1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-group.h" 6 #include "space-info.h" 7 #include "disk-io.h" 8 #include "free-space-cache.h" 9 #include "free-space-tree.h" 10 #include "disk-io.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 #include "discard.h" 18 #include "raid56.h" 19 20 /* 21 * Return target flags in extended format or 0 if restripe for this chunk_type 22 * is not in progress 23 * 24 * Should be called with balance_lock held 25 */ 26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 27 { 28 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 29 u64 target = 0; 30 31 if (!bctl) 32 return 0; 33 34 if (flags & BTRFS_BLOCK_GROUP_DATA && 35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 43 } 44 45 return target; 46 } 47 48 /* 49 * @flags: available profiles in extended format (see ctree.h) 50 * 51 * Return reduced profile in chunk format. If profile changing is in progress 52 * (either running or paused) picks the target profile (if it's already 53 * available), otherwise falls back to plain reducing. 54 */ 55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 56 { 57 u64 num_devices = fs_info->fs_devices->rw_devices; 58 u64 target; 59 u64 raid_type; 60 u64 allowed = 0; 61 62 /* 63 * See if restripe for this chunk_type is in progress, if so try to 64 * reduce to the target profile 65 */ 66 spin_lock(&fs_info->balance_lock); 67 target = get_restripe_target(fs_info, flags); 68 if (target) { 69 /* Pick target profile only if it's already available */ 70 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 71 spin_unlock(&fs_info->balance_lock); 72 return extended_to_chunk(target); 73 } 74 } 75 spin_unlock(&fs_info->balance_lock); 76 77 /* First, mask out the RAID levels which aren't possible */ 78 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 79 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 80 allowed |= btrfs_raid_array[raid_type].bg_flag; 81 } 82 allowed &= flags; 83 84 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 85 allowed = BTRFS_BLOCK_GROUP_RAID6; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 87 allowed = BTRFS_BLOCK_GROUP_RAID5; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 89 allowed = BTRFS_BLOCK_GROUP_RAID10; 90 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 91 allowed = BTRFS_BLOCK_GROUP_RAID1; 92 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 93 allowed = BTRFS_BLOCK_GROUP_RAID0; 94 95 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 96 97 return extended_to_chunk(flags | allowed); 98 } 99 100 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 101 { 102 unsigned seq; 103 u64 flags; 104 105 do { 106 flags = orig_flags; 107 seq = read_seqbegin(&fs_info->profiles_lock); 108 109 if (flags & BTRFS_BLOCK_GROUP_DATA) 110 flags |= fs_info->avail_data_alloc_bits; 111 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 112 flags |= fs_info->avail_system_alloc_bits; 113 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 114 flags |= fs_info->avail_metadata_alloc_bits; 115 } while (read_seqretry(&fs_info->profiles_lock, seq)); 116 117 return btrfs_reduce_alloc_profile(fs_info, flags); 118 } 119 120 void btrfs_get_block_group(struct btrfs_block_group *cache) 121 { 122 atomic_inc(&cache->count); 123 } 124 125 void btrfs_put_block_group(struct btrfs_block_group *cache) 126 { 127 if (atomic_dec_and_test(&cache->count)) { 128 WARN_ON(cache->pinned > 0); 129 WARN_ON(cache->reserved > 0); 130 131 /* 132 * A block_group shouldn't be on the discard_list anymore. 133 * Remove the block_group from the discard_list to prevent us 134 * from causing a panic due to NULL pointer dereference. 135 */ 136 if (WARN_ON(!list_empty(&cache->discard_list))) 137 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 138 cache); 139 140 /* 141 * If not empty, someone is still holding mutex of 142 * full_stripe_lock, which can only be released by caller. 143 * And it will definitely cause use-after-free when caller 144 * tries to release full stripe lock. 145 * 146 * No better way to resolve, but only to warn. 147 */ 148 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 149 kfree(cache->free_space_ctl); 150 kfree(cache); 151 } 152 } 153 154 /* 155 * This adds the block group to the fs_info rb tree for the block group cache 156 */ 157 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 158 struct btrfs_block_group *block_group) 159 { 160 struct rb_node **p; 161 struct rb_node *parent = NULL; 162 struct btrfs_block_group *cache; 163 164 spin_lock(&info->block_group_cache_lock); 165 p = &info->block_group_cache_tree.rb_node; 166 167 while (*p) { 168 parent = *p; 169 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 170 if (block_group->start < cache->start) { 171 p = &(*p)->rb_left; 172 } else if (block_group->start > cache->start) { 173 p = &(*p)->rb_right; 174 } else { 175 spin_unlock(&info->block_group_cache_lock); 176 return -EEXIST; 177 } 178 } 179 180 rb_link_node(&block_group->cache_node, parent, p); 181 rb_insert_color(&block_group->cache_node, 182 &info->block_group_cache_tree); 183 184 if (info->first_logical_byte > block_group->start) 185 info->first_logical_byte = block_group->start; 186 187 spin_unlock(&info->block_group_cache_lock); 188 189 return 0; 190 } 191 192 /* 193 * This will return the block group at or after bytenr if contains is 0, else 194 * it will return the block group that contains the bytenr 195 */ 196 static struct btrfs_block_group *block_group_cache_tree_search( 197 struct btrfs_fs_info *info, u64 bytenr, int contains) 198 { 199 struct btrfs_block_group *cache, *ret = NULL; 200 struct rb_node *n; 201 u64 end, start; 202 203 spin_lock(&info->block_group_cache_lock); 204 n = info->block_group_cache_tree.rb_node; 205 206 while (n) { 207 cache = rb_entry(n, struct btrfs_block_group, cache_node); 208 end = cache->start + cache->length - 1; 209 start = cache->start; 210 211 if (bytenr < start) { 212 if (!contains && (!ret || start < ret->start)) 213 ret = cache; 214 n = n->rb_left; 215 } else if (bytenr > start) { 216 if (contains && bytenr <= end) { 217 ret = cache; 218 break; 219 } 220 n = n->rb_right; 221 } else { 222 ret = cache; 223 break; 224 } 225 } 226 if (ret) { 227 btrfs_get_block_group(ret); 228 if (bytenr == 0 && info->first_logical_byte > ret->start) 229 info->first_logical_byte = ret->start; 230 } 231 spin_unlock(&info->block_group_cache_lock); 232 233 return ret; 234 } 235 236 /* 237 * Return the block group that starts at or after bytenr 238 */ 239 struct btrfs_block_group *btrfs_lookup_first_block_group( 240 struct btrfs_fs_info *info, u64 bytenr) 241 { 242 return block_group_cache_tree_search(info, bytenr, 0); 243 } 244 245 /* 246 * Return the block group that contains the given bytenr 247 */ 248 struct btrfs_block_group *btrfs_lookup_block_group( 249 struct btrfs_fs_info *info, u64 bytenr) 250 { 251 return block_group_cache_tree_search(info, bytenr, 1); 252 } 253 254 struct btrfs_block_group *btrfs_next_block_group( 255 struct btrfs_block_group *cache) 256 { 257 struct btrfs_fs_info *fs_info = cache->fs_info; 258 struct rb_node *node; 259 260 spin_lock(&fs_info->block_group_cache_lock); 261 262 /* If our block group was removed, we need a full search. */ 263 if (RB_EMPTY_NODE(&cache->cache_node)) { 264 const u64 next_bytenr = cache->start + cache->length; 265 266 spin_unlock(&fs_info->block_group_cache_lock); 267 btrfs_put_block_group(cache); 268 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 269 } 270 node = rb_next(&cache->cache_node); 271 btrfs_put_block_group(cache); 272 if (node) { 273 cache = rb_entry(node, struct btrfs_block_group, cache_node); 274 btrfs_get_block_group(cache); 275 } else 276 cache = NULL; 277 spin_unlock(&fs_info->block_group_cache_lock); 278 return cache; 279 } 280 281 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 282 { 283 struct btrfs_block_group *bg; 284 bool ret = true; 285 286 bg = btrfs_lookup_block_group(fs_info, bytenr); 287 if (!bg) 288 return false; 289 290 spin_lock(&bg->lock); 291 if (bg->ro) 292 ret = false; 293 else 294 atomic_inc(&bg->nocow_writers); 295 spin_unlock(&bg->lock); 296 297 /* No put on block group, done by btrfs_dec_nocow_writers */ 298 if (!ret) 299 btrfs_put_block_group(bg); 300 301 return ret; 302 } 303 304 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 305 { 306 struct btrfs_block_group *bg; 307 308 bg = btrfs_lookup_block_group(fs_info, bytenr); 309 ASSERT(bg); 310 if (atomic_dec_and_test(&bg->nocow_writers)) 311 wake_up_var(&bg->nocow_writers); 312 /* 313 * Once for our lookup and once for the lookup done by a previous call 314 * to btrfs_inc_nocow_writers() 315 */ 316 btrfs_put_block_group(bg); 317 btrfs_put_block_group(bg); 318 } 319 320 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 321 { 322 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 323 } 324 325 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 326 const u64 start) 327 { 328 struct btrfs_block_group *bg; 329 330 bg = btrfs_lookup_block_group(fs_info, start); 331 ASSERT(bg); 332 if (atomic_dec_and_test(&bg->reservations)) 333 wake_up_var(&bg->reservations); 334 btrfs_put_block_group(bg); 335 } 336 337 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 338 { 339 struct btrfs_space_info *space_info = bg->space_info; 340 341 ASSERT(bg->ro); 342 343 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 344 return; 345 346 /* 347 * Our block group is read only but before we set it to read only, 348 * some task might have had allocated an extent from it already, but it 349 * has not yet created a respective ordered extent (and added it to a 350 * root's list of ordered extents). 351 * Therefore wait for any task currently allocating extents, since the 352 * block group's reservations counter is incremented while a read lock 353 * on the groups' semaphore is held and decremented after releasing 354 * the read access on that semaphore and creating the ordered extent. 355 */ 356 down_write(&space_info->groups_sem); 357 up_write(&space_info->groups_sem); 358 359 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 360 } 361 362 struct btrfs_caching_control *btrfs_get_caching_control( 363 struct btrfs_block_group *cache) 364 { 365 struct btrfs_caching_control *ctl; 366 367 spin_lock(&cache->lock); 368 if (!cache->caching_ctl) { 369 spin_unlock(&cache->lock); 370 return NULL; 371 } 372 373 ctl = cache->caching_ctl; 374 refcount_inc(&ctl->count); 375 spin_unlock(&cache->lock); 376 return ctl; 377 } 378 379 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 380 { 381 if (refcount_dec_and_test(&ctl->count)) 382 kfree(ctl); 383 } 384 385 /* 386 * When we wait for progress in the block group caching, its because our 387 * allocation attempt failed at least once. So, we must sleep and let some 388 * progress happen before we try again. 389 * 390 * This function will sleep at least once waiting for new free space to show 391 * up, and then it will check the block group free space numbers for our min 392 * num_bytes. Another option is to have it go ahead and look in the rbtree for 393 * a free extent of a given size, but this is a good start. 394 * 395 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 396 * any of the information in this block group. 397 */ 398 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 399 u64 num_bytes) 400 { 401 struct btrfs_caching_control *caching_ctl; 402 403 caching_ctl = btrfs_get_caching_control(cache); 404 if (!caching_ctl) 405 return; 406 407 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 408 (cache->free_space_ctl->free_space >= num_bytes)); 409 410 btrfs_put_caching_control(caching_ctl); 411 } 412 413 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 414 { 415 struct btrfs_caching_control *caching_ctl; 416 int ret = 0; 417 418 caching_ctl = btrfs_get_caching_control(cache); 419 if (!caching_ctl) 420 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 421 422 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 423 if (cache->cached == BTRFS_CACHE_ERROR) 424 ret = -EIO; 425 btrfs_put_caching_control(caching_ctl); 426 return ret; 427 } 428 429 #ifdef CONFIG_BTRFS_DEBUG 430 static void fragment_free_space(struct btrfs_block_group *block_group) 431 { 432 struct btrfs_fs_info *fs_info = block_group->fs_info; 433 u64 start = block_group->start; 434 u64 len = block_group->length; 435 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 436 fs_info->nodesize : fs_info->sectorsize; 437 u64 step = chunk << 1; 438 439 while (len > chunk) { 440 btrfs_remove_free_space(block_group, start, chunk); 441 start += step; 442 if (len < step) 443 len = 0; 444 else 445 len -= step; 446 } 447 } 448 #endif 449 450 /* 451 * This is only called by btrfs_cache_block_group, since we could have freed 452 * extents we need to check the pinned_extents for any extents that can't be 453 * used yet since their free space will be released as soon as the transaction 454 * commits. 455 */ 456 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 457 { 458 struct btrfs_fs_info *info = block_group->fs_info; 459 u64 extent_start, extent_end, size, total_added = 0; 460 int ret; 461 462 while (start < end) { 463 ret = find_first_extent_bit(&info->excluded_extents, start, 464 &extent_start, &extent_end, 465 EXTENT_DIRTY | EXTENT_UPTODATE, 466 NULL); 467 if (ret) 468 break; 469 470 if (extent_start <= start) { 471 start = extent_end + 1; 472 } else if (extent_start > start && extent_start < end) { 473 size = extent_start - start; 474 total_added += size; 475 ret = btrfs_add_free_space_async_trimmed(block_group, 476 start, size); 477 BUG_ON(ret); /* -ENOMEM or logic error */ 478 start = extent_end + 1; 479 } else { 480 break; 481 } 482 } 483 484 if (start < end) { 485 size = end - start; 486 total_added += size; 487 ret = btrfs_add_free_space_async_trimmed(block_group, start, 488 size); 489 BUG_ON(ret); /* -ENOMEM or logic error */ 490 } 491 492 return total_added; 493 } 494 495 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 496 { 497 struct btrfs_block_group *block_group = caching_ctl->block_group; 498 struct btrfs_fs_info *fs_info = block_group->fs_info; 499 struct btrfs_root *extent_root = fs_info->extent_root; 500 struct btrfs_path *path; 501 struct extent_buffer *leaf; 502 struct btrfs_key key; 503 u64 total_found = 0; 504 u64 last = 0; 505 u32 nritems; 506 int ret; 507 bool wakeup = true; 508 509 path = btrfs_alloc_path(); 510 if (!path) 511 return -ENOMEM; 512 513 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 514 515 #ifdef CONFIG_BTRFS_DEBUG 516 /* 517 * If we're fragmenting we don't want to make anybody think we can 518 * allocate from this block group until we've had a chance to fragment 519 * the free space. 520 */ 521 if (btrfs_should_fragment_free_space(block_group)) 522 wakeup = false; 523 #endif 524 /* 525 * We don't want to deadlock with somebody trying to allocate a new 526 * extent for the extent root while also trying to search the extent 527 * root to add free space. So we skip locking and search the commit 528 * root, since its read-only 529 */ 530 path->skip_locking = 1; 531 path->search_commit_root = 1; 532 path->reada = READA_FORWARD; 533 534 key.objectid = last; 535 key.offset = 0; 536 key.type = BTRFS_EXTENT_ITEM_KEY; 537 538 next: 539 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 540 if (ret < 0) 541 goto out; 542 543 leaf = path->nodes[0]; 544 nritems = btrfs_header_nritems(leaf); 545 546 while (1) { 547 if (btrfs_fs_closing(fs_info) > 1) { 548 last = (u64)-1; 549 break; 550 } 551 552 if (path->slots[0] < nritems) { 553 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 554 } else { 555 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 556 if (ret) 557 break; 558 559 if (need_resched() || 560 rwsem_is_contended(&fs_info->commit_root_sem)) { 561 if (wakeup) 562 caching_ctl->progress = last; 563 btrfs_release_path(path); 564 up_read(&fs_info->commit_root_sem); 565 mutex_unlock(&caching_ctl->mutex); 566 cond_resched(); 567 mutex_lock(&caching_ctl->mutex); 568 down_read(&fs_info->commit_root_sem); 569 goto next; 570 } 571 572 ret = btrfs_next_leaf(extent_root, path); 573 if (ret < 0) 574 goto out; 575 if (ret) 576 break; 577 leaf = path->nodes[0]; 578 nritems = btrfs_header_nritems(leaf); 579 continue; 580 } 581 582 if (key.objectid < last) { 583 key.objectid = last; 584 key.offset = 0; 585 key.type = BTRFS_EXTENT_ITEM_KEY; 586 587 if (wakeup) 588 caching_ctl->progress = last; 589 btrfs_release_path(path); 590 goto next; 591 } 592 593 if (key.objectid < block_group->start) { 594 path->slots[0]++; 595 continue; 596 } 597 598 if (key.objectid >= block_group->start + block_group->length) 599 break; 600 601 if (key.type == BTRFS_EXTENT_ITEM_KEY || 602 key.type == BTRFS_METADATA_ITEM_KEY) { 603 total_found += add_new_free_space(block_group, last, 604 key.objectid); 605 if (key.type == BTRFS_METADATA_ITEM_KEY) 606 last = key.objectid + 607 fs_info->nodesize; 608 else 609 last = key.objectid + key.offset; 610 611 if (total_found > CACHING_CTL_WAKE_UP) { 612 total_found = 0; 613 if (wakeup) 614 wake_up(&caching_ctl->wait); 615 } 616 } 617 path->slots[0]++; 618 } 619 ret = 0; 620 621 total_found += add_new_free_space(block_group, last, 622 block_group->start + block_group->length); 623 caching_ctl->progress = (u64)-1; 624 625 out: 626 btrfs_free_path(path); 627 return ret; 628 } 629 630 static noinline void caching_thread(struct btrfs_work *work) 631 { 632 struct btrfs_block_group *block_group; 633 struct btrfs_fs_info *fs_info; 634 struct btrfs_caching_control *caching_ctl; 635 int ret; 636 637 caching_ctl = container_of(work, struct btrfs_caching_control, work); 638 block_group = caching_ctl->block_group; 639 fs_info = block_group->fs_info; 640 641 mutex_lock(&caching_ctl->mutex); 642 down_read(&fs_info->commit_root_sem); 643 644 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 645 ret = load_free_space_tree(caching_ctl); 646 else 647 ret = load_extent_tree_free(caching_ctl); 648 649 spin_lock(&block_group->lock); 650 block_group->caching_ctl = NULL; 651 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 652 spin_unlock(&block_group->lock); 653 654 #ifdef CONFIG_BTRFS_DEBUG 655 if (btrfs_should_fragment_free_space(block_group)) { 656 u64 bytes_used; 657 658 spin_lock(&block_group->space_info->lock); 659 spin_lock(&block_group->lock); 660 bytes_used = block_group->length - block_group->used; 661 block_group->space_info->bytes_used += bytes_used >> 1; 662 spin_unlock(&block_group->lock); 663 spin_unlock(&block_group->space_info->lock); 664 fragment_free_space(block_group); 665 } 666 #endif 667 668 caching_ctl->progress = (u64)-1; 669 670 up_read(&fs_info->commit_root_sem); 671 btrfs_free_excluded_extents(block_group); 672 mutex_unlock(&caching_ctl->mutex); 673 674 wake_up(&caching_ctl->wait); 675 676 btrfs_put_caching_control(caching_ctl); 677 btrfs_put_block_group(block_group); 678 } 679 680 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 681 { 682 DEFINE_WAIT(wait); 683 struct btrfs_fs_info *fs_info = cache->fs_info; 684 struct btrfs_caching_control *caching_ctl; 685 int ret = 0; 686 687 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 688 if (!caching_ctl) 689 return -ENOMEM; 690 691 INIT_LIST_HEAD(&caching_ctl->list); 692 mutex_init(&caching_ctl->mutex); 693 init_waitqueue_head(&caching_ctl->wait); 694 caching_ctl->block_group = cache; 695 caching_ctl->progress = cache->start; 696 refcount_set(&caching_ctl->count, 1); 697 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 698 699 spin_lock(&cache->lock); 700 /* 701 * This should be a rare occasion, but this could happen I think in the 702 * case where one thread starts to load the space cache info, and then 703 * some other thread starts a transaction commit which tries to do an 704 * allocation while the other thread is still loading the space cache 705 * info. The previous loop should have kept us from choosing this block 706 * group, but if we've moved to the state where we will wait on caching 707 * block groups we need to first check if we're doing a fast load here, 708 * so we can wait for it to finish, otherwise we could end up allocating 709 * from a block group who's cache gets evicted for one reason or 710 * another. 711 */ 712 while (cache->cached == BTRFS_CACHE_FAST) { 713 struct btrfs_caching_control *ctl; 714 715 ctl = cache->caching_ctl; 716 refcount_inc(&ctl->count); 717 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 718 spin_unlock(&cache->lock); 719 720 schedule(); 721 722 finish_wait(&ctl->wait, &wait); 723 btrfs_put_caching_control(ctl); 724 spin_lock(&cache->lock); 725 } 726 727 if (cache->cached != BTRFS_CACHE_NO) { 728 spin_unlock(&cache->lock); 729 kfree(caching_ctl); 730 return 0; 731 } 732 WARN_ON(cache->caching_ctl); 733 cache->caching_ctl = caching_ctl; 734 cache->cached = BTRFS_CACHE_FAST; 735 spin_unlock(&cache->lock); 736 737 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 738 mutex_lock(&caching_ctl->mutex); 739 ret = load_free_space_cache(cache); 740 741 spin_lock(&cache->lock); 742 if (ret == 1) { 743 cache->caching_ctl = NULL; 744 cache->cached = BTRFS_CACHE_FINISHED; 745 cache->last_byte_to_unpin = (u64)-1; 746 caching_ctl->progress = (u64)-1; 747 } else { 748 if (load_cache_only) { 749 cache->caching_ctl = NULL; 750 cache->cached = BTRFS_CACHE_NO; 751 } else { 752 cache->cached = BTRFS_CACHE_STARTED; 753 cache->has_caching_ctl = 1; 754 } 755 } 756 spin_unlock(&cache->lock); 757 #ifdef CONFIG_BTRFS_DEBUG 758 if (ret == 1 && 759 btrfs_should_fragment_free_space(cache)) { 760 u64 bytes_used; 761 762 spin_lock(&cache->space_info->lock); 763 spin_lock(&cache->lock); 764 bytes_used = cache->length - cache->used; 765 cache->space_info->bytes_used += bytes_used >> 1; 766 spin_unlock(&cache->lock); 767 spin_unlock(&cache->space_info->lock); 768 fragment_free_space(cache); 769 } 770 #endif 771 mutex_unlock(&caching_ctl->mutex); 772 773 wake_up(&caching_ctl->wait); 774 if (ret == 1) { 775 btrfs_put_caching_control(caching_ctl); 776 btrfs_free_excluded_extents(cache); 777 return 0; 778 } 779 } else { 780 /* 781 * We're either using the free space tree or no caching at all. 782 * Set cached to the appropriate value and wakeup any waiters. 783 */ 784 spin_lock(&cache->lock); 785 if (load_cache_only) { 786 cache->caching_ctl = NULL; 787 cache->cached = BTRFS_CACHE_NO; 788 } else { 789 cache->cached = BTRFS_CACHE_STARTED; 790 cache->has_caching_ctl = 1; 791 } 792 spin_unlock(&cache->lock); 793 wake_up(&caching_ctl->wait); 794 } 795 796 if (load_cache_only) { 797 btrfs_put_caching_control(caching_ctl); 798 return 0; 799 } 800 801 down_write(&fs_info->commit_root_sem); 802 refcount_inc(&caching_ctl->count); 803 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 804 up_write(&fs_info->commit_root_sem); 805 806 btrfs_get_block_group(cache); 807 808 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 809 810 return ret; 811 } 812 813 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 814 { 815 u64 extra_flags = chunk_to_extended(flags) & 816 BTRFS_EXTENDED_PROFILE_MASK; 817 818 write_seqlock(&fs_info->profiles_lock); 819 if (flags & BTRFS_BLOCK_GROUP_DATA) 820 fs_info->avail_data_alloc_bits &= ~extra_flags; 821 if (flags & BTRFS_BLOCK_GROUP_METADATA) 822 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 823 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 824 fs_info->avail_system_alloc_bits &= ~extra_flags; 825 write_sequnlock(&fs_info->profiles_lock); 826 } 827 828 /* 829 * Clear incompat bits for the following feature(s): 830 * 831 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 832 * in the whole filesystem 833 * 834 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 835 */ 836 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 837 { 838 bool found_raid56 = false; 839 bool found_raid1c34 = false; 840 841 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 842 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 843 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 844 struct list_head *head = &fs_info->space_info; 845 struct btrfs_space_info *sinfo; 846 847 list_for_each_entry_rcu(sinfo, head, list) { 848 down_read(&sinfo->groups_sem); 849 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 850 found_raid56 = true; 851 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 852 found_raid56 = true; 853 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 854 found_raid1c34 = true; 855 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 856 found_raid1c34 = true; 857 up_read(&sinfo->groups_sem); 858 } 859 if (!found_raid56) 860 btrfs_clear_fs_incompat(fs_info, RAID56); 861 if (!found_raid1c34) 862 btrfs_clear_fs_incompat(fs_info, RAID1C34); 863 } 864 } 865 866 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 867 u64 group_start, struct extent_map *em) 868 { 869 struct btrfs_fs_info *fs_info = trans->fs_info; 870 struct btrfs_root *root = fs_info->extent_root; 871 struct btrfs_path *path; 872 struct btrfs_block_group *block_group; 873 struct btrfs_free_cluster *cluster; 874 struct btrfs_root *tree_root = fs_info->tree_root; 875 struct btrfs_key key; 876 struct inode *inode; 877 struct kobject *kobj = NULL; 878 int ret; 879 int index; 880 int factor; 881 struct btrfs_caching_control *caching_ctl = NULL; 882 bool remove_em; 883 bool remove_rsv = false; 884 885 block_group = btrfs_lookup_block_group(fs_info, group_start); 886 BUG_ON(!block_group); 887 BUG_ON(!block_group->ro); 888 889 trace_btrfs_remove_block_group(block_group); 890 /* 891 * Free the reserved super bytes from this block group before 892 * remove it. 893 */ 894 btrfs_free_excluded_extents(block_group); 895 btrfs_free_ref_tree_range(fs_info, block_group->start, 896 block_group->length); 897 898 index = btrfs_bg_flags_to_raid_index(block_group->flags); 899 factor = btrfs_bg_type_to_factor(block_group->flags); 900 901 /* make sure this block group isn't part of an allocation cluster */ 902 cluster = &fs_info->data_alloc_cluster; 903 spin_lock(&cluster->refill_lock); 904 btrfs_return_cluster_to_free_space(block_group, cluster); 905 spin_unlock(&cluster->refill_lock); 906 907 /* 908 * make sure this block group isn't part of a metadata 909 * allocation cluster 910 */ 911 cluster = &fs_info->meta_alloc_cluster; 912 spin_lock(&cluster->refill_lock); 913 btrfs_return_cluster_to_free_space(block_group, cluster); 914 spin_unlock(&cluster->refill_lock); 915 916 path = btrfs_alloc_path(); 917 if (!path) { 918 ret = -ENOMEM; 919 goto out_put_group; 920 } 921 922 /* 923 * get the inode first so any iput calls done for the io_list 924 * aren't the final iput (no unlinks allowed now) 925 */ 926 inode = lookup_free_space_inode(block_group, path); 927 928 mutex_lock(&trans->transaction->cache_write_mutex); 929 /* 930 * Make sure our free space cache IO is done before removing the 931 * free space inode 932 */ 933 spin_lock(&trans->transaction->dirty_bgs_lock); 934 if (!list_empty(&block_group->io_list)) { 935 list_del_init(&block_group->io_list); 936 937 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 938 939 spin_unlock(&trans->transaction->dirty_bgs_lock); 940 btrfs_wait_cache_io(trans, block_group, path); 941 btrfs_put_block_group(block_group); 942 spin_lock(&trans->transaction->dirty_bgs_lock); 943 } 944 945 if (!list_empty(&block_group->dirty_list)) { 946 list_del_init(&block_group->dirty_list); 947 remove_rsv = true; 948 btrfs_put_block_group(block_group); 949 } 950 spin_unlock(&trans->transaction->dirty_bgs_lock); 951 mutex_unlock(&trans->transaction->cache_write_mutex); 952 953 if (!IS_ERR(inode)) { 954 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 955 if (ret) { 956 btrfs_add_delayed_iput(inode); 957 goto out_put_group; 958 } 959 clear_nlink(inode); 960 /* One for the block groups ref */ 961 spin_lock(&block_group->lock); 962 if (block_group->iref) { 963 block_group->iref = 0; 964 block_group->inode = NULL; 965 spin_unlock(&block_group->lock); 966 iput(inode); 967 } else { 968 spin_unlock(&block_group->lock); 969 } 970 /* One for our lookup ref */ 971 btrfs_add_delayed_iput(inode); 972 } 973 974 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 975 key.type = 0; 976 key.offset = block_group->start; 977 978 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 979 if (ret < 0) 980 goto out_put_group; 981 if (ret > 0) 982 btrfs_release_path(path); 983 if (ret == 0) { 984 ret = btrfs_del_item(trans, tree_root, path); 985 if (ret) 986 goto out_put_group; 987 btrfs_release_path(path); 988 } 989 990 spin_lock(&fs_info->block_group_cache_lock); 991 rb_erase(&block_group->cache_node, 992 &fs_info->block_group_cache_tree); 993 RB_CLEAR_NODE(&block_group->cache_node); 994 995 if (fs_info->first_logical_byte == block_group->start) 996 fs_info->first_logical_byte = (u64)-1; 997 spin_unlock(&fs_info->block_group_cache_lock); 998 999 down_write(&block_group->space_info->groups_sem); 1000 /* 1001 * we must use list_del_init so people can check to see if they 1002 * are still on the list after taking the semaphore 1003 */ 1004 list_del_init(&block_group->list); 1005 if (list_empty(&block_group->space_info->block_groups[index])) { 1006 kobj = block_group->space_info->block_group_kobjs[index]; 1007 block_group->space_info->block_group_kobjs[index] = NULL; 1008 clear_avail_alloc_bits(fs_info, block_group->flags); 1009 } 1010 up_write(&block_group->space_info->groups_sem); 1011 clear_incompat_bg_bits(fs_info, block_group->flags); 1012 if (kobj) { 1013 kobject_del(kobj); 1014 kobject_put(kobj); 1015 } 1016 1017 if (block_group->has_caching_ctl) 1018 caching_ctl = btrfs_get_caching_control(block_group); 1019 if (block_group->cached == BTRFS_CACHE_STARTED) 1020 btrfs_wait_block_group_cache_done(block_group); 1021 if (block_group->has_caching_ctl) { 1022 down_write(&fs_info->commit_root_sem); 1023 if (!caching_ctl) { 1024 struct btrfs_caching_control *ctl; 1025 1026 list_for_each_entry(ctl, 1027 &fs_info->caching_block_groups, list) 1028 if (ctl->block_group == block_group) { 1029 caching_ctl = ctl; 1030 refcount_inc(&caching_ctl->count); 1031 break; 1032 } 1033 } 1034 if (caching_ctl) 1035 list_del_init(&caching_ctl->list); 1036 up_write(&fs_info->commit_root_sem); 1037 if (caching_ctl) { 1038 /* Once for the caching bgs list and once for us. */ 1039 btrfs_put_caching_control(caching_ctl); 1040 btrfs_put_caching_control(caching_ctl); 1041 } 1042 } 1043 1044 spin_lock(&trans->transaction->dirty_bgs_lock); 1045 WARN_ON(!list_empty(&block_group->dirty_list)); 1046 WARN_ON(!list_empty(&block_group->io_list)); 1047 spin_unlock(&trans->transaction->dirty_bgs_lock); 1048 1049 btrfs_remove_free_space_cache(block_group); 1050 1051 spin_lock(&block_group->space_info->lock); 1052 list_del_init(&block_group->ro_list); 1053 1054 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1055 WARN_ON(block_group->space_info->total_bytes 1056 < block_group->length); 1057 WARN_ON(block_group->space_info->bytes_readonly 1058 < block_group->length); 1059 WARN_ON(block_group->space_info->disk_total 1060 < block_group->length * factor); 1061 } 1062 block_group->space_info->total_bytes -= block_group->length; 1063 block_group->space_info->bytes_readonly -= block_group->length; 1064 block_group->space_info->disk_total -= block_group->length * factor; 1065 1066 spin_unlock(&block_group->space_info->lock); 1067 1068 key.objectid = block_group->start; 1069 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1070 key.offset = block_group->length; 1071 1072 mutex_lock(&fs_info->chunk_mutex); 1073 spin_lock(&block_group->lock); 1074 block_group->removed = 1; 1075 /* 1076 * At this point trimming can't start on this block group, because we 1077 * removed the block group from the tree fs_info->block_group_cache_tree 1078 * so no one can't find it anymore and even if someone already got this 1079 * block group before we removed it from the rbtree, they have already 1080 * incremented block_group->trimming - if they didn't, they won't find 1081 * any free space entries because we already removed them all when we 1082 * called btrfs_remove_free_space_cache(). 1083 * 1084 * And we must not remove the extent map from the fs_info->mapping_tree 1085 * to prevent the same logical address range and physical device space 1086 * ranges from being reused for a new block group. This is because our 1087 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1088 * completely transactionless, so while it is trimming a range the 1089 * currently running transaction might finish and a new one start, 1090 * allowing for new block groups to be created that can reuse the same 1091 * physical device locations unless we take this special care. 1092 * 1093 * There may also be an implicit trim operation if the file system 1094 * is mounted with -odiscard. The same protections must remain 1095 * in place until the extents have been discarded completely when 1096 * the transaction commit has completed. 1097 */ 1098 remove_em = (atomic_read(&block_group->trimming) == 0); 1099 spin_unlock(&block_group->lock); 1100 1101 mutex_unlock(&fs_info->chunk_mutex); 1102 1103 ret = remove_block_group_free_space(trans, block_group); 1104 if (ret) 1105 goto out_put_group; 1106 1107 /* Once for the block groups rbtree */ 1108 btrfs_put_block_group(block_group); 1109 1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1111 if (ret > 0) 1112 ret = -EIO; 1113 if (ret < 0) 1114 goto out; 1115 1116 ret = btrfs_del_item(trans, root, path); 1117 if (ret) 1118 goto out; 1119 1120 if (remove_em) { 1121 struct extent_map_tree *em_tree; 1122 1123 em_tree = &fs_info->mapping_tree; 1124 write_lock(&em_tree->lock); 1125 remove_extent_mapping(em_tree, em); 1126 write_unlock(&em_tree->lock); 1127 /* once for the tree */ 1128 free_extent_map(em); 1129 } 1130 1131 out_put_group: 1132 /* Once for the lookup reference */ 1133 btrfs_put_block_group(block_group); 1134 out: 1135 if (remove_rsv) 1136 btrfs_delayed_refs_rsv_release(fs_info, 1); 1137 btrfs_free_path(path); 1138 return ret; 1139 } 1140 1141 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1142 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1143 { 1144 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1145 struct extent_map *em; 1146 struct map_lookup *map; 1147 unsigned int num_items; 1148 1149 read_lock(&em_tree->lock); 1150 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1151 read_unlock(&em_tree->lock); 1152 ASSERT(em && em->start == chunk_offset); 1153 1154 /* 1155 * We need to reserve 3 + N units from the metadata space info in order 1156 * to remove a block group (done at btrfs_remove_chunk() and at 1157 * btrfs_remove_block_group()), which are used for: 1158 * 1159 * 1 unit for adding the free space inode's orphan (located in the tree 1160 * of tree roots). 1161 * 1 unit for deleting the block group item (located in the extent 1162 * tree). 1163 * 1 unit for deleting the free space item (located in tree of tree 1164 * roots). 1165 * N units for deleting N device extent items corresponding to each 1166 * stripe (located in the device tree). 1167 * 1168 * In order to remove a block group we also need to reserve units in the 1169 * system space info in order to update the chunk tree (update one or 1170 * more device items and remove one chunk item), but this is done at 1171 * btrfs_remove_chunk() through a call to check_system_chunk(). 1172 */ 1173 map = em->map_lookup; 1174 num_items = 3 + map->num_stripes; 1175 free_extent_map(em); 1176 1177 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 1178 num_items, 1); 1179 } 1180 1181 /* 1182 * Mark block group @cache read-only, so later write won't happen to block 1183 * group @cache. 1184 * 1185 * If @force is not set, this function will only mark the block group readonly 1186 * if we have enough free space (1M) in other metadata/system block groups. 1187 * If @force is not set, this function will mark the block group readonly 1188 * without checking free space. 1189 * 1190 * NOTE: This function doesn't care if other block groups can contain all the 1191 * data in this block group. That check should be done by relocation routine, 1192 * not this function. 1193 */ 1194 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1195 { 1196 struct btrfs_space_info *sinfo = cache->space_info; 1197 u64 num_bytes; 1198 int ret = -ENOSPC; 1199 1200 spin_lock(&sinfo->lock); 1201 spin_lock(&cache->lock); 1202 1203 if (cache->ro) { 1204 cache->ro++; 1205 ret = 0; 1206 goto out; 1207 } 1208 1209 num_bytes = cache->length - cache->reserved - cache->pinned - 1210 cache->bytes_super - cache->used; 1211 1212 /* 1213 * Data never overcommits, even in mixed mode, so do just the straight 1214 * check of left over space in how much we have allocated. 1215 */ 1216 if (force) { 1217 ret = 0; 1218 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1219 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1220 1221 /* 1222 * Here we make sure if we mark this bg RO, we still have enough 1223 * free space as buffer. 1224 */ 1225 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1226 ret = 0; 1227 } else { 1228 /* 1229 * We overcommit metadata, so we need to do the 1230 * btrfs_can_overcommit check here, and we need to pass in 1231 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1232 * leeway to allow us to mark this block group as read only. 1233 */ 1234 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1235 BTRFS_RESERVE_NO_FLUSH)) 1236 ret = 0; 1237 } 1238 1239 if (!ret) { 1240 sinfo->bytes_readonly += num_bytes; 1241 cache->ro++; 1242 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1243 } 1244 out: 1245 spin_unlock(&cache->lock); 1246 spin_unlock(&sinfo->lock); 1247 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1248 btrfs_info(cache->fs_info, 1249 "unable to make block group %llu ro", cache->start); 1250 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1251 } 1252 return ret; 1253 } 1254 1255 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1256 struct btrfs_block_group *bg) 1257 { 1258 struct btrfs_fs_info *fs_info = bg->fs_info; 1259 struct btrfs_transaction *prev_trans = NULL; 1260 const u64 start = bg->start; 1261 const u64 end = start + bg->length - 1; 1262 int ret; 1263 1264 spin_lock(&fs_info->trans_lock); 1265 if (trans->transaction->list.prev != &fs_info->trans_list) { 1266 prev_trans = list_last_entry(&trans->transaction->list, 1267 struct btrfs_transaction, list); 1268 refcount_inc(&prev_trans->use_count); 1269 } 1270 spin_unlock(&fs_info->trans_lock); 1271 1272 /* 1273 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1274 * btrfs_finish_extent_commit(). If we are at transaction N, another 1275 * task might be running finish_extent_commit() for the previous 1276 * transaction N - 1, and have seen a range belonging to the block 1277 * group in pinned_extents before we were able to clear the whole block 1278 * group range from pinned_extents. This means that task can lookup for 1279 * the block group after we unpinned it from pinned_extents and removed 1280 * it, leading to a BUG_ON() at unpin_extent_range(). 1281 */ 1282 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1283 if (prev_trans) { 1284 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1285 EXTENT_DIRTY); 1286 if (ret) 1287 goto err; 1288 } 1289 1290 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1291 EXTENT_DIRTY); 1292 if (ret) 1293 goto err; 1294 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1295 if (prev_trans) 1296 btrfs_put_transaction(prev_trans); 1297 1298 return true; 1299 1300 err: 1301 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1302 if (prev_trans) 1303 btrfs_put_transaction(prev_trans); 1304 btrfs_dec_block_group_ro(bg); 1305 return false; 1306 } 1307 1308 /* 1309 * Process the unused_bgs list and remove any that don't have any allocated 1310 * space inside of them. 1311 */ 1312 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1313 { 1314 struct btrfs_block_group *block_group; 1315 struct btrfs_space_info *space_info; 1316 struct btrfs_trans_handle *trans; 1317 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1318 int ret = 0; 1319 1320 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1321 return; 1322 1323 spin_lock(&fs_info->unused_bgs_lock); 1324 while (!list_empty(&fs_info->unused_bgs)) { 1325 int trimming; 1326 1327 block_group = list_first_entry(&fs_info->unused_bgs, 1328 struct btrfs_block_group, 1329 bg_list); 1330 list_del_init(&block_group->bg_list); 1331 1332 space_info = block_group->space_info; 1333 1334 if (ret || btrfs_mixed_space_info(space_info)) { 1335 btrfs_put_block_group(block_group); 1336 continue; 1337 } 1338 spin_unlock(&fs_info->unused_bgs_lock); 1339 1340 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1341 1342 mutex_lock(&fs_info->delete_unused_bgs_mutex); 1343 1344 /* Don't want to race with allocators so take the groups_sem */ 1345 down_write(&space_info->groups_sem); 1346 1347 /* 1348 * Async discard moves the final block group discard to be prior 1349 * to the unused_bgs code path. Therefore, if it's not fully 1350 * trimmed, punt it back to the async discard lists. 1351 */ 1352 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1353 !btrfs_is_free_space_trimmed(block_group)) { 1354 trace_btrfs_skip_unused_block_group(block_group); 1355 up_write(&space_info->groups_sem); 1356 /* Requeue if we failed because of async discard */ 1357 btrfs_discard_queue_work(&fs_info->discard_ctl, 1358 block_group); 1359 goto next; 1360 } 1361 1362 spin_lock(&block_group->lock); 1363 if (block_group->reserved || block_group->pinned || 1364 block_group->used || block_group->ro || 1365 list_is_singular(&block_group->list)) { 1366 /* 1367 * We want to bail if we made new allocations or have 1368 * outstanding allocations in this block group. We do 1369 * the ro check in case balance is currently acting on 1370 * this block group. 1371 */ 1372 trace_btrfs_skip_unused_block_group(block_group); 1373 spin_unlock(&block_group->lock); 1374 up_write(&space_info->groups_sem); 1375 goto next; 1376 } 1377 spin_unlock(&block_group->lock); 1378 1379 /* We don't want to force the issue, only flip if it's ok. */ 1380 ret = inc_block_group_ro(block_group, 0); 1381 up_write(&space_info->groups_sem); 1382 if (ret < 0) { 1383 ret = 0; 1384 goto next; 1385 } 1386 1387 /* 1388 * Want to do this before we do anything else so we can recover 1389 * properly if we fail to join the transaction. 1390 */ 1391 trans = btrfs_start_trans_remove_block_group(fs_info, 1392 block_group->start); 1393 if (IS_ERR(trans)) { 1394 btrfs_dec_block_group_ro(block_group); 1395 ret = PTR_ERR(trans); 1396 goto next; 1397 } 1398 1399 /* 1400 * We could have pending pinned extents for this block group, 1401 * just delete them, we don't care about them anymore. 1402 */ 1403 if (!clean_pinned_extents(trans, block_group)) 1404 goto end_trans; 1405 1406 /* 1407 * At this point, the block_group is read only and should fail 1408 * new allocations. However, btrfs_finish_extent_commit() can 1409 * cause this block_group to be placed back on the discard 1410 * lists because now the block_group isn't fully discarded. 1411 * Bail here and try again later after discarding everything. 1412 */ 1413 spin_lock(&fs_info->discard_ctl.lock); 1414 if (!list_empty(&block_group->discard_list)) { 1415 spin_unlock(&fs_info->discard_ctl.lock); 1416 btrfs_dec_block_group_ro(block_group); 1417 btrfs_discard_queue_work(&fs_info->discard_ctl, 1418 block_group); 1419 goto end_trans; 1420 } 1421 spin_unlock(&fs_info->discard_ctl.lock); 1422 1423 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1424 spin_lock(&space_info->lock); 1425 spin_lock(&block_group->lock); 1426 1427 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1428 -block_group->pinned); 1429 space_info->bytes_readonly += block_group->pinned; 1430 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1431 -block_group->pinned, 1432 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1433 block_group->pinned = 0; 1434 1435 spin_unlock(&block_group->lock); 1436 spin_unlock(&space_info->lock); 1437 1438 /* 1439 * The normal path here is an unused block group is passed here, 1440 * then trimming is handled in the transaction commit path. 1441 * Async discard interposes before this to do the trimming 1442 * before coming down the unused block group path as trimming 1443 * will no longer be done later in the transaction commit path. 1444 */ 1445 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1446 goto flip_async; 1447 1448 /* DISCARD can flip during remount */ 1449 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC); 1450 1451 /* Implicit trim during transaction commit. */ 1452 if (trimming) 1453 btrfs_get_block_group_trimming(block_group); 1454 1455 /* 1456 * Btrfs_remove_chunk will abort the transaction if things go 1457 * horribly wrong. 1458 */ 1459 ret = btrfs_remove_chunk(trans, block_group->start); 1460 1461 if (ret) { 1462 if (trimming) 1463 btrfs_put_block_group_trimming(block_group); 1464 goto end_trans; 1465 } 1466 1467 /* 1468 * If we're not mounted with -odiscard, we can just forget 1469 * about this block group. Otherwise we'll need to wait 1470 * until transaction commit to do the actual discard. 1471 */ 1472 if (trimming) { 1473 spin_lock(&fs_info->unused_bgs_lock); 1474 /* 1475 * A concurrent scrub might have added us to the list 1476 * fs_info->unused_bgs, so use a list_move operation 1477 * to add the block group to the deleted_bgs list. 1478 */ 1479 list_move(&block_group->bg_list, 1480 &trans->transaction->deleted_bgs); 1481 spin_unlock(&fs_info->unused_bgs_lock); 1482 btrfs_get_block_group(block_group); 1483 } 1484 end_trans: 1485 btrfs_end_transaction(trans); 1486 next: 1487 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1488 btrfs_put_block_group(block_group); 1489 spin_lock(&fs_info->unused_bgs_lock); 1490 } 1491 spin_unlock(&fs_info->unused_bgs_lock); 1492 return; 1493 1494 flip_async: 1495 btrfs_end_transaction(trans); 1496 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1497 btrfs_put_block_group(block_group); 1498 btrfs_discard_punt_unused_bgs_list(fs_info); 1499 } 1500 1501 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1502 { 1503 struct btrfs_fs_info *fs_info = bg->fs_info; 1504 1505 spin_lock(&fs_info->unused_bgs_lock); 1506 if (list_empty(&bg->bg_list)) { 1507 btrfs_get_block_group(bg); 1508 trace_btrfs_add_unused_block_group(bg); 1509 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1510 } 1511 spin_unlock(&fs_info->unused_bgs_lock); 1512 } 1513 1514 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1515 struct btrfs_path *path, 1516 struct btrfs_key *key) 1517 { 1518 struct btrfs_root *root = fs_info->extent_root; 1519 int ret = 0; 1520 struct btrfs_key found_key; 1521 struct extent_buffer *leaf; 1522 struct btrfs_block_group_item bg; 1523 u64 flags; 1524 int slot; 1525 1526 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1527 if (ret < 0) 1528 goto out; 1529 1530 while (1) { 1531 slot = path->slots[0]; 1532 leaf = path->nodes[0]; 1533 if (slot >= btrfs_header_nritems(leaf)) { 1534 ret = btrfs_next_leaf(root, path); 1535 if (ret == 0) 1536 continue; 1537 if (ret < 0) 1538 goto out; 1539 break; 1540 } 1541 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1542 1543 if (found_key.objectid >= key->objectid && 1544 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1545 struct extent_map_tree *em_tree; 1546 struct extent_map *em; 1547 1548 em_tree = &root->fs_info->mapping_tree; 1549 read_lock(&em_tree->lock); 1550 em = lookup_extent_mapping(em_tree, found_key.objectid, 1551 found_key.offset); 1552 read_unlock(&em_tree->lock); 1553 if (!em) { 1554 btrfs_err(fs_info, 1555 "logical %llu len %llu found bg but no related chunk", 1556 found_key.objectid, found_key.offset); 1557 ret = -ENOENT; 1558 } else if (em->start != found_key.objectid || 1559 em->len != found_key.offset) { 1560 btrfs_err(fs_info, 1561 "block group %llu len %llu mismatch with chunk %llu len %llu", 1562 found_key.objectid, found_key.offset, 1563 em->start, em->len); 1564 ret = -EUCLEAN; 1565 } else { 1566 read_extent_buffer(leaf, &bg, 1567 btrfs_item_ptr_offset(leaf, slot), 1568 sizeof(bg)); 1569 flags = btrfs_stack_block_group_flags(&bg) & 1570 BTRFS_BLOCK_GROUP_TYPE_MASK; 1571 1572 if (flags != (em->map_lookup->type & 1573 BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1574 btrfs_err(fs_info, 1575 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1576 found_key.objectid, 1577 found_key.offset, flags, 1578 (BTRFS_BLOCK_GROUP_TYPE_MASK & 1579 em->map_lookup->type)); 1580 ret = -EUCLEAN; 1581 } else { 1582 ret = 0; 1583 } 1584 } 1585 free_extent_map(em); 1586 goto out; 1587 } 1588 path->slots[0]++; 1589 } 1590 out: 1591 return ret; 1592 } 1593 1594 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1595 { 1596 u64 extra_flags = chunk_to_extended(flags) & 1597 BTRFS_EXTENDED_PROFILE_MASK; 1598 1599 write_seqlock(&fs_info->profiles_lock); 1600 if (flags & BTRFS_BLOCK_GROUP_DATA) 1601 fs_info->avail_data_alloc_bits |= extra_flags; 1602 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1603 fs_info->avail_metadata_alloc_bits |= extra_flags; 1604 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1605 fs_info->avail_system_alloc_bits |= extra_flags; 1606 write_sequnlock(&fs_info->profiles_lock); 1607 } 1608 1609 /** 1610 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses 1611 * @chunk_start: logical address of block group 1612 * @physical: physical address to map to logical addresses 1613 * @logical: return array of logical addresses which map to @physical 1614 * @naddrs: length of @logical 1615 * @stripe_len: size of IO stripe for the given block group 1616 * 1617 * Maps a particular @physical disk address to a list of @logical addresses. 1618 * Used primarily to exclude those portions of a block group that contain super 1619 * block copies. 1620 */ 1621 EXPORT_FOR_TESTS 1622 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1623 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 1624 { 1625 struct extent_map *em; 1626 struct map_lookup *map; 1627 u64 *buf; 1628 u64 bytenr; 1629 u64 data_stripe_length; 1630 u64 io_stripe_size; 1631 int i, nr = 0; 1632 int ret = 0; 1633 1634 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1635 if (IS_ERR(em)) 1636 return -EIO; 1637 1638 map = em->map_lookup; 1639 data_stripe_length = em->len; 1640 io_stripe_size = map->stripe_len; 1641 1642 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 1643 data_stripe_length = div_u64(data_stripe_length, 1644 map->num_stripes / map->sub_stripes); 1645 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 1646 data_stripe_length = div_u64(data_stripe_length, map->num_stripes); 1647 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1648 data_stripe_length = div_u64(data_stripe_length, 1649 nr_data_stripes(map)); 1650 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1651 } 1652 1653 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1654 if (!buf) { 1655 ret = -ENOMEM; 1656 goto out; 1657 } 1658 1659 for (i = 0; i < map->num_stripes; i++) { 1660 bool already_inserted = false; 1661 u64 stripe_nr; 1662 int j; 1663 1664 if (!in_range(physical, map->stripes[i].physical, 1665 data_stripe_length)) 1666 continue; 1667 1668 stripe_nr = physical - map->stripes[i].physical; 1669 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 1670 1671 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1672 stripe_nr = stripe_nr * map->num_stripes + i; 1673 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1674 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1675 stripe_nr = stripe_nr * map->num_stripes + i; 1676 } 1677 /* 1678 * The remaining case would be for RAID56, multiply by 1679 * nr_data_stripes(). Alternatively, just use rmap_len below 1680 * instead of map->stripe_len 1681 */ 1682 1683 bytenr = chunk_start + stripe_nr * io_stripe_size; 1684 1685 /* Ensure we don't add duplicate addresses */ 1686 for (j = 0; j < nr; j++) { 1687 if (buf[j] == bytenr) { 1688 already_inserted = true; 1689 break; 1690 } 1691 } 1692 1693 if (!already_inserted) 1694 buf[nr++] = bytenr; 1695 } 1696 1697 *logical = buf; 1698 *naddrs = nr; 1699 *stripe_len = io_stripe_size; 1700 out: 1701 free_extent_map(em); 1702 return ret; 1703 } 1704 1705 static int exclude_super_stripes(struct btrfs_block_group *cache) 1706 { 1707 struct btrfs_fs_info *fs_info = cache->fs_info; 1708 u64 bytenr; 1709 u64 *logical; 1710 int stripe_len; 1711 int i, nr, ret; 1712 1713 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1714 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1715 cache->bytes_super += stripe_len; 1716 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1717 stripe_len); 1718 if (ret) 1719 return ret; 1720 } 1721 1722 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1723 bytenr = btrfs_sb_offset(i); 1724 ret = btrfs_rmap_block(fs_info, cache->start, 1725 bytenr, &logical, &nr, &stripe_len); 1726 if (ret) 1727 return ret; 1728 1729 while (nr--) { 1730 u64 start, len; 1731 1732 if (logical[nr] > cache->start + cache->length) 1733 continue; 1734 1735 if (logical[nr] + stripe_len <= cache->start) 1736 continue; 1737 1738 start = logical[nr]; 1739 if (start < cache->start) { 1740 start = cache->start; 1741 len = (logical[nr] + stripe_len) - start; 1742 } else { 1743 len = min_t(u64, stripe_len, 1744 cache->start + cache->length - start); 1745 } 1746 1747 cache->bytes_super += len; 1748 ret = btrfs_add_excluded_extent(fs_info, start, len); 1749 if (ret) { 1750 kfree(logical); 1751 return ret; 1752 } 1753 } 1754 1755 kfree(logical); 1756 } 1757 return 0; 1758 } 1759 1760 static void link_block_group(struct btrfs_block_group *cache) 1761 { 1762 struct btrfs_space_info *space_info = cache->space_info; 1763 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1764 bool first = false; 1765 1766 down_write(&space_info->groups_sem); 1767 if (list_empty(&space_info->block_groups[index])) 1768 first = true; 1769 list_add_tail(&cache->list, &space_info->block_groups[index]); 1770 up_write(&space_info->groups_sem); 1771 1772 if (first) 1773 btrfs_sysfs_add_block_group_type(cache); 1774 } 1775 1776 static struct btrfs_block_group *btrfs_create_block_group_cache( 1777 struct btrfs_fs_info *fs_info, u64 start, u64 size) 1778 { 1779 struct btrfs_block_group *cache; 1780 1781 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1782 if (!cache) 1783 return NULL; 1784 1785 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1786 GFP_NOFS); 1787 if (!cache->free_space_ctl) { 1788 kfree(cache); 1789 return NULL; 1790 } 1791 1792 cache->start = start; 1793 cache->length = size; 1794 1795 cache->fs_info = fs_info; 1796 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1797 set_free_space_tree_thresholds(cache); 1798 1799 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1800 1801 atomic_set(&cache->count, 1); 1802 spin_lock_init(&cache->lock); 1803 init_rwsem(&cache->data_rwsem); 1804 INIT_LIST_HEAD(&cache->list); 1805 INIT_LIST_HEAD(&cache->cluster_list); 1806 INIT_LIST_HEAD(&cache->bg_list); 1807 INIT_LIST_HEAD(&cache->ro_list); 1808 INIT_LIST_HEAD(&cache->discard_list); 1809 INIT_LIST_HEAD(&cache->dirty_list); 1810 INIT_LIST_HEAD(&cache->io_list); 1811 btrfs_init_free_space_ctl(cache); 1812 atomic_set(&cache->trimming, 0); 1813 mutex_init(&cache->free_space_lock); 1814 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1815 1816 return cache; 1817 } 1818 1819 /* 1820 * Iterate all chunks and verify that each of them has the corresponding block 1821 * group 1822 */ 1823 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1824 { 1825 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1826 struct extent_map *em; 1827 struct btrfs_block_group *bg; 1828 u64 start = 0; 1829 int ret = 0; 1830 1831 while (1) { 1832 read_lock(&map_tree->lock); 1833 /* 1834 * lookup_extent_mapping will return the first extent map 1835 * intersecting the range, so setting @len to 1 is enough to 1836 * get the first chunk. 1837 */ 1838 em = lookup_extent_mapping(map_tree, start, 1); 1839 read_unlock(&map_tree->lock); 1840 if (!em) 1841 break; 1842 1843 bg = btrfs_lookup_block_group(fs_info, em->start); 1844 if (!bg) { 1845 btrfs_err(fs_info, 1846 "chunk start=%llu len=%llu doesn't have corresponding block group", 1847 em->start, em->len); 1848 ret = -EUCLEAN; 1849 free_extent_map(em); 1850 break; 1851 } 1852 if (bg->start != em->start || bg->length != em->len || 1853 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1854 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1855 btrfs_err(fs_info, 1856 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1857 em->start, em->len, 1858 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1859 bg->start, bg->length, 1860 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1861 ret = -EUCLEAN; 1862 free_extent_map(em); 1863 btrfs_put_block_group(bg); 1864 break; 1865 } 1866 start = em->start + em->len; 1867 free_extent_map(em); 1868 btrfs_put_block_group(bg); 1869 } 1870 return ret; 1871 } 1872 1873 static int read_one_block_group(struct btrfs_fs_info *info, 1874 struct btrfs_path *path, 1875 const struct btrfs_key *key, 1876 int need_clear) 1877 { 1878 struct extent_buffer *leaf = path->nodes[0]; 1879 struct btrfs_block_group *cache; 1880 struct btrfs_space_info *space_info; 1881 struct btrfs_block_group_item bgi; 1882 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1883 int slot = path->slots[0]; 1884 int ret; 1885 1886 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1887 1888 cache = btrfs_create_block_group_cache(info, key->objectid, key->offset); 1889 if (!cache) 1890 return -ENOMEM; 1891 1892 if (need_clear) { 1893 /* 1894 * When we mount with old space cache, we need to 1895 * set BTRFS_DC_CLEAR and set dirty flag. 1896 * 1897 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 1898 * truncate the old free space cache inode and 1899 * setup a new one. 1900 * b) Setting 'dirty flag' makes sure that we flush 1901 * the new space cache info onto disk. 1902 */ 1903 if (btrfs_test_opt(info, SPACE_CACHE)) 1904 cache->disk_cache_state = BTRFS_DC_CLEAR; 1905 } 1906 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 1907 sizeof(bgi)); 1908 cache->used = btrfs_stack_block_group_used(&bgi); 1909 cache->flags = btrfs_stack_block_group_flags(&bgi); 1910 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 1911 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 1912 btrfs_err(info, 1913 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 1914 cache->start); 1915 ret = -EINVAL; 1916 goto error; 1917 } 1918 1919 /* 1920 * We need to exclude the super stripes now so that the space info has 1921 * super bytes accounted for, otherwise we'll think we have more space 1922 * than we actually do. 1923 */ 1924 ret = exclude_super_stripes(cache); 1925 if (ret) { 1926 /* We may have excluded something, so call this just in case. */ 1927 btrfs_free_excluded_extents(cache); 1928 goto error; 1929 } 1930 1931 /* 1932 * Check for two cases, either we are full, and therefore don't need 1933 * to bother with the caching work since we won't find any space, or we 1934 * are empty, and we can just add all the space in and be done with it. 1935 * This saves us _a_lot_ of time, particularly in the full case. 1936 */ 1937 if (key->offset == cache->used) { 1938 cache->last_byte_to_unpin = (u64)-1; 1939 cache->cached = BTRFS_CACHE_FINISHED; 1940 btrfs_free_excluded_extents(cache); 1941 } else if (cache->used == 0) { 1942 cache->last_byte_to_unpin = (u64)-1; 1943 cache->cached = BTRFS_CACHE_FINISHED; 1944 add_new_free_space(cache, key->objectid, 1945 key->objectid + key->offset); 1946 btrfs_free_excluded_extents(cache); 1947 } 1948 1949 ret = btrfs_add_block_group_cache(info, cache); 1950 if (ret) { 1951 btrfs_remove_free_space_cache(cache); 1952 goto error; 1953 } 1954 trace_btrfs_add_block_group(info, cache, 0); 1955 btrfs_update_space_info(info, cache->flags, key->offset, 1956 cache->used, cache->bytes_super, &space_info); 1957 1958 cache->space_info = space_info; 1959 1960 link_block_group(cache); 1961 1962 set_avail_alloc_bits(info, cache->flags); 1963 if (btrfs_chunk_readonly(info, cache->start)) { 1964 inc_block_group_ro(cache, 1); 1965 } else if (cache->used == 0) { 1966 ASSERT(list_empty(&cache->bg_list)); 1967 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1968 btrfs_discard_queue_work(&info->discard_ctl, cache); 1969 else 1970 btrfs_mark_bg_unused(cache); 1971 } 1972 return 0; 1973 error: 1974 btrfs_put_block_group(cache); 1975 return ret; 1976 } 1977 1978 int btrfs_read_block_groups(struct btrfs_fs_info *info) 1979 { 1980 struct btrfs_path *path; 1981 int ret; 1982 struct btrfs_block_group *cache; 1983 struct btrfs_space_info *space_info; 1984 struct btrfs_key key; 1985 int need_clear = 0; 1986 u64 cache_gen; 1987 1988 key.objectid = 0; 1989 key.offset = 0; 1990 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1991 path = btrfs_alloc_path(); 1992 if (!path) 1993 return -ENOMEM; 1994 path->reada = READA_FORWARD; 1995 1996 cache_gen = btrfs_super_cache_generation(info->super_copy); 1997 if (btrfs_test_opt(info, SPACE_CACHE) && 1998 btrfs_super_generation(info->super_copy) != cache_gen) 1999 need_clear = 1; 2000 if (btrfs_test_opt(info, CLEAR_CACHE)) 2001 need_clear = 1; 2002 2003 while (1) { 2004 ret = find_first_block_group(info, path, &key); 2005 if (ret > 0) 2006 break; 2007 if (ret != 0) 2008 goto error; 2009 2010 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2011 ret = read_one_block_group(info, path, &key, need_clear); 2012 if (ret < 0) 2013 goto error; 2014 key.objectid += key.offset; 2015 key.offset = 0; 2016 btrfs_release_path(path); 2017 } 2018 2019 rcu_read_lock(); 2020 list_for_each_entry_rcu(space_info, &info->space_info, list) { 2021 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2022 (BTRFS_BLOCK_GROUP_RAID10 | 2023 BTRFS_BLOCK_GROUP_RAID1_MASK | 2024 BTRFS_BLOCK_GROUP_RAID56_MASK | 2025 BTRFS_BLOCK_GROUP_DUP))) 2026 continue; 2027 /* 2028 * Avoid allocating from un-mirrored block group if there are 2029 * mirrored block groups. 2030 */ 2031 list_for_each_entry(cache, 2032 &space_info->block_groups[BTRFS_RAID_RAID0], 2033 list) 2034 inc_block_group_ro(cache, 1); 2035 list_for_each_entry(cache, 2036 &space_info->block_groups[BTRFS_RAID_SINGLE], 2037 list) 2038 inc_block_group_ro(cache, 1); 2039 } 2040 rcu_read_unlock(); 2041 2042 btrfs_init_global_block_rsv(info); 2043 ret = check_chunk_block_group_mappings(info); 2044 error: 2045 btrfs_free_path(path); 2046 return ret; 2047 } 2048 2049 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2050 { 2051 struct btrfs_fs_info *fs_info = trans->fs_info; 2052 struct btrfs_block_group *block_group; 2053 struct btrfs_root *extent_root = fs_info->extent_root; 2054 struct btrfs_block_group_item item; 2055 struct btrfs_key key; 2056 int ret = 0; 2057 2058 if (!trans->can_flush_pending_bgs) 2059 return; 2060 2061 while (!list_empty(&trans->new_bgs)) { 2062 block_group = list_first_entry(&trans->new_bgs, 2063 struct btrfs_block_group, 2064 bg_list); 2065 if (ret) 2066 goto next; 2067 2068 spin_lock(&block_group->lock); 2069 btrfs_set_stack_block_group_used(&item, block_group->used); 2070 btrfs_set_stack_block_group_chunk_objectid(&item, 2071 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2072 btrfs_set_stack_block_group_flags(&item, block_group->flags); 2073 key.objectid = block_group->start; 2074 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2075 key.offset = block_group->length; 2076 spin_unlock(&block_group->lock); 2077 2078 ret = btrfs_insert_item(trans, extent_root, &key, &item, 2079 sizeof(item)); 2080 if (ret) 2081 btrfs_abort_transaction(trans, ret); 2082 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset); 2083 if (ret) 2084 btrfs_abort_transaction(trans, ret); 2085 add_block_group_free_space(trans, block_group); 2086 /* Already aborted the transaction if it failed. */ 2087 next: 2088 btrfs_delayed_refs_rsv_release(fs_info, 1); 2089 list_del_init(&block_group->bg_list); 2090 } 2091 btrfs_trans_release_chunk_metadata(trans); 2092 } 2093 2094 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 2095 u64 type, u64 chunk_offset, u64 size) 2096 { 2097 struct btrfs_fs_info *fs_info = trans->fs_info; 2098 struct btrfs_block_group *cache; 2099 int ret; 2100 2101 btrfs_set_log_full_commit(trans); 2102 2103 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 2104 if (!cache) 2105 return -ENOMEM; 2106 2107 cache->used = bytes_used; 2108 cache->flags = type; 2109 cache->last_byte_to_unpin = (u64)-1; 2110 cache->cached = BTRFS_CACHE_FINISHED; 2111 cache->needs_free_space = 1; 2112 ret = exclude_super_stripes(cache); 2113 if (ret) { 2114 /* We may have excluded something, so call this just in case */ 2115 btrfs_free_excluded_extents(cache); 2116 btrfs_put_block_group(cache); 2117 return ret; 2118 } 2119 2120 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2121 2122 btrfs_free_excluded_extents(cache); 2123 2124 #ifdef CONFIG_BTRFS_DEBUG 2125 if (btrfs_should_fragment_free_space(cache)) { 2126 u64 new_bytes_used = size - bytes_used; 2127 2128 bytes_used += new_bytes_used >> 1; 2129 fragment_free_space(cache); 2130 } 2131 #endif 2132 /* 2133 * Ensure the corresponding space_info object is created and 2134 * assigned to our block group. We want our bg to be added to the rbtree 2135 * with its ->space_info set. 2136 */ 2137 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2138 ASSERT(cache->space_info); 2139 2140 ret = btrfs_add_block_group_cache(fs_info, cache); 2141 if (ret) { 2142 btrfs_remove_free_space_cache(cache); 2143 btrfs_put_block_group(cache); 2144 return ret; 2145 } 2146 2147 /* 2148 * Now that our block group has its ->space_info set and is inserted in 2149 * the rbtree, update the space info's counters. 2150 */ 2151 trace_btrfs_add_block_group(fs_info, cache, 1); 2152 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2153 cache->bytes_super, &cache->space_info); 2154 btrfs_update_global_block_rsv(fs_info); 2155 2156 link_block_group(cache); 2157 2158 list_add_tail(&cache->bg_list, &trans->new_bgs); 2159 trans->delayed_ref_updates++; 2160 btrfs_update_delayed_refs_rsv(trans); 2161 2162 set_avail_alloc_bits(fs_info, type); 2163 return 0; 2164 } 2165 2166 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 2167 { 2168 u64 num_devices; 2169 u64 stripped; 2170 2171 /* 2172 * if restripe for this chunk_type is on pick target profile and 2173 * return, otherwise do the usual balance 2174 */ 2175 stripped = get_restripe_target(fs_info, flags); 2176 if (stripped) 2177 return extended_to_chunk(stripped); 2178 2179 num_devices = fs_info->fs_devices->rw_devices; 2180 2181 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK | 2182 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10; 2183 2184 if (num_devices == 1) { 2185 stripped |= BTRFS_BLOCK_GROUP_DUP; 2186 stripped = flags & ~stripped; 2187 2188 /* turn raid0 into single device chunks */ 2189 if (flags & BTRFS_BLOCK_GROUP_RAID0) 2190 return stripped; 2191 2192 /* turn mirroring into duplication */ 2193 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK | 2194 BTRFS_BLOCK_GROUP_RAID10)) 2195 return stripped | BTRFS_BLOCK_GROUP_DUP; 2196 } else { 2197 /* they already had raid on here, just return */ 2198 if (flags & stripped) 2199 return flags; 2200 2201 stripped |= BTRFS_BLOCK_GROUP_DUP; 2202 stripped = flags & ~stripped; 2203 2204 /* switch duplicated blocks with raid1 */ 2205 if (flags & BTRFS_BLOCK_GROUP_DUP) 2206 return stripped | BTRFS_BLOCK_GROUP_RAID1; 2207 2208 /* this is drive concat, leave it alone */ 2209 } 2210 2211 return flags; 2212 } 2213 2214 /* 2215 * Mark one block group RO, can be called several times for the same block 2216 * group. 2217 * 2218 * @cache: the destination block group 2219 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2220 * ensure we still have some free space after marking this 2221 * block group RO. 2222 */ 2223 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2224 bool do_chunk_alloc) 2225 { 2226 struct btrfs_fs_info *fs_info = cache->fs_info; 2227 struct btrfs_trans_handle *trans; 2228 u64 alloc_flags; 2229 int ret; 2230 2231 again: 2232 trans = btrfs_join_transaction(fs_info->extent_root); 2233 if (IS_ERR(trans)) 2234 return PTR_ERR(trans); 2235 2236 /* 2237 * we're not allowed to set block groups readonly after the dirty 2238 * block groups cache has started writing. If it already started, 2239 * back off and let this transaction commit 2240 */ 2241 mutex_lock(&fs_info->ro_block_group_mutex); 2242 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2243 u64 transid = trans->transid; 2244 2245 mutex_unlock(&fs_info->ro_block_group_mutex); 2246 btrfs_end_transaction(trans); 2247 2248 ret = btrfs_wait_for_commit(fs_info, transid); 2249 if (ret) 2250 return ret; 2251 goto again; 2252 } 2253 2254 if (do_chunk_alloc) { 2255 /* 2256 * If we are changing raid levels, try to allocate a 2257 * corresponding block group with the new raid level. 2258 */ 2259 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2260 if (alloc_flags != cache->flags) { 2261 ret = btrfs_chunk_alloc(trans, alloc_flags, 2262 CHUNK_ALLOC_FORCE); 2263 /* 2264 * ENOSPC is allowed here, we may have enough space 2265 * already allocated at the new raid level to carry on 2266 */ 2267 if (ret == -ENOSPC) 2268 ret = 0; 2269 if (ret < 0) 2270 goto out; 2271 } 2272 } 2273 2274 ret = inc_block_group_ro(cache, 0); 2275 if (!do_chunk_alloc) 2276 goto unlock_out; 2277 if (!ret) 2278 goto out; 2279 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2280 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2281 if (ret < 0) 2282 goto out; 2283 ret = inc_block_group_ro(cache, 0); 2284 out: 2285 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2286 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2287 mutex_lock(&fs_info->chunk_mutex); 2288 check_system_chunk(trans, alloc_flags); 2289 mutex_unlock(&fs_info->chunk_mutex); 2290 } 2291 unlock_out: 2292 mutex_unlock(&fs_info->ro_block_group_mutex); 2293 2294 btrfs_end_transaction(trans); 2295 return ret; 2296 } 2297 2298 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2299 { 2300 struct btrfs_space_info *sinfo = cache->space_info; 2301 u64 num_bytes; 2302 2303 BUG_ON(!cache->ro); 2304 2305 spin_lock(&sinfo->lock); 2306 spin_lock(&cache->lock); 2307 if (!--cache->ro) { 2308 num_bytes = cache->length - cache->reserved - 2309 cache->pinned - cache->bytes_super - cache->used; 2310 sinfo->bytes_readonly -= num_bytes; 2311 list_del_init(&cache->ro_list); 2312 } 2313 spin_unlock(&cache->lock); 2314 spin_unlock(&sinfo->lock); 2315 } 2316 2317 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2318 struct btrfs_path *path, 2319 struct btrfs_block_group *cache) 2320 { 2321 struct btrfs_fs_info *fs_info = trans->fs_info; 2322 int ret; 2323 struct btrfs_root *extent_root = fs_info->extent_root; 2324 unsigned long bi; 2325 struct extent_buffer *leaf; 2326 struct btrfs_block_group_item bgi; 2327 struct btrfs_key key; 2328 2329 key.objectid = cache->start; 2330 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2331 key.offset = cache->length; 2332 2333 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1); 2334 if (ret) { 2335 if (ret > 0) 2336 ret = -ENOENT; 2337 goto fail; 2338 } 2339 2340 leaf = path->nodes[0]; 2341 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2342 btrfs_set_stack_block_group_used(&bgi, cache->used); 2343 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2344 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2345 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2346 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2347 btrfs_mark_buffer_dirty(leaf); 2348 fail: 2349 btrfs_release_path(path); 2350 return ret; 2351 2352 } 2353 2354 static int cache_save_setup(struct btrfs_block_group *block_group, 2355 struct btrfs_trans_handle *trans, 2356 struct btrfs_path *path) 2357 { 2358 struct btrfs_fs_info *fs_info = block_group->fs_info; 2359 struct btrfs_root *root = fs_info->tree_root; 2360 struct inode *inode = NULL; 2361 struct extent_changeset *data_reserved = NULL; 2362 u64 alloc_hint = 0; 2363 int dcs = BTRFS_DC_ERROR; 2364 u64 num_pages = 0; 2365 int retries = 0; 2366 int ret = 0; 2367 2368 /* 2369 * If this block group is smaller than 100 megs don't bother caching the 2370 * block group. 2371 */ 2372 if (block_group->length < (100 * SZ_1M)) { 2373 spin_lock(&block_group->lock); 2374 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2375 spin_unlock(&block_group->lock); 2376 return 0; 2377 } 2378 2379 if (TRANS_ABORTED(trans)) 2380 return 0; 2381 again: 2382 inode = lookup_free_space_inode(block_group, path); 2383 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2384 ret = PTR_ERR(inode); 2385 btrfs_release_path(path); 2386 goto out; 2387 } 2388 2389 if (IS_ERR(inode)) { 2390 BUG_ON(retries); 2391 retries++; 2392 2393 if (block_group->ro) 2394 goto out_free; 2395 2396 ret = create_free_space_inode(trans, block_group, path); 2397 if (ret) 2398 goto out_free; 2399 goto again; 2400 } 2401 2402 /* 2403 * We want to set the generation to 0, that way if anything goes wrong 2404 * from here on out we know not to trust this cache when we load up next 2405 * time. 2406 */ 2407 BTRFS_I(inode)->generation = 0; 2408 ret = btrfs_update_inode(trans, root, inode); 2409 if (ret) { 2410 /* 2411 * So theoretically we could recover from this, simply set the 2412 * super cache generation to 0 so we know to invalidate the 2413 * cache, but then we'd have to keep track of the block groups 2414 * that fail this way so we know we _have_ to reset this cache 2415 * before the next commit or risk reading stale cache. So to 2416 * limit our exposure to horrible edge cases lets just abort the 2417 * transaction, this only happens in really bad situations 2418 * anyway. 2419 */ 2420 btrfs_abort_transaction(trans, ret); 2421 goto out_put; 2422 } 2423 WARN_ON(ret); 2424 2425 /* We've already setup this transaction, go ahead and exit */ 2426 if (block_group->cache_generation == trans->transid && 2427 i_size_read(inode)) { 2428 dcs = BTRFS_DC_SETUP; 2429 goto out_put; 2430 } 2431 2432 if (i_size_read(inode) > 0) { 2433 ret = btrfs_check_trunc_cache_free_space(fs_info, 2434 &fs_info->global_block_rsv); 2435 if (ret) 2436 goto out_put; 2437 2438 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2439 if (ret) 2440 goto out_put; 2441 } 2442 2443 spin_lock(&block_group->lock); 2444 if (block_group->cached != BTRFS_CACHE_FINISHED || 2445 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2446 /* 2447 * don't bother trying to write stuff out _if_ 2448 * a) we're not cached, 2449 * b) we're with nospace_cache mount option, 2450 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2451 */ 2452 dcs = BTRFS_DC_WRITTEN; 2453 spin_unlock(&block_group->lock); 2454 goto out_put; 2455 } 2456 spin_unlock(&block_group->lock); 2457 2458 /* 2459 * We hit an ENOSPC when setting up the cache in this transaction, just 2460 * skip doing the setup, we've already cleared the cache so we're safe. 2461 */ 2462 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2463 ret = -ENOSPC; 2464 goto out_put; 2465 } 2466 2467 /* 2468 * Try to preallocate enough space based on how big the block group is. 2469 * Keep in mind this has to include any pinned space which could end up 2470 * taking up quite a bit since it's not folded into the other space 2471 * cache. 2472 */ 2473 num_pages = div_u64(block_group->length, SZ_256M); 2474 if (!num_pages) 2475 num_pages = 1; 2476 2477 num_pages *= 16; 2478 num_pages *= PAGE_SIZE; 2479 2480 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 2481 if (ret) 2482 goto out_put; 2483 2484 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2485 num_pages, num_pages, 2486 &alloc_hint); 2487 /* 2488 * Our cache requires contiguous chunks so that we don't modify a bunch 2489 * of metadata or split extents when writing the cache out, which means 2490 * we can enospc if we are heavily fragmented in addition to just normal 2491 * out of space conditions. So if we hit this just skip setting up any 2492 * other block groups for this transaction, maybe we'll unpin enough 2493 * space the next time around. 2494 */ 2495 if (!ret) 2496 dcs = BTRFS_DC_SETUP; 2497 else if (ret == -ENOSPC) 2498 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2499 2500 out_put: 2501 iput(inode); 2502 out_free: 2503 btrfs_release_path(path); 2504 out: 2505 spin_lock(&block_group->lock); 2506 if (!ret && dcs == BTRFS_DC_SETUP) 2507 block_group->cache_generation = trans->transid; 2508 block_group->disk_cache_state = dcs; 2509 spin_unlock(&block_group->lock); 2510 2511 extent_changeset_free(data_reserved); 2512 return ret; 2513 } 2514 2515 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2516 { 2517 struct btrfs_fs_info *fs_info = trans->fs_info; 2518 struct btrfs_block_group *cache, *tmp; 2519 struct btrfs_transaction *cur_trans = trans->transaction; 2520 struct btrfs_path *path; 2521 2522 if (list_empty(&cur_trans->dirty_bgs) || 2523 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2524 return 0; 2525 2526 path = btrfs_alloc_path(); 2527 if (!path) 2528 return -ENOMEM; 2529 2530 /* Could add new block groups, use _safe just in case */ 2531 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2532 dirty_list) { 2533 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2534 cache_save_setup(cache, trans, path); 2535 } 2536 2537 btrfs_free_path(path); 2538 return 0; 2539 } 2540 2541 /* 2542 * Transaction commit does final block group cache writeback during a critical 2543 * section where nothing is allowed to change the FS. This is required in 2544 * order for the cache to actually match the block group, but can introduce a 2545 * lot of latency into the commit. 2546 * 2547 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2548 * There's a chance we'll have to redo some of it if the block group changes 2549 * again during the commit, but it greatly reduces the commit latency by 2550 * getting rid of the easy block groups while we're still allowing others to 2551 * join the commit. 2552 */ 2553 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2554 { 2555 struct btrfs_fs_info *fs_info = trans->fs_info; 2556 struct btrfs_block_group *cache; 2557 struct btrfs_transaction *cur_trans = trans->transaction; 2558 int ret = 0; 2559 int should_put; 2560 struct btrfs_path *path = NULL; 2561 LIST_HEAD(dirty); 2562 struct list_head *io = &cur_trans->io_bgs; 2563 int num_started = 0; 2564 int loops = 0; 2565 2566 spin_lock(&cur_trans->dirty_bgs_lock); 2567 if (list_empty(&cur_trans->dirty_bgs)) { 2568 spin_unlock(&cur_trans->dirty_bgs_lock); 2569 return 0; 2570 } 2571 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2572 spin_unlock(&cur_trans->dirty_bgs_lock); 2573 2574 again: 2575 /* Make sure all the block groups on our dirty list actually exist */ 2576 btrfs_create_pending_block_groups(trans); 2577 2578 if (!path) { 2579 path = btrfs_alloc_path(); 2580 if (!path) 2581 return -ENOMEM; 2582 } 2583 2584 /* 2585 * cache_write_mutex is here only to save us from balance or automatic 2586 * removal of empty block groups deleting this block group while we are 2587 * writing out the cache 2588 */ 2589 mutex_lock(&trans->transaction->cache_write_mutex); 2590 while (!list_empty(&dirty)) { 2591 bool drop_reserve = true; 2592 2593 cache = list_first_entry(&dirty, struct btrfs_block_group, 2594 dirty_list); 2595 /* 2596 * This can happen if something re-dirties a block group that 2597 * is already under IO. Just wait for it to finish and then do 2598 * it all again 2599 */ 2600 if (!list_empty(&cache->io_list)) { 2601 list_del_init(&cache->io_list); 2602 btrfs_wait_cache_io(trans, cache, path); 2603 btrfs_put_block_group(cache); 2604 } 2605 2606 2607 /* 2608 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2609 * it should update the cache_state. Don't delete until after 2610 * we wait. 2611 * 2612 * Since we're not running in the commit critical section 2613 * we need the dirty_bgs_lock to protect from update_block_group 2614 */ 2615 spin_lock(&cur_trans->dirty_bgs_lock); 2616 list_del_init(&cache->dirty_list); 2617 spin_unlock(&cur_trans->dirty_bgs_lock); 2618 2619 should_put = 1; 2620 2621 cache_save_setup(cache, trans, path); 2622 2623 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2624 cache->io_ctl.inode = NULL; 2625 ret = btrfs_write_out_cache(trans, cache, path); 2626 if (ret == 0 && cache->io_ctl.inode) { 2627 num_started++; 2628 should_put = 0; 2629 2630 /* 2631 * The cache_write_mutex is protecting the 2632 * io_list, also refer to the definition of 2633 * btrfs_transaction::io_bgs for more details 2634 */ 2635 list_add_tail(&cache->io_list, io); 2636 } else { 2637 /* 2638 * If we failed to write the cache, the 2639 * generation will be bad and life goes on 2640 */ 2641 ret = 0; 2642 } 2643 } 2644 if (!ret) { 2645 ret = write_one_cache_group(trans, path, cache); 2646 /* 2647 * Our block group might still be attached to the list 2648 * of new block groups in the transaction handle of some 2649 * other task (struct btrfs_trans_handle->new_bgs). This 2650 * means its block group item isn't yet in the extent 2651 * tree. If this happens ignore the error, as we will 2652 * try again later in the critical section of the 2653 * transaction commit. 2654 */ 2655 if (ret == -ENOENT) { 2656 ret = 0; 2657 spin_lock(&cur_trans->dirty_bgs_lock); 2658 if (list_empty(&cache->dirty_list)) { 2659 list_add_tail(&cache->dirty_list, 2660 &cur_trans->dirty_bgs); 2661 btrfs_get_block_group(cache); 2662 drop_reserve = false; 2663 } 2664 spin_unlock(&cur_trans->dirty_bgs_lock); 2665 } else if (ret) { 2666 btrfs_abort_transaction(trans, ret); 2667 } 2668 } 2669 2670 /* If it's not on the io list, we need to put the block group */ 2671 if (should_put) 2672 btrfs_put_block_group(cache); 2673 if (drop_reserve) 2674 btrfs_delayed_refs_rsv_release(fs_info, 1); 2675 2676 if (ret) 2677 break; 2678 2679 /* 2680 * Avoid blocking other tasks for too long. It might even save 2681 * us from writing caches for block groups that are going to be 2682 * removed. 2683 */ 2684 mutex_unlock(&trans->transaction->cache_write_mutex); 2685 mutex_lock(&trans->transaction->cache_write_mutex); 2686 } 2687 mutex_unlock(&trans->transaction->cache_write_mutex); 2688 2689 /* 2690 * Go through delayed refs for all the stuff we've just kicked off 2691 * and then loop back (just once) 2692 */ 2693 ret = btrfs_run_delayed_refs(trans, 0); 2694 if (!ret && loops == 0) { 2695 loops++; 2696 spin_lock(&cur_trans->dirty_bgs_lock); 2697 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2698 /* 2699 * dirty_bgs_lock protects us from concurrent block group 2700 * deletes too (not just cache_write_mutex). 2701 */ 2702 if (!list_empty(&dirty)) { 2703 spin_unlock(&cur_trans->dirty_bgs_lock); 2704 goto again; 2705 } 2706 spin_unlock(&cur_trans->dirty_bgs_lock); 2707 } else if (ret < 0) { 2708 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 2709 } 2710 2711 btrfs_free_path(path); 2712 return ret; 2713 } 2714 2715 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 2716 { 2717 struct btrfs_fs_info *fs_info = trans->fs_info; 2718 struct btrfs_block_group *cache; 2719 struct btrfs_transaction *cur_trans = trans->transaction; 2720 int ret = 0; 2721 int should_put; 2722 struct btrfs_path *path; 2723 struct list_head *io = &cur_trans->io_bgs; 2724 int num_started = 0; 2725 2726 path = btrfs_alloc_path(); 2727 if (!path) 2728 return -ENOMEM; 2729 2730 /* 2731 * Even though we are in the critical section of the transaction commit, 2732 * we can still have concurrent tasks adding elements to this 2733 * transaction's list of dirty block groups. These tasks correspond to 2734 * endio free space workers started when writeback finishes for a 2735 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 2736 * allocate new block groups as a result of COWing nodes of the root 2737 * tree when updating the free space inode. The writeback for the space 2738 * caches is triggered by an earlier call to 2739 * btrfs_start_dirty_block_groups() and iterations of the following 2740 * loop. 2741 * Also we want to do the cache_save_setup first and then run the 2742 * delayed refs to make sure we have the best chance at doing this all 2743 * in one shot. 2744 */ 2745 spin_lock(&cur_trans->dirty_bgs_lock); 2746 while (!list_empty(&cur_trans->dirty_bgs)) { 2747 cache = list_first_entry(&cur_trans->dirty_bgs, 2748 struct btrfs_block_group, 2749 dirty_list); 2750 2751 /* 2752 * This can happen if cache_save_setup re-dirties a block group 2753 * that is already under IO. Just wait for it to finish and 2754 * then do it all again 2755 */ 2756 if (!list_empty(&cache->io_list)) { 2757 spin_unlock(&cur_trans->dirty_bgs_lock); 2758 list_del_init(&cache->io_list); 2759 btrfs_wait_cache_io(trans, cache, path); 2760 btrfs_put_block_group(cache); 2761 spin_lock(&cur_trans->dirty_bgs_lock); 2762 } 2763 2764 /* 2765 * Don't remove from the dirty list until after we've waited on 2766 * any pending IO 2767 */ 2768 list_del_init(&cache->dirty_list); 2769 spin_unlock(&cur_trans->dirty_bgs_lock); 2770 should_put = 1; 2771 2772 cache_save_setup(cache, trans, path); 2773 2774 if (!ret) 2775 ret = btrfs_run_delayed_refs(trans, 2776 (unsigned long) -1); 2777 2778 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 2779 cache->io_ctl.inode = NULL; 2780 ret = btrfs_write_out_cache(trans, cache, path); 2781 if (ret == 0 && cache->io_ctl.inode) { 2782 num_started++; 2783 should_put = 0; 2784 list_add_tail(&cache->io_list, io); 2785 } else { 2786 /* 2787 * If we failed to write the cache, the 2788 * generation will be bad and life goes on 2789 */ 2790 ret = 0; 2791 } 2792 } 2793 if (!ret) { 2794 ret = write_one_cache_group(trans, path, cache); 2795 /* 2796 * One of the free space endio workers might have 2797 * created a new block group while updating a free space 2798 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 2799 * and hasn't released its transaction handle yet, in 2800 * which case the new block group is still attached to 2801 * its transaction handle and its creation has not 2802 * finished yet (no block group item in the extent tree 2803 * yet, etc). If this is the case, wait for all free 2804 * space endio workers to finish and retry. This is a 2805 * a very rare case so no need for a more efficient and 2806 * complex approach. 2807 */ 2808 if (ret == -ENOENT) { 2809 wait_event(cur_trans->writer_wait, 2810 atomic_read(&cur_trans->num_writers) == 1); 2811 ret = write_one_cache_group(trans, path, cache); 2812 } 2813 if (ret) 2814 btrfs_abort_transaction(trans, ret); 2815 } 2816 2817 /* If its not on the io list, we need to put the block group */ 2818 if (should_put) 2819 btrfs_put_block_group(cache); 2820 btrfs_delayed_refs_rsv_release(fs_info, 1); 2821 spin_lock(&cur_trans->dirty_bgs_lock); 2822 } 2823 spin_unlock(&cur_trans->dirty_bgs_lock); 2824 2825 /* 2826 * Refer to the definition of io_bgs member for details why it's safe 2827 * to use it without any locking 2828 */ 2829 while (!list_empty(io)) { 2830 cache = list_first_entry(io, struct btrfs_block_group, 2831 io_list); 2832 list_del_init(&cache->io_list); 2833 btrfs_wait_cache_io(trans, cache, path); 2834 btrfs_put_block_group(cache); 2835 } 2836 2837 btrfs_free_path(path); 2838 return ret; 2839 } 2840 2841 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 2842 u64 bytenr, u64 num_bytes, int alloc) 2843 { 2844 struct btrfs_fs_info *info = trans->fs_info; 2845 struct btrfs_block_group *cache = NULL; 2846 u64 total = num_bytes; 2847 u64 old_val; 2848 u64 byte_in_group; 2849 int factor; 2850 int ret = 0; 2851 2852 /* Block accounting for super block */ 2853 spin_lock(&info->delalloc_root_lock); 2854 old_val = btrfs_super_bytes_used(info->super_copy); 2855 if (alloc) 2856 old_val += num_bytes; 2857 else 2858 old_val -= num_bytes; 2859 btrfs_set_super_bytes_used(info->super_copy, old_val); 2860 spin_unlock(&info->delalloc_root_lock); 2861 2862 while (total) { 2863 cache = btrfs_lookup_block_group(info, bytenr); 2864 if (!cache) { 2865 ret = -ENOENT; 2866 break; 2867 } 2868 factor = btrfs_bg_type_to_factor(cache->flags); 2869 2870 /* 2871 * If this block group has free space cache written out, we 2872 * need to make sure to load it if we are removing space. This 2873 * is because we need the unpinning stage to actually add the 2874 * space back to the block group, otherwise we will leak space. 2875 */ 2876 if (!alloc && !btrfs_block_group_done(cache)) 2877 btrfs_cache_block_group(cache, 1); 2878 2879 byte_in_group = bytenr - cache->start; 2880 WARN_ON(byte_in_group > cache->length); 2881 2882 spin_lock(&cache->space_info->lock); 2883 spin_lock(&cache->lock); 2884 2885 if (btrfs_test_opt(info, SPACE_CACHE) && 2886 cache->disk_cache_state < BTRFS_DC_CLEAR) 2887 cache->disk_cache_state = BTRFS_DC_CLEAR; 2888 2889 old_val = cache->used; 2890 num_bytes = min(total, cache->length - byte_in_group); 2891 if (alloc) { 2892 old_val += num_bytes; 2893 cache->used = old_val; 2894 cache->reserved -= num_bytes; 2895 cache->space_info->bytes_reserved -= num_bytes; 2896 cache->space_info->bytes_used += num_bytes; 2897 cache->space_info->disk_used += num_bytes * factor; 2898 spin_unlock(&cache->lock); 2899 spin_unlock(&cache->space_info->lock); 2900 } else { 2901 old_val -= num_bytes; 2902 cache->used = old_val; 2903 cache->pinned += num_bytes; 2904 btrfs_space_info_update_bytes_pinned(info, 2905 cache->space_info, num_bytes); 2906 cache->space_info->bytes_used -= num_bytes; 2907 cache->space_info->disk_used -= num_bytes * factor; 2908 spin_unlock(&cache->lock); 2909 spin_unlock(&cache->space_info->lock); 2910 2911 percpu_counter_add_batch( 2912 &cache->space_info->total_bytes_pinned, 2913 num_bytes, 2914 BTRFS_TOTAL_BYTES_PINNED_BATCH); 2915 set_extent_dirty(&trans->transaction->pinned_extents, 2916 bytenr, bytenr + num_bytes - 1, 2917 GFP_NOFS | __GFP_NOFAIL); 2918 } 2919 2920 spin_lock(&trans->transaction->dirty_bgs_lock); 2921 if (list_empty(&cache->dirty_list)) { 2922 list_add_tail(&cache->dirty_list, 2923 &trans->transaction->dirty_bgs); 2924 trans->delayed_ref_updates++; 2925 btrfs_get_block_group(cache); 2926 } 2927 spin_unlock(&trans->transaction->dirty_bgs_lock); 2928 2929 /* 2930 * No longer have used bytes in this block group, queue it for 2931 * deletion. We do this after adding the block group to the 2932 * dirty list to avoid races between cleaner kthread and space 2933 * cache writeout. 2934 */ 2935 if (!alloc && old_val == 0) { 2936 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 2937 btrfs_mark_bg_unused(cache); 2938 } 2939 2940 btrfs_put_block_group(cache); 2941 total -= num_bytes; 2942 bytenr += num_bytes; 2943 } 2944 2945 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 2946 btrfs_update_delayed_refs_rsv(trans); 2947 return ret; 2948 } 2949 2950 /** 2951 * btrfs_add_reserved_bytes - update the block_group and space info counters 2952 * @cache: The cache we are manipulating 2953 * @ram_bytes: The number of bytes of file content, and will be same to 2954 * @num_bytes except for the compress path. 2955 * @num_bytes: The number of bytes in question 2956 * @delalloc: The blocks are allocated for the delalloc write 2957 * 2958 * This is called by the allocator when it reserves space. If this is a 2959 * reservation and the block group has become read only we cannot make the 2960 * reservation and return -EAGAIN, otherwise this function always succeeds. 2961 */ 2962 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 2963 u64 ram_bytes, u64 num_bytes, int delalloc) 2964 { 2965 struct btrfs_space_info *space_info = cache->space_info; 2966 int ret = 0; 2967 2968 spin_lock(&space_info->lock); 2969 spin_lock(&cache->lock); 2970 if (cache->ro) { 2971 ret = -EAGAIN; 2972 } else { 2973 cache->reserved += num_bytes; 2974 space_info->bytes_reserved += num_bytes; 2975 trace_btrfs_space_reservation(cache->fs_info, "space_info", 2976 space_info->flags, num_bytes, 1); 2977 btrfs_space_info_update_bytes_may_use(cache->fs_info, 2978 space_info, -ram_bytes); 2979 if (delalloc) 2980 cache->delalloc_bytes += num_bytes; 2981 } 2982 spin_unlock(&cache->lock); 2983 spin_unlock(&space_info->lock); 2984 return ret; 2985 } 2986 2987 /** 2988 * btrfs_free_reserved_bytes - update the block_group and space info counters 2989 * @cache: The cache we are manipulating 2990 * @num_bytes: The number of bytes in question 2991 * @delalloc: The blocks are allocated for the delalloc write 2992 * 2993 * This is called by somebody who is freeing space that was never actually used 2994 * on disk. For example if you reserve some space for a new leaf in transaction 2995 * A and before transaction A commits you free that leaf, you call this with 2996 * reserve set to 0 in order to clear the reservation. 2997 */ 2998 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 2999 u64 num_bytes, int delalloc) 3000 { 3001 struct btrfs_space_info *space_info = cache->space_info; 3002 3003 spin_lock(&space_info->lock); 3004 spin_lock(&cache->lock); 3005 if (cache->ro) 3006 space_info->bytes_readonly += num_bytes; 3007 cache->reserved -= num_bytes; 3008 space_info->bytes_reserved -= num_bytes; 3009 space_info->max_extent_size = 0; 3010 3011 if (delalloc) 3012 cache->delalloc_bytes -= num_bytes; 3013 spin_unlock(&cache->lock); 3014 spin_unlock(&space_info->lock); 3015 } 3016 3017 static void force_metadata_allocation(struct btrfs_fs_info *info) 3018 { 3019 struct list_head *head = &info->space_info; 3020 struct btrfs_space_info *found; 3021 3022 rcu_read_lock(); 3023 list_for_each_entry_rcu(found, head, list) { 3024 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3025 found->force_alloc = CHUNK_ALLOC_FORCE; 3026 } 3027 rcu_read_unlock(); 3028 } 3029 3030 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3031 struct btrfs_space_info *sinfo, int force) 3032 { 3033 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3034 u64 thresh; 3035 3036 if (force == CHUNK_ALLOC_FORCE) 3037 return 1; 3038 3039 /* 3040 * in limited mode, we want to have some free space up to 3041 * about 1% of the FS size. 3042 */ 3043 if (force == CHUNK_ALLOC_LIMITED) { 3044 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3045 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3046 3047 if (sinfo->total_bytes - bytes_used < thresh) 3048 return 1; 3049 } 3050 3051 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3052 return 0; 3053 return 1; 3054 } 3055 3056 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3057 { 3058 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3059 3060 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3061 } 3062 3063 /* 3064 * If force is CHUNK_ALLOC_FORCE: 3065 * - return 1 if it successfully allocates a chunk, 3066 * - return errors including -ENOSPC otherwise. 3067 * If force is NOT CHUNK_ALLOC_FORCE: 3068 * - return 0 if it doesn't need to allocate a new chunk, 3069 * - return 1 if it successfully allocates a chunk, 3070 * - return errors including -ENOSPC otherwise. 3071 */ 3072 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3073 enum btrfs_chunk_alloc_enum force) 3074 { 3075 struct btrfs_fs_info *fs_info = trans->fs_info; 3076 struct btrfs_space_info *space_info; 3077 bool wait_for_alloc = false; 3078 bool should_alloc = false; 3079 int ret = 0; 3080 3081 /* Don't re-enter if we're already allocating a chunk */ 3082 if (trans->allocating_chunk) 3083 return -ENOSPC; 3084 3085 space_info = btrfs_find_space_info(fs_info, flags); 3086 ASSERT(space_info); 3087 3088 do { 3089 spin_lock(&space_info->lock); 3090 if (force < space_info->force_alloc) 3091 force = space_info->force_alloc; 3092 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3093 if (space_info->full) { 3094 /* No more free physical space */ 3095 if (should_alloc) 3096 ret = -ENOSPC; 3097 else 3098 ret = 0; 3099 spin_unlock(&space_info->lock); 3100 return ret; 3101 } else if (!should_alloc) { 3102 spin_unlock(&space_info->lock); 3103 return 0; 3104 } else if (space_info->chunk_alloc) { 3105 /* 3106 * Someone is already allocating, so we need to block 3107 * until this someone is finished and then loop to 3108 * recheck if we should continue with our allocation 3109 * attempt. 3110 */ 3111 wait_for_alloc = true; 3112 spin_unlock(&space_info->lock); 3113 mutex_lock(&fs_info->chunk_mutex); 3114 mutex_unlock(&fs_info->chunk_mutex); 3115 } else { 3116 /* Proceed with allocation */ 3117 space_info->chunk_alloc = 1; 3118 wait_for_alloc = false; 3119 spin_unlock(&space_info->lock); 3120 } 3121 3122 cond_resched(); 3123 } while (wait_for_alloc); 3124 3125 mutex_lock(&fs_info->chunk_mutex); 3126 trans->allocating_chunk = true; 3127 3128 /* 3129 * If we have mixed data/metadata chunks we want to make sure we keep 3130 * allocating mixed chunks instead of individual chunks. 3131 */ 3132 if (btrfs_mixed_space_info(space_info)) 3133 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3134 3135 /* 3136 * if we're doing a data chunk, go ahead and make sure that 3137 * we keep a reasonable number of metadata chunks allocated in the 3138 * FS as well. 3139 */ 3140 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3141 fs_info->data_chunk_allocations++; 3142 if (!(fs_info->data_chunk_allocations % 3143 fs_info->metadata_ratio)) 3144 force_metadata_allocation(fs_info); 3145 } 3146 3147 /* 3148 * Check if we have enough space in SYSTEM chunk because we may need 3149 * to update devices. 3150 */ 3151 check_system_chunk(trans, flags); 3152 3153 ret = btrfs_alloc_chunk(trans, flags); 3154 trans->allocating_chunk = false; 3155 3156 spin_lock(&space_info->lock); 3157 if (ret < 0) { 3158 if (ret == -ENOSPC) 3159 space_info->full = 1; 3160 else 3161 goto out; 3162 } else { 3163 ret = 1; 3164 space_info->max_extent_size = 0; 3165 } 3166 3167 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3168 out: 3169 space_info->chunk_alloc = 0; 3170 spin_unlock(&space_info->lock); 3171 mutex_unlock(&fs_info->chunk_mutex); 3172 /* 3173 * When we allocate a new chunk we reserve space in the chunk block 3174 * reserve to make sure we can COW nodes/leafs in the chunk tree or 3175 * add new nodes/leafs to it if we end up needing to do it when 3176 * inserting the chunk item and updating device items as part of the 3177 * second phase of chunk allocation, performed by 3178 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 3179 * large number of new block groups to create in our transaction 3180 * handle's new_bgs list to avoid exhausting the chunk block reserve 3181 * in extreme cases - like having a single transaction create many new 3182 * block groups when starting to write out the free space caches of all 3183 * the block groups that were made dirty during the lifetime of the 3184 * transaction. 3185 */ 3186 if (trans->chunk_bytes_reserved >= (u64)SZ_2M) 3187 btrfs_create_pending_block_groups(trans); 3188 3189 return ret; 3190 } 3191 3192 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3193 { 3194 u64 num_dev; 3195 3196 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3197 if (!num_dev) 3198 num_dev = fs_info->fs_devices->rw_devices; 3199 3200 return num_dev; 3201 } 3202 3203 /* 3204 * Reserve space in the system space for allocating or removing a chunk 3205 */ 3206 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3207 { 3208 struct btrfs_fs_info *fs_info = trans->fs_info; 3209 struct btrfs_space_info *info; 3210 u64 left; 3211 u64 thresh; 3212 int ret = 0; 3213 u64 num_devs; 3214 3215 /* 3216 * Needed because we can end up allocating a system chunk and for an 3217 * atomic and race free space reservation in the chunk block reserve. 3218 */ 3219 lockdep_assert_held(&fs_info->chunk_mutex); 3220 3221 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3222 spin_lock(&info->lock); 3223 left = info->total_bytes - btrfs_space_info_used(info, true); 3224 spin_unlock(&info->lock); 3225 3226 num_devs = get_profile_num_devs(fs_info, type); 3227 3228 /* num_devs device items to update and 1 chunk item to add or remove */ 3229 thresh = btrfs_calc_metadata_size(fs_info, num_devs) + 3230 btrfs_calc_insert_metadata_size(fs_info, 1); 3231 3232 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3233 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3234 left, thresh, type); 3235 btrfs_dump_space_info(fs_info, info, 0, 0); 3236 } 3237 3238 if (left < thresh) { 3239 u64 flags = btrfs_system_alloc_profile(fs_info); 3240 3241 /* 3242 * Ignore failure to create system chunk. We might end up not 3243 * needing it, as we might not need to COW all nodes/leafs from 3244 * the paths we visit in the chunk tree (they were already COWed 3245 * or created in the current transaction for example). 3246 */ 3247 ret = btrfs_alloc_chunk(trans, flags); 3248 } 3249 3250 if (!ret) { 3251 ret = btrfs_block_rsv_add(fs_info->chunk_root, 3252 &fs_info->chunk_block_rsv, 3253 thresh, BTRFS_RESERVE_NO_FLUSH); 3254 if (!ret) 3255 trans->chunk_bytes_reserved += thresh; 3256 } 3257 } 3258 3259 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3260 { 3261 struct btrfs_block_group *block_group; 3262 u64 last = 0; 3263 3264 while (1) { 3265 struct inode *inode; 3266 3267 block_group = btrfs_lookup_first_block_group(info, last); 3268 while (block_group) { 3269 btrfs_wait_block_group_cache_done(block_group); 3270 spin_lock(&block_group->lock); 3271 if (block_group->iref) 3272 break; 3273 spin_unlock(&block_group->lock); 3274 block_group = btrfs_next_block_group(block_group); 3275 } 3276 if (!block_group) { 3277 if (last == 0) 3278 break; 3279 last = 0; 3280 continue; 3281 } 3282 3283 inode = block_group->inode; 3284 block_group->iref = 0; 3285 block_group->inode = NULL; 3286 spin_unlock(&block_group->lock); 3287 ASSERT(block_group->io_ctl.inode == NULL); 3288 iput(inode); 3289 last = block_group->start + block_group->length; 3290 btrfs_put_block_group(block_group); 3291 } 3292 } 3293 3294 /* 3295 * Must be called only after stopping all workers, since we could have block 3296 * group caching kthreads running, and therefore they could race with us if we 3297 * freed the block groups before stopping them. 3298 */ 3299 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3300 { 3301 struct btrfs_block_group *block_group; 3302 struct btrfs_space_info *space_info; 3303 struct btrfs_caching_control *caching_ctl; 3304 struct rb_node *n; 3305 3306 down_write(&info->commit_root_sem); 3307 while (!list_empty(&info->caching_block_groups)) { 3308 caching_ctl = list_entry(info->caching_block_groups.next, 3309 struct btrfs_caching_control, list); 3310 list_del(&caching_ctl->list); 3311 btrfs_put_caching_control(caching_ctl); 3312 } 3313 up_write(&info->commit_root_sem); 3314 3315 spin_lock(&info->unused_bgs_lock); 3316 while (!list_empty(&info->unused_bgs)) { 3317 block_group = list_first_entry(&info->unused_bgs, 3318 struct btrfs_block_group, 3319 bg_list); 3320 list_del_init(&block_group->bg_list); 3321 btrfs_put_block_group(block_group); 3322 } 3323 spin_unlock(&info->unused_bgs_lock); 3324 3325 spin_lock(&info->block_group_cache_lock); 3326 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3327 block_group = rb_entry(n, struct btrfs_block_group, 3328 cache_node); 3329 rb_erase(&block_group->cache_node, 3330 &info->block_group_cache_tree); 3331 RB_CLEAR_NODE(&block_group->cache_node); 3332 spin_unlock(&info->block_group_cache_lock); 3333 3334 down_write(&block_group->space_info->groups_sem); 3335 list_del(&block_group->list); 3336 up_write(&block_group->space_info->groups_sem); 3337 3338 /* 3339 * We haven't cached this block group, which means we could 3340 * possibly have excluded extents on this block group. 3341 */ 3342 if (block_group->cached == BTRFS_CACHE_NO || 3343 block_group->cached == BTRFS_CACHE_ERROR) 3344 btrfs_free_excluded_extents(block_group); 3345 3346 btrfs_remove_free_space_cache(block_group); 3347 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3348 ASSERT(list_empty(&block_group->dirty_list)); 3349 ASSERT(list_empty(&block_group->io_list)); 3350 ASSERT(list_empty(&block_group->bg_list)); 3351 ASSERT(atomic_read(&block_group->count) == 1); 3352 btrfs_put_block_group(block_group); 3353 3354 spin_lock(&info->block_group_cache_lock); 3355 } 3356 spin_unlock(&info->block_group_cache_lock); 3357 3358 /* 3359 * Now that all the block groups are freed, go through and free all the 3360 * space_info structs. This is only called during the final stages of 3361 * unmount, and so we know nobody is using them. We call 3362 * synchronize_rcu() once before we start, just to be on the safe side. 3363 */ 3364 synchronize_rcu(); 3365 3366 btrfs_release_global_block_rsv(info); 3367 3368 while (!list_empty(&info->space_info)) { 3369 space_info = list_entry(info->space_info.next, 3370 struct btrfs_space_info, 3371 list); 3372 3373 /* 3374 * Do not hide this behind enospc_debug, this is actually 3375 * important and indicates a real bug if this happens. 3376 */ 3377 if (WARN_ON(space_info->bytes_pinned > 0 || 3378 space_info->bytes_reserved > 0 || 3379 space_info->bytes_may_use > 0)) 3380 btrfs_dump_space_info(info, space_info, 0, 0); 3381 WARN_ON(space_info->reclaim_size > 0); 3382 list_del(&space_info->list); 3383 btrfs_sysfs_remove_space_info(space_info); 3384 } 3385 return 0; 3386 } 3387