1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 const struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 btrfs_free_chunk_map(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 /* 177 * This adds the block group to the fs_info rb tree for the block group cache 178 */ 179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 180 struct btrfs_block_group *block_group) 181 { 182 struct rb_node **p; 183 struct rb_node *parent = NULL; 184 struct btrfs_block_group *cache; 185 bool leftmost = true; 186 187 ASSERT(block_group->length != 0); 188 189 write_lock(&info->block_group_cache_lock); 190 p = &info->block_group_cache_tree.rb_root.rb_node; 191 192 while (*p) { 193 parent = *p; 194 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 195 if (block_group->start < cache->start) { 196 p = &(*p)->rb_left; 197 } else if (block_group->start > cache->start) { 198 p = &(*p)->rb_right; 199 leftmost = false; 200 } else { 201 write_unlock(&info->block_group_cache_lock); 202 return -EEXIST; 203 } 204 } 205 206 rb_link_node(&block_group->cache_node, parent, p); 207 rb_insert_color_cached(&block_group->cache_node, 208 &info->block_group_cache_tree, leftmost); 209 210 write_unlock(&info->block_group_cache_lock); 211 212 return 0; 213 } 214 215 /* 216 * This will return the block group at or after bytenr if contains is 0, else 217 * it will return the block group that contains the bytenr 218 */ 219 static struct btrfs_block_group *block_group_cache_tree_search( 220 struct btrfs_fs_info *info, u64 bytenr, int contains) 221 { 222 struct btrfs_block_group *cache, *ret = NULL; 223 struct rb_node *n; 224 u64 end, start; 225 226 read_lock(&info->block_group_cache_lock); 227 n = info->block_group_cache_tree.rb_root.rb_node; 228 229 while (n) { 230 cache = rb_entry(n, struct btrfs_block_group, cache_node); 231 end = cache->start + cache->length - 1; 232 start = cache->start; 233 234 if (bytenr < start) { 235 if (!contains && (!ret || start < ret->start)) 236 ret = cache; 237 n = n->rb_left; 238 } else if (bytenr > start) { 239 if (contains && bytenr <= end) { 240 ret = cache; 241 break; 242 } 243 n = n->rb_right; 244 } else { 245 ret = cache; 246 break; 247 } 248 } 249 if (ret) 250 btrfs_get_block_group(ret); 251 read_unlock(&info->block_group_cache_lock); 252 253 return ret; 254 } 255 256 /* 257 * Return the block group that starts at or after bytenr 258 */ 259 struct btrfs_block_group *btrfs_lookup_first_block_group( 260 struct btrfs_fs_info *info, u64 bytenr) 261 { 262 return block_group_cache_tree_search(info, bytenr, 0); 263 } 264 265 /* 266 * Return the block group that contains the given bytenr 267 */ 268 struct btrfs_block_group *btrfs_lookup_block_group( 269 struct btrfs_fs_info *info, u64 bytenr) 270 { 271 return block_group_cache_tree_search(info, bytenr, 1); 272 } 273 274 struct btrfs_block_group *btrfs_next_block_group( 275 struct btrfs_block_group *cache) 276 { 277 struct btrfs_fs_info *fs_info = cache->fs_info; 278 struct rb_node *node; 279 280 read_lock(&fs_info->block_group_cache_lock); 281 282 /* If our block group was removed, we need a full search. */ 283 if (RB_EMPTY_NODE(&cache->cache_node)) { 284 const u64 next_bytenr = cache->start + cache->length; 285 286 read_unlock(&fs_info->block_group_cache_lock); 287 btrfs_put_block_group(cache); 288 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 289 } 290 node = rb_next(&cache->cache_node); 291 btrfs_put_block_group(cache); 292 if (node) { 293 cache = rb_entry(node, struct btrfs_block_group, cache_node); 294 btrfs_get_block_group(cache); 295 } else 296 cache = NULL; 297 read_unlock(&fs_info->block_group_cache_lock); 298 return cache; 299 } 300 301 /* 302 * Check if we can do a NOCOW write for a given extent. 303 * 304 * @fs_info: The filesystem information object. 305 * @bytenr: Logical start address of the extent. 306 * 307 * Check if we can do a NOCOW write for the given extent, and increments the 308 * number of NOCOW writers in the block group that contains the extent, as long 309 * as the block group exists and it's currently not in read-only mode. 310 * 311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 312 * is responsible for calling btrfs_dec_nocow_writers() later. 313 * 314 * Or NULL if we can not do a NOCOW write 315 */ 316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 317 u64 bytenr) 318 { 319 struct btrfs_block_group *bg; 320 bool can_nocow = true; 321 322 bg = btrfs_lookup_block_group(fs_info, bytenr); 323 if (!bg) 324 return NULL; 325 326 spin_lock(&bg->lock); 327 if (bg->ro) 328 can_nocow = false; 329 else 330 atomic_inc(&bg->nocow_writers); 331 spin_unlock(&bg->lock); 332 333 if (!can_nocow) { 334 btrfs_put_block_group(bg); 335 return NULL; 336 } 337 338 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 339 return bg; 340 } 341 342 /* 343 * Decrement the number of NOCOW writers in a block group. 344 * 345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 346 * and on the block group returned by that call. Typically this is called after 347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 348 * relocation. 349 * 350 * After this call, the caller should not use the block group anymore. It it wants 351 * to use it, then it should get a reference on it before calling this function. 352 */ 353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 354 { 355 if (atomic_dec_and_test(&bg->nocow_writers)) 356 wake_up_var(&bg->nocow_writers); 357 358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 359 btrfs_put_block_group(bg); 360 } 361 362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 363 { 364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 365 } 366 367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 368 const u64 start) 369 { 370 struct btrfs_block_group *bg; 371 372 bg = btrfs_lookup_block_group(fs_info, start); 373 ASSERT(bg); 374 if (atomic_dec_and_test(&bg->reservations)) 375 wake_up_var(&bg->reservations); 376 btrfs_put_block_group(bg); 377 } 378 379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 380 { 381 struct btrfs_space_info *space_info = bg->space_info; 382 383 ASSERT(bg->ro); 384 385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 386 return; 387 388 /* 389 * Our block group is read only but before we set it to read only, 390 * some task might have had allocated an extent from it already, but it 391 * has not yet created a respective ordered extent (and added it to a 392 * root's list of ordered extents). 393 * Therefore wait for any task currently allocating extents, since the 394 * block group's reservations counter is incremented while a read lock 395 * on the groups' semaphore is held and decremented after releasing 396 * the read access on that semaphore and creating the ordered extent. 397 */ 398 down_write(&space_info->groups_sem); 399 up_write(&space_info->groups_sem); 400 401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 402 } 403 404 struct btrfs_caching_control *btrfs_get_caching_control( 405 struct btrfs_block_group *cache) 406 { 407 struct btrfs_caching_control *ctl; 408 409 spin_lock(&cache->lock); 410 if (!cache->caching_ctl) { 411 spin_unlock(&cache->lock); 412 return NULL; 413 } 414 415 ctl = cache->caching_ctl; 416 refcount_inc(&ctl->count); 417 spin_unlock(&cache->lock); 418 return ctl; 419 } 420 421 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 422 { 423 if (refcount_dec_and_test(&ctl->count)) 424 kfree(ctl); 425 } 426 427 /* 428 * When we wait for progress in the block group caching, its because our 429 * allocation attempt failed at least once. So, we must sleep and let some 430 * progress happen before we try again. 431 * 432 * This function will sleep at least once waiting for new free space to show 433 * up, and then it will check the block group free space numbers for our min 434 * num_bytes. Another option is to have it go ahead and look in the rbtree for 435 * a free extent of a given size, but this is a good start. 436 * 437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 438 * any of the information in this block group. 439 */ 440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 441 u64 num_bytes) 442 { 443 struct btrfs_caching_control *caching_ctl; 444 int progress; 445 446 caching_ctl = btrfs_get_caching_control(cache); 447 if (!caching_ctl) 448 return; 449 450 /* 451 * We've already failed to allocate from this block group, so even if 452 * there's enough space in the block group it isn't contiguous enough to 453 * allow for an allocation, so wait for at least the next wakeup tick, 454 * or for the thing to be done. 455 */ 456 progress = atomic_read(&caching_ctl->progress); 457 458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 459 (progress != atomic_read(&caching_ctl->progress) && 460 (cache->free_space_ctl->free_space >= num_bytes))); 461 462 btrfs_put_caching_control(caching_ctl); 463 } 464 465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 466 struct btrfs_caching_control *caching_ctl) 467 { 468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 470 } 471 472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 473 { 474 struct btrfs_caching_control *caching_ctl; 475 int ret; 476 477 caching_ctl = btrfs_get_caching_control(cache); 478 if (!caching_ctl) 479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 481 btrfs_put_caching_control(caching_ctl); 482 return ret; 483 } 484 485 #ifdef CONFIG_BTRFS_DEBUG 486 static void fragment_free_space(struct btrfs_block_group *block_group) 487 { 488 struct btrfs_fs_info *fs_info = block_group->fs_info; 489 u64 start = block_group->start; 490 u64 len = block_group->length; 491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 492 fs_info->nodesize : fs_info->sectorsize; 493 u64 step = chunk << 1; 494 495 while (len > chunk) { 496 btrfs_remove_free_space(block_group, start, chunk); 497 start += step; 498 if (len < step) 499 len = 0; 500 else 501 len -= step; 502 } 503 } 504 #endif 505 506 /* 507 * Add a free space range to the in memory free space cache of a block group. 508 * This checks if the range contains super block locations and any such 509 * locations are not added to the free space cache. 510 * 511 * @block_group: The target block group. 512 * @start: Start offset of the range. 513 * @end: End offset of the range (exclusive). 514 * @total_added_ret: Optional pointer to return the total amount of space 515 * added to the block group's free space cache. 516 * 517 * Returns 0 on success or < 0 on error. 518 */ 519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 520 u64 end, u64 *total_added_ret) 521 { 522 struct btrfs_fs_info *info = block_group->fs_info; 523 u64 extent_start, extent_end, size; 524 int ret; 525 526 if (total_added_ret) 527 *total_added_ret = 0; 528 529 while (start < end) { 530 if (!find_first_extent_bit(&info->excluded_extents, start, 531 &extent_start, &extent_end, 532 EXTENT_DIRTY | EXTENT_UPTODATE, 533 NULL)) 534 break; 535 536 if (extent_start <= start) { 537 start = extent_end + 1; 538 } else if (extent_start > start && extent_start < end) { 539 size = extent_start - start; 540 ret = btrfs_add_free_space_async_trimmed(block_group, 541 start, size); 542 if (ret) 543 return ret; 544 if (total_added_ret) 545 *total_added_ret += size; 546 start = extent_end + 1; 547 } else { 548 break; 549 } 550 } 551 552 if (start < end) { 553 size = end - start; 554 ret = btrfs_add_free_space_async_trimmed(block_group, start, 555 size); 556 if (ret) 557 return ret; 558 if (total_added_ret) 559 *total_added_ret += size; 560 } 561 562 return 0; 563 } 564 565 /* 566 * Get an arbitrary extent item index / max_index through the block group 567 * 568 * @block_group the block group to sample from 569 * @index: the integral step through the block group to grab from 570 * @max_index: the granularity of the sampling 571 * @key: return value parameter for the item we find 572 * 573 * Pre-conditions on indices: 574 * 0 <= index <= max_index 575 * 0 < max_index 576 * 577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 578 * error code on error. 579 */ 580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 581 struct btrfs_block_group *block_group, 582 int index, int max_index, 583 struct btrfs_key *found_key) 584 { 585 struct btrfs_fs_info *fs_info = block_group->fs_info; 586 struct btrfs_root *extent_root; 587 u64 search_offset; 588 u64 search_end = block_group->start + block_group->length; 589 struct btrfs_path *path; 590 struct btrfs_key search_key; 591 int ret = 0; 592 593 ASSERT(index >= 0); 594 ASSERT(index <= max_index); 595 ASSERT(max_index > 0); 596 lockdep_assert_held(&caching_ctl->mutex); 597 lockdep_assert_held_read(&fs_info->commit_root_sem); 598 599 path = btrfs_alloc_path(); 600 if (!path) 601 return -ENOMEM; 602 603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 604 BTRFS_SUPER_INFO_OFFSET)); 605 606 path->skip_locking = 1; 607 path->search_commit_root = 1; 608 path->reada = READA_FORWARD; 609 610 search_offset = index * div_u64(block_group->length, max_index); 611 search_key.objectid = block_group->start + search_offset; 612 search_key.type = BTRFS_EXTENT_ITEM_KEY; 613 search_key.offset = 0; 614 615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 616 /* Success; sampled an extent item in the block group */ 617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 618 found_key->objectid >= block_group->start && 619 found_key->objectid + found_key->offset <= search_end) 620 break; 621 622 /* We can't possibly find a valid extent item anymore */ 623 if (found_key->objectid >= search_end) { 624 ret = 1; 625 break; 626 } 627 } 628 629 lockdep_assert_held(&caching_ctl->mutex); 630 lockdep_assert_held_read(&fs_info->commit_root_sem); 631 btrfs_free_path(path); 632 return ret; 633 } 634 635 /* 636 * Best effort attempt to compute a block group's size class while caching it. 637 * 638 * @block_group: the block group we are caching 639 * 640 * We cannot infer the size class while adding free space extents, because that 641 * logic doesn't care about contiguous file extents (it doesn't differentiate 642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 643 * file extent items. Reading all of them is quite wasteful, because usually 644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 645 * them at even steps through the block group and pick the smallest size class 646 * we see. Since size class is best effort, and not guaranteed in general, 647 * inaccuracy is acceptable. 648 * 649 * To be more explicit about why this algorithm makes sense: 650 * 651 * If we are caching in a block group from disk, then there are three major cases 652 * to consider: 653 * 1. the block group is well behaved and all extents in it are the same size 654 * class. 655 * 2. the block group is mostly one size class with rare exceptions for last 656 * ditch allocations 657 * 3. the block group was populated before size classes and can have a totally 658 * arbitrary mix of size classes. 659 * 660 * In case 1, looking at any extent in the block group will yield the correct 661 * result. For the mixed cases, taking the minimum size class seems like a good 662 * approximation, since gaps from frees will be usable to the size class. For 663 * 2., a small handful of file extents is likely to yield the right answer. For 664 * 3, we can either read every file extent, or admit that this is best effort 665 * anyway and try to stay fast. 666 * 667 * Returns: 0 on success, negative error code on error. 668 */ 669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 670 struct btrfs_block_group *block_group) 671 { 672 struct btrfs_fs_info *fs_info = block_group->fs_info; 673 struct btrfs_key key; 674 int i; 675 u64 min_size = block_group->length; 676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 677 int ret; 678 679 if (!btrfs_block_group_should_use_size_class(block_group)) 680 return 0; 681 682 lockdep_assert_held(&caching_ctl->mutex); 683 lockdep_assert_held_read(&fs_info->commit_root_sem); 684 for (i = 0; i < 5; ++i) { 685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 686 if (ret < 0) 687 goto out; 688 if (ret > 0) 689 continue; 690 min_size = min_t(u64, min_size, key.offset); 691 size_class = btrfs_calc_block_group_size_class(min_size); 692 } 693 if (size_class != BTRFS_BG_SZ_NONE) { 694 spin_lock(&block_group->lock); 695 block_group->size_class = size_class; 696 spin_unlock(&block_group->lock); 697 } 698 out: 699 return ret; 700 } 701 702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 703 { 704 struct btrfs_block_group *block_group = caching_ctl->block_group; 705 struct btrfs_fs_info *fs_info = block_group->fs_info; 706 struct btrfs_root *extent_root; 707 struct btrfs_path *path; 708 struct extent_buffer *leaf; 709 struct btrfs_key key; 710 u64 total_found = 0; 711 u64 last = 0; 712 u32 nritems; 713 int ret; 714 bool wakeup = true; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 721 extent_root = btrfs_extent_root(fs_info, last); 722 723 #ifdef CONFIG_BTRFS_DEBUG 724 /* 725 * If we're fragmenting we don't want to make anybody think we can 726 * allocate from this block group until we've had a chance to fragment 727 * the free space. 728 */ 729 if (btrfs_should_fragment_free_space(block_group)) 730 wakeup = false; 731 #endif 732 /* 733 * We don't want to deadlock with somebody trying to allocate a new 734 * extent for the extent root while also trying to search the extent 735 * root to add free space. So we skip locking and search the commit 736 * root, since its read-only 737 */ 738 path->skip_locking = 1; 739 path->search_commit_root = 1; 740 path->reada = READA_FORWARD; 741 742 key.objectid = last; 743 key.offset = 0; 744 key.type = BTRFS_EXTENT_ITEM_KEY; 745 746 next: 747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 748 if (ret < 0) 749 goto out; 750 751 leaf = path->nodes[0]; 752 nritems = btrfs_header_nritems(leaf); 753 754 while (1) { 755 if (btrfs_fs_closing(fs_info) > 1) { 756 last = (u64)-1; 757 break; 758 } 759 760 if (path->slots[0] < nritems) { 761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 762 } else { 763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 764 if (ret) 765 break; 766 767 if (need_resched() || 768 rwsem_is_contended(&fs_info->commit_root_sem)) { 769 btrfs_release_path(path); 770 up_read(&fs_info->commit_root_sem); 771 mutex_unlock(&caching_ctl->mutex); 772 cond_resched(); 773 mutex_lock(&caching_ctl->mutex); 774 down_read(&fs_info->commit_root_sem); 775 goto next; 776 } 777 778 ret = btrfs_next_leaf(extent_root, path); 779 if (ret < 0) 780 goto out; 781 if (ret) 782 break; 783 leaf = path->nodes[0]; 784 nritems = btrfs_header_nritems(leaf); 785 continue; 786 } 787 788 if (key.objectid < last) { 789 key.objectid = last; 790 key.offset = 0; 791 key.type = BTRFS_EXTENT_ITEM_KEY; 792 btrfs_release_path(path); 793 goto next; 794 } 795 796 if (key.objectid < block_group->start) { 797 path->slots[0]++; 798 continue; 799 } 800 801 if (key.objectid >= block_group->start + block_group->length) 802 break; 803 804 if (key.type == BTRFS_EXTENT_ITEM_KEY || 805 key.type == BTRFS_METADATA_ITEM_KEY) { 806 u64 space_added; 807 808 ret = btrfs_add_new_free_space(block_group, last, 809 key.objectid, &space_added); 810 if (ret) 811 goto out; 812 total_found += space_added; 813 if (key.type == BTRFS_METADATA_ITEM_KEY) 814 last = key.objectid + 815 fs_info->nodesize; 816 else 817 last = key.objectid + key.offset; 818 819 if (total_found > CACHING_CTL_WAKE_UP) { 820 total_found = 0; 821 if (wakeup) { 822 atomic_inc(&caching_ctl->progress); 823 wake_up(&caching_ctl->wait); 824 } 825 } 826 } 827 path->slots[0]++; 828 } 829 830 ret = btrfs_add_new_free_space(block_group, last, 831 block_group->start + block_group->length, 832 NULL); 833 out: 834 btrfs_free_path(path); 835 return ret; 836 } 837 838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 839 { 840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start, 841 bg->start + bg->length - 1, EXTENT_UPTODATE); 842 } 843 844 static noinline void caching_thread(struct btrfs_work *work) 845 { 846 struct btrfs_block_group *block_group; 847 struct btrfs_fs_info *fs_info; 848 struct btrfs_caching_control *caching_ctl; 849 int ret; 850 851 caching_ctl = container_of(work, struct btrfs_caching_control, work); 852 block_group = caching_ctl->block_group; 853 fs_info = block_group->fs_info; 854 855 mutex_lock(&caching_ctl->mutex); 856 down_read(&fs_info->commit_root_sem); 857 858 load_block_group_size_class(caching_ctl, block_group); 859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 860 ret = load_free_space_cache(block_group); 861 if (ret == 1) { 862 ret = 0; 863 goto done; 864 } 865 866 /* 867 * We failed to load the space cache, set ourselves to 868 * CACHE_STARTED and carry on. 869 */ 870 spin_lock(&block_group->lock); 871 block_group->cached = BTRFS_CACHE_STARTED; 872 spin_unlock(&block_group->lock); 873 wake_up(&caching_ctl->wait); 874 } 875 876 /* 877 * If we are in the transaction that populated the free space tree we 878 * can't actually cache from the free space tree as our commit root and 879 * real root are the same, so we could change the contents of the blocks 880 * while caching. Instead do the slow caching in this case, and after 881 * the transaction has committed we will be safe. 882 */ 883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 885 ret = load_free_space_tree(caching_ctl); 886 else 887 ret = load_extent_tree_free(caching_ctl); 888 done: 889 spin_lock(&block_group->lock); 890 block_group->caching_ctl = NULL; 891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 892 spin_unlock(&block_group->lock); 893 894 #ifdef CONFIG_BTRFS_DEBUG 895 if (btrfs_should_fragment_free_space(block_group)) { 896 u64 bytes_used; 897 898 spin_lock(&block_group->space_info->lock); 899 spin_lock(&block_group->lock); 900 bytes_used = block_group->length - block_group->used; 901 block_group->space_info->bytes_used += bytes_used >> 1; 902 spin_unlock(&block_group->lock); 903 spin_unlock(&block_group->space_info->lock); 904 fragment_free_space(block_group); 905 } 906 #endif 907 908 up_read(&fs_info->commit_root_sem); 909 btrfs_free_excluded_extents(block_group); 910 mutex_unlock(&caching_ctl->mutex); 911 912 wake_up(&caching_ctl->wait); 913 914 btrfs_put_caching_control(caching_ctl); 915 btrfs_put_block_group(block_group); 916 } 917 918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 919 { 920 struct btrfs_fs_info *fs_info = cache->fs_info; 921 struct btrfs_caching_control *caching_ctl = NULL; 922 int ret = 0; 923 924 /* Allocator for zoned filesystems does not use the cache at all */ 925 if (btrfs_is_zoned(fs_info)) 926 return 0; 927 928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 929 if (!caching_ctl) 930 return -ENOMEM; 931 932 INIT_LIST_HEAD(&caching_ctl->list); 933 mutex_init(&caching_ctl->mutex); 934 init_waitqueue_head(&caching_ctl->wait); 935 caching_ctl->block_group = cache; 936 refcount_set(&caching_ctl->count, 2); 937 atomic_set(&caching_ctl->progress, 0); 938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL); 939 940 spin_lock(&cache->lock); 941 if (cache->cached != BTRFS_CACHE_NO) { 942 kfree(caching_ctl); 943 944 caching_ctl = cache->caching_ctl; 945 if (caching_ctl) 946 refcount_inc(&caching_ctl->count); 947 spin_unlock(&cache->lock); 948 goto out; 949 } 950 WARN_ON(cache->caching_ctl); 951 cache->caching_ctl = caching_ctl; 952 cache->cached = BTRFS_CACHE_STARTED; 953 spin_unlock(&cache->lock); 954 955 write_lock(&fs_info->block_group_cache_lock); 956 refcount_inc(&caching_ctl->count); 957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 958 write_unlock(&fs_info->block_group_cache_lock); 959 960 btrfs_get_block_group(cache); 961 962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 963 out: 964 if (wait && caching_ctl) 965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 966 if (caching_ctl) 967 btrfs_put_caching_control(caching_ctl); 968 969 return ret; 970 } 971 972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 973 { 974 u64 extra_flags = chunk_to_extended(flags) & 975 BTRFS_EXTENDED_PROFILE_MASK; 976 977 write_seqlock(&fs_info->profiles_lock); 978 if (flags & BTRFS_BLOCK_GROUP_DATA) 979 fs_info->avail_data_alloc_bits &= ~extra_flags; 980 if (flags & BTRFS_BLOCK_GROUP_METADATA) 981 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 983 fs_info->avail_system_alloc_bits &= ~extra_flags; 984 write_sequnlock(&fs_info->profiles_lock); 985 } 986 987 /* 988 * Clear incompat bits for the following feature(s): 989 * 990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 991 * in the whole filesystem 992 * 993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 994 */ 995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 996 { 997 bool found_raid56 = false; 998 bool found_raid1c34 = false; 999 1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1003 struct list_head *head = &fs_info->space_info; 1004 struct btrfs_space_info *sinfo; 1005 1006 list_for_each_entry_rcu(sinfo, head, list) { 1007 down_read(&sinfo->groups_sem); 1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1009 found_raid56 = true; 1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1011 found_raid56 = true; 1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1013 found_raid1c34 = true; 1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1015 found_raid1c34 = true; 1016 up_read(&sinfo->groups_sem); 1017 } 1018 if (!found_raid56) 1019 btrfs_clear_fs_incompat(fs_info, RAID56); 1020 if (!found_raid1c34) 1021 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1022 } 1023 } 1024 1025 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1026 { 1027 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1028 return fs_info->block_group_root; 1029 return btrfs_extent_root(fs_info, 0); 1030 } 1031 1032 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1033 struct btrfs_path *path, 1034 struct btrfs_block_group *block_group) 1035 { 1036 struct btrfs_fs_info *fs_info = trans->fs_info; 1037 struct btrfs_root *root; 1038 struct btrfs_key key; 1039 int ret; 1040 1041 root = btrfs_block_group_root(fs_info); 1042 key.objectid = block_group->start; 1043 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1044 key.offset = block_group->length; 1045 1046 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1047 if (ret > 0) 1048 ret = -ENOENT; 1049 if (ret < 0) 1050 return ret; 1051 1052 ret = btrfs_del_item(trans, root, path); 1053 return ret; 1054 } 1055 1056 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1057 struct btrfs_chunk_map *map) 1058 { 1059 struct btrfs_fs_info *fs_info = trans->fs_info; 1060 struct btrfs_path *path; 1061 struct btrfs_block_group *block_group; 1062 struct btrfs_free_cluster *cluster; 1063 struct inode *inode; 1064 struct kobject *kobj = NULL; 1065 int ret; 1066 int index; 1067 int factor; 1068 struct btrfs_caching_control *caching_ctl = NULL; 1069 bool remove_map; 1070 bool remove_rsv = false; 1071 1072 block_group = btrfs_lookup_block_group(fs_info, map->start); 1073 if (!block_group) 1074 return -ENOENT; 1075 1076 BUG_ON(!block_group->ro); 1077 1078 trace_btrfs_remove_block_group(block_group); 1079 /* 1080 * Free the reserved super bytes from this block group before 1081 * remove it. 1082 */ 1083 btrfs_free_excluded_extents(block_group); 1084 btrfs_free_ref_tree_range(fs_info, block_group->start, 1085 block_group->length); 1086 1087 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1088 factor = btrfs_bg_type_to_factor(block_group->flags); 1089 1090 /* make sure this block group isn't part of an allocation cluster */ 1091 cluster = &fs_info->data_alloc_cluster; 1092 spin_lock(&cluster->refill_lock); 1093 btrfs_return_cluster_to_free_space(block_group, cluster); 1094 spin_unlock(&cluster->refill_lock); 1095 1096 /* 1097 * make sure this block group isn't part of a metadata 1098 * allocation cluster 1099 */ 1100 cluster = &fs_info->meta_alloc_cluster; 1101 spin_lock(&cluster->refill_lock); 1102 btrfs_return_cluster_to_free_space(block_group, cluster); 1103 spin_unlock(&cluster->refill_lock); 1104 1105 btrfs_clear_treelog_bg(block_group); 1106 btrfs_clear_data_reloc_bg(block_group); 1107 1108 path = btrfs_alloc_path(); 1109 if (!path) { 1110 ret = -ENOMEM; 1111 goto out; 1112 } 1113 1114 /* 1115 * get the inode first so any iput calls done for the io_list 1116 * aren't the final iput (no unlinks allowed now) 1117 */ 1118 inode = lookup_free_space_inode(block_group, path); 1119 1120 mutex_lock(&trans->transaction->cache_write_mutex); 1121 /* 1122 * Make sure our free space cache IO is done before removing the 1123 * free space inode 1124 */ 1125 spin_lock(&trans->transaction->dirty_bgs_lock); 1126 if (!list_empty(&block_group->io_list)) { 1127 list_del_init(&block_group->io_list); 1128 1129 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1130 1131 spin_unlock(&trans->transaction->dirty_bgs_lock); 1132 btrfs_wait_cache_io(trans, block_group, path); 1133 btrfs_put_block_group(block_group); 1134 spin_lock(&trans->transaction->dirty_bgs_lock); 1135 } 1136 1137 if (!list_empty(&block_group->dirty_list)) { 1138 list_del_init(&block_group->dirty_list); 1139 remove_rsv = true; 1140 btrfs_put_block_group(block_group); 1141 } 1142 spin_unlock(&trans->transaction->dirty_bgs_lock); 1143 mutex_unlock(&trans->transaction->cache_write_mutex); 1144 1145 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1146 if (ret) 1147 goto out; 1148 1149 write_lock(&fs_info->block_group_cache_lock); 1150 rb_erase_cached(&block_group->cache_node, 1151 &fs_info->block_group_cache_tree); 1152 RB_CLEAR_NODE(&block_group->cache_node); 1153 1154 /* Once for the block groups rbtree */ 1155 btrfs_put_block_group(block_group); 1156 1157 write_unlock(&fs_info->block_group_cache_lock); 1158 1159 down_write(&block_group->space_info->groups_sem); 1160 /* 1161 * we must use list_del_init so people can check to see if they 1162 * are still on the list after taking the semaphore 1163 */ 1164 list_del_init(&block_group->list); 1165 if (list_empty(&block_group->space_info->block_groups[index])) { 1166 kobj = block_group->space_info->block_group_kobjs[index]; 1167 block_group->space_info->block_group_kobjs[index] = NULL; 1168 clear_avail_alloc_bits(fs_info, block_group->flags); 1169 } 1170 up_write(&block_group->space_info->groups_sem); 1171 clear_incompat_bg_bits(fs_info, block_group->flags); 1172 if (kobj) { 1173 kobject_del(kobj); 1174 kobject_put(kobj); 1175 } 1176 1177 if (block_group->cached == BTRFS_CACHE_STARTED) 1178 btrfs_wait_block_group_cache_done(block_group); 1179 1180 write_lock(&fs_info->block_group_cache_lock); 1181 caching_ctl = btrfs_get_caching_control(block_group); 1182 if (!caching_ctl) { 1183 struct btrfs_caching_control *ctl; 1184 1185 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1186 if (ctl->block_group == block_group) { 1187 caching_ctl = ctl; 1188 refcount_inc(&caching_ctl->count); 1189 break; 1190 } 1191 } 1192 } 1193 if (caching_ctl) 1194 list_del_init(&caching_ctl->list); 1195 write_unlock(&fs_info->block_group_cache_lock); 1196 1197 if (caching_ctl) { 1198 /* Once for the caching bgs list and once for us. */ 1199 btrfs_put_caching_control(caching_ctl); 1200 btrfs_put_caching_control(caching_ctl); 1201 } 1202 1203 spin_lock(&trans->transaction->dirty_bgs_lock); 1204 WARN_ON(!list_empty(&block_group->dirty_list)); 1205 WARN_ON(!list_empty(&block_group->io_list)); 1206 spin_unlock(&trans->transaction->dirty_bgs_lock); 1207 1208 btrfs_remove_free_space_cache(block_group); 1209 1210 spin_lock(&block_group->space_info->lock); 1211 list_del_init(&block_group->ro_list); 1212 1213 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1214 WARN_ON(block_group->space_info->total_bytes 1215 < block_group->length); 1216 WARN_ON(block_group->space_info->bytes_readonly 1217 < block_group->length - block_group->zone_unusable); 1218 WARN_ON(block_group->space_info->bytes_zone_unusable 1219 < block_group->zone_unusable); 1220 WARN_ON(block_group->space_info->disk_total 1221 < block_group->length * factor); 1222 } 1223 block_group->space_info->total_bytes -= block_group->length; 1224 block_group->space_info->bytes_readonly -= 1225 (block_group->length - block_group->zone_unusable); 1226 btrfs_space_info_update_bytes_zone_unusable(fs_info, block_group->space_info, 1227 -block_group->zone_unusable); 1228 block_group->space_info->disk_total -= block_group->length * factor; 1229 1230 spin_unlock(&block_group->space_info->lock); 1231 1232 /* 1233 * Remove the free space for the block group from the free space tree 1234 * and the block group's item from the extent tree before marking the 1235 * block group as removed. This is to prevent races with tasks that 1236 * freeze and unfreeze a block group, this task and another task 1237 * allocating a new block group - the unfreeze task ends up removing 1238 * the block group's extent map before the task calling this function 1239 * deletes the block group item from the extent tree, allowing for 1240 * another task to attempt to create another block group with the same 1241 * item key (and failing with -EEXIST and a transaction abort). 1242 */ 1243 ret = remove_block_group_free_space(trans, block_group); 1244 if (ret) 1245 goto out; 1246 1247 ret = remove_block_group_item(trans, path, block_group); 1248 if (ret < 0) 1249 goto out; 1250 1251 spin_lock(&block_group->lock); 1252 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1253 1254 /* 1255 * At this point trimming or scrub can't start on this block group, 1256 * because we removed the block group from the rbtree 1257 * fs_info->block_group_cache_tree so no one can't find it anymore and 1258 * even if someone already got this block group before we removed it 1259 * from the rbtree, they have already incremented block_group->frozen - 1260 * if they didn't, for the trimming case they won't find any free space 1261 * entries because we already removed them all when we called 1262 * btrfs_remove_free_space_cache(). 1263 * 1264 * And we must not remove the chunk map from the fs_info->mapping_tree 1265 * to prevent the same logical address range and physical device space 1266 * ranges from being reused for a new block group. This is needed to 1267 * avoid races with trimming and scrub. 1268 * 1269 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1270 * completely transactionless, so while it is trimming a range the 1271 * currently running transaction might finish and a new one start, 1272 * allowing for new block groups to be created that can reuse the same 1273 * physical device locations unless we take this special care. 1274 * 1275 * There may also be an implicit trim operation if the file system 1276 * is mounted with -odiscard. The same protections must remain 1277 * in place until the extents have been discarded completely when 1278 * the transaction commit has completed. 1279 */ 1280 remove_map = (atomic_read(&block_group->frozen) == 0); 1281 spin_unlock(&block_group->lock); 1282 1283 if (remove_map) 1284 btrfs_remove_chunk_map(fs_info, map); 1285 1286 out: 1287 /* Once for the lookup reference */ 1288 btrfs_put_block_group(block_group); 1289 if (remove_rsv) 1290 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 1291 btrfs_free_path(path); 1292 return ret; 1293 } 1294 1295 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1296 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1297 { 1298 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1299 struct btrfs_chunk_map *map; 1300 unsigned int num_items; 1301 1302 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 1303 ASSERT(map != NULL); 1304 ASSERT(map->start == chunk_offset); 1305 1306 /* 1307 * We need to reserve 3 + N units from the metadata space info in order 1308 * to remove a block group (done at btrfs_remove_chunk() and at 1309 * btrfs_remove_block_group()), which are used for: 1310 * 1311 * 1 unit for adding the free space inode's orphan (located in the tree 1312 * of tree roots). 1313 * 1 unit for deleting the block group item (located in the extent 1314 * tree). 1315 * 1 unit for deleting the free space item (located in tree of tree 1316 * roots). 1317 * N units for deleting N device extent items corresponding to each 1318 * stripe (located in the device tree). 1319 * 1320 * In order to remove a block group we also need to reserve units in the 1321 * system space info in order to update the chunk tree (update one or 1322 * more device items and remove one chunk item), but this is done at 1323 * btrfs_remove_chunk() through a call to check_system_chunk(). 1324 */ 1325 num_items = 3 + map->num_stripes; 1326 btrfs_free_chunk_map(map); 1327 1328 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1329 } 1330 1331 /* 1332 * Mark block group @cache read-only, so later write won't happen to block 1333 * group @cache. 1334 * 1335 * If @force is not set, this function will only mark the block group readonly 1336 * if we have enough free space (1M) in other metadata/system block groups. 1337 * If @force is not set, this function will mark the block group readonly 1338 * without checking free space. 1339 * 1340 * NOTE: This function doesn't care if other block groups can contain all the 1341 * data in this block group. That check should be done by relocation routine, 1342 * not this function. 1343 */ 1344 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1345 { 1346 struct btrfs_space_info *sinfo = cache->space_info; 1347 u64 num_bytes; 1348 int ret = -ENOSPC; 1349 1350 spin_lock(&sinfo->lock); 1351 spin_lock(&cache->lock); 1352 1353 if (cache->swap_extents) { 1354 ret = -ETXTBSY; 1355 goto out; 1356 } 1357 1358 if (cache->ro) { 1359 cache->ro++; 1360 ret = 0; 1361 goto out; 1362 } 1363 1364 num_bytes = cache->length - cache->reserved - cache->pinned - 1365 cache->bytes_super - cache->zone_unusable - cache->used; 1366 1367 /* 1368 * Data never overcommits, even in mixed mode, so do just the straight 1369 * check of left over space in how much we have allocated. 1370 */ 1371 if (force) { 1372 ret = 0; 1373 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1374 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1375 1376 /* 1377 * Here we make sure if we mark this bg RO, we still have enough 1378 * free space as buffer. 1379 */ 1380 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1381 ret = 0; 1382 } else { 1383 /* 1384 * We overcommit metadata, so we need to do the 1385 * btrfs_can_overcommit check here, and we need to pass in 1386 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1387 * leeway to allow us to mark this block group as read only. 1388 */ 1389 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1390 BTRFS_RESERVE_NO_FLUSH)) 1391 ret = 0; 1392 } 1393 1394 if (!ret) { 1395 sinfo->bytes_readonly += num_bytes; 1396 if (btrfs_is_zoned(cache->fs_info)) { 1397 /* Migrate zone_unusable bytes to readonly */ 1398 sinfo->bytes_readonly += cache->zone_unusable; 1399 btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo, 1400 -cache->zone_unusable); 1401 cache->zone_unusable = 0; 1402 } 1403 cache->ro++; 1404 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1405 } 1406 out: 1407 spin_unlock(&cache->lock); 1408 spin_unlock(&sinfo->lock); 1409 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1410 btrfs_info(cache->fs_info, 1411 "unable to make block group %llu ro", cache->start); 1412 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1413 } 1414 return ret; 1415 } 1416 1417 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1418 const struct btrfs_block_group *bg) 1419 { 1420 struct btrfs_fs_info *fs_info = trans->fs_info; 1421 struct btrfs_transaction *prev_trans = NULL; 1422 const u64 start = bg->start; 1423 const u64 end = start + bg->length - 1; 1424 int ret; 1425 1426 spin_lock(&fs_info->trans_lock); 1427 if (trans->transaction->list.prev != &fs_info->trans_list) { 1428 prev_trans = list_last_entry(&trans->transaction->list, 1429 struct btrfs_transaction, list); 1430 refcount_inc(&prev_trans->use_count); 1431 } 1432 spin_unlock(&fs_info->trans_lock); 1433 1434 /* 1435 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1436 * btrfs_finish_extent_commit(). If we are at transaction N, another 1437 * task might be running finish_extent_commit() for the previous 1438 * transaction N - 1, and have seen a range belonging to the block 1439 * group in pinned_extents before we were able to clear the whole block 1440 * group range from pinned_extents. This means that task can lookup for 1441 * the block group after we unpinned it from pinned_extents and removed 1442 * it, leading to an error at unpin_extent_range(). 1443 */ 1444 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1445 if (prev_trans) { 1446 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1447 EXTENT_DIRTY); 1448 if (ret) 1449 goto out; 1450 } 1451 1452 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1453 EXTENT_DIRTY); 1454 out: 1455 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1456 if (prev_trans) 1457 btrfs_put_transaction(prev_trans); 1458 1459 return ret == 0; 1460 } 1461 1462 /* 1463 * Process the unused_bgs list and remove any that don't have any allocated 1464 * space inside of them. 1465 */ 1466 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1467 { 1468 LIST_HEAD(retry_list); 1469 struct btrfs_block_group *block_group; 1470 struct btrfs_space_info *space_info; 1471 struct btrfs_trans_handle *trans; 1472 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1473 int ret = 0; 1474 1475 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1476 return; 1477 1478 if (btrfs_fs_closing(fs_info)) 1479 return; 1480 1481 /* 1482 * Long running balances can keep us blocked here for eternity, so 1483 * simply skip deletion if we're unable to get the mutex. 1484 */ 1485 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1486 return; 1487 1488 spin_lock(&fs_info->unused_bgs_lock); 1489 while (!list_empty(&fs_info->unused_bgs)) { 1490 u64 used; 1491 int trimming; 1492 1493 block_group = list_first_entry(&fs_info->unused_bgs, 1494 struct btrfs_block_group, 1495 bg_list); 1496 list_del_init(&block_group->bg_list); 1497 1498 space_info = block_group->space_info; 1499 1500 if (ret || btrfs_mixed_space_info(space_info)) { 1501 btrfs_put_block_group(block_group); 1502 continue; 1503 } 1504 spin_unlock(&fs_info->unused_bgs_lock); 1505 1506 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1507 1508 /* Don't want to race with allocators so take the groups_sem */ 1509 down_write(&space_info->groups_sem); 1510 1511 /* 1512 * Async discard moves the final block group discard to be prior 1513 * to the unused_bgs code path. Therefore, if it's not fully 1514 * trimmed, punt it back to the async discard lists. 1515 */ 1516 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1517 !btrfs_is_free_space_trimmed(block_group)) { 1518 trace_btrfs_skip_unused_block_group(block_group); 1519 up_write(&space_info->groups_sem); 1520 /* Requeue if we failed because of async discard */ 1521 btrfs_discard_queue_work(&fs_info->discard_ctl, 1522 block_group); 1523 goto next; 1524 } 1525 1526 spin_lock(&space_info->lock); 1527 spin_lock(&block_group->lock); 1528 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1529 list_is_singular(&block_group->list)) { 1530 /* 1531 * We want to bail if we made new allocations or have 1532 * outstanding allocations in this block group. We do 1533 * the ro check in case balance is currently acting on 1534 * this block group. 1535 * 1536 * Also bail out if this is the only block group for its 1537 * type, because otherwise we would lose profile 1538 * information from fs_info->avail_*_alloc_bits and the 1539 * next block group of this type would be created with a 1540 * "single" profile (even if we're in a raid fs) because 1541 * fs_info->avail_*_alloc_bits would be 0. 1542 */ 1543 trace_btrfs_skip_unused_block_group(block_group); 1544 spin_unlock(&block_group->lock); 1545 spin_unlock(&space_info->lock); 1546 up_write(&space_info->groups_sem); 1547 goto next; 1548 } 1549 1550 /* 1551 * The block group may be unused but there may be space reserved 1552 * accounting with the existence of that block group, that is, 1553 * space_info->bytes_may_use was incremented by a task but no 1554 * space was yet allocated from the block group by the task. 1555 * That space may or may not be allocated, as we are generally 1556 * pessimistic about space reservation for metadata as well as 1557 * for data when using compression (as we reserve space based on 1558 * the worst case, when data can't be compressed, and before 1559 * actually attempting compression, before starting writeback). 1560 * 1561 * So check if the total space of the space_info minus the size 1562 * of this block group is less than the used space of the 1563 * space_info - if that's the case, then it means we have tasks 1564 * that might be relying on the block group in order to allocate 1565 * extents, and add back the block group to the unused list when 1566 * we finish, so that we retry later in case no tasks ended up 1567 * needing to allocate extents from the block group. 1568 */ 1569 used = btrfs_space_info_used(space_info, true); 1570 if (space_info->total_bytes - block_group->length < used && 1571 block_group->zone_unusable < block_group->length) { 1572 /* 1573 * Add a reference for the list, compensate for the ref 1574 * drop under the "next" label for the 1575 * fs_info->unused_bgs list. 1576 */ 1577 btrfs_get_block_group(block_group); 1578 list_add_tail(&block_group->bg_list, &retry_list); 1579 1580 trace_btrfs_skip_unused_block_group(block_group); 1581 spin_unlock(&block_group->lock); 1582 spin_unlock(&space_info->lock); 1583 up_write(&space_info->groups_sem); 1584 goto next; 1585 } 1586 1587 spin_unlock(&block_group->lock); 1588 spin_unlock(&space_info->lock); 1589 1590 /* We don't want to force the issue, only flip if it's ok. */ 1591 ret = inc_block_group_ro(block_group, 0); 1592 up_write(&space_info->groups_sem); 1593 if (ret < 0) { 1594 ret = 0; 1595 goto next; 1596 } 1597 1598 ret = btrfs_zone_finish(block_group); 1599 if (ret < 0) { 1600 btrfs_dec_block_group_ro(block_group); 1601 if (ret == -EAGAIN) 1602 ret = 0; 1603 goto next; 1604 } 1605 1606 /* 1607 * Want to do this before we do anything else so we can recover 1608 * properly if we fail to join the transaction. 1609 */ 1610 trans = btrfs_start_trans_remove_block_group(fs_info, 1611 block_group->start); 1612 if (IS_ERR(trans)) { 1613 btrfs_dec_block_group_ro(block_group); 1614 ret = PTR_ERR(trans); 1615 goto next; 1616 } 1617 1618 /* 1619 * We could have pending pinned extents for this block group, 1620 * just delete them, we don't care about them anymore. 1621 */ 1622 if (!clean_pinned_extents(trans, block_group)) { 1623 btrfs_dec_block_group_ro(block_group); 1624 goto end_trans; 1625 } 1626 1627 /* 1628 * At this point, the block_group is read only and should fail 1629 * new allocations. However, btrfs_finish_extent_commit() can 1630 * cause this block_group to be placed back on the discard 1631 * lists because now the block_group isn't fully discarded. 1632 * Bail here and try again later after discarding everything. 1633 */ 1634 spin_lock(&fs_info->discard_ctl.lock); 1635 if (!list_empty(&block_group->discard_list)) { 1636 spin_unlock(&fs_info->discard_ctl.lock); 1637 btrfs_dec_block_group_ro(block_group); 1638 btrfs_discard_queue_work(&fs_info->discard_ctl, 1639 block_group); 1640 goto end_trans; 1641 } 1642 spin_unlock(&fs_info->discard_ctl.lock); 1643 1644 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1645 spin_lock(&space_info->lock); 1646 spin_lock(&block_group->lock); 1647 1648 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1649 -block_group->pinned); 1650 space_info->bytes_readonly += block_group->pinned; 1651 block_group->pinned = 0; 1652 1653 spin_unlock(&block_group->lock); 1654 spin_unlock(&space_info->lock); 1655 1656 /* 1657 * The normal path here is an unused block group is passed here, 1658 * then trimming is handled in the transaction commit path. 1659 * Async discard interposes before this to do the trimming 1660 * before coming down the unused block group path as trimming 1661 * will no longer be done later in the transaction commit path. 1662 */ 1663 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1664 goto flip_async; 1665 1666 /* 1667 * DISCARD can flip during remount. On zoned filesystems, we 1668 * need to reset sequential-required zones. 1669 */ 1670 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1671 btrfs_is_zoned(fs_info); 1672 1673 /* Implicit trim during transaction commit. */ 1674 if (trimming) 1675 btrfs_freeze_block_group(block_group); 1676 1677 /* 1678 * Btrfs_remove_chunk will abort the transaction if things go 1679 * horribly wrong. 1680 */ 1681 ret = btrfs_remove_chunk(trans, block_group->start); 1682 1683 if (ret) { 1684 if (trimming) 1685 btrfs_unfreeze_block_group(block_group); 1686 goto end_trans; 1687 } 1688 1689 /* 1690 * If we're not mounted with -odiscard, we can just forget 1691 * about this block group. Otherwise we'll need to wait 1692 * until transaction commit to do the actual discard. 1693 */ 1694 if (trimming) { 1695 spin_lock(&fs_info->unused_bgs_lock); 1696 /* 1697 * A concurrent scrub might have added us to the list 1698 * fs_info->unused_bgs, so use a list_move operation 1699 * to add the block group to the deleted_bgs list. 1700 */ 1701 list_move(&block_group->bg_list, 1702 &trans->transaction->deleted_bgs); 1703 spin_unlock(&fs_info->unused_bgs_lock); 1704 btrfs_get_block_group(block_group); 1705 } 1706 end_trans: 1707 btrfs_end_transaction(trans); 1708 next: 1709 btrfs_put_block_group(block_group); 1710 spin_lock(&fs_info->unused_bgs_lock); 1711 } 1712 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1713 spin_unlock(&fs_info->unused_bgs_lock); 1714 mutex_unlock(&fs_info->reclaim_bgs_lock); 1715 return; 1716 1717 flip_async: 1718 btrfs_end_transaction(trans); 1719 spin_lock(&fs_info->unused_bgs_lock); 1720 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1721 spin_unlock(&fs_info->unused_bgs_lock); 1722 mutex_unlock(&fs_info->reclaim_bgs_lock); 1723 btrfs_put_block_group(block_group); 1724 btrfs_discard_punt_unused_bgs_list(fs_info); 1725 } 1726 1727 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1728 { 1729 struct btrfs_fs_info *fs_info = bg->fs_info; 1730 1731 spin_lock(&fs_info->unused_bgs_lock); 1732 if (list_empty(&bg->bg_list)) { 1733 btrfs_get_block_group(bg); 1734 trace_btrfs_add_unused_block_group(bg); 1735 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1736 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1737 /* Pull out the block group from the reclaim_bgs list. */ 1738 trace_btrfs_add_unused_block_group(bg); 1739 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1740 } 1741 spin_unlock(&fs_info->unused_bgs_lock); 1742 } 1743 1744 /* 1745 * We want block groups with a low number of used bytes to be in the beginning 1746 * of the list, so they will get reclaimed first. 1747 */ 1748 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1749 const struct list_head *b) 1750 { 1751 const struct btrfs_block_group *bg1, *bg2; 1752 1753 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1754 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1755 1756 return bg1->used > bg2->used; 1757 } 1758 1759 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info) 1760 { 1761 if (btrfs_is_zoned(fs_info)) 1762 return btrfs_zoned_should_reclaim(fs_info); 1763 return true; 1764 } 1765 1766 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed) 1767 { 1768 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info); 1769 u64 thresh_bytes = mult_perc(bg->length, thresh_pct); 1770 const u64 new_val = bg->used; 1771 const u64 old_val = new_val + bytes_freed; 1772 1773 if (thresh_bytes == 0) 1774 return false; 1775 1776 /* 1777 * If we were below the threshold before don't reclaim, we are likely a 1778 * brand new block group and we don't want to relocate new block groups. 1779 */ 1780 if (old_val < thresh_bytes) 1781 return false; 1782 if (new_val >= thresh_bytes) 1783 return false; 1784 return true; 1785 } 1786 1787 void btrfs_reclaim_bgs_work(struct work_struct *work) 1788 { 1789 struct btrfs_fs_info *fs_info = 1790 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1791 struct btrfs_block_group *bg; 1792 struct btrfs_space_info *space_info; 1793 LIST_HEAD(retry_list); 1794 1795 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1796 return; 1797 1798 if (btrfs_fs_closing(fs_info)) 1799 return; 1800 1801 if (!btrfs_should_reclaim(fs_info)) 1802 return; 1803 1804 sb_start_write(fs_info->sb); 1805 1806 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1807 sb_end_write(fs_info->sb); 1808 return; 1809 } 1810 1811 /* 1812 * Long running balances can keep us blocked here for eternity, so 1813 * simply skip reclaim if we're unable to get the mutex. 1814 */ 1815 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1816 btrfs_exclop_finish(fs_info); 1817 sb_end_write(fs_info->sb); 1818 return; 1819 } 1820 1821 spin_lock(&fs_info->unused_bgs_lock); 1822 /* 1823 * Sort happens under lock because we can't simply splice it and sort. 1824 * The block groups might still be in use and reachable via bg_list, 1825 * and their presence in the reclaim_bgs list must be preserved. 1826 */ 1827 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1828 while (!list_empty(&fs_info->reclaim_bgs)) { 1829 u64 zone_unusable; 1830 u64 reclaimed; 1831 int ret = 0; 1832 1833 bg = list_first_entry(&fs_info->reclaim_bgs, 1834 struct btrfs_block_group, 1835 bg_list); 1836 list_del_init(&bg->bg_list); 1837 1838 space_info = bg->space_info; 1839 spin_unlock(&fs_info->unused_bgs_lock); 1840 1841 /* Don't race with allocators so take the groups_sem */ 1842 down_write(&space_info->groups_sem); 1843 1844 spin_lock(&space_info->lock); 1845 spin_lock(&bg->lock); 1846 if (bg->reserved || bg->pinned || bg->ro) { 1847 /* 1848 * We want to bail if we made new allocations or have 1849 * outstanding allocations in this block group. We do 1850 * the ro check in case balance is currently acting on 1851 * this block group. 1852 */ 1853 spin_unlock(&bg->lock); 1854 spin_unlock(&space_info->lock); 1855 up_write(&space_info->groups_sem); 1856 goto next; 1857 } 1858 if (bg->used == 0) { 1859 /* 1860 * It is possible that we trigger relocation on a block 1861 * group as its extents are deleted and it first goes 1862 * below the threshold, then shortly after goes empty. 1863 * 1864 * In this case, relocating it does delete it, but has 1865 * some overhead in relocation specific metadata, looking 1866 * for the non-existent extents and running some extra 1867 * transactions, which we can avoid by using one of the 1868 * other mechanisms for dealing with empty block groups. 1869 */ 1870 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1871 btrfs_mark_bg_unused(bg); 1872 spin_unlock(&bg->lock); 1873 spin_unlock(&space_info->lock); 1874 up_write(&space_info->groups_sem); 1875 goto next; 1876 1877 } 1878 /* 1879 * The block group might no longer meet the reclaim condition by 1880 * the time we get around to reclaiming it, so to avoid 1881 * reclaiming overly full block_groups, skip reclaiming them. 1882 * 1883 * Since the decision making process also depends on the amount 1884 * being freed, pass in a fake giant value to skip that extra 1885 * check, which is more meaningful when adding to the list in 1886 * the first place. 1887 */ 1888 if (!should_reclaim_block_group(bg, bg->length)) { 1889 spin_unlock(&bg->lock); 1890 spin_unlock(&space_info->lock); 1891 up_write(&space_info->groups_sem); 1892 goto next; 1893 } 1894 spin_unlock(&bg->lock); 1895 spin_unlock(&space_info->lock); 1896 1897 /* 1898 * Get out fast, in case we're read-only or unmounting the 1899 * filesystem. It is OK to drop block groups from the list even 1900 * for the read-only case. As we did sb_start_write(), 1901 * "mount -o remount,ro" won't happen and read-only filesystem 1902 * means it is forced read-only due to a fatal error. So, it 1903 * never gets back to read-write to let us reclaim again. 1904 */ 1905 if (btrfs_need_cleaner_sleep(fs_info)) { 1906 up_write(&space_info->groups_sem); 1907 goto next; 1908 } 1909 1910 /* 1911 * Cache the zone_unusable value before turning the block group 1912 * to read only. As soon as the blog group is read only it's 1913 * zone_unusable value gets moved to the block group's read-only 1914 * bytes and isn't available for calculations anymore. 1915 */ 1916 zone_unusable = bg->zone_unusable; 1917 ret = inc_block_group_ro(bg, 0); 1918 up_write(&space_info->groups_sem); 1919 if (ret < 0) 1920 goto next; 1921 1922 btrfs_info(fs_info, 1923 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1924 bg->start, 1925 div64_u64(bg->used * 100, bg->length), 1926 div64_u64(zone_unusable * 100, bg->length)); 1927 trace_btrfs_reclaim_block_group(bg); 1928 reclaimed = bg->used; 1929 ret = btrfs_relocate_chunk(fs_info, bg->start); 1930 if (ret) { 1931 btrfs_dec_block_group_ro(bg); 1932 btrfs_err(fs_info, "error relocating chunk %llu", 1933 bg->start); 1934 reclaimed = 0; 1935 spin_lock(&space_info->lock); 1936 space_info->reclaim_errors++; 1937 if (READ_ONCE(space_info->periodic_reclaim)) 1938 space_info->periodic_reclaim_ready = false; 1939 spin_unlock(&space_info->lock); 1940 } 1941 spin_lock(&space_info->lock); 1942 space_info->reclaim_count++; 1943 space_info->reclaim_bytes += reclaimed; 1944 spin_unlock(&space_info->lock); 1945 1946 next: 1947 if (ret && !READ_ONCE(space_info->periodic_reclaim)) { 1948 /* Refcount held by the reclaim_bgs list after splice. */ 1949 spin_lock(&fs_info->unused_bgs_lock); 1950 /* 1951 * This block group might be added to the unused list 1952 * during the above process. Move it back to the 1953 * reclaim list otherwise. 1954 */ 1955 if (list_empty(&bg->bg_list)) { 1956 btrfs_get_block_group(bg); 1957 list_add_tail(&bg->bg_list, &retry_list); 1958 } 1959 spin_unlock(&fs_info->unused_bgs_lock); 1960 } 1961 btrfs_put_block_group(bg); 1962 1963 mutex_unlock(&fs_info->reclaim_bgs_lock); 1964 /* 1965 * Reclaiming all the block groups in the list can take really 1966 * long. Prioritize cleaning up unused block groups. 1967 */ 1968 btrfs_delete_unused_bgs(fs_info); 1969 /* 1970 * If we are interrupted by a balance, we can just bail out. The 1971 * cleaner thread restart again if necessary. 1972 */ 1973 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1974 goto end; 1975 spin_lock(&fs_info->unused_bgs_lock); 1976 } 1977 spin_unlock(&fs_info->unused_bgs_lock); 1978 mutex_unlock(&fs_info->reclaim_bgs_lock); 1979 end: 1980 spin_lock(&fs_info->unused_bgs_lock); 1981 list_splice_tail(&retry_list, &fs_info->reclaim_bgs); 1982 spin_unlock(&fs_info->unused_bgs_lock); 1983 btrfs_exclop_finish(fs_info); 1984 sb_end_write(fs_info->sb); 1985 } 1986 1987 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1988 { 1989 btrfs_reclaim_sweep(fs_info); 1990 spin_lock(&fs_info->unused_bgs_lock); 1991 if (!list_empty(&fs_info->reclaim_bgs)) 1992 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1993 spin_unlock(&fs_info->unused_bgs_lock); 1994 } 1995 1996 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1997 { 1998 struct btrfs_fs_info *fs_info = bg->fs_info; 1999 2000 spin_lock(&fs_info->unused_bgs_lock); 2001 if (list_empty(&bg->bg_list)) { 2002 btrfs_get_block_group(bg); 2003 trace_btrfs_add_reclaim_block_group(bg); 2004 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 2005 } 2006 spin_unlock(&fs_info->unused_bgs_lock); 2007 } 2008 2009 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key, 2010 const struct btrfs_path *path) 2011 { 2012 struct btrfs_chunk_map *map; 2013 struct btrfs_block_group_item bg; 2014 struct extent_buffer *leaf; 2015 int slot; 2016 u64 flags; 2017 int ret = 0; 2018 2019 slot = path->slots[0]; 2020 leaf = path->nodes[0]; 2021 2022 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset); 2023 if (!map) { 2024 btrfs_err(fs_info, 2025 "logical %llu len %llu found bg but no related chunk", 2026 key->objectid, key->offset); 2027 return -ENOENT; 2028 } 2029 2030 if (map->start != key->objectid || map->chunk_len != key->offset) { 2031 btrfs_err(fs_info, 2032 "block group %llu len %llu mismatch with chunk %llu len %llu", 2033 key->objectid, key->offset, map->start, map->chunk_len); 2034 ret = -EUCLEAN; 2035 goto out_free_map; 2036 } 2037 2038 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 2039 sizeof(bg)); 2040 flags = btrfs_stack_block_group_flags(&bg) & 2041 BTRFS_BLOCK_GROUP_TYPE_MASK; 2042 2043 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2044 btrfs_err(fs_info, 2045 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 2046 key->objectid, key->offset, flags, 2047 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type)); 2048 ret = -EUCLEAN; 2049 } 2050 2051 out_free_map: 2052 btrfs_free_chunk_map(map); 2053 return ret; 2054 } 2055 2056 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2057 struct btrfs_path *path, 2058 const struct btrfs_key *key) 2059 { 2060 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2061 int ret; 2062 struct btrfs_key found_key; 2063 2064 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2065 if (found_key.objectid >= key->objectid && 2066 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2067 return read_bg_from_eb(fs_info, &found_key, path); 2068 } 2069 } 2070 return ret; 2071 } 2072 2073 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2074 { 2075 u64 extra_flags = chunk_to_extended(flags) & 2076 BTRFS_EXTENDED_PROFILE_MASK; 2077 2078 write_seqlock(&fs_info->profiles_lock); 2079 if (flags & BTRFS_BLOCK_GROUP_DATA) 2080 fs_info->avail_data_alloc_bits |= extra_flags; 2081 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2082 fs_info->avail_metadata_alloc_bits |= extra_flags; 2083 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2084 fs_info->avail_system_alloc_bits |= extra_flags; 2085 write_sequnlock(&fs_info->profiles_lock); 2086 } 2087 2088 /* 2089 * Map a physical disk address to a list of logical addresses. 2090 * 2091 * @fs_info: the filesystem 2092 * @chunk_start: logical address of block group 2093 * @physical: physical address to map to logical addresses 2094 * @logical: return array of logical addresses which map to @physical 2095 * @naddrs: length of @logical 2096 * @stripe_len: size of IO stripe for the given block group 2097 * 2098 * Maps a particular @physical disk address to a list of @logical addresses. 2099 * Used primarily to exclude those portions of a block group that contain super 2100 * block copies. 2101 */ 2102 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2103 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2104 { 2105 struct btrfs_chunk_map *map; 2106 u64 *buf; 2107 u64 bytenr; 2108 u64 data_stripe_length; 2109 u64 io_stripe_size; 2110 int i, nr = 0; 2111 int ret = 0; 2112 2113 map = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2114 if (IS_ERR(map)) 2115 return -EIO; 2116 2117 data_stripe_length = map->stripe_size; 2118 io_stripe_size = BTRFS_STRIPE_LEN; 2119 chunk_start = map->start; 2120 2121 /* For RAID5/6 adjust to a full IO stripe length */ 2122 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2123 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2124 2125 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2126 if (!buf) { 2127 ret = -ENOMEM; 2128 goto out; 2129 } 2130 2131 for (i = 0; i < map->num_stripes; i++) { 2132 bool already_inserted = false; 2133 u32 stripe_nr; 2134 u32 offset; 2135 int j; 2136 2137 if (!in_range(physical, map->stripes[i].physical, 2138 data_stripe_length)) 2139 continue; 2140 2141 stripe_nr = (physical - map->stripes[i].physical) >> 2142 BTRFS_STRIPE_LEN_SHIFT; 2143 offset = (physical - map->stripes[i].physical) & 2144 BTRFS_STRIPE_LEN_MASK; 2145 2146 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2147 BTRFS_BLOCK_GROUP_RAID10)) 2148 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2149 map->sub_stripes); 2150 /* 2151 * The remaining case would be for RAID56, multiply by 2152 * nr_data_stripes(). Alternatively, just use rmap_len below 2153 * instead of map->stripe_len 2154 */ 2155 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2156 2157 /* Ensure we don't add duplicate addresses */ 2158 for (j = 0; j < nr; j++) { 2159 if (buf[j] == bytenr) { 2160 already_inserted = true; 2161 break; 2162 } 2163 } 2164 2165 if (!already_inserted) 2166 buf[nr++] = bytenr; 2167 } 2168 2169 *logical = buf; 2170 *naddrs = nr; 2171 *stripe_len = io_stripe_size; 2172 out: 2173 btrfs_free_chunk_map(map); 2174 return ret; 2175 } 2176 2177 static int exclude_super_stripes(struct btrfs_block_group *cache) 2178 { 2179 struct btrfs_fs_info *fs_info = cache->fs_info; 2180 const bool zoned = btrfs_is_zoned(fs_info); 2181 u64 bytenr; 2182 u64 *logical; 2183 int stripe_len; 2184 int i, nr, ret; 2185 2186 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2187 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2188 cache->bytes_super += stripe_len; 2189 ret = set_extent_bit(&fs_info->excluded_extents, cache->start, 2190 cache->start + stripe_len - 1, 2191 EXTENT_UPTODATE, NULL); 2192 if (ret) 2193 return ret; 2194 } 2195 2196 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2197 bytenr = btrfs_sb_offset(i); 2198 ret = btrfs_rmap_block(fs_info, cache->start, 2199 bytenr, &logical, &nr, &stripe_len); 2200 if (ret) 2201 return ret; 2202 2203 /* Shouldn't have super stripes in sequential zones */ 2204 if (zoned && nr) { 2205 kfree(logical); 2206 btrfs_err(fs_info, 2207 "zoned: block group %llu must not contain super block", 2208 cache->start); 2209 return -EUCLEAN; 2210 } 2211 2212 while (nr--) { 2213 u64 len = min_t(u64, stripe_len, 2214 cache->start + cache->length - logical[nr]); 2215 2216 cache->bytes_super += len; 2217 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr], 2218 logical[nr] + len - 1, 2219 EXTENT_UPTODATE, NULL); 2220 if (ret) { 2221 kfree(logical); 2222 return ret; 2223 } 2224 } 2225 2226 kfree(logical); 2227 } 2228 return 0; 2229 } 2230 2231 static struct btrfs_block_group *btrfs_create_block_group_cache( 2232 struct btrfs_fs_info *fs_info, u64 start) 2233 { 2234 struct btrfs_block_group *cache; 2235 2236 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2237 if (!cache) 2238 return NULL; 2239 2240 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2241 GFP_NOFS); 2242 if (!cache->free_space_ctl) { 2243 kfree(cache); 2244 return NULL; 2245 } 2246 2247 cache->start = start; 2248 2249 cache->fs_info = fs_info; 2250 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2251 2252 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2253 2254 refcount_set(&cache->refs, 1); 2255 spin_lock_init(&cache->lock); 2256 init_rwsem(&cache->data_rwsem); 2257 INIT_LIST_HEAD(&cache->list); 2258 INIT_LIST_HEAD(&cache->cluster_list); 2259 INIT_LIST_HEAD(&cache->bg_list); 2260 INIT_LIST_HEAD(&cache->ro_list); 2261 INIT_LIST_HEAD(&cache->discard_list); 2262 INIT_LIST_HEAD(&cache->dirty_list); 2263 INIT_LIST_HEAD(&cache->io_list); 2264 INIT_LIST_HEAD(&cache->active_bg_list); 2265 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2266 atomic_set(&cache->frozen, 0); 2267 mutex_init(&cache->free_space_lock); 2268 2269 return cache; 2270 } 2271 2272 /* 2273 * Iterate all chunks and verify that each of them has the corresponding block 2274 * group 2275 */ 2276 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2277 { 2278 u64 start = 0; 2279 int ret = 0; 2280 2281 while (1) { 2282 struct btrfs_chunk_map *map; 2283 struct btrfs_block_group *bg; 2284 2285 /* 2286 * btrfs_find_chunk_map() will return the first chunk map 2287 * intersecting the range, so setting @length to 1 is enough to 2288 * get the first chunk. 2289 */ 2290 map = btrfs_find_chunk_map(fs_info, start, 1); 2291 if (!map) 2292 break; 2293 2294 bg = btrfs_lookup_block_group(fs_info, map->start); 2295 if (!bg) { 2296 btrfs_err(fs_info, 2297 "chunk start=%llu len=%llu doesn't have corresponding block group", 2298 map->start, map->chunk_len); 2299 ret = -EUCLEAN; 2300 btrfs_free_chunk_map(map); 2301 break; 2302 } 2303 if (bg->start != map->start || bg->length != map->chunk_len || 2304 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2305 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2306 btrfs_err(fs_info, 2307 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2308 map->start, map->chunk_len, 2309 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2310 bg->start, bg->length, 2311 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2312 ret = -EUCLEAN; 2313 btrfs_free_chunk_map(map); 2314 btrfs_put_block_group(bg); 2315 break; 2316 } 2317 start = map->start + map->chunk_len; 2318 btrfs_free_chunk_map(map); 2319 btrfs_put_block_group(bg); 2320 } 2321 return ret; 2322 } 2323 2324 static int read_one_block_group(struct btrfs_fs_info *info, 2325 struct btrfs_block_group_item *bgi, 2326 const struct btrfs_key *key, 2327 int need_clear) 2328 { 2329 struct btrfs_block_group *cache; 2330 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2331 int ret; 2332 2333 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2334 2335 cache = btrfs_create_block_group_cache(info, key->objectid); 2336 if (!cache) 2337 return -ENOMEM; 2338 2339 cache->length = key->offset; 2340 cache->used = btrfs_stack_block_group_used(bgi); 2341 cache->commit_used = cache->used; 2342 cache->flags = btrfs_stack_block_group_flags(bgi); 2343 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2344 2345 set_free_space_tree_thresholds(cache); 2346 2347 if (need_clear) { 2348 /* 2349 * When we mount with old space cache, we need to 2350 * set BTRFS_DC_CLEAR and set dirty flag. 2351 * 2352 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2353 * truncate the old free space cache inode and 2354 * setup a new one. 2355 * b) Setting 'dirty flag' makes sure that we flush 2356 * the new space cache info onto disk. 2357 */ 2358 if (btrfs_test_opt(info, SPACE_CACHE)) 2359 cache->disk_cache_state = BTRFS_DC_CLEAR; 2360 } 2361 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2362 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2363 btrfs_err(info, 2364 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2365 cache->start); 2366 ret = -EINVAL; 2367 goto error; 2368 } 2369 2370 ret = btrfs_load_block_group_zone_info(cache, false); 2371 if (ret) { 2372 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2373 cache->start); 2374 goto error; 2375 } 2376 2377 /* 2378 * We need to exclude the super stripes now so that the space info has 2379 * super bytes accounted for, otherwise we'll think we have more space 2380 * than we actually do. 2381 */ 2382 ret = exclude_super_stripes(cache); 2383 if (ret) { 2384 /* We may have excluded something, so call this just in case. */ 2385 btrfs_free_excluded_extents(cache); 2386 goto error; 2387 } 2388 2389 /* 2390 * For zoned filesystem, space after the allocation offset is the only 2391 * free space for a block group. So, we don't need any caching work. 2392 * btrfs_calc_zone_unusable() will set the amount of free space and 2393 * zone_unusable space. 2394 * 2395 * For regular filesystem, check for two cases, either we are full, and 2396 * therefore don't need to bother with the caching work since we won't 2397 * find any space, or we are empty, and we can just add all the space 2398 * in and be done with it. This saves us _a_lot_ of time, particularly 2399 * in the full case. 2400 */ 2401 if (btrfs_is_zoned(info)) { 2402 btrfs_calc_zone_unusable(cache); 2403 /* Should not have any excluded extents. Just in case, though. */ 2404 btrfs_free_excluded_extents(cache); 2405 } else if (cache->length == cache->used) { 2406 cache->cached = BTRFS_CACHE_FINISHED; 2407 btrfs_free_excluded_extents(cache); 2408 } else if (cache->used == 0) { 2409 cache->cached = BTRFS_CACHE_FINISHED; 2410 ret = btrfs_add_new_free_space(cache, cache->start, 2411 cache->start + cache->length, NULL); 2412 btrfs_free_excluded_extents(cache); 2413 if (ret) 2414 goto error; 2415 } 2416 2417 ret = btrfs_add_block_group_cache(info, cache); 2418 if (ret) { 2419 btrfs_remove_free_space_cache(cache); 2420 goto error; 2421 } 2422 trace_btrfs_add_block_group(info, cache, 0); 2423 btrfs_add_bg_to_space_info(info, cache); 2424 2425 set_avail_alloc_bits(info, cache->flags); 2426 if (btrfs_chunk_writeable(info, cache->start)) { 2427 if (cache->used == 0) { 2428 ASSERT(list_empty(&cache->bg_list)); 2429 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2430 btrfs_discard_queue_work(&info->discard_ctl, cache); 2431 else 2432 btrfs_mark_bg_unused(cache); 2433 } 2434 } else { 2435 inc_block_group_ro(cache, 1); 2436 } 2437 2438 return 0; 2439 error: 2440 btrfs_put_block_group(cache); 2441 return ret; 2442 } 2443 2444 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2445 { 2446 struct rb_node *node; 2447 int ret = 0; 2448 2449 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 2450 struct btrfs_chunk_map *map; 2451 struct btrfs_block_group *bg; 2452 2453 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 2454 bg = btrfs_create_block_group_cache(fs_info, map->start); 2455 if (!bg) { 2456 ret = -ENOMEM; 2457 break; 2458 } 2459 2460 /* Fill dummy cache as FULL */ 2461 bg->length = map->chunk_len; 2462 bg->flags = map->type; 2463 bg->cached = BTRFS_CACHE_FINISHED; 2464 bg->used = map->chunk_len; 2465 bg->flags = map->type; 2466 ret = btrfs_add_block_group_cache(fs_info, bg); 2467 /* 2468 * We may have some valid block group cache added already, in 2469 * that case we skip to the next one. 2470 */ 2471 if (ret == -EEXIST) { 2472 ret = 0; 2473 btrfs_put_block_group(bg); 2474 continue; 2475 } 2476 2477 if (ret) { 2478 btrfs_remove_free_space_cache(bg); 2479 btrfs_put_block_group(bg); 2480 break; 2481 } 2482 2483 btrfs_add_bg_to_space_info(fs_info, bg); 2484 2485 set_avail_alloc_bits(fs_info, bg->flags); 2486 } 2487 if (!ret) 2488 btrfs_init_global_block_rsv(fs_info); 2489 return ret; 2490 } 2491 2492 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2493 { 2494 struct btrfs_root *root = btrfs_block_group_root(info); 2495 struct btrfs_path *path; 2496 int ret; 2497 struct btrfs_block_group *cache; 2498 struct btrfs_space_info *space_info; 2499 struct btrfs_key key; 2500 int need_clear = 0; 2501 u64 cache_gen; 2502 2503 /* 2504 * Either no extent root (with ibadroots rescue option) or we have 2505 * unsupported RO options. The fs can never be mounted read-write, so no 2506 * need to waste time searching block group items. 2507 * 2508 * This also allows new extent tree related changes to be RO compat, 2509 * no need for a full incompat flag. 2510 */ 2511 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2512 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2513 return fill_dummy_bgs(info); 2514 2515 key.objectid = 0; 2516 key.offset = 0; 2517 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2518 path = btrfs_alloc_path(); 2519 if (!path) 2520 return -ENOMEM; 2521 2522 cache_gen = btrfs_super_cache_generation(info->super_copy); 2523 if (btrfs_test_opt(info, SPACE_CACHE) && 2524 btrfs_super_generation(info->super_copy) != cache_gen) 2525 need_clear = 1; 2526 if (btrfs_test_opt(info, CLEAR_CACHE)) 2527 need_clear = 1; 2528 2529 while (1) { 2530 struct btrfs_block_group_item bgi; 2531 struct extent_buffer *leaf; 2532 int slot; 2533 2534 ret = find_first_block_group(info, path, &key); 2535 if (ret > 0) 2536 break; 2537 if (ret != 0) 2538 goto error; 2539 2540 leaf = path->nodes[0]; 2541 slot = path->slots[0]; 2542 2543 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2544 sizeof(bgi)); 2545 2546 btrfs_item_key_to_cpu(leaf, &key, slot); 2547 btrfs_release_path(path); 2548 ret = read_one_block_group(info, &bgi, &key, need_clear); 2549 if (ret < 0) 2550 goto error; 2551 key.objectid += key.offset; 2552 key.offset = 0; 2553 } 2554 btrfs_release_path(path); 2555 2556 list_for_each_entry(space_info, &info->space_info, list) { 2557 int i; 2558 2559 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2560 if (list_empty(&space_info->block_groups[i])) 2561 continue; 2562 cache = list_first_entry(&space_info->block_groups[i], 2563 struct btrfs_block_group, 2564 list); 2565 btrfs_sysfs_add_block_group_type(cache); 2566 } 2567 2568 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2569 (BTRFS_BLOCK_GROUP_RAID10 | 2570 BTRFS_BLOCK_GROUP_RAID1_MASK | 2571 BTRFS_BLOCK_GROUP_RAID56_MASK | 2572 BTRFS_BLOCK_GROUP_DUP))) 2573 continue; 2574 /* 2575 * Avoid allocating from un-mirrored block group if there are 2576 * mirrored block groups. 2577 */ 2578 list_for_each_entry(cache, 2579 &space_info->block_groups[BTRFS_RAID_RAID0], 2580 list) 2581 inc_block_group_ro(cache, 1); 2582 list_for_each_entry(cache, 2583 &space_info->block_groups[BTRFS_RAID_SINGLE], 2584 list) 2585 inc_block_group_ro(cache, 1); 2586 } 2587 2588 btrfs_init_global_block_rsv(info); 2589 ret = check_chunk_block_group_mappings(info); 2590 error: 2591 btrfs_free_path(path); 2592 /* 2593 * We've hit some error while reading the extent tree, and have 2594 * rescue=ibadroots mount option. 2595 * Try to fill the tree using dummy block groups so that the user can 2596 * continue to mount and grab their data. 2597 */ 2598 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2599 ret = fill_dummy_bgs(info); 2600 return ret; 2601 } 2602 2603 /* 2604 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2605 * allocation. 2606 * 2607 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2608 * phases. 2609 */ 2610 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2611 struct btrfs_block_group *block_group) 2612 { 2613 struct btrfs_fs_info *fs_info = trans->fs_info; 2614 struct btrfs_block_group_item bgi; 2615 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2616 struct btrfs_key key; 2617 u64 old_commit_used; 2618 int ret; 2619 2620 spin_lock(&block_group->lock); 2621 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2622 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2623 block_group->global_root_id); 2624 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2625 old_commit_used = block_group->commit_used; 2626 block_group->commit_used = block_group->used; 2627 key.objectid = block_group->start; 2628 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2629 key.offset = block_group->length; 2630 spin_unlock(&block_group->lock); 2631 2632 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2633 if (ret < 0) { 2634 spin_lock(&block_group->lock); 2635 block_group->commit_used = old_commit_used; 2636 spin_unlock(&block_group->lock); 2637 } 2638 2639 return ret; 2640 } 2641 2642 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2643 const struct btrfs_device *device, u64 chunk_offset, 2644 u64 start, u64 num_bytes) 2645 { 2646 struct btrfs_fs_info *fs_info = device->fs_info; 2647 struct btrfs_root *root = fs_info->dev_root; 2648 struct btrfs_path *path; 2649 struct btrfs_dev_extent *extent; 2650 struct extent_buffer *leaf; 2651 struct btrfs_key key; 2652 int ret; 2653 2654 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2655 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2656 path = btrfs_alloc_path(); 2657 if (!path) 2658 return -ENOMEM; 2659 2660 key.objectid = device->devid; 2661 key.type = BTRFS_DEV_EXTENT_KEY; 2662 key.offset = start; 2663 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2664 if (ret) 2665 goto out; 2666 2667 leaf = path->nodes[0]; 2668 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2669 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2670 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2671 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2672 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2673 2674 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2675 btrfs_mark_buffer_dirty(trans, leaf); 2676 out: 2677 btrfs_free_path(path); 2678 return ret; 2679 } 2680 2681 /* 2682 * This function belongs to phase 2. 2683 * 2684 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2685 * phases. 2686 */ 2687 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2688 u64 chunk_offset, u64 chunk_size) 2689 { 2690 struct btrfs_fs_info *fs_info = trans->fs_info; 2691 struct btrfs_device *device; 2692 struct btrfs_chunk_map *map; 2693 u64 dev_offset; 2694 int i; 2695 int ret = 0; 2696 2697 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2698 if (IS_ERR(map)) 2699 return PTR_ERR(map); 2700 2701 /* 2702 * Take the device list mutex to prevent races with the final phase of 2703 * a device replace operation that replaces the device object associated 2704 * with the map's stripes, because the device object's id can change 2705 * at any time during that final phase of the device replace operation 2706 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2707 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2708 * resulting in persisting a device extent item with such ID. 2709 */ 2710 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2711 for (i = 0; i < map->num_stripes; i++) { 2712 device = map->stripes[i].dev; 2713 dev_offset = map->stripes[i].physical; 2714 2715 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2716 map->stripe_size); 2717 if (ret) 2718 break; 2719 } 2720 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2721 2722 btrfs_free_chunk_map(map); 2723 return ret; 2724 } 2725 2726 /* 2727 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2728 * chunk allocation. 2729 * 2730 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2731 * phases. 2732 */ 2733 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2734 { 2735 struct btrfs_fs_info *fs_info = trans->fs_info; 2736 struct btrfs_block_group *block_group; 2737 int ret = 0; 2738 2739 while (!list_empty(&trans->new_bgs)) { 2740 int index; 2741 2742 block_group = list_first_entry(&trans->new_bgs, 2743 struct btrfs_block_group, 2744 bg_list); 2745 if (ret) 2746 goto next; 2747 2748 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2749 2750 ret = insert_block_group_item(trans, block_group); 2751 if (ret) 2752 btrfs_abort_transaction(trans, ret); 2753 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2754 &block_group->runtime_flags)) { 2755 mutex_lock(&fs_info->chunk_mutex); 2756 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2757 mutex_unlock(&fs_info->chunk_mutex); 2758 if (ret) 2759 btrfs_abort_transaction(trans, ret); 2760 } 2761 ret = insert_dev_extents(trans, block_group->start, 2762 block_group->length); 2763 if (ret) 2764 btrfs_abort_transaction(trans, ret); 2765 add_block_group_free_space(trans, block_group); 2766 2767 /* 2768 * If we restriped during balance, we may have added a new raid 2769 * type, so now add the sysfs entries when it is safe to do so. 2770 * We don't have to worry about locking here as it's handled in 2771 * btrfs_sysfs_add_block_group_type. 2772 */ 2773 if (block_group->space_info->block_group_kobjs[index] == NULL) 2774 btrfs_sysfs_add_block_group_type(block_group); 2775 2776 /* Already aborted the transaction if it failed. */ 2777 next: 2778 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2779 list_del_init(&block_group->bg_list); 2780 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2781 2782 /* 2783 * If the block group is still unused, add it to the list of 2784 * unused block groups. The block group may have been created in 2785 * order to satisfy a space reservation, in which case the 2786 * extent allocation only happens later. But often we don't 2787 * actually need to allocate space that we previously reserved, 2788 * so the block group may become unused for a long time. For 2789 * example for metadata we generally reserve space for a worst 2790 * possible scenario, but then don't end up allocating all that 2791 * space or none at all (due to no need to COW, extent buffers 2792 * were already COWed in the current transaction and still 2793 * unwritten, tree heights lower than the maximum possible 2794 * height, etc). For data we generally reserve the axact amount 2795 * of space we are going to allocate later, the exception is 2796 * when using compression, as we must reserve space based on the 2797 * uncompressed data size, because the compression is only done 2798 * when writeback triggered and we don't know how much space we 2799 * are actually going to need, so we reserve the uncompressed 2800 * size because the data may be uncompressible in the worst case. 2801 */ 2802 if (ret == 0) { 2803 bool used; 2804 2805 spin_lock(&block_group->lock); 2806 used = btrfs_is_block_group_used(block_group); 2807 spin_unlock(&block_group->lock); 2808 2809 if (!used) 2810 btrfs_mark_bg_unused(block_group); 2811 } 2812 } 2813 btrfs_trans_release_chunk_metadata(trans); 2814 } 2815 2816 /* 2817 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2818 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2819 */ 2820 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset) 2821 { 2822 u64 div = SZ_1G; 2823 u64 index; 2824 2825 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2826 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2827 2828 /* If we have a smaller fs index based on 128MiB. */ 2829 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2830 div = SZ_128M; 2831 2832 offset = div64_u64(offset, div); 2833 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2834 return index; 2835 } 2836 2837 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2838 u64 type, 2839 u64 chunk_offset, u64 size) 2840 { 2841 struct btrfs_fs_info *fs_info = trans->fs_info; 2842 struct btrfs_block_group *cache; 2843 int ret; 2844 2845 btrfs_set_log_full_commit(trans); 2846 2847 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2848 if (!cache) 2849 return ERR_PTR(-ENOMEM); 2850 2851 /* 2852 * Mark it as new before adding it to the rbtree of block groups or any 2853 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2854 * before the new flag is set. 2855 */ 2856 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2857 2858 cache->length = size; 2859 set_free_space_tree_thresholds(cache); 2860 cache->flags = type; 2861 cache->cached = BTRFS_CACHE_FINISHED; 2862 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2863 2864 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2865 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2866 2867 ret = btrfs_load_block_group_zone_info(cache, true); 2868 if (ret) { 2869 btrfs_put_block_group(cache); 2870 return ERR_PTR(ret); 2871 } 2872 2873 ret = exclude_super_stripes(cache); 2874 if (ret) { 2875 /* We may have excluded something, so call this just in case */ 2876 btrfs_free_excluded_extents(cache); 2877 btrfs_put_block_group(cache); 2878 return ERR_PTR(ret); 2879 } 2880 2881 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2882 btrfs_free_excluded_extents(cache); 2883 if (ret) { 2884 btrfs_put_block_group(cache); 2885 return ERR_PTR(ret); 2886 } 2887 2888 /* 2889 * Ensure the corresponding space_info object is created and 2890 * assigned to our block group. We want our bg to be added to the rbtree 2891 * with its ->space_info set. 2892 */ 2893 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2894 ASSERT(cache->space_info); 2895 2896 ret = btrfs_add_block_group_cache(fs_info, cache); 2897 if (ret) { 2898 btrfs_remove_free_space_cache(cache); 2899 btrfs_put_block_group(cache); 2900 return ERR_PTR(ret); 2901 } 2902 2903 /* 2904 * Now that our block group has its ->space_info set and is inserted in 2905 * the rbtree, update the space info's counters. 2906 */ 2907 trace_btrfs_add_block_group(fs_info, cache, 1); 2908 btrfs_add_bg_to_space_info(fs_info, cache); 2909 btrfs_update_global_block_rsv(fs_info); 2910 2911 #ifdef CONFIG_BTRFS_DEBUG 2912 if (btrfs_should_fragment_free_space(cache)) { 2913 cache->space_info->bytes_used += size >> 1; 2914 fragment_free_space(cache); 2915 } 2916 #endif 2917 2918 list_add_tail(&cache->bg_list, &trans->new_bgs); 2919 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info); 2920 2921 set_avail_alloc_bits(fs_info, type); 2922 return cache; 2923 } 2924 2925 /* 2926 * Mark one block group RO, can be called several times for the same block 2927 * group. 2928 * 2929 * @cache: the destination block group 2930 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2931 * ensure we still have some free space after marking this 2932 * block group RO. 2933 */ 2934 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2935 bool do_chunk_alloc) 2936 { 2937 struct btrfs_fs_info *fs_info = cache->fs_info; 2938 struct btrfs_trans_handle *trans; 2939 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2940 u64 alloc_flags; 2941 int ret; 2942 bool dirty_bg_running; 2943 2944 /* 2945 * This can only happen when we are doing read-only scrub on read-only 2946 * mount. 2947 * In that case we should not start a new transaction on read-only fs. 2948 * Thus here we skip all chunk allocations. 2949 */ 2950 if (sb_rdonly(fs_info->sb)) { 2951 mutex_lock(&fs_info->ro_block_group_mutex); 2952 ret = inc_block_group_ro(cache, 0); 2953 mutex_unlock(&fs_info->ro_block_group_mutex); 2954 return ret; 2955 } 2956 2957 do { 2958 trans = btrfs_join_transaction(root); 2959 if (IS_ERR(trans)) 2960 return PTR_ERR(trans); 2961 2962 dirty_bg_running = false; 2963 2964 /* 2965 * We're not allowed to set block groups readonly after the dirty 2966 * block group cache has started writing. If it already started, 2967 * back off and let this transaction commit. 2968 */ 2969 mutex_lock(&fs_info->ro_block_group_mutex); 2970 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2971 u64 transid = trans->transid; 2972 2973 mutex_unlock(&fs_info->ro_block_group_mutex); 2974 btrfs_end_transaction(trans); 2975 2976 ret = btrfs_wait_for_commit(fs_info, transid); 2977 if (ret) 2978 return ret; 2979 dirty_bg_running = true; 2980 } 2981 } while (dirty_bg_running); 2982 2983 if (do_chunk_alloc) { 2984 /* 2985 * If we are changing raid levels, try to allocate a 2986 * corresponding block group with the new raid level. 2987 */ 2988 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2989 if (alloc_flags != cache->flags) { 2990 ret = btrfs_chunk_alloc(trans, alloc_flags, 2991 CHUNK_ALLOC_FORCE); 2992 /* 2993 * ENOSPC is allowed here, we may have enough space 2994 * already allocated at the new raid level to carry on 2995 */ 2996 if (ret == -ENOSPC) 2997 ret = 0; 2998 if (ret < 0) 2999 goto out; 3000 } 3001 } 3002 3003 ret = inc_block_group_ro(cache, 0); 3004 if (!ret) 3005 goto out; 3006 if (ret == -ETXTBSY) 3007 goto unlock_out; 3008 3009 /* 3010 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system 3011 * chunk allocation storm to exhaust the system chunk array. Otherwise 3012 * we still want to try our best to mark the block group read-only. 3013 */ 3014 if (!do_chunk_alloc && ret == -ENOSPC && 3015 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 3016 goto unlock_out; 3017 3018 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 3019 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3020 if (ret < 0) 3021 goto out; 3022 /* 3023 * We have allocated a new chunk. We also need to activate that chunk to 3024 * grant metadata tickets for zoned filesystem. 3025 */ 3026 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 3027 if (ret < 0) 3028 goto out; 3029 3030 ret = inc_block_group_ro(cache, 0); 3031 if (ret == -ETXTBSY) 3032 goto unlock_out; 3033 out: 3034 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 3035 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3036 mutex_lock(&fs_info->chunk_mutex); 3037 check_system_chunk(trans, alloc_flags); 3038 mutex_unlock(&fs_info->chunk_mutex); 3039 } 3040 unlock_out: 3041 mutex_unlock(&fs_info->ro_block_group_mutex); 3042 3043 btrfs_end_transaction(trans); 3044 return ret; 3045 } 3046 3047 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 3048 { 3049 struct btrfs_space_info *sinfo = cache->space_info; 3050 u64 num_bytes; 3051 3052 BUG_ON(!cache->ro); 3053 3054 spin_lock(&sinfo->lock); 3055 spin_lock(&cache->lock); 3056 if (!--cache->ro) { 3057 if (btrfs_is_zoned(cache->fs_info)) { 3058 /* Migrate zone_unusable bytes back */ 3059 cache->zone_unusable = 3060 (cache->alloc_offset - cache->used - cache->pinned - 3061 cache->reserved) + 3062 (cache->length - cache->zone_capacity); 3063 btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo, 3064 cache->zone_unusable); 3065 sinfo->bytes_readonly -= cache->zone_unusable; 3066 } 3067 num_bytes = cache->length - cache->reserved - 3068 cache->pinned - cache->bytes_super - 3069 cache->zone_unusable - cache->used; 3070 sinfo->bytes_readonly -= num_bytes; 3071 list_del_init(&cache->ro_list); 3072 } 3073 spin_unlock(&cache->lock); 3074 spin_unlock(&sinfo->lock); 3075 } 3076 3077 static int update_block_group_item(struct btrfs_trans_handle *trans, 3078 struct btrfs_path *path, 3079 struct btrfs_block_group *cache) 3080 { 3081 struct btrfs_fs_info *fs_info = trans->fs_info; 3082 int ret; 3083 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3084 unsigned long bi; 3085 struct extent_buffer *leaf; 3086 struct btrfs_block_group_item bgi; 3087 struct btrfs_key key; 3088 u64 old_commit_used; 3089 u64 used; 3090 3091 /* 3092 * Block group items update can be triggered out of commit transaction 3093 * critical section, thus we need a consistent view of used bytes. 3094 * We cannot use cache->used directly outside of the spin lock, as it 3095 * may be changed. 3096 */ 3097 spin_lock(&cache->lock); 3098 old_commit_used = cache->commit_used; 3099 used = cache->used; 3100 /* No change in used bytes, can safely skip it. */ 3101 if (cache->commit_used == used) { 3102 spin_unlock(&cache->lock); 3103 return 0; 3104 } 3105 cache->commit_used = used; 3106 spin_unlock(&cache->lock); 3107 3108 key.objectid = cache->start; 3109 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3110 key.offset = cache->length; 3111 3112 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3113 if (ret) { 3114 if (ret > 0) 3115 ret = -ENOENT; 3116 goto fail; 3117 } 3118 3119 leaf = path->nodes[0]; 3120 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3121 btrfs_set_stack_block_group_used(&bgi, used); 3122 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3123 cache->global_root_id); 3124 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3125 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3126 btrfs_mark_buffer_dirty(trans, leaf); 3127 fail: 3128 btrfs_release_path(path); 3129 /* 3130 * We didn't update the block group item, need to revert commit_used 3131 * unless the block group item didn't exist yet - this is to prevent a 3132 * race with a concurrent insertion of the block group item, with 3133 * insert_block_group_item(), that happened just after we attempted to 3134 * update. In that case we would reset commit_used to 0 just after the 3135 * insertion set it to a value greater than 0 - if the block group later 3136 * becomes with 0 used bytes, we would incorrectly skip its update. 3137 */ 3138 if (ret < 0 && ret != -ENOENT) { 3139 spin_lock(&cache->lock); 3140 cache->commit_used = old_commit_used; 3141 spin_unlock(&cache->lock); 3142 } 3143 return ret; 3144 3145 } 3146 3147 static int cache_save_setup(struct btrfs_block_group *block_group, 3148 struct btrfs_trans_handle *trans, 3149 struct btrfs_path *path) 3150 { 3151 struct btrfs_fs_info *fs_info = block_group->fs_info; 3152 struct inode *inode = NULL; 3153 struct extent_changeset *data_reserved = NULL; 3154 u64 alloc_hint = 0; 3155 int dcs = BTRFS_DC_ERROR; 3156 u64 cache_size = 0; 3157 int retries = 0; 3158 int ret = 0; 3159 3160 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3161 return 0; 3162 3163 /* 3164 * If this block group is smaller than 100 megs don't bother caching the 3165 * block group. 3166 */ 3167 if (block_group->length < (100 * SZ_1M)) { 3168 spin_lock(&block_group->lock); 3169 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3170 spin_unlock(&block_group->lock); 3171 return 0; 3172 } 3173 3174 if (TRANS_ABORTED(trans)) 3175 return 0; 3176 again: 3177 inode = lookup_free_space_inode(block_group, path); 3178 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3179 ret = PTR_ERR(inode); 3180 btrfs_release_path(path); 3181 goto out; 3182 } 3183 3184 if (IS_ERR(inode)) { 3185 BUG_ON(retries); 3186 retries++; 3187 3188 if (block_group->ro) 3189 goto out_free; 3190 3191 ret = create_free_space_inode(trans, block_group, path); 3192 if (ret) 3193 goto out_free; 3194 goto again; 3195 } 3196 3197 /* 3198 * We want to set the generation to 0, that way if anything goes wrong 3199 * from here on out we know not to trust this cache when we load up next 3200 * time. 3201 */ 3202 BTRFS_I(inode)->generation = 0; 3203 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 3204 if (ret) { 3205 /* 3206 * So theoretically we could recover from this, simply set the 3207 * super cache generation to 0 so we know to invalidate the 3208 * cache, but then we'd have to keep track of the block groups 3209 * that fail this way so we know we _have_ to reset this cache 3210 * before the next commit or risk reading stale cache. So to 3211 * limit our exposure to horrible edge cases lets just abort the 3212 * transaction, this only happens in really bad situations 3213 * anyway. 3214 */ 3215 btrfs_abort_transaction(trans, ret); 3216 goto out_put; 3217 } 3218 WARN_ON(ret); 3219 3220 /* We've already setup this transaction, go ahead and exit */ 3221 if (block_group->cache_generation == trans->transid && 3222 i_size_read(inode)) { 3223 dcs = BTRFS_DC_SETUP; 3224 goto out_put; 3225 } 3226 3227 if (i_size_read(inode) > 0) { 3228 ret = btrfs_check_trunc_cache_free_space(fs_info, 3229 &fs_info->global_block_rsv); 3230 if (ret) 3231 goto out_put; 3232 3233 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3234 if (ret) 3235 goto out_put; 3236 } 3237 3238 spin_lock(&block_group->lock); 3239 if (block_group->cached != BTRFS_CACHE_FINISHED || 3240 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3241 /* 3242 * don't bother trying to write stuff out _if_ 3243 * a) we're not cached, 3244 * b) we're with nospace_cache mount option, 3245 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3246 */ 3247 dcs = BTRFS_DC_WRITTEN; 3248 spin_unlock(&block_group->lock); 3249 goto out_put; 3250 } 3251 spin_unlock(&block_group->lock); 3252 3253 /* 3254 * We hit an ENOSPC when setting up the cache in this transaction, just 3255 * skip doing the setup, we've already cleared the cache so we're safe. 3256 */ 3257 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3258 ret = -ENOSPC; 3259 goto out_put; 3260 } 3261 3262 /* 3263 * Try to preallocate enough space based on how big the block group is. 3264 * Keep in mind this has to include any pinned space which could end up 3265 * taking up quite a bit since it's not folded into the other space 3266 * cache. 3267 */ 3268 cache_size = div_u64(block_group->length, SZ_256M); 3269 if (!cache_size) 3270 cache_size = 1; 3271 3272 cache_size *= 16; 3273 cache_size *= fs_info->sectorsize; 3274 3275 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3276 cache_size, false); 3277 if (ret) 3278 goto out_put; 3279 3280 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3281 cache_size, cache_size, 3282 &alloc_hint); 3283 /* 3284 * Our cache requires contiguous chunks so that we don't modify a bunch 3285 * of metadata or split extents when writing the cache out, which means 3286 * we can enospc if we are heavily fragmented in addition to just normal 3287 * out of space conditions. So if we hit this just skip setting up any 3288 * other block groups for this transaction, maybe we'll unpin enough 3289 * space the next time around. 3290 */ 3291 if (!ret) 3292 dcs = BTRFS_DC_SETUP; 3293 else if (ret == -ENOSPC) 3294 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3295 3296 out_put: 3297 iput(inode); 3298 out_free: 3299 btrfs_release_path(path); 3300 out: 3301 spin_lock(&block_group->lock); 3302 if (!ret && dcs == BTRFS_DC_SETUP) 3303 block_group->cache_generation = trans->transid; 3304 block_group->disk_cache_state = dcs; 3305 spin_unlock(&block_group->lock); 3306 3307 extent_changeset_free(data_reserved); 3308 return ret; 3309 } 3310 3311 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3312 { 3313 struct btrfs_fs_info *fs_info = trans->fs_info; 3314 struct btrfs_block_group *cache, *tmp; 3315 struct btrfs_transaction *cur_trans = trans->transaction; 3316 struct btrfs_path *path; 3317 3318 if (list_empty(&cur_trans->dirty_bgs) || 3319 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3320 return 0; 3321 3322 path = btrfs_alloc_path(); 3323 if (!path) 3324 return -ENOMEM; 3325 3326 /* Could add new block groups, use _safe just in case */ 3327 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3328 dirty_list) { 3329 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3330 cache_save_setup(cache, trans, path); 3331 } 3332 3333 btrfs_free_path(path); 3334 return 0; 3335 } 3336 3337 /* 3338 * Transaction commit does final block group cache writeback during a critical 3339 * section where nothing is allowed to change the FS. This is required in 3340 * order for the cache to actually match the block group, but can introduce a 3341 * lot of latency into the commit. 3342 * 3343 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3344 * There's a chance we'll have to redo some of it if the block group changes 3345 * again during the commit, but it greatly reduces the commit latency by 3346 * getting rid of the easy block groups while we're still allowing others to 3347 * join the commit. 3348 */ 3349 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3350 { 3351 struct btrfs_fs_info *fs_info = trans->fs_info; 3352 struct btrfs_block_group *cache; 3353 struct btrfs_transaction *cur_trans = trans->transaction; 3354 int ret = 0; 3355 int should_put; 3356 struct btrfs_path *path = NULL; 3357 LIST_HEAD(dirty); 3358 struct list_head *io = &cur_trans->io_bgs; 3359 int loops = 0; 3360 3361 spin_lock(&cur_trans->dirty_bgs_lock); 3362 if (list_empty(&cur_trans->dirty_bgs)) { 3363 spin_unlock(&cur_trans->dirty_bgs_lock); 3364 return 0; 3365 } 3366 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3367 spin_unlock(&cur_trans->dirty_bgs_lock); 3368 3369 again: 3370 /* Make sure all the block groups on our dirty list actually exist */ 3371 btrfs_create_pending_block_groups(trans); 3372 3373 if (!path) { 3374 path = btrfs_alloc_path(); 3375 if (!path) { 3376 ret = -ENOMEM; 3377 goto out; 3378 } 3379 } 3380 3381 /* 3382 * cache_write_mutex is here only to save us from balance or automatic 3383 * removal of empty block groups deleting this block group while we are 3384 * writing out the cache 3385 */ 3386 mutex_lock(&trans->transaction->cache_write_mutex); 3387 while (!list_empty(&dirty)) { 3388 bool drop_reserve = true; 3389 3390 cache = list_first_entry(&dirty, struct btrfs_block_group, 3391 dirty_list); 3392 /* 3393 * This can happen if something re-dirties a block group that 3394 * is already under IO. Just wait for it to finish and then do 3395 * it all again 3396 */ 3397 if (!list_empty(&cache->io_list)) { 3398 list_del_init(&cache->io_list); 3399 btrfs_wait_cache_io(trans, cache, path); 3400 btrfs_put_block_group(cache); 3401 } 3402 3403 3404 /* 3405 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3406 * it should update the cache_state. Don't delete until after 3407 * we wait. 3408 * 3409 * Since we're not running in the commit critical section 3410 * we need the dirty_bgs_lock to protect from update_block_group 3411 */ 3412 spin_lock(&cur_trans->dirty_bgs_lock); 3413 list_del_init(&cache->dirty_list); 3414 spin_unlock(&cur_trans->dirty_bgs_lock); 3415 3416 should_put = 1; 3417 3418 cache_save_setup(cache, trans, path); 3419 3420 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3421 cache->io_ctl.inode = NULL; 3422 ret = btrfs_write_out_cache(trans, cache, path); 3423 if (ret == 0 && cache->io_ctl.inode) { 3424 should_put = 0; 3425 3426 /* 3427 * The cache_write_mutex is protecting the 3428 * io_list, also refer to the definition of 3429 * btrfs_transaction::io_bgs for more details 3430 */ 3431 list_add_tail(&cache->io_list, io); 3432 } else { 3433 /* 3434 * If we failed to write the cache, the 3435 * generation will be bad and life goes on 3436 */ 3437 ret = 0; 3438 } 3439 } 3440 if (!ret) { 3441 ret = update_block_group_item(trans, path, cache); 3442 /* 3443 * Our block group might still be attached to the list 3444 * of new block groups in the transaction handle of some 3445 * other task (struct btrfs_trans_handle->new_bgs). This 3446 * means its block group item isn't yet in the extent 3447 * tree. If this happens ignore the error, as we will 3448 * try again later in the critical section of the 3449 * transaction commit. 3450 */ 3451 if (ret == -ENOENT) { 3452 ret = 0; 3453 spin_lock(&cur_trans->dirty_bgs_lock); 3454 if (list_empty(&cache->dirty_list)) { 3455 list_add_tail(&cache->dirty_list, 3456 &cur_trans->dirty_bgs); 3457 btrfs_get_block_group(cache); 3458 drop_reserve = false; 3459 } 3460 spin_unlock(&cur_trans->dirty_bgs_lock); 3461 } else if (ret) { 3462 btrfs_abort_transaction(trans, ret); 3463 } 3464 } 3465 3466 /* If it's not on the io list, we need to put the block group */ 3467 if (should_put) 3468 btrfs_put_block_group(cache); 3469 if (drop_reserve) 3470 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3471 /* 3472 * Avoid blocking other tasks for too long. It might even save 3473 * us from writing caches for block groups that are going to be 3474 * removed. 3475 */ 3476 mutex_unlock(&trans->transaction->cache_write_mutex); 3477 if (ret) 3478 goto out; 3479 mutex_lock(&trans->transaction->cache_write_mutex); 3480 } 3481 mutex_unlock(&trans->transaction->cache_write_mutex); 3482 3483 /* 3484 * Go through delayed refs for all the stuff we've just kicked off 3485 * and then loop back (just once) 3486 */ 3487 if (!ret) 3488 ret = btrfs_run_delayed_refs(trans, 0); 3489 if (!ret && loops == 0) { 3490 loops++; 3491 spin_lock(&cur_trans->dirty_bgs_lock); 3492 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3493 /* 3494 * dirty_bgs_lock protects us from concurrent block group 3495 * deletes too (not just cache_write_mutex). 3496 */ 3497 if (!list_empty(&dirty)) { 3498 spin_unlock(&cur_trans->dirty_bgs_lock); 3499 goto again; 3500 } 3501 spin_unlock(&cur_trans->dirty_bgs_lock); 3502 } 3503 out: 3504 if (ret < 0) { 3505 spin_lock(&cur_trans->dirty_bgs_lock); 3506 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3507 spin_unlock(&cur_trans->dirty_bgs_lock); 3508 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3509 } 3510 3511 btrfs_free_path(path); 3512 return ret; 3513 } 3514 3515 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3516 { 3517 struct btrfs_fs_info *fs_info = trans->fs_info; 3518 struct btrfs_block_group *cache; 3519 struct btrfs_transaction *cur_trans = trans->transaction; 3520 int ret = 0; 3521 int should_put; 3522 struct btrfs_path *path; 3523 struct list_head *io = &cur_trans->io_bgs; 3524 3525 path = btrfs_alloc_path(); 3526 if (!path) 3527 return -ENOMEM; 3528 3529 /* 3530 * Even though we are in the critical section of the transaction commit, 3531 * we can still have concurrent tasks adding elements to this 3532 * transaction's list of dirty block groups. These tasks correspond to 3533 * endio free space workers started when writeback finishes for a 3534 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3535 * allocate new block groups as a result of COWing nodes of the root 3536 * tree when updating the free space inode. The writeback for the space 3537 * caches is triggered by an earlier call to 3538 * btrfs_start_dirty_block_groups() and iterations of the following 3539 * loop. 3540 * Also we want to do the cache_save_setup first and then run the 3541 * delayed refs to make sure we have the best chance at doing this all 3542 * in one shot. 3543 */ 3544 spin_lock(&cur_trans->dirty_bgs_lock); 3545 while (!list_empty(&cur_trans->dirty_bgs)) { 3546 cache = list_first_entry(&cur_trans->dirty_bgs, 3547 struct btrfs_block_group, 3548 dirty_list); 3549 3550 /* 3551 * This can happen if cache_save_setup re-dirties a block group 3552 * that is already under IO. Just wait for it to finish and 3553 * then do it all again 3554 */ 3555 if (!list_empty(&cache->io_list)) { 3556 spin_unlock(&cur_trans->dirty_bgs_lock); 3557 list_del_init(&cache->io_list); 3558 btrfs_wait_cache_io(trans, cache, path); 3559 btrfs_put_block_group(cache); 3560 spin_lock(&cur_trans->dirty_bgs_lock); 3561 } 3562 3563 /* 3564 * Don't remove from the dirty list until after we've waited on 3565 * any pending IO 3566 */ 3567 list_del_init(&cache->dirty_list); 3568 spin_unlock(&cur_trans->dirty_bgs_lock); 3569 should_put = 1; 3570 3571 cache_save_setup(cache, trans, path); 3572 3573 if (!ret) 3574 ret = btrfs_run_delayed_refs(trans, U64_MAX); 3575 3576 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3577 cache->io_ctl.inode = NULL; 3578 ret = btrfs_write_out_cache(trans, cache, path); 3579 if (ret == 0 && cache->io_ctl.inode) { 3580 should_put = 0; 3581 list_add_tail(&cache->io_list, io); 3582 } else { 3583 /* 3584 * If we failed to write the cache, the 3585 * generation will be bad and life goes on 3586 */ 3587 ret = 0; 3588 } 3589 } 3590 if (!ret) { 3591 ret = update_block_group_item(trans, path, cache); 3592 /* 3593 * One of the free space endio workers might have 3594 * created a new block group while updating a free space 3595 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3596 * and hasn't released its transaction handle yet, in 3597 * which case the new block group is still attached to 3598 * its transaction handle and its creation has not 3599 * finished yet (no block group item in the extent tree 3600 * yet, etc). If this is the case, wait for all free 3601 * space endio workers to finish and retry. This is a 3602 * very rare case so no need for a more efficient and 3603 * complex approach. 3604 */ 3605 if (ret == -ENOENT) { 3606 wait_event(cur_trans->writer_wait, 3607 atomic_read(&cur_trans->num_writers) == 1); 3608 ret = update_block_group_item(trans, path, cache); 3609 } 3610 if (ret) 3611 btrfs_abort_transaction(trans, ret); 3612 } 3613 3614 /* If its not on the io list, we need to put the block group */ 3615 if (should_put) 3616 btrfs_put_block_group(cache); 3617 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3618 spin_lock(&cur_trans->dirty_bgs_lock); 3619 } 3620 spin_unlock(&cur_trans->dirty_bgs_lock); 3621 3622 /* 3623 * Refer to the definition of io_bgs member for details why it's safe 3624 * to use it without any locking 3625 */ 3626 while (!list_empty(io)) { 3627 cache = list_first_entry(io, struct btrfs_block_group, 3628 io_list); 3629 list_del_init(&cache->io_list); 3630 btrfs_wait_cache_io(trans, cache, path); 3631 btrfs_put_block_group(cache); 3632 } 3633 3634 btrfs_free_path(path); 3635 return ret; 3636 } 3637 3638 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3639 u64 bytenr, u64 num_bytes, bool alloc) 3640 { 3641 struct btrfs_fs_info *info = trans->fs_info; 3642 struct btrfs_space_info *space_info; 3643 struct btrfs_block_group *cache; 3644 u64 old_val; 3645 bool reclaim = false; 3646 bool bg_already_dirty = true; 3647 int factor; 3648 3649 /* Block accounting for super block */ 3650 spin_lock(&info->delalloc_root_lock); 3651 old_val = btrfs_super_bytes_used(info->super_copy); 3652 if (alloc) 3653 old_val += num_bytes; 3654 else 3655 old_val -= num_bytes; 3656 btrfs_set_super_bytes_used(info->super_copy, old_val); 3657 spin_unlock(&info->delalloc_root_lock); 3658 3659 cache = btrfs_lookup_block_group(info, bytenr); 3660 if (!cache) 3661 return -ENOENT; 3662 3663 /* An extent can not span multiple block groups. */ 3664 ASSERT(bytenr + num_bytes <= cache->start + cache->length); 3665 3666 space_info = cache->space_info; 3667 factor = btrfs_bg_type_to_factor(cache->flags); 3668 3669 /* 3670 * If this block group has free space cache written out, we need to make 3671 * sure to load it if we are removing space. This is because we need 3672 * the unpinning stage to actually add the space back to the block group, 3673 * otherwise we will leak space. 3674 */ 3675 if (!alloc && !btrfs_block_group_done(cache)) 3676 btrfs_cache_block_group(cache, true); 3677 3678 spin_lock(&space_info->lock); 3679 spin_lock(&cache->lock); 3680 3681 if (btrfs_test_opt(info, SPACE_CACHE) && 3682 cache->disk_cache_state < BTRFS_DC_CLEAR) 3683 cache->disk_cache_state = BTRFS_DC_CLEAR; 3684 3685 old_val = cache->used; 3686 if (alloc) { 3687 old_val += num_bytes; 3688 cache->used = old_val; 3689 cache->reserved -= num_bytes; 3690 cache->reclaim_mark = 0; 3691 space_info->bytes_reserved -= num_bytes; 3692 space_info->bytes_used += num_bytes; 3693 space_info->disk_used += num_bytes * factor; 3694 if (READ_ONCE(space_info->periodic_reclaim)) 3695 btrfs_space_info_update_reclaimable(space_info, -num_bytes); 3696 spin_unlock(&cache->lock); 3697 spin_unlock(&space_info->lock); 3698 } else { 3699 old_val -= num_bytes; 3700 cache->used = old_val; 3701 cache->pinned += num_bytes; 3702 btrfs_space_info_update_bytes_pinned(info, space_info, num_bytes); 3703 space_info->bytes_used -= num_bytes; 3704 space_info->disk_used -= num_bytes * factor; 3705 if (READ_ONCE(space_info->periodic_reclaim)) 3706 btrfs_space_info_update_reclaimable(space_info, num_bytes); 3707 else 3708 reclaim = should_reclaim_block_group(cache, num_bytes); 3709 3710 spin_unlock(&cache->lock); 3711 spin_unlock(&space_info->lock); 3712 3713 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 3714 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 3715 } 3716 3717 spin_lock(&trans->transaction->dirty_bgs_lock); 3718 if (list_empty(&cache->dirty_list)) { 3719 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs); 3720 bg_already_dirty = false; 3721 btrfs_get_block_group(cache); 3722 } 3723 spin_unlock(&trans->transaction->dirty_bgs_lock); 3724 3725 /* 3726 * No longer have used bytes in this block group, queue it for deletion. 3727 * We do this after adding the block group to the dirty list to avoid 3728 * races between cleaner kthread and space cache writeout. 3729 */ 3730 if (!alloc && old_val == 0) { 3731 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3732 btrfs_mark_bg_unused(cache); 3733 } else if (!alloc && reclaim) { 3734 btrfs_mark_bg_to_reclaim(cache); 3735 } 3736 3737 btrfs_put_block_group(cache); 3738 3739 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3740 if (!bg_already_dirty) 3741 btrfs_inc_delayed_refs_rsv_bg_updates(info); 3742 3743 return 0; 3744 } 3745 3746 /* 3747 * Update the block_group and space info counters. 3748 * 3749 * @cache: The cache we are manipulating 3750 * @ram_bytes: The number of bytes of file content, and will be same to 3751 * @num_bytes except for the compress path. 3752 * @num_bytes: The number of bytes in question 3753 * @delalloc: The blocks are allocated for the delalloc write 3754 * 3755 * This is called by the allocator when it reserves space. If this is a 3756 * reservation and the block group has become read only we cannot make the 3757 * reservation and return -EAGAIN, otherwise this function always succeeds. 3758 */ 3759 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3760 u64 ram_bytes, u64 num_bytes, int delalloc, 3761 bool force_wrong_size_class) 3762 { 3763 struct btrfs_space_info *space_info = cache->space_info; 3764 enum btrfs_block_group_size_class size_class; 3765 int ret = 0; 3766 3767 spin_lock(&space_info->lock); 3768 spin_lock(&cache->lock); 3769 if (cache->ro) { 3770 ret = -EAGAIN; 3771 goto out; 3772 } 3773 3774 if (btrfs_block_group_should_use_size_class(cache)) { 3775 size_class = btrfs_calc_block_group_size_class(num_bytes); 3776 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3777 if (ret) 3778 goto out; 3779 } 3780 cache->reserved += num_bytes; 3781 space_info->bytes_reserved += num_bytes; 3782 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3783 space_info->flags, num_bytes, 1); 3784 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3785 space_info, -ram_bytes); 3786 if (delalloc) 3787 cache->delalloc_bytes += num_bytes; 3788 3789 /* 3790 * Compression can use less space than we reserved, so wake tickets if 3791 * that happens. 3792 */ 3793 if (num_bytes < ram_bytes) 3794 btrfs_try_granting_tickets(cache->fs_info, space_info); 3795 out: 3796 spin_unlock(&cache->lock); 3797 spin_unlock(&space_info->lock); 3798 return ret; 3799 } 3800 3801 /* 3802 * Update the block_group and space info counters. 3803 * 3804 * @cache: The cache we are manipulating 3805 * @num_bytes: The number of bytes in question 3806 * @delalloc: The blocks are allocated for the delalloc write 3807 * 3808 * This is called by somebody who is freeing space that was never actually used 3809 * on disk. For example if you reserve some space for a new leaf in transaction 3810 * A and before transaction A commits you free that leaf, you call this with 3811 * reserve set to 0 in order to clear the reservation. 3812 */ 3813 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3814 u64 num_bytes, int delalloc) 3815 { 3816 struct btrfs_space_info *space_info = cache->space_info; 3817 3818 spin_lock(&space_info->lock); 3819 spin_lock(&cache->lock); 3820 if (cache->ro) 3821 space_info->bytes_readonly += num_bytes; 3822 cache->reserved -= num_bytes; 3823 space_info->bytes_reserved -= num_bytes; 3824 space_info->max_extent_size = 0; 3825 3826 if (delalloc) 3827 cache->delalloc_bytes -= num_bytes; 3828 spin_unlock(&cache->lock); 3829 3830 btrfs_try_granting_tickets(cache->fs_info, space_info); 3831 spin_unlock(&space_info->lock); 3832 } 3833 3834 static void force_metadata_allocation(struct btrfs_fs_info *info) 3835 { 3836 struct list_head *head = &info->space_info; 3837 struct btrfs_space_info *found; 3838 3839 list_for_each_entry(found, head, list) { 3840 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3841 found->force_alloc = CHUNK_ALLOC_FORCE; 3842 } 3843 } 3844 3845 static int should_alloc_chunk(const struct btrfs_fs_info *fs_info, 3846 const struct btrfs_space_info *sinfo, int force) 3847 { 3848 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3849 u64 thresh; 3850 3851 if (force == CHUNK_ALLOC_FORCE) 3852 return 1; 3853 3854 /* 3855 * in limited mode, we want to have some free space up to 3856 * about 1% of the FS size. 3857 */ 3858 if (force == CHUNK_ALLOC_LIMITED) { 3859 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3860 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3861 3862 if (sinfo->total_bytes - bytes_used < thresh) 3863 return 1; 3864 } 3865 3866 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3867 return 0; 3868 return 1; 3869 } 3870 3871 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3872 { 3873 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3874 3875 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3876 } 3877 3878 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3879 { 3880 struct btrfs_block_group *bg; 3881 int ret; 3882 3883 /* 3884 * Check if we have enough space in the system space info because we 3885 * will need to update device items in the chunk btree and insert a new 3886 * chunk item in the chunk btree as well. This will allocate a new 3887 * system block group if needed. 3888 */ 3889 check_system_chunk(trans, flags); 3890 3891 bg = btrfs_create_chunk(trans, flags); 3892 if (IS_ERR(bg)) { 3893 ret = PTR_ERR(bg); 3894 goto out; 3895 } 3896 3897 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3898 /* 3899 * Normally we are not expected to fail with -ENOSPC here, since we have 3900 * previously reserved space in the system space_info and allocated one 3901 * new system chunk if necessary. However there are three exceptions: 3902 * 3903 * 1) We may have enough free space in the system space_info but all the 3904 * existing system block groups have a profile which can not be used 3905 * for extent allocation. 3906 * 3907 * This happens when mounting in degraded mode. For example we have a 3908 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3909 * using the other device in degraded mode. If we then allocate a chunk, 3910 * we may have enough free space in the existing system space_info, but 3911 * none of the block groups can be used for extent allocation since they 3912 * have a RAID1 profile, and because we are in degraded mode with a 3913 * single device, we are forced to allocate a new system chunk with a 3914 * SINGLE profile. Making check_system_chunk() iterate over all system 3915 * block groups and check if they have a usable profile and enough space 3916 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3917 * try again after forcing allocation of a new system chunk. Like this 3918 * we avoid paying the cost of that search in normal circumstances, when 3919 * we were not mounted in degraded mode; 3920 * 3921 * 2) We had enough free space info the system space_info, and one suitable 3922 * block group to allocate from when we called check_system_chunk() 3923 * above. However right after we called it, the only system block group 3924 * with enough free space got turned into RO mode by a running scrub, 3925 * and in this case we have to allocate a new one and retry. We only 3926 * need do this allocate and retry once, since we have a transaction 3927 * handle and scrub uses the commit root to search for block groups; 3928 * 3929 * 3) We had one system block group with enough free space when we called 3930 * check_system_chunk(), but after that, right before we tried to 3931 * allocate the last extent buffer we needed, a discard operation came 3932 * in and it temporarily removed the last free space entry from the 3933 * block group (discard removes a free space entry, discards it, and 3934 * then adds back the entry to the block group cache). 3935 */ 3936 if (ret == -ENOSPC) { 3937 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3938 struct btrfs_block_group *sys_bg; 3939 3940 sys_bg = btrfs_create_chunk(trans, sys_flags); 3941 if (IS_ERR(sys_bg)) { 3942 ret = PTR_ERR(sys_bg); 3943 btrfs_abort_transaction(trans, ret); 3944 goto out; 3945 } 3946 3947 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3948 if (ret) { 3949 btrfs_abort_transaction(trans, ret); 3950 goto out; 3951 } 3952 3953 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3954 if (ret) { 3955 btrfs_abort_transaction(trans, ret); 3956 goto out; 3957 } 3958 } else if (ret) { 3959 btrfs_abort_transaction(trans, ret); 3960 goto out; 3961 } 3962 out: 3963 btrfs_trans_release_chunk_metadata(trans); 3964 3965 if (ret) 3966 return ERR_PTR(ret); 3967 3968 btrfs_get_block_group(bg); 3969 return bg; 3970 } 3971 3972 /* 3973 * Chunk allocation is done in 2 phases: 3974 * 3975 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3976 * the chunk, the chunk mapping, create its block group and add the items 3977 * that belong in the chunk btree to it - more specifically, we need to 3978 * update device items in the chunk btree and add a new chunk item to it. 3979 * 3980 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3981 * group item to the extent btree and the device extent items to the devices 3982 * btree. 3983 * 3984 * This is done to prevent deadlocks. For example when COWing a node from the 3985 * extent btree we are holding a write lock on the node's parent and if we 3986 * trigger chunk allocation and attempted to insert the new block group item 3987 * in the extent btree right way, we could deadlock because the path for the 3988 * insertion can include that parent node. At first glance it seems impossible 3989 * to trigger chunk allocation after starting a transaction since tasks should 3990 * reserve enough transaction units (metadata space), however while that is true 3991 * most of the time, chunk allocation may still be triggered for several reasons: 3992 * 3993 * 1) When reserving metadata, we check if there is enough free space in the 3994 * metadata space_info and therefore don't trigger allocation of a new chunk. 3995 * However later when the task actually tries to COW an extent buffer from 3996 * the extent btree or from the device btree for example, it is forced to 3997 * allocate a new block group (chunk) because the only one that had enough 3998 * free space was just turned to RO mode by a running scrub for example (or 3999 * device replace, block group reclaim thread, etc), so we can not use it 4000 * for allocating an extent and end up being forced to allocate a new one; 4001 * 4002 * 2) Because we only check that the metadata space_info has enough free bytes, 4003 * we end up not allocating a new metadata chunk in that case. However if 4004 * the filesystem was mounted in degraded mode, none of the existing block 4005 * groups might be suitable for extent allocation due to their incompatible 4006 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 4007 * use a RAID1 profile, in degraded mode using a single device). In this case 4008 * when the task attempts to COW some extent buffer of the extent btree for 4009 * example, it will trigger allocation of a new metadata block group with a 4010 * suitable profile (SINGLE profile in the example of the degraded mount of 4011 * the RAID1 filesystem); 4012 * 4013 * 3) The task has reserved enough transaction units / metadata space, but when 4014 * it attempts to COW an extent buffer from the extent or device btree for 4015 * example, it does not find any free extent in any metadata block group, 4016 * therefore forced to try to allocate a new metadata block group. 4017 * This is because some other task allocated all available extents in the 4018 * meanwhile - this typically happens with tasks that don't reserve space 4019 * properly, either intentionally or as a bug. One example where this is 4020 * done intentionally is fsync, as it does not reserve any transaction units 4021 * and ends up allocating a variable number of metadata extents for log 4022 * tree extent buffers; 4023 * 4024 * 4) The task has reserved enough transaction units / metadata space, but right 4025 * before it tries to allocate the last extent buffer it needs, a discard 4026 * operation comes in and, temporarily, removes the last free space entry from 4027 * the only metadata block group that had free space (discard starts by 4028 * removing a free space entry from a block group, then does the discard 4029 * operation and, once it's done, it adds back the free space entry to the 4030 * block group). 4031 * 4032 * We also need this 2 phases setup when adding a device to a filesystem with 4033 * a seed device - we must create new metadata and system chunks without adding 4034 * any of the block group items to the chunk, extent and device btrees. If we 4035 * did not do it this way, we would get ENOSPC when attempting to update those 4036 * btrees, since all the chunks from the seed device are read-only. 4037 * 4038 * Phase 1 does the updates and insertions to the chunk btree because if we had 4039 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 4040 * parallel, we risk having too many system chunks allocated by many tasks if 4041 * many tasks reach phase 1 without the previous ones completing phase 2. In the 4042 * extreme case this leads to exhaustion of the system chunk array in the 4043 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 4044 * and with RAID filesystems (so we have more device items in the chunk btree). 4045 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 4046 * the system chunk array due to concurrent allocations") provides more details. 4047 * 4048 * Allocation of system chunks does not happen through this function. A task that 4049 * needs to update the chunk btree (the only btree that uses system chunks), must 4050 * preallocate chunk space by calling either check_system_chunk() or 4051 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 4052 * metadata chunk or when removing a chunk, while the later is used before doing 4053 * a modification to the chunk btree - use cases for the later are adding, 4054 * removing and resizing a device as well as relocation of a system chunk. 4055 * See the comment below for more details. 4056 * 4057 * The reservation of system space, done through check_system_chunk(), as well 4058 * as all the updates and insertions into the chunk btree must be done while 4059 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4060 * an extent buffer from the chunks btree we never trigger allocation of a new 4061 * system chunk, which would result in a deadlock (trying to lock twice an 4062 * extent buffer of the chunk btree, first time before triggering the chunk 4063 * allocation and the second time during chunk allocation while attempting to 4064 * update the chunks btree). The system chunk array is also updated while holding 4065 * that mutex. The same logic applies to removing chunks - we must reserve system 4066 * space, update the chunk btree and the system chunk array in the superblock 4067 * while holding fs_info->chunk_mutex. 4068 * 4069 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4070 * 4071 * If @force is CHUNK_ALLOC_FORCE: 4072 * - return 1 if it successfully allocates a chunk, 4073 * - return errors including -ENOSPC otherwise. 4074 * If @force is NOT CHUNK_ALLOC_FORCE: 4075 * - return 0 if it doesn't need to allocate a new chunk, 4076 * - return 1 if it successfully allocates a chunk, 4077 * - return errors including -ENOSPC otherwise. 4078 */ 4079 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 4080 enum btrfs_chunk_alloc_enum force) 4081 { 4082 struct btrfs_fs_info *fs_info = trans->fs_info; 4083 struct btrfs_space_info *space_info; 4084 struct btrfs_block_group *ret_bg; 4085 bool wait_for_alloc = false; 4086 bool should_alloc = false; 4087 bool from_extent_allocation = false; 4088 int ret = 0; 4089 4090 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4091 from_extent_allocation = true; 4092 force = CHUNK_ALLOC_FORCE; 4093 } 4094 4095 /* Don't re-enter if we're already allocating a chunk */ 4096 if (trans->allocating_chunk) 4097 return -ENOSPC; 4098 /* 4099 * Allocation of system chunks can not happen through this path, as we 4100 * could end up in a deadlock if we are allocating a data or metadata 4101 * chunk and there is another task modifying the chunk btree. 4102 * 4103 * This is because while we are holding the chunk mutex, we will attempt 4104 * to add the new chunk item to the chunk btree or update an existing 4105 * device item in the chunk btree, while the other task that is modifying 4106 * the chunk btree is attempting to COW an extent buffer while holding a 4107 * lock on it and on its parent - if the COW operation triggers a system 4108 * chunk allocation, then we can deadlock because we are holding the 4109 * chunk mutex and we may need to access that extent buffer or its parent 4110 * in order to add the chunk item or update a device item. 4111 * 4112 * Tasks that want to modify the chunk tree should reserve system space 4113 * before updating the chunk btree, by calling either 4114 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4115 * It's possible that after a task reserves the space, it still ends up 4116 * here - this happens in the cases described above at do_chunk_alloc(). 4117 * The task will have to either retry or fail. 4118 */ 4119 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4120 return -ENOSPC; 4121 4122 space_info = btrfs_find_space_info(fs_info, flags); 4123 ASSERT(space_info); 4124 4125 do { 4126 spin_lock(&space_info->lock); 4127 if (force < space_info->force_alloc) 4128 force = space_info->force_alloc; 4129 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4130 if (space_info->full) { 4131 /* No more free physical space */ 4132 if (should_alloc) 4133 ret = -ENOSPC; 4134 else 4135 ret = 0; 4136 spin_unlock(&space_info->lock); 4137 return ret; 4138 } else if (!should_alloc) { 4139 spin_unlock(&space_info->lock); 4140 return 0; 4141 } else if (space_info->chunk_alloc) { 4142 /* 4143 * Someone is already allocating, so we need to block 4144 * until this someone is finished and then loop to 4145 * recheck if we should continue with our allocation 4146 * attempt. 4147 */ 4148 wait_for_alloc = true; 4149 force = CHUNK_ALLOC_NO_FORCE; 4150 spin_unlock(&space_info->lock); 4151 mutex_lock(&fs_info->chunk_mutex); 4152 mutex_unlock(&fs_info->chunk_mutex); 4153 } else { 4154 /* Proceed with allocation */ 4155 space_info->chunk_alloc = 1; 4156 wait_for_alloc = false; 4157 spin_unlock(&space_info->lock); 4158 } 4159 4160 cond_resched(); 4161 } while (wait_for_alloc); 4162 4163 mutex_lock(&fs_info->chunk_mutex); 4164 trans->allocating_chunk = true; 4165 4166 /* 4167 * If we have mixed data/metadata chunks we want to make sure we keep 4168 * allocating mixed chunks instead of individual chunks. 4169 */ 4170 if (btrfs_mixed_space_info(space_info)) 4171 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4172 4173 /* 4174 * if we're doing a data chunk, go ahead and make sure that 4175 * we keep a reasonable number of metadata chunks allocated in the 4176 * FS as well. 4177 */ 4178 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4179 fs_info->data_chunk_allocations++; 4180 if (!(fs_info->data_chunk_allocations % 4181 fs_info->metadata_ratio)) 4182 force_metadata_allocation(fs_info); 4183 } 4184 4185 ret_bg = do_chunk_alloc(trans, flags); 4186 trans->allocating_chunk = false; 4187 4188 if (IS_ERR(ret_bg)) { 4189 ret = PTR_ERR(ret_bg); 4190 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4191 /* 4192 * New block group is likely to be used soon. Try to activate 4193 * it now. Failure is OK for now. 4194 */ 4195 btrfs_zone_activate(ret_bg); 4196 } 4197 4198 if (!ret) 4199 btrfs_put_block_group(ret_bg); 4200 4201 spin_lock(&space_info->lock); 4202 if (ret < 0) { 4203 if (ret == -ENOSPC) 4204 space_info->full = 1; 4205 else 4206 goto out; 4207 } else { 4208 ret = 1; 4209 space_info->max_extent_size = 0; 4210 } 4211 4212 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4213 out: 4214 space_info->chunk_alloc = 0; 4215 spin_unlock(&space_info->lock); 4216 mutex_unlock(&fs_info->chunk_mutex); 4217 4218 return ret; 4219 } 4220 4221 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type) 4222 { 4223 u64 num_dev; 4224 4225 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4226 if (!num_dev) 4227 num_dev = fs_info->fs_devices->rw_devices; 4228 4229 return num_dev; 4230 } 4231 4232 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4233 u64 bytes, 4234 u64 type) 4235 { 4236 struct btrfs_fs_info *fs_info = trans->fs_info; 4237 struct btrfs_space_info *info; 4238 u64 left; 4239 int ret = 0; 4240 4241 /* 4242 * Needed because we can end up allocating a system chunk and for an 4243 * atomic and race free space reservation in the chunk block reserve. 4244 */ 4245 lockdep_assert_held(&fs_info->chunk_mutex); 4246 4247 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4248 spin_lock(&info->lock); 4249 left = info->total_bytes - btrfs_space_info_used(info, true); 4250 spin_unlock(&info->lock); 4251 4252 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4253 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4254 left, bytes, type); 4255 btrfs_dump_space_info(fs_info, info, 0, 0); 4256 } 4257 4258 if (left < bytes) { 4259 u64 flags = btrfs_system_alloc_profile(fs_info); 4260 struct btrfs_block_group *bg; 4261 4262 /* 4263 * Ignore failure to create system chunk. We might end up not 4264 * needing it, as we might not need to COW all nodes/leafs from 4265 * the paths we visit in the chunk tree (they were already COWed 4266 * or created in the current transaction for example). 4267 */ 4268 bg = btrfs_create_chunk(trans, flags); 4269 if (IS_ERR(bg)) { 4270 ret = PTR_ERR(bg); 4271 } else { 4272 /* 4273 * We have a new chunk. We also need to activate it for 4274 * zoned filesystem. 4275 */ 4276 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4277 if (ret < 0) 4278 return; 4279 4280 /* 4281 * If we fail to add the chunk item here, we end up 4282 * trying again at phase 2 of chunk allocation, at 4283 * btrfs_create_pending_block_groups(). So ignore 4284 * any error here. An ENOSPC here could happen, due to 4285 * the cases described at do_chunk_alloc() - the system 4286 * block group we just created was just turned into RO 4287 * mode by a scrub for example, or a running discard 4288 * temporarily removed its free space entries, etc. 4289 */ 4290 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4291 } 4292 } 4293 4294 if (!ret) { 4295 ret = btrfs_block_rsv_add(fs_info, 4296 &fs_info->chunk_block_rsv, 4297 bytes, BTRFS_RESERVE_NO_FLUSH); 4298 if (!ret) 4299 trans->chunk_bytes_reserved += bytes; 4300 } 4301 } 4302 4303 /* 4304 * Reserve space in the system space for allocating or removing a chunk. 4305 * The caller must be holding fs_info->chunk_mutex. 4306 */ 4307 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4308 { 4309 struct btrfs_fs_info *fs_info = trans->fs_info; 4310 const u64 num_devs = get_profile_num_devs(fs_info, type); 4311 u64 bytes; 4312 4313 /* num_devs device items to update and 1 chunk item to add or remove. */ 4314 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4315 btrfs_calc_insert_metadata_size(fs_info, 1); 4316 4317 reserve_chunk_space(trans, bytes, type); 4318 } 4319 4320 /* 4321 * Reserve space in the system space, if needed, for doing a modification to the 4322 * chunk btree. 4323 * 4324 * @trans: A transaction handle. 4325 * @is_item_insertion: Indicate if the modification is for inserting a new item 4326 * in the chunk btree or if it's for the deletion or update 4327 * of an existing item. 4328 * 4329 * This is used in a context where we need to update the chunk btree outside 4330 * block group allocation and removal, to avoid a deadlock with a concurrent 4331 * task that is allocating a metadata or data block group and therefore needs to 4332 * update the chunk btree while holding the chunk mutex. After the update to the 4333 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4334 * 4335 */ 4336 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4337 bool is_item_insertion) 4338 { 4339 struct btrfs_fs_info *fs_info = trans->fs_info; 4340 u64 bytes; 4341 4342 if (is_item_insertion) 4343 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4344 else 4345 bytes = btrfs_calc_metadata_size(fs_info, 1); 4346 4347 mutex_lock(&fs_info->chunk_mutex); 4348 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4349 mutex_unlock(&fs_info->chunk_mutex); 4350 } 4351 4352 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4353 { 4354 struct btrfs_block_group *block_group; 4355 4356 block_group = btrfs_lookup_first_block_group(info, 0); 4357 while (block_group) { 4358 btrfs_wait_block_group_cache_done(block_group); 4359 spin_lock(&block_group->lock); 4360 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4361 &block_group->runtime_flags)) { 4362 struct btrfs_inode *inode = block_group->inode; 4363 4364 block_group->inode = NULL; 4365 spin_unlock(&block_group->lock); 4366 4367 ASSERT(block_group->io_ctl.inode == NULL); 4368 iput(&inode->vfs_inode); 4369 } else { 4370 spin_unlock(&block_group->lock); 4371 } 4372 block_group = btrfs_next_block_group(block_group); 4373 } 4374 } 4375 4376 /* 4377 * Must be called only after stopping all workers, since we could have block 4378 * group caching kthreads running, and therefore they could race with us if we 4379 * freed the block groups before stopping them. 4380 */ 4381 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4382 { 4383 struct btrfs_block_group *block_group; 4384 struct btrfs_space_info *space_info; 4385 struct btrfs_caching_control *caching_ctl; 4386 struct rb_node *n; 4387 4388 if (btrfs_is_zoned(info)) { 4389 if (info->active_meta_bg) { 4390 btrfs_put_block_group(info->active_meta_bg); 4391 info->active_meta_bg = NULL; 4392 } 4393 if (info->active_system_bg) { 4394 btrfs_put_block_group(info->active_system_bg); 4395 info->active_system_bg = NULL; 4396 } 4397 } 4398 4399 write_lock(&info->block_group_cache_lock); 4400 while (!list_empty(&info->caching_block_groups)) { 4401 caching_ctl = list_entry(info->caching_block_groups.next, 4402 struct btrfs_caching_control, list); 4403 list_del(&caching_ctl->list); 4404 btrfs_put_caching_control(caching_ctl); 4405 } 4406 write_unlock(&info->block_group_cache_lock); 4407 4408 spin_lock(&info->unused_bgs_lock); 4409 while (!list_empty(&info->unused_bgs)) { 4410 block_group = list_first_entry(&info->unused_bgs, 4411 struct btrfs_block_group, 4412 bg_list); 4413 list_del_init(&block_group->bg_list); 4414 btrfs_put_block_group(block_group); 4415 } 4416 4417 while (!list_empty(&info->reclaim_bgs)) { 4418 block_group = list_first_entry(&info->reclaim_bgs, 4419 struct btrfs_block_group, 4420 bg_list); 4421 list_del_init(&block_group->bg_list); 4422 btrfs_put_block_group(block_group); 4423 } 4424 spin_unlock(&info->unused_bgs_lock); 4425 4426 spin_lock(&info->zone_active_bgs_lock); 4427 while (!list_empty(&info->zone_active_bgs)) { 4428 block_group = list_first_entry(&info->zone_active_bgs, 4429 struct btrfs_block_group, 4430 active_bg_list); 4431 list_del_init(&block_group->active_bg_list); 4432 btrfs_put_block_group(block_group); 4433 } 4434 spin_unlock(&info->zone_active_bgs_lock); 4435 4436 write_lock(&info->block_group_cache_lock); 4437 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4438 block_group = rb_entry(n, struct btrfs_block_group, 4439 cache_node); 4440 rb_erase_cached(&block_group->cache_node, 4441 &info->block_group_cache_tree); 4442 RB_CLEAR_NODE(&block_group->cache_node); 4443 write_unlock(&info->block_group_cache_lock); 4444 4445 down_write(&block_group->space_info->groups_sem); 4446 list_del(&block_group->list); 4447 up_write(&block_group->space_info->groups_sem); 4448 4449 /* 4450 * We haven't cached this block group, which means we could 4451 * possibly have excluded extents on this block group. 4452 */ 4453 if (block_group->cached == BTRFS_CACHE_NO || 4454 block_group->cached == BTRFS_CACHE_ERROR) 4455 btrfs_free_excluded_extents(block_group); 4456 4457 btrfs_remove_free_space_cache(block_group); 4458 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4459 ASSERT(list_empty(&block_group->dirty_list)); 4460 ASSERT(list_empty(&block_group->io_list)); 4461 ASSERT(list_empty(&block_group->bg_list)); 4462 ASSERT(refcount_read(&block_group->refs) == 1); 4463 ASSERT(block_group->swap_extents == 0); 4464 btrfs_put_block_group(block_group); 4465 4466 write_lock(&info->block_group_cache_lock); 4467 } 4468 write_unlock(&info->block_group_cache_lock); 4469 4470 btrfs_release_global_block_rsv(info); 4471 4472 while (!list_empty(&info->space_info)) { 4473 space_info = list_entry(info->space_info.next, 4474 struct btrfs_space_info, 4475 list); 4476 4477 /* 4478 * Do not hide this behind enospc_debug, this is actually 4479 * important and indicates a real bug if this happens. 4480 */ 4481 if (WARN_ON(space_info->bytes_pinned > 0 || 4482 space_info->bytes_may_use > 0)) 4483 btrfs_dump_space_info(info, space_info, 0, 0); 4484 4485 /* 4486 * If there was a failure to cleanup a log tree, very likely due 4487 * to an IO failure on a writeback attempt of one or more of its 4488 * extent buffers, we could not do proper (and cheap) unaccounting 4489 * of their reserved space, so don't warn on bytes_reserved > 0 in 4490 * that case. 4491 */ 4492 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4493 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4494 if (WARN_ON(space_info->bytes_reserved > 0)) 4495 btrfs_dump_space_info(info, space_info, 0, 0); 4496 } 4497 4498 WARN_ON(space_info->reclaim_size > 0); 4499 list_del(&space_info->list); 4500 btrfs_sysfs_remove_space_info(space_info); 4501 } 4502 return 0; 4503 } 4504 4505 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4506 { 4507 atomic_inc(&cache->frozen); 4508 } 4509 4510 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4511 { 4512 struct btrfs_fs_info *fs_info = block_group->fs_info; 4513 bool cleanup; 4514 4515 spin_lock(&block_group->lock); 4516 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4517 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4518 spin_unlock(&block_group->lock); 4519 4520 if (cleanup) { 4521 struct btrfs_chunk_map *map; 4522 4523 map = btrfs_find_chunk_map(fs_info, block_group->start, 1); 4524 /* Logic error, can't happen. */ 4525 ASSERT(map); 4526 4527 btrfs_remove_chunk_map(fs_info, map); 4528 4529 /* Once for our lookup reference. */ 4530 btrfs_free_chunk_map(map); 4531 4532 /* 4533 * We may have left one free space entry and other possible 4534 * tasks trimming this block group have left 1 entry each one. 4535 * Free them if any. 4536 */ 4537 btrfs_remove_free_space_cache(block_group); 4538 } 4539 } 4540 4541 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4542 { 4543 bool ret = true; 4544 4545 spin_lock(&bg->lock); 4546 if (bg->ro) 4547 ret = false; 4548 else 4549 bg->swap_extents++; 4550 spin_unlock(&bg->lock); 4551 4552 return ret; 4553 } 4554 4555 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4556 { 4557 spin_lock(&bg->lock); 4558 ASSERT(!bg->ro); 4559 ASSERT(bg->swap_extents >= amount); 4560 bg->swap_extents -= amount; 4561 spin_unlock(&bg->lock); 4562 } 4563 4564 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4565 { 4566 if (size <= SZ_128K) 4567 return BTRFS_BG_SZ_SMALL; 4568 if (size <= SZ_8M) 4569 return BTRFS_BG_SZ_MEDIUM; 4570 return BTRFS_BG_SZ_LARGE; 4571 } 4572 4573 /* 4574 * Handle a block group allocating an extent in a size class 4575 * 4576 * @bg: The block group we allocated in. 4577 * @size_class: The size class of the allocation. 4578 * @force_wrong_size_class: Whether we are desperate enough to allow 4579 * mismatched size classes. 4580 * 4581 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4582 * case of a race that leads to the wrong size class without 4583 * force_wrong_size_class set. 4584 * 4585 * find_free_extent will skip block groups with a mismatched size class until 4586 * it really needs to avoid ENOSPC. In that case it will set 4587 * force_wrong_size_class. However, if a block group is newly allocated and 4588 * doesn't yet have a size class, then it is possible for two allocations of 4589 * different sizes to race and both try to use it. The loser is caught here and 4590 * has to retry. 4591 */ 4592 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4593 enum btrfs_block_group_size_class size_class, 4594 bool force_wrong_size_class) 4595 { 4596 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4597 4598 /* The new allocation is in the right size class, do nothing */ 4599 if (bg->size_class == size_class) 4600 return 0; 4601 /* 4602 * The new allocation is in a mismatched size class. 4603 * This means one of two things: 4604 * 4605 * 1. Two tasks in find_free_extent for different size_classes raced 4606 * and hit the same empty block_group. Make the loser try again. 4607 * 2. A call to find_free_extent got desperate enough to set 4608 * 'force_wrong_slab'. Don't change the size_class, but allow the 4609 * allocation. 4610 */ 4611 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4612 if (force_wrong_size_class) 4613 return 0; 4614 return -EAGAIN; 4615 } 4616 /* 4617 * The happy new block group case: the new allocation is the first 4618 * one in the block_group so we set size_class. 4619 */ 4620 bg->size_class = size_class; 4621 4622 return 0; 4623 } 4624 4625 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg) 4626 { 4627 if (btrfs_is_zoned(bg->fs_info)) 4628 return false; 4629 if (!btrfs_is_block_group_data_only(bg)) 4630 return false; 4631 return true; 4632 } 4633