocation specific metadata, looking 1865 * for the non-existent extents and running some extra 1866 * transactions, which we can avoid by using one of the 1867 * other mechanisms for dealing with empty block groups. 1868 */ 1869 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1870 btrfs_mark_bg_unused(bg); 1871 spin_unlock(&bg->lock); 1872 spin_unlock(&space_info->lock); 1873 up_write(&space_info->groups_sem); 1874 goto next; 1875 1876 } 1877 /* 1878 * The block group might no longer meet the reclaim condition by 1879 * the time we get around to reclaiming it, so to avoid 1880 * reclaiming overly full block_groups, skip reclaiming them. 1881 * 1882 * Since the decision making process also depends on the amount 1883 * being freed, pass in a fake giant value to skip that extra 1884 * check, which is more meaningful when adding to the list in 1885 * the first place. 1886 */ 1887 if (!should_reclaim_block_group(bg, bg->length)) { 1888 spin_unlock(&bg->lock); 1889 spin_unlock(&space_info->lock); 1890 up_write(&space_info->groups_sem); 1891 goto next; 1892 } 1893 spin_unlock(&bg->lock); 1894 spin_unlock(&space_info->lock); 1895 1896 /* 1897 * Get out fast, in case we're read-only or unmounting the 1898 * filesystem. It is OK to drop block groups from the list even 1899 * for the read-only case. As we did sb_start_write(), 1900 * "mount -o remount,ro" won't happen and read-only filesystem 1901 * means it is forced read-only due to a fatal error. So, it 1902 * never gets back to read-write to let us reclaim again. 1903 */ 1904 if (btrfs_need_cleaner_sleep(fs_info)) { 1905 up_write(&space_info->groups_sem); 1906 goto next; 1907 } 1908 1909 /* 1910 * Cache the zone_unusable value before turning the block group 1911 * to read only. As soon as the blog group is read only it's 1912 * zone_unusable value gets moved to the block group's read-only 1913 * bytes and isn't available for calculations anymore. 1914 */ 1915 zone_unusable = bg->zone_unusable; 1916 ret = inc_block_group_ro(bg, 0); 1917 up_write(&space_info->groups_sem); 1918 if (ret < 0) 1919 goto next; 1920 1921 btrfs_info(fs_info, 1922 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1923 bg->start, 1924 div64_u64(bg->used * 100, bg->length), 1925 div64_u64(zone_unusable * 100, bg->length)); 1926 trace_btrfs_reclaim_block_group(bg); 1927 reclaimed = bg->used; 1928 ret = btrfs_relocate_chunk(fs_info, bg->start); 1929 if (ret) { 1930 btrfs_dec_block_group_ro(bg); 1931 btrfs_err(fs_info, "error relocating chunk %llu", 1932 bg->start); 1933 reclaimed = 0; 1934 spin_lock(&space_info->lock); 1935 space_info->reclaim_errors++; 1936 if (READ_ONCE(space_info->periodic_reclaim)) 1937 space_info->periodic_reclaim_ready = false; 1938 spin_unlock(&space_info->lock); 1939 } 1940 spin_lock(&space_info->lock); 1941 space_info->reclaim_count++; 1942 space_info->reclaim_bytes += reclaimed; 1943 spin_unlock(&space_info->lock); 1944 1945 next: 1946 if (ret && !READ_ONCE(space_info->periodic_reclaim)) { 1947 /* Refcount held by the reclaim_bgs list after splice. */ 1948 spin_lock(&fs_info->unused_bgs_lock); 1949 /* 1950 * This block group might be added to the unused list 1951 * during the above process. Move it back to the 1952 * reclaim list otherwise. 1953 */ 1954 if (list_empty(&bg->bg_list)) { 1955 btrfs_get_block_group(bg); 1956 list_add_tail(&bg->bg_list, &retry_list); 1957 } 1958 spin_unlock(&fs_info->unused_bgs_lock); 1959 } 1960 btrfs_put_block_group(bg); 1961 1962 mutex_unlock(&fs_info->reclaim_bgs_lock); 1963 /* 1964 * Reclaiming all the block groups in the list can take really 1965 * long. Prioritize cleaning up unused block groups. 1966 */ 1967 btrfs_delete_unused_bgs(fs_info); 1968 /* 1969 * If we are interrupted by a balance, we can just bail out. The 1970 * cleaner thread restart again if necessary. 1971 */ 1972 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1973 goto end; 1974 spin_lock(&fs_info->unused_bgs_lock); 1975 } 1976 spin_unlock(&fs_info->unused_bgs_lock); 1977 mutex_unlock(&fs_info->reclaim_bgs_lock); 1978 end: 1979 spin_lock(&fs_info->unused_bgs_lock); 1980 list_splice_tail(&retry_list, &fs_info->reclaim_bgs); 1981 spin_unlock(&fs_info->unused_bgs_lock); 1982 btrfs_exclop_finish(fs_info); 1983 sb_end_write(fs_info->sb); 1984 } 1985 1986 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1987 { 1988 btrfs_reclaim_sweep(fs_info); 1989 spin_lock(&fs_info->unused_bgs_lock); 1990 if (!list_empty(&fs_info->reclaim_bgs)) 1991 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1992 spin_unlock(&fs_info->unused_bgs_lock); 1993 } 1994 1995 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1996 { 1997 struct btrfs_fs_info *fs_info = bg->fs_info; 1998 1999 spin_lock(&fs_info->unused_bgs_lock); 2000 if (list_empty(&bg->bg_list)) { 2001 btrfs_get_block_group(bg); 2002 trace_btrfs_add_reclaim_block_group(bg); 2003 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 2004 } 2005 spin_unlock(&fs_info->unused_bgs_lock); 2006 } 2007 2008 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 2009 struct btrfs_path *path) 2010 { 2011 struct btrfs_chunk_map *map; 2012 struct btrfs_block_group_item bg; 2013 struct extent_buffer *leaf; 2014 int slot; 2015 u64 flags; 2016 int ret = 0; 2017 2018 slot = path->slots[0]; 2019 leaf = path->nodes[0]; 2020 2021 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset); 2022 if (!map) { 2023 btrfs_err(fs_info, 2024 "logical %llu len %llu found bg but no related chunk", 2025 key->objectid, key->offset); 2026 return -ENOENT; 2027 } 2028 2029 if (map->start != key->objectid || map->chunk_len != key->offset) { 2030 btrfs_err(fs_info, 2031 "block group %llu len %llu mismatch with chunk %llu len %llu", 2032 key->objectid, key->offset, map->start, map->chunk_len); 2033 ret = -EUCLEAN; 2034 goto out_free_map; 2035 } 2036 2037 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 2038 sizeof(bg)); 2039 flags = btrfs_stack_block_group_flags(&bg) & 2040 BTRFS_BLOCK_GROUP_TYPE_MASK; 2041 2042 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2043 btrfs_err(fs_info, 2044 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 2045 key->objectid, key->offset, flags, 2046 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type)); 2047 ret = -EUCLEAN; 2048 } 2049 2050 out_free_map: 2051 btrfs_free_chunk_map(map); 2052 return ret; 2053 } 2054 2055 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2056 struct btrfs_path *path, 2057 struct btrfs_key *key) 2058 { 2059 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2060 int ret; 2061 struct btrfs_key found_key; 2062 2063 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2064 if (found_key.objectid >= key->objectid && 2065 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2066 return read_bg_from_eb(fs_info, &found_key, path); 2067 } 2068 } 2069 return ret; 2070 } 2071 2072 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2073 { 2074 u64 extra_flags = chunk_to_extended(flags) & 2075 BTRFS_EXTENDED_PROFILE_MASK; 2076 2077 write_seqlock(&fs_info->profiles_lock); 2078 if (flags & BTRFS_BLOCK_GROUP_DATA) 2079 fs_info->avail_data_alloc_bits |= extra_flags; 2080 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2081 fs_info->avail_metadata_alloc_bits |= extra_flags; 2082 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2083 fs_info->avail_system_alloc_bits |= extra_flags; 2084 write_sequnlock(&fs_info->profiles_lock); 2085 } 2086 2087 /* 2088 * Map a physical disk address to a list of logical addresses. 2089 * 2090 * @fs_info: the filesystem 2091 * @chunk_start: logical address of block group 2092 * @physical: physical address to map to logical addresses 2093 * @logical: return array of logical addresses which map to @physical 2094 * @naddrs: length of @logical 2095 * @stripe_len: size of IO stripe for the given block group 2096 * 2097 * Maps a particular @physical disk address to a list of @logical addresses. 2098 * Used primarily to exclude those portions of a block group that contain super 2099 * block copies. 2100 */ 2101 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2102 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2103 { 2104 struct btrfs_chunk_map *map; 2105 u64 *buf; 2106 u64 bytenr; 2107 u64 data_stripe_length; 2108 u64 io_stripe_size; 2109 int i, nr = 0; 2110 int ret = 0; 2111 2112 map = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2113 if (IS_ERR(map)) 2114 return -EIO; 2115 2116 data_stripe_length = map->stripe_size; 2117 io_stripe_size = BTRFS_STRIPE_LEN; 2118 chunk_start = map->start; 2119 2120 /* For RAID5/6 adjust to a full IO stripe length */ 2121 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2122 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2123 2124 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2125 if (!buf) { 2126 ret = -ENOMEM; 2127 goto out; 2128 } 2129 2130 for (i = 0; i < map->num_stripes; i++) { 2131 bool already_inserted = false; 2132 u32 stripe_nr; 2133 u32 offset; 2134 int j; 2135 2136 if (!in_range(physical, map->stripes[i].physical, 2137 data_stripe_length)) 2138 continue; 2139 2140 stripe_nr = (physical - map->stripes[i].physical) >> 2141 BTRFS_STRIPE_LEN_SHIFT; 2142 offset = (physical - map->stripes[i].physical) & 2143 BTRFS_STRIPE_LEN_MASK; 2144 2145 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2146 BTRFS_BLOCK_GROUP_RAID10)) 2147 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2148 map->sub_stripes); 2149 /* 2150 * The remaining case would be for RAID56, multiply by 2151 * nr_data_stripes(). Alternatively, just use rmap_len below 2152 * instead of map->stripe_len 2153 */ 2154 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2155 2156 /* Ensure we don't add duplicate addresses */ 2157 for (j = 0; j < nr; j++) { 2158 if (buf[j] == bytenr) { 2159 already_inserted = true; 2160 break; 2161 } 2162 } 2163 2164 if (!already_inserted) 2165 buf[nr++] = bytenr; 2166 } 2167 2168 *logical = buf; 2169 *naddrs = nr; 2170 *stripe_len = io_stripe_size; 2171 out: 2172 btrfs_free_chunk_map(map); 2173 return ret; 2174 } 2175 2176 static int exclude_super_stripes(struct btrfs_block_group *cache) 2177 { 2178 struct btrfs_fs_info *fs_info = cache->fs_info; 2179 const bool zoned = btrfs_is_zoned(fs_info); 2180 u64 bytenr; 2181 u64 *logical; 2182 int stripe_len; 2183 int i, nr, ret; 2184 2185 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2186 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2187 cache->bytes_super += stripe_len; 2188 ret = set_extent_bit(&fs_info->excluded_extents, cache->start, 2189 cache->start + stripe_len - 1, 2190 EXTENT_UPTODATE, NULL); 2191 if (ret) 2192 return ret; 2193 } 2194 2195 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2196 bytenr = btrfs_sb_offset(i); 2197 ret = btrfs_rmap_block(fs_info, cache->start, 2198 bytenr, &logical, &nr, &stripe_len); 2199 if (ret) 2200 return ret; 2201 2202 /* Shouldn't have super stripes in sequential zones */ 2203 if (zoned && nr) { 2204 kfree(logical); 2205 btrfs_err(fs_info, 2206 "zoned: block group %llu must not contain super block", 2207 cache->start); 2208 return -EUCLEAN; 2209 } 2210 2211 while (nr--) { 2212 u64 len = min_t(u64, stripe_len, 2213 cache->start + cache->length - logical[nr]); 2214 2215 cache->bytes_super += len; 2216 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr], 2217 logical[nr] + len - 1, 2218 EXTENT_UPTODATE, NULL); 2219 if (ret) { 2220 kfree(logical); 2221 return ret; 2222 } 2223 } 2224 2225 kfree(logical); 2226 } 2227 return 0; 2228 } 2229 2230 static struct btrfs_block_group *btrfs_create_block_group_cache( 2231 struct btrfs_fs_info *fs_info, u64 start) 2232 { 2233 struct btrfs_block_group *cache; 2234 2235 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2236 if (!cache) 2237 return NULL; 2238 2239 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2240 GFP_NOFS); 2241 if (!cache->free_space_ctl) { 2242 kfree(cache); 2243 return NULL; 2244 } 2245 2246 cache->start = start; 2247 2248 cache->fs_info = fs_info; 2249 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2250 2251 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2252 2253 refcount_set(&cache->refs, 1); 2254 spin_lock_init(&cache->lock); 2255 init_rwsem(&cache->data_rwsem); 2256 INIT_LIST_HEAD(&cache->list); 2257 INIT_LIST_HEAD(&cache->cluster_list); 2258 INIT_LIST_HEAD(&cache->bg_list); 2259 INIT_LIST_HEAD(&cache->ro_list); 2260 INIT_LIST_HEAD(&cache->discard_list); 2261 INIT_LIST_HEAD(&cache->dirty_list); 2262 INIT_LIST_HEAD(&cache->io_list); 2263 INIT_LIST_HEAD(&cache->active_bg_list); 2264 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2265 atomic_set(&cache->frozen, 0); 2266 mutex_init(&cache->free_space_lock); 2267 2268 return cache; 2269 } 2270 2271 /* 2272 * Iterate all chunks and verify that each of them has the corresponding block 2273 * group 2274 */ 2275 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2276 { 2277 u64 start = 0; 2278 int ret = 0; 2279 2280 while (1) { 2281 struct btrfs_chunk_map *map; 2282 struct btrfs_block_group *bg; 2283 2284 /* 2285 * btrfs_find_chunk_map() will return the first chunk map 2286 * intersecting the range, so setting @length to 1 is enough to 2287 * get the first chunk. 2288 */ 2289 map = btrfs_find_chunk_map(fs_info, start, 1); 2290 if (!map) 2291 break; 2292 2293 bg = btrfs_lookup_block_group(fs_info, map->start); 2294 if (!bg) { 2295 btrfs_err(fs_info, 2296 "chunk start=%llu len=%llu doesn't have corresponding block group", 2297 map->start, map->chunk_len); 2298 ret = -EUCLEAN; 2299 btrfs_free_chunk_map(map); 2300 break; 2301 } 2302 if (bg->start != map->start || bg->length != map->chunk_len || 2303 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2304 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2305 btrfs_err(fs_info, 2306 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2307 map->start, map->chunk_len, 2308 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2309 bg->start, bg->length, 2310 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2311 ret = -EUCLEAN; 2312 btrfs_free_chunk_map(map); 2313 btrfs_put_block_group(bg); 2314 break; 2315 } 2316 start = map->start + map->chunk_len; 2317 btrfs_free_chunk_map(map); 2318 btrfs_put_block_group(bg); 2319 } 2320 return ret; 2321 } 2322 2323 static int read_one_block_group(struct btrfs_fs_info *info, 2324 struct btrfs_block_group_item *bgi, 2325 const struct btrfs_key *key, 2326 int need_clear) 2327 { 2328 struct btrfs_block_group *cache; 2329 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2330 int ret; 2331 2332 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2333 2334 cache = btrfs_create_block_group_cache(info, key->objectid); 2335 if (!cache) 2336 return -ENOMEM; 2337 2338 cache->length = key->offset; 2339 cache->used = btrfs_stack_block_group_used(bgi); 2340 cache->commit_used = cache->used; 2341 cache->flags = btrfs_stack_block_group_flags(bgi); 2342 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2343 2344 set_free_space_tree_thresholds(cache); 2345 2346 if (need_clear) { 2347 /* 2348 * When we mount with old space cache, we need to 2349 * set BTRFS_DC_CLEAR and set dirty flag. 2350 * 2351 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2352 * truncate the old free space cache inode and 2353 * setup a new one. 2354 * b) Setting 'dirty flag' makes sure that we flush 2355 * the new space cache info onto disk. 2356 */ 2357 if (btrfs_test_opt(info, SPACE_CACHE)) 2358 cache->disk_cache_state = BTRFS_DC_CLEAR; 2359 } 2360 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2361 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2362 btrfs_err(info, 2363 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2364 cache->start); 2365 ret = -EINVAL; 2366 goto error; 2367 } 2368 2369 ret = btrfs_load_block_group_zone_info(cache, false); 2370 if (ret) { 2371 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2372 cache->start); 2373 goto error; 2374 } 2375 2376 /* 2377 * We need to exclude the super stripes now so that the space info has 2378 * super bytes accounted for, otherwise we'll think we have more space 2379 * than we actually do. 2380 */ 2381 ret = exclude_super_stripes(cache); 2382 if (ret) { 2383 /* We may have excluded something, so call this just in case. */ 2384 btrfs_free_excluded_extents(cache); 2385 goto error; 2386 } 2387 2388 /* 2389 * For zoned filesystem, space after the allocation offset is the only 2390 * free space for a block group. So, we don't need any caching work. 2391 * btrfs_calc_zone_unusable() will set the amount of free space and 2392 * zone_unusable space. 2393 * 2394 * For regular filesystem, check for two cases, either we are full, and 2395 * therefore don't need to bother with the caching work since we won't 2396 * find any space, or we are empty, and we can just add all the space 2397 * in and be done with it. This saves us _a_lot_ of time, particularly 2398 * in the full case. 2399 */ 2400 if (btrfs_is_zoned(info)) { 2401 btrfs_calc_zone_unusable(cache); 2402 /* Should not have any excluded extents. Just in case, though. */ 2403 btrfs_free_excluded_extents(cache); 2404 } else if (cache->length == cache->used) { 2405 cache->cached = BTRFS_CACHE_FINISHED; 2406 btrfs_free_excluded_extents(cache); 2407 } else if (cache->used == 0) { 2408 cache->cached = BTRFS_CACHE_FINISHED; 2409 ret = btrfs_add_new_free_space(cache, cache->start, 2410 cache->start + cache->length, NULL); 2411 btrfs_free_excluded_extents(cache); 2412 if (ret) 2413 goto error; 2414 } 2415 2416 ret = btrfs_add_block_group_cache(info, cache); 2417 if (ret) { 2418 btrfs_remove_free_space_cache(cache); 2419 goto error; 2420 } 2421 trace_btrfs_add_block_group(info, cache, 0); 2422 btrfs_add_bg_to_space_info(info, cache); 2423 2424 set_avail_alloc_bits(info, cache->flags); 2425 if (btrfs_chunk_writeable(info, cache->start)) { 2426 if (cache->used == 0) { 2427 ASSERT(list_empty(&cache->bg_list)); 2428 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2429 btrfs_discard_queue_work(&info->discard_ctl, cache); 2430 else 2431 btrfs_mark_bg_unused(cache); 2432 } 2433 } else { 2434 inc_block_group_ro(cache, 1); 2435 } 2436 2437 return 0; 2438 error: 2439 btrfs_put_block_group(cache); 2440 return ret; 2441 } 2442 2443 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2444 { 2445 struct rb_node *node; 2446 int ret = 0; 2447 2448 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 2449 struct btrfs_chunk_map *map; 2450 struct btrfs_block_group *bg; 2451 2452 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 2453 bg = btrfs_create_block_group_cache(fs_info, map->start); 2454 if (!bg) { 2455 ret = -ENOMEM; 2456 break; 2457 } 2458 2459 /* Fill dummy cache as FULL */ 2460 bg->length = map->chunk_len; 2461 bg->flags = map->type; 2462 bg->cached = BTRFS_CACHE_FINISHED; 2463 bg->used = map->chunk_len; 2464 bg->flags = map->type; 2465 ret = btrfs_add_block_group_cache(fs_info, bg); 2466 /* 2467 * We may have some valid block group cache added already, in 2468 * that case we skip to the next one. 2469 */ 2470 if (ret == -EEXIST) { 2471 ret = 0; 2472 btrfs_put_block_group(bg); 2473 continue; 2474 } 2475 2476 if (ret) { 2477 btrfs_remove_free_space_cache(bg); 2478 btrfs_put_block_group(bg); 2479 break; 2480 } 2481 2482 btrfs_add_bg_to_space_info(fs_info, bg); 2483 2484 set_avail_alloc_bits(fs_info, bg->flags); 2485 } 2486 if (!ret) 2487 btrfs_init_global_block_rsv(fs_info); 2488 return ret; 2489 } 2490 2491 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2492 { 2493 struct btrfs_root *root = btrfs_block_group_root(info); 2494 struct btrfs_path *path; 2495 int ret; 2496 struct btrfs_block_group *cache; 2497 struct btrfs_space_info *space_info; 2498 struct btrfs_key key; 2499 int need_clear = 0; 2500 u64 cache_gen; 2501 2502 /* 2503 * Either no extent root (with ibadroots rescue option) or we have 2504 * unsupported RO options. The fs can never be mounted read-write, so no 2505 * need to waste time searching block group items. 2506 * 2507 * This also allows new extent tree related changes to be RO compat, 2508 * no need for a full incompat flag. 2509 */ 2510 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2511 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2512 return fill_dummy_bgs(info); 2513 2514 key.objectid = 0; 2515 key.offset = 0; 2516 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2517 path = btrfs_alloc_path(); 2518 if (!path) 2519 return -ENOMEM; 2520 2521 cache_gen = btrfs_super_cache_generation(info->super_copy); 2522 if (btrfs_test_opt(info, SPACE_CACHE) && 2523 btrfs_super_generation(info->super_copy) != cache_gen) 2524 need_clear = 1; 2525 if (btrfs_test_opt(info, CLEAR_CACHE)) 2526 need_clear = 1; 2527 2528 while (1) { 2529 struct btrfs_block_group_item bgi; 2530 struct extent_buffer *leaf; 2531 int slot; 2532 2533 ret = find_first_block_group(info, path, &key); 2534 if (ret > 0) 2535 break; 2536 if (ret != 0) 2537 goto error; 2538 2539 leaf = path->nodes[0]; 2540 slot = path->slots[0]; 2541 2542 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2543 sizeof(bgi)); 2544 2545 btrfs_item_key_to_cpu(leaf, &key, slot); 2546 btrfs_release_path(path); 2547 ret = read_one_block_group(info, &bgi, &key, need_clear); 2548 if (ret < 0) 2549 goto error; 2550 key.objectid += key.offset; 2551 key.offset = 0; 2552 } 2553 btrfs_release_path(path); 2554 2555 list_for_each_entry(space_info, &info->space_info, list) { 2556 int i; 2557 2558 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2559 if (list_empty(&space_info->block_groups[i])) 2560 continue; 2561 cache = list_first_entry(&space_info->block_groups[i], 2562 struct btrfs_block_group, 2563 list); 2564 btrfs_sysfs_add_block_group_type(cache); 2565 } 2566 2567 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2568 (BTRFS_BLOCK_GROUP_RAID10 | 2569 BTRFS_BLOCK_GROUP_RAID1_MASK | 2570 BTRFS_BLOCK_GROUP_RAID56_MASK | 2571 BTRFS_BLOCK_GROUP_DUP))) 2572 continue; 2573 /* 2574 * Avoid allocating from un-mirrored block group if there are 2575 * mirrored block groups. 2576 */ 2577 list_for_each_entry(cache, 2578 &space_info->block_groups[BTRFS_RAID_RAID0], 2579 list) 2580 inc_block_group_ro(cache, 1); 2581 list_for_each_entry(cache, 2582 &space_info->block_groups[BTRFS_RAID_SINGLE], 2583 list) 2584 inc_block_group_ro(cache, 1); 2585 } 2586 2587 btrfs_init_global_block_rsv(info); 2588 ret = check_chunk_block_group_mappings(info); 2589 error: 2590 btrfs_free_path(path); 2591 /* 2592 * We've hit some error while reading the extent tree, and have 2593 * rescue=ibadroots mount option. 2594 * Try to fill the tree using dummy block groups so that the user can 2595 * continue to mount and grab their data. 2596 */ 2597 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2598 ret = fill_dummy_bgs(info); 2599 return ret; 2600 } 2601 2602 /* 2603 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2604 * allocation. 2605 * 2606 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2607 * phases. 2608 */ 2609 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2610 struct btrfs_block_group *block_group) 2611 { 2612 struct btrfs_fs_info *fs_info = trans->fs_info; 2613 struct btrfs_block_group_item bgi; 2614 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2615 struct btrfs_key key; 2616 u64 old_commit_used; 2617 int ret; 2618 2619 spin_lock(&block_group->lock); 2620 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2621 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2622 block_group->global_root_id); 2623 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2624 old_commit_used = block_group->commit_used; 2625 block_group->commit_used = block_group->used; 2626 key.objectid = block_group->start; 2627 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2628 key.offset = block_group->length; 2629 spin_unlock(&block_group->lock); 2630 2631 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2632 if (ret < 0) { 2633 spin_lock(&block_group->lock); 2634 block_group->commit_used = old_commit_used; 2635 spin_unlock(&block_group->lock); 2636 } 2637 2638 return ret; 2639 } 2640 2641 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2642 struct btrfs_device *device, u64 chunk_offset, 2643 u64 start, u64 num_bytes) 2644 { 2645 struct btrfs_fs_info *fs_info = device->fs_info; 2646 struct btrfs_root *root = fs_info->dev_root; 2647 struct btrfs_path *path; 2648 struct btrfs_dev_extent *extent; 2649 struct extent_buffer *leaf; 2650 struct btrfs_key key; 2651 int ret; 2652 2653 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2654 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2655 path = btrfs_alloc_path(); 2656 if (!path) 2657 return -ENOMEM; 2658 2659 key.objectid = device->devid; 2660 key.type = BTRFS_DEV_EXTENT_KEY; 2661 key.offset = start; 2662 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2663 if (ret) 2664 goto out; 2665 2666 leaf = path->nodes[0]; 2667 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2668 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2669 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2670 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2671 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2672 2673 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2674 btrfs_mark_buffer_dirty(trans, leaf); 2675 out: 2676 btrfs_free_path(path); 2677 return ret; 2678 } 2679 2680 /* 2681 * This function belongs to phase 2. 2682 * 2683 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2684 * phases. 2685 */ 2686 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2687 u64 chunk_offset, u64 chunk_size) 2688 { 2689 struct btrfs_fs_info *fs_info = trans->fs_info; 2690 struct btrfs_device *device; 2691 struct btrfs_chunk_map *map; 2692 u64 dev_offset; 2693 int i; 2694 int ret = 0; 2695 2696 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2697 if (IS_ERR(map)) 2698 return PTR_ERR(map); 2699 2700 /* 2701 * Take the device list mutex to prevent races with the final phase of 2702 * a device replace operation that replaces the device object associated 2703 * with the map's stripes, because the device object's id can change 2704 * at any time during that final phase of the device replace operation 2705 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2706 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2707 * resulting in persisting a device extent item with such ID. 2708 */ 2709 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2710 for (i = 0; i < map->num_stripes; i++) { 2711 device = map->stripes[i].dev; 2712 dev_offset = map->stripes[i].physical; 2713 2714 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2715 map->stripe_size); 2716 if (ret) 2717 break; 2718 } 2719 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2720 2721 btrfs_free_chunk_map(map); 2722 return ret; 2723 } 2724 2725 /* 2726 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2727 * chunk allocation. 2728 * 2729 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2730 * phases. 2731 */ 2732 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2733 { 2734 struct btrfs_fs_info *fs_info = trans->fs_info; 2735 struct btrfs_block_group *block_group; 2736 int ret = 0; 2737 2738 while (!list_empty(&trans->new_bgs)) { 2739 int index; 2740 2741 block_group = list_first_entry(&trans->new_bgs, 2742 struct btrfs_block_group, 2743 bg_list); 2744 if (ret) 2745 goto next; 2746 2747 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2748 2749 ret = insert_block_group_item(trans, block_group); 2750 if (ret) 2751 btrfs_abort_transaction(trans, ret); 2752 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2753 &block_group->runtime_flags)) { 2754 mutex_lock(&fs_info->chunk_mutex); 2755 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2756 mutex_unlock(&fs_info->chunk_mutex); 2757 if (ret) 2758 btrfs_abort_transaction(trans, ret); 2759 } 2760 ret = insert_dev_extents(trans, block_group->start, 2761 block_group->length); 2762 if (ret) 2763 btrfs_abort_transaction(trans, ret); 2764 add_block_group_free_space(trans, block_group); 2765 2766 /* 2767 * If we restriped during balance, we may have added a new raid 2768 * type, so now add the sysfs entries when it is safe to do so. 2769 * We don't have to worry about locking here as it's handled in 2770 * btrfs_sysfs_add_block_group_type. 2771 */ 2772 if (block_group->space_info->block_group_kobjs[index] == NULL) 2773 btrfs_sysfs_add_block_group_type(block_group); 2774 2775 /* Already aborted the transaction if it failed. */ 2776 next: 2777 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2778 list_del_init(&block_group->bg_list); 2779 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2780 2781 /* 2782 * If the block group is still unused, add it to the list of 2783 * unused block groups. The block group may have been created in 2784 * order to satisfy a space reservation, in which case the 2785 * extent allocation only happens later. But often we don't 2786 * actually need to allocate space that we previously reserved, 2787 * so the block group may become unused for a long time. For 2788 * example for metadata we generally reserve space for a worst 2789 * possible scenario, but then don't end up allocating all that 2790 * space or none at all (due to no need to COW, extent buffers 2791 * were already COWed in the current transaction and still 2792 * unwritten, tree heights lower than the maximum possible 2793 * height, etc). For data we generally reserve the axact amount 2794 * of space we are going to allocate later, the exception is 2795 * when using compression, as we must reserve space based on the 2796 * uncompressed data size, because the compression is only done 2797 * when writeback triggered and we don't know how much space we 2798 * are actually going to need, so we reserve the uncompressed 2799 * size because the data may be uncompressible in the worst case. 2800 */ 2801 if (ret == 0) { 2802 bool used; 2803 2804 spin_lock(&block_group->lock); 2805 used = btrfs_is_block_group_used(block_group); 2806 spin_unlock(&block_group->lock); 2807 2808 if (!used) 2809 btrfs_mark_bg_unused(block_group); 2810 } 2811 } 2812 btrfs_trans_release_chunk_metadata(trans); 2813 } 2814 2815 /* 2816 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2817 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2818 */ 2819 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2820 { 2821 u64 div = SZ_1G; 2822 u64 index; 2823 2824 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2825 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2826 2827 /* If we have a smaller fs index based on 128MiB. */ 2828 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2829 div = SZ_128M; 2830 2831 offset = div64_u64(offset, div); 2832 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2833 return index; 2834 } 2835 2836 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2837 u64 type, 2838 u64 chunk_offset, u64 size) 2839 { 2840 struct btrfs_fs_info *fs_info = trans->fs_info; 2841 struct btrfs_block_group *cache; 2842 int ret; 2843 2844 btrfs_set_log_full_commit(trans); 2845 2846 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2847 if (!cache) 2848 return ERR_PTR(-ENOMEM); 2849 2850 /* 2851 * Mark it as new before adding it to the rbtree of block groups or any 2852 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2853 * before the new flag is set. 2854 */ 2855 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2856 2857 cache->length = size; 2858 set_free_space_tree_thresholds(cache); 2859 cache->flags = type; 2860 cache->cached = BTRFS_CACHE_FINISHED; 2861 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2862 2863 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2864 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2865 2866 ret = btrfs_load_block_group_zone_info(cache, true); 2867 if (ret) { 2868 btrfs_put_block_group(cache); 2869 return ERR_PTR(ret); 2870 } 2871 2872 ret = exclude_super_stripes(cache); 2873 if (ret) { 2874 /* We may have excluded something, so call this just in case */ 2875 btrfs_free_excluded_extents(cache); 2876 btrfs_put_block_group(cache); 2877 return ERR_PTR(ret); 2878 } 2879 2880 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2881 btrfs_free_excluded_extents(cache); 2882 if (ret) { 2883 btrfs_put_block_group(cache); 2884 return ERR_PTR(ret); 2885 } 2886 2887 /* 2888 * Ensure the corresponding space_info object is created and 2889 * assigned to our block group. We want our bg to be added to the rbtree 2890 * with its ->space_info set. 2891 */ 2892 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2893 ASSERT(cache->space_info); 2894 2895 ret = btrfs_add_block_group_cache(fs_info, cache); 2896 if (ret) { 2897 btrfs_remove_free_space_cache(cache); 2898 btrfs_put_block_group(cache); 2899 return ERR_PTR(ret); 2900 } 2901 2902 /* 2903 * Now that our block group has its ->space_info set and is inserted in 2904 * the rbtree, update the space info's counters. 2905 */ 2906 trace_btrfs_add_block_group(fs_info, cache, 1); 2907 btrfs_add_bg_to_space_info(fs_info, cache); 2908 btrfs_update_global_block_rsv(fs_info); 2909 2910 #ifdef CONFIG_BTRFS_DEBUG 2911 if (btrfs_should_fragment_free_space(cache)) { 2912 cache->space_info->bytes_used += size >> 1; 2913 fragment_free_space(cache); 2914 } 2915 #endif 2916 2917 list_add_tail(&cache->bg_list, &trans->new_bgs); 2918 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info); 2919 2920 set_avail_alloc_bits(fs_info, type); 2921 return cache; 2922 } 2923 2924 /* 2925 * Mark one block group RO, can be called several times for the same block 2926 * group. 2927 * 2928 * @cache: the destination block group 2929 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2930 * ensure we still have some free space after marking this 2931 * block group RO. 2932 */ 2933 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2934 bool do_chunk_alloc) 2935 { 2936 struct btrfs_fs_info *fs_info = cache->fs_info; 2937 struct btrfs_trans_handle *trans; 2938 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2939 u64 alloc_flags; 2940 int ret; 2941 bool dirty_bg_running; 2942 2943 /* 2944 * This can only happen when we are doing read-only scrub on read-only 2945 * mount. 2946 * In that case we should not start a new transaction on read-only fs. 2947 * Thus here we skip all chunk allocations. 2948 */ 2949 if (sb_rdonly(fs_info->sb)) { 2950 mutex_lock(&fs_info->ro_block_group_mutex); 2951 ret = inc_block_group_ro(cache, 0); 2952 mutex_unlock(&fs_info->ro_block_group_mutex); 2953 return ret; 2954 } 2955 2956 do { 2957 trans = btrfs_join_transaction(root); 2958 if (IS_ERR(trans)) 2959 return PTR_ERR(trans); 2960 2961 dirty_bg_running = false; 2962 2963 /* 2964 * We're not allowed to set block groups readonly after the dirty 2965 * block group cache has started writing. If it already started, 2966 * back off and let this transaction commit. 2967 */ 2968 mutex_lock(&fs_info->ro_block_group_mutex); 2969 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2970 u64 transid = trans->transid; 2971 2972 mutex_unlock(&fs_info->ro_block_group_mutex); 2973 btrfs_end_transaction(trans); 2974 2975 ret = btrfs_wait_for_commit(fs_info, transid); 2976 if (ret) 2977 return ret; 2978 dirty_bg_running = true; 2979 } 2980 } while (dirty_bg_running); 2981 2982 if (do_chunk_alloc) { 2983 /* 2984 * If we are changing raid levels, try to allocate a 2985 * corresponding block group with the new raid level. 2986 */ 2987 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2988 if (alloc_flags != cache->flags) { 2989 ret = btrfs_chunk_alloc(trans, alloc_flags, 2990 CHUNK_ALLOC_FORCE); 2991 /* 2992 * ENOSPC is allowed here, we may have enough space 2993 * already allocated at the new raid level to carry on 2994 */ 2995 if (ret == -ENOSPC) 2996 ret = 0; 2997 if (ret < 0) 2998 goto out; 2999 } 3000 } 3001 3002 ret = inc_block_group_ro(cache, 0); 3003 if (!ret) 3004 goto out; 3005 if (ret == -ETXTBSY) 3006 goto unlock_out; 3007 3008 /* 3009 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system 3010 * chunk allocation storm to exhaust the system chunk array. Otherwise 3011 * we still want to try our best to mark the block group read-only. 3012 */ 3013 if (!do_chunk_alloc && ret == -ENOSPC && 3014 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 3015 goto unlock_out; 3016 3017 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 3018 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3019 if (ret < 0) 3020 goto out; 3021 /* 3022 * We have allocated a new chunk. We also need to activate that chunk to 3023 * grant metadata tickets for zoned filesystem. 3024 */ 3025 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 3026 if (ret < 0) 3027 goto out; 3028 3029 ret = inc_block_group_ro(cache, 0); 3030 if (ret == -ETXTBSY) 3031 goto unlock_out; 3032 out: 3033 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 3034 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3035 mutex_lock(&fs_info->chunk_mutex); 3036 check_system_chunk(trans, alloc_flags); 3037 mutex_unlock(&fs_info->chunk_mutex); 3038 } 3039 unlock_out: 3040 mutex_unlock(&fs_info->ro_block_group_mutex); 3041 3042 btrfs_end_transaction(trans); 3043 return ret; 3044 } 3045 3046 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 3047 { 3048 struct btrfs_space_info *sinfo = cache->space_info; 3049 u64 num_bytes; 3050 3051 BUG_ON(!cache->ro); 3052 3053 spin_lock(&sinfo->lock); 3054 spin_lock(&cache->lock); 3055 if (!--cache->ro) { 3056 if (btrfs_is_zoned(cache->fs_info)) { 3057 /* Migrate zone_unusable bytes back */ 3058 cache->zone_unusable = 3059 (cache->alloc_offset - cache->used) + 3060 (cache->length - cache->zone_capacity); 3061 sinfo->bytes_zone_unusable += cache->zone_unusable; 3062 sinfo->bytes_readonly -= cache->zone_unusable; 3063 } 3064 num_bytes = cache->length - cache->reserved - 3065 cache->pinned - cache->bytes_super - 3066 cache->zone_unusable - cache->used; 3067 sinfo->bytes_readonly -= num_bytes; 3068 list_del_init(&cache->ro_list); 3069 } 3070 spin_unlock(&cache->lock); 3071 spin_unlock(&sinfo->lock); 3072 } 3073 3074 static int update_block_group_item(struct btrfs_trans_handle *trans, 3075 struct btrfs_path *path, 3076 struct btrfs_block_group *cache) 3077 { 3078 struct btrfs_fs_info *fs_info = trans->fs_info; 3079 int ret; 3080 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3081 unsigned long bi; 3082 struct extent_buffer *leaf; 3083 struct btrfs_block_group_item bgi; 3084 struct btrfs_key key; 3085 u64 old_commit_used; 3086 u64 used; 3087 3088 /* 3089 * Block group items update can be triggered out of commit transaction 3090 * critical section, thus we need a consistent view of used bytes. 3091 * We cannot use cache->used directly outside of the spin lock, as it 3092 * may be changed. 3093 */ 3094 spin_lock(&cache->lock); 3095 old_commit_used = cache->commit_used; 3096 used = cache->used; 3097 /* No change in used bytes, can safely skip it. */ 3098 if (cache->commit_used == used) { 3099 spin_unlock(&cache->lock); 3100 return 0; 3101 } 3102 cache->commit_used = used; 3103 spin_unlock(&cache->lock); 3104 3105 key.objectid = cache->start; 3106 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3107 key.offset = cache->length; 3108 3109 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3110 if (ret) { 3111 if (ret > 0) 3112 ret = -ENOENT; 3113 goto fail; 3114 } 3115 3116 leaf = path->nodes[0]; 3117 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3118 btrfs_set_stack_block_group_used(&bgi, used); 3119 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3120 cache->global_root_id); 3121 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3122 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3123 btrfs_mark_buffer_dirty(trans, leaf); 3124 fail: 3125 btrfs_release_path(path); 3126 /* 3127 * We didn't update the block group item, need to revert commit_used 3128 * unless the block group item didn't exist yet - this is to prevent a 3129 * race with a concurrent insertion of the block group item, with 3130 * insert_block_group_item(), that happened just after we attempted to 3131 * update. In that case we would reset commit_used to 0 just after the 3132 * insertion set it to a value greater than 0 - if the block group later 3133 * becomes with 0 used bytes, we would incorrectly skip its update. 3134 */ 3135 if (ret < 0 && ret != -ENOENT) { 3136 spin_lock(&cache->lock); 3137 cache->commit_used = old_commit_used; 3138 spin_unlock(&cache->lock); 3139 } 3140 return ret; 3141 3142 } 3143 3144 static int cache_save_setup(struct btrfs_block_group *block_group, 3145 struct btrfs_trans_handle *trans, 3146 struct btrfs_path *path) 3147 { 3148 struct btrfs_fs_info *fs_info = block_group->fs_info; 3149 struct inode *inode = NULL; 3150 struct extent_changeset *data_reserved = NULL; 3151 u64 alloc_hint = 0; 3152 int dcs = BTRFS_DC_ERROR; 3153 u64 cache_size = 0; 3154 int retries = 0; 3155 int ret = 0; 3156 3157 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3158 return 0; 3159 3160 /* 3161 * If this block group is smaller than 100 megs don't bother caching the 3162 * block group. 3163 */ 3164 if (block_group->length < (100 * SZ_1M)) { 3165 spin_lock(&block_group->lock); 3166 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3167 spin_unlock(&block_group->lock); 3168 return 0; 3169 } 3170 3171 if (TRANS_ABORTED(trans)) 3172 return 0; 3173 again: 3174 inode = lookup_free_space_inode(block_group, path); 3175 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3176 ret = PTR_ERR(inode); 3177 btrfs_release_path(path); 3178 goto out; 3179 } 3180 3181 if (IS_ERR(inode)) { 3182 BUG_ON(retries); 3183 retries++; 3184 3185 if (block_group->ro) 3186 goto out_free; 3187 3188 ret = create_free_space_inode(trans, block_group, path); 3189 if (ret) 3190 goto out_free; 3191 goto again; 3192 } 3193 3194 /* 3195 * We want to set the generation to 0, that way if anything goes wrong 3196 * from here on out we know not to trust this cache when we load up next 3197 * time. 3198 */ 3199 BTRFS_I(inode)->generation = 0; 3200 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 3201 if (ret) { 3202 /* 3203 * So theoretically we could recover from this, simply set the 3204 * super cache generation to 0 so we know to invalidate the 3205 * cache, but then we'd have to keep track of the block groups 3206 * that fail this way so we know we _have_ to reset this cache 3207 * before the next commit or risk reading stale cache. So to 3208 * limit our exposure to horrible edge cases lets just abort the 3209 * transaction, this only happens in really bad situations 3210 * anyway. 3211 */ 3212 btrfs_abort_transaction(trans, ret); 3213 goto out_put; 3214 } 3215 WARN_ON(ret); 3216 3217 /* We've already setup this transaction, go ahead and exit */ 3218 if (block_group->cache_generation == trans->transid && 3219 i_size_read(inode)) { 3220 dcs = BTRFS_DC_SETUP; 3221 goto out_put; 3222 } 3223 3224 if (i_size_read(inode) > 0) { 3225 ret = btrfs_check_trunc_cache_free_space(fs_info, 3226 &fs_info->global_block_rsv); 3227 if (ret) 3228 goto out_put; 3229 3230 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3231 if (ret) 3232 goto out_put; 3233 } 3234 3235 spin_lock(&block_group->lock); 3236 if (block_group->cached != BTRFS_CACHE_FINISHED || 3237 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3238 /* 3239 * don't bother trying to write stuff out _if_ 3240 * a) we're not cached, 3241 * b) we're with nospace_cache mount option, 3242 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3243 */ 3244 dcs = BTRFS_DC_WRITTEN; 3245 spin_unlock(&block_group->lock); 3246 goto out_put; 3247 } 3248 spin_unlock(&block_group->lock); 3249 3250 /* 3251 * We hit an ENOSPC when setting up the cache in this transaction, just 3252 * skip doing the setup, we've already cleared the cache so we're safe. 3253 */ 3254 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3255 ret = -ENOSPC; 3256 goto out_put; 3257 } 3258 3259 /* 3260 * Try to preallocate enough space based on how big the block group is. 3261 * Keep in mind this has to include any pinned space which could end up 3262 * taking up quite a bit since it's not folded into the other space 3263 * cache. 3264 */ 3265 cache_size = div_u64(block_group->length, SZ_256M); 3266 if (!cache_size) 3267 cache_size = 1; 3268 3269 cache_size *= 16; 3270 cache_size *= fs_info->sectorsize; 3271 3272 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3273 cache_size, false); 3274 if (ret) 3275 goto out_put; 3276 3277 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3278 cache_size, cache_size, 3279 &alloc_hint); 3280 /* 3281 * Our cache requires contiguous chunks so that we don't modify a bunch 3282 * of metadata or split extents when writing the cache out, which means 3283 * we can enospc if we are heavily fragmented in addition to just normal 3284 * out of space conditions. So if we hit this just skip setting up any 3285 * other block groups for this transaction, maybe we'll unpin enough 3286 * space the next time around. 3287 */ 3288 if (!ret) 3289 dcs = BTRFS_DC_SETUP; 3290 else if (ret == -ENOSPC) 3291 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3292 3293 out_put: 3294 iput(inode); 3295 out_free: 3296 btrfs_release_path(path); 3297 out: 3298 spin_lock(&block_group->lock); 3299 if (!ret && dcs == BTRFS_DC_SETUP) 3300 block_group->cache_generation = trans->transid; 3301 block_group->disk_cache_state = dcs; 3302 spin_unlock(&block_group->lock); 3303 3304 extent_changeset_free(data_reserved); 3305 return ret; 3306 } 3307 3308 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3309 { 3310 struct btrfs_fs_info *fs_info = trans->fs_info; 3311 struct btrfs_block_group *cache, *tmp; 3312 struct btrfs_transaction *cur_trans = trans->transaction; 3313 struct btrfs_path *path; 3314 3315 if (list_empty(&cur_trans->dirty_bgs) || 3316 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3317 return 0; 3318 3319 path = btrfs_alloc_path(); 3320 if (!path) 3321 return -ENOMEM; 3322 3323 /* Could add new block groups, use _safe just in case */ 3324 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3325 dirty_list) { 3326 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3327 cache_save_setup(cache, trans, path); 3328 } 3329 3330 btrfs_free_path(path); 3331 return 0; 3332 } 3333 3334 /* 3335 * Transaction commit does final block group cache writeback during a critical 3336 * section where nothing is allowed to change the FS. This is required in 3337 * order for the cache to actually match the block group, but can introduce a 3338 * lot of latency into the commit. 3339 * 3340 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3341 * There's a chance we'll have to redo some of it if the block group changes 3342 * again during the commit, but it greatly reduces the commit latency by 3343 * getting rid of the easy block groups while we're still allowing others to 3344 * join the commit. 3345 */ 3346 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3347 { 3348 struct btrfs_fs_info *fs_info = trans->fs_info; 3349 struct btrfs_block_group *cache; 3350 struct btrfs_transaction *cur_trans = trans->transaction; 3351 int ret = 0; 3352 int should_put; 3353 struct btrfs_path *path = NULL; 3354 LIST_HEAD(dirty); 3355 struct list_head *io = &cur_trans->io_bgs; 3356 int loops = 0; 3357 3358 spin_lock(&cur_trans->dirty_bgs_lock); 3359 if (list_empty(&cur_trans->dirty_bgs)) { 3360 spin_unlock(&cur_trans->dirty_bgs_lock); 3361 return 0; 3362 } 3363 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3364 spin_unlock(&cur_trans->dirty_bgs_lock); 3365 3366 again: 3367 /* Make sure all the block groups on our dirty list actually exist */ 3368 btrfs_create_pending_block_groups(trans); 3369 3370 if (!path) { 3371 path = btrfs_alloc_path(); 3372 if (!path) { 3373 ret = -ENOMEM; 3374 goto out; 3375 } 3376 } 3377 3378 /* 3379 * cache_write_mutex is here only to save us from balance or automatic 3380 * removal of empty block groups deleting this block group while we are 3381 * writing out the cache 3382 */ 3383 mutex_lock(&trans->transaction->cache_write_mutex); 3384 while (!list_empty(&dirty)) { 3385 bool drop_reserve = true; 3386 3387 cache = list_first_entry(&dirty, struct btrfs_block_group, 3388 dirty_list); 3389 /* 3390 * This can happen if something re-dirties a block group that 3391 * is already under IO. Just wait for it to finish and then do 3392 * it all again 3393 */ 3394 if (!list_empty(&cache->io_list)) { 3395 list_del_init(&cache->io_list); 3396 btrfs_wait_cache_io(trans, cache, path); 3397 btrfs_put_block_group(cache); 3398 } 3399 3400 3401 /* 3402 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3403 * it should update the cache_state. Don't delete until after 3404 * we wait. 3405 * 3406 * Since we're not running in the commit critical section 3407 * we need the dirty_bgs_lock to protect from update_block_group 3408 */ 3409 spin_lock(&cur_trans->dirty_bgs_lock); 3410 list_del_init(&cache->dirty_list); 3411 spin_unlock(&cur_trans->dirty_bgs_lock); 3412 3413 should_put = 1; 3414 3415 cache_save_setup(cache, trans, path); 3416 3417 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3418 cache->io_ctl.inode = NULL; 3419 ret = btrfs_write_out_cache(trans, cache, path); 3420 if (ret == 0 && cache->io_ctl.inode) { 3421 should_put = 0; 3422 3423 /* 3424 * The cache_write_mutex is protecting the 3425 * io_list, also refer to the definition of 3426 * btrfs_transaction::io_bgs for more details 3427 */ 3428 list_add_tail(&cache->io_list, io); 3429 } else { 3430 /* 3431 * If we failed to write the cache, the 3432 * generation will be bad and life goes on 3433 */ 3434 ret = 0; 3435 } 3436 } 3437 if (!ret) { 3438 ret = update_block_group_item(trans, path, cache); 3439 /* 3440 * Our block group might still be attached to the list 3441 * of new block groups in the transaction handle of some 3442 * other task (struct btrfs_trans_handle->new_bgs). This 3443 * means its block group item isn't yet in the extent 3444 * tree. If this happens ignore the error, as we will 3445 * try again later in the critical section of the 3446 * transaction commit. 3447 */ 3448 if (ret == -ENOENT) { 3449 ret = 0; 3450 spin_lock(&cur_trans->dirty_bgs_lock); 3451 if (list_empty(&cache->dirty_list)) { 3452 list_add_tail(&cache->dirty_list, 3453 &cur_trans->dirty_bgs); 3454 btrfs_get_block_group(cache); 3455 drop_reserve = false; 3456 } 3457 spin_unlock(&cur_trans->dirty_bgs_lock); 3458 } else if (ret) { 3459 btrfs_abort_transaction(trans, ret); 3460 } 3461 } 3462 3463 /* If it's not on the io list, we need to put the block group */ 3464 if (should_put) 3465 btrfs_put_block_group(cache); 3466 if (drop_reserve) 3467 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3468 /* 3469 * Avoid blocking other tasks for too long. It might even save 3470 * us from writing caches for block groups that are going to be 3471 * removed. 3472 */ 3473 mutex_unlock(&trans->transaction->cache_write_mutex); 3474 if (ret) 3475 goto out; 3476 mutex_lock(&trans->transaction->cache_write_mutex); 3477 } 3478 mutex_unlock(&trans->transaction->cache_write_mutex); 3479 3480 /* 3481 * Go through delayed refs for all the stuff we've just kicked off 3482 * and then loop back (just once) 3483 */ 3484 if (!ret) 3485 ret = btrfs_run_delayed_refs(trans, 0); 3486 if (!ret && loops == 0) { 3487 loops++; 3488 spin_lock(&cur_trans->dirty_bgs_lock); 3489 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3490 /* 3491 * dirty_bgs_lock protects us from concurrent block group 3492 * deletes too (not just cache_write_mutex). 3493 */ 3494 if (!list_empty(&dirty)) { 3495 spin_unlock(&cur_trans->dirty_bgs_lock); 3496 goto again; 3497 } 3498 spin_unlock(&cur_trans->dirty_bgs_lock); 3499 } 3500 out: 3501 if (ret < 0) { 3502 spin_lock(&cur_trans->dirty_bgs_lock); 3503 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3504 spin_unlock(&cur_trans->dirty_bgs_lock); 3505 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3506 } 3507 3508 btrfs_free_path(path); 3509 return ret; 3510 } 3511 3512 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3513 { 3514 struct btrfs_fs_info *fs_info = trans->fs_info; 3515 struct btrfs_block_group *cache; 3516 struct btrfs_transaction *cur_trans = trans->transaction; 3517 int ret = 0; 3518 int should_put; 3519 struct btrfs_path *path; 3520 struct list_head *io = &cur_trans->io_bgs; 3521 3522 path = btrfs_alloc_path(); 3523 if (!path) 3524 return -ENOMEM; 3525 3526 /* 3527 * Even though we are in the critical section of the transaction commit, 3528 * we can still have concurrent tasks adding elements to this 3529 * transaction's list of dirty block groups. These tasks correspond to 3530 * endio free space workers started when writeback finishes for a 3531 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3532 * allocate new block groups as a result of COWing nodes of the root 3533 * tree when updating the free space inode. The writeback for the space 3534 * caches is triggered by an earlier call to 3535 * btrfs_start_dirty_block_groups() and iterations of the following 3536 * loop. 3537 * Also we want to do the cache_save_setup first and then run the 3538 * delayed refs to make sure we have the best chance at doing this all 3539 * in one shot. 3540 */ 3541 spin_lock(&cur_trans->dirty_bgs_lock); 3542 while (!list_empty(&cur_trans->dirty_bgs)) { 3543 cache = list_first_entry(&cur_trans->dirty_bgs, 3544 struct btrfs_block_group, 3545 dirty_list); 3546 3547 /* 3548 * This can happen if cache_save_setup re-dirties a block group 3549 * that is already under IO. Just wait for it to finish and 3550 * then do it all again 3551 */ 3552 if (!list_empty(&cache->io_list)) { 3553 spin_unlock(&cur_trans->dirty_bgs_lock); 3554 list_del_init(&cache->io_list); 3555 btrfs_wait_cache_io(trans, cache, path); 3556 btrfs_put_block_group(cache); 3557 spin_lock(&cur_trans->dirty_bgs_lock); 3558 } 3559 3560 /* 3561 * Don't remove from the dirty list until after we've waited on 3562 * any pending IO 3563 */ 3564 list_del_init(&cache->dirty_list); 3565 spin_unlock(&cur_trans->dirty_bgs_lock); 3566 should_put = 1; 3567 3568 cache_save_setup(cache, trans, path); 3569 3570 if (!ret) 3571 ret = btrfs_run_delayed_refs(trans, U64_MAX); 3572 3573 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3574 cache->io_ctl.inode = NULL; 3575 ret = btrfs_write_out_cache(trans, cache, path); 3576 if (ret == 0 && cache->io_ctl.inode) { 3577 should_put = 0; 3578 list_add_tail(&cache->io_list, io); 3579 } else { 3580 /* 3581 * If we failed to write the cache, the 3582 * generation will be bad and life goes on 3583 */ 3584 ret = 0; 3585 } 3586 } 3587 if (!ret) { 3588 ret = update_block_group_item(trans, path, cache); 3589 /* 3590 * One of the free space endio workers might have 3591 * created a new block group while updating a free space 3592 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3593 * and hasn't released its transaction handle yet, in 3594 * which case the new block group is still attached to 3595 * its transaction handle and its creation has not 3596 * finished yet (no block group item in the extent tree 3597 * yet, etc). If this is the case, wait for all free 3598 * space endio workers to finish and retry. This is a 3599 * very rare case so no need for a more efficient and 3600 * complex approach. 3601 */ 3602 if (ret == -ENOENT) { 3603 wait_event(cur_trans->writer_wait, 3604 atomic_read(&cur_trans->num_writers) == 1); 3605 ret = update_block_group_item(trans, path, cache); 3606 } 3607 if (ret) 3608 btrfs_abort_transaction(trans, ret); 3609 } 3610 3611 /* If its not on the io list, we need to put the block group */ 3612 if (should_put) 3613 btrfs_put_block_group(cache); 3614 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3615 spin_lock(&cur_trans->dirty_bgs_lock); 3616 } 3617 spin_unlock(&cur_trans->dirty_bgs_lock); 3618 3619 /* 3620 * Refer to the definition of io_bgs member for details why it's safe 3621 * to use it without any locking 3622 */ 3623 while (!list_empty(io)) { 3624 cache = list_first_entry(io, struct btrfs_block_group, 3625 io_list); 3626 list_del_init(&cache->io_list); 3627 btrfs_wait_cache_io(trans, cache, path); 3628 btrfs_put_block_group(cache); 3629 } 3630 3631 btrfs_free_path(path); 3632 return ret; 3633 } 3634 3635 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3636 u64 bytenr, u64 num_bytes, bool alloc) 3637 { 3638 struct btrfs_fs_info *info = trans->fs_info; 3639 struct btrfs_space_info *space_info; 3640 struct btrfs_block_group *cache; 3641 u64 old_val; 3642 bool reclaim = false; 3643 bool bg_already_dirty = true; 3644 int factor; 3645 3646 /* Block accounting for super block */ 3647 spin_lock(&info->delalloc_root_lock); 3648 old_val = btrfs_super_bytes_used(info->super_copy); 3649 if (alloc) 3650 old_val += num_bytes; 3651 else 3652 old_val -= num_bytes; 3653 btrfs_set_super_bytes_used(info->super_copy, old_val); 3654 spin_unlock(&info->delalloc_root_lock); 3655 3656 cache = btrfs_lookup_block_group(info, bytenr); 3657 if (!cache) 3658 return -ENOENT; 3659 3660 /* An extent can not span multiple block groups. */ 3661 ASSERT(bytenr + num_bytes <= cache->start + cache->length); 3662 3663 space_info = cache->space_info; 3664 factor = btrfs_bg_type_to_factor(cache->flags); 3665 3666 /* 3667 * If this block group has free space cache written out, we need to make 3668 * sure to load it if we are removing space. This is because we need 3669 * the unpinning stage to actually add the space back to the block group, 3670 * otherwise we will leak space. 3671 */ 3672 if (!alloc && !btrfs_block_group_done(cache)) 3673 btrfs_cache_block_group(cache, true); 3674 3675 spin_lock(&space_info->lock); 3676 spin_lock(&cache->lock); 3677 3678 if (btrfs_test_opt(info, SPACE_CACHE) && 3679 cache->disk_cache_state < BTRFS_DC_CLEAR) 3680 cache->disk_cache_state = BTRFS_DC_CLEAR; 3681 3682 old_val = cache->used; 3683 if (alloc) { 3684 old_val += num_bytes; 3685 cache->used = old_val; 3686 cache->reserved -= num_bytes; 3687 cache->reclaim_mark = 0; 3688 space_info->bytes_reserved -= num_bytes; 3689 space_info->bytes_used += num_bytes; 3690 space_info->disk_used += num_bytes * factor; 3691 if (READ_ONCE(space_info->periodic_reclaim)) 3692 btrfs_space_info_update_reclaimable(space_info, -num_bytes); 3693 spin_unlock(&cache->lock); 3694 spin_unlock(&space_info->lock); 3695 } else { 3696 old_val -= num_bytes; 3697 cache->used = old_val; 3698 cache->pinned += num_bytes; 3699 btrfs_space_info_update_bytes_pinned(info, space_info, num_bytes); 3700 space_info->bytes_used -= num_bytes; 3701 space_info->disk_used -= num_bytes * factor; 3702 if (READ_ONCE(space_info->periodic_reclaim)) 3703 btrfs_space_info_update_reclaimable(space_info, num_bytes); 3704 else 3705 reclaim = should_reclaim_block_group(cache, num_bytes); 3706 3707 spin_unlock(&cache->lock); 3708 spin_unlock(&space_info->lock); 3709 3710 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 3711 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 3712 } 3713 3714 spin_lock(&trans->transaction->dirty_bgs_lock); 3715 if (list_empty(&cache->dirty_list)) { 3716 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs); 3717 bg_already_dirty = false; 3718 btrfs_get_block_group(cache); 3719 } 3720 spin_unlock(&trans->transaction->dirty_bgs_lock); 3721 3722 /* 3723 * No longer have used bytes in this block group, queue it for deletion. 3724 * We do this after adding the block group to the dirty list to avoid 3725 * races between cleaner kthread and space cache writeout. 3726 */ 3727 if (!alloc && old_val == 0) { 3728 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3729 btrfs_mark_bg_unused(cache); 3730 } else if (!alloc && reclaim) { 3731 btrfs_mark_bg_to_reclaim(cache); 3732 } 3733 3734 btrfs_put_block_group(cache); 3735 3736 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3737 if (!bg_already_dirty) 3738 btrfs_inc_delayed_refs_rsv_bg_updates(info); 3739 3740 return 0; 3741 } 3742 3743 /* 3744 * Update the block_group and space info counters. 3745 * 3746 * @cache: The cache we are manipulating 3747 * @ram_bytes: The number of bytes of file content, and will be same to 3748 * @num_bytes except for the compress path. 3749 * @num_bytes: The number of bytes in question 3750 * @delalloc: The blocks are allocated for the delalloc write 3751 * 3752 * This is called by the allocator when it reserves space. If this is a 3753 * reservation and the block group has become read only we cannot make the 3754 * reservation and return -EAGAIN, otherwise this function always succeeds. 3755 */ 3756 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3757 u64 ram_bytes, u64 num_bytes, int delalloc, 3758 bool force_wrong_size_class) 3759 { 3760 struct btrfs_space_info *space_info = cache->space_info; 3761 enum btrfs_block_group_size_class size_class; 3762 int ret = 0; 3763 3764 spin_lock(&space_info->lock); 3765 spin_lock(&cache->lock); 3766 if (cache->ro) { 3767 ret = -EAGAIN; 3768 goto out; 3769 } 3770 3771 if (btrfs_block_group_should_use_size_class(cache)) { 3772 size_class = btrfs_calc_block_group_size_class(num_bytes); 3773 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3774 if (ret) 3775 goto out; 3776 } 3777 cache->reserved += num_bytes; 3778 space_info->bytes_reserved += num_bytes; 3779 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3780 space_info->flags, num_bytes, 1); 3781 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3782 space_info, -ram_bytes); 3783 if (delalloc) 3784 cache->delalloc_bytes += num_bytes; 3785 3786 /* 3787 * Compression can use less space than we reserved, so wake tickets if 3788 * that happens. 3789 */ 3790 if (num_bytes < ram_bytes) 3791 btrfs_try_granting_tickets(cache->fs_info, space_info); 3792 out: 3793 spin_unlock(&cache->lock); 3794 spin_unlock(&space_info->lock); 3795 return ret; 3796 } 3797 3798 /* 3799 * Update the block_group and space info counters. 3800 * 3801 * @cache: The cache we are manipulating 3802 * @num_bytes: The number of bytes in question 3803 * @delalloc: The blocks are allocated for the delalloc write 3804 * 3805 * This is called by somebody who is freeing space that was never actually used 3806 * on disk. For example if you reserve some space for a new leaf in transaction 3807 * A and before transaction A commits you free that leaf, you call this with 3808 * reserve set to 0 in order to clear the reservation. 3809 */ 3810 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3811 u64 num_bytes, int delalloc) 3812 { 3813 struct btrfs_space_info *space_info = cache->space_info; 3814 3815 spin_lock(&space_info->lock); 3816 spin_lock(&cache->lock); 3817 if (cache->ro) 3818 space_info->bytes_readonly += num_bytes; 3819 cache->reserved -= num_bytes; 3820 space_info->bytes_reserved -= num_bytes; 3821 space_info->max_extent_size = 0; 3822 3823 if (delalloc) 3824 cache->delalloc_bytes -= num_bytes; 3825 spin_unlock(&cache->lock); 3826 3827 btrfs_try_granting_tickets(cache->fs_info, space_info); 3828 spin_unlock(&space_info->lock); 3829 } 3830 3831 static void force_metadata_allocation(struct btrfs_fs_info *info) 3832 { 3833 struct list_head *head = &info->space_info; 3834 struct btrfs_space_info *found; 3835 3836 list_for_each_entry(found, head, list) { 3837 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3838 found->force_alloc = CHUNK_ALLOC_FORCE; 3839 } 3840 } 3841 3842 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3843 struct btrfs_space_info *sinfo, int force) 3844 { 3845 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3846 u64 thresh; 3847 3848 if (force == CHUNK_ALLOC_FORCE) 3849 return 1; 3850 3851 /* 3852 * in limited mode, we want to have some free space up to 3853 * about 1% of the FS size. 3854 */ 3855 if (force == CHUNK_ALLOC_LIMITED) { 3856 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3857 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3858 3859 if (sinfo->total_bytes - bytes_used < thresh) 3860 return 1; 3861 } 3862 3863 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3864 return 0; 3865 return 1; 3866 } 3867 3868 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3869 { 3870 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3871 3872 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3873 } 3874 3875 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3876 { 3877 struct btrfs_block_group *bg; 3878 int ret; 3879 3880 /* 3881 * Check if we have enough space in the system space info because we 3882 * will need to update device items in the chunk btree and insert a new 3883 * chunk item in the chunk btree as well. This will allocate a new 3884 * system block group if needed. 3885 */ 3886 check_system_chunk(trans, flags); 3887 3888 bg = btrfs_create_chunk(trans, flags); 3889 if (IS_ERR(bg)) { 3890 ret = PTR_ERR(bg); 3891 goto out; 3892 } 3893 3894 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3895 /* 3896 * Normally we are not expected to fail with -ENOSPC here, since we have 3897 * previously reserved space in the system space_info and allocated one 3898 * new system chunk if necessary. However there are three exceptions: 3899 * 3900 * 1) We may have enough free space in the system space_info but all the 3901 * existing system block groups have a profile which can not be used 3902 * for extent allocation. 3903 * 3904 * This happens when mounting in degraded mode. For example we have a 3905 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3906 * using the other device in degraded mode. If we then allocate a chunk, 3907 * we may have enough free space in the existing system space_info, but 3908 * none of the block groups can be used for extent allocation since they 3909 * have a RAID1 profile, and because we are in degraded mode with a 3910 * single device, we are forced to allocate a new system chunk with a 3911 * SINGLE profile. Making check_system_chunk() iterate over all system 3912 * block groups and check if they have a usable profile and enough space 3913 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3914 * try again after forcing allocation of a new system chunk. Like this 3915 * we avoid paying the cost of that search in normal circumstances, when 3916 * we were not mounted in degraded mode; 3917 * 3918 * 2) We had enough free space info the system space_info, and one suitable 3919 * block group to allocate from when we called check_system_chunk() 3920 * above. However right after we called it, the only system block group 3921 * with enough free space got turned into RO mode by a running scrub, 3922 * and in this case we have to allocate a new one and retry. We only 3923 * need do this allocate and retry once, since we have a transaction 3924 * handle and scrub uses the commit root to search for block groups; 3925 * 3926 * 3) We had one system block group with enough free space when we called 3927 * check_system_chunk(), but after that, right before we tried to 3928 * allocate the last extent buffer we needed, a discard operation came 3929 * in and it temporarily removed the last free space entry from the 3930 * block group (discard removes a free space entry, discards it, and 3931 * then adds back the entry to the block group cache). 3932 */ 3933 if (ret == -ENOSPC) { 3934 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3935 struct btrfs_block_group *sys_bg; 3936 3937 sys_bg = btrfs_create_chunk(trans, sys_flags); 3938 if (IS_ERR(sys_bg)) { 3939 ret = PTR_ERR(sys_bg); 3940 btrfs_abort_transaction(trans, ret); 3941 goto out; 3942 } 3943 3944 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3945 if (ret) { 3946 btrfs_abort_transaction(trans, ret); 3947 goto out; 3948 } 3949 3950 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3951 if (ret) { 3952 btrfs_abort_transaction(trans, ret); 3953 goto out; 3954 } 3955 } else if (ret) { 3956 btrfs_abort_transaction(trans, ret); 3957 goto out; 3958 } 3959 out: 3960 btrfs_trans_release_chunk_metadata(trans); 3961 3962 if (ret) 3963 return ERR_PTR(ret); 3964 3965 btrfs_get_block_group(bg); 3966 return bg; 3967 } 3968 3969 /* 3970 * Chunk allocation is done in 2 phases: 3971 * 3972 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3973 * the chunk, the chunk mapping, create its block group and add the items 3974 * that belong in the chunk btree to it - more specifically, we need to 3975 * update device items in the chunk btree and add a new chunk item to it. 3976 * 3977 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3978 * group item to the extent btree and the device extent items to the devices 3979 * btree. 3980 * 3981 * This is done to prevent deadlocks. For example when COWing a node from the 3982 * extent btree we are holding a write lock on the node's parent and if we 3983 * trigger chunk allocation and attempted to insert the new block group item 3984 * in the extent btree right way, we could deadlock because the path for the 3985 * insertion can include that parent node. At first glance it seems impossible 3986 * to trigger chunk allocation after starting a transaction since tasks should 3987 * reserve enough transaction units (metadata space), however while that is true 3988 * most of the time, chunk allocation may still be triggered for several reasons: 3989 * 3990 * 1) When reserving metadata, we check if there is enough free space in the 3991 * metadata space_info and therefore don't trigger allocation of a new chunk. 3992 * However later when the task actually tries to COW an extent buffer from 3993 * the extent btree or from the device btree for example, it is forced to 3994 * allocate a new block group (chunk) because the only one that had enough 3995 * free space was just turned to RO mode by a running scrub for example (or 3996 * device replace, block group reclaim thread, etc), so we can not use it 3997 * for allocating an extent and end up being forced to allocate a new one; 3998 * 3999 * 2) Because we only check that the metadata space_info has enough free bytes, 4000 * we end up not allocating a new metadata chunk in that case. However if 4001 * the filesystem was mounted in degraded mode, none of the existing block 4002 * groups might be suitable for extent allocation due to their incompatible 4003 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 4004 * use a RAID1 profile, in degraded mode using a single device). In this case 4005 * when the task attempts to COW some extent buffer of the extent btree for 4006 * example, it will trigger allocation of a new metadata block group with a 4007 * suitable profile (SINGLE profile in the example of the degraded mount of 4008 * the RAID1 filesystem); 4009 * 4010 * 3) The task has reserved enough transaction units / metadata space, but when 4011 * it attempts to COW an extent buffer from the extent or device btree for 4012 * example, it does not find any free extent in any metadata block group, 4013 * therefore forced to try to allocate a new metadata block group. 4014 * This is because some other task allocated all available extents in the 4015 * meanwhile - this typically happens with tasks that don't reserve space 4016 * properly, either intentionally or as a bug. One example where this is 4017 * done intentionally is fsync, as it does not reserve any transaction units 4018 * and ends up allocating a variable number of metadata extents for log 4019 * tree extent buffers; 4020 * 4021 * 4) The task has reserved enough transaction units / metadata space, but right 4022 * before it tries to allocate the last extent buffer it needs, a discard 4023 * operation comes in and, temporarily, removes the last free space entry from 4024 * the only metadata block group that had free space (discard starts by 4025 * removing a free space entry from a block group, then does the discard 4026 * operation and, once it's done, it adds back the free space entry to the 4027 * block group). 4028 * 4029 * We also need this 2 phases setup when adding a device to a filesystem with 4030 * a seed device - we must create new metadata and system chunks without adding 4031 * any of the block group items to the chunk, extent and device btrees. If we 4032 * did not do it this way, we would get ENOSPC when attempting to update those 4033 * btrees, since all the chunks from the seed device are read-only. 4034 * 4035 * Phase 1 does the updates and insertions to the chunk btree because if we had 4036 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 4037 * parallel, we risk having too many system chunks allocated by many tasks if 4038 * many tasks reach phase 1 without the previous ones completing phase 2. In the 4039 * extreme case this leads to exhaustion of the system chunk array in the 4040 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 4041 * and with RAID filesystems (so we have more device items in the chunk btree). 4042 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 4043 * the system chunk array due to concurrent allocations") provides more details. 4044 * 4045 * Allocation of system chunks does not happen through this function. A task that 4046 * needs to update the chunk btree (the only btree that uses system chunks), must 4047 * preallocate chunk space by calling either check_system_chunk() or 4048 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 4049 * metadata chunk or when removing a chunk, while the later is used before doing 4050 * a modification to the chunk btree - use cases for the later are adding, 4051 * removing and resizing a device as well as relocation of a system chunk. 4052 * See the comment below for more details. 4053 * 4054 * The reservation of system space, done through check_system_chunk(), as well 4055 * as all the updates and insertions into the chunk btree must be done while 4056 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4057 * an extent buffer from the chunks btree we never trigger allocation of a new 4058 * system chunk, which would result in a deadlock (trying to lock twice an 4059 * extent buffer of the chunk btree, first time before triggering the chunk 4060 * allocation and the second time during chunk allocation while attempting to 4061 * update the chunks btree). The system chunk array is also updated while holding 4062 * that mutex. The same logic applies to removing chunks - we must reserve system 4063 * space, update the chunk btree and the system chunk array in the superblock 4064 * while holding fs_info->chunk_mutex. 4065 * 4066 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4067 * 4068 * If @force is CHUNK_ALLOC_FORCE: 4069 * - return 1 if it successfully allocates a chunk, 4070 * - return errors including -ENOSPC otherwise. 4071 * If @force is NOT CHUNK_ALLOC_FORCE: 4072 * - return 0 if it doesn't need to allocate a new chunk, 4073 * - return 1 if it successfully allocates a chunk, 4074 * - return errors including -ENOSPC otherwise. 4075 */ 4076 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 4077 enum btrfs_chunk_alloc_enum force) 4078 { 4079 struct btrfs_fs_info *fs_info = trans->fs_info; 4080 struct btrfs_space_info *space_info; 4081 struct btrfs_block_group *ret_bg; 4082 bool wait_for_alloc = false; 4083 bool should_alloc = false; 4084 bool from_extent_allocation = false; 4085 int ret = 0; 4086 4087 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4088 from_extent_allocation = true; 4089 force = CHUNK_ALLOC_FORCE; 4090 } 4091 4092 /* Don't re-enter if we're already allocating a chunk */ 4093 if (trans->allocating_chunk) 4094 return -ENOSPC; 4095 /* 4096 * Allocation of system chunks can not happen through this path, as we 4097 * could end up in a deadlock if we are allocating a data or metadata 4098 * chunk and there is another task modifying the chunk btree. 4099 * 4100 * This is because while we are holding the chunk mutex, we will attempt 4101 * to add the new chunk item to the chunk btree or update an existing 4102 * device item in the chunk btree, while the other task that is modifying 4103 * the chunk btree is attempting to COW an extent buffer while holding a 4104 * lock on it and on its parent - if the COW operation triggers a system 4105 * chunk allocation, then we can deadlock because we are holding the 4106 * chunk mutex and we may need to access that extent buffer or its parent 4107 * in order to add the chunk item or update a device item. 4108 * 4109 * Tasks that want to modify the chunk tree should reserve system space 4110 * before updating the chunk btree, by calling either 4111 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4112 * It's possible that after a task reserves the space, it still ends up 4113 * here - this happens in the cases described above at do_chunk_alloc(). 4114 * The task will have to either retry or fail. 4115 */ 4116 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4117 return -ENOSPC; 4118 4119 space_info = btrfs_find_space_info(fs_info, flags); 4120 ASSERT(space_info); 4121 4122 do { 4123 spin_lock(&space_info->lock); 4124 if (force < space_info->force_alloc) 4125 force = space_info->force_alloc; 4126 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4127 if (space_info->full) { 4128 /* No more free physical space */ 4129 if (should_alloc) 4130 ret = -ENOSPC; 4131 else 4132 ret = 0; 4133 spin_unlock(&space_info->lock); 4134 return ret; 4135 } else if (!should_alloc) { 4136 spin_unlock(&space_info->lock); 4137 return 0; 4138 } else if (space_info->chunk_alloc) { 4139 /* 4140 * Someone is already allocating, so we need to block 4141 * until this someone is finished and then loop to 4142 * recheck if we should continue with our allocation 4143 * attempt. 4144 */ 4145 wait_for_alloc = true; 4146 force = CHUNK_ALLOC_NO_FORCE; 4147 spin_unlock(&space_info->lock); 4148 mutex_lock(&fs_info->chunk_mutex); 4149 mutex_unlock(&fs_info->chunk_mutex); 4150 } else { 4151 /* Proceed with allocation */ 4152 space_info->chunk_alloc = 1; 4153 wait_for_alloc = false; 4154 spin_unlock(&space_info->lock); 4155 } 4156 4157 cond_resched(); 4158 } while (wait_for_alloc); 4159 4160 mutex_lock(&fs_info->chunk_mutex); 4161 trans->allocating_chunk = true; 4162 4163 /* 4164 * If we have mixed data/metadata chunks we want to make sure we keep 4165 * allocating mixed chunks instead of individual chunks. 4166 */ 4167 if (btrfs_mixed_space_info(space_info)) 4168 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4169 4170 /* 4171 * if we're doing a data chunk, go ahead and make sure that 4172 * we keep a reasonable number of metadata chunks allocated in the 4173 * FS as well. 4174 */ 4175 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4176 fs_info->data_chunk_allocations++; 4177 if (!(fs_info->data_chunk_allocations % 4178 fs_info->metadata_ratio)) 4179 force_metadata_allocation(fs_info); 4180 } 4181 4182 ret_bg = do_chunk_alloc(trans, flags); 4183 trans->allocating_chunk = false; 4184 4185 if (IS_ERR(ret_bg)) { 4186 ret = PTR_ERR(ret_bg); 4187 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4188 /* 4189 * New block group is likely to be used soon. Try to activate 4190 * it now. Failure is OK for now. 4191 */ 4192 btrfs_zone_activate(ret_bg); 4193 } 4194 4195 if (!ret) 4196 btrfs_put_block_group(ret_bg); 4197 4198 spin_lock(&space_info->lock); 4199 if (ret < 0) { 4200 if (ret == -ENOSPC) 4201 space_info->full = 1; 4202 else 4203 goto out; 4204 } else { 4205 ret = 1; 4206 space_info->max_extent_size = 0; 4207 } 4208 4209 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4210 out: 4211 space_info->chunk_alloc = 0; 4212 spin_unlock(&space_info->lock); 4213 mutex_unlock(&fs_info->chunk_mutex); 4214 4215 return ret; 4216 } 4217 4218 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4219 { 4220 u64 num_dev; 4221 4222 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4223 if (!num_dev) 4224 num_dev = fs_info->fs_devices->rw_devices; 4225 4226 return num_dev; 4227 } 4228 4229 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4230 u64 bytes, 4231 u64 type) 4232 { 4233 struct btrfs_fs_info *fs_info = trans->fs_info; 4234 struct btrfs_space_info *info; 4235 u64 left; 4236 int ret = 0; 4237 4238 /* 4239 * Needed because we can end up allocating a system chunk and for an 4240 * atomic and race free space reservation in the chunk block reserve. 4241 */ 4242 lockdep_assert_held(&fs_info->chunk_mutex); 4243 4244 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4245 spin_lock(&info->lock); 4246 left = info->total_bytes - btrfs_space_info_used(info, true); 4247 spin_unlock(&info->lock); 4248 4249 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4250 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4251 left, bytes, type); 4252 btrfs_dump_space_info(fs_info, info, 0, 0); 4253 } 4254 4255 if (left < bytes) { 4256 u64 flags = btrfs_system_alloc_profile(fs_info); 4257 struct btrfs_block_group *bg; 4258 4259 /* 4260 * Ignore failure to create system chunk. We might end up not 4261 * needing it, as we might not need to COW all nodes/leafs from 4262 * the paths we visit in the chunk tree (they were already COWed 4263 * or created in the current transaction for example). 4264 */ 4265 bg = btrfs_create_chunk(trans, flags); 4266 if (IS_ERR(bg)) { 4267 ret = PTR_ERR(bg); 4268 } else { 4269 /* 4270 * We have a new chunk. We also need to activate it for 4271 * zoned filesystem. 4272 */ 4273 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4274 if (ret < 0) 4275 return; 4276 4277 /* 4278 * If we fail to add the chunk item here, we end up 4279 * trying again at phase 2 of chunk allocation, at 4280 * btrfs_create_pending_block_groups(). So ignore 4281 * any error here. An ENOSPC here could happen, due to 4282 * the cases described at do_chunk_alloc() - the system 4283 * block group we just created was just turned into RO 4284 * mode by a scrub for example, or a running discard 4285 * temporarily removed its free space entries, etc. 4286 */ 4287 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4288 } 4289 } 4290 4291 if (!ret) { 4292 ret = btrfs_block_rsv_add(fs_info, 4293 &fs_info->chunk_block_rsv, 4294 bytes, BTRFS_RESERVE_NO_FLUSH); 4295 if (!ret) 4296 trans->chunk_bytes_reserved += bytes; 4297 } 4298 } 4299 4300 /* 4301 * Reserve space in the system space for allocating or removing a chunk. 4302 * The caller must be holding fs_info->chunk_mutex. 4303 */ 4304 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4305 { 4306 struct btrfs_fs_info *fs_info = trans->fs_info; 4307 const u64 num_devs = get_profile_num_devs(fs_info, type); 4308 u64 bytes; 4309 4310 /* num_devs device items to update and 1 chunk item to add or remove. */ 4311 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4312 btrfs_calc_insert_metadata_size(fs_info, 1); 4313 4314 reserve_chunk_space(trans, bytes, type); 4315 } 4316 4317 /* 4318 * Reserve space in the system space, if needed, for doing a modification to the 4319 * chunk btree. 4320 * 4321 * @trans: A transaction handle. 4322 * @is_item_insertion: Indicate if the modification is for inserting a new item 4323 * in the chunk btree or if it's for the deletion or update 4324 * of an existing item. 4325 * 4326 * This is used in a context where we need to update the chunk btree outside 4327 * block group allocation and removal, to avoid a deadlock with a concurrent 4328 * task that is allocating a metadata or data block group and therefore needs to 4329 * update the chunk btree while holding the chunk mutex. After the update to the 4330 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4331 * 4332 */ 4333 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4334 bool is_item_insertion) 4335 { 4336 struct btrfs_fs_info *fs_info = trans->fs_info; 4337 u64 bytes; 4338 4339 if (is_item_insertion) 4340 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4341 else 4342 bytes = btrfs_calc_metadata_size(fs_info, 1); 4343 4344 mutex_lock(&fs_info->chunk_mutex); 4345 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4346 mutex_unlock(&fs_info->chunk_mutex); 4347 } 4348 4349 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4350 { 4351 struct btrfs_block_group *block_group; 4352 4353 block_group = btrfs_lookup_first_block_group(info, 0); 4354 while (block_group) { 4355 btrfs_wait_block_group_cache_done(block_group); 4356 spin_lock(&block_group->lock); 4357 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4358 &block_group->runtime_flags)) { 4359 struct btrfs_inode *inode = block_group->inode; 4360 4361 block_group->inode = NULL; 4362 spin_unlock(&block_group->lock); 4363 4364 ASSERT(block_group->io_ctl.inode == NULL); 4365 iput(&inode->vfs_inode); 4366 } else { 4367 spin_unlock(&block_group->lock); 4368 } 4369 block_group = btrfs_next_block_group(block_group); 4370 } 4371 } 4372 4373 /* 4374 * Must be called only after stopping all workers, since we could have block 4375 * group caching kthreads running, and therefore they could race with us if we 4376 * freed the block groups before stopping them. 4377 */ 4378 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4379 { 4380 struct btrfs_block_group *block_group; 4381 struct btrfs_space_info *space_info; 4382 struct btrfs_caching_control *caching_ctl; 4383 struct rb_node *n; 4384 4385 if (btrfs_is_zoned(info)) { 4386 if (info->active_meta_bg) { 4387 btrfs_put_block_group(info->active_meta_bg); 4388 info->active_meta_bg = NULL; 4389 } 4390 if (info->active_system_bg) { 4391 btrfs_put_block_group(info->active_system_bg); 4392 info->active_system_bg = NULL; 4393 } 4394 } 4395 4396 write_lock(&info->block_group_cache_lock); 4397 while (!list_empty(&info->caching_block_groups)) { 4398 caching_ctl = list_entry(info->caching_block_groups.next, 4399 struct btrfs_caching_control, list); 4400 list_del(&caching_ctl->list); 4401 btrfs_put_caching_control(caching_ctl); 4402 } 4403 write_unlock(&info->block_group_cache_lock); 4404 4405 spin_lock(&info->unused_bgs_lock); 4406 while (!list_empty(&info->unused_bgs)) { 4407 block_group = list_first_entry(&info->unused_bgs, 4408 struct btrfs_block_group, 4409 bg_list); 4410 list_del_init(&block_group->bg_list); 4411 btrfs_put_block_group(block_group); 4412 } 4413 4414 while (!list_empty(&info->reclaim_bgs)) { 4415 block_group = list_first_entry(&info->reclaim_bgs, 4416 struct btrfs_block_group, 4417 bg_list); 4418 list_del_init(&block_group->bg_list); 4419 btrfs_put_block_group(block_group); 4420 } 4421 spin_unlock(&info->unused_bgs_lock); 4422 4423 spin_lock(&info->zone_active_bgs_lock); 4424 while (!list_empty(&info->zone_active_bgs)) { 4425 block_group = list_first_entry(&info->zone_active_bgs, 4426 struct btrfs_block_group, 4427 active_bg_list); 4428 list_del_init(&block_group->active_bg_list); 4429 btrfs_put_block_group(block_group); 4430 } 4431 spin_unlock(&info->zone_active_bgs_lock); 4432 4433 write_lock(&info->block_group_cache_lock); 4434 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4435 block_group = rb_entry(n, struct btrfs_block_group, 4436 cache_node); 4437 rb_erase_cached(&block_group->cache_node, 4438 &info->block_group_cache_tree); 4439 RB_CLEAR_NODE(&block_group->cache_node); 4440 write_unlock(&info->block_group_cache_lock); 4441 4442 down_write(&block_group->space_info->groups_sem); 4443 list_del(&block_group->list); 4444 up_write(&block_group->space_info->groups_sem); 4445 4446 /* 4447 * We haven't cached this block group, which means we could 4448 * possibly have excluded extents on this block group. 4449 */ 4450 if (block_group->cached == BTRFS_CACHE_NO || 4451 block_group->cached == BTRFS_CACHE_ERROR) 4452 btrfs_free_excluded_extents(block_group); 4453 4454 btrfs_remove_free_space_cache(block_group); 4455 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4456 ASSERT(list_empty(&block_group->dirty_list)); 4457 ASSERT(list_empty(&block_group->io_list)); 4458 ASSERT(list_empty(&block_group->bg_list)); 4459 ASSERT(refcount_read(&block_group->refs) == 1); 4460 ASSERT(block_group->swap_extents == 0); 4461 btrfs_put_block_group(block_group); 4462 4463 write_lock(&info->block_group_cache_lock); 4464 } 4465 write_unlock(&info->block_group_cache_lock); 4466 4467 btrfs_release_global_block_rsv(info); 4468 4469 while (!list_empty(&info->space_info)) { 4470 space_info = list_entry(info->space_info.next, 4471 struct btrfs_space_info, 4472 list); 4473 4474 /* 4475 * Do not hide this behind enospc_debug, this is actually 4476 * important and indicates a real bug if this happens. 4477 */ 4478 if (WARN_ON(space_info->bytes_pinned > 0 || 4479 space_info->bytes_may_use > 0)) 4480 btrfs_dump_space_info(info, space_info, 0, 0); 4481 4482 /* 4483 * If there was a failure to cleanup a log tree, very likely due 4484 * to an IO failure on a writeback attempt of one or more of its 4485 * extent buffers, we could not do proper (and cheap) unaccounting 4486 * of their reserved space, so don't warn on bytes_reserved > 0 in 4487 * that case. 4488 */ 4489 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4490 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4491 if (WARN_ON(space_info->bytes_reserved > 0)) 4492 btrfs_dump_space_info(info, space_info, 0, 0); 4493 } 4494 4495 WARN_ON(space_info->reclaim_size > 0); 4496 list_del(&space_info->list); 4497 btrfs_sysfs_remove_space_info(space_info); 4498 } 4499 return 0; 4500 } 4501 4502 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4503 { 4504 atomic_inc(&cache->frozen); 4505 } 4506 4507 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4508 { 4509 struct btrfs_fs_info *fs_info = block_group->fs_info; 4510 bool cleanup; 4511 4512 spin_lock(&block_group->lock); 4513 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4514 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4515 spin_unlock(&block_group->lock); 4516 4517 if (cleanup) { 4518 struct btrfs_chunk_map *map; 4519 4520 map = btrfs_find_chunk_map(fs_info, block_group->start, 1); 4521 /* Logic error, can't happen. */ 4522 ASSERT(map); 4523 4524 btrfs_remove_chunk_map(fs_info, map); 4525 4526 /* Once for our lookup reference. */ 4527 btrfs_free_chunk_map(map); 4528 4529 /* 4530 * We may have left one free space entry and other possible 4531 * tasks trimming this block group have left 1 entry each one. 4532 * Free them if any. 4533 */ 4534 btrfs_remove_free_space_cache(block_group); 4535 } 4536 } 4537 4538 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4539 { 4540 bool ret = true; 4541 4542 spin_lock(&bg->lock); 4543 if (bg->ro) 4544 ret = false; 4545 else 4546 bg->swap_extents++; 4547 spin_unlock(&bg->lock); 4548 4549 return ret; 4550 } 4551 4552 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4553 { 4554 spin_lock(&bg->lock); 4555 ASSERT(!bg->ro); 4556 ASSERT(bg->swap_extents >= amount); 4557 bg->swap_extents -= amount; 4558 spin_unlock(&bg->lock); 4559 } 4560 4561 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4562 { 4563 if (size <= SZ_128K) 4564 return BTRFS_BG_SZ_SMALL; 4565 if (size <= SZ_8M) 4566 return BTRFS_BG_SZ_MEDIUM; 4567 return BTRFS_BG_SZ_LARGE; 4568 } 4569 4570 /* 4571 * Handle a block group allocating an extent in a size class 4572 * 4573 * @bg: The block group we allocated in. 4574 * @size_class: The size class of the allocation. 4575 * @force_wrong_size_class: Whether we are desperate enough to allow 4576 * mismatched size classes. 4577 * 4578 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4579 * case of a race that leads to the wrong size class without 4580 * force_wrong_size_class set. 4581 * 4582 * find_free_extent will skip block groups with a mismatched size class until 4583 * it really needs to avoid ENOSPC. In that case it will set 4584 * force_wrong_size_class. However, if a block group is newly allocated and 4585 * doesn't yet have a size class, then it is possible for two allocations of 4586 * different sizes to race and both try to use it. The loser is caught here and 4587 * has to retry. 4588 */ 4589 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4590 enum btrfs_block_group_size_class size_class, 4591 bool force_wrong_size_class) 4592 { 4593 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4594 4595 /* The new allocation is in the right size class, do nothing */ 4596 if (bg->size_class == size_class) 4597 return 0; 4598 /* 4599 * The new allocation is in a mismatched size class. 4600 * This means one of two things: 4601 * 4602 * 1. Two tasks in find_free_extent for different size_classes raced 4603 * and hit the same empty block_group. Make the loser try again. 4604 * 2. A call to find_free_extent got desperate enough to set 4605 * 'force_wrong_slab'. Don't change the size_class, but allow the 4606 * allocation. 4607 */ 4608 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4609 if (force_wrong_size_class) 4610 return 0; 4611 return -EAGAIN; 4612 } 4613 /* 4614 * The happy new block group case: the new allocation is the first 4615 * one in the block_group so we set size_class. 4616 */ 4617 bg->size_class = size_class; 4618 4619 return 0; 4620 } 4621 4622 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg) 4623 { 4624 if (btrfs_is_zoned(bg->fs_info)) 4625 return false; 4626 if (!btrfs_is_block_group_data_only(bg)) 4627 return false; 4628 return true; 4629 } 4630