xref: /linux/fs/btrfs/block-group.c (revision 5099dea0a59f1c89525bb0ceac36689178a4c125)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "disk-io.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 
20 /*
21  * Return target flags in extended format or 0 if restripe for this chunk_type
22  * is not in progress
23  *
24  * Should be called with balance_lock held
25  */
26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 {
28 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 	u64 target = 0;
30 
31 	if (!bctl)
32 		return 0;
33 
34 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 	}
44 
45 	return target;
46 }
47 
48 /*
49  * @flags: available profiles in extended format (see ctree.h)
50  *
51  * Return reduced profile in chunk format.  If profile changing is in progress
52  * (either running or paused) picks the target profile (if it's already
53  * available), otherwise falls back to plain reducing.
54  */
55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 {
57 	u64 num_devices = fs_info->fs_devices->rw_devices;
58 	u64 target;
59 	u64 raid_type;
60 	u64 allowed = 0;
61 
62 	/*
63 	 * See if restripe for this chunk_type is in progress, if so try to
64 	 * reduce to the target profile
65 	 */
66 	spin_lock(&fs_info->balance_lock);
67 	target = get_restripe_target(fs_info, flags);
68 	if (target) {
69 		/* Pick target profile only if it's already available */
70 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
71 			spin_unlock(&fs_info->balance_lock);
72 			return extended_to_chunk(target);
73 		}
74 	}
75 	spin_unlock(&fs_info->balance_lock);
76 
77 	/* First, mask out the RAID levels which aren't possible */
78 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
79 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
80 			allowed |= btrfs_raid_array[raid_type].bg_flag;
81 	}
82 	allowed &= flags;
83 
84 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
85 		allowed = BTRFS_BLOCK_GROUP_RAID6;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
87 		allowed = BTRFS_BLOCK_GROUP_RAID5;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
89 		allowed = BTRFS_BLOCK_GROUP_RAID10;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
91 		allowed = BTRFS_BLOCK_GROUP_RAID1;
92 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
93 		allowed = BTRFS_BLOCK_GROUP_RAID0;
94 
95 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
96 
97 	return extended_to_chunk(flags | allowed);
98 }
99 
100 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
101 {
102 	unsigned seq;
103 	u64 flags;
104 
105 	do {
106 		flags = orig_flags;
107 		seq = read_seqbegin(&fs_info->profiles_lock);
108 
109 		if (flags & BTRFS_BLOCK_GROUP_DATA)
110 			flags |= fs_info->avail_data_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
112 			flags |= fs_info->avail_system_alloc_bits;
113 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
114 			flags |= fs_info->avail_metadata_alloc_bits;
115 	} while (read_seqretry(&fs_info->profiles_lock, seq));
116 
117 	return btrfs_reduce_alloc_profile(fs_info, flags);
118 }
119 
120 void btrfs_get_block_group(struct btrfs_block_group *cache)
121 {
122 	atomic_inc(&cache->count);
123 }
124 
125 void btrfs_put_block_group(struct btrfs_block_group *cache)
126 {
127 	if (atomic_dec_and_test(&cache->count)) {
128 		WARN_ON(cache->pinned > 0);
129 		WARN_ON(cache->reserved > 0);
130 
131 		/*
132 		 * A block_group shouldn't be on the discard_list anymore.
133 		 * Remove the block_group from the discard_list to prevent us
134 		 * from causing a panic due to NULL pointer dereference.
135 		 */
136 		if (WARN_ON(!list_empty(&cache->discard_list)))
137 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
138 						  cache);
139 
140 		/*
141 		 * If not empty, someone is still holding mutex of
142 		 * full_stripe_lock, which can only be released by caller.
143 		 * And it will definitely cause use-after-free when caller
144 		 * tries to release full stripe lock.
145 		 *
146 		 * No better way to resolve, but only to warn.
147 		 */
148 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
149 		kfree(cache->free_space_ctl);
150 		kfree(cache);
151 	}
152 }
153 
154 /*
155  * This adds the block group to the fs_info rb tree for the block group cache
156  */
157 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
158 				       struct btrfs_block_group *block_group)
159 {
160 	struct rb_node **p;
161 	struct rb_node *parent = NULL;
162 	struct btrfs_block_group *cache;
163 
164 	spin_lock(&info->block_group_cache_lock);
165 	p = &info->block_group_cache_tree.rb_node;
166 
167 	while (*p) {
168 		parent = *p;
169 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
170 		if (block_group->start < cache->start) {
171 			p = &(*p)->rb_left;
172 		} else if (block_group->start > cache->start) {
173 			p = &(*p)->rb_right;
174 		} else {
175 			spin_unlock(&info->block_group_cache_lock);
176 			return -EEXIST;
177 		}
178 	}
179 
180 	rb_link_node(&block_group->cache_node, parent, p);
181 	rb_insert_color(&block_group->cache_node,
182 			&info->block_group_cache_tree);
183 
184 	if (info->first_logical_byte > block_group->start)
185 		info->first_logical_byte = block_group->start;
186 
187 	spin_unlock(&info->block_group_cache_lock);
188 
189 	return 0;
190 }
191 
192 /*
193  * This will return the block group at or after bytenr if contains is 0, else
194  * it will return the block group that contains the bytenr
195  */
196 static struct btrfs_block_group *block_group_cache_tree_search(
197 		struct btrfs_fs_info *info, u64 bytenr, int contains)
198 {
199 	struct btrfs_block_group *cache, *ret = NULL;
200 	struct rb_node *n;
201 	u64 end, start;
202 
203 	spin_lock(&info->block_group_cache_lock);
204 	n = info->block_group_cache_tree.rb_node;
205 
206 	while (n) {
207 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
208 		end = cache->start + cache->length - 1;
209 		start = cache->start;
210 
211 		if (bytenr < start) {
212 			if (!contains && (!ret || start < ret->start))
213 				ret = cache;
214 			n = n->rb_left;
215 		} else if (bytenr > start) {
216 			if (contains && bytenr <= end) {
217 				ret = cache;
218 				break;
219 			}
220 			n = n->rb_right;
221 		} else {
222 			ret = cache;
223 			break;
224 		}
225 	}
226 	if (ret) {
227 		btrfs_get_block_group(ret);
228 		if (bytenr == 0 && info->first_logical_byte > ret->start)
229 			info->first_logical_byte = ret->start;
230 	}
231 	spin_unlock(&info->block_group_cache_lock);
232 
233 	return ret;
234 }
235 
236 /*
237  * Return the block group that starts at or after bytenr
238  */
239 struct btrfs_block_group *btrfs_lookup_first_block_group(
240 		struct btrfs_fs_info *info, u64 bytenr)
241 {
242 	return block_group_cache_tree_search(info, bytenr, 0);
243 }
244 
245 /*
246  * Return the block group that contains the given bytenr
247  */
248 struct btrfs_block_group *btrfs_lookup_block_group(
249 		struct btrfs_fs_info *info, u64 bytenr)
250 {
251 	return block_group_cache_tree_search(info, bytenr, 1);
252 }
253 
254 struct btrfs_block_group *btrfs_next_block_group(
255 		struct btrfs_block_group *cache)
256 {
257 	struct btrfs_fs_info *fs_info = cache->fs_info;
258 	struct rb_node *node;
259 
260 	spin_lock(&fs_info->block_group_cache_lock);
261 
262 	/* If our block group was removed, we need a full search. */
263 	if (RB_EMPTY_NODE(&cache->cache_node)) {
264 		const u64 next_bytenr = cache->start + cache->length;
265 
266 		spin_unlock(&fs_info->block_group_cache_lock);
267 		btrfs_put_block_group(cache);
268 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
269 	}
270 	node = rb_next(&cache->cache_node);
271 	btrfs_put_block_group(cache);
272 	if (node) {
273 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
274 		btrfs_get_block_group(cache);
275 	} else
276 		cache = NULL;
277 	spin_unlock(&fs_info->block_group_cache_lock);
278 	return cache;
279 }
280 
281 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
282 {
283 	struct btrfs_block_group *bg;
284 	bool ret = true;
285 
286 	bg = btrfs_lookup_block_group(fs_info, bytenr);
287 	if (!bg)
288 		return false;
289 
290 	spin_lock(&bg->lock);
291 	if (bg->ro)
292 		ret = false;
293 	else
294 		atomic_inc(&bg->nocow_writers);
295 	spin_unlock(&bg->lock);
296 
297 	/* No put on block group, done by btrfs_dec_nocow_writers */
298 	if (!ret)
299 		btrfs_put_block_group(bg);
300 
301 	return ret;
302 }
303 
304 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
305 {
306 	struct btrfs_block_group *bg;
307 
308 	bg = btrfs_lookup_block_group(fs_info, bytenr);
309 	ASSERT(bg);
310 	if (atomic_dec_and_test(&bg->nocow_writers))
311 		wake_up_var(&bg->nocow_writers);
312 	/*
313 	 * Once for our lookup and once for the lookup done by a previous call
314 	 * to btrfs_inc_nocow_writers()
315 	 */
316 	btrfs_put_block_group(bg);
317 	btrfs_put_block_group(bg);
318 }
319 
320 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
321 {
322 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
323 }
324 
325 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
326 					const u64 start)
327 {
328 	struct btrfs_block_group *bg;
329 
330 	bg = btrfs_lookup_block_group(fs_info, start);
331 	ASSERT(bg);
332 	if (atomic_dec_and_test(&bg->reservations))
333 		wake_up_var(&bg->reservations);
334 	btrfs_put_block_group(bg);
335 }
336 
337 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
338 {
339 	struct btrfs_space_info *space_info = bg->space_info;
340 
341 	ASSERT(bg->ro);
342 
343 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
344 		return;
345 
346 	/*
347 	 * Our block group is read only but before we set it to read only,
348 	 * some task might have had allocated an extent from it already, but it
349 	 * has not yet created a respective ordered extent (and added it to a
350 	 * root's list of ordered extents).
351 	 * Therefore wait for any task currently allocating extents, since the
352 	 * block group's reservations counter is incremented while a read lock
353 	 * on the groups' semaphore is held and decremented after releasing
354 	 * the read access on that semaphore and creating the ordered extent.
355 	 */
356 	down_write(&space_info->groups_sem);
357 	up_write(&space_info->groups_sem);
358 
359 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
360 }
361 
362 struct btrfs_caching_control *btrfs_get_caching_control(
363 		struct btrfs_block_group *cache)
364 {
365 	struct btrfs_caching_control *ctl;
366 
367 	spin_lock(&cache->lock);
368 	if (!cache->caching_ctl) {
369 		spin_unlock(&cache->lock);
370 		return NULL;
371 	}
372 
373 	ctl = cache->caching_ctl;
374 	refcount_inc(&ctl->count);
375 	spin_unlock(&cache->lock);
376 	return ctl;
377 }
378 
379 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
380 {
381 	if (refcount_dec_and_test(&ctl->count))
382 		kfree(ctl);
383 }
384 
385 /*
386  * When we wait for progress in the block group caching, its because our
387  * allocation attempt failed at least once.  So, we must sleep and let some
388  * progress happen before we try again.
389  *
390  * This function will sleep at least once waiting for new free space to show
391  * up, and then it will check the block group free space numbers for our min
392  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
393  * a free extent of a given size, but this is a good start.
394  *
395  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
396  * any of the information in this block group.
397  */
398 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
399 					   u64 num_bytes)
400 {
401 	struct btrfs_caching_control *caching_ctl;
402 
403 	caching_ctl = btrfs_get_caching_control(cache);
404 	if (!caching_ctl)
405 		return;
406 
407 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
408 		   (cache->free_space_ctl->free_space >= num_bytes));
409 
410 	btrfs_put_caching_control(caching_ctl);
411 }
412 
413 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
414 {
415 	struct btrfs_caching_control *caching_ctl;
416 	int ret = 0;
417 
418 	caching_ctl = btrfs_get_caching_control(cache);
419 	if (!caching_ctl)
420 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
421 
422 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
423 	if (cache->cached == BTRFS_CACHE_ERROR)
424 		ret = -EIO;
425 	btrfs_put_caching_control(caching_ctl);
426 	return ret;
427 }
428 
429 #ifdef CONFIG_BTRFS_DEBUG
430 static void fragment_free_space(struct btrfs_block_group *block_group)
431 {
432 	struct btrfs_fs_info *fs_info = block_group->fs_info;
433 	u64 start = block_group->start;
434 	u64 len = block_group->length;
435 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
436 		fs_info->nodesize : fs_info->sectorsize;
437 	u64 step = chunk << 1;
438 
439 	while (len > chunk) {
440 		btrfs_remove_free_space(block_group, start, chunk);
441 		start += step;
442 		if (len < step)
443 			len = 0;
444 		else
445 			len -= step;
446 	}
447 }
448 #endif
449 
450 /*
451  * This is only called by btrfs_cache_block_group, since we could have freed
452  * extents we need to check the pinned_extents for any extents that can't be
453  * used yet since their free space will be released as soon as the transaction
454  * commits.
455  */
456 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
457 {
458 	struct btrfs_fs_info *info = block_group->fs_info;
459 	u64 extent_start, extent_end, size, total_added = 0;
460 	int ret;
461 
462 	while (start < end) {
463 		ret = find_first_extent_bit(&info->excluded_extents, start,
464 					    &extent_start, &extent_end,
465 					    EXTENT_DIRTY | EXTENT_UPTODATE,
466 					    NULL);
467 		if (ret)
468 			break;
469 
470 		if (extent_start <= start) {
471 			start = extent_end + 1;
472 		} else if (extent_start > start && extent_start < end) {
473 			size = extent_start - start;
474 			total_added += size;
475 			ret = btrfs_add_free_space_async_trimmed(block_group,
476 								 start, size);
477 			BUG_ON(ret); /* -ENOMEM or logic error */
478 			start = extent_end + 1;
479 		} else {
480 			break;
481 		}
482 	}
483 
484 	if (start < end) {
485 		size = end - start;
486 		total_added += size;
487 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
488 							 size);
489 		BUG_ON(ret); /* -ENOMEM or logic error */
490 	}
491 
492 	return total_added;
493 }
494 
495 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
496 {
497 	struct btrfs_block_group *block_group = caching_ctl->block_group;
498 	struct btrfs_fs_info *fs_info = block_group->fs_info;
499 	struct btrfs_root *extent_root = fs_info->extent_root;
500 	struct btrfs_path *path;
501 	struct extent_buffer *leaf;
502 	struct btrfs_key key;
503 	u64 total_found = 0;
504 	u64 last = 0;
505 	u32 nritems;
506 	int ret;
507 	bool wakeup = true;
508 
509 	path = btrfs_alloc_path();
510 	if (!path)
511 		return -ENOMEM;
512 
513 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
514 
515 #ifdef CONFIG_BTRFS_DEBUG
516 	/*
517 	 * If we're fragmenting we don't want to make anybody think we can
518 	 * allocate from this block group until we've had a chance to fragment
519 	 * the free space.
520 	 */
521 	if (btrfs_should_fragment_free_space(block_group))
522 		wakeup = false;
523 #endif
524 	/*
525 	 * We don't want to deadlock with somebody trying to allocate a new
526 	 * extent for the extent root while also trying to search the extent
527 	 * root to add free space.  So we skip locking and search the commit
528 	 * root, since its read-only
529 	 */
530 	path->skip_locking = 1;
531 	path->search_commit_root = 1;
532 	path->reada = READA_FORWARD;
533 
534 	key.objectid = last;
535 	key.offset = 0;
536 	key.type = BTRFS_EXTENT_ITEM_KEY;
537 
538 next:
539 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
540 	if (ret < 0)
541 		goto out;
542 
543 	leaf = path->nodes[0];
544 	nritems = btrfs_header_nritems(leaf);
545 
546 	while (1) {
547 		if (btrfs_fs_closing(fs_info) > 1) {
548 			last = (u64)-1;
549 			break;
550 		}
551 
552 		if (path->slots[0] < nritems) {
553 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
554 		} else {
555 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
556 			if (ret)
557 				break;
558 
559 			if (need_resched() ||
560 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
561 				if (wakeup)
562 					caching_ctl->progress = last;
563 				btrfs_release_path(path);
564 				up_read(&fs_info->commit_root_sem);
565 				mutex_unlock(&caching_ctl->mutex);
566 				cond_resched();
567 				mutex_lock(&caching_ctl->mutex);
568 				down_read(&fs_info->commit_root_sem);
569 				goto next;
570 			}
571 
572 			ret = btrfs_next_leaf(extent_root, path);
573 			if (ret < 0)
574 				goto out;
575 			if (ret)
576 				break;
577 			leaf = path->nodes[0];
578 			nritems = btrfs_header_nritems(leaf);
579 			continue;
580 		}
581 
582 		if (key.objectid < last) {
583 			key.objectid = last;
584 			key.offset = 0;
585 			key.type = BTRFS_EXTENT_ITEM_KEY;
586 
587 			if (wakeup)
588 				caching_ctl->progress = last;
589 			btrfs_release_path(path);
590 			goto next;
591 		}
592 
593 		if (key.objectid < block_group->start) {
594 			path->slots[0]++;
595 			continue;
596 		}
597 
598 		if (key.objectid >= block_group->start + block_group->length)
599 			break;
600 
601 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
602 		    key.type == BTRFS_METADATA_ITEM_KEY) {
603 			total_found += add_new_free_space(block_group, last,
604 							  key.objectid);
605 			if (key.type == BTRFS_METADATA_ITEM_KEY)
606 				last = key.objectid +
607 					fs_info->nodesize;
608 			else
609 				last = key.objectid + key.offset;
610 
611 			if (total_found > CACHING_CTL_WAKE_UP) {
612 				total_found = 0;
613 				if (wakeup)
614 					wake_up(&caching_ctl->wait);
615 			}
616 		}
617 		path->slots[0]++;
618 	}
619 	ret = 0;
620 
621 	total_found += add_new_free_space(block_group, last,
622 				block_group->start + block_group->length);
623 	caching_ctl->progress = (u64)-1;
624 
625 out:
626 	btrfs_free_path(path);
627 	return ret;
628 }
629 
630 static noinline void caching_thread(struct btrfs_work *work)
631 {
632 	struct btrfs_block_group *block_group;
633 	struct btrfs_fs_info *fs_info;
634 	struct btrfs_caching_control *caching_ctl;
635 	int ret;
636 
637 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
638 	block_group = caching_ctl->block_group;
639 	fs_info = block_group->fs_info;
640 
641 	mutex_lock(&caching_ctl->mutex);
642 	down_read(&fs_info->commit_root_sem);
643 
644 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
645 		ret = load_free_space_tree(caching_ctl);
646 	else
647 		ret = load_extent_tree_free(caching_ctl);
648 
649 	spin_lock(&block_group->lock);
650 	block_group->caching_ctl = NULL;
651 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
652 	spin_unlock(&block_group->lock);
653 
654 #ifdef CONFIG_BTRFS_DEBUG
655 	if (btrfs_should_fragment_free_space(block_group)) {
656 		u64 bytes_used;
657 
658 		spin_lock(&block_group->space_info->lock);
659 		spin_lock(&block_group->lock);
660 		bytes_used = block_group->length - block_group->used;
661 		block_group->space_info->bytes_used += bytes_used >> 1;
662 		spin_unlock(&block_group->lock);
663 		spin_unlock(&block_group->space_info->lock);
664 		fragment_free_space(block_group);
665 	}
666 #endif
667 
668 	caching_ctl->progress = (u64)-1;
669 
670 	up_read(&fs_info->commit_root_sem);
671 	btrfs_free_excluded_extents(block_group);
672 	mutex_unlock(&caching_ctl->mutex);
673 
674 	wake_up(&caching_ctl->wait);
675 
676 	btrfs_put_caching_control(caching_ctl);
677 	btrfs_put_block_group(block_group);
678 }
679 
680 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
681 {
682 	DEFINE_WAIT(wait);
683 	struct btrfs_fs_info *fs_info = cache->fs_info;
684 	struct btrfs_caching_control *caching_ctl;
685 	int ret = 0;
686 
687 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
688 	if (!caching_ctl)
689 		return -ENOMEM;
690 
691 	INIT_LIST_HEAD(&caching_ctl->list);
692 	mutex_init(&caching_ctl->mutex);
693 	init_waitqueue_head(&caching_ctl->wait);
694 	caching_ctl->block_group = cache;
695 	caching_ctl->progress = cache->start;
696 	refcount_set(&caching_ctl->count, 1);
697 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
698 
699 	spin_lock(&cache->lock);
700 	/*
701 	 * This should be a rare occasion, but this could happen I think in the
702 	 * case where one thread starts to load the space cache info, and then
703 	 * some other thread starts a transaction commit which tries to do an
704 	 * allocation while the other thread is still loading the space cache
705 	 * info.  The previous loop should have kept us from choosing this block
706 	 * group, but if we've moved to the state where we will wait on caching
707 	 * block groups we need to first check if we're doing a fast load here,
708 	 * so we can wait for it to finish, otherwise we could end up allocating
709 	 * from a block group who's cache gets evicted for one reason or
710 	 * another.
711 	 */
712 	while (cache->cached == BTRFS_CACHE_FAST) {
713 		struct btrfs_caching_control *ctl;
714 
715 		ctl = cache->caching_ctl;
716 		refcount_inc(&ctl->count);
717 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
718 		spin_unlock(&cache->lock);
719 
720 		schedule();
721 
722 		finish_wait(&ctl->wait, &wait);
723 		btrfs_put_caching_control(ctl);
724 		spin_lock(&cache->lock);
725 	}
726 
727 	if (cache->cached != BTRFS_CACHE_NO) {
728 		spin_unlock(&cache->lock);
729 		kfree(caching_ctl);
730 		return 0;
731 	}
732 	WARN_ON(cache->caching_ctl);
733 	cache->caching_ctl = caching_ctl;
734 	cache->cached = BTRFS_CACHE_FAST;
735 	spin_unlock(&cache->lock);
736 
737 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
738 		mutex_lock(&caching_ctl->mutex);
739 		ret = load_free_space_cache(cache);
740 
741 		spin_lock(&cache->lock);
742 		if (ret == 1) {
743 			cache->caching_ctl = NULL;
744 			cache->cached = BTRFS_CACHE_FINISHED;
745 			cache->last_byte_to_unpin = (u64)-1;
746 			caching_ctl->progress = (u64)-1;
747 		} else {
748 			if (load_cache_only) {
749 				cache->caching_ctl = NULL;
750 				cache->cached = BTRFS_CACHE_NO;
751 			} else {
752 				cache->cached = BTRFS_CACHE_STARTED;
753 				cache->has_caching_ctl = 1;
754 			}
755 		}
756 		spin_unlock(&cache->lock);
757 #ifdef CONFIG_BTRFS_DEBUG
758 		if (ret == 1 &&
759 		    btrfs_should_fragment_free_space(cache)) {
760 			u64 bytes_used;
761 
762 			spin_lock(&cache->space_info->lock);
763 			spin_lock(&cache->lock);
764 			bytes_used = cache->length - cache->used;
765 			cache->space_info->bytes_used += bytes_used >> 1;
766 			spin_unlock(&cache->lock);
767 			spin_unlock(&cache->space_info->lock);
768 			fragment_free_space(cache);
769 		}
770 #endif
771 		mutex_unlock(&caching_ctl->mutex);
772 
773 		wake_up(&caching_ctl->wait);
774 		if (ret == 1) {
775 			btrfs_put_caching_control(caching_ctl);
776 			btrfs_free_excluded_extents(cache);
777 			return 0;
778 		}
779 	} else {
780 		/*
781 		 * We're either using the free space tree or no caching at all.
782 		 * Set cached to the appropriate value and wakeup any waiters.
783 		 */
784 		spin_lock(&cache->lock);
785 		if (load_cache_only) {
786 			cache->caching_ctl = NULL;
787 			cache->cached = BTRFS_CACHE_NO;
788 		} else {
789 			cache->cached = BTRFS_CACHE_STARTED;
790 			cache->has_caching_ctl = 1;
791 		}
792 		spin_unlock(&cache->lock);
793 		wake_up(&caching_ctl->wait);
794 	}
795 
796 	if (load_cache_only) {
797 		btrfs_put_caching_control(caching_ctl);
798 		return 0;
799 	}
800 
801 	down_write(&fs_info->commit_root_sem);
802 	refcount_inc(&caching_ctl->count);
803 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
804 	up_write(&fs_info->commit_root_sem);
805 
806 	btrfs_get_block_group(cache);
807 
808 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
809 
810 	return ret;
811 }
812 
813 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
814 {
815 	u64 extra_flags = chunk_to_extended(flags) &
816 				BTRFS_EXTENDED_PROFILE_MASK;
817 
818 	write_seqlock(&fs_info->profiles_lock);
819 	if (flags & BTRFS_BLOCK_GROUP_DATA)
820 		fs_info->avail_data_alloc_bits &= ~extra_flags;
821 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
822 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
823 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
824 		fs_info->avail_system_alloc_bits &= ~extra_flags;
825 	write_sequnlock(&fs_info->profiles_lock);
826 }
827 
828 /*
829  * Clear incompat bits for the following feature(s):
830  *
831  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
832  *            in the whole filesystem
833  *
834  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
835  */
836 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
837 {
838 	bool found_raid56 = false;
839 	bool found_raid1c34 = false;
840 
841 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
842 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
843 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
844 		struct list_head *head = &fs_info->space_info;
845 		struct btrfs_space_info *sinfo;
846 
847 		list_for_each_entry_rcu(sinfo, head, list) {
848 			down_read(&sinfo->groups_sem);
849 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
850 				found_raid56 = true;
851 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
852 				found_raid56 = true;
853 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
854 				found_raid1c34 = true;
855 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
856 				found_raid1c34 = true;
857 			up_read(&sinfo->groups_sem);
858 		}
859 		if (!found_raid56)
860 			btrfs_clear_fs_incompat(fs_info, RAID56);
861 		if (!found_raid1c34)
862 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
863 	}
864 }
865 
866 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
867 			     u64 group_start, struct extent_map *em)
868 {
869 	struct btrfs_fs_info *fs_info = trans->fs_info;
870 	struct btrfs_root *root = fs_info->extent_root;
871 	struct btrfs_path *path;
872 	struct btrfs_block_group *block_group;
873 	struct btrfs_free_cluster *cluster;
874 	struct btrfs_root *tree_root = fs_info->tree_root;
875 	struct btrfs_key key;
876 	struct inode *inode;
877 	struct kobject *kobj = NULL;
878 	int ret;
879 	int index;
880 	int factor;
881 	struct btrfs_caching_control *caching_ctl = NULL;
882 	bool remove_em;
883 	bool remove_rsv = false;
884 
885 	block_group = btrfs_lookup_block_group(fs_info, group_start);
886 	BUG_ON(!block_group);
887 	BUG_ON(!block_group->ro);
888 
889 	trace_btrfs_remove_block_group(block_group);
890 	/*
891 	 * Free the reserved super bytes from this block group before
892 	 * remove it.
893 	 */
894 	btrfs_free_excluded_extents(block_group);
895 	btrfs_free_ref_tree_range(fs_info, block_group->start,
896 				  block_group->length);
897 
898 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
899 	factor = btrfs_bg_type_to_factor(block_group->flags);
900 
901 	/* make sure this block group isn't part of an allocation cluster */
902 	cluster = &fs_info->data_alloc_cluster;
903 	spin_lock(&cluster->refill_lock);
904 	btrfs_return_cluster_to_free_space(block_group, cluster);
905 	spin_unlock(&cluster->refill_lock);
906 
907 	/*
908 	 * make sure this block group isn't part of a metadata
909 	 * allocation cluster
910 	 */
911 	cluster = &fs_info->meta_alloc_cluster;
912 	spin_lock(&cluster->refill_lock);
913 	btrfs_return_cluster_to_free_space(block_group, cluster);
914 	spin_unlock(&cluster->refill_lock);
915 
916 	path = btrfs_alloc_path();
917 	if (!path) {
918 		ret = -ENOMEM;
919 		goto out_put_group;
920 	}
921 
922 	/*
923 	 * get the inode first so any iput calls done for the io_list
924 	 * aren't the final iput (no unlinks allowed now)
925 	 */
926 	inode = lookup_free_space_inode(block_group, path);
927 
928 	mutex_lock(&trans->transaction->cache_write_mutex);
929 	/*
930 	 * Make sure our free space cache IO is done before removing the
931 	 * free space inode
932 	 */
933 	spin_lock(&trans->transaction->dirty_bgs_lock);
934 	if (!list_empty(&block_group->io_list)) {
935 		list_del_init(&block_group->io_list);
936 
937 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
938 
939 		spin_unlock(&trans->transaction->dirty_bgs_lock);
940 		btrfs_wait_cache_io(trans, block_group, path);
941 		btrfs_put_block_group(block_group);
942 		spin_lock(&trans->transaction->dirty_bgs_lock);
943 	}
944 
945 	if (!list_empty(&block_group->dirty_list)) {
946 		list_del_init(&block_group->dirty_list);
947 		remove_rsv = true;
948 		btrfs_put_block_group(block_group);
949 	}
950 	spin_unlock(&trans->transaction->dirty_bgs_lock);
951 	mutex_unlock(&trans->transaction->cache_write_mutex);
952 
953 	if (!IS_ERR(inode)) {
954 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
955 		if (ret) {
956 			btrfs_add_delayed_iput(inode);
957 			goto out_put_group;
958 		}
959 		clear_nlink(inode);
960 		/* One for the block groups ref */
961 		spin_lock(&block_group->lock);
962 		if (block_group->iref) {
963 			block_group->iref = 0;
964 			block_group->inode = NULL;
965 			spin_unlock(&block_group->lock);
966 			iput(inode);
967 		} else {
968 			spin_unlock(&block_group->lock);
969 		}
970 		/* One for our lookup ref */
971 		btrfs_add_delayed_iput(inode);
972 	}
973 
974 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
975 	key.type = 0;
976 	key.offset = block_group->start;
977 
978 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
979 	if (ret < 0)
980 		goto out_put_group;
981 	if (ret > 0)
982 		btrfs_release_path(path);
983 	if (ret == 0) {
984 		ret = btrfs_del_item(trans, tree_root, path);
985 		if (ret)
986 			goto out_put_group;
987 		btrfs_release_path(path);
988 	}
989 
990 	spin_lock(&fs_info->block_group_cache_lock);
991 	rb_erase(&block_group->cache_node,
992 		 &fs_info->block_group_cache_tree);
993 	RB_CLEAR_NODE(&block_group->cache_node);
994 
995 	if (fs_info->first_logical_byte == block_group->start)
996 		fs_info->first_logical_byte = (u64)-1;
997 	spin_unlock(&fs_info->block_group_cache_lock);
998 
999 	down_write(&block_group->space_info->groups_sem);
1000 	/*
1001 	 * we must use list_del_init so people can check to see if they
1002 	 * are still on the list after taking the semaphore
1003 	 */
1004 	list_del_init(&block_group->list);
1005 	if (list_empty(&block_group->space_info->block_groups[index])) {
1006 		kobj = block_group->space_info->block_group_kobjs[index];
1007 		block_group->space_info->block_group_kobjs[index] = NULL;
1008 		clear_avail_alloc_bits(fs_info, block_group->flags);
1009 	}
1010 	up_write(&block_group->space_info->groups_sem);
1011 	clear_incompat_bg_bits(fs_info, block_group->flags);
1012 	if (kobj) {
1013 		kobject_del(kobj);
1014 		kobject_put(kobj);
1015 	}
1016 
1017 	if (block_group->has_caching_ctl)
1018 		caching_ctl = btrfs_get_caching_control(block_group);
1019 	if (block_group->cached == BTRFS_CACHE_STARTED)
1020 		btrfs_wait_block_group_cache_done(block_group);
1021 	if (block_group->has_caching_ctl) {
1022 		down_write(&fs_info->commit_root_sem);
1023 		if (!caching_ctl) {
1024 			struct btrfs_caching_control *ctl;
1025 
1026 			list_for_each_entry(ctl,
1027 				    &fs_info->caching_block_groups, list)
1028 				if (ctl->block_group == block_group) {
1029 					caching_ctl = ctl;
1030 					refcount_inc(&caching_ctl->count);
1031 					break;
1032 				}
1033 		}
1034 		if (caching_ctl)
1035 			list_del_init(&caching_ctl->list);
1036 		up_write(&fs_info->commit_root_sem);
1037 		if (caching_ctl) {
1038 			/* Once for the caching bgs list and once for us. */
1039 			btrfs_put_caching_control(caching_ctl);
1040 			btrfs_put_caching_control(caching_ctl);
1041 		}
1042 	}
1043 
1044 	spin_lock(&trans->transaction->dirty_bgs_lock);
1045 	WARN_ON(!list_empty(&block_group->dirty_list));
1046 	WARN_ON(!list_empty(&block_group->io_list));
1047 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1048 
1049 	btrfs_remove_free_space_cache(block_group);
1050 
1051 	spin_lock(&block_group->space_info->lock);
1052 	list_del_init(&block_group->ro_list);
1053 
1054 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1055 		WARN_ON(block_group->space_info->total_bytes
1056 			< block_group->length);
1057 		WARN_ON(block_group->space_info->bytes_readonly
1058 			< block_group->length);
1059 		WARN_ON(block_group->space_info->disk_total
1060 			< block_group->length * factor);
1061 	}
1062 	block_group->space_info->total_bytes -= block_group->length;
1063 	block_group->space_info->bytes_readonly -= block_group->length;
1064 	block_group->space_info->disk_total -= block_group->length * factor;
1065 
1066 	spin_unlock(&block_group->space_info->lock);
1067 
1068 	key.objectid = block_group->start;
1069 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1070 	key.offset = block_group->length;
1071 
1072 	mutex_lock(&fs_info->chunk_mutex);
1073 	spin_lock(&block_group->lock);
1074 	block_group->removed = 1;
1075 	/*
1076 	 * At this point trimming can't start on this block group, because we
1077 	 * removed the block group from the tree fs_info->block_group_cache_tree
1078 	 * so no one can't find it anymore and even if someone already got this
1079 	 * block group before we removed it from the rbtree, they have already
1080 	 * incremented block_group->trimming - if they didn't, they won't find
1081 	 * any free space entries because we already removed them all when we
1082 	 * called btrfs_remove_free_space_cache().
1083 	 *
1084 	 * And we must not remove the extent map from the fs_info->mapping_tree
1085 	 * to prevent the same logical address range and physical device space
1086 	 * ranges from being reused for a new block group. This is because our
1087 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1088 	 * completely transactionless, so while it is trimming a range the
1089 	 * currently running transaction might finish and a new one start,
1090 	 * allowing for new block groups to be created that can reuse the same
1091 	 * physical device locations unless we take this special care.
1092 	 *
1093 	 * There may also be an implicit trim operation if the file system
1094 	 * is mounted with -odiscard. The same protections must remain
1095 	 * in place until the extents have been discarded completely when
1096 	 * the transaction commit has completed.
1097 	 */
1098 	remove_em = (atomic_read(&block_group->trimming) == 0);
1099 	spin_unlock(&block_group->lock);
1100 
1101 	mutex_unlock(&fs_info->chunk_mutex);
1102 
1103 	ret = remove_block_group_free_space(trans, block_group);
1104 	if (ret)
1105 		goto out_put_group;
1106 
1107 	/* Once for the block groups rbtree */
1108 	btrfs_put_block_group(block_group);
1109 
1110 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 	if (ret > 0)
1112 		ret = -EIO;
1113 	if (ret < 0)
1114 		goto out;
1115 
1116 	ret = btrfs_del_item(trans, root, path);
1117 	if (ret)
1118 		goto out;
1119 
1120 	if (remove_em) {
1121 		struct extent_map_tree *em_tree;
1122 
1123 		em_tree = &fs_info->mapping_tree;
1124 		write_lock(&em_tree->lock);
1125 		remove_extent_mapping(em_tree, em);
1126 		write_unlock(&em_tree->lock);
1127 		/* once for the tree */
1128 		free_extent_map(em);
1129 	}
1130 
1131 out_put_group:
1132 	/* Once for the lookup reference */
1133 	btrfs_put_block_group(block_group);
1134 out:
1135 	if (remove_rsv)
1136 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1137 	btrfs_free_path(path);
1138 	return ret;
1139 }
1140 
1141 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1142 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1143 {
1144 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1145 	struct extent_map *em;
1146 	struct map_lookup *map;
1147 	unsigned int num_items;
1148 
1149 	read_lock(&em_tree->lock);
1150 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1151 	read_unlock(&em_tree->lock);
1152 	ASSERT(em && em->start == chunk_offset);
1153 
1154 	/*
1155 	 * We need to reserve 3 + N units from the metadata space info in order
1156 	 * to remove a block group (done at btrfs_remove_chunk() and at
1157 	 * btrfs_remove_block_group()), which are used for:
1158 	 *
1159 	 * 1 unit for adding the free space inode's orphan (located in the tree
1160 	 * of tree roots).
1161 	 * 1 unit for deleting the block group item (located in the extent
1162 	 * tree).
1163 	 * 1 unit for deleting the free space item (located in tree of tree
1164 	 * roots).
1165 	 * N units for deleting N device extent items corresponding to each
1166 	 * stripe (located in the device tree).
1167 	 *
1168 	 * In order to remove a block group we also need to reserve units in the
1169 	 * system space info in order to update the chunk tree (update one or
1170 	 * more device items and remove one chunk item), but this is done at
1171 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1172 	 */
1173 	map = em->map_lookup;
1174 	num_items = 3 + map->num_stripes;
1175 	free_extent_map(em);
1176 
1177 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1178 							   num_items, 1);
1179 }
1180 
1181 /*
1182  * Mark block group @cache read-only, so later write won't happen to block
1183  * group @cache.
1184  *
1185  * If @force is not set, this function will only mark the block group readonly
1186  * if we have enough free space (1M) in other metadata/system block groups.
1187  * If @force is not set, this function will mark the block group readonly
1188  * without checking free space.
1189  *
1190  * NOTE: This function doesn't care if other block groups can contain all the
1191  * data in this block group. That check should be done by relocation routine,
1192  * not this function.
1193  */
1194 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1195 {
1196 	struct btrfs_space_info *sinfo = cache->space_info;
1197 	u64 num_bytes;
1198 	int ret = -ENOSPC;
1199 
1200 	spin_lock(&sinfo->lock);
1201 	spin_lock(&cache->lock);
1202 
1203 	if (cache->ro) {
1204 		cache->ro++;
1205 		ret = 0;
1206 		goto out;
1207 	}
1208 
1209 	num_bytes = cache->length - cache->reserved - cache->pinned -
1210 		    cache->bytes_super - cache->used;
1211 
1212 	/*
1213 	 * Data never overcommits, even in mixed mode, so do just the straight
1214 	 * check of left over space in how much we have allocated.
1215 	 */
1216 	if (force) {
1217 		ret = 0;
1218 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1219 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1220 
1221 		/*
1222 		 * Here we make sure if we mark this bg RO, we still have enough
1223 		 * free space as buffer.
1224 		 */
1225 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1226 			ret = 0;
1227 	} else {
1228 		/*
1229 		 * We overcommit metadata, so we need to do the
1230 		 * btrfs_can_overcommit check here, and we need to pass in
1231 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1232 		 * leeway to allow us to mark this block group as read only.
1233 		 */
1234 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1235 					 BTRFS_RESERVE_NO_FLUSH))
1236 			ret = 0;
1237 	}
1238 
1239 	if (!ret) {
1240 		sinfo->bytes_readonly += num_bytes;
1241 		cache->ro++;
1242 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1243 	}
1244 out:
1245 	spin_unlock(&cache->lock);
1246 	spin_unlock(&sinfo->lock);
1247 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1248 		btrfs_info(cache->fs_info,
1249 			"unable to make block group %llu ro", cache->start);
1250 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1251 	}
1252 	return ret;
1253 }
1254 
1255 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1256 				 struct btrfs_block_group *bg)
1257 {
1258 	struct btrfs_fs_info *fs_info = bg->fs_info;
1259 	struct btrfs_transaction *prev_trans = NULL;
1260 	const u64 start = bg->start;
1261 	const u64 end = start + bg->length - 1;
1262 	int ret;
1263 
1264 	spin_lock(&fs_info->trans_lock);
1265 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1266 		prev_trans = list_last_entry(&trans->transaction->list,
1267 					     struct btrfs_transaction, list);
1268 		refcount_inc(&prev_trans->use_count);
1269 	}
1270 	spin_unlock(&fs_info->trans_lock);
1271 
1272 	/*
1273 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1274 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1275 	 * task might be running finish_extent_commit() for the previous
1276 	 * transaction N - 1, and have seen a range belonging to the block
1277 	 * group in pinned_extents before we were able to clear the whole block
1278 	 * group range from pinned_extents. This means that task can lookup for
1279 	 * the block group after we unpinned it from pinned_extents and removed
1280 	 * it, leading to a BUG_ON() at unpin_extent_range().
1281 	 */
1282 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1283 	if (prev_trans) {
1284 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1285 					EXTENT_DIRTY);
1286 		if (ret)
1287 			goto err;
1288 	}
1289 
1290 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1291 				EXTENT_DIRTY);
1292 	if (ret)
1293 		goto err;
1294 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1295 	if (prev_trans)
1296 		btrfs_put_transaction(prev_trans);
1297 
1298 	return true;
1299 
1300 err:
1301 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1302 	if (prev_trans)
1303 		btrfs_put_transaction(prev_trans);
1304 	btrfs_dec_block_group_ro(bg);
1305 	return false;
1306 }
1307 
1308 /*
1309  * Process the unused_bgs list and remove any that don't have any allocated
1310  * space inside of them.
1311  */
1312 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1313 {
1314 	struct btrfs_block_group *block_group;
1315 	struct btrfs_space_info *space_info;
1316 	struct btrfs_trans_handle *trans;
1317 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1318 	int ret = 0;
1319 
1320 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1321 		return;
1322 
1323 	spin_lock(&fs_info->unused_bgs_lock);
1324 	while (!list_empty(&fs_info->unused_bgs)) {
1325 		int trimming;
1326 
1327 		block_group = list_first_entry(&fs_info->unused_bgs,
1328 					       struct btrfs_block_group,
1329 					       bg_list);
1330 		list_del_init(&block_group->bg_list);
1331 
1332 		space_info = block_group->space_info;
1333 
1334 		if (ret || btrfs_mixed_space_info(space_info)) {
1335 			btrfs_put_block_group(block_group);
1336 			continue;
1337 		}
1338 		spin_unlock(&fs_info->unused_bgs_lock);
1339 
1340 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1341 
1342 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1343 
1344 		/* Don't want to race with allocators so take the groups_sem */
1345 		down_write(&space_info->groups_sem);
1346 
1347 		/*
1348 		 * Async discard moves the final block group discard to be prior
1349 		 * to the unused_bgs code path.  Therefore, if it's not fully
1350 		 * trimmed, punt it back to the async discard lists.
1351 		 */
1352 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1353 		    !btrfs_is_free_space_trimmed(block_group)) {
1354 			trace_btrfs_skip_unused_block_group(block_group);
1355 			up_write(&space_info->groups_sem);
1356 			/* Requeue if we failed because of async discard */
1357 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1358 						 block_group);
1359 			goto next;
1360 		}
1361 
1362 		spin_lock(&block_group->lock);
1363 		if (block_group->reserved || block_group->pinned ||
1364 		    block_group->used || block_group->ro ||
1365 		    list_is_singular(&block_group->list)) {
1366 			/*
1367 			 * We want to bail if we made new allocations or have
1368 			 * outstanding allocations in this block group.  We do
1369 			 * the ro check in case balance is currently acting on
1370 			 * this block group.
1371 			 */
1372 			trace_btrfs_skip_unused_block_group(block_group);
1373 			spin_unlock(&block_group->lock);
1374 			up_write(&space_info->groups_sem);
1375 			goto next;
1376 		}
1377 		spin_unlock(&block_group->lock);
1378 
1379 		/* We don't want to force the issue, only flip if it's ok. */
1380 		ret = inc_block_group_ro(block_group, 0);
1381 		up_write(&space_info->groups_sem);
1382 		if (ret < 0) {
1383 			ret = 0;
1384 			goto next;
1385 		}
1386 
1387 		/*
1388 		 * Want to do this before we do anything else so we can recover
1389 		 * properly if we fail to join the transaction.
1390 		 */
1391 		trans = btrfs_start_trans_remove_block_group(fs_info,
1392 						     block_group->start);
1393 		if (IS_ERR(trans)) {
1394 			btrfs_dec_block_group_ro(block_group);
1395 			ret = PTR_ERR(trans);
1396 			goto next;
1397 		}
1398 
1399 		/*
1400 		 * We could have pending pinned extents for this block group,
1401 		 * just delete them, we don't care about them anymore.
1402 		 */
1403 		if (!clean_pinned_extents(trans, block_group))
1404 			goto end_trans;
1405 
1406 		/*
1407 		 * At this point, the block_group is read only and should fail
1408 		 * new allocations.  However, btrfs_finish_extent_commit() can
1409 		 * cause this block_group to be placed back on the discard
1410 		 * lists because now the block_group isn't fully discarded.
1411 		 * Bail here and try again later after discarding everything.
1412 		 */
1413 		spin_lock(&fs_info->discard_ctl.lock);
1414 		if (!list_empty(&block_group->discard_list)) {
1415 			spin_unlock(&fs_info->discard_ctl.lock);
1416 			btrfs_dec_block_group_ro(block_group);
1417 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1418 						 block_group);
1419 			goto end_trans;
1420 		}
1421 		spin_unlock(&fs_info->discard_ctl.lock);
1422 
1423 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1424 		spin_lock(&space_info->lock);
1425 		spin_lock(&block_group->lock);
1426 
1427 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1428 						     -block_group->pinned);
1429 		space_info->bytes_readonly += block_group->pinned;
1430 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1431 				   -block_group->pinned,
1432 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1433 		block_group->pinned = 0;
1434 
1435 		spin_unlock(&block_group->lock);
1436 		spin_unlock(&space_info->lock);
1437 
1438 		/*
1439 		 * The normal path here is an unused block group is passed here,
1440 		 * then trimming is handled in the transaction commit path.
1441 		 * Async discard interposes before this to do the trimming
1442 		 * before coming down the unused block group path as trimming
1443 		 * will no longer be done later in the transaction commit path.
1444 		 */
1445 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1446 			goto flip_async;
1447 
1448 		/* DISCARD can flip during remount */
1449 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1450 
1451 		/* Implicit trim during transaction commit. */
1452 		if (trimming)
1453 			btrfs_get_block_group_trimming(block_group);
1454 
1455 		/*
1456 		 * Btrfs_remove_chunk will abort the transaction if things go
1457 		 * horribly wrong.
1458 		 */
1459 		ret = btrfs_remove_chunk(trans, block_group->start);
1460 
1461 		if (ret) {
1462 			if (trimming)
1463 				btrfs_put_block_group_trimming(block_group);
1464 			goto end_trans;
1465 		}
1466 
1467 		/*
1468 		 * If we're not mounted with -odiscard, we can just forget
1469 		 * about this block group. Otherwise we'll need to wait
1470 		 * until transaction commit to do the actual discard.
1471 		 */
1472 		if (trimming) {
1473 			spin_lock(&fs_info->unused_bgs_lock);
1474 			/*
1475 			 * A concurrent scrub might have added us to the list
1476 			 * fs_info->unused_bgs, so use a list_move operation
1477 			 * to add the block group to the deleted_bgs list.
1478 			 */
1479 			list_move(&block_group->bg_list,
1480 				  &trans->transaction->deleted_bgs);
1481 			spin_unlock(&fs_info->unused_bgs_lock);
1482 			btrfs_get_block_group(block_group);
1483 		}
1484 end_trans:
1485 		btrfs_end_transaction(trans);
1486 next:
1487 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1488 		btrfs_put_block_group(block_group);
1489 		spin_lock(&fs_info->unused_bgs_lock);
1490 	}
1491 	spin_unlock(&fs_info->unused_bgs_lock);
1492 	return;
1493 
1494 flip_async:
1495 	btrfs_end_transaction(trans);
1496 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1497 	btrfs_put_block_group(block_group);
1498 	btrfs_discard_punt_unused_bgs_list(fs_info);
1499 }
1500 
1501 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1502 {
1503 	struct btrfs_fs_info *fs_info = bg->fs_info;
1504 
1505 	spin_lock(&fs_info->unused_bgs_lock);
1506 	if (list_empty(&bg->bg_list)) {
1507 		btrfs_get_block_group(bg);
1508 		trace_btrfs_add_unused_block_group(bg);
1509 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1510 	}
1511 	spin_unlock(&fs_info->unused_bgs_lock);
1512 }
1513 
1514 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1515 				  struct btrfs_path *path,
1516 				  struct btrfs_key *key)
1517 {
1518 	struct btrfs_root *root = fs_info->extent_root;
1519 	int ret = 0;
1520 	struct btrfs_key found_key;
1521 	struct extent_buffer *leaf;
1522 	struct btrfs_block_group_item bg;
1523 	u64 flags;
1524 	int slot;
1525 
1526 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1527 	if (ret < 0)
1528 		goto out;
1529 
1530 	while (1) {
1531 		slot = path->slots[0];
1532 		leaf = path->nodes[0];
1533 		if (slot >= btrfs_header_nritems(leaf)) {
1534 			ret = btrfs_next_leaf(root, path);
1535 			if (ret == 0)
1536 				continue;
1537 			if (ret < 0)
1538 				goto out;
1539 			break;
1540 		}
1541 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1542 
1543 		if (found_key.objectid >= key->objectid &&
1544 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1545 			struct extent_map_tree *em_tree;
1546 			struct extent_map *em;
1547 
1548 			em_tree = &root->fs_info->mapping_tree;
1549 			read_lock(&em_tree->lock);
1550 			em = lookup_extent_mapping(em_tree, found_key.objectid,
1551 						   found_key.offset);
1552 			read_unlock(&em_tree->lock);
1553 			if (!em) {
1554 				btrfs_err(fs_info,
1555 			"logical %llu len %llu found bg but no related chunk",
1556 					  found_key.objectid, found_key.offset);
1557 				ret = -ENOENT;
1558 			} else if (em->start != found_key.objectid ||
1559 				   em->len != found_key.offset) {
1560 				btrfs_err(fs_info,
1561 		"block group %llu len %llu mismatch with chunk %llu len %llu",
1562 					  found_key.objectid, found_key.offset,
1563 					  em->start, em->len);
1564 				ret = -EUCLEAN;
1565 			} else {
1566 				read_extent_buffer(leaf, &bg,
1567 					btrfs_item_ptr_offset(leaf, slot),
1568 					sizeof(bg));
1569 				flags = btrfs_stack_block_group_flags(&bg) &
1570 					BTRFS_BLOCK_GROUP_TYPE_MASK;
1571 
1572 				if (flags != (em->map_lookup->type &
1573 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1574 					btrfs_err(fs_info,
1575 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1576 						found_key.objectid,
1577 						found_key.offset, flags,
1578 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
1579 						 em->map_lookup->type));
1580 					ret = -EUCLEAN;
1581 				} else {
1582 					ret = 0;
1583 				}
1584 			}
1585 			free_extent_map(em);
1586 			goto out;
1587 		}
1588 		path->slots[0]++;
1589 	}
1590 out:
1591 	return ret;
1592 }
1593 
1594 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1595 {
1596 	u64 extra_flags = chunk_to_extended(flags) &
1597 				BTRFS_EXTENDED_PROFILE_MASK;
1598 
1599 	write_seqlock(&fs_info->profiles_lock);
1600 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1601 		fs_info->avail_data_alloc_bits |= extra_flags;
1602 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1603 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1604 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1605 		fs_info->avail_system_alloc_bits |= extra_flags;
1606 	write_sequnlock(&fs_info->profiles_lock);
1607 }
1608 
1609 /**
1610  * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1611  * @chunk_start:   logical address of block group
1612  * @physical:	   physical address to map to logical addresses
1613  * @logical:	   return array of logical addresses which map to @physical
1614  * @naddrs:	   length of @logical
1615  * @stripe_len:    size of IO stripe for the given block group
1616  *
1617  * Maps a particular @physical disk address to a list of @logical addresses.
1618  * Used primarily to exclude those portions of a block group that contain super
1619  * block copies.
1620  */
1621 EXPORT_FOR_TESTS
1622 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1623 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1624 {
1625 	struct extent_map *em;
1626 	struct map_lookup *map;
1627 	u64 *buf;
1628 	u64 bytenr;
1629 	u64 data_stripe_length;
1630 	u64 io_stripe_size;
1631 	int i, nr = 0;
1632 	int ret = 0;
1633 
1634 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1635 	if (IS_ERR(em))
1636 		return -EIO;
1637 
1638 	map = em->map_lookup;
1639 	data_stripe_length = em->len;
1640 	io_stripe_size = map->stripe_len;
1641 
1642 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1643 		data_stripe_length = div_u64(data_stripe_length,
1644 					     map->num_stripes / map->sub_stripes);
1645 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1646 		data_stripe_length = div_u64(data_stripe_length, map->num_stripes);
1647 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1648 		data_stripe_length = div_u64(data_stripe_length,
1649 					     nr_data_stripes(map));
1650 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1651 	}
1652 
1653 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1654 	if (!buf) {
1655 		ret = -ENOMEM;
1656 		goto out;
1657 	}
1658 
1659 	for (i = 0; i < map->num_stripes; i++) {
1660 		bool already_inserted = false;
1661 		u64 stripe_nr;
1662 		int j;
1663 
1664 		if (!in_range(physical, map->stripes[i].physical,
1665 			      data_stripe_length))
1666 			continue;
1667 
1668 		stripe_nr = physical - map->stripes[i].physical;
1669 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1670 
1671 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1672 			stripe_nr = stripe_nr * map->num_stripes + i;
1673 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1674 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1675 			stripe_nr = stripe_nr * map->num_stripes + i;
1676 		}
1677 		/*
1678 		 * The remaining case would be for RAID56, multiply by
1679 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1680 		 * instead of map->stripe_len
1681 		 */
1682 
1683 		bytenr = chunk_start + stripe_nr * io_stripe_size;
1684 
1685 		/* Ensure we don't add duplicate addresses */
1686 		for (j = 0; j < nr; j++) {
1687 			if (buf[j] == bytenr) {
1688 				already_inserted = true;
1689 				break;
1690 			}
1691 		}
1692 
1693 		if (!already_inserted)
1694 			buf[nr++] = bytenr;
1695 	}
1696 
1697 	*logical = buf;
1698 	*naddrs = nr;
1699 	*stripe_len = io_stripe_size;
1700 out:
1701 	free_extent_map(em);
1702 	return ret;
1703 }
1704 
1705 static int exclude_super_stripes(struct btrfs_block_group *cache)
1706 {
1707 	struct btrfs_fs_info *fs_info = cache->fs_info;
1708 	u64 bytenr;
1709 	u64 *logical;
1710 	int stripe_len;
1711 	int i, nr, ret;
1712 
1713 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1714 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1715 		cache->bytes_super += stripe_len;
1716 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1717 						stripe_len);
1718 		if (ret)
1719 			return ret;
1720 	}
1721 
1722 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1723 		bytenr = btrfs_sb_offset(i);
1724 		ret = btrfs_rmap_block(fs_info, cache->start,
1725 				       bytenr, &logical, &nr, &stripe_len);
1726 		if (ret)
1727 			return ret;
1728 
1729 		while (nr--) {
1730 			u64 start, len;
1731 
1732 			if (logical[nr] > cache->start + cache->length)
1733 				continue;
1734 
1735 			if (logical[nr] + stripe_len <= cache->start)
1736 				continue;
1737 
1738 			start = logical[nr];
1739 			if (start < cache->start) {
1740 				start = cache->start;
1741 				len = (logical[nr] + stripe_len) - start;
1742 			} else {
1743 				len = min_t(u64, stripe_len,
1744 					    cache->start + cache->length - start);
1745 			}
1746 
1747 			cache->bytes_super += len;
1748 			ret = btrfs_add_excluded_extent(fs_info, start, len);
1749 			if (ret) {
1750 				kfree(logical);
1751 				return ret;
1752 			}
1753 		}
1754 
1755 		kfree(logical);
1756 	}
1757 	return 0;
1758 }
1759 
1760 static void link_block_group(struct btrfs_block_group *cache)
1761 {
1762 	struct btrfs_space_info *space_info = cache->space_info;
1763 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1764 	bool first = false;
1765 
1766 	down_write(&space_info->groups_sem);
1767 	if (list_empty(&space_info->block_groups[index]))
1768 		first = true;
1769 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1770 	up_write(&space_info->groups_sem);
1771 
1772 	if (first)
1773 		btrfs_sysfs_add_block_group_type(cache);
1774 }
1775 
1776 static struct btrfs_block_group *btrfs_create_block_group_cache(
1777 		struct btrfs_fs_info *fs_info, u64 start, u64 size)
1778 {
1779 	struct btrfs_block_group *cache;
1780 
1781 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1782 	if (!cache)
1783 		return NULL;
1784 
1785 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1786 					GFP_NOFS);
1787 	if (!cache->free_space_ctl) {
1788 		kfree(cache);
1789 		return NULL;
1790 	}
1791 
1792 	cache->start = start;
1793 	cache->length = size;
1794 
1795 	cache->fs_info = fs_info;
1796 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1797 	set_free_space_tree_thresholds(cache);
1798 
1799 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1800 
1801 	atomic_set(&cache->count, 1);
1802 	spin_lock_init(&cache->lock);
1803 	init_rwsem(&cache->data_rwsem);
1804 	INIT_LIST_HEAD(&cache->list);
1805 	INIT_LIST_HEAD(&cache->cluster_list);
1806 	INIT_LIST_HEAD(&cache->bg_list);
1807 	INIT_LIST_HEAD(&cache->ro_list);
1808 	INIT_LIST_HEAD(&cache->discard_list);
1809 	INIT_LIST_HEAD(&cache->dirty_list);
1810 	INIT_LIST_HEAD(&cache->io_list);
1811 	btrfs_init_free_space_ctl(cache);
1812 	atomic_set(&cache->trimming, 0);
1813 	mutex_init(&cache->free_space_lock);
1814 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1815 
1816 	return cache;
1817 }
1818 
1819 /*
1820  * Iterate all chunks and verify that each of them has the corresponding block
1821  * group
1822  */
1823 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1824 {
1825 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1826 	struct extent_map *em;
1827 	struct btrfs_block_group *bg;
1828 	u64 start = 0;
1829 	int ret = 0;
1830 
1831 	while (1) {
1832 		read_lock(&map_tree->lock);
1833 		/*
1834 		 * lookup_extent_mapping will return the first extent map
1835 		 * intersecting the range, so setting @len to 1 is enough to
1836 		 * get the first chunk.
1837 		 */
1838 		em = lookup_extent_mapping(map_tree, start, 1);
1839 		read_unlock(&map_tree->lock);
1840 		if (!em)
1841 			break;
1842 
1843 		bg = btrfs_lookup_block_group(fs_info, em->start);
1844 		if (!bg) {
1845 			btrfs_err(fs_info,
1846 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1847 				     em->start, em->len);
1848 			ret = -EUCLEAN;
1849 			free_extent_map(em);
1850 			break;
1851 		}
1852 		if (bg->start != em->start || bg->length != em->len ||
1853 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1854 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1855 			btrfs_err(fs_info,
1856 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1857 				em->start, em->len,
1858 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1859 				bg->start, bg->length,
1860 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1861 			ret = -EUCLEAN;
1862 			free_extent_map(em);
1863 			btrfs_put_block_group(bg);
1864 			break;
1865 		}
1866 		start = em->start + em->len;
1867 		free_extent_map(em);
1868 		btrfs_put_block_group(bg);
1869 	}
1870 	return ret;
1871 }
1872 
1873 static int read_one_block_group(struct btrfs_fs_info *info,
1874 				struct btrfs_path *path,
1875 				const struct btrfs_key *key,
1876 				int need_clear)
1877 {
1878 	struct extent_buffer *leaf = path->nodes[0];
1879 	struct btrfs_block_group *cache;
1880 	struct btrfs_space_info *space_info;
1881 	struct btrfs_block_group_item bgi;
1882 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1883 	int slot = path->slots[0];
1884 	int ret;
1885 
1886 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1887 
1888 	cache = btrfs_create_block_group_cache(info, key->objectid, key->offset);
1889 	if (!cache)
1890 		return -ENOMEM;
1891 
1892 	if (need_clear) {
1893 		/*
1894 		 * When we mount with old space cache, we need to
1895 		 * set BTRFS_DC_CLEAR and set dirty flag.
1896 		 *
1897 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1898 		 *    truncate the old free space cache inode and
1899 		 *    setup a new one.
1900 		 * b) Setting 'dirty flag' makes sure that we flush
1901 		 *    the new space cache info onto disk.
1902 		 */
1903 		if (btrfs_test_opt(info, SPACE_CACHE))
1904 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1905 	}
1906 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1907 			   sizeof(bgi));
1908 	cache->used = btrfs_stack_block_group_used(&bgi);
1909 	cache->flags = btrfs_stack_block_group_flags(&bgi);
1910 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1911 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1912 			btrfs_err(info,
1913 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1914 				  cache->start);
1915 			ret = -EINVAL;
1916 			goto error;
1917 	}
1918 
1919 	/*
1920 	 * We need to exclude the super stripes now so that the space info has
1921 	 * super bytes accounted for, otherwise we'll think we have more space
1922 	 * than we actually do.
1923 	 */
1924 	ret = exclude_super_stripes(cache);
1925 	if (ret) {
1926 		/* We may have excluded something, so call this just in case. */
1927 		btrfs_free_excluded_extents(cache);
1928 		goto error;
1929 	}
1930 
1931 	/*
1932 	 * Check for two cases, either we are full, and therefore don't need
1933 	 * to bother with the caching work since we won't find any space, or we
1934 	 * are empty, and we can just add all the space in and be done with it.
1935 	 * This saves us _a_lot_ of time, particularly in the full case.
1936 	 */
1937 	if (key->offset == cache->used) {
1938 		cache->last_byte_to_unpin = (u64)-1;
1939 		cache->cached = BTRFS_CACHE_FINISHED;
1940 		btrfs_free_excluded_extents(cache);
1941 	} else if (cache->used == 0) {
1942 		cache->last_byte_to_unpin = (u64)-1;
1943 		cache->cached = BTRFS_CACHE_FINISHED;
1944 		add_new_free_space(cache, key->objectid,
1945 				   key->objectid + key->offset);
1946 		btrfs_free_excluded_extents(cache);
1947 	}
1948 
1949 	ret = btrfs_add_block_group_cache(info, cache);
1950 	if (ret) {
1951 		btrfs_remove_free_space_cache(cache);
1952 		goto error;
1953 	}
1954 	trace_btrfs_add_block_group(info, cache, 0);
1955 	btrfs_update_space_info(info, cache->flags, key->offset,
1956 				cache->used, cache->bytes_super, &space_info);
1957 
1958 	cache->space_info = space_info;
1959 
1960 	link_block_group(cache);
1961 
1962 	set_avail_alloc_bits(info, cache->flags);
1963 	if (btrfs_chunk_readonly(info, cache->start)) {
1964 		inc_block_group_ro(cache, 1);
1965 	} else if (cache->used == 0) {
1966 		ASSERT(list_empty(&cache->bg_list));
1967 		if (btrfs_test_opt(info, DISCARD_ASYNC))
1968 			btrfs_discard_queue_work(&info->discard_ctl, cache);
1969 		else
1970 			btrfs_mark_bg_unused(cache);
1971 	}
1972 	return 0;
1973 error:
1974 	btrfs_put_block_group(cache);
1975 	return ret;
1976 }
1977 
1978 int btrfs_read_block_groups(struct btrfs_fs_info *info)
1979 {
1980 	struct btrfs_path *path;
1981 	int ret;
1982 	struct btrfs_block_group *cache;
1983 	struct btrfs_space_info *space_info;
1984 	struct btrfs_key key;
1985 	int need_clear = 0;
1986 	u64 cache_gen;
1987 
1988 	key.objectid = 0;
1989 	key.offset = 0;
1990 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1991 	path = btrfs_alloc_path();
1992 	if (!path)
1993 		return -ENOMEM;
1994 	path->reada = READA_FORWARD;
1995 
1996 	cache_gen = btrfs_super_cache_generation(info->super_copy);
1997 	if (btrfs_test_opt(info, SPACE_CACHE) &&
1998 	    btrfs_super_generation(info->super_copy) != cache_gen)
1999 		need_clear = 1;
2000 	if (btrfs_test_opt(info, CLEAR_CACHE))
2001 		need_clear = 1;
2002 
2003 	while (1) {
2004 		ret = find_first_block_group(info, path, &key);
2005 		if (ret > 0)
2006 			break;
2007 		if (ret != 0)
2008 			goto error;
2009 
2010 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2011 		ret = read_one_block_group(info, path, &key, need_clear);
2012 		if (ret < 0)
2013 			goto error;
2014 		key.objectid += key.offset;
2015 		key.offset = 0;
2016 		btrfs_release_path(path);
2017 	}
2018 
2019 	rcu_read_lock();
2020 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
2021 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2022 		      (BTRFS_BLOCK_GROUP_RAID10 |
2023 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2024 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2025 		       BTRFS_BLOCK_GROUP_DUP)))
2026 			continue;
2027 		/*
2028 		 * Avoid allocating from un-mirrored block group if there are
2029 		 * mirrored block groups.
2030 		 */
2031 		list_for_each_entry(cache,
2032 				&space_info->block_groups[BTRFS_RAID_RAID0],
2033 				list)
2034 			inc_block_group_ro(cache, 1);
2035 		list_for_each_entry(cache,
2036 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2037 				list)
2038 			inc_block_group_ro(cache, 1);
2039 	}
2040 	rcu_read_unlock();
2041 
2042 	btrfs_init_global_block_rsv(info);
2043 	ret = check_chunk_block_group_mappings(info);
2044 error:
2045 	btrfs_free_path(path);
2046 	return ret;
2047 }
2048 
2049 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2050 {
2051 	struct btrfs_fs_info *fs_info = trans->fs_info;
2052 	struct btrfs_block_group *block_group;
2053 	struct btrfs_root *extent_root = fs_info->extent_root;
2054 	struct btrfs_block_group_item item;
2055 	struct btrfs_key key;
2056 	int ret = 0;
2057 
2058 	if (!trans->can_flush_pending_bgs)
2059 		return;
2060 
2061 	while (!list_empty(&trans->new_bgs)) {
2062 		block_group = list_first_entry(&trans->new_bgs,
2063 					       struct btrfs_block_group,
2064 					       bg_list);
2065 		if (ret)
2066 			goto next;
2067 
2068 		spin_lock(&block_group->lock);
2069 		btrfs_set_stack_block_group_used(&item, block_group->used);
2070 		btrfs_set_stack_block_group_chunk_objectid(&item,
2071 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2072 		btrfs_set_stack_block_group_flags(&item, block_group->flags);
2073 		key.objectid = block_group->start;
2074 		key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2075 		key.offset = block_group->length;
2076 		spin_unlock(&block_group->lock);
2077 
2078 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
2079 					sizeof(item));
2080 		if (ret)
2081 			btrfs_abort_transaction(trans, ret);
2082 		ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
2083 		if (ret)
2084 			btrfs_abort_transaction(trans, ret);
2085 		add_block_group_free_space(trans, block_group);
2086 		/* Already aborted the transaction if it failed. */
2087 next:
2088 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2089 		list_del_init(&block_group->bg_list);
2090 	}
2091 	btrfs_trans_release_chunk_metadata(trans);
2092 }
2093 
2094 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2095 			   u64 type, u64 chunk_offset, u64 size)
2096 {
2097 	struct btrfs_fs_info *fs_info = trans->fs_info;
2098 	struct btrfs_block_group *cache;
2099 	int ret;
2100 
2101 	btrfs_set_log_full_commit(trans);
2102 
2103 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
2104 	if (!cache)
2105 		return -ENOMEM;
2106 
2107 	cache->used = bytes_used;
2108 	cache->flags = type;
2109 	cache->last_byte_to_unpin = (u64)-1;
2110 	cache->cached = BTRFS_CACHE_FINISHED;
2111 	cache->needs_free_space = 1;
2112 	ret = exclude_super_stripes(cache);
2113 	if (ret) {
2114 		/* We may have excluded something, so call this just in case */
2115 		btrfs_free_excluded_extents(cache);
2116 		btrfs_put_block_group(cache);
2117 		return ret;
2118 	}
2119 
2120 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2121 
2122 	btrfs_free_excluded_extents(cache);
2123 
2124 #ifdef CONFIG_BTRFS_DEBUG
2125 	if (btrfs_should_fragment_free_space(cache)) {
2126 		u64 new_bytes_used = size - bytes_used;
2127 
2128 		bytes_used += new_bytes_used >> 1;
2129 		fragment_free_space(cache);
2130 	}
2131 #endif
2132 	/*
2133 	 * Ensure the corresponding space_info object is created and
2134 	 * assigned to our block group. We want our bg to be added to the rbtree
2135 	 * with its ->space_info set.
2136 	 */
2137 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2138 	ASSERT(cache->space_info);
2139 
2140 	ret = btrfs_add_block_group_cache(fs_info, cache);
2141 	if (ret) {
2142 		btrfs_remove_free_space_cache(cache);
2143 		btrfs_put_block_group(cache);
2144 		return ret;
2145 	}
2146 
2147 	/*
2148 	 * Now that our block group has its ->space_info set and is inserted in
2149 	 * the rbtree, update the space info's counters.
2150 	 */
2151 	trace_btrfs_add_block_group(fs_info, cache, 1);
2152 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2153 				cache->bytes_super, &cache->space_info);
2154 	btrfs_update_global_block_rsv(fs_info);
2155 
2156 	link_block_group(cache);
2157 
2158 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2159 	trans->delayed_ref_updates++;
2160 	btrfs_update_delayed_refs_rsv(trans);
2161 
2162 	set_avail_alloc_bits(fs_info, type);
2163 	return 0;
2164 }
2165 
2166 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
2167 {
2168 	u64 num_devices;
2169 	u64 stripped;
2170 
2171 	/*
2172 	 * if restripe for this chunk_type is on pick target profile and
2173 	 * return, otherwise do the usual balance
2174 	 */
2175 	stripped = get_restripe_target(fs_info, flags);
2176 	if (stripped)
2177 		return extended_to_chunk(stripped);
2178 
2179 	num_devices = fs_info->fs_devices->rw_devices;
2180 
2181 	stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
2182 		BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
2183 
2184 	if (num_devices == 1) {
2185 		stripped |= BTRFS_BLOCK_GROUP_DUP;
2186 		stripped = flags & ~stripped;
2187 
2188 		/* turn raid0 into single device chunks */
2189 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
2190 			return stripped;
2191 
2192 		/* turn mirroring into duplication */
2193 		if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2194 			     BTRFS_BLOCK_GROUP_RAID10))
2195 			return stripped | BTRFS_BLOCK_GROUP_DUP;
2196 	} else {
2197 		/* they already had raid on here, just return */
2198 		if (flags & stripped)
2199 			return flags;
2200 
2201 		stripped |= BTRFS_BLOCK_GROUP_DUP;
2202 		stripped = flags & ~stripped;
2203 
2204 		/* switch duplicated blocks with raid1 */
2205 		if (flags & BTRFS_BLOCK_GROUP_DUP)
2206 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
2207 
2208 		/* this is drive concat, leave it alone */
2209 	}
2210 
2211 	return flags;
2212 }
2213 
2214 /*
2215  * Mark one block group RO, can be called several times for the same block
2216  * group.
2217  *
2218  * @cache:		the destination block group
2219  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2220  * 			ensure we still have some free space after marking this
2221  * 			block group RO.
2222  */
2223 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2224 			     bool do_chunk_alloc)
2225 {
2226 	struct btrfs_fs_info *fs_info = cache->fs_info;
2227 	struct btrfs_trans_handle *trans;
2228 	u64 alloc_flags;
2229 	int ret;
2230 
2231 again:
2232 	trans = btrfs_join_transaction(fs_info->extent_root);
2233 	if (IS_ERR(trans))
2234 		return PTR_ERR(trans);
2235 
2236 	/*
2237 	 * we're not allowed to set block groups readonly after the dirty
2238 	 * block groups cache has started writing.  If it already started,
2239 	 * back off and let this transaction commit
2240 	 */
2241 	mutex_lock(&fs_info->ro_block_group_mutex);
2242 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2243 		u64 transid = trans->transid;
2244 
2245 		mutex_unlock(&fs_info->ro_block_group_mutex);
2246 		btrfs_end_transaction(trans);
2247 
2248 		ret = btrfs_wait_for_commit(fs_info, transid);
2249 		if (ret)
2250 			return ret;
2251 		goto again;
2252 	}
2253 
2254 	if (do_chunk_alloc) {
2255 		/*
2256 		 * If we are changing raid levels, try to allocate a
2257 		 * corresponding block group with the new raid level.
2258 		 */
2259 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
2260 		if (alloc_flags != cache->flags) {
2261 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2262 						CHUNK_ALLOC_FORCE);
2263 			/*
2264 			 * ENOSPC is allowed here, we may have enough space
2265 			 * already allocated at the new raid level to carry on
2266 			 */
2267 			if (ret == -ENOSPC)
2268 				ret = 0;
2269 			if (ret < 0)
2270 				goto out;
2271 		}
2272 	}
2273 
2274 	ret = inc_block_group_ro(cache, 0);
2275 	if (!do_chunk_alloc)
2276 		goto unlock_out;
2277 	if (!ret)
2278 		goto out;
2279 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2280 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2281 	if (ret < 0)
2282 		goto out;
2283 	ret = inc_block_group_ro(cache, 0);
2284 out:
2285 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2286 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
2287 		mutex_lock(&fs_info->chunk_mutex);
2288 		check_system_chunk(trans, alloc_flags);
2289 		mutex_unlock(&fs_info->chunk_mutex);
2290 	}
2291 unlock_out:
2292 	mutex_unlock(&fs_info->ro_block_group_mutex);
2293 
2294 	btrfs_end_transaction(trans);
2295 	return ret;
2296 }
2297 
2298 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2299 {
2300 	struct btrfs_space_info *sinfo = cache->space_info;
2301 	u64 num_bytes;
2302 
2303 	BUG_ON(!cache->ro);
2304 
2305 	spin_lock(&sinfo->lock);
2306 	spin_lock(&cache->lock);
2307 	if (!--cache->ro) {
2308 		num_bytes = cache->length - cache->reserved -
2309 			    cache->pinned - cache->bytes_super - cache->used;
2310 		sinfo->bytes_readonly -= num_bytes;
2311 		list_del_init(&cache->ro_list);
2312 	}
2313 	spin_unlock(&cache->lock);
2314 	spin_unlock(&sinfo->lock);
2315 }
2316 
2317 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2318 				 struct btrfs_path *path,
2319 				 struct btrfs_block_group *cache)
2320 {
2321 	struct btrfs_fs_info *fs_info = trans->fs_info;
2322 	int ret;
2323 	struct btrfs_root *extent_root = fs_info->extent_root;
2324 	unsigned long bi;
2325 	struct extent_buffer *leaf;
2326 	struct btrfs_block_group_item bgi;
2327 	struct btrfs_key key;
2328 
2329 	key.objectid = cache->start;
2330 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2331 	key.offset = cache->length;
2332 
2333 	ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1);
2334 	if (ret) {
2335 		if (ret > 0)
2336 			ret = -ENOENT;
2337 		goto fail;
2338 	}
2339 
2340 	leaf = path->nodes[0];
2341 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2342 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2343 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2344 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2345 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2346 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2347 	btrfs_mark_buffer_dirty(leaf);
2348 fail:
2349 	btrfs_release_path(path);
2350 	return ret;
2351 
2352 }
2353 
2354 static int cache_save_setup(struct btrfs_block_group *block_group,
2355 			    struct btrfs_trans_handle *trans,
2356 			    struct btrfs_path *path)
2357 {
2358 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2359 	struct btrfs_root *root = fs_info->tree_root;
2360 	struct inode *inode = NULL;
2361 	struct extent_changeset *data_reserved = NULL;
2362 	u64 alloc_hint = 0;
2363 	int dcs = BTRFS_DC_ERROR;
2364 	u64 num_pages = 0;
2365 	int retries = 0;
2366 	int ret = 0;
2367 
2368 	/*
2369 	 * If this block group is smaller than 100 megs don't bother caching the
2370 	 * block group.
2371 	 */
2372 	if (block_group->length < (100 * SZ_1M)) {
2373 		spin_lock(&block_group->lock);
2374 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2375 		spin_unlock(&block_group->lock);
2376 		return 0;
2377 	}
2378 
2379 	if (TRANS_ABORTED(trans))
2380 		return 0;
2381 again:
2382 	inode = lookup_free_space_inode(block_group, path);
2383 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2384 		ret = PTR_ERR(inode);
2385 		btrfs_release_path(path);
2386 		goto out;
2387 	}
2388 
2389 	if (IS_ERR(inode)) {
2390 		BUG_ON(retries);
2391 		retries++;
2392 
2393 		if (block_group->ro)
2394 			goto out_free;
2395 
2396 		ret = create_free_space_inode(trans, block_group, path);
2397 		if (ret)
2398 			goto out_free;
2399 		goto again;
2400 	}
2401 
2402 	/*
2403 	 * We want to set the generation to 0, that way if anything goes wrong
2404 	 * from here on out we know not to trust this cache when we load up next
2405 	 * time.
2406 	 */
2407 	BTRFS_I(inode)->generation = 0;
2408 	ret = btrfs_update_inode(trans, root, inode);
2409 	if (ret) {
2410 		/*
2411 		 * So theoretically we could recover from this, simply set the
2412 		 * super cache generation to 0 so we know to invalidate the
2413 		 * cache, but then we'd have to keep track of the block groups
2414 		 * that fail this way so we know we _have_ to reset this cache
2415 		 * before the next commit or risk reading stale cache.  So to
2416 		 * limit our exposure to horrible edge cases lets just abort the
2417 		 * transaction, this only happens in really bad situations
2418 		 * anyway.
2419 		 */
2420 		btrfs_abort_transaction(trans, ret);
2421 		goto out_put;
2422 	}
2423 	WARN_ON(ret);
2424 
2425 	/* We've already setup this transaction, go ahead and exit */
2426 	if (block_group->cache_generation == trans->transid &&
2427 	    i_size_read(inode)) {
2428 		dcs = BTRFS_DC_SETUP;
2429 		goto out_put;
2430 	}
2431 
2432 	if (i_size_read(inode) > 0) {
2433 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2434 					&fs_info->global_block_rsv);
2435 		if (ret)
2436 			goto out_put;
2437 
2438 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2439 		if (ret)
2440 			goto out_put;
2441 	}
2442 
2443 	spin_lock(&block_group->lock);
2444 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2445 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2446 		/*
2447 		 * don't bother trying to write stuff out _if_
2448 		 * a) we're not cached,
2449 		 * b) we're with nospace_cache mount option,
2450 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2451 		 */
2452 		dcs = BTRFS_DC_WRITTEN;
2453 		spin_unlock(&block_group->lock);
2454 		goto out_put;
2455 	}
2456 	spin_unlock(&block_group->lock);
2457 
2458 	/*
2459 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2460 	 * skip doing the setup, we've already cleared the cache so we're safe.
2461 	 */
2462 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2463 		ret = -ENOSPC;
2464 		goto out_put;
2465 	}
2466 
2467 	/*
2468 	 * Try to preallocate enough space based on how big the block group is.
2469 	 * Keep in mind this has to include any pinned space which could end up
2470 	 * taking up quite a bit since it's not folded into the other space
2471 	 * cache.
2472 	 */
2473 	num_pages = div_u64(block_group->length, SZ_256M);
2474 	if (!num_pages)
2475 		num_pages = 1;
2476 
2477 	num_pages *= 16;
2478 	num_pages *= PAGE_SIZE;
2479 
2480 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2481 	if (ret)
2482 		goto out_put;
2483 
2484 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2485 					      num_pages, num_pages,
2486 					      &alloc_hint);
2487 	/*
2488 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2489 	 * of metadata or split extents when writing the cache out, which means
2490 	 * we can enospc if we are heavily fragmented in addition to just normal
2491 	 * out of space conditions.  So if we hit this just skip setting up any
2492 	 * other block groups for this transaction, maybe we'll unpin enough
2493 	 * space the next time around.
2494 	 */
2495 	if (!ret)
2496 		dcs = BTRFS_DC_SETUP;
2497 	else if (ret == -ENOSPC)
2498 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2499 
2500 out_put:
2501 	iput(inode);
2502 out_free:
2503 	btrfs_release_path(path);
2504 out:
2505 	spin_lock(&block_group->lock);
2506 	if (!ret && dcs == BTRFS_DC_SETUP)
2507 		block_group->cache_generation = trans->transid;
2508 	block_group->disk_cache_state = dcs;
2509 	spin_unlock(&block_group->lock);
2510 
2511 	extent_changeset_free(data_reserved);
2512 	return ret;
2513 }
2514 
2515 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2516 {
2517 	struct btrfs_fs_info *fs_info = trans->fs_info;
2518 	struct btrfs_block_group *cache, *tmp;
2519 	struct btrfs_transaction *cur_trans = trans->transaction;
2520 	struct btrfs_path *path;
2521 
2522 	if (list_empty(&cur_trans->dirty_bgs) ||
2523 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2524 		return 0;
2525 
2526 	path = btrfs_alloc_path();
2527 	if (!path)
2528 		return -ENOMEM;
2529 
2530 	/* Could add new block groups, use _safe just in case */
2531 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2532 				 dirty_list) {
2533 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2534 			cache_save_setup(cache, trans, path);
2535 	}
2536 
2537 	btrfs_free_path(path);
2538 	return 0;
2539 }
2540 
2541 /*
2542  * Transaction commit does final block group cache writeback during a critical
2543  * section where nothing is allowed to change the FS.  This is required in
2544  * order for the cache to actually match the block group, but can introduce a
2545  * lot of latency into the commit.
2546  *
2547  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2548  * There's a chance we'll have to redo some of it if the block group changes
2549  * again during the commit, but it greatly reduces the commit latency by
2550  * getting rid of the easy block groups while we're still allowing others to
2551  * join the commit.
2552  */
2553 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2554 {
2555 	struct btrfs_fs_info *fs_info = trans->fs_info;
2556 	struct btrfs_block_group *cache;
2557 	struct btrfs_transaction *cur_trans = trans->transaction;
2558 	int ret = 0;
2559 	int should_put;
2560 	struct btrfs_path *path = NULL;
2561 	LIST_HEAD(dirty);
2562 	struct list_head *io = &cur_trans->io_bgs;
2563 	int num_started = 0;
2564 	int loops = 0;
2565 
2566 	spin_lock(&cur_trans->dirty_bgs_lock);
2567 	if (list_empty(&cur_trans->dirty_bgs)) {
2568 		spin_unlock(&cur_trans->dirty_bgs_lock);
2569 		return 0;
2570 	}
2571 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2572 	spin_unlock(&cur_trans->dirty_bgs_lock);
2573 
2574 again:
2575 	/* Make sure all the block groups on our dirty list actually exist */
2576 	btrfs_create_pending_block_groups(trans);
2577 
2578 	if (!path) {
2579 		path = btrfs_alloc_path();
2580 		if (!path)
2581 			return -ENOMEM;
2582 	}
2583 
2584 	/*
2585 	 * cache_write_mutex is here only to save us from balance or automatic
2586 	 * removal of empty block groups deleting this block group while we are
2587 	 * writing out the cache
2588 	 */
2589 	mutex_lock(&trans->transaction->cache_write_mutex);
2590 	while (!list_empty(&dirty)) {
2591 		bool drop_reserve = true;
2592 
2593 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2594 					 dirty_list);
2595 		/*
2596 		 * This can happen if something re-dirties a block group that
2597 		 * is already under IO.  Just wait for it to finish and then do
2598 		 * it all again
2599 		 */
2600 		if (!list_empty(&cache->io_list)) {
2601 			list_del_init(&cache->io_list);
2602 			btrfs_wait_cache_io(trans, cache, path);
2603 			btrfs_put_block_group(cache);
2604 		}
2605 
2606 
2607 		/*
2608 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2609 		 * it should update the cache_state.  Don't delete until after
2610 		 * we wait.
2611 		 *
2612 		 * Since we're not running in the commit critical section
2613 		 * we need the dirty_bgs_lock to protect from update_block_group
2614 		 */
2615 		spin_lock(&cur_trans->dirty_bgs_lock);
2616 		list_del_init(&cache->dirty_list);
2617 		spin_unlock(&cur_trans->dirty_bgs_lock);
2618 
2619 		should_put = 1;
2620 
2621 		cache_save_setup(cache, trans, path);
2622 
2623 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2624 			cache->io_ctl.inode = NULL;
2625 			ret = btrfs_write_out_cache(trans, cache, path);
2626 			if (ret == 0 && cache->io_ctl.inode) {
2627 				num_started++;
2628 				should_put = 0;
2629 
2630 				/*
2631 				 * The cache_write_mutex is protecting the
2632 				 * io_list, also refer to the definition of
2633 				 * btrfs_transaction::io_bgs for more details
2634 				 */
2635 				list_add_tail(&cache->io_list, io);
2636 			} else {
2637 				/*
2638 				 * If we failed to write the cache, the
2639 				 * generation will be bad and life goes on
2640 				 */
2641 				ret = 0;
2642 			}
2643 		}
2644 		if (!ret) {
2645 			ret = write_one_cache_group(trans, path, cache);
2646 			/*
2647 			 * Our block group might still be attached to the list
2648 			 * of new block groups in the transaction handle of some
2649 			 * other task (struct btrfs_trans_handle->new_bgs). This
2650 			 * means its block group item isn't yet in the extent
2651 			 * tree. If this happens ignore the error, as we will
2652 			 * try again later in the critical section of the
2653 			 * transaction commit.
2654 			 */
2655 			if (ret == -ENOENT) {
2656 				ret = 0;
2657 				spin_lock(&cur_trans->dirty_bgs_lock);
2658 				if (list_empty(&cache->dirty_list)) {
2659 					list_add_tail(&cache->dirty_list,
2660 						      &cur_trans->dirty_bgs);
2661 					btrfs_get_block_group(cache);
2662 					drop_reserve = false;
2663 				}
2664 				spin_unlock(&cur_trans->dirty_bgs_lock);
2665 			} else if (ret) {
2666 				btrfs_abort_transaction(trans, ret);
2667 			}
2668 		}
2669 
2670 		/* If it's not on the io list, we need to put the block group */
2671 		if (should_put)
2672 			btrfs_put_block_group(cache);
2673 		if (drop_reserve)
2674 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2675 
2676 		if (ret)
2677 			break;
2678 
2679 		/*
2680 		 * Avoid blocking other tasks for too long. It might even save
2681 		 * us from writing caches for block groups that are going to be
2682 		 * removed.
2683 		 */
2684 		mutex_unlock(&trans->transaction->cache_write_mutex);
2685 		mutex_lock(&trans->transaction->cache_write_mutex);
2686 	}
2687 	mutex_unlock(&trans->transaction->cache_write_mutex);
2688 
2689 	/*
2690 	 * Go through delayed refs for all the stuff we've just kicked off
2691 	 * and then loop back (just once)
2692 	 */
2693 	ret = btrfs_run_delayed_refs(trans, 0);
2694 	if (!ret && loops == 0) {
2695 		loops++;
2696 		spin_lock(&cur_trans->dirty_bgs_lock);
2697 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2698 		/*
2699 		 * dirty_bgs_lock protects us from concurrent block group
2700 		 * deletes too (not just cache_write_mutex).
2701 		 */
2702 		if (!list_empty(&dirty)) {
2703 			spin_unlock(&cur_trans->dirty_bgs_lock);
2704 			goto again;
2705 		}
2706 		spin_unlock(&cur_trans->dirty_bgs_lock);
2707 	} else if (ret < 0) {
2708 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2709 	}
2710 
2711 	btrfs_free_path(path);
2712 	return ret;
2713 }
2714 
2715 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2716 {
2717 	struct btrfs_fs_info *fs_info = trans->fs_info;
2718 	struct btrfs_block_group *cache;
2719 	struct btrfs_transaction *cur_trans = trans->transaction;
2720 	int ret = 0;
2721 	int should_put;
2722 	struct btrfs_path *path;
2723 	struct list_head *io = &cur_trans->io_bgs;
2724 	int num_started = 0;
2725 
2726 	path = btrfs_alloc_path();
2727 	if (!path)
2728 		return -ENOMEM;
2729 
2730 	/*
2731 	 * Even though we are in the critical section of the transaction commit,
2732 	 * we can still have concurrent tasks adding elements to this
2733 	 * transaction's list of dirty block groups. These tasks correspond to
2734 	 * endio free space workers started when writeback finishes for a
2735 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2736 	 * allocate new block groups as a result of COWing nodes of the root
2737 	 * tree when updating the free space inode. The writeback for the space
2738 	 * caches is triggered by an earlier call to
2739 	 * btrfs_start_dirty_block_groups() and iterations of the following
2740 	 * loop.
2741 	 * Also we want to do the cache_save_setup first and then run the
2742 	 * delayed refs to make sure we have the best chance at doing this all
2743 	 * in one shot.
2744 	 */
2745 	spin_lock(&cur_trans->dirty_bgs_lock);
2746 	while (!list_empty(&cur_trans->dirty_bgs)) {
2747 		cache = list_first_entry(&cur_trans->dirty_bgs,
2748 					 struct btrfs_block_group,
2749 					 dirty_list);
2750 
2751 		/*
2752 		 * This can happen if cache_save_setup re-dirties a block group
2753 		 * that is already under IO.  Just wait for it to finish and
2754 		 * then do it all again
2755 		 */
2756 		if (!list_empty(&cache->io_list)) {
2757 			spin_unlock(&cur_trans->dirty_bgs_lock);
2758 			list_del_init(&cache->io_list);
2759 			btrfs_wait_cache_io(trans, cache, path);
2760 			btrfs_put_block_group(cache);
2761 			spin_lock(&cur_trans->dirty_bgs_lock);
2762 		}
2763 
2764 		/*
2765 		 * Don't remove from the dirty list until after we've waited on
2766 		 * any pending IO
2767 		 */
2768 		list_del_init(&cache->dirty_list);
2769 		spin_unlock(&cur_trans->dirty_bgs_lock);
2770 		should_put = 1;
2771 
2772 		cache_save_setup(cache, trans, path);
2773 
2774 		if (!ret)
2775 			ret = btrfs_run_delayed_refs(trans,
2776 						     (unsigned long) -1);
2777 
2778 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2779 			cache->io_ctl.inode = NULL;
2780 			ret = btrfs_write_out_cache(trans, cache, path);
2781 			if (ret == 0 && cache->io_ctl.inode) {
2782 				num_started++;
2783 				should_put = 0;
2784 				list_add_tail(&cache->io_list, io);
2785 			} else {
2786 				/*
2787 				 * If we failed to write the cache, the
2788 				 * generation will be bad and life goes on
2789 				 */
2790 				ret = 0;
2791 			}
2792 		}
2793 		if (!ret) {
2794 			ret = write_one_cache_group(trans, path, cache);
2795 			/*
2796 			 * One of the free space endio workers might have
2797 			 * created a new block group while updating a free space
2798 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2799 			 * and hasn't released its transaction handle yet, in
2800 			 * which case the new block group is still attached to
2801 			 * its transaction handle and its creation has not
2802 			 * finished yet (no block group item in the extent tree
2803 			 * yet, etc). If this is the case, wait for all free
2804 			 * space endio workers to finish and retry. This is a
2805 			 * a very rare case so no need for a more efficient and
2806 			 * complex approach.
2807 			 */
2808 			if (ret == -ENOENT) {
2809 				wait_event(cur_trans->writer_wait,
2810 				   atomic_read(&cur_trans->num_writers) == 1);
2811 				ret = write_one_cache_group(trans, path, cache);
2812 			}
2813 			if (ret)
2814 				btrfs_abort_transaction(trans, ret);
2815 		}
2816 
2817 		/* If its not on the io list, we need to put the block group */
2818 		if (should_put)
2819 			btrfs_put_block_group(cache);
2820 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2821 		spin_lock(&cur_trans->dirty_bgs_lock);
2822 	}
2823 	spin_unlock(&cur_trans->dirty_bgs_lock);
2824 
2825 	/*
2826 	 * Refer to the definition of io_bgs member for details why it's safe
2827 	 * to use it without any locking
2828 	 */
2829 	while (!list_empty(io)) {
2830 		cache = list_first_entry(io, struct btrfs_block_group,
2831 					 io_list);
2832 		list_del_init(&cache->io_list);
2833 		btrfs_wait_cache_io(trans, cache, path);
2834 		btrfs_put_block_group(cache);
2835 	}
2836 
2837 	btrfs_free_path(path);
2838 	return ret;
2839 }
2840 
2841 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2842 			     u64 bytenr, u64 num_bytes, int alloc)
2843 {
2844 	struct btrfs_fs_info *info = trans->fs_info;
2845 	struct btrfs_block_group *cache = NULL;
2846 	u64 total = num_bytes;
2847 	u64 old_val;
2848 	u64 byte_in_group;
2849 	int factor;
2850 	int ret = 0;
2851 
2852 	/* Block accounting for super block */
2853 	spin_lock(&info->delalloc_root_lock);
2854 	old_val = btrfs_super_bytes_used(info->super_copy);
2855 	if (alloc)
2856 		old_val += num_bytes;
2857 	else
2858 		old_val -= num_bytes;
2859 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2860 	spin_unlock(&info->delalloc_root_lock);
2861 
2862 	while (total) {
2863 		cache = btrfs_lookup_block_group(info, bytenr);
2864 		if (!cache) {
2865 			ret = -ENOENT;
2866 			break;
2867 		}
2868 		factor = btrfs_bg_type_to_factor(cache->flags);
2869 
2870 		/*
2871 		 * If this block group has free space cache written out, we
2872 		 * need to make sure to load it if we are removing space.  This
2873 		 * is because we need the unpinning stage to actually add the
2874 		 * space back to the block group, otherwise we will leak space.
2875 		 */
2876 		if (!alloc && !btrfs_block_group_done(cache))
2877 			btrfs_cache_block_group(cache, 1);
2878 
2879 		byte_in_group = bytenr - cache->start;
2880 		WARN_ON(byte_in_group > cache->length);
2881 
2882 		spin_lock(&cache->space_info->lock);
2883 		spin_lock(&cache->lock);
2884 
2885 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2886 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2887 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2888 
2889 		old_val = cache->used;
2890 		num_bytes = min(total, cache->length - byte_in_group);
2891 		if (alloc) {
2892 			old_val += num_bytes;
2893 			cache->used = old_val;
2894 			cache->reserved -= num_bytes;
2895 			cache->space_info->bytes_reserved -= num_bytes;
2896 			cache->space_info->bytes_used += num_bytes;
2897 			cache->space_info->disk_used += num_bytes * factor;
2898 			spin_unlock(&cache->lock);
2899 			spin_unlock(&cache->space_info->lock);
2900 		} else {
2901 			old_val -= num_bytes;
2902 			cache->used = old_val;
2903 			cache->pinned += num_bytes;
2904 			btrfs_space_info_update_bytes_pinned(info,
2905 					cache->space_info, num_bytes);
2906 			cache->space_info->bytes_used -= num_bytes;
2907 			cache->space_info->disk_used -= num_bytes * factor;
2908 			spin_unlock(&cache->lock);
2909 			spin_unlock(&cache->space_info->lock);
2910 
2911 			percpu_counter_add_batch(
2912 					&cache->space_info->total_bytes_pinned,
2913 					num_bytes,
2914 					BTRFS_TOTAL_BYTES_PINNED_BATCH);
2915 			set_extent_dirty(&trans->transaction->pinned_extents,
2916 					 bytenr, bytenr + num_bytes - 1,
2917 					 GFP_NOFS | __GFP_NOFAIL);
2918 		}
2919 
2920 		spin_lock(&trans->transaction->dirty_bgs_lock);
2921 		if (list_empty(&cache->dirty_list)) {
2922 			list_add_tail(&cache->dirty_list,
2923 				      &trans->transaction->dirty_bgs);
2924 			trans->delayed_ref_updates++;
2925 			btrfs_get_block_group(cache);
2926 		}
2927 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2928 
2929 		/*
2930 		 * No longer have used bytes in this block group, queue it for
2931 		 * deletion. We do this after adding the block group to the
2932 		 * dirty list to avoid races between cleaner kthread and space
2933 		 * cache writeout.
2934 		 */
2935 		if (!alloc && old_val == 0) {
2936 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2937 				btrfs_mark_bg_unused(cache);
2938 		}
2939 
2940 		btrfs_put_block_group(cache);
2941 		total -= num_bytes;
2942 		bytenr += num_bytes;
2943 	}
2944 
2945 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2946 	btrfs_update_delayed_refs_rsv(trans);
2947 	return ret;
2948 }
2949 
2950 /**
2951  * btrfs_add_reserved_bytes - update the block_group and space info counters
2952  * @cache:	The cache we are manipulating
2953  * @ram_bytes:  The number of bytes of file content, and will be same to
2954  *              @num_bytes except for the compress path.
2955  * @num_bytes:	The number of bytes in question
2956  * @delalloc:   The blocks are allocated for the delalloc write
2957  *
2958  * This is called by the allocator when it reserves space. If this is a
2959  * reservation and the block group has become read only we cannot make the
2960  * reservation and return -EAGAIN, otherwise this function always succeeds.
2961  */
2962 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2963 			     u64 ram_bytes, u64 num_bytes, int delalloc)
2964 {
2965 	struct btrfs_space_info *space_info = cache->space_info;
2966 	int ret = 0;
2967 
2968 	spin_lock(&space_info->lock);
2969 	spin_lock(&cache->lock);
2970 	if (cache->ro) {
2971 		ret = -EAGAIN;
2972 	} else {
2973 		cache->reserved += num_bytes;
2974 		space_info->bytes_reserved += num_bytes;
2975 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
2976 					      space_info->flags, num_bytes, 1);
2977 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
2978 						      space_info, -ram_bytes);
2979 		if (delalloc)
2980 			cache->delalloc_bytes += num_bytes;
2981 	}
2982 	spin_unlock(&cache->lock);
2983 	spin_unlock(&space_info->lock);
2984 	return ret;
2985 }
2986 
2987 /**
2988  * btrfs_free_reserved_bytes - update the block_group and space info counters
2989  * @cache:      The cache we are manipulating
2990  * @num_bytes:  The number of bytes in question
2991  * @delalloc:   The blocks are allocated for the delalloc write
2992  *
2993  * This is called by somebody who is freeing space that was never actually used
2994  * on disk.  For example if you reserve some space for a new leaf in transaction
2995  * A and before transaction A commits you free that leaf, you call this with
2996  * reserve set to 0 in order to clear the reservation.
2997  */
2998 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
2999 			       u64 num_bytes, int delalloc)
3000 {
3001 	struct btrfs_space_info *space_info = cache->space_info;
3002 
3003 	spin_lock(&space_info->lock);
3004 	spin_lock(&cache->lock);
3005 	if (cache->ro)
3006 		space_info->bytes_readonly += num_bytes;
3007 	cache->reserved -= num_bytes;
3008 	space_info->bytes_reserved -= num_bytes;
3009 	space_info->max_extent_size = 0;
3010 
3011 	if (delalloc)
3012 		cache->delalloc_bytes -= num_bytes;
3013 	spin_unlock(&cache->lock);
3014 	spin_unlock(&space_info->lock);
3015 }
3016 
3017 static void force_metadata_allocation(struct btrfs_fs_info *info)
3018 {
3019 	struct list_head *head = &info->space_info;
3020 	struct btrfs_space_info *found;
3021 
3022 	rcu_read_lock();
3023 	list_for_each_entry_rcu(found, head, list) {
3024 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3025 			found->force_alloc = CHUNK_ALLOC_FORCE;
3026 	}
3027 	rcu_read_unlock();
3028 }
3029 
3030 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3031 			      struct btrfs_space_info *sinfo, int force)
3032 {
3033 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3034 	u64 thresh;
3035 
3036 	if (force == CHUNK_ALLOC_FORCE)
3037 		return 1;
3038 
3039 	/*
3040 	 * in limited mode, we want to have some free space up to
3041 	 * about 1% of the FS size.
3042 	 */
3043 	if (force == CHUNK_ALLOC_LIMITED) {
3044 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3045 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3046 
3047 		if (sinfo->total_bytes - bytes_used < thresh)
3048 			return 1;
3049 	}
3050 
3051 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3052 		return 0;
3053 	return 1;
3054 }
3055 
3056 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3057 {
3058 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3059 
3060 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3061 }
3062 
3063 /*
3064  * If force is CHUNK_ALLOC_FORCE:
3065  *    - return 1 if it successfully allocates a chunk,
3066  *    - return errors including -ENOSPC otherwise.
3067  * If force is NOT CHUNK_ALLOC_FORCE:
3068  *    - return 0 if it doesn't need to allocate a new chunk,
3069  *    - return 1 if it successfully allocates a chunk,
3070  *    - return errors including -ENOSPC otherwise.
3071  */
3072 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3073 		      enum btrfs_chunk_alloc_enum force)
3074 {
3075 	struct btrfs_fs_info *fs_info = trans->fs_info;
3076 	struct btrfs_space_info *space_info;
3077 	bool wait_for_alloc = false;
3078 	bool should_alloc = false;
3079 	int ret = 0;
3080 
3081 	/* Don't re-enter if we're already allocating a chunk */
3082 	if (trans->allocating_chunk)
3083 		return -ENOSPC;
3084 
3085 	space_info = btrfs_find_space_info(fs_info, flags);
3086 	ASSERT(space_info);
3087 
3088 	do {
3089 		spin_lock(&space_info->lock);
3090 		if (force < space_info->force_alloc)
3091 			force = space_info->force_alloc;
3092 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3093 		if (space_info->full) {
3094 			/* No more free physical space */
3095 			if (should_alloc)
3096 				ret = -ENOSPC;
3097 			else
3098 				ret = 0;
3099 			spin_unlock(&space_info->lock);
3100 			return ret;
3101 		} else if (!should_alloc) {
3102 			spin_unlock(&space_info->lock);
3103 			return 0;
3104 		} else if (space_info->chunk_alloc) {
3105 			/*
3106 			 * Someone is already allocating, so we need to block
3107 			 * until this someone is finished and then loop to
3108 			 * recheck if we should continue with our allocation
3109 			 * attempt.
3110 			 */
3111 			wait_for_alloc = true;
3112 			spin_unlock(&space_info->lock);
3113 			mutex_lock(&fs_info->chunk_mutex);
3114 			mutex_unlock(&fs_info->chunk_mutex);
3115 		} else {
3116 			/* Proceed with allocation */
3117 			space_info->chunk_alloc = 1;
3118 			wait_for_alloc = false;
3119 			spin_unlock(&space_info->lock);
3120 		}
3121 
3122 		cond_resched();
3123 	} while (wait_for_alloc);
3124 
3125 	mutex_lock(&fs_info->chunk_mutex);
3126 	trans->allocating_chunk = true;
3127 
3128 	/*
3129 	 * If we have mixed data/metadata chunks we want to make sure we keep
3130 	 * allocating mixed chunks instead of individual chunks.
3131 	 */
3132 	if (btrfs_mixed_space_info(space_info))
3133 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3134 
3135 	/*
3136 	 * if we're doing a data chunk, go ahead and make sure that
3137 	 * we keep a reasonable number of metadata chunks allocated in the
3138 	 * FS as well.
3139 	 */
3140 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3141 		fs_info->data_chunk_allocations++;
3142 		if (!(fs_info->data_chunk_allocations %
3143 		      fs_info->metadata_ratio))
3144 			force_metadata_allocation(fs_info);
3145 	}
3146 
3147 	/*
3148 	 * Check if we have enough space in SYSTEM chunk because we may need
3149 	 * to update devices.
3150 	 */
3151 	check_system_chunk(trans, flags);
3152 
3153 	ret = btrfs_alloc_chunk(trans, flags);
3154 	trans->allocating_chunk = false;
3155 
3156 	spin_lock(&space_info->lock);
3157 	if (ret < 0) {
3158 		if (ret == -ENOSPC)
3159 			space_info->full = 1;
3160 		else
3161 			goto out;
3162 	} else {
3163 		ret = 1;
3164 		space_info->max_extent_size = 0;
3165 	}
3166 
3167 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3168 out:
3169 	space_info->chunk_alloc = 0;
3170 	spin_unlock(&space_info->lock);
3171 	mutex_unlock(&fs_info->chunk_mutex);
3172 	/*
3173 	 * When we allocate a new chunk we reserve space in the chunk block
3174 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3175 	 * add new nodes/leafs to it if we end up needing to do it when
3176 	 * inserting the chunk item and updating device items as part of the
3177 	 * second phase of chunk allocation, performed by
3178 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3179 	 * large number of new block groups to create in our transaction
3180 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3181 	 * in extreme cases - like having a single transaction create many new
3182 	 * block groups when starting to write out the free space caches of all
3183 	 * the block groups that were made dirty during the lifetime of the
3184 	 * transaction.
3185 	 */
3186 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3187 		btrfs_create_pending_block_groups(trans);
3188 
3189 	return ret;
3190 }
3191 
3192 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3193 {
3194 	u64 num_dev;
3195 
3196 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3197 	if (!num_dev)
3198 		num_dev = fs_info->fs_devices->rw_devices;
3199 
3200 	return num_dev;
3201 }
3202 
3203 /*
3204  * Reserve space in the system space for allocating or removing a chunk
3205  */
3206 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3207 {
3208 	struct btrfs_fs_info *fs_info = trans->fs_info;
3209 	struct btrfs_space_info *info;
3210 	u64 left;
3211 	u64 thresh;
3212 	int ret = 0;
3213 	u64 num_devs;
3214 
3215 	/*
3216 	 * Needed because we can end up allocating a system chunk and for an
3217 	 * atomic and race free space reservation in the chunk block reserve.
3218 	 */
3219 	lockdep_assert_held(&fs_info->chunk_mutex);
3220 
3221 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3222 	spin_lock(&info->lock);
3223 	left = info->total_bytes - btrfs_space_info_used(info, true);
3224 	spin_unlock(&info->lock);
3225 
3226 	num_devs = get_profile_num_devs(fs_info, type);
3227 
3228 	/* num_devs device items to update and 1 chunk item to add or remove */
3229 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3230 		btrfs_calc_insert_metadata_size(fs_info, 1);
3231 
3232 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3233 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3234 			   left, thresh, type);
3235 		btrfs_dump_space_info(fs_info, info, 0, 0);
3236 	}
3237 
3238 	if (left < thresh) {
3239 		u64 flags = btrfs_system_alloc_profile(fs_info);
3240 
3241 		/*
3242 		 * Ignore failure to create system chunk. We might end up not
3243 		 * needing it, as we might not need to COW all nodes/leafs from
3244 		 * the paths we visit in the chunk tree (they were already COWed
3245 		 * or created in the current transaction for example).
3246 		 */
3247 		ret = btrfs_alloc_chunk(trans, flags);
3248 	}
3249 
3250 	if (!ret) {
3251 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3252 					  &fs_info->chunk_block_rsv,
3253 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3254 		if (!ret)
3255 			trans->chunk_bytes_reserved += thresh;
3256 	}
3257 }
3258 
3259 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3260 {
3261 	struct btrfs_block_group *block_group;
3262 	u64 last = 0;
3263 
3264 	while (1) {
3265 		struct inode *inode;
3266 
3267 		block_group = btrfs_lookup_first_block_group(info, last);
3268 		while (block_group) {
3269 			btrfs_wait_block_group_cache_done(block_group);
3270 			spin_lock(&block_group->lock);
3271 			if (block_group->iref)
3272 				break;
3273 			spin_unlock(&block_group->lock);
3274 			block_group = btrfs_next_block_group(block_group);
3275 		}
3276 		if (!block_group) {
3277 			if (last == 0)
3278 				break;
3279 			last = 0;
3280 			continue;
3281 		}
3282 
3283 		inode = block_group->inode;
3284 		block_group->iref = 0;
3285 		block_group->inode = NULL;
3286 		spin_unlock(&block_group->lock);
3287 		ASSERT(block_group->io_ctl.inode == NULL);
3288 		iput(inode);
3289 		last = block_group->start + block_group->length;
3290 		btrfs_put_block_group(block_group);
3291 	}
3292 }
3293 
3294 /*
3295  * Must be called only after stopping all workers, since we could have block
3296  * group caching kthreads running, and therefore they could race with us if we
3297  * freed the block groups before stopping them.
3298  */
3299 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3300 {
3301 	struct btrfs_block_group *block_group;
3302 	struct btrfs_space_info *space_info;
3303 	struct btrfs_caching_control *caching_ctl;
3304 	struct rb_node *n;
3305 
3306 	down_write(&info->commit_root_sem);
3307 	while (!list_empty(&info->caching_block_groups)) {
3308 		caching_ctl = list_entry(info->caching_block_groups.next,
3309 					 struct btrfs_caching_control, list);
3310 		list_del(&caching_ctl->list);
3311 		btrfs_put_caching_control(caching_ctl);
3312 	}
3313 	up_write(&info->commit_root_sem);
3314 
3315 	spin_lock(&info->unused_bgs_lock);
3316 	while (!list_empty(&info->unused_bgs)) {
3317 		block_group = list_first_entry(&info->unused_bgs,
3318 					       struct btrfs_block_group,
3319 					       bg_list);
3320 		list_del_init(&block_group->bg_list);
3321 		btrfs_put_block_group(block_group);
3322 	}
3323 	spin_unlock(&info->unused_bgs_lock);
3324 
3325 	spin_lock(&info->block_group_cache_lock);
3326 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3327 		block_group = rb_entry(n, struct btrfs_block_group,
3328 				       cache_node);
3329 		rb_erase(&block_group->cache_node,
3330 			 &info->block_group_cache_tree);
3331 		RB_CLEAR_NODE(&block_group->cache_node);
3332 		spin_unlock(&info->block_group_cache_lock);
3333 
3334 		down_write(&block_group->space_info->groups_sem);
3335 		list_del(&block_group->list);
3336 		up_write(&block_group->space_info->groups_sem);
3337 
3338 		/*
3339 		 * We haven't cached this block group, which means we could
3340 		 * possibly have excluded extents on this block group.
3341 		 */
3342 		if (block_group->cached == BTRFS_CACHE_NO ||
3343 		    block_group->cached == BTRFS_CACHE_ERROR)
3344 			btrfs_free_excluded_extents(block_group);
3345 
3346 		btrfs_remove_free_space_cache(block_group);
3347 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3348 		ASSERT(list_empty(&block_group->dirty_list));
3349 		ASSERT(list_empty(&block_group->io_list));
3350 		ASSERT(list_empty(&block_group->bg_list));
3351 		ASSERT(atomic_read(&block_group->count) == 1);
3352 		btrfs_put_block_group(block_group);
3353 
3354 		spin_lock(&info->block_group_cache_lock);
3355 	}
3356 	spin_unlock(&info->block_group_cache_lock);
3357 
3358 	/*
3359 	 * Now that all the block groups are freed, go through and free all the
3360 	 * space_info structs.  This is only called during the final stages of
3361 	 * unmount, and so we know nobody is using them.  We call
3362 	 * synchronize_rcu() once before we start, just to be on the safe side.
3363 	 */
3364 	synchronize_rcu();
3365 
3366 	btrfs_release_global_block_rsv(info);
3367 
3368 	while (!list_empty(&info->space_info)) {
3369 		space_info = list_entry(info->space_info.next,
3370 					struct btrfs_space_info,
3371 					list);
3372 
3373 		/*
3374 		 * Do not hide this behind enospc_debug, this is actually
3375 		 * important and indicates a real bug if this happens.
3376 		 */
3377 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3378 			    space_info->bytes_reserved > 0 ||
3379 			    space_info->bytes_may_use > 0))
3380 			btrfs_dump_space_info(info, space_info, 0, 0);
3381 		WARN_ON(space_info->reclaim_size > 0);
3382 		list_del(&space_info->list);
3383 		btrfs_sysfs_remove_space_info(space_info);
3384 	}
3385 	return 0;
3386 }
3387