xref: /linux/fs/btrfs/block-group.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 	struct btrfs_fs_info *fs_info = block_group->fs_info;
29 
30 	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36 
37 /*
38  * Return target flags in extended format or 0 if restripe for this chunk_type
39  * is not in progress
40  *
41  * Should be called with balance_lock held
42  */
43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 	u64 target = 0;
47 
48 	if (!bctl)
49 		return 0;
50 
51 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 	}
61 
62 	return target;
63 }
64 
65 /*
66  * @flags: available profiles in extended format (see ctree.h)
67  *
68  * Return reduced profile in chunk format.  If profile changing is in progress
69  * (either running or paused) picks the target profile (if it's already
70  * available), otherwise falls back to plain reducing.
71  */
72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 	u64 num_devices = fs_info->fs_devices->rw_devices;
75 	u64 target;
76 	u64 raid_type;
77 	u64 allowed = 0;
78 
79 	/*
80 	 * See if restripe for this chunk_type is in progress, if so try to
81 	 * reduce to the target profile
82 	 */
83 	spin_lock(&fs_info->balance_lock);
84 	target = get_restripe_target(fs_info, flags);
85 	if (target) {
86 		spin_unlock(&fs_info->balance_lock);
87 		return extended_to_chunk(target);
88 	}
89 	spin_unlock(&fs_info->balance_lock);
90 
91 	/* First, mask out the RAID levels which aren't possible */
92 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 			allowed |= btrfs_raid_array[raid_type].bg_flag;
95 	}
96 	allowed &= flags;
97 
98 	/* Select the highest-redundancy RAID level. */
99 	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 		allowed = BTRFS_BLOCK_GROUP_RAID6;
103 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 		allowed = BTRFS_BLOCK_GROUP_RAID5;
107 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 		allowed = BTRFS_BLOCK_GROUP_RAID10;
109 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 		allowed = BTRFS_BLOCK_GROUP_RAID1;
111 	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 		allowed = BTRFS_BLOCK_GROUP_DUP;
113 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 		allowed = BTRFS_BLOCK_GROUP_RAID0;
115 
116 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117 
118 	return extended_to_chunk(flags | allowed);
119 }
120 
121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 	unsigned seq;
124 	u64 flags;
125 
126 	do {
127 		flags = orig_flags;
128 		seq = read_seqbegin(&fs_info->profiles_lock);
129 
130 		if (flags & BTRFS_BLOCK_GROUP_DATA)
131 			flags |= fs_info->avail_data_alloc_bits;
132 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 			flags |= fs_info->avail_system_alloc_bits;
134 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 			flags |= fs_info->avail_metadata_alloc_bits;
136 	} while (read_seqretry(&fs_info->profiles_lock, seq));
137 
138 	return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140 
141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 	refcount_inc(&cache->refs);
144 }
145 
146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 	if (refcount_dec_and_test(&cache->refs)) {
149 		WARN_ON(cache->pinned > 0);
150 		/*
151 		 * If there was a failure to cleanup a log tree, very likely due
152 		 * to an IO failure on a writeback attempt of one or more of its
153 		 * extent buffers, we could not do proper (and cheap) unaccounting
154 		 * of their reserved space, so don't warn on reserved > 0 in that
155 		 * case.
156 		 */
157 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 			WARN_ON(cache->reserved > 0);
160 
161 		/*
162 		 * A block_group shouldn't be on the discard_list anymore.
163 		 * Remove the block_group from the discard_list to prevent us
164 		 * from causing a panic due to NULL pointer dereference.
165 		 */
166 		if (WARN_ON(!list_empty(&cache->discard_list)))
167 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 						  cache);
169 
170 		kfree(cache->free_space_ctl);
171 		btrfs_free_chunk_map(cache->physical_map);
172 		kfree(cache);
173 	}
174 }
175 
176 /*
177  * This adds the block group to the fs_info rb tree for the block group cache
178  */
179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 				       struct btrfs_block_group *block_group)
181 {
182 	struct rb_node **p;
183 	struct rb_node *parent = NULL;
184 	struct btrfs_block_group *cache;
185 	bool leftmost = true;
186 
187 	ASSERT(block_group->length != 0);
188 
189 	write_lock(&info->block_group_cache_lock);
190 	p = &info->block_group_cache_tree.rb_root.rb_node;
191 
192 	while (*p) {
193 		parent = *p;
194 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 		if (block_group->start < cache->start) {
196 			p = &(*p)->rb_left;
197 		} else if (block_group->start > cache->start) {
198 			p = &(*p)->rb_right;
199 			leftmost = false;
200 		} else {
201 			write_unlock(&info->block_group_cache_lock);
202 			return -EEXIST;
203 		}
204 	}
205 
206 	rb_link_node(&block_group->cache_node, parent, p);
207 	rb_insert_color_cached(&block_group->cache_node,
208 			       &info->block_group_cache_tree, leftmost);
209 
210 	write_unlock(&info->block_group_cache_lock);
211 
212 	return 0;
213 }
214 
215 /*
216  * This will return the block group at or after bytenr if contains is 0, else
217  * it will return the block group that contains the bytenr
218  */
219 static struct btrfs_block_group *block_group_cache_tree_search(
220 		struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 	struct btrfs_block_group *cache, *ret = NULL;
223 	struct rb_node *n;
224 	u64 end, start;
225 
226 	read_lock(&info->block_group_cache_lock);
227 	n = info->block_group_cache_tree.rb_root.rb_node;
228 
229 	while (n) {
230 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 		end = cache->start + cache->length - 1;
232 		start = cache->start;
233 
234 		if (bytenr < start) {
235 			if (!contains && (!ret || start < ret->start))
236 				ret = cache;
237 			n = n->rb_left;
238 		} else if (bytenr > start) {
239 			if (contains && bytenr <= end) {
240 				ret = cache;
241 				break;
242 			}
243 			n = n->rb_right;
244 		} else {
245 			ret = cache;
246 			break;
247 		}
248 	}
249 	if (ret)
250 		btrfs_get_block_group(ret);
251 	read_unlock(&info->block_group_cache_lock);
252 
253 	return ret;
254 }
255 
256 /*
257  * Return the block group that starts at or after bytenr
258  */
259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 		struct btrfs_fs_info *info, u64 bytenr)
261 {
262 	return block_group_cache_tree_search(info, bytenr, 0);
263 }
264 
265 /*
266  * Return the block group that contains the given bytenr
267  */
268 struct btrfs_block_group *btrfs_lookup_block_group(
269 		struct btrfs_fs_info *info, u64 bytenr)
270 {
271 	return block_group_cache_tree_search(info, bytenr, 1);
272 }
273 
274 struct btrfs_block_group *btrfs_next_block_group(
275 		struct btrfs_block_group *cache)
276 {
277 	struct btrfs_fs_info *fs_info = cache->fs_info;
278 	struct rb_node *node;
279 
280 	read_lock(&fs_info->block_group_cache_lock);
281 
282 	/* If our block group was removed, we need a full search. */
283 	if (RB_EMPTY_NODE(&cache->cache_node)) {
284 		const u64 next_bytenr = cache->start + cache->length;
285 
286 		read_unlock(&fs_info->block_group_cache_lock);
287 		btrfs_put_block_group(cache);
288 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 	}
290 	node = rb_next(&cache->cache_node);
291 	btrfs_put_block_group(cache);
292 	if (node) {
293 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 		btrfs_get_block_group(cache);
295 	} else
296 		cache = NULL;
297 	read_unlock(&fs_info->block_group_cache_lock);
298 	return cache;
299 }
300 
301 /*
302  * Check if we can do a NOCOW write for a given extent.
303  *
304  * @fs_info:       The filesystem information object.
305  * @bytenr:        Logical start address of the extent.
306  *
307  * Check if we can do a NOCOW write for the given extent, and increments the
308  * number of NOCOW writers in the block group that contains the extent, as long
309  * as the block group exists and it's currently not in read-only mode.
310  *
311  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312  *          is responsible for calling btrfs_dec_nocow_writers() later.
313  *
314  *          Or NULL if we can not do a NOCOW write
315  */
316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 						  u64 bytenr)
318 {
319 	struct btrfs_block_group *bg;
320 	bool can_nocow = true;
321 
322 	bg = btrfs_lookup_block_group(fs_info, bytenr);
323 	if (!bg)
324 		return NULL;
325 
326 	spin_lock(&bg->lock);
327 	if (bg->ro)
328 		can_nocow = false;
329 	else
330 		atomic_inc(&bg->nocow_writers);
331 	spin_unlock(&bg->lock);
332 
333 	if (!can_nocow) {
334 		btrfs_put_block_group(bg);
335 		return NULL;
336 	}
337 
338 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
339 	return bg;
340 }
341 
342 /*
343  * Decrement the number of NOCOW writers in a block group.
344  *
345  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346  * and on the block group returned by that call. Typically this is called after
347  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348  * relocation.
349  *
350  * After this call, the caller should not use the block group anymore. It it wants
351  * to use it, then it should get a reference on it before calling this function.
352  */
353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 	if (atomic_dec_and_test(&bg->nocow_writers))
356 		wake_up_var(&bg->nocow_writers);
357 
358 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 	btrfs_put_block_group(bg);
360 }
361 
362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366 
367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 					const u64 start)
369 {
370 	struct btrfs_block_group *bg;
371 
372 	bg = btrfs_lookup_block_group(fs_info, start);
373 	ASSERT(bg);
374 	if (atomic_dec_and_test(&bg->reservations))
375 		wake_up_var(&bg->reservations);
376 	btrfs_put_block_group(bg);
377 }
378 
379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 	struct btrfs_space_info *space_info = bg->space_info;
382 
383 	ASSERT(bg->ro);
384 
385 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 		return;
387 
388 	/*
389 	 * Our block group is read only but before we set it to read only,
390 	 * some task might have had allocated an extent from it already, but it
391 	 * has not yet created a respective ordered extent (and added it to a
392 	 * root's list of ordered extents).
393 	 * Therefore wait for any task currently allocating extents, since the
394 	 * block group's reservations counter is incremented while a read lock
395 	 * on the groups' semaphore is held and decremented after releasing
396 	 * the read access on that semaphore and creating the ordered extent.
397 	 */
398 	down_write(&space_info->groups_sem);
399 	up_write(&space_info->groups_sem);
400 
401 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403 
404 struct btrfs_caching_control *btrfs_get_caching_control(
405 		struct btrfs_block_group *cache)
406 {
407 	struct btrfs_caching_control *ctl;
408 
409 	spin_lock(&cache->lock);
410 	if (!cache->caching_ctl) {
411 		spin_unlock(&cache->lock);
412 		return NULL;
413 	}
414 
415 	ctl = cache->caching_ctl;
416 	refcount_inc(&ctl->count);
417 	spin_unlock(&cache->lock);
418 	return ctl;
419 }
420 
421 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 	if (refcount_dec_and_test(&ctl->count))
424 		kfree(ctl);
425 }
426 
427 /*
428  * When we wait for progress in the block group caching, its because our
429  * allocation attempt failed at least once.  So, we must sleep and let some
430  * progress happen before we try again.
431  *
432  * This function will sleep at least once waiting for new free space to show
433  * up, and then it will check the block group free space numbers for our min
434  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
435  * a free extent of a given size, but this is a good start.
436  *
437  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438  * any of the information in this block group.
439  */
440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 					   u64 num_bytes)
442 {
443 	struct btrfs_caching_control *caching_ctl;
444 	int progress;
445 
446 	caching_ctl = btrfs_get_caching_control(cache);
447 	if (!caching_ctl)
448 		return;
449 
450 	/*
451 	 * We've already failed to allocate from this block group, so even if
452 	 * there's enough space in the block group it isn't contiguous enough to
453 	 * allow for an allocation, so wait for at least the next wakeup tick,
454 	 * or for the thing to be done.
455 	 */
456 	progress = atomic_read(&caching_ctl->progress);
457 
458 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
459 		   (progress != atomic_read(&caching_ctl->progress) &&
460 		    (cache->free_space_ctl->free_space >= num_bytes)));
461 
462 	btrfs_put_caching_control(caching_ctl);
463 }
464 
465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466 				       struct btrfs_caching_control *caching_ctl)
467 {
468 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470 }
471 
472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
473 {
474 	struct btrfs_caching_control *caching_ctl;
475 	int ret;
476 
477 	caching_ctl = btrfs_get_caching_control(cache);
478 	if (!caching_ctl)
479 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
480 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
481 	btrfs_put_caching_control(caching_ctl);
482 	return ret;
483 }
484 
485 #ifdef CONFIG_BTRFS_DEBUG
486 static void fragment_free_space(struct btrfs_block_group *block_group)
487 {
488 	struct btrfs_fs_info *fs_info = block_group->fs_info;
489 	u64 start = block_group->start;
490 	u64 len = block_group->length;
491 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492 		fs_info->nodesize : fs_info->sectorsize;
493 	u64 step = chunk << 1;
494 
495 	while (len > chunk) {
496 		btrfs_remove_free_space(block_group, start, chunk);
497 		start += step;
498 		if (len < step)
499 			len = 0;
500 		else
501 			len -= step;
502 	}
503 }
504 #endif
505 
506 /*
507  * Add a free space range to the in memory free space cache of a block group.
508  * This checks if the range contains super block locations and any such
509  * locations are not added to the free space cache.
510  *
511  * @block_group:      The target block group.
512  * @start:            Start offset of the range.
513  * @end:              End offset of the range (exclusive).
514  * @total_added_ret:  Optional pointer to return the total amount of space
515  *                    added to the block group's free space cache.
516  *
517  * Returns 0 on success or < 0 on error.
518  */
519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
520 			     u64 end, u64 *total_added_ret)
521 {
522 	struct btrfs_fs_info *info = block_group->fs_info;
523 	u64 extent_start, extent_end, size;
524 	int ret;
525 
526 	if (total_added_ret)
527 		*total_added_ret = 0;
528 
529 	while (start < end) {
530 		if (!find_first_extent_bit(&info->excluded_extents, start,
531 					   &extent_start, &extent_end,
532 					   EXTENT_DIRTY | EXTENT_UPTODATE,
533 					   NULL))
534 			break;
535 
536 		if (extent_start <= start) {
537 			start = extent_end + 1;
538 		} else if (extent_start > start && extent_start < end) {
539 			size = extent_start - start;
540 			ret = btrfs_add_free_space_async_trimmed(block_group,
541 								 start, size);
542 			if (ret)
543 				return ret;
544 			if (total_added_ret)
545 				*total_added_ret += size;
546 			start = extent_end + 1;
547 		} else {
548 			break;
549 		}
550 	}
551 
552 	if (start < end) {
553 		size = end - start;
554 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
555 							 size);
556 		if (ret)
557 			return ret;
558 		if (total_added_ret)
559 			*total_added_ret += size;
560 	}
561 
562 	return 0;
563 }
564 
565 /*
566  * Get an arbitrary extent item index / max_index through the block group
567  *
568  * @block_group   the block group to sample from
569  * @index:        the integral step through the block group to grab from
570  * @max_index:    the granularity of the sampling
571  * @key:          return value parameter for the item we find
572  *
573  * Pre-conditions on indices:
574  * 0 <= index <= max_index
575  * 0 < max_index
576  *
577  * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578  * error code on error.
579  */
580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
581 					  struct btrfs_block_group *block_group,
582 					  int index, int max_index,
583 					  struct btrfs_key *found_key)
584 {
585 	struct btrfs_fs_info *fs_info = block_group->fs_info;
586 	struct btrfs_root *extent_root;
587 	u64 search_offset;
588 	u64 search_end = block_group->start + block_group->length;
589 	struct btrfs_path *path;
590 	struct btrfs_key search_key;
591 	int ret = 0;
592 
593 	ASSERT(index >= 0);
594 	ASSERT(index <= max_index);
595 	ASSERT(max_index > 0);
596 	lockdep_assert_held(&caching_ctl->mutex);
597 	lockdep_assert_held_read(&fs_info->commit_root_sem);
598 
599 	path = btrfs_alloc_path();
600 	if (!path)
601 		return -ENOMEM;
602 
603 	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
604 						       BTRFS_SUPER_INFO_OFFSET));
605 
606 	path->skip_locking = 1;
607 	path->search_commit_root = 1;
608 	path->reada = READA_FORWARD;
609 
610 	search_offset = index * div_u64(block_group->length, max_index);
611 	search_key.objectid = block_group->start + search_offset;
612 	search_key.type = BTRFS_EXTENT_ITEM_KEY;
613 	search_key.offset = 0;
614 
615 	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
616 		/* Success; sampled an extent item in the block group */
617 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
618 		    found_key->objectid >= block_group->start &&
619 		    found_key->objectid + found_key->offset <= search_end)
620 			break;
621 
622 		/* We can't possibly find a valid extent item anymore */
623 		if (found_key->objectid >= search_end) {
624 			ret = 1;
625 			break;
626 		}
627 	}
628 
629 	lockdep_assert_held(&caching_ctl->mutex);
630 	lockdep_assert_held_read(&fs_info->commit_root_sem);
631 	btrfs_free_path(path);
632 	return ret;
633 }
634 
635 /*
636  * Best effort attempt to compute a block group's size class while caching it.
637  *
638  * @block_group: the block group we are caching
639  *
640  * We cannot infer the size class while adding free space extents, because that
641  * logic doesn't care about contiguous file extents (it doesn't differentiate
642  * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643  * file extent items. Reading all of them is quite wasteful, because usually
644  * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645  * them at even steps through the block group and pick the smallest size class
646  * we see. Since size class is best effort, and not guaranteed in general,
647  * inaccuracy is acceptable.
648  *
649  * To be more explicit about why this algorithm makes sense:
650  *
651  * If we are caching in a block group from disk, then there are three major cases
652  * to consider:
653  * 1. the block group is well behaved and all extents in it are the same size
654  *    class.
655  * 2. the block group is mostly one size class with rare exceptions for last
656  *    ditch allocations
657  * 3. the block group was populated before size classes and can have a totally
658  *    arbitrary mix of size classes.
659  *
660  * In case 1, looking at any extent in the block group will yield the correct
661  * result. For the mixed cases, taking the minimum size class seems like a good
662  * approximation, since gaps from frees will be usable to the size class. For
663  * 2., a small handful of file extents is likely to yield the right answer. For
664  * 3, we can either read every file extent, or admit that this is best effort
665  * anyway and try to stay fast.
666  *
667  * Returns: 0 on success, negative error code on error.
668  */
669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
670 				       struct btrfs_block_group *block_group)
671 {
672 	struct btrfs_fs_info *fs_info = block_group->fs_info;
673 	struct btrfs_key key;
674 	int i;
675 	u64 min_size = block_group->length;
676 	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
677 	int ret;
678 
679 	if (!btrfs_block_group_should_use_size_class(block_group))
680 		return 0;
681 
682 	lockdep_assert_held(&caching_ctl->mutex);
683 	lockdep_assert_held_read(&fs_info->commit_root_sem);
684 	for (i = 0; i < 5; ++i) {
685 		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
686 		if (ret < 0)
687 			goto out;
688 		if (ret > 0)
689 			continue;
690 		min_size = min_t(u64, min_size, key.offset);
691 		size_class = btrfs_calc_block_group_size_class(min_size);
692 	}
693 	if (size_class != BTRFS_BG_SZ_NONE) {
694 		spin_lock(&block_group->lock);
695 		block_group->size_class = size_class;
696 		spin_unlock(&block_group->lock);
697 	}
698 out:
699 	return ret;
700 }
701 
702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
703 {
704 	struct btrfs_block_group *block_group = caching_ctl->block_group;
705 	struct btrfs_fs_info *fs_info = block_group->fs_info;
706 	struct btrfs_root *extent_root;
707 	struct btrfs_path *path;
708 	struct extent_buffer *leaf;
709 	struct btrfs_key key;
710 	u64 total_found = 0;
711 	u64 last = 0;
712 	u32 nritems;
713 	int ret;
714 	bool wakeup = true;
715 
716 	path = btrfs_alloc_path();
717 	if (!path)
718 		return -ENOMEM;
719 
720 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
721 	extent_root = btrfs_extent_root(fs_info, last);
722 
723 #ifdef CONFIG_BTRFS_DEBUG
724 	/*
725 	 * If we're fragmenting we don't want to make anybody think we can
726 	 * allocate from this block group until we've had a chance to fragment
727 	 * the free space.
728 	 */
729 	if (btrfs_should_fragment_free_space(block_group))
730 		wakeup = false;
731 #endif
732 	/*
733 	 * We don't want to deadlock with somebody trying to allocate a new
734 	 * extent for the extent root while also trying to search the extent
735 	 * root to add free space.  So we skip locking and search the commit
736 	 * root, since its read-only
737 	 */
738 	path->skip_locking = 1;
739 	path->search_commit_root = 1;
740 	path->reada = READA_FORWARD;
741 
742 	key.objectid = last;
743 	key.offset = 0;
744 	key.type = BTRFS_EXTENT_ITEM_KEY;
745 
746 next:
747 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
748 	if (ret < 0)
749 		goto out;
750 
751 	leaf = path->nodes[0];
752 	nritems = btrfs_header_nritems(leaf);
753 
754 	while (1) {
755 		if (btrfs_fs_closing(fs_info) > 1) {
756 			last = (u64)-1;
757 			break;
758 		}
759 
760 		if (path->slots[0] < nritems) {
761 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762 		} else {
763 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
764 			if (ret)
765 				break;
766 
767 			if (need_resched() ||
768 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
769 				btrfs_release_path(path);
770 				up_read(&fs_info->commit_root_sem);
771 				mutex_unlock(&caching_ctl->mutex);
772 				cond_resched();
773 				mutex_lock(&caching_ctl->mutex);
774 				down_read(&fs_info->commit_root_sem);
775 				goto next;
776 			}
777 
778 			ret = btrfs_next_leaf(extent_root, path);
779 			if (ret < 0)
780 				goto out;
781 			if (ret)
782 				break;
783 			leaf = path->nodes[0];
784 			nritems = btrfs_header_nritems(leaf);
785 			continue;
786 		}
787 
788 		if (key.objectid < last) {
789 			key.objectid = last;
790 			key.offset = 0;
791 			key.type = BTRFS_EXTENT_ITEM_KEY;
792 			btrfs_release_path(path);
793 			goto next;
794 		}
795 
796 		if (key.objectid < block_group->start) {
797 			path->slots[0]++;
798 			continue;
799 		}
800 
801 		if (key.objectid >= block_group->start + block_group->length)
802 			break;
803 
804 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
805 		    key.type == BTRFS_METADATA_ITEM_KEY) {
806 			u64 space_added;
807 
808 			ret = btrfs_add_new_free_space(block_group, last,
809 						       key.objectid, &space_added);
810 			if (ret)
811 				goto out;
812 			total_found += space_added;
813 			if (key.type == BTRFS_METADATA_ITEM_KEY)
814 				last = key.objectid +
815 					fs_info->nodesize;
816 			else
817 				last = key.objectid + key.offset;
818 
819 			if (total_found > CACHING_CTL_WAKE_UP) {
820 				total_found = 0;
821 				if (wakeup) {
822 					atomic_inc(&caching_ctl->progress);
823 					wake_up(&caching_ctl->wait);
824 				}
825 			}
826 		}
827 		path->slots[0]++;
828 	}
829 
830 	ret = btrfs_add_new_free_space(block_group, last,
831 				       block_group->start + block_group->length,
832 				       NULL);
833 out:
834 	btrfs_free_path(path);
835 	return ret;
836 }
837 
838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
839 {
840 	clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
841 			  bg->start + bg->length - 1, EXTENT_UPTODATE);
842 }
843 
844 static noinline void caching_thread(struct btrfs_work *work)
845 {
846 	struct btrfs_block_group *block_group;
847 	struct btrfs_fs_info *fs_info;
848 	struct btrfs_caching_control *caching_ctl;
849 	int ret;
850 
851 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
852 	block_group = caching_ctl->block_group;
853 	fs_info = block_group->fs_info;
854 
855 	mutex_lock(&caching_ctl->mutex);
856 	down_read(&fs_info->commit_root_sem);
857 
858 	load_block_group_size_class(caching_ctl, block_group);
859 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
860 		ret = load_free_space_cache(block_group);
861 		if (ret == 1) {
862 			ret = 0;
863 			goto done;
864 		}
865 
866 		/*
867 		 * We failed to load the space cache, set ourselves to
868 		 * CACHE_STARTED and carry on.
869 		 */
870 		spin_lock(&block_group->lock);
871 		block_group->cached = BTRFS_CACHE_STARTED;
872 		spin_unlock(&block_group->lock);
873 		wake_up(&caching_ctl->wait);
874 	}
875 
876 	/*
877 	 * If we are in the transaction that populated the free space tree we
878 	 * can't actually cache from the free space tree as our commit root and
879 	 * real root are the same, so we could change the contents of the blocks
880 	 * while caching.  Instead do the slow caching in this case, and after
881 	 * the transaction has committed we will be safe.
882 	 */
883 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
884 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
885 		ret = load_free_space_tree(caching_ctl);
886 	else
887 		ret = load_extent_tree_free(caching_ctl);
888 done:
889 	spin_lock(&block_group->lock);
890 	block_group->caching_ctl = NULL;
891 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
892 	spin_unlock(&block_group->lock);
893 
894 #ifdef CONFIG_BTRFS_DEBUG
895 	if (btrfs_should_fragment_free_space(block_group)) {
896 		u64 bytes_used;
897 
898 		spin_lock(&block_group->space_info->lock);
899 		spin_lock(&block_group->lock);
900 		bytes_used = block_group->length - block_group->used;
901 		block_group->space_info->bytes_used += bytes_used >> 1;
902 		spin_unlock(&block_group->lock);
903 		spin_unlock(&block_group->space_info->lock);
904 		fragment_free_space(block_group);
905 	}
906 #endif
907 
908 	up_read(&fs_info->commit_root_sem);
909 	btrfs_free_excluded_extents(block_group);
910 	mutex_unlock(&caching_ctl->mutex);
911 
912 	wake_up(&caching_ctl->wait);
913 
914 	btrfs_put_caching_control(caching_ctl);
915 	btrfs_put_block_group(block_group);
916 }
917 
918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
919 {
920 	struct btrfs_fs_info *fs_info = cache->fs_info;
921 	struct btrfs_caching_control *caching_ctl = NULL;
922 	int ret = 0;
923 
924 	/* Allocator for zoned filesystems does not use the cache at all */
925 	if (btrfs_is_zoned(fs_info))
926 		return 0;
927 
928 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
929 	if (!caching_ctl)
930 		return -ENOMEM;
931 
932 	INIT_LIST_HEAD(&caching_ctl->list);
933 	mutex_init(&caching_ctl->mutex);
934 	init_waitqueue_head(&caching_ctl->wait);
935 	caching_ctl->block_group = cache;
936 	refcount_set(&caching_ctl->count, 2);
937 	atomic_set(&caching_ctl->progress, 0);
938 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
939 
940 	spin_lock(&cache->lock);
941 	if (cache->cached != BTRFS_CACHE_NO) {
942 		kfree(caching_ctl);
943 
944 		caching_ctl = cache->caching_ctl;
945 		if (caching_ctl)
946 			refcount_inc(&caching_ctl->count);
947 		spin_unlock(&cache->lock);
948 		goto out;
949 	}
950 	WARN_ON(cache->caching_ctl);
951 	cache->caching_ctl = caching_ctl;
952 	cache->cached = BTRFS_CACHE_STARTED;
953 	spin_unlock(&cache->lock);
954 
955 	write_lock(&fs_info->block_group_cache_lock);
956 	refcount_inc(&caching_ctl->count);
957 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
958 	write_unlock(&fs_info->block_group_cache_lock);
959 
960 	btrfs_get_block_group(cache);
961 
962 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
963 out:
964 	if (wait && caching_ctl)
965 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
966 	if (caching_ctl)
967 		btrfs_put_caching_control(caching_ctl);
968 
969 	return ret;
970 }
971 
972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
973 {
974 	u64 extra_flags = chunk_to_extended(flags) &
975 				BTRFS_EXTENDED_PROFILE_MASK;
976 
977 	write_seqlock(&fs_info->profiles_lock);
978 	if (flags & BTRFS_BLOCK_GROUP_DATA)
979 		fs_info->avail_data_alloc_bits &= ~extra_flags;
980 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
981 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
982 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
983 		fs_info->avail_system_alloc_bits &= ~extra_flags;
984 	write_sequnlock(&fs_info->profiles_lock);
985 }
986 
987 /*
988  * Clear incompat bits for the following feature(s):
989  *
990  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991  *            in the whole filesystem
992  *
993  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
994  */
995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
996 {
997 	bool found_raid56 = false;
998 	bool found_raid1c34 = false;
999 
1000 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1003 		struct list_head *head = &fs_info->space_info;
1004 		struct btrfs_space_info *sinfo;
1005 
1006 		list_for_each_entry_rcu(sinfo, head, list) {
1007 			down_read(&sinfo->groups_sem);
1008 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1009 				found_raid56 = true;
1010 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1011 				found_raid56 = true;
1012 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013 				found_raid1c34 = true;
1014 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015 				found_raid1c34 = true;
1016 			up_read(&sinfo->groups_sem);
1017 		}
1018 		if (!found_raid56)
1019 			btrfs_clear_fs_incompat(fs_info, RAID56);
1020 		if (!found_raid1c34)
1021 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
1022 	}
1023 }
1024 
1025 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1026 				   struct btrfs_path *path,
1027 				   struct btrfs_block_group *block_group)
1028 {
1029 	struct btrfs_fs_info *fs_info = trans->fs_info;
1030 	struct btrfs_root *root;
1031 	struct btrfs_key key;
1032 	int ret;
1033 
1034 	root = btrfs_block_group_root(fs_info);
1035 	key.objectid = block_group->start;
1036 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1037 	key.offset = block_group->length;
1038 
1039 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1040 	if (ret > 0)
1041 		ret = -ENOENT;
1042 	if (ret < 0)
1043 		return ret;
1044 
1045 	ret = btrfs_del_item(trans, root, path);
1046 	return ret;
1047 }
1048 
1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1050 			     struct btrfs_chunk_map *map)
1051 {
1052 	struct btrfs_fs_info *fs_info = trans->fs_info;
1053 	struct btrfs_path *path;
1054 	struct btrfs_block_group *block_group;
1055 	struct btrfs_free_cluster *cluster;
1056 	struct inode *inode;
1057 	struct kobject *kobj = NULL;
1058 	int ret;
1059 	int index;
1060 	int factor;
1061 	struct btrfs_caching_control *caching_ctl = NULL;
1062 	bool remove_map;
1063 	bool remove_rsv = false;
1064 
1065 	block_group = btrfs_lookup_block_group(fs_info, map->start);
1066 	if (!block_group)
1067 		return -ENOENT;
1068 
1069 	BUG_ON(!block_group->ro);
1070 
1071 	trace_btrfs_remove_block_group(block_group);
1072 	/*
1073 	 * Free the reserved super bytes from this block group before
1074 	 * remove it.
1075 	 */
1076 	btrfs_free_excluded_extents(block_group);
1077 	btrfs_free_ref_tree_range(fs_info, block_group->start,
1078 				  block_group->length);
1079 
1080 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1081 	factor = btrfs_bg_type_to_factor(block_group->flags);
1082 
1083 	/* make sure this block group isn't part of an allocation cluster */
1084 	cluster = &fs_info->data_alloc_cluster;
1085 	spin_lock(&cluster->refill_lock);
1086 	btrfs_return_cluster_to_free_space(block_group, cluster);
1087 	spin_unlock(&cluster->refill_lock);
1088 
1089 	/*
1090 	 * make sure this block group isn't part of a metadata
1091 	 * allocation cluster
1092 	 */
1093 	cluster = &fs_info->meta_alloc_cluster;
1094 	spin_lock(&cluster->refill_lock);
1095 	btrfs_return_cluster_to_free_space(block_group, cluster);
1096 	spin_unlock(&cluster->refill_lock);
1097 
1098 	btrfs_clear_treelog_bg(block_group);
1099 	btrfs_clear_data_reloc_bg(block_group);
1100 
1101 	path = btrfs_alloc_path();
1102 	if (!path) {
1103 		ret = -ENOMEM;
1104 		goto out;
1105 	}
1106 
1107 	/*
1108 	 * get the inode first so any iput calls done for the io_list
1109 	 * aren't the final iput (no unlinks allowed now)
1110 	 */
1111 	inode = lookup_free_space_inode(block_group, path);
1112 
1113 	mutex_lock(&trans->transaction->cache_write_mutex);
1114 	/*
1115 	 * Make sure our free space cache IO is done before removing the
1116 	 * free space inode
1117 	 */
1118 	spin_lock(&trans->transaction->dirty_bgs_lock);
1119 	if (!list_empty(&block_group->io_list)) {
1120 		list_del_init(&block_group->io_list);
1121 
1122 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1123 
1124 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1125 		btrfs_wait_cache_io(trans, block_group, path);
1126 		btrfs_put_block_group(block_group);
1127 		spin_lock(&trans->transaction->dirty_bgs_lock);
1128 	}
1129 
1130 	if (!list_empty(&block_group->dirty_list)) {
1131 		list_del_init(&block_group->dirty_list);
1132 		remove_rsv = true;
1133 		btrfs_put_block_group(block_group);
1134 	}
1135 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1136 	mutex_unlock(&trans->transaction->cache_write_mutex);
1137 
1138 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1139 	if (ret)
1140 		goto out;
1141 
1142 	write_lock(&fs_info->block_group_cache_lock);
1143 	rb_erase_cached(&block_group->cache_node,
1144 			&fs_info->block_group_cache_tree);
1145 	RB_CLEAR_NODE(&block_group->cache_node);
1146 
1147 	/* Once for the block groups rbtree */
1148 	btrfs_put_block_group(block_group);
1149 
1150 	write_unlock(&fs_info->block_group_cache_lock);
1151 
1152 	down_write(&block_group->space_info->groups_sem);
1153 	/*
1154 	 * we must use list_del_init so people can check to see if they
1155 	 * are still on the list after taking the semaphore
1156 	 */
1157 	list_del_init(&block_group->list);
1158 	if (list_empty(&block_group->space_info->block_groups[index])) {
1159 		kobj = block_group->space_info->block_group_kobjs[index];
1160 		block_group->space_info->block_group_kobjs[index] = NULL;
1161 		clear_avail_alloc_bits(fs_info, block_group->flags);
1162 	}
1163 	up_write(&block_group->space_info->groups_sem);
1164 	clear_incompat_bg_bits(fs_info, block_group->flags);
1165 	if (kobj) {
1166 		kobject_del(kobj);
1167 		kobject_put(kobj);
1168 	}
1169 
1170 	if (block_group->cached == BTRFS_CACHE_STARTED)
1171 		btrfs_wait_block_group_cache_done(block_group);
1172 
1173 	write_lock(&fs_info->block_group_cache_lock);
1174 	caching_ctl = btrfs_get_caching_control(block_group);
1175 	if (!caching_ctl) {
1176 		struct btrfs_caching_control *ctl;
1177 
1178 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1179 			if (ctl->block_group == block_group) {
1180 				caching_ctl = ctl;
1181 				refcount_inc(&caching_ctl->count);
1182 				break;
1183 			}
1184 		}
1185 	}
1186 	if (caching_ctl)
1187 		list_del_init(&caching_ctl->list);
1188 	write_unlock(&fs_info->block_group_cache_lock);
1189 
1190 	if (caching_ctl) {
1191 		/* Once for the caching bgs list and once for us. */
1192 		btrfs_put_caching_control(caching_ctl);
1193 		btrfs_put_caching_control(caching_ctl);
1194 	}
1195 
1196 	spin_lock(&trans->transaction->dirty_bgs_lock);
1197 	WARN_ON(!list_empty(&block_group->dirty_list));
1198 	WARN_ON(!list_empty(&block_group->io_list));
1199 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1200 
1201 	btrfs_remove_free_space_cache(block_group);
1202 
1203 	spin_lock(&block_group->space_info->lock);
1204 	list_del_init(&block_group->ro_list);
1205 
1206 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1207 		WARN_ON(block_group->space_info->total_bytes
1208 			< block_group->length);
1209 		WARN_ON(block_group->space_info->bytes_readonly
1210 			< block_group->length - block_group->zone_unusable);
1211 		WARN_ON(block_group->space_info->bytes_zone_unusable
1212 			< block_group->zone_unusable);
1213 		WARN_ON(block_group->space_info->disk_total
1214 			< block_group->length * factor);
1215 	}
1216 	block_group->space_info->total_bytes -= block_group->length;
1217 	block_group->space_info->bytes_readonly -=
1218 		(block_group->length - block_group->zone_unusable);
1219 	block_group->space_info->bytes_zone_unusable -=
1220 		block_group->zone_unusable;
1221 	block_group->space_info->disk_total -= block_group->length * factor;
1222 
1223 	spin_unlock(&block_group->space_info->lock);
1224 
1225 	/*
1226 	 * Remove the free space for the block group from the free space tree
1227 	 * and the block group's item from the extent tree before marking the
1228 	 * block group as removed. This is to prevent races with tasks that
1229 	 * freeze and unfreeze a block group, this task and another task
1230 	 * allocating a new block group - the unfreeze task ends up removing
1231 	 * the block group's extent map before the task calling this function
1232 	 * deletes the block group item from the extent tree, allowing for
1233 	 * another task to attempt to create another block group with the same
1234 	 * item key (and failing with -EEXIST and a transaction abort).
1235 	 */
1236 	ret = remove_block_group_free_space(trans, block_group);
1237 	if (ret)
1238 		goto out;
1239 
1240 	ret = remove_block_group_item(trans, path, block_group);
1241 	if (ret < 0)
1242 		goto out;
1243 
1244 	spin_lock(&block_group->lock);
1245 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1246 
1247 	/*
1248 	 * At this point trimming or scrub can't start on this block group,
1249 	 * because we removed the block group from the rbtree
1250 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1251 	 * even if someone already got this block group before we removed it
1252 	 * from the rbtree, they have already incremented block_group->frozen -
1253 	 * if they didn't, for the trimming case they won't find any free space
1254 	 * entries because we already removed them all when we called
1255 	 * btrfs_remove_free_space_cache().
1256 	 *
1257 	 * And we must not remove the chunk map from the fs_info->mapping_tree
1258 	 * to prevent the same logical address range and physical device space
1259 	 * ranges from being reused for a new block group. This is needed to
1260 	 * avoid races with trimming and scrub.
1261 	 *
1262 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1263 	 * completely transactionless, so while it is trimming a range the
1264 	 * currently running transaction might finish and a new one start,
1265 	 * allowing for new block groups to be created that can reuse the same
1266 	 * physical device locations unless we take this special care.
1267 	 *
1268 	 * There may also be an implicit trim operation if the file system
1269 	 * is mounted with -odiscard. The same protections must remain
1270 	 * in place until the extents have been discarded completely when
1271 	 * the transaction commit has completed.
1272 	 */
1273 	remove_map = (atomic_read(&block_group->frozen) == 0);
1274 	spin_unlock(&block_group->lock);
1275 
1276 	if (remove_map)
1277 		btrfs_remove_chunk_map(fs_info, map);
1278 
1279 out:
1280 	/* Once for the lookup reference */
1281 	btrfs_put_block_group(block_group);
1282 	if (remove_rsv)
1283 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1284 	btrfs_free_path(path);
1285 	return ret;
1286 }
1287 
1288 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1289 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1290 {
1291 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1292 	struct btrfs_chunk_map *map;
1293 	unsigned int num_items;
1294 
1295 	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1296 	ASSERT(map != NULL);
1297 	ASSERT(map->start == chunk_offset);
1298 
1299 	/*
1300 	 * We need to reserve 3 + N units from the metadata space info in order
1301 	 * to remove a block group (done at btrfs_remove_chunk() and at
1302 	 * btrfs_remove_block_group()), which are used for:
1303 	 *
1304 	 * 1 unit for adding the free space inode's orphan (located in the tree
1305 	 * of tree roots).
1306 	 * 1 unit for deleting the block group item (located in the extent
1307 	 * tree).
1308 	 * 1 unit for deleting the free space item (located in tree of tree
1309 	 * roots).
1310 	 * N units for deleting N device extent items corresponding to each
1311 	 * stripe (located in the device tree).
1312 	 *
1313 	 * In order to remove a block group we also need to reserve units in the
1314 	 * system space info in order to update the chunk tree (update one or
1315 	 * more device items and remove one chunk item), but this is done at
1316 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1317 	 */
1318 	num_items = 3 + map->num_stripes;
1319 	btrfs_free_chunk_map(map);
1320 
1321 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1322 }
1323 
1324 /*
1325  * Mark block group @cache read-only, so later write won't happen to block
1326  * group @cache.
1327  *
1328  * If @force is not set, this function will only mark the block group readonly
1329  * if we have enough free space (1M) in other metadata/system block groups.
1330  * If @force is not set, this function will mark the block group readonly
1331  * without checking free space.
1332  *
1333  * NOTE: This function doesn't care if other block groups can contain all the
1334  * data in this block group. That check should be done by relocation routine,
1335  * not this function.
1336  */
1337 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1338 {
1339 	struct btrfs_space_info *sinfo = cache->space_info;
1340 	u64 num_bytes;
1341 	int ret = -ENOSPC;
1342 
1343 	spin_lock(&sinfo->lock);
1344 	spin_lock(&cache->lock);
1345 
1346 	if (cache->swap_extents) {
1347 		ret = -ETXTBSY;
1348 		goto out;
1349 	}
1350 
1351 	if (cache->ro) {
1352 		cache->ro++;
1353 		ret = 0;
1354 		goto out;
1355 	}
1356 
1357 	num_bytes = cache->length - cache->reserved - cache->pinned -
1358 		    cache->bytes_super - cache->zone_unusable - cache->used;
1359 
1360 	/*
1361 	 * Data never overcommits, even in mixed mode, so do just the straight
1362 	 * check of left over space in how much we have allocated.
1363 	 */
1364 	if (force) {
1365 		ret = 0;
1366 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1367 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1368 
1369 		/*
1370 		 * Here we make sure if we mark this bg RO, we still have enough
1371 		 * free space as buffer.
1372 		 */
1373 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1374 			ret = 0;
1375 	} else {
1376 		/*
1377 		 * We overcommit metadata, so we need to do the
1378 		 * btrfs_can_overcommit check here, and we need to pass in
1379 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1380 		 * leeway to allow us to mark this block group as read only.
1381 		 */
1382 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1383 					 BTRFS_RESERVE_NO_FLUSH))
1384 			ret = 0;
1385 	}
1386 
1387 	if (!ret) {
1388 		sinfo->bytes_readonly += num_bytes;
1389 		if (btrfs_is_zoned(cache->fs_info)) {
1390 			/* Migrate zone_unusable bytes to readonly */
1391 			sinfo->bytes_readonly += cache->zone_unusable;
1392 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1393 			cache->zone_unusable = 0;
1394 		}
1395 		cache->ro++;
1396 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1397 	}
1398 out:
1399 	spin_unlock(&cache->lock);
1400 	spin_unlock(&sinfo->lock);
1401 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1402 		btrfs_info(cache->fs_info,
1403 			"unable to make block group %llu ro", cache->start);
1404 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1405 	}
1406 	return ret;
1407 }
1408 
1409 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1410 				 struct btrfs_block_group *bg)
1411 {
1412 	struct btrfs_fs_info *fs_info = bg->fs_info;
1413 	struct btrfs_transaction *prev_trans = NULL;
1414 	const u64 start = bg->start;
1415 	const u64 end = start + bg->length - 1;
1416 	int ret;
1417 
1418 	spin_lock(&fs_info->trans_lock);
1419 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1420 		prev_trans = list_last_entry(&trans->transaction->list,
1421 					     struct btrfs_transaction, list);
1422 		refcount_inc(&prev_trans->use_count);
1423 	}
1424 	spin_unlock(&fs_info->trans_lock);
1425 
1426 	/*
1427 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1428 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1429 	 * task might be running finish_extent_commit() for the previous
1430 	 * transaction N - 1, and have seen a range belonging to the block
1431 	 * group in pinned_extents before we were able to clear the whole block
1432 	 * group range from pinned_extents. This means that task can lookup for
1433 	 * the block group after we unpinned it from pinned_extents and removed
1434 	 * it, leading to an error at unpin_extent_range().
1435 	 */
1436 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1437 	if (prev_trans) {
1438 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1439 					EXTENT_DIRTY);
1440 		if (ret)
1441 			goto out;
1442 	}
1443 
1444 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1445 				EXTENT_DIRTY);
1446 out:
1447 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1448 	if (prev_trans)
1449 		btrfs_put_transaction(prev_trans);
1450 
1451 	return ret == 0;
1452 }
1453 
1454 /*
1455  * Process the unused_bgs list and remove any that don't have any allocated
1456  * space inside of them.
1457  */
1458 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1459 {
1460 	LIST_HEAD(retry_list);
1461 	struct btrfs_block_group *block_group;
1462 	struct btrfs_space_info *space_info;
1463 	struct btrfs_trans_handle *trans;
1464 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1465 	int ret = 0;
1466 
1467 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1468 		return;
1469 
1470 	if (btrfs_fs_closing(fs_info))
1471 		return;
1472 
1473 	/*
1474 	 * Long running balances can keep us blocked here for eternity, so
1475 	 * simply skip deletion if we're unable to get the mutex.
1476 	 */
1477 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1478 		return;
1479 
1480 	spin_lock(&fs_info->unused_bgs_lock);
1481 	while (!list_empty(&fs_info->unused_bgs)) {
1482 		u64 used;
1483 		int trimming;
1484 
1485 		block_group = list_first_entry(&fs_info->unused_bgs,
1486 					       struct btrfs_block_group,
1487 					       bg_list);
1488 		list_del_init(&block_group->bg_list);
1489 
1490 		space_info = block_group->space_info;
1491 
1492 		if (ret || btrfs_mixed_space_info(space_info)) {
1493 			btrfs_put_block_group(block_group);
1494 			continue;
1495 		}
1496 		spin_unlock(&fs_info->unused_bgs_lock);
1497 
1498 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1499 
1500 		/* Don't want to race with allocators so take the groups_sem */
1501 		down_write(&space_info->groups_sem);
1502 
1503 		/*
1504 		 * Async discard moves the final block group discard to be prior
1505 		 * to the unused_bgs code path.  Therefore, if it's not fully
1506 		 * trimmed, punt it back to the async discard lists.
1507 		 */
1508 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1509 		    !btrfs_is_free_space_trimmed(block_group)) {
1510 			trace_btrfs_skip_unused_block_group(block_group);
1511 			up_write(&space_info->groups_sem);
1512 			/* Requeue if we failed because of async discard */
1513 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1514 						 block_group);
1515 			goto next;
1516 		}
1517 
1518 		spin_lock(&space_info->lock);
1519 		spin_lock(&block_group->lock);
1520 		if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1521 		    list_is_singular(&block_group->list)) {
1522 			/*
1523 			 * We want to bail if we made new allocations or have
1524 			 * outstanding allocations in this block group.  We do
1525 			 * the ro check in case balance is currently acting on
1526 			 * this block group.
1527 			 *
1528 			 * Also bail out if this is the only block group for its
1529 			 * type, because otherwise we would lose profile
1530 			 * information from fs_info->avail_*_alloc_bits and the
1531 			 * next block group of this type would be created with a
1532 			 * "single" profile (even if we're in a raid fs) because
1533 			 * fs_info->avail_*_alloc_bits would be 0.
1534 			 */
1535 			trace_btrfs_skip_unused_block_group(block_group);
1536 			spin_unlock(&block_group->lock);
1537 			spin_unlock(&space_info->lock);
1538 			up_write(&space_info->groups_sem);
1539 			goto next;
1540 		}
1541 
1542 		/*
1543 		 * The block group may be unused but there may be space reserved
1544 		 * accounting with the existence of that block group, that is,
1545 		 * space_info->bytes_may_use was incremented by a task but no
1546 		 * space was yet allocated from the block group by the task.
1547 		 * That space may or may not be allocated, as we are generally
1548 		 * pessimistic about space reservation for metadata as well as
1549 		 * for data when using compression (as we reserve space based on
1550 		 * the worst case, when data can't be compressed, and before
1551 		 * actually attempting compression, before starting writeback).
1552 		 *
1553 		 * So check if the total space of the space_info minus the size
1554 		 * of this block group is less than the used space of the
1555 		 * space_info - if that's the case, then it means we have tasks
1556 		 * that might be relying on the block group in order to allocate
1557 		 * extents, and add back the block group to the unused list when
1558 		 * we finish, so that we retry later in case no tasks ended up
1559 		 * needing to allocate extents from the block group.
1560 		 */
1561 		used = btrfs_space_info_used(space_info, true);
1562 		if (space_info->total_bytes - block_group->length < used) {
1563 			/*
1564 			 * Add a reference for the list, compensate for the ref
1565 			 * drop under the "next" label for the
1566 			 * fs_info->unused_bgs list.
1567 			 */
1568 			btrfs_get_block_group(block_group);
1569 			list_add_tail(&block_group->bg_list, &retry_list);
1570 
1571 			trace_btrfs_skip_unused_block_group(block_group);
1572 			spin_unlock(&block_group->lock);
1573 			spin_unlock(&space_info->lock);
1574 			up_write(&space_info->groups_sem);
1575 			goto next;
1576 		}
1577 
1578 		spin_unlock(&block_group->lock);
1579 		spin_unlock(&space_info->lock);
1580 
1581 		/* We don't want to force the issue, only flip if it's ok. */
1582 		ret = inc_block_group_ro(block_group, 0);
1583 		up_write(&space_info->groups_sem);
1584 		if (ret < 0) {
1585 			ret = 0;
1586 			goto next;
1587 		}
1588 
1589 		ret = btrfs_zone_finish(block_group);
1590 		if (ret < 0) {
1591 			btrfs_dec_block_group_ro(block_group);
1592 			if (ret == -EAGAIN)
1593 				ret = 0;
1594 			goto next;
1595 		}
1596 
1597 		/*
1598 		 * Want to do this before we do anything else so we can recover
1599 		 * properly if we fail to join the transaction.
1600 		 */
1601 		trans = btrfs_start_trans_remove_block_group(fs_info,
1602 						     block_group->start);
1603 		if (IS_ERR(trans)) {
1604 			btrfs_dec_block_group_ro(block_group);
1605 			ret = PTR_ERR(trans);
1606 			goto next;
1607 		}
1608 
1609 		/*
1610 		 * We could have pending pinned extents for this block group,
1611 		 * just delete them, we don't care about them anymore.
1612 		 */
1613 		if (!clean_pinned_extents(trans, block_group)) {
1614 			btrfs_dec_block_group_ro(block_group);
1615 			goto end_trans;
1616 		}
1617 
1618 		/*
1619 		 * At this point, the block_group is read only and should fail
1620 		 * new allocations.  However, btrfs_finish_extent_commit() can
1621 		 * cause this block_group to be placed back on the discard
1622 		 * lists because now the block_group isn't fully discarded.
1623 		 * Bail here and try again later after discarding everything.
1624 		 */
1625 		spin_lock(&fs_info->discard_ctl.lock);
1626 		if (!list_empty(&block_group->discard_list)) {
1627 			spin_unlock(&fs_info->discard_ctl.lock);
1628 			btrfs_dec_block_group_ro(block_group);
1629 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1630 						 block_group);
1631 			goto end_trans;
1632 		}
1633 		spin_unlock(&fs_info->discard_ctl.lock);
1634 
1635 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1636 		spin_lock(&space_info->lock);
1637 		spin_lock(&block_group->lock);
1638 
1639 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1640 						     -block_group->pinned);
1641 		space_info->bytes_readonly += block_group->pinned;
1642 		block_group->pinned = 0;
1643 
1644 		spin_unlock(&block_group->lock);
1645 		spin_unlock(&space_info->lock);
1646 
1647 		/*
1648 		 * The normal path here is an unused block group is passed here,
1649 		 * then trimming is handled in the transaction commit path.
1650 		 * Async discard interposes before this to do the trimming
1651 		 * before coming down the unused block group path as trimming
1652 		 * will no longer be done later in the transaction commit path.
1653 		 */
1654 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1655 			goto flip_async;
1656 
1657 		/*
1658 		 * DISCARD can flip during remount. On zoned filesystems, we
1659 		 * need to reset sequential-required zones.
1660 		 */
1661 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1662 				btrfs_is_zoned(fs_info);
1663 
1664 		/* Implicit trim during transaction commit. */
1665 		if (trimming)
1666 			btrfs_freeze_block_group(block_group);
1667 
1668 		/*
1669 		 * Btrfs_remove_chunk will abort the transaction if things go
1670 		 * horribly wrong.
1671 		 */
1672 		ret = btrfs_remove_chunk(trans, block_group->start);
1673 
1674 		if (ret) {
1675 			if (trimming)
1676 				btrfs_unfreeze_block_group(block_group);
1677 			goto end_trans;
1678 		}
1679 
1680 		/*
1681 		 * If we're not mounted with -odiscard, we can just forget
1682 		 * about this block group. Otherwise we'll need to wait
1683 		 * until transaction commit to do the actual discard.
1684 		 */
1685 		if (trimming) {
1686 			spin_lock(&fs_info->unused_bgs_lock);
1687 			/*
1688 			 * A concurrent scrub might have added us to the list
1689 			 * fs_info->unused_bgs, so use a list_move operation
1690 			 * to add the block group to the deleted_bgs list.
1691 			 */
1692 			list_move(&block_group->bg_list,
1693 				  &trans->transaction->deleted_bgs);
1694 			spin_unlock(&fs_info->unused_bgs_lock);
1695 			btrfs_get_block_group(block_group);
1696 		}
1697 end_trans:
1698 		btrfs_end_transaction(trans);
1699 next:
1700 		btrfs_put_block_group(block_group);
1701 		spin_lock(&fs_info->unused_bgs_lock);
1702 	}
1703 	list_splice_tail(&retry_list, &fs_info->unused_bgs);
1704 	spin_unlock(&fs_info->unused_bgs_lock);
1705 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1706 	return;
1707 
1708 flip_async:
1709 	btrfs_end_transaction(trans);
1710 	spin_lock(&fs_info->unused_bgs_lock);
1711 	list_splice_tail(&retry_list, &fs_info->unused_bgs);
1712 	spin_unlock(&fs_info->unused_bgs_lock);
1713 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1714 	btrfs_put_block_group(block_group);
1715 	btrfs_discard_punt_unused_bgs_list(fs_info);
1716 }
1717 
1718 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1719 {
1720 	struct btrfs_fs_info *fs_info = bg->fs_info;
1721 
1722 	spin_lock(&fs_info->unused_bgs_lock);
1723 	if (list_empty(&bg->bg_list)) {
1724 		btrfs_get_block_group(bg);
1725 		trace_btrfs_add_unused_block_group(bg);
1726 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1727 	} else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1728 		/* Pull out the block group from the reclaim_bgs list. */
1729 		trace_btrfs_add_unused_block_group(bg);
1730 		list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1731 	}
1732 	spin_unlock(&fs_info->unused_bgs_lock);
1733 }
1734 
1735 /*
1736  * We want block groups with a low number of used bytes to be in the beginning
1737  * of the list, so they will get reclaimed first.
1738  */
1739 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1740 			   const struct list_head *b)
1741 {
1742 	const struct btrfs_block_group *bg1, *bg2;
1743 
1744 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1745 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1746 
1747 	return bg1->used > bg2->used;
1748 }
1749 
1750 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1751 {
1752 	if (btrfs_is_zoned(fs_info))
1753 		return btrfs_zoned_should_reclaim(fs_info);
1754 	return true;
1755 }
1756 
1757 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1758 {
1759 	const struct btrfs_space_info *space_info = bg->space_info;
1760 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1761 	const u64 new_val = bg->used;
1762 	const u64 old_val = new_val + bytes_freed;
1763 	u64 thresh;
1764 
1765 	if (reclaim_thresh == 0)
1766 		return false;
1767 
1768 	thresh = mult_perc(bg->length, reclaim_thresh);
1769 
1770 	/*
1771 	 * If we were below the threshold before don't reclaim, we are likely a
1772 	 * brand new block group and we don't want to relocate new block groups.
1773 	 */
1774 	if (old_val < thresh)
1775 		return false;
1776 	if (new_val >= thresh)
1777 		return false;
1778 	return true;
1779 }
1780 
1781 void btrfs_reclaim_bgs_work(struct work_struct *work)
1782 {
1783 	struct btrfs_fs_info *fs_info =
1784 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1785 	struct btrfs_block_group *bg;
1786 	struct btrfs_space_info *space_info;
1787 
1788 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1789 		return;
1790 
1791 	if (btrfs_fs_closing(fs_info))
1792 		return;
1793 
1794 	if (!btrfs_should_reclaim(fs_info))
1795 		return;
1796 
1797 	sb_start_write(fs_info->sb);
1798 
1799 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1800 		sb_end_write(fs_info->sb);
1801 		return;
1802 	}
1803 
1804 	/*
1805 	 * Long running balances can keep us blocked here for eternity, so
1806 	 * simply skip reclaim if we're unable to get the mutex.
1807 	 */
1808 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1809 		btrfs_exclop_finish(fs_info);
1810 		sb_end_write(fs_info->sb);
1811 		return;
1812 	}
1813 
1814 	spin_lock(&fs_info->unused_bgs_lock);
1815 	/*
1816 	 * Sort happens under lock because we can't simply splice it and sort.
1817 	 * The block groups might still be in use and reachable via bg_list,
1818 	 * and their presence in the reclaim_bgs list must be preserved.
1819 	 */
1820 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1821 	while (!list_empty(&fs_info->reclaim_bgs)) {
1822 		u64 zone_unusable;
1823 		int ret = 0;
1824 
1825 		bg = list_first_entry(&fs_info->reclaim_bgs,
1826 				      struct btrfs_block_group,
1827 				      bg_list);
1828 		list_del_init(&bg->bg_list);
1829 
1830 		space_info = bg->space_info;
1831 		spin_unlock(&fs_info->unused_bgs_lock);
1832 
1833 		/* Don't race with allocators so take the groups_sem */
1834 		down_write(&space_info->groups_sem);
1835 
1836 		spin_lock(&bg->lock);
1837 		if (bg->reserved || bg->pinned || bg->ro) {
1838 			/*
1839 			 * We want to bail if we made new allocations or have
1840 			 * outstanding allocations in this block group.  We do
1841 			 * the ro check in case balance is currently acting on
1842 			 * this block group.
1843 			 */
1844 			spin_unlock(&bg->lock);
1845 			up_write(&space_info->groups_sem);
1846 			goto next;
1847 		}
1848 		if (bg->used == 0) {
1849 			/*
1850 			 * It is possible that we trigger relocation on a block
1851 			 * group as its extents are deleted and it first goes
1852 			 * below the threshold, then shortly after goes empty.
1853 			 *
1854 			 * In this case, relocating it does delete it, but has
1855 			 * some overhead in relocation specific metadata, looking
1856 			 * for the non-existent extents and running some extra
1857 			 * transactions, which we can avoid by using one of the
1858 			 * other mechanisms for dealing with empty block groups.
1859 			 */
1860 			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1861 				btrfs_mark_bg_unused(bg);
1862 			spin_unlock(&bg->lock);
1863 			up_write(&space_info->groups_sem);
1864 			goto next;
1865 
1866 		}
1867 		/*
1868 		 * The block group might no longer meet the reclaim condition by
1869 		 * the time we get around to reclaiming it, so to avoid
1870 		 * reclaiming overly full block_groups, skip reclaiming them.
1871 		 *
1872 		 * Since the decision making process also depends on the amount
1873 		 * being freed, pass in a fake giant value to skip that extra
1874 		 * check, which is more meaningful when adding to the list in
1875 		 * the first place.
1876 		 */
1877 		if (!should_reclaim_block_group(bg, bg->length)) {
1878 			spin_unlock(&bg->lock);
1879 			up_write(&space_info->groups_sem);
1880 			goto next;
1881 		}
1882 		spin_unlock(&bg->lock);
1883 
1884 		/*
1885 		 * Get out fast, in case we're read-only or unmounting the
1886 		 * filesystem. It is OK to drop block groups from the list even
1887 		 * for the read-only case. As we did sb_start_write(),
1888 		 * "mount -o remount,ro" won't happen and read-only filesystem
1889 		 * means it is forced read-only due to a fatal error. So, it
1890 		 * never gets back to read-write to let us reclaim again.
1891 		 */
1892 		if (btrfs_need_cleaner_sleep(fs_info)) {
1893 			up_write(&space_info->groups_sem);
1894 			goto next;
1895 		}
1896 
1897 		/*
1898 		 * Cache the zone_unusable value before turning the block group
1899 		 * to read only. As soon as the blog group is read only it's
1900 		 * zone_unusable value gets moved to the block group's read-only
1901 		 * bytes and isn't available for calculations anymore.
1902 		 */
1903 		zone_unusable = bg->zone_unusable;
1904 		ret = inc_block_group_ro(bg, 0);
1905 		up_write(&space_info->groups_sem);
1906 		if (ret < 0)
1907 			goto next;
1908 
1909 		btrfs_info(fs_info,
1910 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1911 				bg->start,
1912 				div64_u64(bg->used * 100, bg->length),
1913 				div64_u64(zone_unusable * 100, bg->length));
1914 		trace_btrfs_reclaim_block_group(bg);
1915 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1916 		if (ret) {
1917 			btrfs_dec_block_group_ro(bg);
1918 			btrfs_err(fs_info, "error relocating chunk %llu",
1919 				  bg->start);
1920 		}
1921 
1922 next:
1923 		if (ret)
1924 			btrfs_mark_bg_to_reclaim(bg);
1925 		btrfs_put_block_group(bg);
1926 
1927 		mutex_unlock(&fs_info->reclaim_bgs_lock);
1928 		/*
1929 		 * Reclaiming all the block groups in the list can take really
1930 		 * long.  Prioritize cleaning up unused block groups.
1931 		 */
1932 		btrfs_delete_unused_bgs(fs_info);
1933 		/*
1934 		 * If we are interrupted by a balance, we can just bail out. The
1935 		 * cleaner thread restart again if necessary.
1936 		 */
1937 		if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1938 			goto end;
1939 		spin_lock(&fs_info->unused_bgs_lock);
1940 	}
1941 	spin_unlock(&fs_info->unused_bgs_lock);
1942 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1943 end:
1944 	btrfs_exclop_finish(fs_info);
1945 	sb_end_write(fs_info->sb);
1946 }
1947 
1948 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1949 {
1950 	spin_lock(&fs_info->unused_bgs_lock);
1951 	if (!list_empty(&fs_info->reclaim_bgs))
1952 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1953 	spin_unlock(&fs_info->unused_bgs_lock);
1954 }
1955 
1956 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1957 {
1958 	struct btrfs_fs_info *fs_info = bg->fs_info;
1959 
1960 	spin_lock(&fs_info->unused_bgs_lock);
1961 	if (list_empty(&bg->bg_list)) {
1962 		btrfs_get_block_group(bg);
1963 		trace_btrfs_add_reclaim_block_group(bg);
1964 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1965 	}
1966 	spin_unlock(&fs_info->unused_bgs_lock);
1967 }
1968 
1969 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1970 			   struct btrfs_path *path)
1971 {
1972 	struct btrfs_chunk_map *map;
1973 	struct btrfs_block_group_item bg;
1974 	struct extent_buffer *leaf;
1975 	int slot;
1976 	u64 flags;
1977 	int ret = 0;
1978 
1979 	slot = path->slots[0];
1980 	leaf = path->nodes[0];
1981 
1982 	map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
1983 	if (!map) {
1984 		btrfs_err(fs_info,
1985 			  "logical %llu len %llu found bg but no related chunk",
1986 			  key->objectid, key->offset);
1987 		return -ENOENT;
1988 	}
1989 
1990 	if (map->start != key->objectid || map->chunk_len != key->offset) {
1991 		btrfs_err(fs_info,
1992 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1993 			  key->objectid, key->offset, map->start, map->chunk_len);
1994 		ret = -EUCLEAN;
1995 		goto out_free_map;
1996 	}
1997 
1998 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1999 			   sizeof(bg));
2000 	flags = btrfs_stack_block_group_flags(&bg) &
2001 		BTRFS_BLOCK_GROUP_TYPE_MASK;
2002 
2003 	if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2004 		btrfs_err(fs_info,
2005 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2006 			  key->objectid, key->offset, flags,
2007 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2008 		ret = -EUCLEAN;
2009 	}
2010 
2011 out_free_map:
2012 	btrfs_free_chunk_map(map);
2013 	return ret;
2014 }
2015 
2016 static int find_first_block_group(struct btrfs_fs_info *fs_info,
2017 				  struct btrfs_path *path,
2018 				  struct btrfs_key *key)
2019 {
2020 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2021 	int ret;
2022 	struct btrfs_key found_key;
2023 
2024 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
2025 		if (found_key.objectid >= key->objectid &&
2026 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2027 			return read_bg_from_eb(fs_info, &found_key, path);
2028 		}
2029 	}
2030 	return ret;
2031 }
2032 
2033 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2034 {
2035 	u64 extra_flags = chunk_to_extended(flags) &
2036 				BTRFS_EXTENDED_PROFILE_MASK;
2037 
2038 	write_seqlock(&fs_info->profiles_lock);
2039 	if (flags & BTRFS_BLOCK_GROUP_DATA)
2040 		fs_info->avail_data_alloc_bits |= extra_flags;
2041 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
2042 		fs_info->avail_metadata_alloc_bits |= extra_flags;
2043 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2044 		fs_info->avail_system_alloc_bits |= extra_flags;
2045 	write_sequnlock(&fs_info->profiles_lock);
2046 }
2047 
2048 /*
2049  * Map a physical disk address to a list of logical addresses.
2050  *
2051  * @fs_info:       the filesystem
2052  * @chunk_start:   logical address of block group
2053  * @physical:	   physical address to map to logical addresses
2054  * @logical:	   return array of logical addresses which map to @physical
2055  * @naddrs:	   length of @logical
2056  * @stripe_len:    size of IO stripe for the given block group
2057  *
2058  * Maps a particular @physical disk address to a list of @logical addresses.
2059  * Used primarily to exclude those portions of a block group that contain super
2060  * block copies.
2061  */
2062 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2063 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2064 {
2065 	struct btrfs_chunk_map *map;
2066 	u64 *buf;
2067 	u64 bytenr;
2068 	u64 data_stripe_length;
2069 	u64 io_stripe_size;
2070 	int i, nr = 0;
2071 	int ret = 0;
2072 
2073 	map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2074 	if (IS_ERR(map))
2075 		return -EIO;
2076 
2077 	data_stripe_length = map->stripe_size;
2078 	io_stripe_size = BTRFS_STRIPE_LEN;
2079 	chunk_start = map->start;
2080 
2081 	/* For RAID5/6 adjust to a full IO stripe length */
2082 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2083 		io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2084 
2085 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2086 	if (!buf) {
2087 		ret = -ENOMEM;
2088 		goto out;
2089 	}
2090 
2091 	for (i = 0; i < map->num_stripes; i++) {
2092 		bool already_inserted = false;
2093 		u32 stripe_nr;
2094 		u32 offset;
2095 		int j;
2096 
2097 		if (!in_range(physical, map->stripes[i].physical,
2098 			      data_stripe_length))
2099 			continue;
2100 
2101 		stripe_nr = (physical - map->stripes[i].physical) >>
2102 			    BTRFS_STRIPE_LEN_SHIFT;
2103 		offset = (physical - map->stripes[i].physical) &
2104 			 BTRFS_STRIPE_LEN_MASK;
2105 
2106 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2107 				 BTRFS_BLOCK_GROUP_RAID10))
2108 			stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2109 					    map->sub_stripes);
2110 		/*
2111 		 * The remaining case would be for RAID56, multiply by
2112 		 * nr_data_stripes().  Alternatively, just use rmap_len below
2113 		 * instead of map->stripe_len
2114 		 */
2115 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2116 
2117 		/* Ensure we don't add duplicate addresses */
2118 		for (j = 0; j < nr; j++) {
2119 			if (buf[j] == bytenr) {
2120 				already_inserted = true;
2121 				break;
2122 			}
2123 		}
2124 
2125 		if (!already_inserted)
2126 			buf[nr++] = bytenr;
2127 	}
2128 
2129 	*logical = buf;
2130 	*naddrs = nr;
2131 	*stripe_len = io_stripe_size;
2132 out:
2133 	btrfs_free_chunk_map(map);
2134 	return ret;
2135 }
2136 
2137 static int exclude_super_stripes(struct btrfs_block_group *cache)
2138 {
2139 	struct btrfs_fs_info *fs_info = cache->fs_info;
2140 	const bool zoned = btrfs_is_zoned(fs_info);
2141 	u64 bytenr;
2142 	u64 *logical;
2143 	int stripe_len;
2144 	int i, nr, ret;
2145 
2146 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2147 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2148 		cache->bytes_super += stripe_len;
2149 		ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2150 				     cache->start + stripe_len - 1,
2151 				     EXTENT_UPTODATE, NULL);
2152 		if (ret)
2153 			return ret;
2154 	}
2155 
2156 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2157 		bytenr = btrfs_sb_offset(i);
2158 		ret = btrfs_rmap_block(fs_info, cache->start,
2159 				       bytenr, &logical, &nr, &stripe_len);
2160 		if (ret)
2161 			return ret;
2162 
2163 		/* Shouldn't have super stripes in sequential zones */
2164 		if (zoned && nr) {
2165 			kfree(logical);
2166 			btrfs_err(fs_info,
2167 			"zoned: block group %llu must not contain super block",
2168 				  cache->start);
2169 			return -EUCLEAN;
2170 		}
2171 
2172 		while (nr--) {
2173 			u64 len = min_t(u64, stripe_len,
2174 				cache->start + cache->length - logical[nr]);
2175 
2176 			cache->bytes_super += len;
2177 			ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2178 					     logical[nr] + len - 1,
2179 					     EXTENT_UPTODATE, NULL);
2180 			if (ret) {
2181 				kfree(logical);
2182 				return ret;
2183 			}
2184 		}
2185 
2186 		kfree(logical);
2187 	}
2188 	return 0;
2189 }
2190 
2191 static struct btrfs_block_group *btrfs_create_block_group_cache(
2192 		struct btrfs_fs_info *fs_info, u64 start)
2193 {
2194 	struct btrfs_block_group *cache;
2195 
2196 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2197 	if (!cache)
2198 		return NULL;
2199 
2200 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2201 					GFP_NOFS);
2202 	if (!cache->free_space_ctl) {
2203 		kfree(cache);
2204 		return NULL;
2205 	}
2206 
2207 	cache->start = start;
2208 
2209 	cache->fs_info = fs_info;
2210 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2211 
2212 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2213 
2214 	refcount_set(&cache->refs, 1);
2215 	spin_lock_init(&cache->lock);
2216 	init_rwsem(&cache->data_rwsem);
2217 	INIT_LIST_HEAD(&cache->list);
2218 	INIT_LIST_HEAD(&cache->cluster_list);
2219 	INIT_LIST_HEAD(&cache->bg_list);
2220 	INIT_LIST_HEAD(&cache->ro_list);
2221 	INIT_LIST_HEAD(&cache->discard_list);
2222 	INIT_LIST_HEAD(&cache->dirty_list);
2223 	INIT_LIST_HEAD(&cache->io_list);
2224 	INIT_LIST_HEAD(&cache->active_bg_list);
2225 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2226 	atomic_set(&cache->frozen, 0);
2227 	mutex_init(&cache->free_space_lock);
2228 
2229 	return cache;
2230 }
2231 
2232 /*
2233  * Iterate all chunks and verify that each of them has the corresponding block
2234  * group
2235  */
2236 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2237 {
2238 	u64 start = 0;
2239 	int ret = 0;
2240 
2241 	while (1) {
2242 		struct btrfs_chunk_map *map;
2243 		struct btrfs_block_group *bg;
2244 
2245 		/*
2246 		 * btrfs_find_chunk_map() will return the first chunk map
2247 		 * intersecting the range, so setting @length to 1 is enough to
2248 		 * get the first chunk.
2249 		 */
2250 		map = btrfs_find_chunk_map(fs_info, start, 1);
2251 		if (!map)
2252 			break;
2253 
2254 		bg = btrfs_lookup_block_group(fs_info, map->start);
2255 		if (!bg) {
2256 			btrfs_err(fs_info,
2257 	"chunk start=%llu len=%llu doesn't have corresponding block group",
2258 				     map->start, map->chunk_len);
2259 			ret = -EUCLEAN;
2260 			btrfs_free_chunk_map(map);
2261 			break;
2262 		}
2263 		if (bg->start != map->start || bg->length != map->chunk_len ||
2264 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2265 		    (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2266 			btrfs_err(fs_info,
2267 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2268 				map->start, map->chunk_len,
2269 				map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2270 				bg->start, bg->length,
2271 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2272 			ret = -EUCLEAN;
2273 			btrfs_free_chunk_map(map);
2274 			btrfs_put_block_group(bg);
2275 			break;
2276 		}
2277 		start = map->start + map->chunk_len;
2278 		btrfs_free_chunk_map(map);
2279 		btrfs_put_block_group(bg);
2280 	}
2281 	return ret;
2282 }
2283 
2284 static int read_one_block_group(struct btrfs_fs_info *info,
2285 				struct btrfs_block_group_item *bgi,
2286 				const struct btrfs_key *key,
2287 				int need_clear)
2288 {
2289 	struct btrfs_block_group *cache;
2290 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2291 	int ret;
2292 
2293 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2294 
2295 	cache = btrfs_create_block_group_cache(info, key->objectid);
2296 	if (!cache)
2297 		return -ENOMEM;
2298 
2299 	cache->length = key->offset;
2300 	cache->used = btrfs_stack_block_group_used(bgi);
2301 	cache->commit_used = cache->used;
2302 	cache->flags = btrfs_stack_block_group_flags(bgi);
2303 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2304 
2305 	set_free_space_tree_thresholds(cache);
2306 
2307 	if (need_clear) {
2308 		/*
2309 		 * When we mount with old space cache, we need to
2310 		 * set BTRFS_DC_CLEAR and set dirty flag.
2311 		 *
2312 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2313 		 *    truncate the old free space cache inode and
2314 		 *    setup a new one.
2315 		 * b) Setting 'dirty flag' makes sure that we flush
2316 		 *    the new space cache info onto disk.
2317 		 */
2318 		if (btrfs_test_opt(info, SPACE_CACHE))
2319 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2320 	}
2321 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2322 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2323 			btrfs_err(info,
2324 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2325 				  cache->start);
2326 			ret = -EINVAL;
2327 			goto error;
2328 	}
2329 
2330 	ret = btrfs_load_block_group_zone_info(cache, false);
2331 	if (ret) {
2332 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2333 			  cache->start);
2334 		goto error;
2335 	}
2336 
2337 	/*
2338 	 * We need to exclude the super stripes now so that the space info has
2339 	 * super bytes accounted for, otherwise we'll think we have more space
2340 	 * than we actually do.
2341 	 */
2342 	ret = exclude_super_stripes(cache);
2343 	if (ret) {
2344 		/* We may have excluded something, so call this just in case. */
2345 		btrfs_free_excluded_extents(cache);
2346 		goto error;
2347 	}
2348 
2349 	/*
2350 	 * For zoned filesystem, space after the allocation offset is the only
2351 	 * free space for a block group. So, we don't need any caching work.
2352 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2353 	 * zone_unusable space.
2354 	 *
2355 	 * For regular filesystem, check for two cases, either we are full, and
2356 	 * therefore don't need to bother with the caching work since we won't
2357 	 * find any space, or we are empty, and we can just add all the space
2358 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2359 	 * in the full case.
2360 	 */
2361 	if (btrfs_is_zoned(info)) {
2362 		btrfs_calc_zone_unusable(cache);
2363 		/* Should not have any excluded extents. Just in case, though. */
2364 		btrfs_free_excluded_extents(cache);
2365 	} else if (cache->length == cache->used) {
2366 		cache->cached = BTRFS_CACHE_FINISHED;
2367 		btrfs_free_excluded_extents(cache);
2368 	} else if (cache->used == 0) {
2369 		cache->cached = BTRFS_CACHE_FINISHED;
2370 		ret = btrfs_add_new_free_space(cache, cache->start,
2371 					       cache->start + cache->length, NULL);
2372 		btrfs_free_excluded_extents(cache);
2373 		if (ret)
2374 			goto error;
2375 	}
2376 
2377 	ret = btrfs_add_block_group_cache(info, cache);
2378 	if (ret) {
2379 		btrfs_remove_free_space_cache(cache);
2380 		goto error;
2381 	}
2382 	trace_btrfs_add_block_group(info, cache, 0);
2383 	btrfs_add_bg_to_space_info(info, cache);
2384 
2385 	set_avail_alloc_bits(info, cache->flags);
2386 	if (btrfs_chunk_writeable(info, cache->start)) {
2387 		if (cache->used == 0) {
2388 			ASSERT(list_empty(&cache->bg_list));
2389 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2390 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2391 			else
2392 				btrfs_mark_bg_unused(cache);
2393 		}
2394 	} else {
2395 		inc_block_group_ro(cache, 1);
2396 	}
2397 
2398 	return 0;
2399 error:
2400 	btrfs_put_block_group(cache);
2401 	return ret;
2402 }
2403 
2404 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2405 {
2406 	struct rb_node *node;
2407 	int ret = 0;
2408 
2409 	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2410 		struct btrfs_chunk_map *map;
2411 		struct btrfs_block_group *bg;
2412 
2413 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2414 		bg = btrfs_create_block_group_cache(fs_info, map->start);
2415 		if (!bg) {
2416 			ret = -ENOMEM;
2417 			break;
2418 		}
2419 
2420 		/* Fill dummy cache as FULL */
2421 		bg->length = map->chunk_len;
2422 		bg->flags = map->type;
2423 		bg->cached = BTRFS_CACHE_FINISHED;
2424 		bg->used = map->chunk_len;
2425 		bg->flags = map->type;
2426 		ret = btrfs_add_block_group_cache(fs_info, bg);
2427 		/*
2428 		 * We may have some valid block group cache added already, in
2429 		 * that case we skip to the next one.
2430 		 */
2431 		if (ret == -EEXIST) {
2432 			ret = 0;
2433 			btrfs_put_block_group(bg);
2434 			continue;
2435 		}
2436 
2437 		if (ret) {
2438 			btrfs_remove_free_space_cache(bg);
2439 			btrfs_put_block_group(bg);
2440 			break;
2441 		}
2442 
2443 		btrfs_add_bg_to_space_info(fs_info, bg);
2444 
2445 		set_avail_alloc_bits(fs_info, bg->flags);
2446 	}
2447 	if (!ret)
2448 		btrfs_init_global_block_rsv(fs_info);
2449 	return ret;
2450 }
2451 
2452 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2453 {
2454 	struct btrfs_root *root = btrfs_block_group_root(info);
2455 	struct btrfs_path *path;
2456 	int ret;
2457 	struct btrfs_block_group *cache;
2458 	struct btrfs_space_info *space_info;
2459 	struct btrfs_key key;
2460 	int need_clear = 0;
2461 	u64 cache_gen;
2462 
2463 	/*
2464 	 * Either no extent root (with ibadroots rescue option) or we have
2465 	 * unsupported RO options. The fs can never be mounted read-write, so no
2466 	 * need to waste time searching block group items.
2467 	 *
2468 	 * This also allows new extent tree related changes to be RO compat,
2469 	 * no need for a full incompat flag.
2470 	 */
2471 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2472 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2473 		return fill_dummy_bgs(info);
2474 
2475 	key.objectid = 0;
2476 	key.offset = 0;
2477 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2478 	path = btrfs_alloc_path();
2479 	if (!path)
2480 		return -ENOMEM;
2481 
2482 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2483 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2484 	    btrfs_super_generation(info->super_copy) != cache_gen)
2485 		need_clear = 1;
2486 	if (btrfs_test_opt(info, CLEAR_CACHE))
2487 		need_clear = 1;
2488 
2489 	while (1) {
2490 		struct btrfs_block_group_item bgi;
2491 		struct extent_buffer *leaf;
2492 		int slot;
2493 
2494 		ret = find_first_block_group(info, path, &key);
2495 		if (ret > 0)
2496 			break;
2497 		if (ret != 0)
2498 			goto error;
2499 
2500 		leaf = path->nodes[0];
2501 		slot = path->slots[0];
2502 
2503 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2504 				   sizeof(bgi));
2505 
2506 		btrfs_item_key_to_cpu(leaf, &key, slot);
2507 		btrfs_release_path(path);
2508 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2509 		if (ret < 0)
2510 			goto error;
2511 		key.objectid += key.offset;
2512 		key.offset = 0;
2513 	}
2514 	btrfs_release_path(path);
2515 
2516 	list_for_each_entry(space_info, &info->space_info, list) {
2517 		int i;
2518 
2519 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2520 			if (list_empty(&space_info->block_groups[i]))
2521 				continue;
2522 			cache = list_first_entry(&space_info->block_groups[i],
2523 						 struct btrfs_block_group,
2524 						 list);
2525 			btrfs_sysfs_add_block_group_type(cache);
2526 		}
2527 
2528 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2529 		      (BTRFS_BLOCK_GROUP_RAID10 |
2530 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2531 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2532 		       BTRFS_BLOCK_GROUP_DUP)))
2533 			continue;
2534 		/*
2535 		 * Avoid allocating from un-mirrored block group if there are
2536 		 * mirrored block groups.
2537 		 */
2538 		list_for_each_entry(cache,
2539 				&space_info->block_groups[BTRFS_RAID_RAID0],
2540 				list)
2541 			inc_block_group_ro(cache, 1);
2542 		list_for_each_entry(cache,
2543 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2544 				list)
2545 			inc_block_group_ro(cache, 1);
2546 	}
2547 
2548 	btrfs_init_global_block_rsv(info);
2549 	ret = check_chunk_block_group_mappings(info);
2550 error:
2551 	btrfs_free_path(path);
2552 	/*
2553 	 * We've hit some error while reading the extent tree, and have
2554 	 * rescue=ibadroots mount option.
2555 	 * Try to fill the tree using dummy block groups so that the user can
2556 	 * continue to mount and grab their data.
2557 	 */
2558 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2559 		ret = fill_dummy_bgs(info);
2560 	return ret;
2561 }
2562 
2563 /*
2564  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2565  * allocation.
2566  *
2567  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2568  * phases.
2569  */
2570 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2571 				   struct btrfs_block_group *block_group)
2572 {
2573 	struct btrfs_fs_info *fs_info = trans->fs_info;
2574 	struct btrfs_block_group_item bgi;
2575 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2576 	struct btrfs_key key;
2577 	u64 old_commit_used;
2578 	int ret;
2579 
2580 	spin_lock(&block_group->lock);
2581 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2582 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2583 						   block_group->global_root_id);
2584 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2585 	old_commit_used = block_group->commit_used;
2586 	block_group->commit_used = block_group->used;
2587 	key.objectid = block_group->start;
2588 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2589 	key.offset = block_group->length;
2590 	spin_unlock(&block_group->lock);
2591 
2592 	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2593 	if (ret < 0) {
2594 		spin_lock(&block_group->lock);
2595 		block_group->commit_used = old_commit_used;
2596 		spin_unlock(&block_group->lock);
2597 	}
2598 
2599 	return ret;
2600 }
2601 
2602 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2603 			    struct btrfs_device *device, u64 chunk_offset,
2604 			    u64 start, u64 num_bytes)
2605 {
2606 	struct btrfs_fs_info *fs_info = device->fs_info;
2607 	struct btrfs_root *root = fs_info->dev_root;
2608 	struct btrfs_path *path;
2609 	struct btrfs_dev_extent *extent;
2610 	struct extent_buffer *leaf;
2611 	struct btrfs_key key;
2612 	int ret;
2613 
2614 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2615 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2616 	path = btrfs_alloc_path();
2617 	if (!path)
2618 		return -ENOMEM;
2619 
2620 	key.objectid = device->devid;
2621 	key.type = BTRFS_DEV_EXTENT_KEY;
2622 	key.offset = start;
2623 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2624 	if (ret)
2625 		goto out;
2626 
2627 	leaf = path->nodes[0];
2628 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2629 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2630 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2631 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2632 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2633 
2634 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2635 	btrfs_mark_buffer_dirty(trans, leaf);
2636 out:
2637 	btrfs_free_path(path);
2638 	return ret;
2639 }
2640 
2641 /*
2642  * This function belongs to phase 2.
2643  *
2644  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2645  * phases.
2646  */
2647 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2648 				   u64 chunk_offset, u64 chunk_size)
2649 {
2650 	struct btrfs_fs_info *fs_info = trans->fs_info;
2651 	struct btrfs_device *device;
2652 	struct btrfs_chunk_map *map;
2653 	u64 dev_offset;
2654 	int i;
2655 	int ret = 0;
2656 
2657 	map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2658 	if (IS_ERR(map))
2659 		return PTR_ERR(map);
2660 
2661 	/*
2662 	 * Take the device list mutex to prevent races with the final phase of
2663 	 * a device replace operation that replaces the device object associated
2664 	 * with the map's stripes, because the device object's id can change
2665 	 * at any time during that final phase of the device replace operation
2666 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2667 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2668 	 * resulting in persisting a device extent item with such ID.
2669 	 */
2670 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2671 	for (i = 0; i < map->num_stripes; i++) {
2672 		device = map->stripes[i].dev;
2673 		dev_offset = map->stripes[i].physical;
2674 
2675 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2676 					map->stripe_size);
2677 		if (ret)
2678 			break;
2679 	}
2680 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2681 
2682 	btrfs_free_chunk_map(map);
2683 	return ret;
2684 }
2685 
2686 /*
2687  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2688  * chunk allocation.
2689  *
2690  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2691  * phases.
2692  */
2693 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2694 {
2695 	struct btrfs_fs_info *fs_info = trans->fs_info;
2696 	struct btrfs_block_group *block_group;
2697 	int ret = 0;
2698 
2699 	while (!list_empty(&trans->new_bgs)) {
2700 		int index;
2701 
2702 		block_group = list_first_entry(&trans->new_bgs,
2703 					       struct btrfs_block_group,
2704 					       bg_list);
2705 		if (ret)
2706 			goto next;
2707 
2708 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2709 
2710 		ret = insert_block_group_item(trans, block_group);
2711 		if (ret)
2712 			btrfs_abort_transaction(trans, ret);
2713 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2714 			      &block_group->runtime_flags)) {
2715 			mutex_lock(&fs_info->chunk_mutex);
2716 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2717 			mutex_unlock(&fs_info->chunk_mutex);
2718 			if (ret)
2719 				btrfs_abort_transaction(trans, ret);
2720 		}
2721 		ret = insert_dev_extents(trans, block_group->start,
2722 					 block_group->length);
2723 		if (ret)
2724 			btrfs_abort_transaction(trans, ret);
2725 		add_block_group_free_space(trans, block_group);
2726 
2727 		/*
2728 		 * If we restriped during balance, we may have added a new raid
2729 		 * type, so now add the sysfs entries when it is safe to do so.
2730 		 * We don't have to worry about locking here as it's handled in
2731 		 * btrfs_sysfs_add_block_group_type.
2732 		 */
2733 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2734 			btrfs_sysfs_add_block_group_type(block_group);
2735 
2736 		/* Already aborted the transaction if it failed. */
2737 next:
2738 		btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2739 		list_del_init(&block_group->bg_list);
2740 		clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2741 
2742 		/*
2743 		 * If the block group is still unused, add it to the list of
2744 		 * unused block groups. The block group may have been created in
2745 		 * order to satisfy a space reservation, in which case the
2746 		 * extent allocation only happens later. But often we don't
2747 		 * actually need to allocate space that we previously reserved,
2748 		 * so the block group may become unused for a long time. For
2749 		 * example for metadata we generally reserve space for a worst
2750 		 * possible scenario, but then don't end up allocating all that
2751 		 * space or none at all (due to no need to COW, extent buffers
2752 		 * were already COWed in the current transaction and still
2753 		 * unwritten, tree heights lower than the maximum possible
2754 		 * height, etc). For data we generally reserve the axact amount
2755 		 * of space we are going to allocate later, the exception is
2756 		 * when using compression, as we must reserve space based on the
2757 		 * uncompressed data size, because the compression is only done
2758 		 * when writeback triggered and we don't know how much space we
2759 		 * are actually going to need, so we reserve the uncompressed
2760 		 * size because the data may be uncompressible in the worst case.
2761 		 */
2762 		if (ret == 0) {
2763 			bool used;
2764 
2765 			spin_lock(&block_group->lock);
2766 			used = btrfs_is_block_group_used(block_group);
2767 			spin_unlock(&block_group->lock);
2768 
2769 			if (!used)
2770 				btrfs_mark_bg_unused(block_group);
2771 		}
2772 	}
2773 	btrfs_trans_release_chunk_metadata(trans);
2774 }
2775 
2776 /*
2777  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2778  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2779  */
2780 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2781 {
2782 	u64 div = SZ_1G;
2783 	u64 index;
2784 
2785 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2786 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2787 
2788 	/* If we have a smaller fs index based on 128MiB. */
2789 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2790 		div = SZ_128M;
2791 
2792 	offset = div64_u64(offset, div);
2793 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2794 	return index;
2795 }
2796 
2797 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2798 						 u64 type,
2799 						 u64 chunk_offset, u64 size)
2800 {
2801 	struct btrfs_fs_info *fs_info = trans->fs_info;
2802 	struct btrfs_block_group *cache;
2803 	int ret;
2804 
2805 	btrfs_set_log_full_commit(trans);
2806 
2807 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2808 	if (!cache)
2809 		return ERR_PTR(-ENOMEM);
2810 
2811 	/*
2812 	 * Mark it as new before adding it to the rbtree of block groups or any
2813 	 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2814 	 * before the new flag is set.
2815 	 */
2816 	set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2817 
2818 	cache->length = size;
2819 	set_free_space_tree_thresholds(cache);
2820 	cache->flags = type;
2821 	cache->cached = BTRFS_CACHE_FINISHED;
2822 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2823 
2824 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2825 		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2826 
2827 	ret = btrfs_load_block_group_zone_info(cache, true);
2828 	if (ret) {
2829 		btrfs_put_block_group(cache);
2830 		return ERR_PTR(ret);
2831 	}
2832 
2833 	ret = exclude_super_stripes(cache);
2834 	if (ret) {
2835 		/* We may have excluded something, so call this just in case */
2836 		btrfs_free_excluded_extents(cache);
2837 		btrfs_put_block_group(cache);
2838 		return ERR_PTR(ret);
2839 	}
2840 
2841 	ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2842 	btrfs_free_excluded_extents(cache);
2843 	if (ret) {
2844 		btrfs_put_block_group(cache);
2845 		return ERR_PTR(ret);
2846 	}
2847 
2848 	/*
2849 	 * Ensure the corresponding space_info object is created and
2850 	 * assigned to our block group. We want our bg to be added to the rbtree
2851 	 * with its ->space_info set.
2852 	 */
2853 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2854 	ASSERT(cache->space_info);
2855 
2856 	ret = btrfs_add_block_group_cache(fs_info, cache);
2857 	if (ret) {
2858 		btrfs_remove_free_space_cache(cache);
2859 		btrfs_put_block_group(cache);
2860 		return ERR_PTR(ret);
2861 	}
2862 
2863 	/*
2864 	 * Now that our block group has its ->space_info set and is inserted in
2865 	 * the rbtree, update the space info's counters.
2866 	 */
2867 	trace_btrfs_add_block_group(fs_info, cache, 1);
2868 	btrfs_add_bg_to_space_info(fs_info, cache);
2869 	btrfs_update_global_block_rsv(fs_info);
2870 
2871 #ifdef CONFIG_BTRFS_DEBUG
2872 	if (btrfs_should_fragment_free_space(cache)) {
2873 		cache->space_info->bytes_used += size >> 1;
2874 		fragment_free_space(cache);
2875 	}
2876 #endif
2877 
2878 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2879 	btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
2880 
2881 	set_avail_alloc_bits(fs_info, type);
2882 	return cache;
2883 }
2884 
2885 /*
2886  * Mark one block group RO, can be called several times for the same block
2887  * group.
2888  *
2889  * @cache:		the destination block group
2890  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2891  * 			ensure we still have some free space after marking this
2892  * 			block group RO.
2893  */
2894 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2895 			     bool do_chunk_alloc)
2896 {
2897 	struct btrfs_fs_info *fs_info = cache->fs_info;
2898 	struct btrfs_trans_handle *trans;
2899 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2900 	u64 alloc_flags;
2901 	int ret;
2902 	bool dirty_bg_running;
2903 
2904 	/*
2905 	 * This can only happen when we are doing read-only scrub on read-only
2906 	 * mount.
2907 	 * In that case we should not start a new transaction on read-only fs.
2908 	 * Thus here we skip all chunk allocations.
2909 	 */
2910 	if (sb_rdonly(fs_info->sb)) {
2911 		mutex_lock(&fs_info->ro_block_group_mutex);
2912 		ret = inc_block_group_ro(cache, 0);
2913 		mutex_unlock(&fs_info->ro_block_group_mutex);
2914 		return ret;
2915 	}
2916 
2917 	do {
2918 		trans = btrfs_join_transaction(root);
2919 		if (IS_ERR(trans))
2920 			return PTR_ERR(trans);
2921 
2922 		dirty_bg_running = false;
2923 
2924 		/*
2925 		 * We're not allowed to set block groups readonly after the dirty
2926 		 * block group cache has started writing.  If it already started,
2927 		 * back off and let this transaction commit.
2928 		 */
2929 		mutex_lock(&fs_info->ro_block_group_mutex);
2930 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2931 			u64 transid = trans->transid;
2932 
2933 			mutex_unlock(&fs_info->ro_block_group_mutex);
2934 			btrfs_end_transaction(trans);
2935 
2936 			ret = btrfs_wait_for_commit(fs_info, transid);
2937 			if (ret)
2938 				return ret;
2939 			dirty_bg_running = true;
2940 		}
2941 	} while (dirty_bg_running);
2942 
2943 	if (do_chunk_alloc) {
2944 		/*
2945 		 * If we are changing raid levels, try to allocate a
2946 		 * corresponding block group with the new raid level.
2947 		 */
2948 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2949 		if (alloc_flags != cache->flags) {
2950 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2951 						CHUNK_ALLOC_FORCE);
2952 			/*
2953 			 * ENOSPC is allowed here, we may have enough space
2954 			 * already allocated at the new raid level to carry on
2955 			 */
2956 			if (ret == -ENOSPC)
2957 				ret = 0;
2958 			if (ret < 0)
2959 				goto out;
2960 		}
2961 	}
2962 
2963 	ret = inc_block_group_ro(cache, 0);
2964 	if (!ret)
2965 		goto out;
2966 	if (ret == -ETXTBSY)
2967 		goto unlock_out;
2968 
2969 	/*
2970 	 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
2971 	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
2972 	 * we still want to try our best to mark the block group read-only.
2973 	 */
2974 	if (!do_chunk_alloc && ret == -ENOSPC &&
2975 	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2976 		goto unlock_out;
2977 
2978 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2979 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2980 	if (ret < 0)
2981 		goto out;
2982 	/*
2983 	 * We have allocated a new chunk. We also need to activate that chunk to
2984 	 * grant metadata tickets for zoned filesystem.
2985 	 */
2986 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2987 	if (ret < 0)
2988 		goto out;
2989 
2990 	ret = inc_block_group_ro(cache, 0);
2991 	if (ret == -ETXTBSY)
2992 		goto unlock_out;
2993 out:
2994 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2995 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2996 		mutex_lock(&fs_info->chunk_mutex);
2997 		check_system_chunk(trans, alloc_flags);
2998 		mutex_unlock(&fs_info->chunk_mutex);
2999 	}
3000 unlock_out:
3001 	mutex_unlock(&fs_info->ro_block_group_mutex);
3002 
3003 	btrfs_end_transaction(trans);
3004 	return ret;
3005 }
3006 
3007 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3008 {
3009 	struct btrfs_space_info *sinfo = cache->space_info;
3010 	u64 num_bytes;
3011 
3012 	BUG_ON(!cache->ro);
3013 
3014 	spin_lock(&sinfo->lock);
3015 	spin_lock(&cache->lock);
3016 	if (!--cache->ro) {
3017 		if (btrfs_is_zoned(cache->fs_info)) {
3018 			/* Migrate zone_unusable bytes back */
3019 			cache->zone_unusable =
3020 				(cache->alloc_offset - cache->used) +
3021 				(cache->length - cache->zone_capacity);
3022 			sinfo->bytes_zone_unusable += cache->zone_unusable;
3023 			sinfo->bytes_readonly -= cache->zone_unusable;
3024 		}
3025 		num_bytes = cache->length - cache->reserved -
3026 			    cache->pinned - cache->bytes_super -
3027 			    cache->zone_unusable - cache->used;
3028 		sinfo->bytes_readonly -= num_bytes;
3029 		list_del_init(&cache->ro_list);
3030 	}
3031 	spin_unlock(&cache->lock);
3032 	spin_unlock(&sinfo->lock);
3033 }
3034 
3035 static int update_block_group_item(struct btrfs_trans_handle *trans,
3036 				   struct btrfs_path *path,
3037 				   struct btrfs_block_group *cache)
3038 {
3039 	struct btrfs_fs_info *fs_info = trans->fs_info;
3040 	int ret;
3041 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
3042 	unsigned long bi;
3043 	struct extent_buffer *leaf;
3044 	struct btrfs_block_group_item bgi;
3045 	struct btrfs_key key;
3046 	u64 old_commit_used;
3047 	u64 used;
3048 
3049 	/*
3050 	 * Block group items update can be triggered out of commit transaction
3051 	 * critical section, thus we need a consistent view of used bytes.
3052 	 * We cannot use cache->used directly outside of the spin lock, as it
3053 	 * may be changed.
3054 	 */
3055 	spin_lock(&cache->lock);
3056 	old_commit_used = cache->commit_used;
3057 	used = cache->used;
3058 	/* No change in used bytes, can safely skip it. */
3059 	if (cache->commit_used == used) {
3060 		spin_unlock(&cache->lock);
3061 		return 0;
3062 	}
3063 	cache->commit_used = used;
3064 	spin_unlock(&cache->lock);
3065 
3066 	key.objectid = cache->start;
3067 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3068 	key.offset = cache->length;
3069 
3070 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3071 	if (ret) {
3072 		if (ret > 0)
3073 			ret = -ENOENT;
3074 		goto fail;
3075 	}
3076 
3077 	leaf = path->nodes[0];
3078 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3079 	btrfs_set_stack_block_group_used(&bgi, used);
3080 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
3081 						   cache->global_root_id);
3082 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3083 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3084 	btrfs_mark_buffer_dirty(trans, leaf);
3085 fail:
3086 	btrfs_release_path(path);
3087 	/*
3088 	 * We didn't update the block group item, need to revert commit_used
3089 	 * unless the block group item didn't exist yet - this is to prevent a
3090 	 * race with a concurrent insertion of the block group item, with
3091 	 * insert_block_group_item(), that happened just after we attempted to
3092 	 * update. In that case we would reset commit_used to 0 just after the
3093 	 * insertion set it to a value greater than 0 - if the block group later
3094 	 * becomes with 0 used bytes, we would incorrectly skip its update.
3095 	 */
3096 	if (ret < 0 && ret != -ENOENT) {
3097 		spin_lock(&cache->lock);
3098 		cache->commit_used = old_commit_used;
3099 		spin_unlock(&cache->lock);
3100 	}
3101 	return ret;
3102 
3103 }
3104 
3105 static int cache_save_setup(struct btrfs_block_group *block_group,
3106 			    struct btrfs_trans_handle *trans,
3107 			    struct btrfs_path *path)
3108 {
3109 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3110 	struct inode *inode = NULL;
3111 	struct extent_changeset *data_reserved = NULL;
3112 	u64 alloc_hint = 0;
3113 	int dcs = BTRFS_DC_ERROR;
3114 	u64 cache_size = 0;
3115 	int retries = 0;
3116 	int ret = 0;
3117 
3118 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3119 		return 0;
3120 
3121 	/*
3122 	 * If this block group is smaller than 100 megs don't bother caching the
3123 	 * block group.
3124 	 */
3125 	if (block_group->length < (100 * SZ_1M)) {
3126 		spin_lock(&block_group->lock);
3127 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3128 		spin_unlock(&block_group->lock);
3129 		return 0;
3130 	}
3131 
3132 	if (TRANS_ABORTED(trans))
3133 		return 0;
3134 again:
3135 	inode = lookup_free_space_inode(block_group, path);
3136 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3137 		ret = PTR_ERR(inode);
3138 		btrfs_release_path(path);
3139 		goto out;
3140 	}
3141 
3142 	if (IS_ERR(inode)) {
3143 		BUG_ON(retries);
3144 		retries++;
3145 
3146 		if (block_group->ro)
3147 			goto out_free;
3148 
3149 		ret = create_free_space_inode(trans, block_group, path);
3150 		if (ret)
3151 			goto out_free;
3152 		goto again;
3153 	}
3154 
3155 	/*
3156 	 * We want to set the generation to 0, that way if anything goes wrong
3157 	 * from here on out we know not to trust this cache when we load up next
3158 	 * time.
3159 	 */
3160 	BTRFS_I(inode)->generation = 0;
3161 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
3162 	if (ret) {
3163 		/*
3164 		 * So theoretically we could recover from this, simply set the
3165 		 * super cache generation to 0 so we know to invalidate the
3166 		 * cache, but then we'd have to keep track of the block groups
3167 		 * that fail this way so we know we _have_ to reset this cache
3168 		 * before the next commit or risk reading stale cache.  So to
3169 		 * limit our exposure to horrible edge cases lets just abort the
3170 		 * transaction, this only happens in really bad situations
3171 		 * anyway.
3172 		 */
3173 		btrfs_abort_transaction(trans, ret);
3174 		goto out_put;
3175 	}
3176 	WARN_ON(ret);
3177 
3178 	/* We've already setup this transaction, go ahead and exit */
3179 	if (block_group->cache_generation == trans->transid &&
3180 	    i_size_read(inode)) {
3181 		dcs = BTRFS_DC_SETUP;
3182 		goto out_put;
3183 	}
3184 
3185 	if (i_size_read(inode) > 0) {
3186 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3187 					&fs_info->global_block_rsv);
3188 		if (ret)
3189 			goto out_put;
3190 
3191 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3192 		if (ret)
3193 			goto out_put;
3194 	}
3195 
3196 	spin_lock(&block_group->lock);
3197 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3198 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3199 		/*
3200 		 * don't bother trying to write stuff out _if_
3201 		 * a) we're not cached,
3202 		 * b) we're with nospace_cache mount option,
3203 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3204 		 */
3205 		dcs = BTRFS_DC_WRITTEN;
3206 		spin_unlock(&block_group->lock);
3207 		goto out_put;
3208 	}
3209 	spin_unlock(&block_group->lock);
3210 
3211 	/*
3212 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3213 	 * skip doing the setup, we've already cleared the cache so we're safe.
3214 	 */
3215 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3216 		ret = -ENOSPC;
3217 		goto out_put;
3218 	}
3219 
3220 	/*
3221 	 * Try to preallocate enough space based on how big the block group is.
3222 	 * Keep in mind this has to include any pinned space which could end up
3223 	 * taking up quite a bit since it's not folded into the other space
3224 	 * cache.
3225 	 */
3226 	cache_size = div_u64(block_group->length, SZ_256M);
3227 	if (!cache_size)
3228 		cache_size = 1;
3229 
3230 	cache_size *= 16;
3231 	cache_size *= fs_info->sectorsize;
3232 
3233 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3234 					  cache_size, false);
3235 	if (ret)
3236 		goto out_put;
3237 
3238 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3239 					      cache_size, cache_size,
3240 					      &alloc_hint);
3241 	/*
3242 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3243 	 * of metadata or split extents when writing the cache out, which means
3244 	 * we can enospc if we are heavily fragmented in addition to just normal
3245 	 * out of space conditions.  So if we hit this just skip setting up any
3246 	 * other block groups for this transaction, maybe we'll unpin enough
3247 	 * space the next time around.
3248 	 */
3249 	if (!ret)
3250 		dcs = BTRFS_DC_SETUP;
3251 	else if (ret == -ENOSPC)
3252 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3253 
3254 out_put:
3255 	iput(inode);
3256 out_free:
3257 	btrfs_release_path(path);
3258 out:
3259 	spin_lock(&block_group->lock);
3260 	if (!ret && dcs == BTRFS_DC_SETUP)
3261 		block_group->cache_generation = trans->transid;
3262 	block_group->disk_cache_state = dcs;
3263 	spin_unlock(&block_group->lock);
3264 
3265 	extent_changeset_free(data_reserved);
3266 	return ret;
3267 }
3268 
3269 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3270 {
3271 	struct btrfs_fs_info *fs_info = trans->fs_info;
3272 	struct btrfs_block_group *cache, *tmp;
3273 	struct btrfs_transaction *cur_trans = trans->transaction;
3274 	struct btrfs_path *path;
3275 
3276 	if (list_empty(&cur_trans->dirty_bgs) ||
3277 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3278 		return 0;
3279 
3280 	path = btrfs_alloc_path();
3281 	if (!path)
3282 		return -ENOMEM;
3283 
3284 	/* Could add new block groups, use _safe just in case */
3285 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3286 				 dirty_list) {
3287 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3288 			cache_save_setup(cache, trans, path);
3289 	}
3290 
3291 	btrfs_free_path(path);
3292 	return 0;
3293 }
3294 
3295 /*
3296  * Transaction commit does final block group cache writeback during a critical
3297  * section where nothing is allowed to change the FS.  This is required in
3298  * order for the cache to actually match the block group, but can introduce a
3299  * lot of latency into the commit.
3300  *
3301  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3302  * There's a chance we'll have to redo some of it if the block group changes
3303  * again during the commit, but it greatly reduces the commit latency by
3304  * getting rid of the easy block groups while we're still allowing others to
3305  * join the commit.
3306  */
3307 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3308 {
3309 	struct btrfs_fs_info *fs_info = trans->fs_info;
3310 	struct btrfs_block_group *cache;
3311 	struct btrfs_transaction *cur_trans = trans->transaction;
3312 	int ret = 0;
3313 	int should_put;
3314 	struct btrfs_path *path = NULL;
3315 	LIST_HEAD(dirty);
3316 	struct list_head *io = &cur_trans->io_bgs;
3317 	int loops = 0;
3318 
3319 	spin_lock(&cur_trans->dirty_bgs_lock);
3320 	if (list_empty(&cur_trans->dirty_bgs)) {
3321 		spin_unlock(&cur_trans->dirty_bgs_lock);
3322 		return 0;
3323 	}
3324 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3325 	spin_unlock(&cur_trans->dirty_bgs_lock);
3326 
3327 again:
3328 	/* Make sure all the block groups on our dirty list actually exist */
3329 	btrfs_create_pending_block_groups(trans);
3330 
3331 	if (!path) {
3332 		path = btrfs_alloc_path();
3333 		if (!path) {
3334 			ret = -ENOMEM;
3335 			goto out;
3336 		}
3337 	}
3338 
3339 	/*
3340 	 * cache_write_mutex is here only to save us from balance or automatic
3341 	 * removal of empty block groups deleting this block group while we are
3342 	 * writing out the cache
3343 	 */
3344 	mutex_lock(&trans->transaction->cache_write_mutex);
3345 	while (!list_empty(&dirty)) {
3346 		bool drop_reserve = true;
3347 
3348 		cache = list_first_entry(&dirty, struct btrfs_block_group,
3349 					 dirty_list);
3350 		/*
3351 		 * This can happen if something re-dirties a block group that
3352 		 * is already under IO.  Just wait for it to finish and then do
3353 		 * it all again
3354 		 */
3355 		if (!list_empty(&cache->io_list)) {
3356 			list_del_init(&cache->io_list);
3357 			btrfs_wait_cache_io(trans, cache, path);
3358 			btrfs_put_block_group(cache);
3359 		}
3360 
3361 
3362 		/*
3363 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3364 		 * it should update the cache_state.  Don't delete until after
3365 		 * we wait.
3366 		 *
3367 		 * Since we're not running in the commit critical section
3368 		 * we need the dirty_bgs_lock to protect from update_block_group
3369 		 */
3370 		spin_lock(&cur_trans->dirty_bgs_lock);
3371 		list_del_init(&cache->dirty_list);
3372 		spin_unlock(&cur_trans->dirty_bgs_lock);
3373 
3374 		should_put = 1;
3375 
3376 		cache_save_setup(cache, trans, path);
3377 
3378 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3379 			cache->io_ctl.inode = NULL;
3380 			ret = btrfs_write_out_cache(trans, cache, path);
3381 			if (ret == 0 && cache->io_ctl.inode) {
3382 				should_put = 0;
3383 
3384 				/*
3385 				 * The cache_write_mutex is protecting the
3386 				 * io_list, also refer to the definition of
3387 				 * btrfs_transaction::io_bgs for more details
3388 				 */
3389 				list_add_tail(&cache->io_list, io);
3390 			} else {
3391 				/*
3392 				 * If we failed to write the cache, the
3393 				 * generation will be bad and life goes on
3394 				 */
3395 				ret = 0;
3396 			}
3397 		}
3398 		if (!ret) {
3399 			ret = update_block_group_item(trans, path, cache);
3400 			/*
3401 			 * Our block group might still be attached to the list
3402 			 * of new block groups in the transaction handle of some
3403 			 * other task (struct btrfs_trans_handle->new_bgs). This
3404 			 * means its block group item isn't yet in the extent
3405 			 * tree. If this happens ignore the error, as we will
3406 			 * try again later in the critical section of the
3407 			 * transaction commit.
3408 			 */
3409 			if (ret == -ENOENT) {
3410 				ret = 0;
3411 				spin_lock(&cur_trans->dirty_bgs_lock);
3412 				if (list_empty(&cache->dirty_list)) {
3413 					list_add_tail(&cache->dirty_list,
3414 						      &cur_trans->dirty_bgs);
3415 					btrfs_get_block_group(cache);
3416 					drop_reserve = false;
3417 				}
3418 				spin_unlock(&cur_trans->dirty_bgs_lock);
3419 			} else if (ret) {
3420 				btrfs_abort_transaction(trans, ret);
3421 			}
3422 		}
3423 
3424 		/* If it's not on the io list, we need to put the block group */
3425 		if (should_put)
3426 			btrfs_put_block_group(cache);
3427 		if (drop_reserve)
3428 			btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3429 		/*
3430 		 * Avoid blocking other tasks for too long. It might even save
3431 		 * us from writing caches for block groups that are going to be
3432 		 * removed.
3433 		 */
3434 		mutex_unlock(&trans->transaction->cache_write_mutex);
3435 		if (ret)
3436 			goto out;
3437 		mutex_lock(&trans->transaction->cache_write_mutex);
3438 	}
3439 	mutex_unlock(&trans->transaction->cache_write_mutex);
3440 
3441 	/*
3442 	 * Go through delayed refs for all the stuff we've just kicked off
3443 	 * and then loop back (just once)
3444 	 */
3445 	if (!ret)
3446 		ret = btrfs_run_delayed_refs(trans, 0);
3447 	if (!ret && loops == 0) {
3448 		loops++;
3449 		spin_lock(&cur_trans->dirty_bgs_lock);
3450 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3451 		/*
3452 		 * dirty_bgs_lock protects us from concurrent block group
3453 		 * deletes too (not just cache_write_mutex).
3454 		 */
3455 		if (!list_empty(&dirty)) {
3456 			spin_unlock(&cur_trans->dirty_bgs_lock);
3457 			goto again;
3458 		}
3459 		spin_unlock(&cur_trans->dirty_bgs_lock);
3460 	}
3461 out:
3462 	if (ret < 0) {
3463 		spin_lock(&cur_trans->dirty_bgs_lock);
3464 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3465 		spin_unlock(&cur_trans->dirty_bgs_lock);
3466 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3467 	}
3468 
3469 	btrfs_free_path(path);
3470 	return ret;
3471 }
3472 
3473 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3474 {
3475 	struct btrfs_fs_info *fs_info = trans->fs_info;
3476 	struct btrfs_block_group *cache;
3477 	struct btrfs_transaction *cur_trans = trans->transaction;
3478 	int ret = 0;
3479 	int should_put;
3480 	struct btrfs_path *path;
3481 	struct list_head *io = &cur_trans->io_bgs;
3482 
3483 	path = btrfs_alloc_path();
3484 	if (!path)
3485 		return -ENOMEM;
3486 
3487 	/*
3488 	 * Even though we are in the critical section of the transaction commit,
3489 	 * we can still have concurrent tasks adding elements to this
3490 	 * transaction's list of dirty block groups. These tasks correspond to
3491 	 * endio free space workers started when writeback finishes for a
3492 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3493 	 * allocate new block groups as a result of COWing nodes of the root
3494 	 * tree when updating the free space inode. The writeback for the space
3495 	 * caches is triggered by an earlier call to
3496 	 * btrfs_start_dirty_block_groups() and iterations of the following
3497 	 * loop.
3498 	 * Also we want to do the cache_save_setup first and then run the
3499 	 * delayed refs to make sure we have the best chance at doing this all
3500 	 * in one shot.
3501 	 */
3502 	spin_lock(&cur_trans->dirty_bgs_lock);
3503 	while (!list_empty(&cur_trans->dirty_bgs)) {
3504 		cache = list_first_entry(&cur_trans->dirty_bgs,
3505 					 struct btrfs_block_group,
3506 					 dirty_list);
3507 
3508 		/*
3509 		 * This can happen if cache_save_setup re-dirties a block group
3510 		 * that is already under IO.  Just wait for it to finish and
3511 		 * then do it all again
3512 		 */
3513 		if (!list_empty(&cache->io_list)) {
3514 			spin_unlock(&cur_trans->dirty_bgs_lock);
3515 			list_del_init(&cache->io_list);
3516 			btrfs_wait_cache_io(trans, cache, path);
3517 			btrfs_put_block_group(cache);
3518 			spin_lock(&cur_trans->dirty_bgs_lock);
3519 		}
3520 
3521 		/*
3522 		 * Don't remove from the dirty list until after we've waited on
3523 		 * any pending IO
3524 		 */
3525 		list_del_init(&cache->dirty_list);
3526 		spin_unlock(&cur_trans->dirty_bgs_lock);
3527 		should_put = 1;
3528 
3529 		cache_save_setup(cache, trans, path);
3530 
3531 		if (!ret)
3532 			ret = btrfs_run_delayed_refs(trans, U64_MAX);
3533 
3534 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3535 			cache->io_ctl.inode = NULL;
3536 			ret = btrfs_write_out_cache(trans, cache, path);
3537 			if (ret == 0 && cache->io_ctl.inode) {
3538 				should_put = 0;
3539 				list_add_tail(&cache->io_list, io);
3540 			} else {
3541 				/*
3542 				 * If we failed to write the cache, the
3543 				 * generation will be bad and life goes on
3544 				 */
3545 				ret = 0;
3546 			}
3547 		}
3548 		if (!ret) {
3549 			ret = update_block_group_item(trans, path, cache);
3550 			/*
3551 			 * One of the free space endio workers might have
3552 			 * created a new block group while updating a free space
3553 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3554 			 * and hasn't released its transaction handle yet, in
3555 			 * which case the new block group is still attached to
3556 			 * its transaction handle and its creation has not
3557 			 * finished yet (no block group item in the extent tree
3558 			 * yet, etc). If this is the case, wait for all free
3559 			 * space endio workers to finish and retry. This is a
3560 			 * very rare case so no need for a more efficient and
3561 			 * complex approach.
3562 			 */
3563 			if (ret == -ENOENT) {
3564 				wait_event(cur_trans->writer_wait,
3565 				   atomic_read(&cur_trans->num_writers) == 1);
3566 				ret = update_block_group_item(trans, path, cache);
3567 			}
3568 			if (ret)
3569 				btrfs_abort_transaction(trans, ret);
3570 		}
3571 
3572 		/* If its not on the io list, we need to put the block group */
3573 		if (should_put)
3574 			btrfs_put_block_group(cache);
3575 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3576 		spin_lock(&cur_trans->dirty_bgs_lock);
3577 	}
3578 	spin_unlock(&cur_trans->dirty_bgs_lock);
3579 
3580 	/*
3581 	 * Refer to the definition of io_bgs member for details why it's safe
3582 	 * to use it without any locking
3583 	 */
3584 	while (!list_empty(io)) {
3585 		cache = list_first_entry(io, struct btrfs_block_group,
3586 					 io_list);
3587 		list_del_init(&cache->io_list);
3588 		btrfs_wait_cache_io(trans, cache, path);
3589 		btrfs_put_block_group(cache);
3590 	}
3591 
3592 	btrfs_free_path(path);
3593 	return ret;
3594 }
3595 
3596 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3597 			     u64 bytenr, u64 num_bytes, bool alloc)
3598 {
3599 	struct btrfs_fs_info *info = trans->fs_info;
3600 	struct btrfs_space_info *space_info;
3601 	struct btrfs_block_group *cache;
3602 	u64 old_val;
3603 	bool reclaim = false;
3604 	bool bg_already_dirty = true;
3605 	int factor;
3606 
3607 	/* Block accounting for super block */
3608 	spin_lock(&info->delalloc_root_lock);
3609 	old_val = btrfs_super_bytes_used(info->super_copy);
3610 	if (alloc)
3611 		old_val += num_bytes;
3612 	else
3613 		old_val -= num_bytes;
3614 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3615 	spin_unlock(&info->delalloc_root_lock);
3616 
3617 	cache = btrfs_lookup_block_group(info, bytenr);
3618 	if (!cache)
3619 		return -ENOENT;
3620 
3621 	/* An extent can not span multiple block groups. */
3622 	ASSERT(bytenr + num_bytes <= cache->start + cache->length);
3623 
3624 	space_info = cache->space_info;
3625 	factor = btrfs_bg_type_to_factor(cache->flags);
3626 
3627 	/*
3628 	 * If this block group has free space cache written out, we need to make
3629 	 * sure to load it if we are removing space.  This is because we need
3630 	 * the unpinning stage to actually add the space back to the block group,
3631 	 * otherwise we will leak space.
3632 	 */
3633 	if (!alloc && !btrfs_block_group_done(cache))
3634 		btrfs_cache_block_group(cache, true);
3635 
3636 	spin_lock(&space_info->lock);
3637 	spin_lock(&cache->lock);
3638 
3639 	if (btrfs_test_opt(info, SPACE_CACHE) &&
3640 	    cache->disk_cache_state < BTRFS_DC_CLEAR)
3641 		cache->disk_cache_state = BTRFS_DC_CLEAR;
3642 
3643 	old_val = cache->used;
3644 	if (alloc) {
3645 		old_val += num_bytes;
3646 		cache->used = old_val;
3647 		cache->reserved -= num_bytes;
3648 		space_info->bytes_reserved -= num_bytes;
3649 		space_info->bytes_used += num_bytes;
3650 		space_info->disk_used += num_bytes * factor;
3651 		spin_unlock(&cache->lock);
3652 		spin_unlock(&space_info->lock);
3653 	} else {
3654 		old_val -= num_bytes;
3655 		cache->used = old_val;
3656 		cache->pinned += num_bytes;
3657 		btrfs_space_info_update_bytes_pinned(info, space_info, num_bytes);
3658 		space_info->bytes_used -= num_bytes;
3659 		space_info->disk_used -= num_bytes * factor;
3660 
3661 		reclaim = should_reclaim_block_group(cache, num_bytes);
3662 
3663 		spin_unlock(&cache->lock);
3664 		spin_unlock(&space_info->lock);
3665 
3666 		set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3667 			       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3668 	}
3669 
3670 	spin_lock(&trans->transaction->dirty_bgs_lock);
3671 	if (list_empty(&cache->dirty_list)) {
3672 		list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3673 		bg_already_dirty = false;
3674 		btrfs_get_block_group(cache);
3675 	}
3676 	spin_unlock(&trans->transaction->dirty_bgs_lock);
3677 
3678 	/*
3679 	 * No longer have used bytes in this block group, queue it for deletion.
3680 	 * We do this after adding the block group to the dirty list to avoid
3681 	 * races between cleaner kthread and space cache writeout.
3682 	 */
3683 	if (!alloc && old_val == 0) {
3684 		if (!btrfs_test_opt(info, DISCARD_ASYNC))
3685 			btrfs_mark_bg_unused(cache);
3686 	} else if (!alloc && reclaim) {
3687 		btrfs_mark_bg_to_reclaim(cache);
3688 	}
3689 
3690 	btrfs_put_block_group(cache);
3691 
3692 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3693 	if (!bg_already_dirty)
3694 		btrfs_inc_delayed_refs_rsv_bg_updates(info);
3695 
3696 	return 0;
3697 }
3698 
3699 /*
3700  * Update the block_group and space info counters.
3701  *
3702  * @cache:	The cache we are manipulating
3703  * @ram_bytes:  The number of bytes of file content, and will be same to
3704  *              @num_bytes except for the compress path.
3705  * @num_bytes:	The number of bytes in question
3706  * @delalloc:   The blocks are allocated for the delalloc write
3707  *
3708  * This is called by the allocator when it reserves space. If this is a
3709  * reservation and the block group has become read only we cannot make the
3710  * reservation and return -EAGAIN, otherwise this function always succeeds.
3711  */
3712 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3713 			     u64 ram_bytes, u64 num_bytes, int delalloc,
3714 			     bool force_wrong_size_class)
3715 {
3716 	struct btrfs_space_info *space_info = cache->space_info;
3717 	enum btrfs_block_group_size_class size_class;
3718 	int ret = 0;
3719 
3720 	spin_lock(&space_info->lock);
3721 	spin_lock(&cache->lock);
3722 	if (cache->ro) {
3723 		ret = -EAGAIN;
3724 		goto out;
3725 	}
3726 
3727 	if (btrfs_block_group_should_use_size_class(cache)) {
3728 		size_class = btrfs_calc_block_group_size_class(num_bytes);
3729 		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3730 		if (ret)
3731 			goto out;
3732 	}
3733 	cache->reserved += num_bytes;
3734 	space_info->bytes_reserved += num_bytes;
3735 	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3736 				      space_info->flags, num_bytes, 1);
3737 	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3738 					      space_info, -ram_bytes);
3739 	if (delalloc)
3740 		cache->delalloc_bytes += num_bytes;
3741 
3742 	/*
3743 	 * Compression can use less space than we reserved, so wake tickets if
3744 	 * that happens.
3745 	 */
3746 	if (num_bytes < ram_bytes)
3747 		btrfs_try_granting_tickets(cache->fs_info, space_info);
3748 out:
3749 	spin_unlock(&cache->lock);
3750 	spin_unlock(&space_info->lock);
3751 	return ret;
3752 }
3753 
3754 /*
3755  * Update the block_group and space info counters.
3756  *
3757  * @cache:      The cache we are manipulating
3758  * @num_bytes:  The number of bytes in question
3759  * @delalloc:   The blocks are allocated for the delalloc write
3760  *
3761  * This is called by somebody who is freeing space that was never actually used
3762  * on disk.  For example if you reserve some space for a new leaf in transaction
3763  * A and before transaction A commits you free that leaf, you call this with
3764  * reserve set to 0 in order to clear the reservation.
3765  */
3766 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3767 			       u64 num_bytes, int delalloc)
3768 {
3769 	struct btrfs_space_info *space_info = cache->space_info;
3770 
3771 	spin_lock(&space_info->lock);
3772 	spin_lock(&cache->lock);
3773 	if (cache->ro)
3774 		space_info->bytes_readonly += num_bytes;
3775 	cache->reserved -= num_bytes;
3776 	space_info->bytes_reserved -= num_bytes;
3777 	space_info->max_extent_size = 0;
3778 
3779 	if (delalloc)
3780 		cache->delalloc_bytes -= num_bytes;
3781 	spin_unlock(&cache->lock);
3782 
3783 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3784 	spin_unlock(&space_info->lock);
3785 }
3786 
3787 static void force_metadata_allocation(struct btrfs_fs_info *info)
3788 {
3789 	struct list_head *head = &info->space_info;
3790 	struct btrfs_space_info *found;
3791 
3792 	list_for_each_entry(found, head, list) {
3793 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3794 			found->force_alloc = CHUNK_ALLOC_FORCE;
3795 	}
3796 }
3797 
3798 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3799 			      struct btrfs_space_info *sinfo, int force)
3800 {
3801 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3802 	u64 thresh;
3803 
3804 	if (force == CHUNK_ALLOC_FORCE)
3805 		return 1;
3806 
3807 	/*
3808 	 * in limited mode, we want to have some free space up to
3809 	 * about 1% of the FS size.
3810 	 */
3811 	if (force == CHUNK_ALLOC_LIMITED) {
3812 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3813 		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3814 
3815 		if (sinfo->total_bytes - bytes_used < thresh)
3816 			return 1;
3817 	}
3818 
3819 	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3820 		return 0;
3821 	return 1;
3822 }
3823 
3824 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3825 {
3826 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3827 
3828 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3829 }
3830 
3831 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3832 {
3833 	struct btrfs_block_group *bg;
3834 	int ret;
3835 
3836 	/*
3837 	 * Check if we have enough space in the system space info because we
3838 	 * will need to update device items in the chunk btree and insert a new
3839 	 * chunk item in the chunk btree as well. This will allocate a new
3840 	 * system block group if needed.
3841 	 */
3842 	check_system_chunk(trans, flags);
3843 
3844 	bg = btrfs_create_chunk(trans, flags);
3845 	if (IS_ERR(bg)) {
3846 		ret = PTR_ERR(bg);
3847 		goto out;
3848 	}
3849 
3850 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3851 	/*
3852 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3853 	 * previously reserved space in the system space_info and allocated one
3854 	 * new system chunk if necessary. However there are three exceptions:
3855 	 *
3856 	 * 1) We may have enough free space in the system space_info but all the
3857 	 *    existing system block groups have a profile which can not be used
3858 	 *    for extent allocation.
3859 	 *
3860 	 *    This happens when mounting in degraded mode. For example we have a
3861 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3862 	 *    using the other device in degraded mode. If we then allocate a chunk,
3863 	 *    we may have enough free space in the existing system space_info, but
3864 	 *    none of the block groups can be used for extent allocation since they
3865 	 *    have a RAID1 profile, and because we are in degraded mode with a
3866 	 *    single device, we are forced to allocate a new system chunk with a
3867 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3868 	 *    block groups and check if they have a usable profile and enough space
3869 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3870 	 *    try again after forcing allocation of a new system chunk. Like this
3871 	 *    we avoid paying the cost of that search in normal circumstances, when
3872 	 *    we were not mounted in degraded mode;
3873 	 *
3874 	 * 2) We had enough free space info the system space_info, and one suitable
3875 	 *    block group to allocate from when we called check_system_chunk()
3876 	 *    above. However right after we called it, the only system block group
3877 	 *    with enough free space got turned into RO mode by a running scrub,
3878 	 *    and in this case we have to allocate a new one and retry. We only
3879 	 *    need do this allocate and retry once, since we have a transaction
3880 	 *    handle and scrub uses the commit root to search for block groups;
3881 	 *
3882 	 * 3) We had one system block group with enough free space when we called
3883 	 *    check_system_chunk(), but after that, right before we tried to
3884 	 *    allocate the last extent buffer we needed, a discard operation came
3885 	 *    in and it temporarily removed the last free space entry from the
3886 	 *    block group (discard removes a free space entry, discards it, and
3887 	 *    then adds back the entry to the block group cache).
3888 	 */
3889 	if (ret == -ENOSPC) {
3890 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3891 		struct btrfs_block_group *sys_bg;
3892 
3893 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3894 		if (IS_ERR(sys_bg)) {
3895 			ret = PTR_ERR(sys_bg);
3896 			btrfs_abort_transaction(trans, ret);
3897 			goto out;
3898 		}
3899 
3900 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3901 		if (ret) {
3902 			btrfs_abort_transaction(trans, ret);
3903 			goto out;
3904 		}
3905 
3906 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3907 		if (ret) {
3908 			btrfs_abort_transaction(trans, ret);
3909 			goto out;
3910 		}
3911 	} else if (ret) {
3912 		btrfs_abort_transaction(trans, ret);
3913 		goto out;
3914 	}
3915 out:
3916 	btrfs_trans_release_chunk_metadata(trans);
3917 
3918 	if (ret)
3919 		return ERR_PTR(ret);
3920 
3921 	btrfs_get_block_group(bg);
3922 	return bg;
3923 }
3924 
3925 /*
3926  * Chunk allocation is done in 2 phases:
3927  *
3928  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3929  *    the chunk, the chunk mapping, create its block group and add the items
3930  *    that belong in the chunk btree to it - more specifically, we need to
3931  *    update device items in the chunk btree and add a new chunk item to it.
3932  *
3933  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3934  *    group item to the extent btree and the device extent items to the devices
3935  *    btree.
3936  *
3937  * This is done to prevent deadlocks. For example when COWing a node from the
3938  * extent btree we are holding a write lock on the node's parent and if we
3939  * trigger chunk allocation and attempted to insert the new block group item
3940  * in the extent btree right way, we could deadlock because the path for the
3941  * insertion can include that parent node. At first glance it seems impossible
3942  * to trigger chunk allocation after starting a transaction since tasks should
3943  * reserve enough transaction units (metadata space), however while that is true
3944  * most of the time, chunk allocation may still be triggered for several reasons:
3945  *
3946  * 1) When reserving metadata, we check if there is enough free space in the
3947  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3948  *    However later when the task actually tries to COW an extent buffer from
3949  *    the extent btree or from the device btree for example, it is forced to
3950  *    allocate a new block group (chunk) because the only one that had enough
3951  *    free space was just turned to RO mode by a running scrub for example (or
3952  *    device replace, block group reclaim thread, etc), so we can not use it
3953  *    for allocating an extent and end up being forced to allocate a new one;
3954  *
3955  * 2) Because we only check that the metadata space_info has enough free bytes,
3956  *    we end up not allocating a new metadata chunk in that case. However if
3957  *    the filesystem was mounted in degraded mode, none of the existing block
3958  *    groups might be suitable for extent allocation due to their incompatible
3959  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3960  *    use a RAID1 profile, in degraded mode using a single device). In this case
3961  *    when the task attempts to COW some extent buffer of the extent btree for
3962  *    example, it will trigger allocation of a new metadata block group with a
3963  *    suitable profile (SINGLE profile in the example of the degraded mount of
3964  *    the RAID1 filesystem);
3965  *
3966  * 3) The task has reserved enough transaction units / metadata space, but when
3967  *    it attempts to COW an extent buffer from the extent or device btree for
3968  *    example, it does not find any free extent in any metadata block group,
3969  *    therefore forced to try to allocate a new metadata block group.
3970  *    This is because some other task allocated all available extents in the
3971  *    meanwhile - this typically happens with tasks that don't reserve space
3972  *    properly, either intentionally or as a bug. One example where this is
3973  *    done intentionally is fsync, as it does not reserve any transaction units
3974  *    and ends up allocating a variable number of metadata extents for log
3975  *    tree extent buffers;
3976  *
3977  * 4) The task has reserved enough transaction units / metadata space, but right
3978  *    before it tries to allocate the last extent buffer it needs, a discard
3979  *    operation comes in and, temporarily, removes the last free space entry from
3980  *    the only metadata block group that had free space (discard starts by
3981  *    removing a free space entry from a block group, then does the discard
3982  *    operation and, once it's done, it adds back the free space entry to the
3983  *    block group).
3984  *
3985  * We also need this 2 phases setup when adding a device to a filesystem with
3986  * a seed device - we must create new metadata and system chunks without adding
3987  * any of the block group items to the chunk, extent and device btrees. If we
3988  * did not do it this way, we would get ENOSPC when attempting to update those
3989  * btrees, since all the chunks from the seed device are read-only.
3990  *
3991  * Phase 1 does the updates and insertions to the chunk btree because if we had
3992  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3993  * parallel, we risk having too many system chunks allocated by many tasks if
3994  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3995  * extreme case this leads to exhaustion of the system chunk array in the
3996  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3997  * and with RAID filesystems (so we have more device items in the chunk btree).
3998  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3999  * the system chunk array due to concurrent allocations") provides more details.
4000  *
4001  * Allocation of system chunks does not happen through this function. A task that
4002  * needs to update the chunk btree (the only btree that uses system chunks), must
4003  * preallocate chunk space by calling either check_system_chunk() or
4004  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4005  * metadata chunk or when removing a chunk, while the later is used before doing
4006  * a modification to the chunk btree - use cases for the later are adding,
4007  * removing and resizing a device as well as relocation of a system chunk.
4008  * See the comment below for more details.
4009  *
4010  * The reservation of system space, done through check_system_chunk(), as well
4011  * as all the updates and insertions into the chunk btree must be done while
4012  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4013  * an extent buffer from the chunks btree we never trigger allocation of a new
4014  * system chunk, which would result in a deadlock (trying to lock twice an
4015  * extent buffer of the chunk btree, first time before triggering the chunk
4016  * allocation and the second time during chunk allocation while attempting to
4017  * update the chunks btree). The system chunk array is also updated while holding
4018  * that mutex. The same logic applies to removing chunks - we must reserve system
4019  * space, update the chunk btree and the system chunk array in the superblock
4020  * while holding fs_info->chunk_mutex.
4021  *
4022  * This function, btrfs_chunk_alloc(), belongs to phase 1.
4023  *
4024  * If @force is CHUNK_ALLOC_FORCE:
4025  *    - return 1 if it successfully allocates a chunk,
4026  *    - return errors including -ENOSPC otherwise.
4027  * If @force is NOT CHUNK_ALLOC_FORCE:
4028  *    - return 0 if it doesn't need to allocate a new chunk,
4029  *    - return 1 if it successfully allocates a chunk,
4030  *    - return errors including -ENOSPC otherwise.
4031  */
4032 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4033 		      enum btrfs_chunk_alloc_enum force)
4034 {
4035 	struct btrfs_fs_info *fs_info = trans->fs_info;
4036 	struct btrfs_space_info *space_info;
4037 	struct btrfs_block_group *ret_bg;
4038 	bool wait_for_alloc = false;
4039 	bool should_alloc = false;
4040 	bool from_extent_allocation = false;
4041 	int ret = 0;
4042 
4043 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4044 		from_extent_allocation = true;
4045 		force = CHUNK_ALLOC_FORCE;
4046 	}
4047 
4048 	/* Don't re-enter if we're already allocating a chunk */
4049 	if (trans->allocating_chunk)
4050 		return -ENOSPC;
4051 	/*
4052 	 * Allocation of system chunks can not happen through this path, as we
4053 	 * could end up in a deadlock if we are allocating a data or metadata
4054 	 * chunk and there is another task modifying the chunk btree.
4055 	 *
4056 	 * This is because while we are holding the chunk mutex, we will attempt
4057 	 * to add the new chunk item to the chunk btree or update an existing
4058 	 * device item in the chunk btree, while the other task that is modifying
4059 	 * the chunk btree is attempting to COW an extent buffer while holding a
4060 	 * lock on it and on its parent - if the COW operation triggers a system
4061 	 * chunk allocation, then we can deadlock because we are holding the
4062 	 * chunk mutex and we may need to access that extent buffer or its parent
4063 	 * in order to add the chunk item or update a device item.
4064 	 *
4065 	 * Tasks that want to modify the chunk tree should reserve system space
4066 	 * before updating the chunk btree, by calling either
4067 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4068 	 * It's possible that after a task reserves the space, it still ends up
4069 	 * here - this happens in the cases described above at do_chunk_alloc().
4070 	 * The task will have to either retry or fail.
4071 	 */
4072 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4073 		return -ENOSPC;
4074 
4075 	space_info = btrfs_find_space_info(fs_info, flags);
4076 	ASSERT(space_info);
4077 
4078 	do {
4079 		spin_lock(&space_info->lock);
4080 		if (force < space_info->force_alloc)
4081 			force = space_info->force_alloc;
4082 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4083 		if (space_info->full) {
4084 			/* No more free physical space */
4085 			if (should_alloc)
4086 				ret = -ENOSPC;
4087 			else
4088 				ret = 0;
4089 			spin_unlock(&space_info->lock);
4090 			return ret;
4091 		} else if (!should_alloc) {
4092 			spin_unlock(&space_info->lock);
4093 			return 0;
4094 		} else if (space_info->chunk_alloc) {
4095 			/*
4096 			 * Someone is already allocating, so we need to block
4097 			 * until this someone is finished and then loop to
4098 			 * recheck if we should continue with our allocation
4099 			 * attempt.
4100 			 */
4101 			wait_for_alloc = true;
4102 			force = CHUNK_ALLOC_NO_FORCE;
4103 			spin_unlock(&space_info->lock);
4104 			mutex_lock(&fs_info->chunk_mutex);
4105 			mutex_unlock(&fs_info->chunk_mutex);
4106 		} else {
4107 			/* Proceed with allocation */
4108 			space_info->chunk_alloc = 1;
4109 			wait_for_alloc = false;
4110 			spin_unlock(&space_info->lock);
4111 		}
4112 
4113 		cond_resched();
4114 	} while (wait_for_alloc);
4115 
4116 	mutex_lock(&fs_info->chunk_mutex);
4117 	trans->allocating_chunk = true;
4118 
4119 	/*
4120 	 * If we have mixed data/metadata chunks we want to make sure we keep
4121 	 * allocating mixed chunks instead of individual chunks.
4122 	 */
4123 	if (btrfs_mixed_space_info(space_info))
4124 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4125 
4126 	/*
4127 	 * if we're doing a data chunk, go ahead and make sure that
4128 	 * we keep a reasonable number of metadata chunks allocated in the
4129 	 * FS as well.
4130 	 */
4131 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4132 		fs_info->data_chunk_allocations++;
4133 		if (!(fs_info->data_chunk_allocations %
4134 		      fs_info->metadata_ratio))
4135 			force_metadata_allocation(fs_info);
4136 	}
4137 
4138 	ret_bg = do_chunk_alloc(trans, flags);
4139 	trans->allocating_chunk = false;
4140 
4141 	if (IS_ERR(ret_bg)) {
4142 		ret = PTR_ERR(ret_bg);
4143 	} else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4144 		/*
4145 		 * New block group is likely to be used soon. Try to activate
4146 		 * it now. Failure is OK for now.
4147 		 */
4148 		btrfs_zone_activate(ret_bg);
4149 	}
4150 
4151 	if (!ret)
4152 		btrfs_put_block_group(ret_bg);
4153 
4154 	spin_lock(&space_info->lock);
4155 	if (ret < 0) {
4156 		if (ret == -ENOSPC)
4157 			space_info->full = 1;
4158 		else
4159 			goto out;
4160 	} else {
4161 		ret = 1;
4162 		space_info->max_extent_size = 0;
4163 	}
4164 
4165 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4166 out:
4167 	space_info->chunk_alloc = 0;
4168 	spin_unlock(&space_info->lock);
4169 	mutex_unlock(&fs_info->chunk_mutex);
4170 
4171 	return ret;
4172 }
4173 
4174 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4175 {
4176 	u64 num_dev;
4177 
4178 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4179 	if (!num_dev)
4180 		num_dev = fs_info->fs_devices->rw_devices;
4181 
4182 	return num_dev;
4183 }
4184 
4185 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4186 				u64 bytes,
4187 				u64 type)
4188 {
4189 	struct btrfs_fs_info *fs_info = trans->fs_info;
4190 	struct btrfs_space_info *info;
4191 	u64 left;
4192 	int ret = 0;
4193 
4194 	/*
4195 	 * Needed because we can end up allocating a system chunk and for an
4196 	 * atomic and race free space reservation in the chunk block reserve.
4197 	 */
4198 	lockdep_assert_held(&fs_info->chunk_mutex);
4199 
4200 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4201 	spin_lock(&info->lock);
4202 	left = info->total_bytes - btrfs_space_info_used(info, true);
4203 	spin_unlock(&info->lock);
4204 
4205 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4206 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4207 			   left, bytes, type);
4208 		btrfs_dump_space_info(fs_info, info, 0, 0);
4209 	}
4210 
4211 	if (left < bytes) {
4212 		u64 flags = btrfs_system_alloc_profile(fs_info);
4213 		struct btrfs_block_group *bg;
4214 
4215 		/*
4216 		 * Ignore failure to create system chunk. We might end up not
4217 		 * needing it, as we might not need to COW all nodes/leafs from
4218 		 * the paths we visit in the chunk tree (they were already COWed
4219 		 * or created in the current transaction for example).
4220 		 */
4221 		bg = btrfs_create_chunk(trans, flags);
4222 		if (IS_ERR(bg)) {
4223 			ret = PTR_ERR(bg);
4224 		} else {
4225 			/*
4226 			 * We have a new chunk. We also need to activate it for
4227 			 * zoned filesystem.
4228 			 */
4229 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4230 			if (ret < 0)
4231 				return;
4232 
4233 			/*
4234 			 * If we fail to add the chunk item here, we end up
4235 			 * trying again at phase 2 of chunk allocation, at
4236 			 * btrfs_create_pending_block_groups(). So ignore
4237 			 * any error here. An ENOSPC here could happen, due to
4238 			 * the cases described at do_chunk_alloc() - the system
4239 			 * block group we just created was just turned into RO
4240 			 * mode by a scrub for example, or a running discard
4241 			 * temporarily removed its free space entries, etc.
4242 			 */
4243 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4244 		}
4245 	}
4246 
4247 	if (!ret) {
4248 		ret = btrfs_block_rsv_add(fs_info,
4249 					  &fs_info->chunk_block_rsv,
4250 					  bytes, BTRFS_RESERVE_NO_FLUSH);
4251 		if (!ret)
4252 			trans->chunk_bytes_reserved += bytes;
4253 	}
4254 }
4255 
4256 /*
4257  * Reserve space in the system space for allocating or removing a chunk.
4258  * The caller must be holding fs_info->chunk_mutex.
4259  */
4260 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4261 {
4262 	struct btrfs_fs_info *fs_info = trans->fs_info;
4263 	const u64 num_devs = get_profile_num_devs(fs_info, type);
4264 	u64 bytes;
4265 
4266 	/* num_devs device items to update and 1 chunk item to add or remove. */
4267 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4268 		btrfs_calc_insert_metadata_size(fs_info, 1);
4269 
4270 	reserve_chunk_space(trans, bytes, type);
4271 }
4272 
4273 /*
4274  * Reserve space in the system space, if needed, for doing a modification to the
4275  * chunk btree.
4276  *
4277  * @trans:		A transaction handle.
4278  * @is_item_insertion:	Indicate if the modification is for inserting a new item
4279  *			in the chunk btree or if it's for the deletion or update
4280  *			of an existing item.
4281  *
4282  * This is used in a context where we need to update the chunk btree outside
4283  * block group allocation and removal, to avoid a deadlock with a concurrent
4284  * task that is allocating a metadata or data block group and therefore needs to
4285  * update the chunk btree while holding the chunk mutex. After the update to the
4286  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4287  *
4288  */
4289 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4290 				  bool is_item_insertion)
4291 {
4292 	struct btrfs_fs_info *fs_info = trans->fs_info;
4293 	u64 bytes;
4294 
4295 	if (is_item_insertion)
4296 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4297 	else
4298 		bytes = btrfs_calc_metadata_size(fs_info, 1);
4299 
4300 	mutex_lock(&fs_info->chunk_mutex);
4301 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4302 	mutex_unlock(&fs_info->chunk_mutex);
4303 }
4304 
4305 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4306 {
4307 	struct btrfs_block_group *block_group;
4308 
4309 	block_group = btrfs_lookup_first_block_group(info, 0);
4310 	while (block_group) {
4311 		btrfs_wait_block_group_cache_done(block_group);
4312 		spin_lock(&block_group->lock);
4313 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4314 				       &block_group->runtime_flags)) {
4315 			struct inode *inode = block_group->inode;
4316 
4317 			block_group->inode = NULL;
4318 			spin_unlock(&block_group->lock);
4319 
4320 			ASSERT(block_group->io_ctl.inode == NULL);
4321 			iput(inode);
4322 		} else {
4323 			spin_unlock(&block_group->lock);
4324 		}
4325 		block_group = btrfs_next_block_group(block_group);
4326 	}
4327 }
4328 
4329 /*
4330  * Must be called only after stopping all workers, since we could have block
4331  * group caching kthreads running, and therefore they could race with us if we
4332  * freed the block groups before stopping them.
4333  */
4334 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4335 {
4336 	struct btrfs_block_group *block_group;
4337 	struct btrfs_space_info *space_info;
4338 	struct btrfs_caching_control *caching_ctl;
4339 	struct rb_node *n;
4340 
4341 	if (btrfs_is_zoned(info)) {
4342 		if (info->active_meta_bg) {
4343 			btrfs_put_block_group(info->active_meta_bg);
4344 			info->active_meta_bg = NULL;
4345 		}
4346 		if (info->active_system_bg) {
4347 			btrfs_put_block_group(info->active_system_bg);
4348 			info->active_system_bg = NULL;
4349 		}
4350 	}
4351 
4352 	write_lock(&info->block_group_cache_lock);
4353 	while (!list_empty(&info->caching_block_groups)) {
4354 		caching_ctl = list_entry(info->caching_block_groups.next,
4355 					 struct btrfs_caching_control, list);
4356 		list_del(&caching_ctl->list);
4357 		btrfs_put_caching_control(caching_ctl);
4358 	}
4359 	write_unlock(&info->block_group_cache_lock);
4360 
4361 	spin_lock(&info->unused_bgs_lock);
4362 	while (!list_empty(&info->unused_bgs)) {
4363 		block_group = list_first_entry(&info->unused_bgs,
4364 					       struct btrfs_block_group,
4365 					       bg_list);
4366 		list_del_init(&block_group->bg_list);
4367 		btrfs_put_block_group(block_group);
4368 	}
4369 
4370 	while (!list_empty(&info->reclaim_bgs)) {
4371 		block_group = list_first_entry(&info->reclaim_bgs,
4372 					       struct btrfs_block_group,
4373 					       bg_list);
4374 		list_del_init(&block_group->bg_list);
4375 		btrfs_put_block_group(block_group);
4376 	}
4377 	spin_unlock(&info->unused_bgs_lock);
4378 
4379 	spin_lock(&info->zone_active_bgs_lock);
4380 	while (!list_empty(&info->zone_active_bgs)) {
4381 		block_group = list_first_entry(&info->zone_active_bgs,
4382 					       struct btrfs_block_group,
4383 					       active_bg_list);
4384 		list_del_init(&block_group->active_bg_list);
4385 		btrfs_put_block_group(block_group);
4386 	}
4387 	spin_unlock(&info->zone_active_bgs_lock);
4388 
4389 	write_lock(&info->block_group_cache_lock);
4390 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4391 		block_group = rb_entry(n, struct btrfs_block_group,
4392 				       cache_node);
4393 		rb_erase_cached(&block_group->cache_node,
4394 				&info->block_group_cache_tree);
4395 		RB_CLEAR_NODE(&block_group->cache_node);
4396 		write_unlock(&info->block_group_cache_lock);
4397 
4398 		down_write(&block_group->space_info->groups_sem);
4399 		list_del(&block_group->list);
4400 		up_write(&block_group->space_info->groups_sem);
4401 
4402 		/*
4403 		 * We haven't cached this block group, which means we could
4404 		 * possibly have excluded extents on this block group.
4405 		 */
4406 		if (block_group->cached == BTRFS_CACHE_NO ||
4407 		    block_group->cached == BTRFS_CACHE_ERROR)
4408 			btrfs_free_excluded_extents(block_group);
4409 
4410 		btrfs_remove_free_space_cache(block_group);
4411 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4412 		ASSERT(list_empty(&block_group->dirty_list));
4413 		ASSERT(list_empty(&block_group->io_list));
4414 		ASSERT(list_empty(&block_group->bg_list));
4415 		ASSERT(refcount_read(&block_group->refs) == 1);
4416 		ASSERT(block_group->swap_extents == 0);
4417 		btrfs_put_block_group(block_group);
4418 
4419 		write_lock(&info->block_group_cache_lock);
4420 	}
4421 	write_unlock(&info->block_group_cache_lock);
4422 
4423 	btrfs_release_global_block_rsv(info);
4424 
4425 	while (!list_empty(&info->space_info)) {
4426 		space_info = list_entry(info->space_info.next,
4427 					struct btrfs_space_info,
4428 					list);
4429 
4430 		/*
4431 		 * Do not hide this behind enospc_debug, this is actually
4432 		 * important and indicates a real bug if this happens.
4433 		 */
4434 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4435 			    space_info->bytes_may_use > 0))
4436 			btrfs_dump_space_info(info, space_info, 0, 0);
4437 
4438 		/*
4439 		 * If there was a failure to cleanup a log tree, very likely due
4440 		 * to an IO failure on a writeback attempt of one or more of its
4441 		 * extent buffers, we could not do proper (and cheap) unaccounting
4442 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4443 		 * that case.
4444 		 */
4445 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4446 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4447 			if (WARN_ON(space_info->bytes_reserved > 0))
4448 				btrfs_dump_space_info(info, space_info, 0, 0);
4449 		}
4450 
4451 		WARN_ON(space_info->reclaim_size > 0);
4452 		list_del(&space_info->list);
4453 		btrfs_sysfs_remove_space_info(space_info);
4454 	}
4455 	return 0;
4456 }
4457 
4458 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4459 {
4460 	atomic_inc(&cache->frozen);
4461 }
4462 
4463 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4464 {
4465 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4466 	bool cleanup;
4467 
4468 	spin_lock(&block_group->lock);
4469 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4470 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4471 	spin_unlock(&block_group->lock);
4472 
4473 	if (cleanup) {
4474 		struct btrfs_chunk_map *map;
4475 
4476 		map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4477 		/* Logic error, can't happen. */
4478 		ASSERT(map);
4479 
4480 		btrfs_remove_chunk_map(fs_info, map);
4481 
4482 		/* Once for our lookup reference. */
4483 		btrfs_free_chunk_map(map);
4484 
4485 		/*
4486 		 * We may have left one free space entry and other possible
4487 		 * tasks trimming this block group have left 1 entry each one.
4488 		 * Free them if any.
4489 		 */
4490 		btrfs_remove_free_space_cache(block_group);
4491 	}
4492 }
4493 
4494 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4495 {
4496 	bool ret = true;
4497 
4498 	spin_lock(&bg->lock);
4499 	if (bg->ro)
4500 		ret = false;
4501 	else
4502 		bg->swap_extents++;
4503 	spin_unlock(&bg->lock);
4504 
4505 	return ret;
4506 }
4507 
4508 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4509 {
4510 	spin_lock(&bg->lock);
4511 	ASSERT(!bg->ro);
4512 	ASSERT(bg->swap_extents >= amount);
4513 	bg->swap_extents -= amount;
4514 	spin_unlock(&bg->lock);
4515 }
4516 
4517 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4518 {
4519 	if (size <= SZ_128K)
4520 		return BTRFS_BG_SZ_SMALL;
4521 	if (size <= SZ_8M)
4522 		return BTRFS_BG_SZ_MEDIUM;
4523 	return BTRFS_BG_SZ_LARGE;
4524 }
4525 
4526 /*
4527  * Handle a block group allocating an extent in a size class
4528  *
4529  * @bg:				The block group we allocated in.
4530  * @size_class:			The size class of the allocation.
4531  * @force_wrong_size_class:	Whether we are desperate enough to allow
4532  *				mismatched size classes.
4533  *
4534  * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4535  * case of a race that leads to the wrong size class without
4536  * force_wrong_size_class set.
4537  *
4538  * find_free_extent will skip block groups with a mismatched size class until
4539  * it really needs to avoid ENOSPC. In that case it will set
4540  * force_wrong_size_class. However, if a block group is newly allocated and
4541  * doesn't yet have a size class, then it is possible for two allocations of
4542  * different sizes to race and both try to use it. The loser is caught here and
4543  * has to retry.
4544  */
4545 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4546 				     enum btrfs_block_group_size_class size_class,
4547 				     bool force_wrong_size_class)
4548 {
4549 	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4550 
4551 	/* The new allocation is in the right size class, do nothing */
4552 	if (bg->size_class == size_class)
4553 		return 0;
4554 	/*
4555 	 * The new allocation is in a mismatched size class.
4556 	 * This means one of two things:
4557 	 *
4558 	 * 1. Two tasks in find_free_extent for different size_classes raced
4559 	 *    and hit the same empty block_group. Make the loser try again.
4560 	 * 2. A call to find_free_extent got desperate enough to set
4561 	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4562 	 *    allocation.
4563 	 */
4564 	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4565 		if (force_wrong_size_class)
4566 			return 0;
4567 		return -EAGAIN;
4568 	}
4569 	/*
4570 	 * The happy new block group case: the new allocation is the first
4571 	 * one in the block_group so we set size_class.
4572 	 */
4573 	bg->size_class = size_class;
4574 
4575 	return 0;
4576 }
4577 
4578 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4579 {
4580 	if (btrfs_is_zoned(bg->fs_info))
4581 		return false;
4582 	if (!btrfs_is_block_group_data_only(bg))
4583 		return false;
4584 	return true;
4585 }
4586