xref: /linux/fs/btrfs/block-group.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20 
21 /*
22  * Return target flags in extended format or 0 if restripe for this chunk_type
23  * is not in progress
24  *
25  * Should be called with balance_lock held
26  */
27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
28 {
29 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 	u64 target = 0;
31 
32 	if (!bctl)
33 		return 0;
34 
35 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 	}
45 
46 	return target;
47 }
48 
49 /*
50  * @flags: available profiles in extended format (see ctree.h)
51  *
52  * Return reduced profile in chunk format.  If profile changing is in progress
53  * (either running or paused) picks the target profile (if it's already
54  * available), otherwise falls back to plain reducing.
55  */
56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 	u64 num_devices = fs_info->fs_devices->rw_devices;
59 	u64 target;
60 	u64 raid_type;
61 	u64 allowed = 0;
62 
63 	/*
64 	 * See if restripe for this chunk_type is in progress, if so try to
65 	 * reduce to the target profile
66 	 */
67 	spin_lock(&fs_info->balance_lock);
68 	target = get_restripe_target(fs_info, flags);
69 	if (target) {
70 		spin_unlock(&fs_info->balance_lock);
71 		return extended_to_chunk(target);
72 	}
73 	spin_unlock(&fs_info->balance_lock);
74 
75 	/* First, mask out the RAID levels which aren't possible */
76 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 			allowed |= btrfs_raid_array[raid_type].bg_flag;
79 	}
80 	allowed &= flags;
81 
82 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 		allowed = BTRFS_BLOCK_GROUP_RAID6;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 		allowed = BTRFS_BLOCK_GROUP_RAID5;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 		allowed = BTRFS_BLOCK_GROUP_RAID10;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 		allowed = BTRFS_BLOCK_GROUP_RAID1;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 		allowed = BTRFS_BLOCK_GROUP_RAID0;
92 
93 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94 
95 	return extended_to_chunk(flags | allowed);
96 }
97 
98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 	unsigned seq;
101 	u64 flags;
102 
103 	do {
104 		flags = orig_flags;
105 		seq = read_seqbegin(&fs_info->profiles_lock);
106 
107 		if (flags & BTRFS_BLOCK_GROUP_DATA)
108 			flags |= fs_info->avail_data_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 			flags |= fs_info->avail_system_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 			flags |= fs_info->avail_metadata_alloc_bits;
113 	} while (read_seqretry(&fs_info->profiles_lock, seq));
114 
115 	return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117 
118 void btrfs_get_block_group(struct btrfs_block_group *cache)
119 {
120 	refcount_inc(&cache->refs);
121 }
122 
123 void btrfs_put_block_group(struct btrfs_block_group *cache)
124 {
125 	if (refcount_dec_and_test(&cache->refs)) {
126 		WARN_ON(cache->pinned > 0);
127 		/*
128 		 * If there was a failure to cleanup a log tree, very likely due
129 		 * to an IO failure on a writeback attempt of one or more of its
130 		 * extent buffers, we could not do proper (and cheap) unaccounting
131 		 * of their reserved space, so don't warn on reserved > 0 in that
132 		 * case.
133 		 */
134 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 			WARN_ON(cache->reserved > 0);
137 
138 		/*
139 		 * A block_group shouldn't be on the discard_list anymore.
140 		 * Remove the block_group from the discard_list to prevent us
141 		 * from causing a panic due to NULL pointer dereference.
142 		 */
143 		if (WARN_ON(!list_empty(&cache->discard_list)))
144 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
145 						  cache);
146 
147 		/*
148 		 * If not empty, someone is still holding mutex of
149 		 * full_stripe_lock, which can only be released by caller.
150 		 * And it will definitely cause use-after-free when caller
151 		 * tries to release full stripe lock.
152 		 *
153 		 * No better way to resolve, but only to warn.
154 		 */
155 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 		kfree(cache->free_space_ctl);
157 		kfree(cache->physical_map);
158 		kfree(cache);
159 	}
160 }
161 
162 /*
163  * This adds the block group to the fs_info rb tree for the block group cache
164  */
165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
166 				       struct btrfs_block_group *block_group)
167 {
168 	struct rb_node **p;
169 	struct rb_node *parent = NULL;
170 	struct btrfs_block_group *cache;
171 	bool leftmost = true;
172 
173 	ASSERT(block_group->length != 0);
174 
175 	write_lock(&info->block_group_cache_lock);
176 	p = &info->block_group_cache_tree.rb_root.rb_node;
177 
178 	while (*p) {
179 		parent = *p;
180 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
181 		if (block_group->start < cache->start) {
182 			p = &(*p)->rb_left;
183 		} else if (block_group->start > cache->start) {
184 			p = &(*p)->rb_right;
185 			leftmost = false;
186 		} else {
187 			write_unlock(&info->block_group_cache_lock);
188 			return -EEXIST;
189 		}
190 	}
191 
192 	rb_link_node(&block_group->cache_node, parent, p);
193 	rb_insert_color_cached(&block_group->cache_node,
194 			       &info->block_group_cache_tree, leftmost);
195 
196 	write_unlock(&info->block_group_cache_lock);
197 
198 	return 0;
199 }
200 
201 /*
202  * This will return the block group at or after bytenr if contains is 0, else
203  * it will return the block group that contains the bytenr
204  */
205 static struct btrfs_block_group *block_group_cache_tree_search(
206 		struct btrfs_fs_info *info, u64 bytenr, int contains)
207 {
208 	struct btrfs_block_group *cache, *ret = NULL;
209 	struct rb_node *n;
210 	u64 end, start;
211 
212 	read_lock(&info->block_group_cache_lock);
213 	n = info->block_group_cache_tree.rb_root.rb_node;
214 
215 	while (n) {
216 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
217 		end = cache->start + cache->length - 1;
218 		start = cache->start;
219 
220 		if (bytenr < start) {
221 			if (!contains && (!ret || start < ret->start))
222 				ret = cache;
223 			n = n->rb_left;
224 		} else if (bytenr > start) {
225 			if (contains && bytenr <= end) {
226 				ret = cache;
227 				break;
228 			}
229 			n = n->rb_right;
230 		} else {
231 			ret = cache;
232 			break;
233 		}
234 	}
235 	if (ret)
236 		btrfs_get_block_group(ret);
237 	read_unlock(&info->block_group_cache_lock);
238 
239 	return ret;
240 }
241 
242 /*
243  * Return the block group that starts at or after bytenr
244  */
245 struct btrfs_block_group *btrfs_lookup_first_block_group(
246 		struct btrfs_fs_info *info, u64 bytenr)
247 {
248 	return block_group_cache_tree_search(info, bytenr, 0);
249 }
250 
251 /*
252  * Return the block group that contains the given bytenr
253  */
254 struct btrfs_block_group *btrfs_lookup_block_group(
255 		struct btrfs_fs_info *info, u64 bytenr)
256 {
257 	return block_group_cache_tree_search(info, bytenr, 1);
258 }
259 
260 struct btrfs_block_group *btrfs_next_block_group(
261 		struct btrfs_block_group *cache)
262 {
263 	struct btrfs_fs_info *fs_info = cache->fs_info;
264 	struct rb_node *node;
265 
266 	read_lock(&fs_info->block_group_cache_lock);
267 
268 	/* If our block group was removed, we need a full search. */
269 	if (RB_EMPTY_NODE(&cache->cache_node)) {
270 		const u64 next_bytenr = cache->start + cache->length;
271 
272 		read_unlock(&fs_info->block_group_cache_lock);
273 		btrfs_put_block_group(cache);
274 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
275 	}
276 	node = rb_next(&cache->cache_node);
277 	btrfs_put_block_group(cache);
278 	if (node) {
279 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
280 		btrfs_get_block_group(cache);
281 	} else
282 		cache = NULL;
283 	read_unlock(&fs_info->block_group_cache_lock);
284 	return cache;
285 }
286 
287 /**
288  * Check if we can do a NOCOW write for a given extent.
289  *
290  * @fs_info:       The filesystem information object.
291  * @bytenr:        Logical start address of the extent.
292  *
293  * Check if we can do a NOCOW write for the given extent, and increments the
294  * number of NOCOW writers in the block group that contains the extent, as long
295  * as the block group exists and it's currently not in read-only mode.
296  *
297  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
298  *          is responsible for calling btrfs_dec_nocow_writers() later.
299  *
300  *          Or NULL if we can not do a NOCOW write
301  */
302 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
303 						  u64 bytenr)
304 {
305 	struct btrfs_block_group *bg;
306 	bool can_nocow = true;
307 
308 	bg = btrfs_lookup_block_group(fs_info, bytenr);
309 	if (!bg)
310 		return NULL;
311 
312 	spin_lock(&bg->lock);
313 	if (bg->ro)
314 		can_nocow = false;
315 	else
316 		atomic_inc(&bg->nocow_writers);
317 	spin_unlock(&bg->lock);
318 
319 	if (!can_nocow) {
320 		btrfs_put_block_group(bg);
321 		return NULL;
322 	}
323 
324 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
325 	return bg;
326 }
327 
328 /**
329  * Decrement the number of NOCOW writers in a block group.
330  *
331  * @bg:       The block group.
332  *
333  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
334  * and on the block group returned by that call. Typically this is called after
335  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
336  * relocation.
337  *
338  * After this call, the caller should not use the block group anymore. It it wants
339  * to use it, then it should get a reference on it before calling this function.
340  */
341 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
342 {
343 	if (atomic_dec_and_test(&bg->nocow_writers))
344 		wake_up_var(&bg->nocow_writers);
345 
346 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
347 	btrfs_put_block_group(bg);
348 }
349 
350 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
351 {
352 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
353 }
354 
355 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
356 					const u64 start)
357 {
358 	struct btrfs_block_group *bg;
359 
360 	bg = btrfs_lookup_block_group(fs_info, start);
361 	ASSERT(bg);
362 	if (atomic_dec_and_test(&bg->reservations))
363 		wake_up_var(&bg->reservations);
364 	btrfs_put_block_group(bg);
365 }
366 
367 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
368 {
369 	struct btrfs_space_info *space_info = bg->space_info;
370 
371 	ASSERT(bg->ro);
372 
373 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
374 		return;
375 
376 	/*
377 	 * Our block group is read only but before we set it to read only,
378 	 * some task might have had allocated an extent from it already, but it
379 	 * has not yet created a respective ordered extent (and added it to a
380 	 * root's list of ordered extents).
381 	 * Therefore wait for any task currently allocating extents, since the
382 	 * block group's reservations counter is incremented while a read lock
383 	 * on the groups' semaphore is held and decremented after releasing
384 	 * the read access on that semaphore and creating the ordered extent.
385 	 */
386 	down_write(&space_info->groups_sem);
387 	up_write(&space_info->groups_sem);
388 
389 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
390 }
391 
392 struct btrfs_caching_control *btrfs_get_caching_control(
393 		struct btrfs_block_group *cache)
394 {
395 	struct btrfs_caching_control *ctl;
396 
397 	spin_lock(&cache->lock);
398 	if (!cache->caching_ctl) {
399 		spin_unlock(&cache->lock);
400 		return NULL;
401 	}
402 
403 	ctl = cache->caching_ctl;
404 	refcount_inc(&ctl->count);
405 	spin_unlock(&cache->lock);
406 	return ctl;
407 }
408 
409 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
410 {
411 	if (refcount_dec_and_test(&ctl->count))
412 		kfree(ctl);
413 }
414 
415 /*
416  * When we wait for progress in the block group caching, its because our
417  * allocation attempt failed at least once.  So, we must sleep and let some
418  * progress happen before we try again.
419  *
420  * This function will sleep at least once waiting for new free space to show
421  * up, and then it will check the block group free space numbers for our min
422  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
423  * a free extent of a given size, but this is a good start.
424  *
425  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
426  * any of the information in this block group.
427  */
428 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
429 					   u64 num_bytes)
430 {
431 	struct btrfs_caching_control *caching_ctl;
432 
433 	caching_ctl = btrfs_get_caching_control(cache);
434 	if (!caching_ctl)
435 		return;
436 
437 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
438 		   (cache->free_space_ctl->free_space >= num_bytes));
439 
440 	btrfs_put_caching_control(caching_ctl);
441 }
442 
443 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
444 				       struct btrfs_caching_control *caching_ctl)
445 {
446 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
447 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
448 }
449 
450 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
451 {
452 	struct btrfs_caching_control *caching_ctl;
453 	int ret;
454 
455 	caching_ctl = btrfs_get_caching_control(cache);
456 	if (!caching_ctl)
457 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
458 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
459 	btrfs_put_caching_control(caching_ctl);
460 	return ret;
461 }
462 
463 #ifdef CONFIG_BTRFS_DEBUG
464 static void fragment_free_space(struct btrfs_block_group *block_group)
465 {
466 	struct btrfs_fs_info *fs_info = block_group->fs_info;
467 	u64 start = block_group->start;
468 	u64 len = block_group->length;
469 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
470 		fs_info->nodesize : fs_info->sectorsize;
471 	u64 step = chunk << 1;
472 
473 	while (len > chunk) {
474 		btrfs_remove_free_space(block_group, start, chunk);
475 		start += step;
476 		if (len < step)
477 			len = 0;
478 		else
479 			len -= step;
480 	}
481 }
482 #endif
483 
484 /*
485  * This is only called by btrfs_cache_block_group, since we could have freed
486  * extents we need to check the pinned_extents for any extents that can't be
487  * used yet since their free space will be released as soon as the transaction
488  * commits.
489  */
490 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
491 {
492 	struct btrfs_fs_info *info = block_group->fs_info;
493 	u64 extent_start, extent_end, size, total_added = 0;
494 	int ret;
495 
496 	while (start < end) {
497 		ret = find_first_extent_bit(&info->excluded_extents, start,
498 					    &extent_start, &extent_end,
499 					    EXTENT_DIRTY | EXTENT_UPTODATE,
500 					    NULL);
501 		if (ret)
502 			break;
503 
504 		if (extent_start <= start) {
505 			start = extent_end + 1;
506 		} else if (extent_start > start && extent_start < end) {
507 			size = extent_start - start;
508 			total_added += size;
509 			ret = btrfs_add_free_space_async_trimmed(block_group,
510 								 start, size);
511 			BUG_ON(ret); /* -ENOMEM or logic error */
512 			start = extent_end + 1;
513 		} else {
514 			break;
515 		}
516 	}
517 
518 	if (start < end) {
519 		size = end - start;
520 		total_added += size;
521 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
522 							 size);
523 		BUG_ON(ret); /* -ENOMEM or logic error */
524 	}
525 
526 	return total_added;
527 }
528 
529 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
530 {
531 	struct btrfs_block_group *block_group = caching_ctl->block_group;
532 	struct btrfs_fs_info *fs_info = block_group->fs_info;
533 	struct btrfs_root *extent_root;
534 	struct btrfs_path *path;
535 	struct extent_buffer *leaf;
536 	struct btrfs_key key;
537 	u64 total_found = 0;
538 	u64 last = 0;
539 	u32 nritems;
540 	int ret;
541 	bool wakeup = true;
542 
543 	path = btrfs_alloc_path();
544 	if (!path)
545 		return -ENOMEM;
546 
547 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
548 	extent_root = btrfs_extent_root(fs_info, last);
549 
550 #ifdef CONFIG_BTRFS_DEBUG
551 	/*
552 	 * If we're fragmenting we don't want to make anybody think we can
553 	 * allocate from this block group until we've had a chance to fragment
554 	 * the free space.
555 	 */
556 	if (btrfs_should_fragment_free_space(block_group))
557 		wakeup = false;
558 #endif
559 	/*
560 	 * We don't want to deadlock with somebody trying to allocate a new
561 	 * extent for the extent root while also trying to search the extent
562 	 * root to add free space.  So we skip locking and search the commit
563 	 * root, since its read-only
564 	 */
565 	path->skip_locking = 1;
566 	path->search_commit_root = 1;
567 	path->reada = READA_FORWARD;
568 
569 	key.objectid = last;
570 	key.offset = 0;
571 	key.type = BTRFS_EXTENT_ITEM_KEY;
572 
573 next:
574 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
575 	if (ret < 0)
576 		goto out;
577 
578 	leaf = path->nodes[0];
579 	nritems = btrfs_header_nritems(leaf);
580 
581 	while (1) {
582 		if (btrfs_fs_closing(fs_info) > 1) {
583 			last = (u64)-1;
584 			break;
585 		}
586 
587 		if (path->slots[0] < nritems) {
588 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 		} else {
590 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
591 			if (ret)
592 				break;
593 
594 			if (need_resched() ||
595 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
596 				if (wakeup)
597 					caching_ctl->progress = last;
598 				btrfs_release_path(path);
599 				up_read(&fs_info->commit_root_sem);
600 				mutex_unlock(&caching_ctl->mutex);
601 				cond_resched();
602 				mutex_lock(&caching_ctl->mutex);
603 				down_read(&fs_info->commit_root_sem);
604 				goto next;
605 			}
606 
607 			ret = btrfs_next_leaf(extent_root, path);
608 			if (ret < 0)
609 				goto out;
610 			if (ret)
611 				break;
612 			leaf = path->nodes[0];
613 			nritems = btrfs_header_nritems(leaf);
614 			continue;
615 		}
616 
617 		if (key.objectid < last) {
618 			key.objectid = last;
619 			key.offset = 0;
620 			key.type = BTRFS_EXTENT_ITEM_KEY;
621 
622 			if (wakeup)
623 				caching_ctl->progress = last;
624 			btrfs_release_path(path);
625 			goto next;
626 		}
627 
628 		if (key.objectid < block_group->start) {
629 			path->slots[0]++;
630 			continue;
631 		}
632 
633 		if (key.objectid >= block_group->start + block_group->length)
634 			break;
635 
636 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
637 		    key.type == BTRFS_METADATA_ITEM_KEY) {
638 			total_found += add_new_free_space(block_group, last,
639 							  key.objectid);
640 			if (key.type == BTRFS_METADATA_ITEM_KEY)
641 				last = key.objectid +
642 					fs_info->nodesize;
643 			else
644 				last = key.objectid + key.offset;
645 
646 			if (total_found > CACHING_CTL_WAKE_UP) {
647 				total_found = 0;
648 				if (wakeup)
649 					wake_up(&caching_ctl->wait);
650 			}
651 		}
652 		path->slots[0]++;
653 	}
654 	ret = 0;
655 
656 	total_found += add_new_free_space(block_group, last,
657 				block_group->start + block_group->length);
658 	caching_ctl->progress = (u64)-1;
659 
660 out:
661 	btrfs_free_path(path);
662 	return ret;
663 }
664 
665 static noinline void caching_thread(struct btrfs_work *work)
666 {
667 	struct btrfs_block_group *block_group;
668 	struct btrfs_fs_info *fs_info;
669 	struct btrfs_caching_control *caching_ctl;
670 	int ret;
671 
672 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
673 	block_group = caching_ctl->block_group;
674 	fs_info = block_group->fs_info;
675 
676 	mutex_lock(&caching_ctl->mutex);
677 	down_read(&fs_info->commit_root_sem);
678 
679 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
680 		ret = load_free_space_cache(block_group);
681 		if (ret == 1) {
682 			ret = 0;
683 			goto done;
684 		}
685 
686 		/*
687 		 * We failed to load the space cache, set ourselves to
688 		 * CACHE_STARTED and carry on.
689 		 */
690 		spin_lock(&block_group->lock);
691 		block_group->cached = BTRFS_CACHE_STARTED;
692 		spin_unlock(&block_group->lock);
693 		wake_up(&caching_ctl->wait);
694 	}
695 
696 	/*
697 	 * If we are in the transaction that populated the free space tree we
698 	 * can't actually cache from the free space tree as our commit root and
699 	 * real root are the same, so we could change the contents of the blocks
700 	 * while caching.  Instead do the slow caching in this case, and after
701 	 * the transaction has committed we will be safe.
702 	 */
703 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
704 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
705 		ret = load_free_space_tree(caching_ctl);
706 	else
707 		ret = load_extent_tree_free(caching_ctl);
708 done:
709 	spin_lock(&block_group->lock);
710 	block_group->caching_ctl = NULL;
711 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
712 	spin_unlock(&block_group->lock);
713 
714 #ifdef CONFIG_BTRFS_DEBUG
715 	if (btrfs_should_fragment_free_space(block_group)) {
716 		u64 bytes_used;
717 
718 		spin_lock(&block_group->space_info->lock);
719 		spin_lock(&block_group->lock);
720 		bytes_used = block_group->length - block_group->used;
721 		block_group->space_info->bytes_used += bytes_used >> 1;
722 		spin_unlock(&block_group->lock);
723 		spin_unlock(&block_group->space_info->lock);
724 		fragment_free_space(block_group);
725 	}
726 #endif
727 
728 	caching_ctl->progress = (u64)-1;
729 
730 	up_read(&fs_info->commit_root_sem);
731 	btrfs_free_excluded_extents(block_group);
732 	mutex_unlock(&caching_ctl->mutex);
733 
734 	wake_up(&caching_ctl->wait);
735 
736 	btrfs_put_caching_control(caching_ctl);
737 	btrfs_put_block_group(block_group);
738 }
739 
740 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
741 {
742 	struct btrfs_fs_info *fs_info = cache->fs_info;
743 	struct btrfs_caching_control *caching_ctl = NULL;
744 	int ret = 0;
745 
746 	/* Allocator for zoned filesystems does not use the cache at all */
747 	if (btrfs_is_zoned(fs_info))
748 		return 0;
749 
750 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
751 	if (!caching_ctl)
752 		return -ENOMEM;
753 
754 	INIT_LIST_HEAD(&caching_ctl->list);
755 	mutex_init(&caching_ctl->mutex);
756 	init_waitqueue_head(&caching_ctl->wait);
757 	caching_ctl->block_group = cache;
758 	caching_ctl->progress = cache->start;
759 	refcount_set(&caching_ctl->count, 2);
760 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
761 
762 	spin_lock(&cache->lock);
763 	if (cache->cached != BTRFS_CACHE_NO) {
764 		kfree(caching_ctl);
765 
766 		caching_ctl = cache->caching_ctl;
767 		if (caching_ctl)
768 			refcount_inc(&caching_ctl->count);
769 		spin_unlock(&cache->lock);
770 		goto out;
771 	}
772 	WARN_ON(cache->caching_ctl);
773 	cache->caching_ctl = caching_ctl;
774 	cache->cached = BTRFS_CACHE_STARTED;
775 	cache->has_caching_ctl = 1;
776 	spin_unlock(&cache->lock);
777 
778 	write_lock(&fs_info->block_group_cache_lock);
779 	refcount_inc(&caching_ctl->count);
780 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
781 	write_unlock(&fs_info->block_group_cache_lock);
782 
783 	btrfs_get_block_group(cache);
784 
785 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
786 out:
787 	if (wait && caching_ctl)
788 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
789 	if (caching_ctl)
790 		btrfs_put_caching_control(caching_ctl);
791 
792 	return ret;
793 }
794 
795 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
796 {
797 	u64 extra_flags = chunk_to_extended(flags) &
798 				BTRFS_EXTENDED_PROFILE_MASK;
799 
800 	write_seqlock(&fs_info->profiles_lock);
801 	if (flags & BTRFS_BLOCK_GROUP_DATA)
802 		fs_info->avail_data_alloc_bits &= ~extra_flags;
803 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
804 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
805 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
806 		fs_info->avail_system_alloc_bits &= ~extra_flags;
807 	write_sequnlock(&fs_info->profiles_lock);
808 }
809 
810 /*
811  * Clear incompat bits for the following feature(s):
812  *
813  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
814  *            in the whole filesystem
815  *
816  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
817  */
818 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
819 {
820 	bool found_raid56 = false;
821 	bool found_raid1c34 = false;
822 
823 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
824 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
825 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
826 		struct list_head *head = &fs_info->space_info;
827 		struct btrfs_space_info *sinfo;
828 
829 		list_for_each_entry_rcu(sinfo, head, list) {
830 			down_read(&sinfo->groups_sem);
831 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
832 				found_raid56 = true;
833 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
834 				found_raid56 = true;
835 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
836 				found_raid1c34 = true;
837 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
838 				found_raid1c34 = true;
839 			up_read(&sinfo->groups_sem);
840 		}
841 		if (!found_raid56)
842 			btrfs_clear_fs_incompat(fs_info, RAID56);
843 		if (!found_raid1c34)
844 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
845 	}
846 }
847 
848 static int remove_block_group_item(struct btrfs_trans_handle *trans,
849 				   struct btrfs_path *path,
850 				   struct btrfs_block_group *block_group)
851 {
852 	struct btrfs_fs_info *fs_info = trans->fs_info;
853 	struct btrfs_root *root;
854 	struct btrfs_key key;
855 	int ret;
856 
857 	root = btrfs_block_group_root(fs_info);
858 	key.objectid = block_group->start;
859 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
860 	key.offset = block_group->length;
861 
862 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
863 	if (ret > 0)
864 		ret = -ENOENT;
865 	if (ret < 0)
866 		return ret;
867 
868 	ret = btrfs_del_item(trans, root, path);
869 	return ret;
870 }
871 
872 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
873 			     u64 group_start, struct extent_map *em)
874 {
875 	struct btrfs_fs_info *fs_info = trans->fs_info;
876 	struct btrfs_path *path;
877 	struct btrfs_block_group *block_group;
878 	struct btrfs_free_cluster *cluster;
879 	struct inode *inode;
880 	struct kobject *kobj = NULL;
881 	int ret;
882 	int index;
883 	int factor;
884 	struct btrfs_caching_control *caching_ctl = NULL;
885 	bool remove_em;
886 	bool remove_rsv = false;
887 
888 	block_group = btrfs_lookup_block_group(fs_info, group_start);
889 	BUG_ON(!block_group);
890 	BUG_ON(!block_group->ro);
891 
892 	trace_btrfs_remove_block_group(block_group);
893 	/*
894 	 * Free the reserved super bytes from this block group before
895 	 * remove it.
896 	 */
897 	btrfs_free_excluded_extents(block_group);
898 	btrfs_free_ref_tree_range(fs_info, block_group->start,
899 				  block_group->length);
900 
901 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
902 	factor = btrfs_bg_type_to_factor(block_group->flags);
903 
904 	/* make sure this block group isn't part of an allocation cluster */
905 	cluster = &fs_info->data_alloc_cluster;
906 	spin_lock(&cluster->refill_lock);
907 	btrfs_return_cluster_to_free_space(block_group, cluster);
908 	spin_unlock(&cluster->refill_lock);
909 
910 	/*
911 	 * make sure this block group isn't part of a metadata
912 	 * allocation cluster
913 	 */
914 	cluster = &fs_info->meta_alloc_cluster;
915 	spin_lock(&cluster->refill_lock);
916 	btrfs_return_cluster_to_free_space(block_group, cluster);
917 	spin_unlock(&cluster->refill_lock);
918 
919 	btrfs_clear_treelog_bg(block_group);
920 	btrfs_clear_data_reloc_bg(block_group);
921 
922 	path = btrfs_alloc_path();
923 	if (!path) {
924 		ret = -ENOMEM;
925 		goto out;
926 	}
927 
928 	/*
929 	 * get the inode first so any iput calls done for the io_list
930 	 * aren't the final iput (no unlinks allowed now)
931 	 */
932 	inode = lookup_free_space_inode(block_group, path);
933 
934 	mutex_lock(&trans->transaction->cache_write_mutex);
935 	/*
936 	 * Make sure our free space cache IO is done before removing the
937 	 * free space inode
938 	 */
939 	spin_lock(&trans->transaction->dirty_bgs_lock);
940 	if (!list_empty(&block_group->io_list)) {
941 		list_del_init(&block_group->io_list);
942 
943 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
944 
945 		spin_unlock(&trans->transaction->dirty_bgs_lock);
946 		btrfs_wait_cache_io(trans, block_group, path);
947 		btrfs_put_block_group(block_group);
948 		spin_lock(&trans->transaction->dirty_bgs_lock);
949 	}
950 
951 	if (!list_empty(&block_group->dirty_list)) {
952 		list_del_init(&block_group->dirty_list);
953 		remove_rsv = true;
954 		btrfs_put_block_group(block_group);
955 	}
956 	spin_unlock(&trans->transaction->dirty_bgs_lock);
957 	mutex_unlock(&trans->transaction->cache_write_mutex);
958 
959 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
960 	if (ret)
961 		goto out;
962 
963 	write_lock(&fs_info->block_group_cache_lock);
964 	rb_erase_cached(&block_group->cache_node,
965 			&fs_info->block_group_cache_tree);
966 	RB_CLEAR_NODE(&block_group->cache_node);
967 
968 	/* Once for the block groups rbtree */
969 	btrfs_put_block_group(block_group);
970 
971 	write_unlock(&fs_info->block_group_cache_lock);
972 
973 	down_write(&block_group->space_info->groups_sem);
974 	/*
975 	 * we must use list_del_init so people can check to see if they
976 	 * are still on the list after taking the semaphore
977 	 */
978 	list_del_init(&block_group->list);
979 	if (list_empty(&block_group->space_info->block_groups[index])) {
980 		kobj = block_group->space_info->block_group_kobjs[index];
981 		block_group->space_info->block_group_kobjs[index] = NULL;
982 		clear_avail_alloc_bits(fs_info, block_group->flags);
983 	}
984 	up_write(&block_group->space_info->groups_sem);
985 	clear_incompat_bg_bits(fs_info, block_group->flags);
986 	if (kobj) {
987 		kobject_del(kobj);
988 		kobject_put(kobj);
989 	}
990 
991 	if (block_group->has_caching_ctl)
992 		caching_ctl = btrfs_get_caching_control(block_group);
993 	if (block_group->cached == BTRFS_CACHE_STARTED)
994 		btrfs_wait_block_group_cache_done(block_group);
995 	if (block_group->has_caching_ctl) {
996 		write_lock(&fs_info->block_group_cache_lock);
997 		if (!caching_ctl) {
998 			struct btrfs_caching_control *ctl;
999 
1000 			list_for_each_entry(ctl,
1001 				    &fs_info->caching_block_groups, list)
1002 				if (ctl->block_group == block_group) {
1003 					caching_ctl = ctl;
1004 					refcount_inc(&caching_ctl->count);
1005 					break;
1006 				}
1007 		}
1008 		if (caching_ctl)
1009 			list_del_init(&caching_ctl->list);
1010 		write_unlock(&fs_info->block_group_cache_lock);
1011 		if (caching_ctl) {
1012 			/* Once for the caching bgs list and once for us. */
1013 			btrfs_put_caching_control(caching_ctl);
1014 			btrfs_put_caching_control(caching_ctl);
1015 		}
1016 	}
1017 
1018 	spin_lock(&trans->transaction->dirty_bgs_lock);
1019 	WARN_ON(!list_empty(&block_group->dirty_list));
1020 	WARN_ON(!list_empty(&block_group->io_list));
1021 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1022 
1023 	btrfs_remove_free_space_cache(block_group);
1024 
1025 	spin_lock(&block_group->space_info->lock);
1026 	list_del_init(&block_group->ro_list);
1027 
1028 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1029 		WARN_ON(block_group->space_info->total_bytes
1030 			< block_group->length);
1031 		WARN_ON(block_group->space_info->bytes_readonly
1032 			< block_group->length - block_group->zone_unusable);
1033 		WARN_ON(block_group->space_info->bytes_zone_unusable
1034 			< block_group->zone_unusable);
1035 		WARN_ON(block_group->space_info->disk_total
1036 			< block_group->length * factor);
1037 		WARN_ON(block_group->zone_is_active &&
1038 			block_group->space_info->active_total_bytes
1039 			< block_group->length);
1040 	}
1041 	block_group->space_info->total_bytes -= block_group->length;
1042 	if (block_group->zone_is_active)
1043 		block_group->space_info->active_total_bytes -= block_group->length;
1044 	block_group->space_info->bytes_readonly -=
1045 		(block_group->length - block_group->zone_unusable);
1046 	block_group->space_info->bytes_zone_unusable -=
1047 		block_group->zone_unusable;
1048 	block_group->space_info->disk_total -= block_group->length * factor;
1049 
1050 	spin_unlock(&block_group->space_info->lock);
1051 
1052 	/*
1053 	 * Remove the free space for the block group from the free space tree
1054 	 * and the block group's item from the extent tree before marking the
1055 	 * block group as removed. This is to prevent races with tasks that
1056 	 * freeze and unfreeze a block group, this task and another task
1057 	 * allocating a new block group - the unfreeze task ends up removing
1058 	 * the block group's extent map before the task calling this function
1059 	 * deletes the block group item from the extent tree, allowing for
1060 	 * another task to attempt to create another block group with the same
1061 	 * item key (and failing with -EEXIST and a transaction abort).
1062 	 */
1063 	ret = remove_block_group_free_space(trans, block_group);
1064 	if (ret)
1065 		goto out;
1066 
1067 	ret = remove_block_group_item(trans, path, block_group);
1068 	if (ret < 0)
1069 		goto out;
1070 
1071 	spin_lock(&block_group->lock);
1072 	block_group->removed = 1;
1073 	/*
1074 	 * At this point trimming or scrub can't start on this block group,
1075 	 * because we removed the block group from the rbtree
1076 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1077 	 * even if someone already got this block group before we removed it
1078 	 * from the rbtree, they have already incremented block_group->frozen -
1079 	 * if they didn't, for the trimming case they won't find any free space
1080 	 * entries because we already removed them all when we called
1081 	 * btrfs_remove_free_space_cache().
1082 	 *
1083 	 * And we must not remove the extent map from the fs_info->mapping_tree
1084 	 * to prevent the same logical address range and physical device space
1085 	 * ranges from being reused for a new block group. This is needed to
1086 	 * avoid races with trimming and scrub.
1087 	 *
1088 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1089 	 * completely transactionless, so while it is trimming a range the
1090 	 * currently running transaction might finish and a new one start,
1091 	 * allowing for new block groups to be created that can reuse the same
1092 	 * physical device locations unless we take this special care.
1093 	 *
1094 	 * There may also be an implicit trim operation if the file system
1095 	 * is mounted with -odiscard. The same protections must remain
1096 	 * in place until the extents have been discarded completely when
1097 	 * the transaction commit has completed.
1098 	 */
1099 	remove_em = (atomic_read(&block_group->frozen) == 0);
1100 	spin_unlock(&block_group->lock);
1101 
1102 	if (remove_em) {
1103 		struct extent_map_tree *em_tree;
1104 
1105 		em_tree = &fs_info->mapping_tree;
1106 		write_lock(&em_tree->lock);
1107 		remove_extent_mapping(em_tree, em);
1108 		write_unlock(&em_tree->lock);
1109 		/* once for the tree */
1110 		free_extent_map(em);
1111 	}
1112 
1113 out:
1114 	/* Once for the lookup reference */
1115 	btrfs_put_block_group(block_group);
1116 	if (remove_rsv)
1117 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1118 	btrfs_free_path(path);
1119 	return ret;
1120 }
1121 
1122 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1123 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1124 {
1125 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1126 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1127 	struct extent_map *em;
1128 	struct map_lookup *map;
1129 	unsigned int num_items;
1130 
1131 	read_lock(&em_tree->lock);
1132 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1133 	read_unlock(&em_tree->lock);
1134 	ASSERT(em && em->start == chunk_offset);
1135 
1136 	/*
1137 	 * We need to reserve 3 + N units from the metadata space info in order
1138 	 * to remove a block group (done at btrfs_remove_chunk() and at
1139 	 * btrfs_remove_block_group()), which are used for:
1140 	 *
1141 	 * 1 unit for adding the free space inode's orphan (located in the tree
1142 	 * of tree roots).
1143 	 * 1 unit for deleting the block group item (located in the extent
1144 	 * tree).
1145 	 * 1 unit for deleting the free space item (located in tree of tree
1146 	 * roots).
1147 	 * N units for deleting N device extent items corresponding to each
1148 	 * stripe (located in the device tree).
1149 	 *
1150 	 * In order to remove a block group we also need to reserve units in the
1151 	 * system space info in order to update the chunk tree (update one or
1152 	 * more device items and remove one chunk item), but this is done at
1153 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1154 	 */
1155 	map = em->map_lookup;
1156 	num_items = 3 + map->num_stripes;
1157 	free_extent_map(em);
1158 
1159 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1160 }
1161 
1162 /*
1163  * Mark block group @cache read-only, so later write won't happen to block
1164  * group @cache.
1165  *
1166  * If @force is not set, this function will only mark the block group readonly
1167  * if we have enough free space (1M) in other metadata/system block groups.
1168  * If @force is not set, this function will mark the block group readonly
1169  * without checking free space.
1170  *
1171  * NOTE: This function doesn't care if other block groups can contain all the
1172  * data in this block group. That check should be done by relocation routine,
1173  * not this function.
1174  */
1175 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1176 {
1177 	struct btrfs_space_info *sinfo = cache->space_info;
1178 	u64 num_bytes;
1179 	int ret = -ENOSPC;
1180 
1181 	spin_lock(&sinfo->lock);
1182 	spin_lock(&cache->lock);
1183 
1184 	if (cache->swap_extents) {
1185 		ret = -ETXTBSY;
1186 		goto out;
1187 	}
1188 
1189 	if (cache->ro) {
1190 		cache->ro++;
1191 		ret = 0;
1192 		goto out;
1193 	}
1194 
1195 	num_bytes = cache->length - cache->reserved - cache->pinned -
1196 		    cache->bytes_super - cache->zone_unusable - cache->used;
1197 
1198 	/*
1199 	 * Data never overcommits, even in mixed mode, so do just the straight
1200 	 * check of left over space in how much we have allocated.
1201 	 */
1202 	if (force) {
1203 		ret = 0;
1204 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1205 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1206 
1207 		/*
1208 		 * Here we make sure if we mark this bg RO, we still have enough
1209 		 * free space as buffer.
1210 		 */
1211 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1212 			ret = 0;
1213 	} else {
1214 		/*
1215 		 * We overcommit metadata, so we need to do the
1216 		 * btrfs_can_overcommit check here, and we need to pass in
1217 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1218 		 * leeway to allow us to mark this block group as read only.
1219 		 */
1220 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1221 					 BTRFS_RESERVE_NO_FLUSH))
1222 			ret = 0;
1223 	}
1224 
1225 	if (!ret) {
1226 		sinfo->bytes_readonly += num_bytes;
1227 		if (btrfs_is_zoned(cache->fs_info)) {
1228 			/* Migrate zone_unusable bytes to readonly */
1229 			sinfo->bytes_readonly += cache->zone_unusable;
1230 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1231 			cache->zone_unusable = 0;
1232 		}
1233 		cache->ro++;
1234 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1235 	}
1236 out:
1237 	spin_unlock(&cache->lock);
1238 	spin_unlock(&sinfo->lock);
1239 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1240 		btrfs_info(cache->fs_info,
1241 			"unable to make block group %llu ro", cache->start);
1242 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1243 	}
1244 	return ret;
1245 }
1246 
1247 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1248 				 struct btrfs_block_group *bg)
1249 {
1250 	struct btrfs_fs_info *fs_info = bg->fs_info;
1251 	struct btrfs_transaction *prev_trans = NULL;
1252 	const u64 start = bg->start;
1253 	const u64 end = start + bg->length - 1;
1254 	int ret;
1255 
1256 	spin_lock(&fs_info->trans_lock);
1257 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1258 		prev_trans = list_last_entry(&trans->transaction->list,
1259 					     struct btrfs_transaction, list);
1260 		refcount_inc(&prev_trans->use_count);
1261 	}
1262 	spin_unlock(&fs_info->trans_lock);
1263 
1264 	/*
1265 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1266 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1267 	 * task might be running finish_extent_commit() for the previous
1268 	 * transaction N - 1, and have seen a range belonging to the block
1269 	 * group in pinned_extents before we were able to clear the whole block
1270 	 * group range from pinned_extents. This means that task can lookup for
1271 	 * the block group after we unpinned it from pinned_extents and removed
1272 	 * it, leading to a BUG_ON() at unpin_extent_range().
1273 	 */
1274 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1275 	if (prev_trans) {
1276 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1277 					EXTENT_DIRTY);
1278 		if (ret)
1279 			goto out;
1280 	}
1281 
1282 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1283 				EXTENT_DIRTY);
1284 out:
1285 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1286 	if (prev_trans)
1287 		btrfs_put_transaction(prev_trans);
1288 
1289 	return ret == 0;
1290 }
1291 
1292 /*
1293  * Process the unused_bgs list and remove any that don't have any allocated
1294  * space inside of them.
1295  */
1296 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1297 {
1298 	struct btrfs_block_group *block_group;
1299 	struct btrfs_space_info *space_info;
1300 	struct btrfs_trans_handle *trans;
1301 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1302 	int ret = 0;
1303 
1304 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1305 		return;
1306 
1307 	/*
1308 	 * Long running balances can keep us blocked here for eternity, so
1309 	 * simply skip deletion if we're unable to get the mutex.
1310 	 */
1311 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1312 		return;
1313 
1314 	spin_lock(&fs_info->unused_bgs_lock);
1315 	while (!list_empty(&fs_info->unused_bgs)) {
1316 		int trimming;
1317 
1318 		block_group = list_first_entry(&fs_info->unused_bgs,
1319 					       struct btrfs_block_group,
1320 					       bg_list);
1321 		list_del_init(&block_group->bg_list);
1322 
1323 		space_info = block_group->space_info;
1324 
1325 		if (ret || btrfs_mixed_space_info(space_info)) {
1326 			btrfs_put_block_group(block_group);
1327 			continue;
1328 		}
1329 		spin_unlock(&fs_info->unused_bgs_lock);
1330 
1331 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1332 
1333 		/* Don't want to race with allocators so take the groups_sem */
1334 		down_write(&space_info->groups_sem);
1335 
1336 		/*
1337 		 * Async discard moves the final block group discard to be prior
1338 		 * to the unused_bgs code path.  Therefore, if it's not fully
1339 		 * trimmed, punt it back to the async discard lists.
1340 		 */
1341 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1342 		    !btrfs_is_free_space_trimmed(block_group)) {
1343 			trace_btrfs_skip_unused_block_group(block_group);
1344 			up_write(&space_info->groups_sem);
1345 			/* Requeue if we failed because of async discard */
1346 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1347 						 block_group);
1348 			goto next;
1349 		}
1350 
1351 		spin_lock(&block_group->lock);
1352 		if (block_group->reserved || block_group->pinned ||
1353 		    block_group->used || block_group->ro ||
1354 		    list_is_singular(&block_group->list)) {
1355 			/*
1356 			 * We want to bail if we made new allocations or have
1357 			 * outstanding allocations in this block group.  We do
1358 			 * the ro check in case balance is currently acting on
1359 			 * this block group.
1360 			 */
1361 			trace_btrfs_skip_unused_block_group(block_group);
1362 			spin_unlock(&block_group->lock);
1363 			up_write(&space_info->groups_sem);
1364 			goto next;
1365 		}
1366 		spin_unlock(&block_group->lock);
1367 
1368 		/* We don't want to force the issue, only flip if it's ok. */
1369 		ret = inc_block_group_ro(block_group, 0);
1370 		up_write(&space_info->groups_sem);
1371 		if (ret < 0) {
1372 			ret = 0;
1373 			goto next;
1374 		}
1375 
1376 		ret = btrfs_zone_finish(block_group);
1377 		if (ret < 0) {
1378 			btrfs_dec_block_group_ro(block_group);
1379 			if (ret == -EAGAIN)
1380 				ret = 0;
1381 			goto next;
1382 		}
1383 
1384 		/*
1385 		 * Want to do this before we do anything else so we can recover
1386 		 * properly if we fail to join the transaction.
1387 		 */
1388 		trans = btrfs_start_trans_remove_block_group(fs_info,
1389 						     block_group->start);
1390 		if (IS_ERR(trans)) {
1391 			btrfs_dec_block_group_ro(block_group);
1392 			ret = PTR_ERR(trans);
1393 			goto next;
1394 		}
1395 
1396 		/*
1397 		 * We could have pending pinned extents for this block group,
1398 		 * just delete them, we don't care about them anymore.
1399 		 */
1400 		if (!clean_pinned_extents(trans, block_group)) {
1401 			btrfs_dec_block_group_ro(block_group);
1402 			goto end_trans;
1403 		}
1404 
1405 		/*
1406 		 * At this point, the block_group is read only and should fail
1407 		 * new allocations.  However, btrfs_finish_extent_commit() can
1408 		 * cause this block_group to be placed back on the discard
1409 		 * lists because now the block_group isn't fully discarded.
1410 		 * Bail here and try again later after discarding everything.
1411 		 */
1412 		spin_lock(&fs_info->discard_ctl.lock);
1413 		if (!list_empty(&block_group->discard_list)) {
1414 			spin_unlock(&fs_info->discard_ctl.lock);
1415 			btrfs_dec_block_group_ro(block_group);
1416 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1417 						 block_group);
1418 			goto end_trans;
1419 		}
1420 		spin_unlock(&fs_info->discard_ctl.lock);
1421 
1422 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1423 		spin_lock(&space_info->lock);
1424 		spin_lock(&block_group->lock);
1425 
1426 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1427 						     -block_group->pinned);
1428 		space_info->bytes_readonly += block_group->pinned;
1429 		block_group->pinned = 0;
1430 
1431 		spin_unlock(&block_group->lock);
1432 		spin_unlock(&space_info->lock);
1433 
1434 		/*
1435 		 * The normal path here is an unused block group is passed here,
1436 		 * then trimming is handled in the transaction commit path.
1437 		 * Async discard interposes before this to do the trimming
1438 		 * before coming down the unused block group path as trimming
1439 		 * will no longer be done later in the transaction commit path.
1440 		 */
1441 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1442 			goto flip_async;
1443 
1444 		/*
1445 		 * DISCARD can flip during remount. On zoned filesystems, we
1446 		 * need to reset sequential-required zones.
1447 		 */
1448 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1449 				btrfs_is_zoned(fs_info);
1450 
1451 		/* Implicit trim during transaction commit. */
1452 		if (trimming)
1453 			btrfs_freeze_block_group(block_group);
1454 
1455 		/*
1456 		 * Btrfs_remove_chunk will abort the transaction if things go
1457 		 * horribly wrong.
1458 		 */
1459 		ret = btrfs_remove_chunk(trans, block_group->start);
1460 
1461 		if (ret) {
1462 			if (trimming)
1463 				btrfs_unfreeze_block_group(block_group);
1464 			goto end_trans;
1465 		}
1466 
1467 		/*
1468 		 * If we're not mounted with -odiscard, we can just forget
1469 		 * about this block group. Otherwise we'll need to wait
1470 		 * until transaction commit to do the actual discard.
1471 		 */
1472 		if (trimming) {
1473 			spin_lock(&fs_info->unused_bgs_lock);
1474 			/*
1475 			 * A concurrent scrub might have added us to the list
1476 			 * fs_info->unused_bgs, so use a list_move operation
1477 			 * to add the block group to the deleted_bgs list.
1478 			 */
1479 			list_move(&block_group->bg_list,
1480 				  &trans->transaction->deleted_bgs);
1481 			spin_unlock(&fs_info->unused_bgs_lock);
1482 			btrfs_get_block_group(block_group);
1483 		}
1484 end_trans:
1485 		btrfs_end_transaction(trans);
1486 next:
1487 		btrfs_put_block_group(block_group);
1488 		spin_lock(&fs_info->unused_bgs_lock);
1489 	}
1490 	spin_unlock(&fs_info->unused_bgs_lock);
1491 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1492 	return;
1493 
1494 flip_async:
1495 	btrfs_end_transaction(trans);
1496 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1497 	btrfs_put_block_group(block_group);
1498 	btrfs_discard_punt_unused_bgs_list(fs_info);
1499 }
1500 
1501 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1502 {
1503 	struct btrfs_fs_info *fs_info = bg->fs_info;
1504 
1505 	spin_lock(&fs_info->unused_bgs_lock);
1506 	if (list_empty(&bg->bg_list)) {
1507 		btrfs_get_block_group(bg);
1508 		trace_btrfs_add_unused_block_group(bg);
1509 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1510 	}
1511 	spin_unlock(&fs_info->unused_bgs_lock);
1512 }
1513 
1514 /*
1515  * We want block groups with a low number of used bytes to be in the beginning
1516  * of the list, so they will get reclaimed first.
1517  */
1518 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1519 			   const struct list_head *b)
1520 {
1521 	const struct btrfs_block_group *bg1, *bg2;
1522 
1523 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1524 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1525 
1526 	return bg1->used > bg2->used;
1527 }
1528 
1529 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1530 {
1531 	if (btrfs_is_zoned(fs_info))
1532 		return btrfs_zoned_should_reclaim(fs_info);
1533 	return true;
1534 }
1535 
1536 void btrfs_reclaim_bgs_work(struct work_struct *work)
1537 {
1538 	struct btrfs_fs_info *fs_info =
1539 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1540 	struct btrfs_block_group *bg;
1541 	struct btrfs_space_info *space_info;
1542 
1543 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1544 		return;
1545 
1546 	if (!btrfs_should_reclaim(fs_info))
1547 		return;
1548 
1549 	sb_start_write(fs_info->sb);
1550 
1551 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1552 		sb_end_write(fs_info->sb);
1553 		return;
1554 	}
1555 
1556 	/*
1557 	 * Long running balances can keep us blocked here for eternity, so
1558 	 * simply skip reclaim if we're unable to get the mutex.
1559 	 */
1560 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1561 		btrfs_exclop_finish(fs_info);
1562 		sb_end_write(fs_info->sb);
1563 		return;
1564 	}
1565 
1566 	spin_lock(&fs_info->unused_bgs_lock);
1567 	/*
1568 	 * Sort happens under lock because we can't simply splice it and sort.
1569 	 * The block groups might still be in use and reachable via bg_list,
1570 	 * and their presence in the reclaim_bgs list must be preserved.
1571 	 */
1572 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1573 	while (!list_empty(&fs_info->reclaim_bgs)) {
1574 		u64 zone_unusable;
1575 		int ret = 0;
1576 
1577 		bg = list_first_entry(&fs_info->reclaim_bgs,
1578 				      struct btrfs_block_group,
1579 				      bg_list);
1580 		list_del_init(&bg->bg_list);
1581 
1582 		space_info = bg->space_info;
1583 		spin_unlock(&fs_info->unused_bgs_lock);
1584 
1585 		/* Don't race with allocators so take the groups_sem */
1586 		down_write(&space_info->groups_sem);
1587 
1588 		spin_lock(&bg->lock);
1589 		if (bg->reserved || bg->pinned || bg->ro) {
1590 			/*
1591 			 * We want to bail if we made new allocations or have
1592 			 * outstanding allocations in this block group.  We do
1593 			 * the ro check in case balance is currently acting on
1594 			 * this block group.
1595 			 */
1596 			spin_unlock(&bg->lock);
1597 			up_write(&space_info->groups_sem);
1598 			goto next;
1599 		}
1600 		spin_unlock(&bg->lock);
1601 
1602 		/* Get out fast, in case we're unmounting the filesystem */
1603 		if (btrfs_fs_closing(fs_info)) {
1604 			up_write(&space_info->groups_sem);
1605 			goto next;
1606 		}
1607 
1608 		/*
1609 		 * Cache the zone_unusable value before turning the block group
1610 		 * to read only. As soon as the blog group is read only it's
1611 		 * zone_unusable value gets moved to the block group's read-only
1612 		 * bytes and isn't available for calculations anymore.
1613 		 */
1614 		zone_unusable = bg->zone_unusable;
1615 		ret = inc_block_group_ro(bg, 0);
1616 		up_write(&space_info->groups_sem);
1617 		if (ret < 0)
1618 			goto next;
1619 
1620 		btrfs_info(fs_info,
1621 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1622 				bg->start, div_u64(bg->used * 100, bg->length),
1623 				div64_u64(zone_unusable * 100, bg->length));
1624 		trace_btrfs_reclaim_block_group(bg);
1625 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1626 		if (ret) {
1627 			btrfs_dec_block_group_ro(bg);
1628 			btrfs_err(fs_info, "error relocating chunk %llu",
1629 				  bg->start);
1630 		}
1631 
1632 next:
1633 		btrfs_put_block_group(bg);
1634 		spin_lock(&fs_info->unused_bgs_lock);
1635 	}
1636 	spin_unlock(&fs_info->unused_bgs_lock);
1637 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1638 	btrfs_exclop_finish(fs_info);
1639 	sb_end_write(fs_info->sb);
1640 }
1641 
1642 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1643 {
1644 	spin_lock(&fs_info->unused_bgs_lock);
1645 	if (!list_empty(&fs_info->reclaim_bgs))
1646 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1647 	spin_unlock(&fs_info->unused_bgs_lock);
1648 }
1649 
1650 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1651 {
1652 	struct btrfs_fs_info *fs_info = bg->fs_info;
1653 
1654 	spin_lock(&fs_info->unused_bgs_lock);
1655 	if (list_empty(&bg->bg_list)) {
1656 		btrfs_get_block_group(bg);
1657 		trace_btrfs_add_reclaim_block_group(bg);
1658 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1659 	}
1660 	spin_unlock(&fs_info->unused_bgs_lock);
1661 }
1662 
1663 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1664 			   struct btrfs_path *path)
1665 {
1666 	struct extent_map_tree *em_tree;
1667 	struct extent_map *em;
1668 	struct btrfs_block_group_item bg;
1669 	struct extent_buffer *leaf;
1670 	int slot;
1671 	u64 flags;
1672 	int ret = 0;
1673 
1674 	slot = path->slots[0];
1675 	leaf = path->nodes[0];
1676 
1677 	em_tree = &fs_info->mapping_tree;
1678 	read_lock(&em_tree->lock);
1679 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1680 	read_unlock(&em_tree->lock);
1681 	if (!em) {
1682 		btrfs_err(fs_info,
1683 			  "logical %llu len %llu found bg but no related chunk",
1684 			  key->objectid, key->offset);
1685 		return -ENOENT;
1686 	}
1687 
1688 	if (em->start != key->objectid || em->len != key->offset) {
1689 		btrfs_err(fs_info,
1690 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1691 			key->objectid, key->offset, em->start, em->len);
1692 		ret = -EUCLEAN;
1693 		goto out_free_em;
1694 	}
1695 
1696 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1697 			   sizeof(bg));
1698 	flags = btrfs_stack_block_group_flags(&bg) &
1699 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1700 
1701 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1702 		btrfs_err(fs_info,
1703 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1704 			  key->objectid, key->offset, flags,
1705 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1706 		ret = -EUCLEAN;
1707 	}
1708 
1709 out_free_em:
1710 	free_extent_map(em);
1711 	return ret;
1712 }
1713 
1714 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1715 				  struct btrfs_path *path,
1716 				  struct btrfs_key *key)
1717 {
1718 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1719 	int ret;
1720 	struct btrfs_key found_key;
1721 
1722 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1723 		if (found_key.objectid >= key->objectid &&
1724 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1725 			return read_bg_from_eb(fs_info, &found_key, path);
1726 		}
1727 	}
1728 	return ret;
1729 }
1730 
1731 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1732 {
1733 	u64 extra_flags = chunk_to_extended(flags) &
1734 				BTRFS_EXTENDED_PROFILE_MASK;
1735 
1736 	write_seqlock(&fs_info->profiles_lock);
1737 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1738 		fs_info->avail_data_alloc_bits |= extra_flags;
1739 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1740 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1741 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1742 		fs_info->avail_system_alloc_bits |= extra_flags;
1743 	write_sequnlock(&fs_info->profiles_lock);
1744 }
1745 
1746 /**
1747  * Map a physical disk address to a list of logical addresses
1748  *
1749  * @fs_info:       the filesystem
1750  * @chunk_start:   logical address of block group
1751  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1752  * @physical:	   physical address to map to logical addresses
1753  * @logical:	   return array of logical addresses which map to @physical
1754  * @naddrs:	   length of @logical
1755  * @stripe_len:    size of IO stripe for the given block group
1756  *
1757  * Maps a particular @physical disk address to a list of @logical addresses.
1758  * Used primarily to exclude those portions of a block group that contain super
1759  * block copies.
1760  */
1761 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1762 		     struct block_device *bdev, u64 physical, u64 **logical,
1763 		     int *naddrs, int *stripe_len)
1764 {
1765 	struct extent_map *em;
1766 	struct map_lookup *map;
1767 	u64 *buf;
1768 	u64 bytenr;
1769 	u64 data_stripe_length;
1770 	u64 io_stripe_size;
1771 	int i, nr = 0;
1772 	int ret = 0;
1773 
1774 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1775 	if (IS_ERR(em))
1776 		return -EIO;
1777 
1778 	map = em->map_lookup;
1779 	data_stripe_length = em->orig_block_len;
1780 	io_stripe_size = map->stripe_len;
1781 	chunk_start = em->start;
1782 
1783 	/* For RAID5/6 adjust to a full IO stripe length */
1784 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1785 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1786 
1787 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1788 	if (!buf) {
1789 		ret = -ENOMEM;
1790 		goto out;
1791 	}
1792 
1793 	for (i = 0; i < map->num_stripes; i++) {
1794 		bool already_inserted = false;
1795 		u64 stripe_nr;
1796 		u64 offset;
1797 		int j;
1798 
1799 		if (!in_range(physical, map->stripes[i].physical,
1800 			      data_stripe_length))
1801 			continue;
1802 
1803 		if (bdev && map->stripes[i].dev->bdev != bdev)
1804 			continue;
1805 
1806 		stripe_nr = physical - map->stripes[i].physical;
1807 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1808 
1809 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1810 				 BTRFS_BLOCK_GROUP_RAID10)) {
1811 			stripe_nr = stripe_nr * map->num_stripes + i;
1812 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1813 		}
1814 		/*
1815 		 * The remaining case would be for RAID56, multiply by
1816 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1817 		 * instead of map->stripe_len
1818 		 */
1819 
1820 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1821 
1822 		/* Ensure we don't add duplicate addresses */
1823 		for (j = 0; j < nr; j++) {
1824 			if (buf[j] == bytenr) {
1825 				already_inserted = true;
1826 				break;
1827 			}
1828 		}
1829 
1830 		if (!already_inserted)
1831 			buf[nr++] = bytenr;
1832 	}
1833 
1834 	*logical = buf;
1835 	*naddrs = nr;
1836 	*stripe_len = io_stripe_size;
1837 out:
1838 	free_extent_map(em);
1839 	return ret;
1840 }
1841 
1842 static int exclude_super_stripes(struct btrfs_block_group *cache)
1843 {
1844 	struct btrfs_fs_info *fs_info = cache->fs_info;
1845 	const bool zoned = btrfs_is_zoned(fs_info);
1846 	u64 bytenr;
1847 	u64 *logical;
1848 	int stripe_len;
1849 	int i, nr, ret;
1850 
1851 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1852 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1853 		cache->bytes_super += stripe_len;
1854 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1855 						stripe_len);
1856 		if (ret)
1857 			return ret;
1858 	}
1859 
1860 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1861 		bytenr = btrfs_sb_offset(i);
1862 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1863 				       bytenr, &logical, &nr, &stripe_len);
1864 		if (ret)
1865 			return ret;
1866 
1867 		/* Shouldn't have super stripes in sequential zones */
1868 		if (zoned && nr) {
1869 			btrfs_err(fs_info,
1870 			"zoned: block group %llu must not contain super block",
1871 				  cache->start);
1872 			return -EUCLEAN;
1873 		}
1874 
1875 		while (nr--) {
1876 			u64 len = min_t(u64, stripe_len,
1877 				cache->start + cache->length - logical[nr]);
1878 
1879 			cache->bytes_super += len;
1880 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1881 							len);
1882 			if (ret) {
1883 				kfree(logical);
1884 				return ret;
1885 			}
1886 		}
1887 
1888 		kfree(logical);
1889 	}
1890 	return 0;
1891 }
1892 
1893 static void link_block_group(struct btrfs_block_group *cache)
1894 {
1895 	struct btrfs_space_info *space_info = cache->space_info;
1896 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1897 
1898 	down_write(&space_info->groups_sem);
1899 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1900 	up_write(&space_info->groups_sem);
1901 }
1902 
1903 static struct btrfs_block_group *btrfs_create_block_group_cache(
1904 		struct btrfs_fs_info *fs_info, u64 start)
1905 {
1906 	struct btrfs_block_group *cache;
1907 
1908 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1909 	if (!cache)
1910 		return NULL;
1911 
1912 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1913 					GFP_NOFS);
1914 	if (!cache->free_space_ctl) {
1915 		kfree(cache);
1916 		return NULL;
1917 	}
1918 
1919 	cache->start = start;
1920 
1921 	cache->fs_info = fs_info;
1922 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1923 
1924 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1925 
1926 	refcount_set(&cache->refs, 1);
1927 	spin_lock_init(&cache->lock);
1928 	init_rwsem(&cache->data_rwsem);
1929 	INIT_LIST_HEAD(&cache->list);
1930 	INIT_LIST_HEAD(&cache->cluster_list);
1931 	INIT_LIST_HEAD(&cache->bg_list);
1932 	INIT_LIST_HEAD(&cache->ro_list);
1933 	INIT_LIST_HEAD(&cache->discard_list);
1934 	INIT_LIST_HEAD(&cache->dirty_list);
1935 	INIT_LIST_HEAD(&cache->io_list);
1936 	INIT_LIST_HEAD(&cache->active_bg_list);
1937 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1938 	atomic_set(&cache->frozen, 0);
1939 	mutex_init(&cache->free_space_lock);
1940 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1941 
1942 	return cache;
1943 }
1944 
1945 /*
1946  * Iterate all chunks and verify that each of them has the corresponding block
1947  * group
1948  */
1949 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1950 {
1951 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1952 	struct extent_map *em;
1953 	struct btrfs_block_group *bg;
1954 	u64 start = 0;
1955 	int ret = 0;
1956 
1957 	while (1) {
1958 		read_lock(&map_tree->lock);
1959 		/*
1960 		 * lookup_extent_mapping will return the first extent map
1961 		 * intersecting the range, so setting @len to 1 is enough to
1962 		 * get the first chunk.
1963 		 */
1964 		em = lookup_extent_mapping(map_tree, start, 1);
1965 		read_unlock(&map_tree->lock);
1966 		if (!em)
1967 			break;
1968 
1969 		bg = btrfs_lookup_block_group(fs_info, em->start);
1970 		if (!bg) {
1971 			btrfs_err(fs_info,
1972 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1973 				     em->start, em->len);
1974 			ret = -EUCLEAN;
1975 			free_extent_map(em);
1976 			break;
1977 		}
1978 		if (bg->start != em->start || bg->length != em->len ||
1979 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1980 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1981 			btrfs_err(fs_info,
1982 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1983 				em->start, em->len,
1984 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1985 				bg->start, bg->length,
1986 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1987 			ret = -EUCLEAN;
1988 			free_extent_map(em);
1989 			btrfs_put_block_group(bg);
1990 			break;
1991 		}
1992 		start = em->start + em->len;
1993 		free_extent_map(em);
1994 		btrfs_put_block_group(bg);
1995 	}
1996 	return ret;
1997 }
1998 
1999 static int read_one_block_group(struct btrfs_fs_info *info,
2000 				struct btrfs_block_group_item *bgi,
2001 				const struct btrfs_key *key,
2002 				int need_clear)
2003 {
2004 	struct btrfs_block_group *cache;
2005 	struct btrfs_space_info *space_info;
2006 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2007 	int ret;
2008 
2009 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2010 
2011 	cache = btrfs_create_block_group_cache(info, key->objectid);
2012 	if (!cache)
2013 		return -ENOMEM;
2014 
2015 	cache->length = key->offset;
2016 	cache->used = btrfs_stack_block_group_used(bgi);
2017 	cache->flags = btrfs_stack_block_group_flags(bgi);
2018 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2019 
2020 	set_free_space_tree_thresholds(cache);
2021 
2022 	if (need_clear) {
2023 		/*
2024 		 * When we mount with old space cache, we need to
2025 		 * set BTRFS_DC_CLEAR and set dirty flag.
2026 		 *
2027 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2028 		 *    truncate the old free space cache inode and
2029 		 *    setup a new one.
2030 		 * b) Setting 'dirty flag' makes sure that we flush
2031 		 *    the new space cache info onto disk.
2032 		 */
2033 		if (btrfs_test_opt(info, SPACE_CACHE))
2034 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2035 	}
2036 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2037 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2038 			btrfs_err(info,
2039 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2040 				  cache->start);
2041 			ret = -EINVAL;
2042 			goto error;
2043 	}
2044 
2045 	ret = btrfs_load_block_group_zone_info(cache, false);
2046 	if (ret) {
2047 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2048 			  cache->start);
2049 		goto error;
2050 	}
2051 
2052 	/*
2053 	 * We need to exclude the super stripes now so that the space info has
2054 	 * super bytes accounted for, otherwise we'll think we have more space
2055 	 * than we actually do.
2056 	 */
2057 	ret = exclude_super_stripes(cache);
2058 	if (ret) {
2059 		/* We may have excluded something, so call this just in case. */
2060 		btrfs_free_excluded_extents(cache);
2061 		goto error;
2062 	}
2063 
2064 	/*
2065 	 * For zoned filesystem, space after the allocation offset is the only
2066 	 * free space for a block group. So, we don't need any caching work.
2067 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2068 	 * zone_unusable space.
2069 	 *
2070 	 * For regular filesystem, check for two cases, either we are full, and
2071 	 * therefore don't need to bother with the caching work since we won't
2072 	 * find any space, or we are empty, and we can just add all the space
2073 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2074 	 * in the full case.
2075 	 */
2076 	if (btrfs_is_zoned(info)) {
2077 		btrfs_calc_zone_unusable(cache);
2078 		/* Should not have any excluded extents. Just in case, though. */
2079 		btrfs_free_excluded_extents(cache);
2080 	} else if (cache->length == cache->used) {
2081 		cache->last_byte_to_unpin = (u64)-1;
2082 		cache->cached = BTRFS_CACHE_FINISHED;
2083 		btrfs_free_excluded_extents(cache);
2084 	} else if (cache->used == 0) {
2085 		cache->last_byte_to_unpin = (u64)-1;
2086 		cache->cached = BTRFS_CACHE_FINISHED;
2087 		add_new_free_space(cache, cache->start,
2088 				   cache->start + cache->length);
2089 		btrfs_free_excluded_extents(cache);
2090 	}
2091 
2092 	ret = btrfs_add_block_group_cache(info, cache);
2093 	if (ret) {
2094 		btrfs_remove_free_space_cache(cache);
2095 		goto error;
2096 	}
2097 	trace_btrfs_add_block_group(info, cache, 0);
2098 	btrfs_update_space_info(info, cache->flags, cache->length,
2099 				cache->used, cache->bytes_super,
2100 				cache->zone_unusable, cache->zone_is_active,
2101 				&space_info);
2102 
2103 	cache->space_info = space_info;
2104 
2105 	link_block_group(cache);
2106 
2107 	set_avail_alloc_bits(info, cache->flags);
2108 	if (btrfs_chunk_writeable(info, cache->start)) {
2109 		if (cache->used == 0) {
2110 			ASSERT(list_empty(&cache->bg_list));
2111 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2112 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2113 			else
2114 				btrfs_mark_bg_unused(cache);
2115 		}
2116 	} else {
2117 		inc_block_group_ro(cache, 1);
2118 	}
2119 
2120 	return 0;
2121 error:
2122 	btrfs_put_block_group(cache);
2123 	return ret;
2124 }
2125 
2126 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2127 {
2128 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2129 	struct btrfs_space_info *space_info;
2130 	struct rb_node *node;
2131 	int ret = 0;
2132 
2133 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2134 		struct extent_map *em;
2135 		struct map_lookup *map;
2136 		struct btrfs_block_group *bg;
2137 
2138 		em = rb_entry(node, struct extent_map, rb_node);
2139 		map = em->map_lookup;
2140 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2141 		if (!bg) {
2142 			ret = -ENOMEM;
2143 			break;
2144 		}
2145 
2146 		/* Fill dummy cache as FULL */
2147 		bg->length = em->len;
2148 		bg->flags = map->type;
2149 		bg->last_byte_to_unpin = (u64)-1;
2150 		bg->cached = BTRFS_CACHE_FINISHED;
2151 		bg->used = em->len;
2152 		bg->flags = map->type;
2153 		ret = btrfs_add_block_group_cache(fs_info, bg);
2154 		/*
2155 		 * We may have some valid block group cache added already, in
2156 		 * that case we skip to the next one.
2157 		 */
2158 		if (ret == -EEXIST) {
2159 			ret = 0;
2160 			btrfs_put_block_group(bg);
2161 			continue;
2162 		}
2163 
2164 		if (ret) {
2165 			btrfs_remove_free_space_cache(bg);
2166 			btrfs_put_block_group(bg);
2167 			break;
2168 		}
2169 
2170 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2171 					0, 0, false, &space_info);
2172 		bg->space_info = space_info;
2173 		link_block_group(bg);
2174 
2175 		set_avail_alloc_bits(fs_info, bg->flags);
2176 	}
2177 	if (!ret)
2178 		btrfs_init_global_block_rsv(fs_info);
2179 	return ret;
2180 }
2181 
2182 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2183 {
2184 	struct btrfs_root *root = btrfs_block_group_root(info);
2185 	struct btrfs_path *path;
2186 	int ret;
2187 	struct btrfs_block_group *cache;
2188 	struct btrfs_space_info *space_info;
2189 	struct btrfs_key key;
2190 	int need_clear = 0;
2191 	u64 cache_gen;
2192 
2193 	if (!root)
2194 		return fill_dummy_bgs(info);
2195 
2196 	key.objectid = 0;
2197 	key.offset = 0;
2198 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2199 	path = btrfs_alloc_path();
2200 	if (!path)
2201 		return -ENOMEM;
2202 
2203 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2204 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2205 	    btrfs_super_generation(info->super_copy) != cache_gen)
2206 		need_clear = 1;
2207 	if (btrfs_test_opt(info, CLEAR_CACHE))
2208 		need_clear = 1;
2209 
2210 	while (1) {
2211 		struct btrfs_block_group_item bgi;
2212 		struct extent_buffer *leaf;
2213 		int slot;
2214 
2215 		ret = find_first_block_group(info, path, &key);
2216 		if (ret > 0)
2217 			break;
2218 		if (ret != 0)
2219 			goto error;
2220 
2221 		leaf = path->nodes[0];
2222 		slot = path->slots[0];
2223 
2224 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2225 				   sizeof(bgi));
2226 
2227 		btrfs_item_key_to_cpu(leaf, &key, slot);
2228 		btrfs_release_path(path);
2229 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2230 		if (ret < 0)
2231 			goto error;
2232 		key.objectid += key.offset;
2233 		key.offset = 0;
2234 	}
2235 	btrfs_release_path(path);
2236 
2237 	list_for_each_entry(space_info, &info->space_info, list) {
2238 		int i;
2239 
2240 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2241 			if (list_empty(&space_info->block_groups[i]))
2242 				continue;
2243 			cache = list_first_entry(&space_info->block_groups[i],
2244 						 struct btrfs_block_group,
2245 						 list);
2246 			btrfs_sysfs_add_block_group_type(cache);
2247 		}
2248 
2249 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2250 		      (BTRFS_BLOCK_GROUP_RAID10 |
2251 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2252 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2253 		       BTRFS_BLOCK_GROUP_DUP)))
2254 			continue;
2255 		/*
2256 		 * Avoid allocating from un-mirrored block group if there are
2257 		 * mirrored block groups.
2258 		 */
2259 		list_for_each_entry(cache,
2260 				&space_info->block_groups[BTRFS_RAID_RAID0],
2261 				list)
2262 			inc_block_group_ro(cache, 1);
2263 		list_for_each_entry(cache,
2264 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2265 				list)
2266 			inc_block_group_ro(cache, 1);
2267 	}
2268 
2269 	btrfs_init_global_block_rsv(info);
2270 	ret = check_chunk_block_group_mappings(info);
2271 error:
2272 	btrfs_free_path(path);
2273 	/*
2274 	 * We've hit some error while reading the extent tree, and have
2275 	 * rescue=ibadroots mount option.
2276 	 * Try to fill the tree using dummy block groups so that the user can
2277 	 * continue to mount and grab their data.
2278 	 */
2279 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2280 		ret = fill_dummy_bgs(info);
2281 	return ret;
2282 }
2283 
2284 /*
2285  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2286  * allocation.
2287  *
2288  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2289  * phases.
2290  */
2291 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2292 				   struct btrfs_block_group *block_group)
2293 {
2294 	struct btrfs_fs_info *fs_info = trans->fs_info;
2295 	struct btrfs_block_group_item bgi;
2296 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2297 	struct btrfs_key key;
2298 
2299 	spin_lock(&block_group->lock);
2300 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2301 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2302 						   block_group->global_root_id);
2303 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2304 	key.objectid = block_group->start;
2305 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2306 	key.offset = block_group->length;
2307 	spin_unlock(&block_group->lock);
2308 
2309 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2310 }
2311 
2312 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2313 			    struct btrfs_device *device, u64 chunk_offset,
2314 			    u64 start, u64 num_bytes)
2315 {
2316 	struct btrfs_fs_info *fs_info = device->fs_info;
2317 	struct btrfs_root *root = fs_info->dev_root;
2318 	struct btrfs_path *path;
2319 	struct btrfs_dev_extent *extent;
2320 	struct extent_buffer *leaf;
2321 	struct btrfs_key key;
2322 	int ret;
2323 
2324 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2325 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2326 	path = btrfs_alloc_path();
2327 	if (!path)
2328 		return -ENOMEM;
2329 
2330 	key.objectid = device->devid;
2331 	key.type = BTRFS_DEV_EXTENT_KEY;
2332 	key.offset = start;
2333 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2334 	if (ret)
2335 		goto out;
2336 
2337 	leaf = path->nodes[0];
2338 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2339 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2340 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2341 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2342 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2343 
2344 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2345 	btrfs_mark_buffer_dirty(leaf);
2346 out:
2347 	btrfs_free_path(path);
2348 	return ret;
2349 }
2350 
2351 /*
2352  * This function belongs to phase 2.
2353  *
2354  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2355  * phases.
2356  */
2357 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2358 				   u64 chunk_offset, u64 chunk_size)
2359 {
2360 	struct btrfs_fs_info *fs_info = trans->fs_info;
2361 	struct btrfs_device *device;
2362 	struct extent_map *em;
2363 	struct map_lookup *map;
2364 	u64 dev_offset;
2365 	u64 stripe_size;
2366 	int i;
2367 	int ret = 0;
2368 
2369 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2370 	if (IS_ERR(em))
2371 		return PTR_ERR(em);
2372 
2373 	map = em->map_lookup;
2374 	stripe_size = em->orig_block_len;
2375 
2376 	/*
2377 	 * Take the device list mutex to prevent races with the final phase of
2378 	 * a device replace operation that replaces the device object associated
2379 	 * with the map's stripes, because the device object's id can change
2380 	 * at any time during that final phase of the device replace operation
2381 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2382 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2383 	 * resulting in persisting a device extent item with such ID.
2384 	 */
2385 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2386 	for (i = 0; i < map->num_stripes; i++) {
2387 		device = map->stripes[i].dev;
2388 		dev_offset = map->stripes[i].physical;
2389 
2390 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2391 				       stripe_size);
2392 		if (ret)
2393 			break;
2394 	}
2395 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2396 
2397 	free_extent_map(em);
2398 	return ret;
2399 }
2400 
2401 /*
2402  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2403  * chunk allocation.
2404  *
2405  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2406  * phases.
2407  */
2408 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2409 {
2410 	struct btrfs_fs_info *fs_info = trans->fs_info;
2411 	struct btrfs_block_group *block_group;
2412 	int ret = 0;
2413 
2414 	while (!list_empty(&trans->new_bgs)) {
2415 		int index;
2416 
2417 		block_group = list_first_entry(&trans->new_bgs,
2418 					       struct btrfs_block_group,
2419 					       bg_list);
2420 		if (ret)
2421 			goto next;
2422 
2423 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2424 
2425 		ret = insert_block_group_item(trans, block_group);
2426 		if (ret)
2427 			btrfs_abort_transaction(trans, ret);
2428 		if (!block_group->chunk_item_inserted) {
2429 			mutex_lock(&fs_info->chunk_mutex);
2430 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2431 			mutex_unlock(&fs_info->chunk_mutex);
2432 			if (ret)
2433 				btrfs_abort_transaction(trans, ret);
2434 		}
2435 		ret = insert_dev_extents(trans, block_group->start,
2436 					 block_group->length);
2437 		if (ret)
2438 			btrfs_abort_transaction(trans, ret);
2439 		add_block_group_free_space(trans, block_group);
2440 
2441 		/*
2442 		 * If we restriped during balance, we may have added a new raid
2443 		 * type, so now add the sysfs entries when it is safe to do so.
2444 		 * We don't have to worry about locking here as it's handled in
2445 		 * btrfs_sysfs_add_block_group_type.
2446 		 */
2447 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2448 			btrfs_sysfs_add_block_group_type(block_group);
2449 
2450 		/* Already aborted the transaction if it failed. */
2451 next:
2452 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2453 		list_del_init(&block_group->bg_list);
2454 	}
2455 	btrfs_trans_release_chunk_metadata(trans);
2456 }
2457 
2458 /*
2459  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2460  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2461  */
2462 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2463 {
2464 	u64 div = SZ_1G;
2465 	u64 index;
2466 
2467 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2468 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2469 
2470 	/* If we have a smaller fs index based on 128MiB. */
2471 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2472 		div = SZ_128M;
2473 
2474 	offset = div64_u64(offset, div);
2475 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2476 	return index;
2477 }
2478 
2479 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2480 						 u64 bytes_used, u64 type,
2481 						 u64 chunk_offset, u64 size)
2482 {
2483 	struct btrfs_fs_info *fs_info = trans->fs_info;
2484 	struct btrfs_block_group *cache;
2485 	int ret;
2486 
2487 	btrfs_set_log_full_commit(trans);
2488 
2489 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2490 	if (!cache)
2491 		return ERR_PTR(-ENOMEM);
2492 
2493 	cache->length = size;
2494 	set_free_space_tree_thresholds(cache);
2495 	cache->used = bytes_used;
2496 	cache->flags = type;
2497 	cache->last_byte_to_unpin = (u64)-1;
2498 	cache->cached = BTRFS_CACHE_FINISHED;
2499 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2500 
2501 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2502 		cache->needs_free_space = 1;
2503 
2504 	ret = btrfs_load_block_group_zone_info(cache, true);
2505 	if (ret) {
2506 		btrfs_put_block_group(cache);
2507 		return ERR_PTR(ret);
2508 	}
2509 
2510 	ret = exclude_super_stripes(cache);
2511 	if (ret) {
2512 		/* We may have excluded something, so call this just in case */
2513 		btrfs_free_excluded_extents(cache);
2514 		btrfs_put_block_group(cache);
2515 		return ERR_PTR(ret);
2516 	}
2517 
2518 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2519 
2520 	btrfs_free_excluded_extents(cache);
2521 
2522 #ifdef CONFIG_BTRFS_DEBUG
2523 	if (btrfs_should_fragment_free_space(cache)) {
2524 		u64 new_bytes_used = size - bytes_used;
2525 
2526 		bytes_used += new_bytes_used >> 1;
2527 		fragment_free_space(cache);
2528 	}
2529 #endif
2530 	/*
2531 	 * Ensure the corresponding space_info object is created and
2532 	 * assigned to our block group. We want our bg to be added to the rbtree
2533 	 * with its ->space_info set.
2534 	 */
2535 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2536 	ASSERT(cache->space_info);
2537 
2538 	ret = btrfs_add_block_group_cache(fs_info, cache);
2539 	if (ret) {
2540 		btrfs_remove_free_space_cache(cache);
2541 		btrfs_put_block_group(cache);
2542 		return ERR_PTR(ret);
2543 	}
2544 
2545 	/*
2546 	 * Now that our block group has its ->space_info set and is inserted in
2547 	 * the rbtree, update the space info's counters.
2548 	 */
2549 	trace_btrfs_add_block_group(fs_info, cache, 1);
2550 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2551 				cache->bytes_super, cache->zone_unusable,
2552 				cache->zone_is_active, &cache->space_info);
2553 	btrfs_update_global_block_rsv(fs_info);
2554 
2555 	link_block_group(cache);
2556 
2557 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2558 	trans->delayed_ref_updates++;
2559 	btrfs_update_delayed_refs_rsv(trans);
2560 
2561 	set_avail_alloc_bits(fs_info, type);
2562 	return cache;
2563 }
2564 
2565 /*
2566  * Mark one block group RO, can be called several times for the same block
2567  * group.
2568  *
2569  * @cache:		the destination block group
2570  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2571  * 			ensure we still have some free space after marking this
2572  * 			block group RO.
2573  */
2574 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2575 			     bool do_chunk_alloc)
2576 {
2577 	struct btrfs_fs_info *fs_info = cache->fs_info;
2578 	struct btrfs_trans_handle *trans;
2579 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2580 	u64 alloc_flags;
2581 	int ret;
2582 	bool dirty_bg_running;
2583 
2584 	/*
2585 	 * This can only happen when we are doing read-only scrub on read-only
2586 	 * mount.
2587 	 * In that case we should not start a new transaction on read-only fs.
2588 	 * Thus here we skip all chunk allocations.
2589 	 */
2590 	if (sb_rdonly(fs_info->sb)) {
2591 		mutex_lock(&fs_info->ro_block_group_mutex);
2592 		ret = inc_block_group_ro(cache, 0);
2593 		mutex_unlock(&fs_info->ro_block_group_mutex);
2594 		return ret;
2595 	}
2596 
2597 	do {
2598 		trans = btrfs_join_transaction(root);
2599 		if (IS_ERR(trans))
2600 			return PTR_ERR(trans);
2601 
2602 		dirty_bg_running = false;
2603 
2604 		/*
2605 		 * We're not allowed to set block groups readonly after the dirty
2606 		 * block group cache has started writing.  If it already started,
2607 		 * back off and let this transaction commit.
2608 		 */
2609 		mutex_lock(&fs_info->ro_block_group_mutex);
2610 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2611 			u64 transid = trans->transid;
2612 
2613 			mutex_unlock(&fs_info->ro_block_group_mutex);
2614 			btrfs_end_transaction(trans);
2615 
2616 			ret = btrfs_wait_for_commit(fs_info, transid);
2617 			if (ret)
2618 				return ret;
2619 			dirty_bg_running = true;
2620 		}
2621 	} while (dirty_bg_running);
2622 
2623 	if (do_chunk_alloc) {
2624 		/*
2625 		 * If we are changing raid levels, try to allocate a
2626 		 * corresponding block group with the new raid level.
2627 		 */
2628 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2629 		if (alloc_flags != cache->flags) {
2630 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2631 						CHUNK_ALLOC_FORCE);
2632 			/*
2633 			 * ENOSPC is allowed here, we may have enough space
2634 			 * already allocated at the new raid level to carry on
2635 			 */
2636 			if (ret == -ENOSPC)
2637 				ret = 0;
2638 			if (ret < 0)
2639 				goto out;
2640 		}
2641 	}
2642 
2643 	ret = inc_block_group_ro(cache, 0);
2644 	if (!do_chunk_alloc || ret == -ETXTBSY)
2645 		goto unlock_out;
2646 	if (!ret)
2647 		goto out;
2648 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2649 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2650 	if (ret < 0)
2651 		goto out;
2652 	/*
2653 	 * We have allocated a new chunk. We also need to activate that chunk to
2654 	 * grant metadata tickets for zoned filesystem.
2655 	 */
2656 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2657 	if (ret < 0)
2658 		goto out;
2659 
2660 	ret = inc_block_group_ro(cache, 0);
2661 	if (ret == -ETXTBSY)
2662 		goto unlock_out;
2663 out:
2664 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2665 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2666 		mutex_lock(&fs_info->chunk_mutex);
2667 		check_system_chunk(trans, alloc_flags);
2668 		mutex_unlock(&fs_info->chunk_mutex);
2669 	}
2670 unlock_out:
2671 	mutex_unlock(&fs_info->ro_block_group_mutex);
2672 
2673 	btrfs_end_transaction(trans);
2674 	return ret;
2675 }
2676 
2677 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2678 {
2679 	struct btrfs_space_info *sinfo = cache->space_info;
2680 	u64 num_bytes;
2681 
2682 	BUG_ON(!cache->ro);
2683 
2684 	spin_lock(&sinfo->lock);
2685 	spin_lock(&cache->lock);
2686 	if (!--cache->ro) {
2687 		if (btrfs_is_zoned(cache->fs_info)) {
2688 			/* Migrate zone_unusable bytes back */
2689 			cache->zone_unusable =
2690 				(cache->alloc_offset - cache->used) +
2691 				(cache->length - cache->zone_capacity);
2692 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2693 			sinfo->bytes_readonly -= cache->zone_unusable;
2694 		}
2695 		num_bytes = cache->length - cache->reserved -
2696 			    cache->pinned - cache->bytes_super -
2697 			    cache->zone_unusable - cache->used;
2698 		sinfo->bytes_readonly -= num_bytes;
2699 		list_del_init(&cache->ro_list);
2700 	}
2701 	spin_unlock(&cache->lock);
2702 	spin_unlock(&sinfo->lock);
2703 }
2704 
2705 static int update_block_group_item(struct btrfs_trans_handle *trans,
2706 				   struct btrfs_path *path,
2707 				   struct btrfs_block_group *cache)
2708 {
2709 	struct btrfs_fs_info *fs_info = trans->fs_info;
2710 	int ret;
2711 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2712 	unsigned long bi;
2713 	struct extent_buffer *leaf;
2714 	struct btrfs_block_group_item bgi;
2715 	struct btrfs_key key;
2716 
2717 	key.objectid = cache->start;
2718 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2719 	key.offset = cache->length;
2720 
2721 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2722 	if (ret) {
2723 		if (ret > 0)
2724 			ret = -ENOENT;
2725 		goto fail;
2726 	}
2727 
2728 	leaf = path->nodes[0];
2729 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2730 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2731 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2732 						   cache->global_root_id);
2733 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2734 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2735 	btrfs_mark_buffer_dirty(leaf);
2736 fail:
2737 	btrfs_release_path(path);
2738 	return ret;
2739 
2740 }
2741 
2742 static int cache_save_setup(struct btrfs_block_group *block_group,
2743 			    struct btrfs_trans_handle *trans,
2744 			    struct btrfs_path *path)
2745 {
2746 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2747 	struct btrfs_root *root = fs_info->tree_root;
2748 	struct inode *inode = NULL;
2749 	struct extent_changeset *data_reserved = NULL;
2750 	u64 alloc_hint = 0;
2751 	int dcs = BTRFS_DC_ERROR;
2752 	u64 cache_size = 0;
2753 	int retries = 0;
2754 	int ret = 0;
2755 
2756 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2757 		return 0;
2758 
2759 	/*
2760 	 * If this block group is smaller than 100 megs don't bother caching the
2761 	 * block group.
2762 	 */
2763 	if (block_group->length < (100 * SZ_1M)) {
2764 		spin_lock(&block_group->lock);
2765 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2766 		spin_unlock(&block_group->lock);
2767 		return 0;
2768 	}
2769 
2770 	if (TRANS_ABORTED(trans))
2771 		return 0;
2772 again:
2773 	inode = lookup_free_space_inode(block_group, path);
2774 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2775 		ret = PTR_ERR(inode);
2776 		btrfs_release_path(path);
2777 		goto out;
2778 	}
2779 
2780 	if (IS_ERR(inode)) {
2781 		BUG_ON(retries);
2782 		retries++;
2783 
2784 		if (block_group->ro)
2785 			goto out_free;
2786 
2787 		ret = create_free_space_inode(trans, block_group, path);
2788 		if (ret)
2789 			goto out_free;
2790 		goto again;
2791 	}
2792 
2793 	/*
2794 	 * We want to set the generation to 0, that way if anything goes wrong
2795 	 * from here on out we know not to trust this cache when we load up next
2796 	 * time.
2797 	 */
2798 	BTRFS_I(inode)->generation = 0;
2799 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2800 	if (ret) {
2801 		/*
2802 		 * So theoretically we could recover from this, simply set the
2803 		 * super cache generation to 0 so we know to invalidate the
2804 		 * cache, but then we'd have to keep track of the block groups
2805 		 * that fail this way so we know we _have_ to reset this cache
2806 		 * before the next commit or risk reading stale cache.  So to
2807 		 * limit our exposure to horrible edge cases lets just abort the
2808 		 * transaction, this only happens in really bad situations
2809 		 * anyway.
2810 		 */
2811 		btrfs_abort_transaction(trans, ret);
2812 		goto out_put;
2813 	}
2814 	WARN_ON(ret);
2815 
2816 	/* We've already setup this transaction, go ahead and exit */
2817 	if (block_group->cache_generation == trans->transid &&
2818 	    i_size_read(inode)) {
2819 		dcs = BTRFS_DC_SETUP;
2820 		goto out_put;
2821 	}
2822 
2823 	if (i_size_read(inode) > 0) {
2824 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2825 					&fs_info->global_block_rsv);
2826 		if (ret)
2827 			goto out_put;
2828 
2829 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2830 		if (ret)
2831 			goto out_put;
2832 	}
2833 
2834 	spin_lock(&block_group->lock);
2835 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2836 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2837 		/*
2838 		 * don't bother trying to write stuff out _if_
2839 		 * a) we're not cached,
2840 		 * b) we're with nospace_cache mount option,
2841 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2842 		 */
2843 		dcs = BTRFS_DC_WRITTEN;
2844 		spin_unlock(&block_group->lock);
2845 		goto out_put;
2846 	}
2847 	spin_unlock(&block_group->lock);
2848 
2849 	/*
2850 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2851 	 * skip doing the setup, we've already cleared the cache so we're safe.
2852 	 */
2853 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2854 		ret = -ENOSPC;
2855 		goto out_put;
2856 	}
2857 
2858 	/*
2859 	 * Try to preallocate enough space based on how big the block group is.
2860 	 * Keep in mind this has to include any pinned space which could end up
2861 	 * taking up quite a bit since it's not folded into the other space
2862 	 * cache.
2863 	 */
2864 	cache_size = div_u64(block_group->length, SZ_256M);
2865 	if (!cache_size)
2866 		cache_size = 1;
2867 
2868 	cache_size *= 16;
2869 	cache_size *= fs_info->sectorsize;
2870 
2871 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2872 					  cache_size);
2873 	if (ret)
2874 		goto out_put;
2875 
2876 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2877 					      cache_size, cache_size,
2878 					      &alloc_hint);
2879 	/*
2880 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2881 	 * of metadata or split extents when writing the cache out, which means
2882 	 * we can enospc if we are heavily fragmented in addition to just normal
2883 	 * out of space conditions.  So if we hit this just skip setting up any
2884 	 * other block groups for this transaction, maybe we'll unpin enough
2885 	 * space the next time around.
2886 	 */
2887 	if (!ret)
2888 		dcs = BTRFS_DC_SETUP;
2889 	else if (ret == -ENOSPC)
2890 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2891 
2892 out_put:
2893 	iput(inode);
2894 out_free:
2895 	btrfs_release_path(path);
2896 out:
2897 	spin_lock(&block_group->lock);
2898 	if (!ret && dcs == BTRFS_DC_SETUP)
2899 		block_group->cache_generation = trans->transid;
2900 	block_group->disk_cache_state = dcs;
2901 	spin_unlock(&block_group->lock);
2902 
2903 	extent_changeset_free(data_reserved);
2904 	return ret;
2905 }
2906 
2907 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2908 {
2909 	struct btrfs_fs_info *fs_info = trans->fs_info;
2910 	struct btrfs_block_group *cache, *tmp;
2911 	struct btrfs_transaction *cur_trans = trans->transaction;
2912 	struct btrfs_path *path;
2913 
2914 	if (list_empty(&cur_trans->dirty_bgs) ||
2915 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2916 		return 0;
2917 
2918 	path = btrfs_alloc_path();
2919 	if (!path)
2920 		return -ENOMEM;
2921 
2922 	/* Could add new block groups, use _safe just in case */
2923 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2924 				 dirty_list) {
2925 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2926 			cache_save_setup(cache, trans, path);
2927 	}
2928 
2929 	btrfs_free_path(path);
2930 	return 0;
2931 }
2932 
2933 /*
2934  * Transaction commit does final block group cache writeback during a critical
2935  * section where nothing is allowed to change the FS.  This is required in
2936  * order for the cache to actually match the block group, but can introduce a
2937  * lot of latency into the commit.
2938  *
2939  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2940  * There's a chance we'll have to redo some of it if the block group changes
2941  * again during the commit, but it greatly reduces the commit latency by
2942  * getting rid of the easy block groups while we're still allowing others to
2943  * join the commit.
2944  */
2945 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2946 {
2947 	struct btrfs_fs_info *fs_info = trans->fs_info;
2948 	struct btrfs_block_group *cache;
2949 	struct btrfs_transaction *cur_trans = trans->transaction;
2950 	int ret = 0;
2951 	int should_put;
2952 	struct btrfs_path *path = NULL;
2953 	LIST_HEAD(dirty);
2954 	struct list_head *io = &cur_trans->io_bgs;
2955 	int loops = 0;
2956 
2957 	spin_lock(&cur_trans->dirty_bgs_lock);
2958 	if (list_empty(&cur_trans->dirty_bgs)) {
2959 		spin_unlock(&cur_trans->dirty_bgs_lock);
2960 		return 0;
2961 	}
2962 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2963 	spin_unlock(&cur_trans->dirty_bgs_lock);
2964 
2965 again:
2966 	/* Make sure all the block groups on our dirty list actually exist */
2967 	btrfs_create_pending_block_groups(trans);
2968 
2969 	if (!path) {
2970 		path = btrfs_alloc_path();
2971 		if (!path) {
2972 			ret = -ENOMEM;
2973 			goto out;
2974 		}
2975 	}
2976 
2977 	/*
2978 	 * cache_write_mutex is here only to save us from balance or automatic
2979 	 * removal of empty block groups deleting this block group while we are
2980 	 * writing out the cache
2981 	 */
2982 	mutex_lock(&trans->transaction->cache_write_mutex);
2983 	while (!list_empty(&dirty)) {
2984 		bool drop_reserve = true;
2985 
2986 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2987 					 dirty_list);
2988 		/*
2989 		 * This can happen if something re-dirties a block group that
2990 		 * is already under IO.  Just wait for it to finish and then do
2991 		 * it all again
2992 		 */
2993 		if (!list_empty(&cache->io_list)) {
2994 			list_del_init(&cache->io_list);
2995 			btrfs_wait_cache_io(trans, cache, path);
2996 			btrfs_put_block_group(cache);
2997 		}
2998 
2999 
3000 		/*
3001 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3002 		 * it should update the cache_state.  Don't delete until after
3003 		 * we wait.
3004 		 *
3005 		 * Since we're not running in the commit critical section
3006 		 * we need the dirty_bgs_lock to protect from update_block_group
3007 		 */
3008 		spin_lock(&cur_trans->dirty_bgs_lock);
3009 		list_del_init(&cache->dirty_list);
3010 		spin_unlock(&cur_trans->dirty_bgs_lock);
3011 
3012 		should_put = 1;
3013 
3014 		cache_save_setup(cache, trans, path);
3015 
3016 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3017 			cache->io_ctl.inode = NULL;
3018 			ret = btrfs_write_out_cache(trans, cache, path);
3019 			if (ret == 0 && cache->io_ctl.inode) {
3020 				should_put = 0;
3021 
3022 				/*
3023 				 * The cache_write_mutex is protecting the
3024 				 * io_list, also refer to the definition of
3025 				 * btrfs_transaction::io_bgs for more details
3026 				 */
3027 				list_add_tail(&cache->io_list, io);
3028 			} else {
3029 				/*
3030 				 * If we failed to write the cache, the
3031 				 * generation will be bad and life goes on
3032 				 */
3033 				ret = 0;
3034 			}
3035 		}
3036 		if (!ret) {
3037 			ret = update_block_group_item(trans, path, cache);
3038 			/*
3039 			 * Our block group might still be attached to the list
3040 			 * of new block groups in the transaction handle of some
3041 			 * other task (struct btrfs_trans_handle->new_bgs). This
3042 			 * means its block group item isn't yet in the extent
3043 			 * tree. If this happens ignore the error, as we will
3044 			 * try again later in the critical section of the
3045 			 * transaction commit.
3046 			 */
3047 			if (ret == -ENOENT) {
3048 				ret = 0;
3049 				spin_lock(&cur_trans->dirty_bgs_lock);
3050 				if (list_empty(&cache->dirty_list)) {
3051 					list_add_tail(&cache->dirty_list,
3052 						      &cur_trans->dirty_bgs);
3053 					btrfs_get_block_group(cache);
3054 					drop_reserve = false;
3055 				}
3056 				spin_unlock(&cur_trans->dirty_bgs_lock);
3057 			} else if (ret) {
3058 				btrfs_abort_transaction(trans, ret);
3059 			}
3060 		}
3061 
3062 		/* If it's not on the io list, we need to put the block group */
3063 		if (should_put)
3064 			btrfs_put_block_group(cache);
3065 		if (drop_reserve)
3066 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3067 		/*
3068 		 * Avoid blocking other tasks for too long. It might even save
3069 		 * us from writing caches for block groups that are going to be
3070 		 * removed.
3071 		 */
3072 		mutex_unlock(&trans->transaction->cache_write_mutex);
3073 		if (ret)
3074 			goto out;
3075 		mutex_lock(&trans->transaction->cache_write_mutex);
3076 	}
3077 	mutex_unlock(&trans->transaction->cache_write_mutex);
3078 
3079 	/*
3080 	 * Go through delayed refs for all the stuff we've just kicked off
3081 	 * and then loop back (just once)
3082 	 */
3083 	if (!ret)
3084 		ret = btrfs_run_delayed_refs(trans, 0);
3085 	if (!ret && loops == 0) {
3086 		loops++;
3087 		spin_lock(&cur_trans->dirty_bgs_lock);
3088 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3089 		/*
3090 		 * dirty_bgs_lock protects us from concurrent block group
3091 		 * deletes too (not just cache_write_mutex).
3092 		 */
3093 		if (!list_empty(&dirty)) {
3094 			spin_unlock(&cur_trans->dirty_bgs_lock);
3095 			goto again;
3096 		}
3097 		spin_unlock(&cur_trans->dirty_bgs_lock);
3098 	}
3099 out:
3100 	if (ret < 0) {
3101 		spin_lock(&cur_trans->dirty_bgs_lock);
3102 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3103 		spin_unlock(&cur_trans->dirty_bgs_lock);
3104 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3105 	}
3106 
3107 	btrfs_free_path(path);
3108 	return ret;
3109 }
3110 
3111 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3112 {
3113 	struct btrfs_fs_info *fs_info = trans->fs_info;
3114 	struct btrfs_block_group *cache;
3115 	struct btrfs_transaction *cur_trans = trans->transaction;
3116 	int ret = 0;
3117 	int should_put;
3118 	struct btrfs_path *path;
3119 	struct list_head *io = &cur_trans->io_bgs;
3120 
3121 	path = btrfs_alloc_path();
3122 	if (!path)
3123 		return -ENOMEM;
3124 
3125 	/*
3126 	 * Even though we are in the critical section of the transaction commit,
3127 	 * we can still have concurrent tasks adding elements to this
3128 	 * transaction's list of dirty block groups. These tasks correspond to
3129 	 * endio free space workers started when writeback finishes for a
3130 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3131 	 * allocate new block groups as a result of COWing nodes of the root
3132 	 * tree when updating the free space inode. The writeback for the space
3133 	 * caches is triggered by an earlier call to
3134 	 * btrfs_start_dirty_block_groups() and iterations of the following
3135 	 * loop.
3136 	 * Also we want to do the cache_save_setup first and then run the
3137 	 * delayed refs to make sure we have the best chance at doing this all
3138 	 * in one shot.
3139 	 */
3140 	spin_lock(&cur_trans->dirty_bgs_lock);
3141 	while (!list_empty(&cur_trans->dirty_bgs)) {
3142 		cache = list_first_entry(&cur_trans->dirty_bgs,
3143 					 struct btrfs_block_group,
3144 					 dirty_list);
3145 
3146 		/*
3147 		 * This can happen if cache_save_setup re-dirties a block group
3148 		 * that is already under IO.  Just wait for it to finish and
3149 		 * then do it all again
3150 		 */
3151 		if (!list_empty(&cache->io_list)) {
3152 			spin_unlock(&cur_trans->dirty_bgs_lock);
3153 			list_del_init(&cache->io_list);
3154 			btrfs_wait_cache_io(trans, cache, path);
3155 			btrfs_put_block_group(cache);
3156 			spin_lock(&cur_trans->dirty_bgs_lock);
3157 		}
3158 
3159 		/*
3160 		 * Don't remove from the dirty list until after we've waited on
3161 		 * any pending IO
3162 		 */
3163 		list_del_init(&cache->dirty_list);
3164 		spin_unlock(&cur_trans->dirty_bgs_lock);
3165 		should_put = 1;
3166 
3167 		cache_save_setup(cache, trans, path);
3168 
3169 		if (!ret)
3170 			ret = btrfs_run_delayed_refs(trans,
3171 						     (unsigned long) -1);
3172 
3173 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3174 			cache->io_ctl.inode = NULL;
3175 			ret = btrfs_write_out_cache(trans, cache, path);
3176 			if (ret == 0 && cache->io_ctl.inode) {
3177 				should_put = 0;
3178 				list_add_tail(&cache->io_list, io);
3179 			} else {
3180 				/*
3181 				 * If we failed to write the cache, the
3182 				 * generation will be bad and life goes on
3183 				 */
3184 				ret = 0;
3185 			}
3186 		}
3187 		if (!ret) {
3188 			ret = update_block_group_item(trans, path, cache);
3189 			/*
3190 			 * One of the free space endio workers might have
3191 			 * created a new block group while updating a free space
3192 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3193 			 * and hasn't released its transaction handle yet, in
3194 			 * which case the new block group is still attached to
3195 			 * its transaction handle and its creation has not
3196 			 * finished yet (no block group item in the extent tree
3197 			 * yet, etc). If this is the case, wait for all free
3198 			 * space endio workers to finish and retry. This is a
3199 			 * very rare case so no need for a more efficient and
3200 			 * complex approach.
3201 			 */
3202 			if (ret == -ENOENT) {
3203 				wait_event(cur_trans->writer_wait,
3204 				   atomic_read(&cur_trans->num_writers) == 1);
3205 				ret = update_block_group_item(trans, path, cache);
3206 			}
3207 			if (ret)
3208 				btrfs_abort_transaction(trans, ret);
3209 		}
3210 
3211 		/* If its not on the io list, we need to put the block group */
3212 		if (should_put)
3213 			btrfs_put_block_group(cache);
3214 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3215 		spin_lock(&cur_trans->dirty_bgs_lock);
3216 	}
3217 	spin_unlock(&cur_trans->dirty_bgs_lock);
3218 
3219 	/*
3220 	 * Refer to the definition of io_bgs member for details why it's safe
3221 	 * to use it without any locking
3222 	 */
3223 	while (!list_empty(io)) {
3224 		cache = list_first_entry(io, struct btrfs_block_group,
3225 					 io_list);
3226 		list_del_init(&cache->io_list);
3227 		btrfs_wait_cache_io(trans, cache, path);
3228 		btrfs_put_block_group(cache);
3229 	}
3230 
3231 	btrfs_free_path(path);
3232 	return ret;
3233 }
3234 
3235 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg,
3236 					      u64 bytes_freed)
3237 {
3238 	const struct btrfs_space_info *space_info = bg->space_info;
3239 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
3240 	const u64 new_val = bg->used;
3241 	const u64 old_val = new_val + bytes_freed;
3242 	u64 thresh;
3243 
3244 	if (reclaim_thresh == 0)
3245 		return false;
3246 
3247 	thresh = div_factor_fine(bg->length, reclaim_thresh);
3248 
3249 	/*
3250 	 * If we were below the threshold before don't reclaim, we are likely a
3251 	 * brand new block group and we don't want to relocate new block groups.
3252 	 */
3253 	if (old_val < thresh)
3254 		return false;
3255 	if (new_val >= thresh)
3256 		return false;
3257 	return true;
3258 }
3259 
3260 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3261 			     u64 bytenr, u64 num_bytes, bool alloc)
3262 {
3263 	struct btrfs_fs_info *info = trans->fs_info;
3264 	struct btrfs_block_group *cache = NULL;
3265 	u64 total = num_bytes;
3266 	u64 old_val;
3267 	u64 byte_in_group;
3268 	int factor;
3269 	int ret = 0;
3270 
3271 	/* Block accounting for super block */
3272 	spin_lock(&info->delalloc_root_lock);
3273 	old_val = btrfs_super_bytes_used(info->super_copy);
3274 	if (alloc)
3275 		old_val += num_bytes;
3276 	else
3277 		old_val -= num_bytes;
3278 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3279 	spin_unlock(&info->delalloc_root_lock);
3280 
3281 	while (total) {
3282 		bool reclaim;
3283 
3284 		cache = btrfs_lookup_block_group(info, bytenr);
3285 		if (!cache) {
3286 			ret = -ENOENT;
3287 			break;
3288 		}
3289 		factor = btrfs_bg_type_to_factor(cache->flags);
3290 
3291 		/*
3292 		 * If this block group has free space cache written out, we
3293 		 * need to make sure to load it if we are removing space.  This
3294 		 * is because we need the unpinning stage to actually add the
3295 		 * space back to the block group, otherwise we will leak space.
3296 		 */
3297 		if (!alloc && !btrfs_block_group_done(cache))
3298 			btrfs_cache_block_group(cache, true);
3299 
3300 		byte_in_group = bytenr - cache->start;
3301 		WARN_ON(byte_in_group > cache->length);
3302 
3303 		spin_lock(&cache->space_info->lock);
3304 		spin_lock(&cache->lock);
3305 
3306 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3307 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3308 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3309 
3310 		old_val = cache->used;
3311 		num_bytes = min(total, cache->length - byte_in_group);
3312 		if (alloc) {
3313 			old_val += num_bytes;
3314 			cache->used = old_val;
3315 			cache->reserved -= num_bytes;
3316 			cache->space_info->bytes_reserved -= num_bytes;
3317 			cache->space_info->bytes_used += num_bytes;
3318 			cache->space_info->disk_used += num_bytes * factor;
3319 			spin_unlock(&cache->lock);
3320 			spin_unlock(&cache->space_info->lock);
3321 		} else {
3322 			old_val -= num_bytes;
3323 			cache->used = old_val;
3324 			cache->pinned += num_bytes;
3325 			btrfs_space_info_update_bytes_pinned(info,
3326 					cache->space_info, num_bytes);
3327 			cache->space_info->bytes_used -= num_bytes;
3328 			cache->space_info->disk_used -= num_bytes * factor;
3329 
3330 			reclaim = should_reclaim_block_group(cache, num_bytes);
3331 			spin_unlock(&cache->lock);
3332 			spin_unlock(&cache->space_info->lock);
3333 
3334 			set_extent_dirty(&trans->transaction->pinned_extents,
3335 					 bytenr, bytenr + num_bytes - 1,
3336 					 GFP_NOFS | __GFP_NOFAIL);
3337 		}
3338 
3339 		spin_lock(&trans->transaction->dirty_bgs_lock);
3340 		if (list_empty(&cache->dirty_list)) {
3341 			list_add_tail(&cache->dirty_list,
3342 				      &trans->transaction->dirty_bgs);
3343 			trans->delayed_ref_updates++;
3344 			btrfs_get_block_group(cache);
3345 		}
3346 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3347 
3348 		/*
3349 		 * No longer have used bytes in this block group, queue it for
3350 		 * deletion. We do this after adding the block group to the
3351 		 * dirty list to avoid races between cleaner kthread and space
3352 		 * cache writeout.
3353 		 */
3354 		if (!alloc && old_val == 0) {
3355 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3356 				btrfs_mark_bg_unused(cache);
3357 		} else if (!alloc && reclaim) {
3358 			btrfs_mark_bg_to_reclaim(cache);
3359 		}
3360 
3361 		btrfs_put_block_group(cache);
3362 		total -= num_bytes;
3363 		bytenr += num_bytes;
3364 	}
3365 
3366 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3367 	btrfs_update_delayed_refs_rsv(trans);
3368 	return ret;
3369 }
3370 
3371 /**
3372  * btrfs_add_reserved_bytes - update the block_group and space info counters
3373  * @cache:	The cache we are manipulating
3374  * @ram_bytes:  The number of bytes of file content, and will be same to
3375  *              @num_bytes except for the compress path.
3376  * @num_bytes:	The number of bytes in question
3377  * @delalloc:   The blocks are allocated for the delalloc write
3378  *
3379  * This is called by the allocator when it reserves space. If this is a
3380  * reservation and the block group has become read only we cannot make the
3381  * reservation and return -EAGAIN, otherwise this function always succeeds.
3382  */
3383 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3384 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3385 {
3386 	struct btrfs_space_info *space_info = cache->space_info;
3387 	int ret = 0;
3388 
3389 	spin_lock(&space_info->lock);
3390 	spin_lock(&cache->lock);
3391 	if (cache->ro) {
3392 		ret = -EAGAIN;
3393 	} else {
3394 		cache->reserved += num_bytes;
3395 		space_info->bytes_reserved += num_bytes;
3396 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3397 					      space_info->flags, num_bytes, 1);
3398 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3399 						      space_info, -ram_bytes);
3400 		if (delalloc)
3401 			cache->delalloc_bytes += num_bytes;
3402 
3403 		/*
3404 		 * Compression can use less space than we reserved, so wake
3405 		 * tickets if that happens
3406 		 */
3407 		if (num_bytes < ram_bytes)
3408 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3409 	}
3410 	spin_unlock(&cache->lock);
3411 	spin_unlock(&space_info->lock);
3412 	return ret;
3413 }
3414 
3415 /**
3416  * btrfs_free_reserved_bytes - update the block_group and space info counters
3417  * @cache:      The cache we are manipulating
3418  * @num_bytes:  The number of bytes in question
3419  * @delalloc:   The blocks are allocated for the delalloc write
3420  *
3421  * This is called by somebody who is freeing space that was never actually used
3422  * on disk.  For example if you reserve some space for a new leaf in transaction
3423  * A and before transaction A commits you free that leaf, you call this with
3424  * reserve set to 0 in order to clear the reservation.
3425  */
3426 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3427 			       u64 num_bytes, int delalloc)
3428 {
3429 	struct btrfs_space_info *space_info = cache->space_info;
3430 
3431 	spin_lock(&space_info->lock);
3432 	spin_lock(&cache->lock);
3433 	if (cache->ro)
3434 		space_info->bytes_readonly += num_bytes;
3435 	cache->reserved -= num_bytes;
3436 	space_info->bytes_reserved -= num_bytes;
3437 	space_info->max_extent_size = 0;
3438 
3439 	if (delalloc)
3440 		cache->delalloc_bytes -= num_bytes;
3441 	spin_unlock(&cache->lock);
3442 
3443 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3444 	spin_unlock(&space_info->lock);
3445 }
3446 
3447 static void force_metadata_allocation(struct btrfs_fs_info *info)
3448 {
3449 	struct list_head *head = &info->space_info;
3450 	struct btrfs_space_info *found;
3451 
3452 	list_for_each_entry(found, head, list) {
3453 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3454 			found->force_alloc = CHUNK_ALLOC_FORCE;
3455 	}
3456 }
3457 
3458 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3459 			      struct btrfs_space_info *sinfo, int force)
3460 {
3461 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3462 	u64 thresh;
3463 
3464 	if (force == CHUNK_ALLOC_FORCE)
3465 		return 1;
3466 
3467 	/*
3468 	 * in limited mode, we want to have some free space up to
3469 	 * about 1% of the FS size.
3470 	 */
3471 	if (force == CHUNK_ALLOC_LIMITED) {
3472 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3473 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3474 
3475 		if (sinfo->total_bytes - bytes_used < thresh)
3476 			return 1;
3477 	}
3478 
3479 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3480 		return 0;
3481 	return 1;
3482 }
3483 
3484 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3485 {
3486 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3487 
3488 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3489 }
3490 
3491 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3492 {
3493 	struct btrfs_block_group *bg;
3494 	int ret;
3495 
3496 	/*
3497 	 * Check if we have enough space in the system space info because we
3498 	 * will need to update device items in the chunk btree and insert a new
3499 	 * chunk item in the chunk btree as well. This will allocate a new
3500 	 * system block group if needed.
3501 	 */
3502 	check_system_chunk(trans, flags);
3503 
3504 	bg = btrfs_create_chunk(trans, flags);
3505 	if (IS_ERR(bg)) {
3506 		ret = PTR_ERR(bg);
3507 		goto out;
3508 	}
3509 
3510 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3511 	/*
3512 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3513 	 * previously reserved space in the system space_info and allocated one
3514 	 * new system chunk if necessary. However there are three exceptions:
3515 	 *
3516 	 * 1) We may have enough free space in the system space_info but all the
3517 	 *    existing system block groups have a profile which can not be used
3518 	 *    for extent allocation.
3519 	 *
3520 	 *    This happens when mounting in degraded mode. For example we have a
3521 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3522 	 *    using the other device in degraded mode. If we then allocate a chunk,
3523 	 *    we may have enough free space in the existing system space_info, but
3524 	 *    none of the block groups can be used for extent allocation since they
3525 	 *    have a RAID1 profile, and because we are in degraded mode with a
3526 	 *    single device, we are forced to allocate a new system chunk with a
3527 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3528 	 *    block groups and check if they have a usable profile and enough space
3529 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3530 	 *    try again after forcing allocation of a new system chunk. Like this
3531 	 *    we avoid paying the cost of that search in normal circumstances, when
3532 	 *    we were not mounted in degraded mode;
3533 	 *
3534 	 * 2) We had enough free space info the system space_info, and one suitable
3535 	 *    block group to allocate from when we called check_system_chunk()
3536 	 *    above. However right after we called it, the only system block group
3537 	 *    with enough free space got turned into RO mode by a running scrub,
3538 	 *    and in this case we have to allocate a new one and retry. We only
3539 	 *    need do this allocate and retry once, since we have a transaction
3540 	 *    handle and scrub uses the commit root to search for block groups;
3541 	 *
3542 	 * 3) We had one system block group with enough free space when we called
3543 	 *    check_system_chunk(), but after that, right before we tried to
3544 	 *    allocate the last extent buffer we needed, a discard operation came
3545 	 *    in and it temporarily removed the last free space entry from the
3546 	 *    block group (discard removes a free space entry, discards it, and
3547 	 *    then adds back the entry to the block group cache).
3548 	 */
3549 	if (ret == -ENOSPC) {
3550 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3551 		struct btrfs_block_group *sys_bg;
3552 
3553 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3554 		if (IS_ERR(sys_bg)) {
3555 			ret = PTR_ERR(sys_bg);
3556 			btrfs_abort_transaction(trans, ret);
3557 			goto out;
3558 		}
3559 
3560 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3561 		if (ret) {
3562 			btrfs_abort_transaction(trans, ret);
3563 			goto out;
3564 		}
3565 
3566 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3567 		if (ret) {
3568 			btrfs_abort_transaction(trans, ret);
3569 			goto out;
3570 		}
3571 	} else if (ret) {
3572 		btrfs_abort_transaction(trans, ret);
3573 		goto out;
3574 	}
3575 out:
3576 	btrfs_trans_release_chunk_metadata(trans);
3577 
3578 	if (ret)
3579 		return ERR_PTR(ret);
3580 
3581 	btrfs_get_block_group(bg);
3582 	return bg;
3583 }
3584 
3585 /*
3586  * Chunk allocation is done in 2 phases:
3587  *
3588  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3589  *    the chunk, the chunk mapping, create its block group and add the items
3590  *    that belong in the chunk btree to it - more specifically, we need to
3591  *    update device items in the chunk btree and add a new chunk item to it.
3592  *
3593  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3594  *    group item to the extent btree and the device extent items to the devices
3595  *    btree.
3596  *
3597  * This is done to prevent deadlocks. For example when COWing a node from the
3598  * extent btree we are holding a write lock on the node's parent and if we
3599  * trigger chunk allocation and attempted to insert the new block group item
3600  * in the extent btree right way, we could deadlock because the path for the
3601  * insertion can include that parent node. At first glance it seems impossible
3602  * to trigger chunk allocation after starting a transaction since tasks should
3603  * reserve enough transaction units (metadata space), however while that is true
3604  * most of the time, chunk allocation may still be triggered for several reasons:
3605  *
3606  * 1) When reserving metadata, we check if there is enough free space in the
3607  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3608  *    However later when the task actually tries to COW an extent buffer from
3609  *    the extent btree or from the device btree for example, it is forced to
3610  *    allocate a new block group (chunk) because the only one that had enough
3611  *    free space was just turned to RO mode by a running scrub for example (or
3612  *    device replace, block group reclaim thread, etc), so we can not use it
3613  *    for allocating an extent and end up being forced to allocate a new one;
3614  *
3615  * 2) Because we only check that the metadata space_info has enough free bytes,
3616  *    we end up not allocating a new metadata chunk in that case. However if
3617  *    the filesystem was mounted in degraded mode, none of the existing block
3618  *    groups might be suitable for extent allocation due to their incompatible
3619  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3620  *    use a RAID1 profile, in degraded mode using a single device). In this case
3621  *    when the task attempts to COW some extent buffer of the extent btree for
3622  *    example, it will trigger allocation of a new metadata block group with a
3623  *    suitable profile (SINGLE profile in the example of the degraded mount of
3624  *    the RAID1 filesystem);
3625  *
3626  * 3) The task has reserved enough transaction units / metadata space, but when
3627  *    it attempts to COW an extent buffer from the extent or device btree for
3628  *    example, it does not find any free extent in any metadata block group,
3629  *    therefore forced to try to allocate a new metadata block group.
3630  *    This is because some other task allocated all available extents in the
3631  *    meanwhile - this typically happens with tasks that don't reserve space
3632  *    properly, either intentionally or as a bug. One example where this is
3633  *    done intentionally is fsync, as it does not reserve any transaction units
3634  *    and ends up allocating a variable number of metadata extents for log
3635  *    tree extent buffers;
3636  *
3637  * 4) The task has reserved enough transaction units / metadata space, but right
3638  *    before it tries to allocate the last extent buffer it needs, a discard
3639  *    operation comes in and, temporarily, removes the last free space entry from
3640  *    the only metadata block group that had free space (discard starts by
3641  *    removing a free space entry from a block group, then does the discard
3642  *    operation and, once it's done, it adds back the free space entry to the
3643  *    block group).
3644  *
3645  * We also need this 2 phases setup when adding a device to a filesystem with
3646  * a seed device - we must create new metadata and system chunks without adding
3647  * any of the block group items to the chunk, extent and device btrees. If we
3648  * did not do it this way, we would get ENOSPC when attempting to update those
3649  * btrees, since all the chunks from the seed device are read-only.
3650  *
3651  * Phase 1 does the updates and insertions to the chunk btree because if we had
3652  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3653  * parallel, we risk having too many system chunks allocated by many tasks if
3654  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3655  * extreme case this leads to exhaustion of the system chunk array in the
3656  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3657  * and with RAID filesystems (so we have more device items in the chunk btree).
3658  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3659  * the system chunk array due to concurrent allocations") provides more details.
3660  *
3661  * Allocation of system chunks does not happen through this function. A task that
3662  * needs to update the chunk btree (the only btree that uses system chunks), must
3663  * preallocate chunk space by calling either check_system_chunk() or
3664  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3665  * metadata chunk or when removing a chunk, while the later is used before doing
3666  * a modification to the chunk btree - use cases for the later are adding,
3667  * removing and resizing a device as well as relocation of a system chunk.
3668  * See the comment below for more details.
3669  *
3670  * The reservation of system space, done through check_system_chunk(), as well
3671  * as all the updates and insertions into the chunk btree must be done while
3672  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3673  * an extent buffer from the chunks btree we never trigger allocation of a new
3674  * system chunk, which would result in a deadlock (trying to lock twice an
3675  * extent buffer of the chunk btree, first time before triggering the chunk
3676  * allocation and the second time during chunk allocation while attempting to
3677  * update the chunks btree). The system chunk array is also updated while holding
3678  * that mutex. The same logic applies to removing chunks - we must reserve system
3679  * space, update the chunk btree and the system chunk array in the superblock
3680  * while holding fs_info->chunk_mutex.
3681  *
3682  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3683  *
3684  * If @force is CHUNK_ALLOC_FORCE:
3685  *    - return 1 if it successfully allocates a chunk,
3686  *    - return errors including -ENOSPC otherwise.
3687  * If @force is NOT CHUNK_ALLOC_FORCE:
3688  *    - return 0 if it doesn't need to allocate a new chunk,
3689  *    - return 1 if it successfully allocates a chunk,
3690  *    - return errors including -ENOSPC otherwise.
3691  */
3692 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3693 		      enum btrfs_chunk_alloc_enum force)
3694 {
3695 	struct btrfs_fs_info *fs_info = trans->fs_info;
3696 	struct btrfs_space_info *space_info;
3697 	struct btrfs_block_group *ret_bg;
3698 	bool wait_for_alloc = false;
3699 	bool should_alloc = false;
3700 	bool from_extent_allocation = false;
3701 	int ret = 0;
3702 
3703 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3704 		from_extent_allocation = true;
3705 		force = CHUNK_ALLOC_FORCE;
3706 	}
3707 
3708 	/* Don't re-enter if we're already allocating a chunk */
3709 	if (trans->allocating_chunk)
3710 		return -ENOSPC;
3711 	/*
3712 	 * Allocation of system chunks can not happen through this path, as we
3713 	 * could end up in a deadlock if we are allocating a data or metadata
3714 	 * chunk and there is another task modifying the chunk btree.
3715 	 *
3716 	 * This is because while we are holding the chunk mutex, we will attempt
3717 	 * to add the new chunk item to the chunk btree or update an existing
3718 	 * device item in the chunk btree, while the other task that is modifying
3719 	 * the chunk btree is attempting to COW an extent buffer while holding a
3720 	 * lock on it and on its parent - if the COW operation triggers a system
3721 	 * chunk allocation, then we can deadlock because we are holding the
3722 	 * chunk mutex and we may need to access that extent buffer or its parent
3723 	 * in order to add the chunk item or update a device item.
3724 	 *
3725 	 * Tasks that want to modify the chunk tree should reserve system space
3726 	 * before updating the chunk btree, by calling either
3727 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3728 	 * It's possible that after a task reserves the space, it still ends up
3729 	 * here - this happens in the cases described above at do_chunk_alloc().
3730 	 * The task will have to either retry or fail.
3731 	 */
3732 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3733 		return -ENOSPC;
3734 
3735 	space_info = btrfs_find_space_info(fs_info, flags);
3736 	ASSERT(space_info);
3737 
3738 	do {
3739 		spin_lock(&space_info->lock);
3740 		if (force < space_info->force_alloc)
3741 			force = space_info->force_alloc;
3742 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3743 		if (space_info->full) {
3744 			/* No more free physical space */
3745 			if (should_alloc)
3746 				ret = -ENOSPC;
3747 			else
3748 				ret = 0;
3749 			spin_unlock(&space_info->lock);
3750 			return ret;
3751 		} else if (!should_alloc) {
3752 			spin_unlock(&space_info->lock);
3753 			return 0;
3754 		} else if (space_info->chunk_alloc) {
3755 			/*
3756 			 * Someone is already allocating, so we need to block
3757 			 * until this someone is finished and then loop to
3758 			 * recheck if we should continue with our allocation
3759 			 * attempt.
3760 			 */
3761 			wait_for_alloc = true;
3762 			force = CHUNK_ALLOC_NO_FORCE;
3763 			spin_unlock(&space_info->lock);
3764 			mutex_lock(&fs_info->chunk_mutex);
3765 			mutex_unlock(&fs_info->chunk_mutex);
3766 		} else {
3767 			/* Proceed with allocation */
3768 			space_info->chunk_alloc = 1;
3769 			wait_for_alloc = false;
3770 			spin_unlock(&space_info->lock);
3771 		}
3772 
3773 		cond_resched();
3774 	} while (wait_for_alloc);
3775 
3776 	mutex_lock(&fs_info->chunk_mutex);
3777 	trans->allocating_chunk = true;
3778 
3779 	/*
3780 	 * If we have mixed data/metadata chunks we want to make sure we keep
3781 	 * allocating mixed chunks instead of individual chunks.
3782 	 */
3783 	if (btrfs_mixed_space_info(space_info))
3784 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3785 
3786 	/*
3787 	 * if we're doing a data chunk, go ahead and make sure that
3788 	 * we keep a reasonable number of metadata chunks allocated in the
3789 	 * FS as well.
3790 	 */
3791 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3792 		fs_info->data_chunk_allocations++;
3793 		if (!(fs_info->data_chunk_allocations %
3794 		      fs_info->metadata_ratio))
3795 			force_metadata_allocation(fs_info);
3796 	}
3797 
3798 	ret_bg = do_chunk_alloc(trans, flags);
3799 	trans->allocating_chunk = false;
3800 
3801 	if (IS_ERR(ret_bg)) {
3802 		ret = PTR_ERR(ret_bg);
3803 	} else if (from_extent_allocation) {
3804 		/*
3805 		 * New block group is likely to be used soon. Try to activate
3806 		 * it now. Failure is OK for now.
3807 		 */
3808 		btrfs_zone_activate(ret_bg);
3809 	}
3810 
3811 	if (!ret)
3812 		btrfs_put_block_group(ret_bg);
3813 
3814 	spin_lock(&space_info->lock);
3815 	if (ret < 0) {
3816 		if (ret == -ENOSPC)
3817 			space_info->full = 1;
3818 		else
3819 			goto out;
3820 	} else {
3821 		ret = 1;
3822 		space_info->max_extent_size = 0;
3823 	}
3824 
3825 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3826 out:
3827 	space_info->chunk_alloc = 0;
3828 	spin_unlock(&space_info->lock);
3829 	mutex_unlock(&fs_info->chunk_mutex);
3830 
3831 	return ret;
3832 }
3833 
3834 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3835 {
3836 	u64 num_dev;
3837 
3838 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3839 	if (!num_dev)
3840 		num_dev = fs_info->fs_devices->rw_devices;
3841 
3842 	return num_dev;
3843 }
3844 
3845 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3846 				u64 bytes,
3847 				u64 type)
3848 {
3849 	struct btrfs_fs_info *fs_info = trans->fs_info;
3850 	struct btrfs_space_info *info;
3851 	u64 left;
3852 	int ret = 0;
3853 
3854 	/*
3855 	 * Needed because we can end up allocating a system chunk and for an
3856 	 * atomic and race free space reservation in the chunk block reserve.
3857 	 */
3858 	lockdep_assert_held(&fs_info->chunk_mutex);
3859 
3860 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3861 	spin_lock(&info->lock);
3862 	left = info->total_bytes - btrfs_space_info_used(info, true);
3863 	spin_unlock(&info->lock);
3864 
3865 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3866 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3867 			   left, bytes, type);
3868 		btrfs_dump_space_info(fs_info, info, 0, 0);
3869 	}
3870 
3871 	if (left < bytes) {
3872 		u64 flags = btrfs_system_alloc_profile(fs_info);
3873 		struct btrfs_block_group *bg;
3874 
3875 		/*
3876 		 * Ignore failure to create system chunk. We might end up not
3877 		 * needing it, as we might not need to COW all nodes/leafs from
3878 		 * the paths we visit in the chunk tree (they were already COWed
3879 		 * or created in the current transaction for example).
3880 		 */
3881 		bg = btrfs_create_chunk(trans, flags);
3882 		if (IS_ERR(bg)) {
3883 			ret = PTR_ERR(bg);
3884 		} else {
3885 			/*
3886 			 * We have a new chunk. We also need to activate it for
3887 			 * zoned filesystem.
3888 			 */
3889 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3890 			if (ret < 0)
3891 				return;
3892 
3893 			/*
3894 			 * If we fail to add the chunk item here, we end up
3895 			 * trying again at phase 2 of chunk allocation, at
3896 			 * btrfs_create_pending_block_groups(). So ignore
3897 			 * any error here. An ENOSPC here could happen, due to
3898 			 * the cases described at do_chunk_alloc() - the system
3899 			 * block group we just created was just turned into RO
3900 			 * mode by a scrub for example, or a running discard
3901 			 * temporarily removed its free space entries, etc.
3902 			 */
3903 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3904 		}
3905 	}
3906 
3907 	if (!ret) {
3908 		ret = btrfs_block_rsv_add(fs_info,
3909 					  &fs_info->chunk_block_rsv,
3910 					  bytes, BTRFS_RESERVE_NO_FLUSH);
3911 		if (!ret)
3912 			trans->chunk_bytes_reserved += bytes;
3913 	}
3914 }
3915 
3916 /*
3917  * Reserve space in the system space for allocating or removing a chunk.
3918  * The caller must be holding fs_info->chunk_mutex.
3919  */
3920 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3921 {
3922 	struct btrfs_fs_info *fs_info = trans->fs_info;
3923 	const u64 num_devs = get_profile_num_devs(fs_info, type);
3924 	u64 bytes;
3925 
3926 	/* num_devs device items to update and 1 chunk item to add or remove. */
3927 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3928 		btrfs_calc_insert_metadata_size(fs_info, 1);
3929 
3930 	reserve_chunk_space(trans, bytes, type);
3931 }
3932 
3933 /*
3934  * Reserve space in the system space, if needed, for doing a modification to the
3935  * chunk btree.
3936  *
3937  * @trans:		A transaction handle.
3938  * @is_item_insertion:	Indicate if the modification is for inserting a new item
3939  *			in the chunk btree or if it's for the deletion or update
3940  *			of an existing item.
3941  *
3942  * This is used in a context where we need to update the chunk btree outside
3943  * block group allocation and removal, to avoid a deadlock with a concurrent
3944  * task that is allocating a metadata or data block group and therefore needs to
3945  * update the chunk btree while holding the chunk mutex. After the update to the
3946  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3947  *
3948  */
3949 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3950 				  bool is_item_insertion)
3951 {
3952 	struct btrfs_fs_info *fs_info = trans->fs_info;
3953 	u64 bytes;
3954 
3955 	if (is_item_insertion)
3956 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3957 	else
3958 		bytes = btrfs_calc_metadata_size(fs_info, 1);
3959 
3960 	mutex_lock(&fs_info->chunk_mutex);
3961 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3962 	mutex_unlock(&fs_info->chunk_mutex);
3963 }
3964 
3965 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3966 {
3967 	struct btrfs_block_group *block_group;
3968 	u64 last = 0;
3969 
3970 	while (1) {
3971 		struct inode *inode;
3972 
3973 		block_group = btrfs_lookup_first_block_group(info, last);
3974 		while (block_group) {
3975 			btrfs_wait_block_group_cache_done(block_group);
3976 			spin_lock(&block_group->lock);
3977 			if (block_group->iref)
3978 				break;
3979 			spin_unlock(&block_group->lock);
3980 			block_group = btrfs_next_block_group(block_group);
3981 		}
3982 		if (!block_group) {
3983 			if (last == 0)
3984 				break;
3985 			last = 0;
3986 			continue;
3987 		}
3988 
3989 		inode = block_group->inode;
3990 		block_group->iref = 0;
3991 		block_group->inode = NULL;
3992 		spin_unlock(&block_group->lock);
3993 		ASSERT(block_group->io_ctl.inode == NULL);
3994 		iput(inode);
3995 		last = block_group->start + block_group->length;
3996 		btrfs_put_block_group(block_group);
3997 	}
3998 }
3999 
4000 /*
4001  * Must be called only after stopping all workers, since we could have block
4002  * group caching kthreads running, and therefore they could race with us if we
4003  * freed the block groups before stopping them.
4004  */
4005 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4006 {
4007 	struct btrfs_block_group *block_group;
4008 	struct btrfs_space_info *space_info;
4009 	struct btrfs_caching_control *caching_ctl;
4010 	struct rb_node *n;
4011 
4012 	write_lock(&info->block_group_cache_lock);
4013 	while (!list_empty(&info->caching_block_groups)) {
4014 		caching_ctl = list_entry(info->caching_block_groups.next,
4015 					 struct btrfs_caching_control, list);
4016 		list_del(&caching_ctl->list);
4017 		btrfs_put_caching_control(caching_ctl);
4018 	}
4019 	write_unlock(&info->block_group_cache_lock);
4020 
4021 	spin_lock(&info->unused_bgs_lock);
4022 	while (!list_empty(&info->unused_bgs)) {
4023 		block_group = list_first_entry(&info->unused_bgs,
4024 					       struct btrfs_block_group,
4025 					       bg_list);
4026 		list_del_init(&block_group->bg_list);
4027 		btrfs_put_block_group(block_group);
4028 	}
4029 
4030 	while (!list_empty(&info->reclaim_bgs)) {
4031 		block_group = list_first_entry(&info->reclaim_bgs,
4032 					       struct btrfs_block_group,
4033 					       bg_list);
4034 		list_del_init(&block_group->bg_list);
4035 		btrfs_put_block_group(block_group);
4036 	}
4037 	spin_unlock(&info->unused_bgs_lock);
4038 
4039 	spin_lock(&info->zone_active_bgs_lock);
4040 	while (!list_empty(&info->zone_active_bgs)) {
4041 		block_group = list_first_entry(&info->zone_active_bgs,
4042 					       struct btrfs_block_group,
4043 					       active_bg_list);
4044 		list_del_init(&block_group->active_bg_list);
4045 		btrfs_put_block_group(block_group);
4046 	}
4047 	spin_unlock(&info->zone_active_bgs_lock);
4048 
4049 	write_lock(&info->block_group_cache_lock);
4050 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4051 		block_group = rb_entry(n, struct btrfs_block_group,
4052 				       cache_node);
4053 		rb_erase_cached(&block_group->cache_node,
4054 				&info->block_group_cache_tree);
4055 		RB_CLEAR_NODE(&block_group->cache_node);
4056 		write_unlock(&info->block_group_cache_lock);
4057 
4058 		down_write(&block_group->space_info->groups_sem);
4059 		list_del(&block_group->list);
4060 		up_write(&block_group->space_info->groups_sem);
4061 
4062 		/*
4063 		 * We haven't cached this block group, which means we could
4064 		 * possibly have excluded extents on this block group.
4065 		 */
4066 		if (block_group->cached == BTRFS_CACHE_NO ||
4067 		    block_group->cached == BTRFS_CACHE_ERROR)
4068 			btrfs_free_excluded_extents(block_group);
4069 
4070 		btrfs_remove_free_space_cache(block_group);
4071 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4072 		ASSERT(list_empty(&block_group->dirty_list));
4073 		ASSERT(list_empty(&block_group->io_list));
4074 		ASSERT(list_empty(&block_group->bg_list));
4075 		ASSERT(refcount_read(&block_group->refs) == 1);
4076 		ASSERT(block_group->swap_extents == 0);
4077 		btrfs_put_block_group(block_group);
4078 
4079 		write_lock(&info->block_group_cache_lock);
4080 	}
4081 	write_unlock(&info->block_group_cache_lock);
4082 
4083 	btrfs_release_global_block_rsv(info);
4084 
4085 	while (!list_empty(&info->space_info)) {
4086 		space_info = list_entry(info->space_info.next,
4087 					struct btrfs_space_info,
4088 					list);
4089 
4090 		/*
4091 		 * Do not hide this behind enospc_debug, this is actually
4092 		 * important and indicates a real bug if this happens.
4093 		 */
4094 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4095 			    space_info->bytes_may_use > 0))
4096 			btrfs_dump_space_info(info, space_info, 0, 0);
4097 
4098 		/*
4099 		 * If there was a failure to cleanup a log tree, very likely due
4100 		 * to an IO failure on a writeback attempt of one or more of its
4101 		 * extent buffers, we could not do proper (and cheap) unaccounting
4102 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4103 		 * that case.
4104 		 */
4105 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4106 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4107 			if (WARN_ON(space_info->bytes_reserved > 0))
4108 				btrfs_dump_space_info(info, space_info, 0, 0);
4109 		}
4110 
4111 		WARN_ON(space_info->reclaim_size > 0);
4112 		list_del(&space_info->list);
4113 		btrfs_sysfs_remove_space_info(space_info);
4114 	}
4115 	return 0;
4116 }
4117 
4118 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4119 {
4120 	atomic_inc(&cache->frozen);
4121 }
4122 
4123 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4124 {
4125 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4126 	struct extent_map_tree *em_tree;
4127 	struct extent_map *em;
4128 	bool cleanup;
4129 
4130 	spin_lock(&block_group->lock);
4131 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4132 		   block_group->removed);
4133 	spin_unlock(&block_group->lock);
4134 
4135 	if (cleanup) {
4136 		em_tree = &fs_info->mapping_tree;
4137 		write_lock(&em_tree->lock);
4138 		em = lookup_extent_mapping(em_tree, block_group->start,
4139 					   1);
4140 		BUG_ON(!em); /* logic error, can't happen */
4141 		remove_extent_mapping(em_tree, em);
4142 		write_unlock(&em_tree->lock);
4143 
4144 		/* once for us and once for the tree */
4145 		free_extent_map(em);
4146 		free_extent_map(em);
4147 
4148 		/*
4149 		 * We may have left one free space entry and other possible
4150 		 * tasks trimming this block group have left 1 entry each one.
4151 		 * Free them if any.
4152 		 */
4153 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
4154 	}
4155 }
4156 
4157 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4158 {
4159 	bool ret = true;
4160 
4161 	spin_lock(&bg->lock);
4162 	if (bg->ro)
4163 		ret = false;
4164 	else
4165 		bg->swap_extents++;
4166 	spin_unlock(&bg->lock);
4167 
4168 	return ret;
4169 }
4170 
4171 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4172 {
4173 	spin_lock(&bg->lock);
4174 	ASSERT(!bg->ro);
4175 	ASSERT(bg->swap_extents >= amount);
4176 	bg->swap_extents -= amount;
4177 	spin_unlock(&bg->lock);
4178 }
4179