xref: /linux/fs/btrfs/block-group.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20 
21 /*
22  * Return target flags in extended format or 0 if restripe for this chunk_type
23  * is not in progress
24  *
25  * Should be called with balance_lock held
26  */
27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
28 {
29 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 	u64 target = 0;
31 
32 	if (!bctl)
33 		return 0;
34 
35 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 	}
45 
46 	return target;
47 }
48 
49 /*
50  * @flags: available profiles in extended format (see ctree.h)
51  *
52  * Return reduced profile in chunk format.  If profile changing is in progress
53  * (either running or paused) picks the target profile (if it's already
54  * available), otherwise falls back to plain reducing.
55  */
56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 	u64 num_devices = fs_info->fs_devices->rw_devices;
59 	u64 target;
60 	u64 raid_type;
61 	u64 allowed = 0;
62 
63 	/*
64 	 * See if restripe for this chunk_type is in progress, if so try to
65 	 * reduce to the target profile
66 	 */
67 	spin_lock(&fs_info->balance_lock);
68 	target = get_restripe_target(fs_info, flags);
69 	if (target) {
70 		spin_unlock(&fs_info->balance_lock);
71 		return extended_to_chunk(target);
72 	}
73 	spin_unlock(&fs_info->balance_lock);
74 
75 	/* First, mask out the RAID levels which aren't possible */
76 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 			allowed |= btrfs_raid_array[raid_type].bg_flag;
79 	}
80 	allowed &= flags;
81 
82 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 		allowed = BTRFS_BLOCK_GROUP_RAID6;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 		allowed = BTRFS_BLOCK_GROUP_RAID5;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 		allowed = BTRFS_BLOCK_GROUP_RAID10;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 		allowed = BTRFS_BLOCK_GROUP_RAID1;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 		allowed = BTRFS_BLOCK_GROUP_RAID0;
92 
93 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94 
95 	return extended_to_chunk(flags | allowed);
96 }
97 
98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 	unsigned seq;
101 	u64 flags;
102 
103 	do {
104 		flags = orig_flags;
105 		seq = read_seqbegin(&fs_info->profiles_lock);
106 
107 		if (flags & BTRFS_BLOCK_GROUP_DATA)
108 			flags |= fs_info->avail_data_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 			flags |= fs_info->avail_system_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 			flags |= fs_info->avail_metadata_alloc_bits;
113 	} while (read_seqretry(&fs_info->profiles_lock, seq));
114 
115 	return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117 
118 void btrfs_get_block_group(struct btrfs_block_group *cache)
119 {
120 	refcount_inc(&cache->refs);
121 }
122 
123 void btrfs_put_block_group(struct btrfs_block_group *cache)
124 {
125 	if (refcount_dec_and_test(&cache->refs)) {
126 		WARN_ON(cache->pinned > 0);
127 		/*
128 		 * If there was a failure to cleanup a log tree, very likely due
129 		 * to an IO failure on a writeback attempt of one or more of its
130 		 * extent buffers, we could not do proper (and cheap) unaccounting
131 		 * of their reserved space, so don't warn on reserved > 0 in that
132 		 * case.
133 		 */
134 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 			WARN_ON(cache->reserved > 0);
137 
138 		/*
139 		 * A block_group shouldn't be on the discard_list anymore.
140 		 * Remove the block_group from the discard_list to prevent us
141 		 * from causing a panic due to NULL pointer dereference.
142 		 */
143 		if (WARN_ON(!list_empty(&cache->discard_list)))
144 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
145 						  cache);
146 
147 		/*
148 		 * If not empty, someone is still holding mutex of
149 		 * full_stripe_lock, which can only be released by caller.
150 		 * And it will definitely cause use-after-free when caller
151 		 * tries to release full stripe lock.
152 		 *
153 		 * No better way to resolve, but only to warn.
154 		 */
155 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 		kfree(cache->free_space_ctl);
157 		kfree(cache->physical_map);
158 		kfree(cache);
159 	}
160 }
161 
162 /*
163  * This adds the block group to the fs_info rb tree for the block group cache
164  */
165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
166 				       struct btrfs_block_group *block_group)
167 {
168 	struct rb_node **p;
169 	struct rb_node *parent = NULL;
170 	struct btrfs_block_group *cache;
171 
172 	ASSERT(block_group->length != 0);
173 
174 	spin_lock(&info->block_group_cache_lock);
175 	p = &info->block_group_cache_tree.rb_node;
176 
177 	while (*p) {
178 		parent = *p;
179 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
180 		if (block_group->start < cache->start) {
181 			p = &(*p)->rb_left;
182 		} else if (block_group->start > cache->start) {
183 			p = &(*p)->rb_right;
184 		} else {
185 			spin_unlock(&info->block_group_cache_lock);
186 			return -EEXIST;
187 		}
188 	}
189 
190 	rb_link_node(&block_group->cache_node, parent, p);
191 	rb_insert_color(&block_group->cache_node,
192 			&info->block_group_cache_tree);
193 
194 	if (info->first_logical_byte > block_group->start)
195 		info->first_logical_byte = block_group->start;
196 
197 	spin_unlock(&info->block_group_cache_lock);
198 
199 	return 0;
200 }
201 
202 /*
203  * This will return the block group at or after bytenr if contains is 0, else
204  * it will return the block group that contains the bytenr
205  */
206 static struct btrfs_block_group *block_group_cache_tree_search(
207 		struct btrfs_fs_info *info, u64 bytenr, int contains)
208 {
209 	struct btrfs_block_group *cache, *ret = NULL;
210 	struct rb_node *n;
211 	u64 end, start;
212 
213 	spin_lock(&info->block_group_cache_lock);
214 	n = info->block_group_cache_tree.rb_node;
215 
216 	while (n) {
217 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
218 		end = cache->start + cache->length - 1;
219 		start = cache->start;
220 
221 		if (bytenr < start) {
222 			if (!contains && (!ret || start < ret->start))
223 				ret = cache;
224 			n = n->rb_left;
225 		} else if (bytenr > start) {
226 			if (contains && bytenr <= end) {
227 				ret = cache;
228 				break;
229 			}
230 			n = n->rb_right;
231 		} else {
232 			ret = cache;
233 			break;
234 		}
235 	}
236 	if (ret) {
237 		btrfs_get_block_group(ret);
238 		if (bytenr == 0 && info->first_logical_byte > ret->start)
239 			info->first_logical_byte = ret->start;
240 	}
241 	spin_unlock(&info->block_group_cache_lock);
242 
243 	return ret;
244 }
245 
246 /*
247  * Return the block group that starts at or after bytenr
248  */
249 struct btrfs_block_group *btrfs_lookup_first_block_group(
250 		struct btrfs_fs_info *info, u64 bytenr)
251 {
252 	return block_group_cache_tree_search(info, bytenr, 0);
253 }
254 
255 /*
256  * Return the block group that contains the given bytenr
257  */
258 struct btrfs_block_group *btrfs_lookup_block_group(
259 		struct btrfs_fs_info *info, u64 bytenr)
260 {
261 	return block_group_cache_tree_search(info, bytenr, 1);
262 }
263 
264 struct btrfs_block_group *btrfs_next_block_group(
265 		struct btrfs_block_group *cache)
266 {
267 	struct btrfs_fs_info *fs_info = cache->fs_info;
268 	struct rb_node *node;
269 
270 	spin_lock(&fs_info->block_group_cache_lock);
271 
272 	/* If our block group was removed, we need a full search. */
273 	if (RB_EMPTY_NODE(&cache->cache_node)) {
274 		const u64 next_bytenr = cache->start + cache->length;
275 
276 		spin_unlock(&fs_info->block_group_cache_lock);
277 		btrfs_put_block_group(cache);
278 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
279 	}
280 	node = rb_next(&cache->cache_node);
281 	btrfs_put_block_group(cache);
282 	if (node) {
283 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
284 		btrfs_get_block_group(cache);
285 	} else
286 		cache = NULL;
287 	spin_unlock(&fs_info->block_group_cache_lock);
288 	return cache;
289 }
290 
291 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
292 {
293 	struct btrfs_block_group *bg;
294 	bool ret = true;
295 
296 	bg = btrfs_lookup_block_group(fs_info, bytenr);
297 	if (!bg)
298 		return false;
299 
300 	spin_lock(&bg->lock);
301 	if (bg->ro)
302 		ret = false;
303 	else
304 		atomic_inc(&bg->nocow_writers);
305 	spin_unlock(&bg->lock);
306 
307 	/* No put on block group, done by btrfs_dec_nocow_writers */
308 	if (!ret)
309 		btrfs_put_block_group(bg);
310 
311 	return ret;
312 }
313 
314 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
315 {
316 	struct btrfs_block_group *bg;
317 
318 	bg = btrfs_lookup_block_group(fs_info, bytenr);
319 	ASSERT(bg);
320 	if (atomic_dec_and_test(&bg->nocow_writers))
321 		wake_up_var(&bg->nocow_writers);
322 	/*
323 	 * Once for our lookup and once for the lookup done by a previous call
324 	 * to btrfs_inc_nocow_writers()
325 	 */
326 	btrfs_put_block_group(bg);
327 	btrfs_put_block_group(bg);
328 }
329 
330 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
331 {
332 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
333 }
334 
335 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
336 					const u64 start)
337 {
338 	struct btrfs_block_group *bg;
339 
340 	bg = btrfs_lookup_block_group(fs_info, start);
341 	ASSERT(bg);
342 	if (atomic_dec_and_test(&bg->reservations))
343 		wake_up_var(&bg->reservations);
344 	btrfs_put_block_group(bg);
345 }
346 
347 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
348 {
349 	struct btrfs_space_info *space_info = bg->space_info;
350 
351 	ASSERT(bg->ro);
352 
353 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
354 		return;
355 
356 	/*
357 	 * Our block group is read only but before we set it to read only,
358 	 * some task might have had allocated an extent from it already, but it
359 	 * has not yet created a respective ordered extent (and added it to a
360 	 * root's list of ordered extents).
361 	 * Therefore wait for any task currently allocating extents, since the
362 	 * block group's reservations counter is incremented while a read lock
363 	 * on the groups' semaphore is held and decremented after releasing
364 	 * the read access on that semaphore and creating the ordered extent.
365 	 */
366 	down_write(&space_info->groups_sem);
367 	up_write(&space_info->groups_sem);
368 
369 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
370 }
371 
372 struct btrfs_caching_control *btrfs_get_caching_control(
373 		struct btrfs_block_group *cache)
374 {
375 	struct btrfs_caching_control *ctl;
376 
377 	spin_lock(&cache->lock);
378 	if (!cache->caching_ctl) {
379 		spin_unlock(&cache->lock);
380 		return NULL;
381 	}
382 
383 	ctl = cache->caching_ctl;
384 	refcount_inc(&ctl->count);
385 	spin_unlock(&cache->lock);
386 	return ctl;
387 }
388 
389 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
390 {
391 	if (refcount_dec_and_test(&ctl->count))
392 		kfree(ctl);
393 }
394 
395 /*
396  * When we wait for progress in the block group caching, its because our
397  * allocation attempt failed at least once.  So, we must sleep and let some
398  * progress happen before we try again.
399  *
400  * This function will sleep at least once waiting for new free space to show
401  * up, and then it will check the block group free space numbers for our min
402  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
403  * a free extent of a given size, but this is a good start.
404  *
405  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
406  * any of the information in this block group.
407  */
408 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
409 					   u64 num_bytes)
410 {
411 	struct btrfs_caching_control *caching_ctl;
412 
413 	caching_ctl = btrfs_get_caching_control(cache);
414 	if (!caching_ctl)
415 		return;
416 
417 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
418 		   (cache->free_space_ctl->free_space >= num_bytes));
419 
420 	btrfs_put_caching_control(caching_ctl);
421 }
422 
423 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
424 {
425 	struct btrfs_caching_control *caching_ctl;
426 	int ret = 0;
427 
428 	caching_ctl = btrfs_get_caching_control(cache);
429 	if (!caching_ctl)
430 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
431 
432 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
433 	if (cache->cached == BTRFS_CACHE_ERROR)
434 		ret = -EIO;
435 	btrfs_put_caching_control(caching_ctl);
436 	return ret;
437 }
438 
439 static bool space_cache_v1_done(struct btrfs_block_group *cache)
440 {
441 	bool ret;
442 
443 	spin_lock(&cache->lock);
444 	ret = cache->cached != BTRFS_CACHE_FAST;
445 	spin_unlock(&cache->lock);
446 
447 	return ret;
448 }
449 
450 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
451 				struct btrfs_caching_control *caching_ctl)
452 {
453 	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
454 }
455 
456 #ifdef CONFIG_BTRFS_DEBUG
457 static void fragment_free_space(struct btrfs_block_group *block_group)
458 {
459 	struct btrfs_fs_info *fs_info = block_group->fs_info;
460 	u64 start = block_group->start;
461 	u64 len = block_group->length;
462 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
463 		fs_info->nodesize : fs_info->sectorsize;
464 	u64 step = chunk << 1;
465 
466 	while (len > chunk) {
467 		btrfs_remove_free_space(block_group, start, chunk);
468 		start += step;
469 		if (len < step)
470 			len = 0;
471 		else
472 			len -= step;
473 	}
474 }
475 #endif
476 
477 /*
478  * This is only called by btrfs_cache_block_group, since we could have freed
479  * extents we need to check the pinned_extents for any extents that can't be
480  * used yet since their free space will be released as soon as the transaction
481  * commits.
482  */
483 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
484 {
485 	struct btrfs_fs_info *info = block_group->fs_info;
486 	u64 extent_start, extent_end, size, total_added = 0;
487 	int ret;
488 
489 	while (start < end) {
490 		ret = find_first_extent_bit(&info->excluded_extents, start,
491 					    &extent_start, &extent_end,
492 					    EXTENT_DIRTY | EXTENT_UPTODATE,
493 					    NULL);
494 		if (ret)
495 			break;
496 
497 		if (extent_start <= start) {
498 			start = extent_end + 1;
499 		} else if (extent_start > start && extent_start < end) {
500 			size = extent_start - start;
501 			total_added += size;
502 			ret = btrfs_add_free_space_async_trimmed(block_group,
503 								 start, size);
504 			BUG_ON(ret); /* -ENOMEM or logic error */
505 			start = extent_end + 1;
506 		} else {
507 			break;
508 		}
509 	}
510 
511 	if (start < end) {
512 		size = end - start;
513 		total_added += size;
514 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
515 							 size);
516 		BUG_ON(ret); /* -ENOMEM or logic error */
517 	}
518 
519 	return total_added;
520 }
521 
522 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
523 {
524 	struct btrfs_block_group *block_group = caching_ctl->block_group;
525 	struct btrfs_fs_info *fs_info = block_group->fs_info;
526 	struct btrfs_root *extent_root;
527 	struct btrfs_path *path;
528 	struct extent_buffer *leaf;
529 	struct btrfs_key key;
530 	u64 total_found = 0;
531 	u64 last = 0;
532 	u32 nritems;
533 	int ret;
534 	bool wakeup = true;
535 
536 	path = btrfs_alloc_path();
537 	if (!path)
538 		return -ENOMEM;
539 
540 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
541 	extent_root = btrfs_extent_root(fs_info, last);
542 
543 #ifdef CONFIG_BTRFS_DEBUG
544 	/*
545 	 * If we're fragmenting we don't want to make anybody think we can
546 	 * allocate from this block group until we've had a chance to fragment
547 	 * the free space.
548 	 */
549 	if (btrfs_should_fragment_free_space(block_group))
550 		wakeup = false;
551 #endif
552 	/*
553 	 * We don't want to deadlock with somebody trying to allocate a new
554 	 * extent for the extent root while also trying to search the extent
555 	 * root to add free space.  So we skip locking and search the commit
556 	 * root, since its read-only
557 	 */
558 	path->skip_locking = 1;
559 	path->search_commit_root = 1;
560 	path->reada = READA_FORWARD;
561 
562 	key.objectid = last;
563 	key.offset = 0;
564 	key.type = BTRFS_EXTENT_ITEM_KEY;
565 
566 next:
567 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
568 	if (ret < 0)
569 		goto out;
570 
571 	leaf = path->nodes[0];
572 	nritems = btrfs_header_nritems(leaf);
573 
574 	while (1) {
575 		if (btrfs_fs_closing(fs_info) > 1) {
576 			last = (u64)-1;
577 			break;
578 		}
579 
580 		if (path->slots[0] < nritems) {
581 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
582 		} else {
583 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
584 			if (ret)
585 				break;
586 
587 			if (need_resched() ||
588 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
589 				if (wakeup)
590 					caching_ctl->progress = last;
591 				btrfs_release_path(path);
592 				up_read(&fs_info->commit_root_sem);
593 				mutex_unlock(&caching_ctl->mutex);
594 				cond_resched();
595 				mutex_lock(&caching_ctl->mutex);
596 				down_read(&fs_info->commit_root_sem);
597 				goto next;
598 			}
599 
600 			ret = btrfs_next_leaf(extent_root, path);
601 			if (ret < 0)
602 				goto out;
603 			if (ret)
604 				break;
605 			leaf = path->nodes[0];
606 			nritems = btrfs_header_nritems(leaf);
607 			continue;
608 		}
609 
610 		if (key.objectid < last) {
611 			key.objectid = last;
612 			key.offset = 0;
613 			key.type = BTRFS_EXTENT_ITEM_KEY;
614 
615 			if (wakeup)
616 				caching_ctl->progress = last;
617 			btrfs_release_path(path);
618 			goto next;
619 		}
620 
621 		if (key.objectid < block_group->start) {
622 			path->slots[0]++;
623 			continue;
624 		}
625 
626 		if (key.objectid >= block_group->start + block_group->length)
627 			break;
628 
629 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
630 		    key.type == BTRFS_METADATA_ITEM_KEY) {
631 			total_found += add_new_free_space(block_group, last,
632 							  key.objectid);
633 			if (key.type == BTRFS_METADATA_ITEM_KEY)
634 				last = key.objectid +
635 					fs_info->nodesize;
636 			else
637 				last = key.objectid + key.offset;
638 
639 			if (total_found > CACHING_CTL_WAKE_UP) {
640 				total_found = 0;
641 				if (wakeup)
642 					wake_up(&caching_ctl->wait);
643 			}
644 		}
645 		path->slots[0]++;
646 	}
647 	ret = 0;
648 
649 	total_found += add_new_free_space(block_group, last,
650 				block_group->start + block_group->length);
651 	caching_ctl->progress = (u64)-1;
652 
653 out:
654 	btrfs_free_path(path);
655 	return ret;
656 }
657 
658 static noinline void caching_thread(struct btrfs_work *work)
659 {
660 	struct btrfs_block_group *block_group;
661 	struct btrfs_fs_info *fs_info;
662 	struct btrfs_caching_control *caching_ctl;
663 	int ret;
664 
665 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
666 	block_group = caching_ctl->block_group;
667 	fs_info = block_group->fs_info;
668 
669 	mutex_lock(&caching_ctl->mutex);
670 	down_read(&fs_info->commit_root_sem);
671 
672 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
673 		ret = load_free_space_cache(block_group);
674 		if (ret == 1) {
675 			ret = 0;
676 			goto done;
677 		}
678 
679 		/*
680 		 * We failed to load the space cache, set ourselves to
681 		 * CACHE_STARTED and carry on.
682 		 */
683 		spin_lock(&block_group->lock);
684 		block_group->cached = BTRFS_CACHE_STARTED;
685 		spin_unlock(&block_group->lock);
686 		wake_up(&caching_ctl->wait);
687 	}
688 
689 	/*
690 	 * If we are in the transaction that populated the free space tree we
691 	 * can't actually cache from the free space tree as our commit root and
692 	 * real root are the same, so we could change the contents of the blocks
693 	 * while caching.  Instead do the slow caching in this case, and after
694 	 * the transaction has committed we will be safe.
695 	 */
696 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
697 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
698 		ret = load_free_space_tree(caching_ctl);
699 	else
700 		ret = load_extent_tree_free(caching_ctl);
701 done:
702 	spin_lock(&block_group->lock);
703 	block_group->caching_ctl = NULL;
704 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
705 	spin_unlock(&block_group->lock);
706 
707 #ifdef CONFIG_BTRFS_DEBUG
708 	if (btrfs_should_fragment_free_space(block_group)) {
709 		u64 bytes_used;
710 
711 		spin_lock(&block_group->space_info->lock);
712 		spin_lock(&block_group->lock);
713 		bytes_used = block_group->length - block_group->used;
714 		block_group->space_info->bytes_used += bytes_used >> 1;
715 		spin_unlock(&block_group->lock);
716 		spin_unlock(&block_group->space_info->lock);
717 		fragment_free_space(block_group);
718 	}
719 #endif
720 
721 	caching_ctl->progress = (u64)-1;
722 
723 	up_read(&fs_info->commit_root_sem);
724 	btrfs_free_excluded_extents(block_group);
725 	mutex_unlock(&caching_ctl->mutex);
726 
727 	wake_up(&caching_ctl->wait);
728 
729 	btrfs_put_caching_control(caching_ctl);
730 	btrfs_put_block_group(block_group);
731 }
732 
733 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
734 {
735 	DEFINE_WAIT(wait);
736 	struct btrfs_fs_info *fs_info = cache->fs_info;
737 	struct btrfs_caching_control *caching_ctl = NULL;
738 	int ret = 0;
739 
740 	/* Allocator for zoned filesystems does not use the cache at all */
741 	if (btrfs_is_zoned(fs_info))
742 		return 0;
743 
744 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
745 	if (!caching_ctl)
746 		return -ENOMEM;
747 
748 	INIT_LIST_HEAD(&caching_ctl->list);
749 	mutex_init(&caching_ctl->mutex);
750 	init_waitqueue_head(&caching_ctl->wait);
751 	caching_ctl->block_group = cache;
752 	caching_ctl->progress = cache->start;
753 	refcount_set(&caching_ctl->count, 2);
754 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
755 
756 	spin_lock(&cache->lock);
757 	if (cache->cached != BTRFS_CACHE_NO) {
758 		kfree(caching_ctl);
759 
760 		caching_ctl = cache->caching_ctl;
761 		if (caching_ctl)
762 			refcount_inc(&caching_ctl->count);
763 		spin_unlock(&cache->lock);
764 		goto out;
765 	}
766 	WARN_ON(cache->caching_ctl);
767 	cache->caching_ctl = caching_ctl;
768 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
769 		cache->cached = BTRFS_CACHE_FAST;
770 	else
771 		cache->cached = BTRFS_CACHE_STARTED;
772 	cache->has_caching_ctl = 1;
773 	spin_unlock(&cache->lock);
774 
775 	spin_lock(&fs_info->block_group_cache_lock);
776 	refcount_inc(&caching_ctl->count);
777 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
778 	spin_unlock(&fs_info->block_group_cache_lock);
779 
780 	btrfs_get_block_group(cache);
781 
782 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
783 out:
784 	if (load_cache_only && caching_ctl)
785 		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
786 	if (caching_ctl)
787 		btrfs_put_caching_control(caching_ctl);
788 
789 	return ret;
790 }
791 
792 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
793 {
794 	u64 extra_flags = chunk_to_extended(flags) &
795 				BTRFS_EXTENDED_PROFILE_MASK;
796 
797 	write_seqlock(&fs_info->profiles_lock);
798 	if (flags & BTRFS_BLOCK_GROUP_DATA)
799 		fs_info->avail_data_alloc_bits &= ~extra_flags;
800 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
801 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
802 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
803 		fs_info->avail_system_alloc_bits &= ~extra_flags;
804 	write_sequnlock(&fs_info->profiles_lock);
805 }
806 
807 /*
808  * Clear incompat bits for the following feature(s):
809  *
810  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
811  *            in the whole filesystem
812  *
813  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
814  */
815 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
816 {
817 	bool found_raid56 = false;
818 	bool found_raid1c34 = false;
819 
820 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
821 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
822 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
823 		struct list_head *head = &fs_info->space_info;
824 		struct btrfs_space_info *sinfo;
825 
826 		list_for_each_entry_rcu(sinfo, head, list) {
827 			down_read(&sinfo->groups_sem);
828 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
829 				found_raid56 = true;
830 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
831 				found_raid56 = true;
832 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
833 				found_raid1c34 = true;
834 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
835 				found_raid1c34 = true;
836 			up_read(&sinfo->groups_sem);
837 		}
838 		if (!found_raid56)
839 			btrfs_clear_fs_incompat(fs_info, RAID56);
840 		if (!found_raid1c34)
841 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
842 	}
843 }
844 
845 static int remove_block_group_item(struct btrfs_trans_handle *trans,
846 				   struct btrfs_path *path,
847 				   struct btrfs_block_group *block_group)
848 {
849 	struct btrfs_fs_info *fs_info = trans->fs_info;
850 	struct btrfs_root *root;
851 	struct btrfs_key key;
852 	int ret;
853 
854 	root = btrfs_block_group_root(fs_info);
855 	key.objectid = block_group->start;
856 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
857 	key.offset = block_group->length;
858 
859 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
860 	if (ret > 0)
861 		ret = -ENOENT;
862 	if (ret < 0)
863 		return ret;
864 
865 	ret = btrfs_del_item(trans, root, path);
866 	return ret;
867 }
868 
869 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
870 			     u64 group_start, struct extent_map *em)
871 {
872 	struct btrfs_fs_info *fs_info = trans->fs_info;
873 	struct btrfs_path *path;
874 	struct btrfs_block_group *block_group;
875 	struct btrfs_free_cluster *cluster;
876 	struct inode *inode;
877 	struct kobject *kobj = NULL;
878 	int ret;
879 	int index;
880 	int factor;
881 	struct btrfs_caching_control *caching_ctl = NULL;
882 	bool remove_em;
883 	bool remove_rsv = false;
884 
885 	block_group = btrfs_lookup_block_group(fs_info, group_start);
886 	BUG_ON(!block_group);
887 	BUG_ON(!block_group->ro);
888 
889 	trace_btrfs_remove_block_group(block_group);
890 	/*
891 	 * Free the reserved super bytes from this block group before
892 	 * remove it.
893 	 */
894 	btrfs_free_excluded_extents(block_group);
895 	btrfs_free_ref_tree_range(fs_info, block_group->start,
896 				  block_group->length);
897 
898 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
899 	factor = btrfs_bg_type_to_factor(block_group->flags);
900 
901 	/* make sure this block group isn't part of an allocation cluster */
902 	cluster = &fs_info->data_alloc_cluster;
903 	spin_lock(&cluster->refill_lock);
904 	btrfs_return_cluster_to_free_space(block_group, cluster);
905 	spin_unlock(&cluster->refill_lock);
906 
907 	/*
908 	 * make sure this block group isn't part of a metadata
909 	 * allocation cluster
910 	 */
911 	cluster = &fs_info->meta_alloc_cluster;
912 	spin_lock(&cluster->refill_lock);
913 	btrfs_return_cluster_to_free_space(block_group, cluster);
914 	spin_unlock(&cluster->refill_lock);
915 
916 	btrfs_clear_treelog_bg(block_group);
917 	btrfs_clear_data_reloc_bg(block_group);
918 
919 	path = btrfs_alloc_path();
920 	if (!path) {
921 		ret = -ENOMEM;
922 		goto out;
923 	}
924 
925 	/*
926 	 * get the inode first so any iput calls done for the io_list
927 	 * aren't the final iput (no unlinks allowed now)
928 	 */
929 	inode = lookup_free_space_inode(block_group, path);
930 
931 	mutex_lock(&trans->transaction->cache_write_mutex);
932 	/*
933 	 * Make sure our free space cache IO is done before removing the
934 	 * free space inode
935 	 */
936 	spin_lock(&trans->transaction->dirty_bgs_lock);
937 	if (!list_empty(&block_group->io_list)) {
938 		list_del_init(&block_group->io_list);
939 
940 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
941 
942 		spin_unlock(&trans->transaction->dirty_bgs_lock);
943 		btrfs_wait_cache_io(trans, block_group, path);
944 		btrfs_put_block_group(block_group);
945 		spin_lock(&trans->transaction->dirty_bgs_lock);
946 	}
947 
948 	if (!list_empty(&block_group->dirty_list)) {
949 		list_del_init(&block_group->dirty_list);
950 		remove_rsv = true;
951 		btrfs_put_block_group(block_group);
952 	}
953 	spin_unlock(&trans->transaction->dirty_bgs_lock);
954 	mutex_unlock(&trans->transaction->cache_write_mutex);
955 
956 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
957 	if (ret)
958 		goto out;
959 
960 	spin_lock(&fs_info->block_group_cache_lock);
961 	rb_erase(&block_group->cache_node,
962 		 &fs_info->block_group_cache_tree);
963 	RB_CLEAR_NODE(&block_group->cache_node);
964 
965 	/* Once for the block groups rbtree */
966 	btrfs_put_block_group(block_group);
967 
968 	if (fs_info->first_logical_byte == block_group->start)
969 		fs_info->first_logical_byte = (u64)-1;
970 	spin_unlock(&fs_info->block_group_cache_lock);
971 
972 	down_write(&block_group->space_info->groups_sem);
973 	/*
974 	 * we must use list_del_init so people can check to see if they
975 	 * are still on the list after taking the semaphore
976 	 */
977 	list_del_init(&block_group->list);
978 	if (list_empty(&block_group->space_info->block_groups[index])) {
979 		kobj = block_group->space_info->block_group_kobjs[index];
980 		block_group->space_info->block_group_kobjs[index] = NULL;
981 		clear_avail_alloc_bits(fs_info, block_group->flags);
982 	}
983 	up_write(&block_group->space_info->groups_sem);
984 	clear_incompat_bg_bits(fs_info, block_group->flags);
985 	if (kobj) {
986 		kobject_del(kobj);
987 		kobject_put(kobj);
988 	}
989 
990 	if (block_group->has_caching_ctl)
991 		caching_ctl = btrfs_get_caching_control(block_group);
992 	if (block_group->cached == BTRFS_CACHE_STARTED)
993 		btrfs_wait_block_group_cache_done(block_group);
994 	if (block_group->has_caching_ctl) {
995 		spin_lock(&fs_info->block_group_cache_lock);
996 		if (!caching_ctl) {
997 			struct btrfs_caching_control *ctl;
998 
999 			list_for_each_entry(ctl,
1000 				    &fs_info->caching_block_groups, list)
1001 				if (ctl->block_group == block_group) {
1002 					caching_ctl = ctl;
1003 					refcount_inc(&caching_ctl->count);
1004 					break;
1005 				}
1006 		}
1007 		if (caching_ctl)
1008 			list_del_init(&caching_ctl->list);
1009 		spin_unlock(&fs_info->block_group_cache_lock);
1010 		if (caching_ctl) {
1011 			/* Once for the caching bgs list and once for us. */
1012 			btrfs_put_caching_control(caching_ctl);
1013 			btrfs_put_caching_control(caching_ctl);
1014 		}
1015 	}
1016 
1017 	spin_lock(&trans->transaction->dirty_bgs_lock);
1018 	WARN_ON(!list_empty(&block_group->dirty_list));
1019 	WARN_ON(!list_empty(&block_group->io_list));
1020 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1021 
1022 	btrfs_remove_free_space_cache(block_group);
1023 
1024 	spin_lock(&block_group->space_info->lock);
1025 	list_del_init(&block_group->ro_list);
1026 
1027 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1028 		WARN_ON(block_group->space_info->total_bytes
1029 			< block_group->length);
1030 		WARN_ON(block_group->space_info->bytes_readonly
1031 			< block_group->length - block_group->zone_unusable);
1032 		WARN_ON(block_group->space_info->bytes_zone_unusable
1033 			< block_group->zone_unusable);
1034 		WARN_ON(block_group->space_info->disk_total
1035 			< block_group->length * factor);
1036 	}
1037 	block_group->space_info->total_bytes -= block_group->length;
1038 	block_group->space_info->bytes_readonly -=
1039 		(block_group->length - block_group->zone_unusable);
1040 	block_group->space_info->bytes_zone_unusable -=
1041 		block_group->zone_unusable;
1042 	block_group->space_info->disk_total -= block_group->length * factor;
1043 
1044 	spin_unlock(&block_group->space_info->lock);
1045 
1046 	/*
1047 	 * Remove the free space for the block group from the free space tree
1048 	 * and the block group's item from the extent tree before marking the
1049 	 * block group as removed. This is to prevent races with tasks that
1050 	 * freeze and unfreeze a block group, this task and another task
1051 	 * allocating a new block group - the unfreeze task ends up removing
1052 	 * the block group's extent map before the task calling this function
1053 	 * deletes the block group item from the extent tree, allowing for
1054 	 * another task to attempt to create another block group with the same
1055 	 * item key (and failing with -EEXIST and a transaction abort).
1056 	 */
1057 	ret = remove_block_group_free_space(trans, block_group);
1058 	if (ret)
1059 		goto out;
1060 
1061 	ret = remove_block_group_item(trans, path, block_group);
1062 	if (ret < 0)
1063 		goto out;
1064 
1065 	spin_lock(&block_group->lock);
1066 	block_group->removed = 1;
1067 	/*
1068 	 * At this point trimming or scrub can't start on this block group,
1069 	 * because we removed the block group from the rbtree
1070 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1071 	 * even if someone already got this block group before we removed it
1072 	 * from the rbtree, they have already incremented block_group->frozen -
1073 	 * if they didn't, for the trimming case they won't find any free space
1074 	 * entries because we already removed them all when we called
1075 	 * btrfs_remove_free_space_cache().
1076 	 *
1077 	 * And we must not remove the extent map from the fs_info->mapping_tree
1078 	 * to prevent the same logical address range and physical device space
1079 	 * ranges from being reused for a new block group. This is needed to
1080 	 * avoid races with trimming and scrub.
1081 	 *
1082 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1083 	 * completely transactionless, so while it is trimming a range the
1084 	 * currently running transaction might finish and a new one start,
1085 	 * allowing for new block groups to be created that can reuse the same
1086 	 * physical device locations unless we take this special care.
1087 	 *
1088 	 * There may also be an implicit trim operation if the file system
1089 	 * is mounted with -odiscard. The same protections must remain
1090 	 * in place until the extents have been discarded completely when
1091 	 * the transaction commit has completed.
1092 	 */
1093 	remove_em = (atomic_read(&block_group->frozen) == 0);
1094 	spin_unlock(&block_group->lock);
1095 
1096 	if (remove_em) {
1097 		struct extent_map_tree *em_tree;
1098 
1099 		em_tree = &fs_info->mapping_tree;
1100 		write_lock(&em_tree->lock);
1101 		remove_extent_mapping(em_tree, em);
1102 		write_unlock(&em_tree->lock);
1103 		/* once for the tree */
1104 		free_extent_map(em);
1105 	}
1106 
1107 out:
1108 	/* Once for the lookup reference */
1109 	btrfs_put_block_group(block_group);
1110 	if (remove_rsv)
1111 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1112 	btrfs_free_path(path);
1113 	return ret;
1114 }
1115 
1116 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1117 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1118 {
1119 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1120 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1121 	struct extent_map *em;
1122 	struct map_lookup *map;
1123 	unsigned int num_items;
1124 
1125 	read_lock(&em_tree->lock);
1126 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1127 	read_unlock(&em_tree->lock);
1128 	ASSERT(em && em->start == chunk_offset);
1129 
1130 	/*
1131 	 * We need to reserve 3 + N units from the metadata space info in order
1132 	 * to remove a block group (done at btrfs_remove_chunk() and at
1133 	 * btrfs_remove_block_group()), which are used for:
1134 	 *
1135 	 * 1 unit for adding the free space inode's orphan (located in the tree
1136 	 * of tree roots).
1137 	 * 1 unit for deleting the block group item (located in the extent
1138 	 * tree).
1139 	 * 1 unit for deleting the free space item (located in tree of tree
1140 	 * roots).
1141 	 * N units for deleting N device extent items corresponding to each
1142 	 * stripe (located in the device tree).
1143 	 *
1144 	 * In order to remove a block group we also need to reserve units in the
1145 	 * system space info in order to update the chunk tree (update one or
1146 	 * more device items and remove one chunk item), but this is done at
1147 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1148 	 */
1149 	map = em->map_lookup;
1150 	num_items = 3 + map->num_stripes;
1151 	free_extent_map(em);
1152 
1153 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1154 }
1155 
1156 /*
1157  * Mark block group @cache read-only, so later write won't happen to block
1158  * group @cache.
1159  *
1160  * If @force is not set, this function will only mark the block group readonly
1161  * if we have enough free space (1M) in other metadata/system block groups.
1162  * If @force is not set, this function will mark the block group readonly
1163  * without checking free space.
1164  *
1165  * NOTE: This function doesn't care if other block groups can contain all the
1166  * data in this block group. That check should be done by relocation routine,
1167  * not this function.
1168  */
1169 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1170 {
1171 	struct btrfs_space_info *sinfo = cache->space_info;
1172 	u64 num_bytes;
1173 	int ret = -ENOSPC;
1174 
1175 	spin_lock(&sinfo->lock);
1176 	spin_lock(&cache->lock);
1177 
1178 	if (cache->swap_extents) {
1179 		ret = -ETXTBSY;
1180 		goto out;
1181 	}
1182 
1183 	if (cache->ro) {
1184 		cache->ro++;
1185 		ret = 0;
1186 		goto out;
1187 	}
1188 
1189 	num_bytes = cache->length - cache->reserved - cache->pinned -
1190 		    cache->bytes_super - cache->zone_unusable - cache->used;
1191 
1192 	/*
1193 	 * Data never overcommits, even in mixed mode, so do just the straight
1194 	 * check of left over space in how much we have allocated.
1195 	 */
1196 	if (force) {
1197 		ret = 0;
1198 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1199 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1200 
1201 		/*
1202 		 * Here we make sure if we mark this bg RO, we still have enough
1203 		 * free space as buffer.
1204 		 */
1205 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1206 			ret = 0;
1207 	} else {
1208 		/*
1209 		 * We overcommit metadata, so we need to do the
1210 		 * btrfs_can_overcommit check here, and we need to pass in
1211 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1212 		 * leeway to allow us to mark this block group as read only.
1213 		 */
1214 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1215 					 BTRFS_RESERVE_NO_FLUSH))
1216 			ret = 0;
1217 	}
1218 
1219 	if (!ret) {
1220 		sinfo->bytes_readonly += num_bytes;
1221 		if (btrfs_is_zoned(cache->fs_info)) {
1222 			/* Migrate zone_unusable bytes to readonly */
1223 			sinfo->bytes_readonly += cache->zone_unusable;
1224 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1225 			cache->zone_unusable = 0;
1226 		}
1227 		cache->ro++;
1228 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1229 	}
1230 out:
1231 	spin_unlock(&cache->lock);
1232 	spin_unlock(&sinfo->lock);
1233 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1234 		btrfs_info(cache->fs_info,
1235 			"unable to make block group %llu ro", cache->start);
1236 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1237 	}
1238 	return ret;
1239 }
1240 
1241 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1242 				 struct btrfs_block_group *bg)
1243 {
1244 	struct btrfs_fs_info *fs_info = bg->fs_info;
1245 	struct btrfs_transaction *prev_trans = NULL;
1246 	const u64 start = bg->start;
1247 	const u64 end = start + bg->length - 1;
1248 	int ret;
1249 
1250 	spin_lock(&fs_info->trans_lock);
1251 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1252 		prev_trans = list_last_entry(&trans->transaction->list,
1253 					     struct btrfs_transaction, list);
1254 		refcount_inc(&prev_trans->use_count);
1255 	}
1256 	spin_unlock(&fs_info->trans_lock);
1257 
1258 	/*
1259 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1260 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1261 	 * task might be running finish_extent_commit() for the previous
1262 	 * transaction N - 1, and have seen a range belonging to the block
1263 	 * group in pinned_extents before we were able to clear the whole block
1264 	 * group range from pinned_extents. This means that task can lookup for
1265 	 * the block group after we unpinned it from pinned_extents and removed
1266 	 * it, leading to a BUG_ON() at unpin_extent_range().
1267 	 */
1268 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1269 	if (prev_trans) {
1270 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1271 					EXTENT_DIRTY);
1272 		if (ret)
1273 			goto out;
1274 	}
1275 
1276 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1277 				EXTENT_DIRTY);
1278 out:
1279 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1280 	if (prev_trans)
1281 		btrfs_put_transaction(prev_trans);
1282 
1283 	return ret == 0;
1284 }
1285 
1286 /*
1287  * Process the unused_bgs list and remove any that don't have any allocated
1288  * space inside of them.
1289  */
1290 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1291 {
1292 	struct btrfs_block_group *block_group;
1293 	struct btrfs_space_info *space_info;
1294 	struct btrfs_trans_handle *trans;
1295 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1296 	int ret = 0;
1297 
1298 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1299 		return;
1300 
1301 	/*
1302 	 * Long running balances can keep us blocked here for eternity, so
1303 	 * simply skip deletion if we're unable to get the mutex.
1304 	 */
1305 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1306 		return;
1307 
1308 	spin_lock(&fs_info->unused_bgs_lock);
1309 	while (!list_empty(&fs_info->unused_bgs)) {
1310 		int trimming;
1311 
1312 		block_group = list_first_entry(&fs_info->unused_bgs,
1313 					       struct btrfs_block_group,
1314 					       bg_list);
1315 		list_del_init(&block_group->bg_list);
1316 
1317 		space_info = block_group->space_info;
1318 
1319 		if (ret || btrfs_mixed_space_info(space_info)) {
1320 			btrfs_put_block_group(block_group);
1321 			continue;
1322 		}
1323 		spin_unlock(&fs_info->unused_bgs_lock);
1324 
1325 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1326 
1327 		/* Don't want to race with allocators so take the groups_sem */
1328 		down_write(&space_info->groups_sem);
1329 
1330 		/*
1331 		 * Async discard moves the final block group discard to be prior
1332 		 * to the unused_bgs code path.  Therefore, if it's not fully
1333 		 * trimmed, punt it back to the async discard lists.
1334 		 */
1335 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1336 		    !btrfs_is_free_space_trimmed(block_group)) {
1337 			trace_btrfs_skip_unused_block_group(block_group);
1338 			up_write(&space_info->groups_sem);
1339 			/* Requeue if we failed because of async discard */
1340 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1341 						 block_group);
1342 			goto next;
1343 		}
1344 
1345 		spin_lock(&block_group->lock);
1346 		if (block_group->reserved || block_group->pinned ||
1347 		    block_group->used || block_group->ro ||
1348 		    list_is_singular(&block_group->list)) {
1349 			/*
1350 			 * We want to bail if we made new allocations or have
1351 			 * outstanding allocations in this block group.  We do
1352 			 * the ro check in case balance is currently acting on
1353 			 * this block group.
1354 			 */
1355 			trace_btrfs_skip_unused_block_group(block_group);
1356 			spin_unlock(&block_group->lock);
1357 			up_write(&space_info->groups_sem);
1358 			goto next;
1359 		}
1360 		spin_unlock(&block_group->lock);
1361 
1362 		/* We don't want to force the issue, only flip if it's ok. */
1363 		ret = inc_block_group_ro(block_group, 0);
1364 		up_write(&space_info->groups_sem);
1365 		if (ret < 0) {
1366 			ret = 0;
1367 			goto next;
1368 		}
1369 
1370 		/*
1371 		 * Want to do this before we do anything else so we can recover
1372 		 * properly if we fail to join the transaction.
1373 		 */
1374 		trans = btrfs_start_trans_remove_block_group(fs_info,
1375 						     block_group->start);
1376 		if (IS_ERR(trans)) {
1377 			btrfs_dec_block_group_ro(block_group);
1378 			ret = PTR_ERR(trans);
1379 			goto next;
1380 		}
1381 
1382 		/*
1383 		 * We could have pending pinned extents for this block group,
1384 		 * just delete them, we don't care about them anymore.
1385 		 */
1386 		if (!clean_pinned_extents(trans, block_group)) {
1387 			btrfs_dec_block_group_ro(block_group);
1388 			goto end_trans;
1389 		}
1390 
1391 		/*
1392 		 * At this point, the block_group is read only and should fail
1393 		 * new allocations.  However, btrfs_finish_extent_commit() can
1394 		 * cause this block_group to be placed back on the discard
1395 		 * lists because now the block_group isn't fully discarded.
1396 		 * Bail here and try again later after discarding everything.
1397 		 */
1398 		spin_lock(&fs_info->discard_ctl.lock);
1399 		if (!list_empty(&block_group->discard_list)) {
1400 			spin_unlock(&fs_info->discard_ctl.lock);
1401 			btrfs_dec_block_group_ro(block_group);
1402 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1403 						 block_group);
1404 			goto end_trans;
1405 		}
1406 		spin_unlock(&fs_info->discard_ctl.lock);
1407 
1408 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1409 		spin_lock(&space_info->lock);
1410 		spin_lock(&block_group->lock);
1411 
1412 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1413 						     -block_group->pinned);
1414 		space_info->bytes_readonly += block_group->pinned;
1415 		block_group->pinned = 0;
1416 
1417 		spin_unlock(&block_group->lock);
1418 		spin_unlock(&space_info->lock);
1419 
1420 		/*
1421 		 * The normal path here is an unused block group is passed here,
1422 		 * then trimming is handled in the transaction commit path.
1423 		 * Async discard interposes before this to do the trimming
1424 		 * before coming down the unused block group path as trimming
1425 		 * will no longer be done later in the transaction commit path.
1426 		 */
1427 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1428 			goto flip_async;
1429 
1430 		/*
1431 		 * DISCARD can flip during remount. On zoned filesystems, we
1432 		 * need to reset sequential-required zones.
1433 		 */
1434 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1435 				btrfs_is_zoned(fs_info);
1436 
1437 		/* Implicit trim during transaction commit. */
1438 		if (trimming)
1439 			btrfs_freeze_block_group(block_group);
1440 
1441 		/*
1442 		 * Btrfs_remove_chunk will abort the transaction if things go
1443 		 * horribly wrong.
1444 		 */
1445 		ret = btrfs_remove_chunk(trans, block_group->start);
1446 
1447 		if (ret) {
1448 			if (trimming)
1449 				btrfs_unfreeze_block_group(block_group);
1450 			goto end_trans;
1451 		}
1452 
1453 		/*
1454 		 * If we're not mounted with -odiscard, we can just forget
1455 		 * about this block group. Otherwise we'll need to wait
1456 		 * until transaction commit to do the actual discard.
1457 		 */
1458 		if (trimming) {
1459 			spin_lock(&fs_info->unused_bgs_lock);
1460 			/*
1461 			 * A concurrent scrub might have added us to the list
1462 			 * fs_info->unused_bgs, so use a list_move operation
1463 			 * to add the block group to the deleted_bgs list.
1464 			 */
1465 			list_move(&block_group->bg_list,
1466 				  &trans->transaction->deleted_bgs);
1467 			spin_unlock(&fs_info->unused_bgs_lock);
1468 			btrfs_get_block_group(block_group);
1469 		}
1470 end_trans:
1471 		btrfs_end_transaction(trans);
1472 next:
1473 		btrfs_put_block_group(block_group);
1474 		spin_lock(&fs_info->unused_bgs_lock);
1475 	}
1476 	spin_unlock(&fs_info->unused_bgs_lock);
1477 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1478 	return;
1479 
1480 flip_async:
1481 	btrfs_end_transaction(trans);
1482 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1483 	btrfs_put_block_group(block_group);
1484 	btrfs_discard_punt_unused_bgs_list(fs_info);
1485 }
1486 
1487 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1488 {
1489 	struct btrfs_fs_info *fs_info = bg->fs_info;
1490 
1491 	spin_lock(&fs_info->unused_bgs_lock);
1492 	if (list_empty(&bg->bg_list)) {
1493 		btrfs_get_block_group(bg);
1494 		trace_btrfs_add_unused_block_group(bg);
1495 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1496 	}
1497 	spin_unlock(&fs_info->unused_bgs_lock);
1498 }
1499 
1500 /*
1501  * We want block groups with a low number of used bytes to be in the beginning
1502  * of the list, so they will get reclaimed first.
1503  */
1504 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1505 			   const struct list_head *b)
1506 {
1507 	const struct btrfs_block_group *bg1, *bg2;
1508 
1509 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1510 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1511 
1512 	return bg1->used > bg2->used;
1513 }
1514 
1515 void btrfs_reclaim_bgs_work(struct work_struct *work)
1516 {
1517 	struct btrfs_fs_info *fs_info =
1518 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1519 	struct btrfs_block_group *bg;
1520 	struct btrfs_space_info *space_info;
1521 
1522 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1523 		return;
1524 
1525 	sb_start_write(fs_info->sb);
1526 
1527 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1528 		sb_end_write(fs_info->sb);
1529 		return;
1530 	}
1531 
1532 	/*
1533 	 * Long running balances can keep us blocked here for eternity, so
1534 	 * simply skip reclaim if we're unable to get the mutex.
1535 	 */
1536 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1537 		btrfs_exclop_finish(fs_info);
1538 		sb_end_write(fs_info->sb);
1539 		return;
1540 	}
1541 
1542 	spin_lock(&fs_info->unused_bgs_lock);
1543 	/*
1544 	 * Sort happens under lock because we can't simply splice it and sort.
1545 	 * The block groups might still be in use and reachable via bg_list,
1546 	 * and their presence in the reclaim_bgs list must be preserved.
1547 	 */
1548 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1549 	while (!list_empty(&fs_info->reclaim_bgs)) {
1550 		u64 zone_unusable;
1551 		int ret = 0;
1552 
1553 		bg = list_first_entry(&fs_info->reclaim_bgs,
1554 				      struct btrfs_block_group,
1555 				      bg_list);
1556 		list_del_init(&bg->bg_list);
1557 
1558 		space_info = bg->space_info;
1559 		spin_unlock(&fs_info->unused_bgs_lock);
1560 
1561 		/* Don't race with allocators so take the groups_sem */
1562 		down_write(&space_info->groups_sem);
1563 
1564 		spin_lock(&bg->lock);
1565 		if (bg->reserved || bg->pinned || bg->ro) {
1566 			/*
1567 			 * We want to bail if we made new allocations or have
1568 			 * outstanding allocations in this block group.  We do
1569 			 * the ro check in case balance is currently acting on
1570 			 * this block group.
1571 			 */
1572 			spin_unlock(&bg->lock);
1573 			up_write(&space_info->groups_sem);
1574 			goto next;
1575 		}
1576 		spin_unlock(&bg->lock);
1577 
1578 		/* Get out fast, in case we're unmounting the filesystem */
1579 		if (btrfs_fs_closing(fs_info)) {
1580 			up_write(&space_info->groups_sem);
1581 			goto next;
1582 		}
1583 
1584 		/*
1585 		 * Cache the zone_unusable value before turning the block group
1586 		 * to read only. As soon as the blog group is read only it's
1587 		 * zone_unusable value gets moved to the block group's read-only
1588 		 * bytes and isn't available for calculations anymore.
1589 		 */
1590 		zone_unusable = bg->zone_unusable;
1591 		ret = inc_block_group_ro(bg, 0);
1592 		up_write(&space_info->groups_sem);
1593 		if (ret < 0)
1594 			goto next;
1595 
1596 		btrfs_info(fs_info,
1597 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1598 				bg->start, div_u64(bg->used * 100, bg->length),
1599 				div64_u64(zone_unusable * 100, bg->length));
1600 		trace_btrfs_reclaim_block_group(bg);
1601 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1602 		if (ret)
1603 			btrfs_err(fs_info, "error relocating chunk %llu",
1604 				  bg->start);
1605 
1606 next:
1607 		btrfs_put_block_group(bg);
1608 		spin_lock(&fs_info->unused_bgs_lock);
1609 	}
1610 	spin_unlock(&fs_info->unused_bgs_lock);
1611 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1612 	btrfs_exclop_finish(fs_info);
1613 	sb_end_write(fs_info->sb);
1614 }
1615 
1616 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1617 {
1618 	spin_lock(&fs_info->unused_bgs_lock);
1619 	if (!list_empty(&fs_info->reclaim_bgs))
1620 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1621 	spin_unlock(&fs_info->unused_bgs_lock);
1622 }
1623 
1624 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1625 {
1626 	struct btrfs_fs_info *fs_info = bg->fs_info;
1627 
1628 	spin_lock(&fs_info->unused_bgs_lock);
1629 	if (list_empty(&bg->bg_list)) {
1630 		btrfs_get_block_group(bg);
1631 		trace_btrfs_add_reclaim_block_group(bg);
1632 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1633 	}
1634 	spin_unlock(&fs_info->unused_bgs_lock);
1635 }
1636 
1637 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1638 			   struct btrfs_path *path)
1639 {
1640 	struct extent_map_tree *em_tree;
1641 	struct extent_map *em;
1642 	struct btrfs_block_group_item bg;
1643 	struct extent_buffer *leaf;
1644 	int slot;
1645 	u64 flags;
1646 	int ret = 0;
1647 
1648 	slot = path->slots[0];
1649 	leaf = path->nodes[0];
1650 
1651 	em_tree = &fs_info->mapping_tree;
1652 	read_lock(&em_tree->lock);
1653 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1654 	read_unlock(&em_tree->lock);
1655 	if (!em) {
1656 		btrfs_err(fs_info,
1657 			  "logical %llu len %llu found bg but no related chunk",
1658 			  key->objectid, key->offset);
1659 		return -ENOENT;
1660 	}
1661 
1662 	if (em->start != key->objectid || em->len != key->offset) {
1663 		btrfs_err(fs_info,
1664 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1665 			key->objectid, key->offset, em->start, em->len);
1666 		ret = -EUCLEAN;
1667 		goto out_free_em;
1668 	}
1669 
1670 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1671 			   sizeof(bg));
1672 	flags = btrfs_stack_block_group_flags(&bg) &
1673 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1674 
1675 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1676 		btrfs_err(fs_info,
1677 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1678 			  key->objectid, key->offset, flags,
1679 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1680 		ret = -EUCLEAN;
1681 	}
1682 
1683 out_free_em:
1684 	free_extent_map(em);
1685 	return ret;
1686 }
1687 
1688 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1689 				  struct btrfs_path *path,
1690 				  struct btrfs_key *key)
1691 {
1692 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1693 	int ret;
1694 	struct btrfs_key found_key;
1695 	struct extent_buffer *leaf;
1696 	int slot;
1697 
1698 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1699 	if (ret < 0)
1700 		return ret;
1701 
1702 	while (1) {
1703 		slot = path->slots[0];
1704 		leaf = path->nodes[0];
1705 		if (slot >= btrfs_header_nritems(leaf)) {
1706 			ret = btrfs_next_leaf(root, path);
1707 			if (ret == 0)
1708 				continue;
1709 			if (ret < 0)
1710 				goto out;
1711 			break;
1712 		}
1713 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1714 
1715 		if (found_key.objectid >= key->objectid &&
1716 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1717 			ret = read_bg_from_eb(fs_info, &found_key, path);
1718 			break;
1719 		}
1720 
1721 		path->slots[0]++;
1722 	}
1723 out:
1724 	return ret;
1725 }
1726 
1727 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1728 {
1729 	u64 extra_flags = chunk_to_extended(flags) &
1730 				BTRFS_EXTENDED_PROFILE_MASK;
1731 
1732 	write_seqlock(&fs_info->profiles_lock);
1733 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1734 		fs_info->avail_data_alloc_bits |= extra_flags;
1735 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1736 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1737 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1738 		fs_info->avail_system_alloc_bits |= extra_flags;
1739 	write_sequnlock(&fs_info->profiles_lock);
1740 }
1741 
1742 /**
1743  * Map a physical disk address to a list of logical addresses
1744  *
1745  * @fs_info:       the filesystem
1746  * @chunk_start:   logical address of block group
1747  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1748  * @physical:	   physical address to map to logical addresses
1749  * @logical:	   return array of logical addresses which map to @physical
1750  * @naddrs:	   length of @logical
1751  * @stripe_len:    size of IO stripe for the given block group
1752  *
1753  * Maps a particular @physical disk address to a list of @logical addresses.
1754  * Used primarily to exclude those portions of a block group that contain super
1755  * block copies.
1756  */
1757 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1758 		     struct block_device *bdev, u64 physical, u64 **logical,
1759 		     int *naddrs, int *stripe_len)
1760 {
1761 	struct extent_map *em;
1762 	struct map_lookup *map;
1763 	u64 *buf;
1764 	u64 bytenr;
1765 	u64 data_stripe_length;
1766 	u64 io_stripe_size;
1767 	int i, nr = 0;
1768 	int ret = 0;
1769 
1770 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1771 	if (IS_ERR(em))
1772 		return -EIO;
1773 
1774 	map = em->map_lookup;
1775 	data_stripe_length = em->orig_block_len;
1776 	io_stripe_size = map->stripe_len;
1777 	chunk_start = em->start;
1778 
1779 	/* For RAID5/6 adjust to a full IO stripe length */
1780 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1781 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1782 
1783 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1784 	if (!buf) {
1785 		ret = -ENOMEM;
1786 		goto out;
1787 	}
1788 
1789 	for (i = 0; i < map->num_stripes; i++) {
1790 		bool already_inserted = false;
1791 		u64 stripe_nr;
1792 		u64 offset;
1793 		int j;
1794 
1795 		if (!in_range(physical, map->stripes[i].physical,
1796 			      data_stripe_length))
1797 			continue;
1798 
1799 		if (bdev && map->stripes[i].dev->bdev != bdev)
1800 			continue;
1801 
1802 		stripe_nr = physical - map->stripes[i].physical;
1803 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1804 
1805 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1806 			stripe_nr = stripe_nr * map->num_stripes + i;
1807 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1808 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1809 			stripe_nr = stripe_nr * map->num_stripes + i;
1810 		}
1811 		/*
1812 		 * The remaining case would be for RAID56, multiply by
1813 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1814 		 * instead of map->stripe_len
1815 		 */
1816 
1817 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1818 
1819 		/* Ensure we don't add duplicate addresses */
1820 		for (j = 0; j < nr; j++) {
1821 			if (buf[j] == bytenr) {
1822 				already_inserted = true;
1823 				break;
1824 			}
1825 		}
1826 
1827 		if (!already_inserted)
1828 			buf[nr++] = bytenr;
1829 	}
1830 
1831 	*logical = buf;
1832 	*naddrs = nr;
1833 	*stripe_len = io_stripe_size;
1834 out:
1835 	free_extent_map(em);
1836 	return ret;
1837 }
1838 
1839 static int exclude_super_stripes(struct btrfs_block_group *cache)
1840 {
1841 	struct btrfs_fs_info *fs_info = cache->fs_info;
1842 	const bool zoned = btrfs_is_zoned(fs_info);
1843 	u64 bytenr;
1844 	u64 *logical;
1845 	int stripe_len;
1846 	int i, nr, ret;
1847 
1848 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1849 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1850 		cache->bytes_super += stripe_len;
1851 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1852 						stripe_len);
1853 		if (ret)
1854 			return ret;
1855 	}
1856 
1857 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1858 		bytenr = btrfs_sb_offset(i);
1859 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1860 				       bytenr, &logical, &nr, &stripe_len);
1861 		if (ret)
1862 			return ret;
1863 
1864 		/* Shouldn't have super stripes in sequential zones */
1865 		if (zoned && nr) {
1866 			btrfs_err(fs_info,
1867 			"zoned: block group %llu must not contain super block",
1868 				  cache->start);
1869 			return -EUCLEAN;
1870 		}
1871 
1872 		while (nr--) {
1873 			u64 len = min_t(u64, stripe_len,
1874 				cache->start + cache->length - logical[nr]);
1875 
1876 			cache->bytes_super += len;
1877 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1878 							len);
1879 			if (ret) {
1880 				kfree(logical);
1881 				return ret;
1882 			}
1883 		}
1884 
1885 		kfree(logical);
1886 	}
1887 	return 0;
1888 }
1889 
1890 static void link_block_group(struct btrfs_block_group *cache)
1891 {
1892 	struct btrfs_space_info *space_info = cache->space_info;
1893 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1894 
1895 	down_write(&space_info->groups_sem);
1896 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1897 	up_write(&space_info->groups_sem);
1898 }
1899 
1900 static struct btrfs_block_group *btrfs_create_block_group_cache(
1901 		struct btrfs_fs_info *fs_info, u64 start)
1902 {
1903 	struct btrfs_block_group *cache;
1904 
1905 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1906 	if (!cache)
1907 		return NULL;
1908 
1909 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1910 					GFP_NOFS);
1911 	if (!cache->free_space_ctl) {
1912 		kfree(cache);
1913 		return NULL;
1914 	}
1915 
1916 	cache->start = start;
1917 
1918 	cache->fs_info = fs_info;
1919 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1920 
1921 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1922 
1923 	refcount_set(&cache->refs, 1);
1924 	spin_lock_init(&cache->lock);
1925 	init_rwsem(&cache->data_rwsem);
1926 	INIT_LIST_HEAD(&cache->list);
1927 	INIT_LIST_HEAD(&cache->cluster_list);
1928 	INIT_LIST_HEAD(&cache->bg_list);
1929 	INIT_LIST_HEAD(&cache->ro_list);
1930 	INIT_LIST_HEAD(&cache->discard_list);
1931 	INIT_LIST_HEAD(&cache->dirty_list);
1932 	INIT_LIST_HEAD(&cache->io_list);
1933 	INIT_LIST_HEAD(&cache->active_bg_list);
1934 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1935 	atomic_set(&cache->frozen, 0);
1936 	mutex_init(&cache->free_space_lock);
1937 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1938 
1939 	return cache;
1940 }
1941 
1942 /*
1943  * Iterate all chunks and verify that each of them has the corresponding block
1944  * group
1945  */
1946 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1947 {
1948 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1949 	struct extent_map *em;
1950 	struct btrfs_block_group *bg;
1951 	u64 start = 0;
1952 	int ret = 0;
1953 
1954 	while (1) {
1955 		read_lock(&map_tree->lock);
1956 		/*
1957 		 * lookup_extent_mapping will return the first extent map
1958 		 * intersecting the range, so setting @len to 1 is enough to
1959 		 * get the first chunk.
1960 		 */
1961 		em = lookup_extent_mapping(map_tree, start, 1);
1962 		read_unlock(&map_tree->lock);
1963 		if (!em)
1964 			break;
1965 
1966 		bg = btrfs_lookup_block_group(fs_info, em->start);
1967 		if (!bg) {
1968 			btrfs_err(fs_info,
1969 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1970 				     em->start, em->len);
1971 			ret = -EUCLEAN;
1972 			free_extent_map(em);
1973 			break;
1974 		}
1975 		if (bg->start != em->start || bg->length != em->len ||
1976 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1977 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1978 			btrfs_err(fs_info,
1979 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1980 				em->start, em->len,
1981 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1982 				bg->start, bg->length,
1983 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1984 			ret = -EUCLEAN;
1985 			free_extent_map(em);
1986 			btrfs_put_block_group(bg);
1987 			break;
1988 		}
1989 		start = em->start + em->len;
1990 		free_extent_map(em);
1991 		btrfs_put_block_group(bg);
1992 	}
1993 	return ret;
1994 }
1995 
1996 static int read_one_block_group(struct btrfs_fs_info *info,
1997 				struct btrfs_block_group_item *bgi,
1998 				const struct btrfs_key *key,
1999 				int need_clear)
2000 {
2001 	struct btrfs_block_group *cache;
2002 	struct btrfs_space_info *space_info;
2003 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2004 	int ret;
2005 
2006 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2007 
2008 	cache = btrfs_create_block_group_cache(info, key->objectid);
2009 	if (!cache)
2010 		return -ENOMEM;
2011 
2012 	cache->length = key->offset;
2013 	cache->used = btrfs_stack_block_group_used(bgi);
2014 	cache->flags = btrfs_stack_block_group_flags(bgi);
2015 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2016 
2017 	set_free_space_tree_thresholds(cache);
2018 
2019 	if (need_clear) {
2020 		/*
2021 		 * When we mount with old space cache, we need to
2022 		 * set BTRFS_DC_CLEAR and set dirty flag.
2023 		 *
2024 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2025 		 *    truncate the old free space cache inode and
2026 		 *    setup a new one.
2027 		 * b) Setting 'dirty flag' makes sure that we flush
2028 		 *    the new space cache info onto disk.
2029 		 */
2030 		if (btrfs_test_opt(info, SPACE_CACHE))
2031 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2032 	}
2033 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2034 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2035 			btrfs_err(info,
2036 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2037 				  cache->start);
2038 			ret = -EINVAL;
2039 			goto error;
2040 	}
2041 
2042 	ret = btrfs_load_block_group_zone_info(cache, false);
2043 	if (ret) {
2044 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2045 			  cache->start);
2046 		goto error;
2047 	}
2048 
2049 	/*
2050 	 * We need to exclude the super stripes now so that the space info has
2051 	 * super bytes accounted for, otherwise we'll think we have more space
2052 	 * than we actually do.
2053 	 */
2054 	ret = exclude_super_stripes(cache);
2055 	if (ret) {
2056 		/* We may have excluded something, so call this just in case. */
2057 		btrfs_free_excluded_extents(cache);
2058 		goto error;
2059 	}
2060 
2061 	/*
2062 	 * For zoned filesystem, space after the allocation offset is the only
2063 	 * free space for a block group. So, we don't need any caching work.
2064 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2065 	 * zone_unusable space.
2066 	 *
2067 	 * For regular filesystem, check for two cases, either we are full, and
2068 	 * therefore don't need to bother with the caching work since we won't
2069 	 * find any space, or we are empty, and we can just add all the space
2070 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2071 	 * in the full case.
2072 	 */
2073 	if (btrfs_is_zoned(info)) {
2074 		btrfs_calc_zone_unusable(cache);
2075 		/* Should not have any excluded extents. Just in case, though. */
2076 		btrfs_free_excluded_extents(cache);
2077 	} else if (cache->length == cache->used) {
2078 		cache->last_byte_to_unpin = (u64)-1;
2079 		cache->cached = BTRFS_CACHE_FINISHED;
2080 		btrfs_free_excluded_extents(cache);
2081 	} else if (cache->used == 0) {
2082 		cache->last_byte_to_unpin = (u64)-1;
2083 		cache->cached = BTRFS_CACHE_FINISHED;
2084 		add_new_free_space(cache, cache->start,
2085 				   cache->start + cache->length);
2086 		btrfs_free_excluded_extents(cache);
2087 	}
2088 
2089 	ret = btrfs_add_block_group_cache(info, cache);
2090 	if (ret) {
2091 		btrfs_remove_free_space_cache(cache);
2092 		goto error;
2093 	}
2094 	trace_btrfs_add_block_group(info, cache, 0);
2095 	btrfs_update_space_info(info, cache->flags, cache->length,
2096 				cache->used, cache->bytes_super,
2097 				cache->zone_unusable, &space_info);
2098 
2099 	cache->space_info = space_info;
2100 
2101 	link_block_group(cache);
2102 
2103 	set_avail_alloc_bits(info, cache->flags);
2104 	if (btrfs_chunk_writeable(info, cache->start)) {
2105 		if (cache->used == 0) {
2106 			ASSERT(list_empty(&cache->bg_list));
2107 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2108 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2109 			else
2110 				btrfs_mark_bg_unused(cache);
2111 		}
2112 	} else {
2113 		inc_block_group_ro(cache, 1);
2114 	}
2115 
2116 	return 0;
2117 error:
2118 	btrfs_put_block_group(cache);
2119 	return ret;
2120 }
2121 
2122 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2123 {
2124 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2125 	struct btrfs_space_info *space_info;
2126 	struct rb_node *node;
2127 	int ret = 0;
2128 
2129 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2130 		struct extent_map *em;
2131 		struct map_lookup *map;
2132 		struct btrfs_block_group *bg;
2133 
2134 		em = rb_entry(node, struct extent_map, rb_node);
2135 		map = em->map_lookup;
2136 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2137 		if (!bg) {
2138 			ret = -ENOMEM;
2139 			break;
2140 		}
2141 
2142 		/* Fill dummy cache as FULL */
2143 		bg->length = em->len;
2144 		bg->flags = map->type;
2145 		bg->last_byte_to_unpin = (u64)-1;
2146 		bg->cached = BTRFS_CACHE_FINISHED;
2147 		bg->used = em->len;
2148 		bg->flags = map->type;
2149 		ret = btrfs_add_block_group_cache(fs_info, bg);
2150 		/*
2151 		 * We may have some valid block group cache added already, in
2152 		 * that case we skip to the next one.
2153 		 */
2154 		if (ret == -EEXIST) {
2155 			ret = 0;
2156 			btrfs_put_block_group(bg);
2157 			continue;
2158 		}
2159 
2160 		if (ret) {
2161 			btrfs_remove_free_space_cache(bg);
2162 			btrfs_put_block_group(bg);
2163 			break;
2164 		}
2165 
2166 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2167 					0, 0, &space_info);
2168 		bg->space_info = space_info;
2169 		link_block_group(bg);
2170 
2171 		set_avail_alloc_bits(fs_info, bg->flags);
2172 	}
2173 	if (!ret)
2174 		btrfs_init_global_block_rsv(fs_info);
2175 	return ret;
2176 }
2177 
2178 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2179 {
2180 	struct btrfs_root *root = btrfs_block_group_root(info);
2181 	struct btrfs_path *path;
2182 	int ret;
2183 	struct btrfs_block_group *cache;
2184 	struct btrfs_space_info *space_info;
2185 	struct btrfs_key key;
2186 	int need_clear = 0;
2187 	u64 cache_gen;
2188 
2189 	if (!root)
2190 		return fill_dummy_bgs(info);
2191 
2192 	key.objectid = 0;
2193 	key.offset = 0;
2194 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2195 	path = btrfs_alloc_path();
2196 	if (!path)
2197 		return -ENOMEM;
2198 
2199 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2200 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2201 	    btrfs_super_generation(info->super_copy) != cache_gen)
2202 		need_clear = 1;
2203 	if (btrfs_test_opt(info, CLEAR_CACHE))
2204 		need_clear = 1;
2205 
2206 	while (1) {
2207 		struct btrfs_block_group_item bgi;
2208 		struct extent_buffer *leaf;
2209 		int slot;
2210 
2211 		ret = find_first_block_group(info, path, &key);
2212 		if (ret > 0)
2213 			break;
2214 		if (ret != 0)
2215 			goto error;
2216 
2217 		leaf = path->nodes[0];
2218 		slot = path->slots[0];
2219 
2220 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2221 				   sizeof(bgi));
2222 
2223 		btrfs_item_key_to_cpu(leaf, &key, slot);
2224 		btrfs_release_path(path);
2225 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2226 		if (ret < 0)
2227 			goto error;
2228 		key.objectid += key.offset;
2229 		key.offset = 0;
2230 	}
2231 	btrfs_release_path(path);
2232 
2233 	list_for_each_entry(space_info, &info->space_info, list) {
2234 		int i;
2235 
2236 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2237 			if (list_empty(&space_info->block_groups[i]))
2238 				continue;
2239 			cache = list_first_entry(&space_info->block_groups[i],
2240 						 struct btrfs_block_group,
2241 						 list);
2242 			btrfs_sysfs_add_block_group_type(cache);
2243 		}
2244 
2245 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2246 		      (BTRFS_BLOCK_GROUP_RAID10 |
2247 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2248 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2249 		       BTRFS_BLOCK_GROUP_DUP)))
2250 			continue;
2251 		/*
2252 		 * Avoid allocating from un-mirrored block group if there are
2253 		 * mirrored block groups.
2254 		 */
2255 		list_for_each_entry(cache,
2256 				&space_info->block_groups[BTRFS_RAID_RAID0],
2257 				list)
2258 			inc_block_group_ro(cache, 1);
2259 		list_for_each_entry(cache,
2260 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2261 				list)
2262 			inc_block_group_ro(cache, 1);
2263 	}
2264 
2265 	btrfs_init_global_block_rsv(info);
2266 	ret = check_chunk_block_group_mappings(info);
2267 error:
2268 	btrfs_free_path(path);
2269 	/*
2270 	 * We've hit some error while reading the extent tree, and have
2271 	 * rescue=ibadroots mount option.
2272 	 * Try to fill the tree using dummy block groups so that the user can
2273 	 * continue to mount and grab their data.
2274 	 */
2275 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2276 		ret = fill_dummy_bgs(info);
2277 	return ret;
2278 }
2279 
2280 /*
2281  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2282  * allocation.
2283  *
2284  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2285  * phases.
2286  */
2287 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2288 				   struct btrfs_block_group *block_group)
2289 {
2290 	struct btrfs_fs_info *fs_info = trans->fs_info;
2291 	struct btrfs_block_group_item bgi;
2292 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2293 	struct btrfs_key key;
2294 
2295 	spin_lock(&block_group->lock);
2296 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2297 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2298 						   block_group->global_root_id);
2299 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2300 	key.objectid = block_group->start;
2301 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2302 	key.offset = block_group->length;
2303 	spin_unlock(&block_group->lock);
2304 
2305 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2306 }
2307 
2308 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2309 			    struct btrfs_device *device, u64 chunk_offset,
2310 			    u64 start, u64 num_bytes)
2311 {
2312 	struct btrfs_fs_info *fs_info = device->fs_info;
2313 	struct btrfs_root *root = fs_info->dev_root;
2314 	struct btrfs_path *path;
2315 	struct btrfs_dev_extent *extent;
2316 	struct extent_buffer *leaf;
2317 	struct btrfs_key key;
2318 	int ret;
2319 
2320 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2321 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2322 	path = btrfs_alloc_path();
2323 	if (!path)
2324 		return -ENOMEM;
2325 
2326 	key.objectid = device->devid;
2327 	key.type = BTRFS_DEV_EXTENT_KEY;
2328 	key.offset = start;
2329 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2330 	if (ret)
2331 		goto out;
2332 
2333 	leaf = path->nodes[0];
2334 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2335 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2336 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2337 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2338 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2339 
2340 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2341 	btrfs_mark_buffer_dirty(leaf);
2342 out:
2343 	btrfs_free_path(path);
2344 	return ret;
2345 }
2346 
2347 /*
2348  * This function belongs to phase 2.
2349  *
2350  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2351  * phases.
2352  */
2353 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2354 				   u64 chunk_offset, u64 chunk_size)
2355 {
2356 	struct btrfs_fs_info *fs_info = trans->fs_info;
2357 	struct btrfs_device *device;
2358 	struct extent_map *em;
2359 	struct map_lookup *map;
2360 	u64 dev_offset;
2361 	u64 stripe_size;
2362 	int i;
2363 	int ret = 0;
2364 
2365 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2366 	if (IS_ERR(em))
2367 		return PTR_ERR(em);
2368 
2369 	map = em->map_lookup;
2370 	stripe_size = em->orig_block_len;
2371 
2372 	/*
2373 	 * Take the device list mutex to prevent races with the final phase of
2374 	 * a device replace operation that replaces the device object associated
2375 	 * with the map's stripes, because the device object's id can change
2376 	 * at any time during that final phase of the device replace operation
2377 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2378 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2379 	 * resulting in persisting a device extent item with such ID.
2380 	 */
2381 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2382 	for (i = 0; i < map->num_stripes; i++) {
2383 		device = map->stripes[i].dev;
2384 		dev_offset = map->stripes[i].physical;
2385 
2386 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2387 				       stripe_size);
2388 		if (ret)
2389 			break;
2390 	}
2391 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2392 
2393 	free_extent_map(em);
2394 	return ret;
2395 }
2396 
2397 /*
2398  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2399  * chunk allocation.
2400  *
2401  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2402  * phases.
2403  */
2404 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2405 {
2406 	struct btrfs_fs_info *fs_info = trans->fs_info;
2407 	struct btrfs_block_group *block_group;
2408 	int ret = 0;
2409 
2410 	while (!list_empty(&trans->new_bgs)) {
2411 		int index;
2412 
2413 		block_group = list_first_entry(&trans->new_bgs,
2414 					       struct btrfs_block_group,
2415 					       bg_list);
2416 		if (ret)
2417 			goto next;
2418 
2419 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2420 
2421 		ret = insert_block_group_item(trans, block_group);
2422 		if (ret)
2423 			btrfs_abort_transaction(trans, ret);
2424 		if (!block_group->chunk_item_inserted) {
2425 			mutex_lock(&fs_info->chunk_mutex);
2426 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2427 			mutex_unlock(&fs_info->chunk_mutex);
2428 			if (ret)
2429 				btrfs_abort_transaction(trans, ret);
2430 		}
2431 		ret = insert_dev_extents(trans, block_group->start,
2432 					 block_group->length);
2433 		if (ret)
2434 			btrfs_abort_transaction(trans, ret);
2435 		add_block_group_free_space(trans, block_group);
2436 
2437 		/*
2438 		 * If we restriped during balance, we may have added a new raid
2439 		 * type, so now add the sysfs entries when it is safe to do so.
2440 		 * We don't have to worry about locking here as it's handled in
2441 		 * btrfs_sysfs_add_block_group_type.
2442 		 */
2443 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2444 			btrfs_sysfs_add_block_group_type(block_group);
2445 
2446 		/* Already aborted the transaction if it failed. */
2447 next:
2448 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2449 		list_del_init(&block_group->bg_list);
2450 	}
2451 	btrfs_trans_release_chunk_metadata(trans);
2452 }
2453 
2454 /*
2455  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2456  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2457  */
2458 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2459 {
2460 	u64 div = SZ_1G;
2461 	u64 index;
2462 
2463 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2464 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2465 
2466 	/* If we have a smaller fs index based on 128MiB. */
2467 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2468 		div = SZ_128M;
2469 
2470 	offset = div64_u64(offset, div);
2471 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2472 	return index;
2473 }
2474 
2475 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2476 						 u64 bytes_used, u64 type,
2477 						 u64 chunk_offset, u64 size)
2478 {
2479 	struct btrfs_fs_info *fs_info = trans->fs_info;
2480 	struct btrfs_block_group *cache;
2481 	int ret;
2482 
2483 	btrfs_set_log_full_commit(trans);
2484 
2485 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2486 	if (!cache)
2487 		return ERR_PTR(-ENOMEM);
2488 
2489 	cache->length = size;
2490 	set_free_space_tree_thresholds(cache);
2491 	cache->used = bytes_used;
2492 	cache->flags = type;
2493 	cache->last_byte_to_unpin = (u64)-1;
2494 	cache->cached = BTRFS_CACHE_FINISHED;
2495 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2496 
2497 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2498 		cache->needs_free_space = 1;
2499 
2500 	ret = btrfs_load_block_group_zone_info(cache, true);
2501 	if (ret) {
2502 		btrfs_put_block_group(cache);
2503 		return ERR_PTR(ret);
2504 	}
2505 
2506 	/*
2507 	 * New block group is likely to be used soon. Try to activate it now.
2508 	 * Failure is OK for now.
2509 	 */
2510 	btrfs_zone_activate(cache);
2511 
2512 	ret = exclude_super_stripes(cache);
2513 	if (ret) {
2514 		/* We may have excluded something, so call this just in case */
2515 		btrfs_free_excluded_extents(cache);
2516 		btrfs_put_block_group(cache);
2517 		return ERR_PTR(ret);
2518 	}
2519 
2520 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2521 
2522 	btrfs_free_excluded_extents(cache);
2523 
2524 #ifdef CONFIG_BTRFS_DEBUG
2525 	if (btrfs_should_fragment_free_space(cache)) {
2526 		u64 new_bytes_used = size - bytes_used;
2527 
2528 		bytes_used += new_bytes_used >> 1;
2529 		fragment_free_space(cache);
2530 	}
2531 #endif
2532 	/*
2533 	 * Ensure the corresponding space_info object is created and
2534 	 * assigned to our block group. We want our bg to be added to the rbtree
2535 	 * with its ->space_info set.
2536 	 */
2537 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2538 	ASSERT(cache->space_info);
2539 
2540 	ret = btrfs_add_block_group_cache(fs_info, cache);
2541 	if (ret) {
2542 		btrfs_remove_free_space_cache(cache);
2543 		btrfs_put_block_group(cache);
2544 		return ERR_PTR(ret);
2545 	}
2546 
2547 	/*
2548 	 * Now that our block group has its ->space_info set and is inserted in
2549 	 * the rbtree, update the space info's counters.
2550 	 */
2551 	trace_btrfs_add_block_group(fs_info, cache, 1);
2552 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2553 				cache->bytes_super, cache->zone_unusable,
2554 				&cache->space_info);
2555 	btrfs_update_global_block_rsv(fs_info);
2556 
2557 	link_block_group(cache);
2558 
2559 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2560 	trans->delayed_ref_updates++;
2561 	btrfs_update_delayed_refs_rsv(trans);
2562 
2563 	set_avail_alloc_bits(fs_info, type);
2564 	return cache;
2565 }
2566 
2567 /*
2568  * Mark one block group RO, can be called several times for the same block
2569  * group.
2570  *
2571  * @cache:		the destination block group
2572  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2573  * 			ensure we still have some free space after marking this
2574  * 			block group RO.
2575  */
2576 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2577 			     bool do_chunk_alloc)
2578 {
2579 	struct btrfs_fs_info *fs_info = cache->fs_info;
2580 	struct btrfs_trans_handle *trans;
2581 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2582 	u64 alloc_flags;
2583 	int ret;
2584 	bool dirty_bg_running;
2585 
2586 	/*
2587 	 * This can only happen when we are doing read-only scrub on read-only
2588 	 * mount.
2589 	 * In that case we should not start a new transaction on read-only fs.
2590 	 * Thus here we skip all chunk allocations.
2591 	 */
2592 	if (sb_rdonly(fs_info->sb)) {
2593 		mutex_lock(&fs_info->ro_block_group_mutex);
2594 		ret = inc_block_group_ro(cache, 0);
2595 		mutex_unlock(&fs_info->ro_block_group_mutex);
2596 		return ret;
2597 	}
2598 
2599 	do {
2600 		trans = btrfs_join_transaction(root);
2601 		if (IS_ERR(trans))
2602 			return PTR_ERR(trans);
2603 
2604 		dirty_bg_running = false;
2605 
2606 		/*
2607 		 * We're not allowed to set block groups readonly after the dirty
2608 		 * block group cache has started writing.  If it already started,
2609 		 * back off and let this transaction commit.
2610 		 */
2611 		mutex_lock(&fs_info->ro_block_group_mutex);
2612 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2613 			u64 transid = trans->transid;
2614 
2615 			mutex_unlock(&fs_info->ro_block_group_mutex);
2616 			btrfs_end_transaction(trans);
2617 
2618 			ret = btrfs_wait_for_commit(fs_info, transid);
2619 			if (ret)
2620 				return ret;
2621 			dirty_bg_running = true;
2622 		}
2623 	} while (dirty_bg_running);
2624 
2625 	if (do_chunk_alloc) {
2626 		/*
2627 		 * If we are changing raid levels, try to allocate a
2628 		 * corresponding block group with the new raid level.
2629 		 */
2630 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2631 		if (alloc_flags != cache->flags) {
2632 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2633 						CHUNK_ALLOC_FORCE);
2634 			/*
2635 			 * ENOSPC is allowed here, we may have enough space
2636 			 * already allocated at the new raid level to carry on
2637 			 */
2638 			if (ret == -ENOSPC)
2639 				ret = 0;
2640 			if (ret < 0)
2641 				goto out;
2642 		}
2643 	}
2644 
2645 	ret = inc_block_group_ro(cache, 0);
2646 	if (!do_chunk_alloc || ret == -ETXTBSY)
2647 		goto unlock_out;
2648 	if (!ret)
2649 		goto out;
2650 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2651 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2652 	if (ret < 0)
2653 		goto out;
2654 	ret = inc_block_group_ro(cache, 0);
2655 	if (ret == -ETXTBSY)
2656 		goto unlock_out;
2657 out:
2658 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2659 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2660 		mutex_lock(&fs_info->chunk_mutex);
2661 		check_system_chunk(trans, alloc_flags);
2662 		mutex_unlock(&fs_info->chunk_mutex);
2663 	}
2664 unlock_out:
2665 	mutex_unlock(&fs_info->ro_block_group_mutex);
2666 
2667 	btrfs_end_transaction(trans);
2668 	return ret;
2669 }
2670 
2671 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2672 {
2673 	struct btrfs_space_info *sinfo = cache->space_info;
2674 	u64 num_bytes;
2675 
2676 	BUG_ON(!cache->ro);
2677 
2678 	spin_lock(&sinfo->lock);
2679 	spin_lock(&cache->lock);
2680 	if (!--cache->ro) {
2681 		if (btrfs_is_zoned(cache->fs_info)) {
2682 			/* Migrate zone_unusable bytes back */
2683 			cache->zone_unusable =
2684 				(cache->alloc_offset - cache->used) +
2685 				(cache->length - cache->zone_capacity);
2686 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2687 			sinfo->bytes_readonly -= cache->zone_unusable;
2688 		}
2689 		num_bytes = cache->length - cache->reserved -
2690 			    cache->pinned - cache->bytes_super -
2691 			    cache->zone_unusable - cache->used;
2692 		sinfo->bytes_readonly -= num_bytes;
2693 		list_del_init(&cache->ro_list);
2694 	}
2695 	spin_unlock(&cache->lock);
2696 	spin_unlock(&sinfo->lock);
2697 }
2698 
2699 static int update_block_group_item(struct btrfs_trans_handle *trans,
2700 				   struct btrfs_path *path,
2701 				   struct btrfs_block_group *cache)
2702 {
2703 	struct btrfs_fs_info *fs_info = trans->fs_info;
2704 	int ret;
2705 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2706 	unsigned long bi;
2707 	struct extent_buffer *leaf;
2708 	struct btrfs_block_group_item bgi;
2709 	struct btrfs_key key;
2710 
2711 	key.objectid = cache->start;
2712 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2713 	key.offset = cache->length;
2714 
2715 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2716 	if (ret) {
2717 		if (ret > 0)
2718 			ret = -ENOENT;
2719 		goto fail;
2720 	}
2721 
2722 	leaf = path->nodes[0];
2723 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2724 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2725 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2726 						   cache->global_root_id);
2727 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2728 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2729 	btrfs_mark_buffer_dirty(leaf);
2730 fail:
2731 	btrfs_release_path(path);
2732 	return ret;
2733 
2734 }
2735 
2736 static int cache_save_setup(struct btrfs_block_group *block_group,
2737 			    struct btrfs_trans_handle *trans,
2738 			    struct btrfs_path *path)
2739 {
2740 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2741 	struct btrfs_root *root = fs_info->tree_root;
2742 	struct inode *inode = NULL;
2743 	struct extent_changeset *data_reserved = NULL;
2744 	u64 alloc_hint = 0;
2745 	int dcs = BTRFS_DC_ERROR;
2746 	u64 cache_size = 0;
2747 	int retries = 0;
2748 	int ret = 0;
2749 
2750 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2751 		return 0;
2752 
2753 	/*
2754 	 * If this block group is smaller than 100 megs don't bother caching the
2755 	 * block group.
2756 	 */
2757 	if (block_group->length < (100 * SZ_1M)) {
2758 		spin_lock(&block_group->lock);
2759 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2760 		spin_unlock(&block_group->lock);
2761 		return 0;
2762 	}
2763 
2764 	if (TRANS_ABORTED(trans))
2765 		return 0;
2766 again:
2767 	inode = lookup_free_space_inode(block_group, path);
2768 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2769 		ret = PTR_ERR(inode);
2770 		btrfs_release_path(path);
2771 		goto out;
2772 	}
2773 
2774 	if (IS_ERR(inode)) {
2775 		BUG_ON(retries);
2776 		retries++;
2777 
2778 		if (block_group->ro)
2779 			goto out_free;
2780 
2781 		ret = create_free_space_inode(trans, block_group, path);
2782 		if (ret)
2783 			goto out_free;
2784 		goto again;
2785 	}
2786 
2787 	/*
2788 	 * We want to set the generation to 0, that way if anything goes wrong
2789 	 * from here on out we know not to trust this cache when we load up next
2790 	 * time.
2791 	 */
2792 	BTRFS_I(inode)->generation = 0;
2793 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2794 	if (ret) {
2795 		/*
2796 		 * So theoretically we could recover from this, simply set the
2797 		 * super cache generation to 0 so we know to invalidate the
2798 		 * cache, but then we'd have to keep track of the block groups
2799 		 * that fail this way so we know we _have_ to reset this cache
2800 		 * before the next commit or risk reading stale cache.  So to
2801 		 * limit our exposure to horrible edge cases lets just abort the
2802 		 * transaction, this only happens in really bad situations
2803 		 * anyway.
2804 		 */
2805 		btrfs_abort_transaction(trans, ret);
2806 		goto out_put;
2807 	}
2808 	WARN_ON(ret);
2809 
2810 	/* We've already setup this transaction, go ahead and exit */
2811 	if (block_group->cache_generation == trans->transid &&
2812 	    i_size_read(inode)) {
2813 		dcs = BTRFS_DC_SETUP;
2814 		goto out_put;
2815 	}
2816 
2817 	if (i_size_read(inode) > 0) {
2818 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2819 					&fs_info->global_block_rsv);
2820 		if (ret)
2821 			goto out_put;
2822 
2823 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2824 		if (ret)
2825 			goto out_put;
2826 	}
2827 
2828 	spin_lock(&block_group->lock);
2829 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2830 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2831 		/*
2832 		 * don't bother trying to write stuff out _if_
2833 		 * a) we're not cached,
2834 		 * b) we're with nospace_cache mount option,
2835 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2836 		 */
2837 		dcs = BTRFS_DC_WRITTEN;
2838 		spin_unlock(&block_group->lock);
2839 		goto out_put;
2840 	}
2841 	spin_unlock(&block_group->lock);
2842 
2843 	/*
2844 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2845 	 * skip doing the setup, we've already cleared the cache so we're safe.
2846 	 */
2847 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2848 		ret = -ENOSPC;
2849 		goto out_put;
2850 	}
2851 
2852 	/*
2853 	 * Try to preallocate enough space based on how big the block group is.
2854 	 * Keep in mind this has to include any pinned space which could end up
2855 	 * taking up quite a bit since it's not folded into the other space
2856 	 * cache.
2857 	 */
2858 	cache_size = div_u64(block_group->length, SZ_256M);
2859 	if (!cache_size)
2860 		cache_size = 1;
2861 
2862 	cache_size *= 16;
2863 	cache_size *= fs_info->sectorsize;
2864 
2865 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2866 					  cache_size);
2867 	if (ret)
2868 		goto out_put;
2869 
2870 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2871 					      cache_size, cache_size,
2872 					      &alloc_hint);
2873 	/*
2874 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2875 	 * of metadata or split extents when writing the cache out, which means
2876 	 * we can enospc if we are heavily fragmented in addition to just normal
2877 	 * out of space conditions.  So if we hit this just skip setting up any
2878 	 * other block groups for this transaction, maybe we'll unpin enough
2879 	 * space the next time around.
2880 	 */
2881 	if (!ret)
2882 		dcs = BTRFS_DC_SETUP;
2883 	else if (ret == -ENOSPC)
2884 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2885 
2886 out_put:
2887 	iput(inode);
2888 out_free:
2889 	btrfs_release_path(path);
2890 out:
2891 	spin_lock(&block_group->lock);
2892 	if (!ret && dcs == BTRFS_DC_SETUP)
2893 		block_group->cache_generation = trans->transid;
2894 	block_group->disk_cache_state = dcs;
2895 	spin_unlock(&block_group->lock);
2896 
2897 	extent_changeset_free(data_reserved);
2898 	return ret;
2899 }
2900 
2901 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2902 {
2903 	struct btrfs_fs_info *fs_info = trans->fs_info;
2904 	struct btrfs_block_group *cache, *tmp;
2905 	struct btrfs_transaction *cur_trans = trans->transaction;
2906 	struct btrfs_path *path;
2907 
2908 	if (list_empty(&cur_trans->dirty_bgs) ||
2909 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2910 		return 0;
2911 
2912 	path = btrfs_alloc_path();
2913 	if (!path)
2914 		return -ENOMEM;
2915 
2916 	/* Could add new block groups, use _safe just in case */
2917 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2918 				 dirty_list) {
2919 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2920 			cache_save_setup(cache, trans, path);
2921 	}
2922 
2923 	btrfs_free_path(path);
2924 	return 0;
2925 }
2926 
2927 /*
2928  * Transaction commit does final block group cache writeback during a critical
2929  * section where nothing is allowed to change the FS.  This is required in
2930  * order for the cache to actually match the block group, but can introduce a
2931  * lot of latency into the commit.
2932  *
2933  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2934  * There's a chance we'll have to redo some of it if the block group changes
2935  * again during the commit, but it greatly reduces the commit latency by
2936  * getting rid of the easy block groups while we're still allowing others to
2937  * join the commit.
2938  */
2939 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2940 {
2941 	struct btrfs_fs_info *fs_info = trans->fs_info;
2942 	struct btrfs_block_group *cache;
2943 	struct btrfs_transaction *cur_trans = trans->transaction;
2944 	int ret = 0;
2945 	int should_put;
2946 	struct btrfs_path *path = NULL;
2947 	LIST_HEAD(dirty);
2948 	struct list_head *io = &cur_trans->io_bgs;
2949 	int num_started = 0;
2950 	int loops = 0;
2951 
2952 	spin_lock(&cur_trans->dirty_bgs_lock);
2953 	if (list_empty(&cur_trans->dirty_bgs)) {
2954 		spin_unlock(&cur_trans->dirty_bgs_lock);
2955 		return 0;
2956 	}
2957 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2958 	spin_unlock(&cur_trans->dirty_bgs_lock);
2959 
2960 again:
2961 	/* Make sure all the block groups on our dirty list actually exist */
2962 	btrfs_create_pending_block_groups(trans);
2963 
2964 	if (!path) {
2965 		path = btrfs_alloc_path();
2966 		if (!path) {
2967 			ret = -ENOMEM;
2968 			goto out;
2969 		}
2970 	}
2971 
2972 	/*
2973 	 * cache_write_mutex is here only to save us from balance or automatic
2974 	 * removal of empty block groups deleting this block group while we are
2975 	 * writing out the cache
2976 	 */
2977 	mutex_lock(&trans->transaction->cache_write_mutex);
2978 	while (!list_empty(&dirty)) {
2979 		bool drop_reserve = true;
2980 
2981 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2982 					 dirty_list);
2983 		/*
2984 		 * This can happen if something re-dirties a block group that
2985 		 * is already under IO.  Just wait for it to finish and then do
2986 		 * it all again
2987 		 */
2988 		if (!list_empty(&cache->io_list)) {
2989 			list_del_init(&cache->io_list);
2990 			btrfs_wait_cache_io(trans, cache, path);
2991 			btrfs_put_block_group(cache);
2992 		}
2993 
2994 
2995 		/*
2996 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2997 		 * it should update the cache_state.  Don't delete until after
2998 		 * we wait.
2999 		 *
3000 		 * Since we're not running in the commit critical section
3001 		 * we need the dirty_bgs_lock to protect from update_block_group
3002 		 */
3003 		spin_lock(&cur_trans->dirty_bgs_lock);
3004 		list_del_init(&cache->dirty_list);
3005 		spin_unlock(&cur_trans->dirty_bgs_lock);
3006 
3007 		should_put = 1;
3008 
3009 		cache_save_setup(cache, trans, path);
3010 
3011 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3012 			cache->io_ctl.inode = NULL;
3013 			ret = btrfs_write_out_cache(trans, cache, path);
3014 			if (ret == 0 && cache->io_ctl.inode) {
3015 				num_started++;
3016 				should_put = 0;
3017 
3018 				/*
3019 				 * The cache_write_mutex is protecting the
3020 				 * io_list, also refer to the definition of
3021 				 * btrfs_transaction::io_bgs for more details
3022 				 */
3023 				list_add_tail(&cache->io_list, io);
3024 			} else {
3025 				/*
3026 				 * If we failed to write the cache, the
3027 				 * generation will be bad and life goes on
3028 				 */
3029 				ret = 0;
3030 			}
3031 		}
3032 		if (!ret) {
3033 			ret = update_block_group_item(trans, path, cache);
3034 			/*
3035 			 * Our block group might still be attached to the list
3036 			 * of new block groups in the transaction handle of some
3037 			 * other task (struct btrfs_trans_handle->new_bgs). This
3038 			 * means its block group item isn't yet in the extent
3039 			 * tree. If this happens ignore the error, as we will
3040 			 * try again later in the critical section of the
3041 			 * transaction commit.
3042 			 */
3043 			if (ret == -ENOENT) {
3044 				ret = 0;
3045 				spin_lock(&cur_trans->dirty_bgs_lock);
3046 				if (list_empty(&cache->dirty_list)) {
3047 					list_add_tail(&cache->dirty_list,
3048 						      &cur_trans->dirty_bgs);
3049 					btrfs_get_block_group(cache);
3050 					drop_reserve = false;
3051 				}
3052 				spin_unlock(&cur_trans->dirty_bgs_lock);
3053 			} else if (ret) {
3054 				btrfs_abort_transaction(trans, ret);
3055 			}
3056 		}
3057 
3058 		/* If it's not on the io list, we need to put the block group */
3059 		if (should_put)
3060 			btrfs_put_block_group(cache);
3061 		if (drop_reserve)
3062 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3063 		/*
3064 		 * Avoid blocking other tasks for too long. It might even save
3065 		 * us from writing caches for block groups that are going to be
3066 		 * removed.
3067 		 */
3068 		mutex_unlock(&trans->transaction->cache_write_mutex);
3069 		if (ret)
3070 			goto out;
3071 		mutex_lock(&trans->transaction->cache_write_mutex);
3072 	}
3073 	mutex_unlock(&trans->transaction->cache_write_mutex);
3074 
3075 	/*
3076 	 * Go through delayed refs for all the stuff we've just kicked off
3077 	 * and then loop back (just once)
3078 	 */
3079 	if (!ret)
3080 		ret = btrfs_run_delayed_refs(trans, 0);
3081 	if (!ret && loops == 0) {
3082 		loops++;
3083 		spin_lock(&cur_trans->dirty_bgs_lock);
3084 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3085 		/*
3086 		 * dirty_bgs_lock protects us from concurrent block group
3087 		 * deletes too (not just cache_write_mutex).
3088 		 */
3089 		if (!list_empty(&dirty)) {
3090 			spin_unlock(&cur_trans->dirty_bgs_lock);
3091 			goto again;
3092 		}
3093 		spin_unlock(&cur_trans->dirty_bgs_lock);
3094 	}
3095 out:
3096 	if (ret < 0) {
3097 		spin_lock(&cur_trans->dirty_bgs_lock);
3098 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3099 		spin_unlock(&cur_trans->dirty_bgs_lock);
3100 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3101 	}
3102 
3103 	btrfs_free_path(path);
3104 	return ret;
3105 }
3106 
3107 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3108 {
3109 	struct btrfs_fs_info *fs_info = trans->fs_info;
3110 	struct btrfs_block_group *cache;
3111 	struct btrfs_transaction *cur_trans = trans->transaction;
3112 	int ret = 0;
3113 	int should_put;
3114 	struct btrfs_path *path;
3115 	struct list_head *io = &cur_trans->io_bgs;
3116 	int num_started = 0;
3117 
3118 	path = btrfs_alloc_path();
3119 	if (!path)
3120 		return -ENOMEM;
3121 
3122 	/*
3123 	 * Even though we are in the critical section of the transaction commit,
3124 	 * we can still have concurrent tasks adding elements to this
3125 	 * transaction's list of dirty block groups. These tasks correspond to
3126 	 * endio free space workers started when writeback finishes for a
3127 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3128 	 * allocate new block groups as a result of COWing nodes of the root
3129 	 * tree when updating the free space inode. The writeback for the space
3130 	 * caches is triggered by an earlier call to
3131 	 * btrfs_start_dirty_block_groups() and iterations of the following
3132 	 * loop.
3133 	 * Also we want to do the cache_save_setup first and then run the
3134 	 * delayed refs to make sure we have the best chance at doing this all
3135 	 * in one shot.
3136 	 */
3137 	spin_lock(&cur_trans->dirty_bgs_lock);
3138 	while (!list_empty(&cur_trans->dirty_bgs)) {
3139 		cache = list_first_entry(&cur_trans->dirty_bgs,
3140 					 struct btrfs_block_group,
3141 					 dirty_list);
3142 
3143 		/*
3144 		 * This can happen if cache_save_setup re-dirties a block group
3145 		 * that is already under IO.  Just wait for it to finish and
3146 		 * then do it all again
3147 		 */
3148 		if (!list_empty(&cache->io_list)) {
3149 			spin_unlock(&cur_trans->dirty_bgs_lock);
3150 			list_del_init(&cache->io_list);
3151 			btrfs_wait_cache_io(trans, cache, path);
3152 			btrfs_put_block_group(cache);
3153 			spin_lock(&cur_trans->dirty_bgs_lock);
3154 		}
3155 
3156 		/*
3157 		 * Don't remove from the dirty list until after we've waited on
3158 		 * any pending IO
3159 		 */
3160 		list_del_init(&cache->dirty_list);
3161 		spin_unlock(&cur_trans->dirty_bgs_lock);
3162 		should_put = 1;
3163 
3164 		cache_save_setup(cache, trans, path);
3165 
3166 		if (!ret)
3167 			ret = btrfs_run_delayed_refs(trans,
3168 						     (unsigned long) -1);
3169 
3170 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3171 			cache->io_ctl.inode = NULL;
3172 			ret = btrfs_write_out_cache(trans, cache, path);
3173 			if (ret == 0 && cache->io_ctl.inode) {
3174 				num_started++;
3175 				should_put = 0;
3176 				list_add_tail(&cache->io_list, io);
3177 			} else {
3178 				/*
3179 				 * If we failed to write the cache, the
3180 				 * generation will be bad and life goes on
3181 				 */
3182 				ret = 0;
3183 			}
3184 		}
3185 		if (!ret) {
3186 			ret = update_block_group_item(trans, path, cache);
3187 			/*
3188 			 * One of the free space endio workers might have
3189 			 * created a new block group while updating a free space
3190 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3191 			 * and hasn't released its transaction handle yet, in
3192 			 * which case the new block group is still attached to
3193 			 * its transaction handle and its creation has not
3194 			 * finished yet (no block group item in the extent tree
3195 			 * yet, etc). If this is the case, wait for all free
3196 			 * space endio workers to finish and retry. This is a
3197 			 * very rare case so no need for a more efficient and
3198 			 * complex approach.
3199 			 */
3200 			if (ret == -ENOENT) {
3201 				wait_event(cur_trans->writer_wait,
3202 				   atomic_read(&cur_trans->num_writers) == 1);
3203 				ret = update_block_group_item(trans, path, cache);
3204 			}
3205 			if (ret)
3206 				btrfs_abort_transaction(trans, ret);
3207 		}
3208 
3209 		/* If its not on the io list, we need to put the block group */
3210 		if (should_put)
3211 			btrfs_put_block_group(cache);
3212 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3213 		spin_lock(&cur_trans->dirty_bgs_lock);
3214 	}
3215 	spin_unlock(&cur_trans->dirty_bgs_lock);
3216 
3217 	/*
3218 	 * Refer to the definition of io_bgs member for details why it's safe
3219 	 * to use it without any locking
3220 	 */
3221 	while (!list_empty(io)) {
3222 		cache = list_first_entry(io, struct btrfs_block_group,
3223 					 io_list);
3224 		list_del_init(&cache->io_list);
3225 		btrfs_wait_cache_io(trans, cache, path);
3226 		btrfs_put_block_group(cache);
3227 	}
3228 
3229 	btrfs_free_path(path);
3230 	return ret;
3231 }
3232 
3233 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3234 			     u64 bytenr, u64 num_bytes, bool alloc)
3235 {
3236 	struct btrfs_fs_info *info = trans->fs_info;
3237 	struct btrfs_block_group *cache = NULL;
3238 	u64 total = num_bytes;
3239 	u64 old_val;
3240 	u64 byte_in_group;
3241 	int factor;
3242 	int ret = 0;
3243 
3244 	/* Block accounting for super block */
3245 	spin_lock(&info->delalloc_root_lock);
3246 	old_val = btrfs_super_bytes_used(info->super_copy);
3247 	if (alloc)
3248 		old_val += num_bytes;
3249 	else
3250 		old_val -= num_bytes;
3251 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3252 	spin_unlock(&info->delalloc_root_lock);
3253 
3254 	while (total) {
3255 		cache = btrfs_lookup_block_group(info, bytenr);
3256 		if (!cache) {
3257 			ret = -ENOENT;
3258 			break;
3259 		}
3260 		factor = btrfs_bg_type_to_factor(cache->flags);
3261 
3262 		/*
3263 		 * If this block group has free space cache written out, we
3264 		 * need to make sure to load it if we are removing space.  This
3265 		 * is because we need the unpinning stage to actually add the
3266 		 * space back to the block group, otherwise we will leak space.
3267 		 */
3268 		if (!alloc && !btrfs_block_group_done(cache))
3269 			btrfs_cache_block_group(cache, 1);
3270 
3271 		byte_in_group = bytenr - cache->start;
3272 		WARN_ON(byte_in_group > cache->length);
3273 
3274 		spin_lock(&cache->space_info->lock);
3275 		spin_lock(&cache->lock);
3276 
3277 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3278 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3279 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3280 
3281 		old_val = cache->used;
3282 		num_bytes = min(total, cache->length - byte_in_group);
3283 		if (alloc) {
3284 			old_val += num_bytes;
3285 			cache->used = old_val;
3286 			cache->reserved -= num_bytes;
3287 			cache->space_info->bytes_reserved -= num_bytes;
3288 			cache->space_info->bytes_used += num_bytes;
3289 			cache->space_info->disk_used += num_bytes * factor;
3290 			spin_unlock(&cache->lock);
3291 			spin_unlock(&cache->space_info->lock);
3292 		} else {
3293 			old_val -= num_bytes;
3294 			cache->used = old_val;
3295 			cache->pinned += num_bytes;
3296 			btrfs_space_info_update_bytes_pinned(info,
3297 					cache->space_info, num_bytes);
3298 			cache->space_info->bytes_used -= num_bytes;
3299 			cache->space_info->disk_used -= num_bytes * factor;
3300 			spin_unlock(&cache->lock);
3301 			spin_unlock(&cache->space_info->lock);
3302 
3303 			set_extent_dirty(&trans->transaction->pinned_extents,
3304 					 bytenr, bytenr + num_bytes - 1,
3305 					 GFP_NOFS | __GFP_NOFAIL);
3306 		}
3307 
3308 		spin_lock(&trans->transaction->dirty_bgs_lock);
3309 		if (list_empty(&cache->dirty_list)) {
3310 			list_add_tail(&cache->dirty_list,
3311 				      &trans->transaction->dirty_bgs);
3312 			trans->delayed_ref_updates++;
3313 			btrfs_get_block_group(cache);
3314 		}
3315 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3316 
3317 		/*
3318 		 * No longer have used bytes in this block group, queue it for
3319 		 * deletion. We do this after adding the block group to the
3320 		 * dirty list to avoid races between cleaner kthread and space
3321 		 * cache writeout.
3322 		 */
3323 		if (!alloc && old_val == 0) {
3324 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3325 				btrfs_mark_bg_unused(cache);
3326 		}
3327 
3328 		btrfs_put_block_group(cache);
3329 		total -= num_bytes;
3330 		bytenr += num_bytes;
3331 	}
3332 
3333 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3334 	btrfs_update_delayed_refs_rsv(trans);
3335 	return ret;
3336 }
3337 
3338 /**
3339  * btrfs_add_reserved_bytes - update the block_group and space info counters
3340  * @cache:	The cache we are manipulating
3341  * @ram_bytes:  The number of bytes of file content, and will be same to
3342  *              @num_bytes except for the compress path.
3343  * @num_bytes:	The number of bytes in question
3344  * @delalloc:   The blocks are allocated for the delalloc write
3345  *
3346  * This is called by the allocator when it reserves space. If this is a
3347  * reservation and the block group has become read only we cannot make the
3348  * reservation and return -EAGAIN, otherwise this function always succeeds.
3349  */
3350 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3351 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3352 {
3353 	struct btrfs_space_info *space_info = cache->space_info;
3354 	int ret = 0;
3355 
3356 	spin_lock(&space_info->lock);
3357 	spin_lock(&cache->lock);
3358 	if (cache->ro) {
3359 		ret = -EAGAIN;
3360 	} else {
3361 		cache->reserved += num_bytes;
3362 		space_info->bytes_reserved += num_bytes;
3363 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3364 					      space_info->flags, num_bytes, 1);
3365 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3366 						      space_info, -ram_bytes);
3367 		if (delalloc)
3368 			cache->delalloc_bytes += num_bytes;
3369 
3370 		/*
3371 		 * Compression can use less space than we reserved, so wake
3372 		 * tickets if that happens
3373 		 */
3374 		if (num_bytes < ram_bytes)
3375 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3376 	}
3377 	spin_unlock(&cache->lock);
3378 	spin_unlock(&space_info->lock);
3379 	return ret;
3380 }
3381 
3382 /**
3383  * btrfs_free_reserved_bytes - update the block_group and space info counters
3384  * @cache:      The cache we are manipulating
3385  * @num_bytes:  The number of bytes in question
3386  * @delalloc:   The blocks are allocated for the delalloc write
3387  *
3388  * This is called by somebody who is freeing space that was never actually used
3389  * on disk.  For example if you reserve some space for a new leaf in transaction
3390  * A and before transaction A commits you free that leaf, you call this with
3391  * reserve set to 0 in order to clear the reservation.
3392  */
3393 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3394 			       u64 num_bytes, int delalloc)
3395 {
3396 	struct btrfs_space_info *space_info = cache->space_info;
3397 
3398 	spin_lock(&space_info->lock);
3399 	spin_lock(&cache->lock);
3400 	if (cache->ro)
3401 		space_info->bytes_readonly += num_bytes;
3402 	cache->reserved -= num_bytes;
3403 	space_info->bytes_reserved -= num_bytes;
3404 	space_info->max_extent_size = 0;
3405 
3406 	if (delalloc)
3407 		cache->delalloc_bytes -= num_bytes;
3408 	spin_unlock(&cache->lock);
3409 
3410 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3411 	spin_unlock(&space_info->lock);
3412 }
3413 
3414 static void force_metadata_allocation(struct btrfs_fs_info *info)
3415 {
3416 	struct list_head *head = &info->space_info;
3417 	struct btrfs_space_info *found;
3418 
3419 	list_for_each_entry(found, head, list) {
3420 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3421 			found->force_alloc = CHUNK_ALLOC_FORCE;
3422 	}
3423 }
3424 
3425 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3426 			      struct btrfs_space_info *sinfo, int force)
3427 {
3428 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3429 	u64 thresh;
3430 
3431 	if (force == CHUNK_ALLOC_FORCE)
3432 		return 1;
3433 
3434 	/*
3435 	 * in limited mode, we want to have some free space up to
3436 	 * about 1% of the FS size.
3437 	 */
3438 	if (force == CHUNK_ALLOC_LIMITED) {
3439 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3440 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3441 
3442 		if (sinfo->total_bytes - bytes_used < thresh)
3443 			return 1;
3444 	}
3445 
3446 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3447 		return 0;
3448 	return 1;
3449 }
3450 
3451 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3452 {
3453 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3454 
3455 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3456 }
3457 
3458 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3459 {
3460 	struct btrfs_block_group *bg;
3461 	int ret;
3462 
3463 	/*
3464 	 * Check if we have enough space in the system space info because we
3465 	 * will need to update device items in the chunk btree and insert a new
3466 	 * chunk item in the chunk btree as well. This will allocate a new
3467 	 * system block group if needed.
3468 	 */
3469 	check_system_chunk(trans, flags);
3470 
3471 	bg = btrfs_create_chunk(trans, flags);
3472 	if (IS_ERR(bg)) {
3473 		ret = PTR_ERR(bg);
3474 		goto out;
3475 	}
3476 
3477 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3478 	/*
3479 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3480 	 * previously reserved space in the system space_info and allocated one
3481 	 * new system chunk if necessary. However there are three exceptions:
3482 	 *
3483 	 * 1) We may have enough free space in the system space_info but all the
3484 	 *    existing system block groups have a profile which can not be used
3485 	 *    for extent allocation.
3486 	 *
3487 	 *    This happens when mounting in degraded mode. For example we have a
3488 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3489 	 *    using the other device in degraded mode. If we then allocate a chunk,
3490 	 *    we may have enough free space in the existing system space_info, but
3491 	 *    none of the block groups can be used for extent allocation since they
3492 	 *    have a RAID1 profile, and because we are in degraded mode with a
3493 	 *    single device, we are forced to allocate a new system chunk with a
3494 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3495 	 *    block groups and check if they have a usable profile and enough space
3496 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3497 	 *    try again after forcing allocation of a new system chunk. Like this
3498 	 *    we avoid paying the cost of that search in normal circumstances, when
3499 	 *    we were not mounted in degraded mode;
3500 	 *
3501 	 * 2) We had enough free space info the system space_info, and one suitable
3502 	 *    block group to allocate from when we called check_system_chunk()
3503 	 *    above. However right after we called it, the only system block group
3504 	 *    with enough free space got turned into RO mode by a running scrub,
3505 	 *    and in this case we have to allocate a new one and retry. We only
3506 	 *    need do this allocate and retry once, since we have a transaction
3507 	 *    handle and scrub uses the commit root to search for block groups;
3508 	 *
3509 	 * 3) We had one system block group with enough free space when we called
3510 	 *    check_system_chunk(), but after that, right before we tried to
3511 	 *    allocate the last extent buffer we needed, a discard operation came
3512 	 *    in and it temporarily removed the last free space entry from the
3513 	 *    block group (discard removes a free space entry, discards it, and
3514 	 *    then adds back the entry to the block group cache).
3515 	 */
3516 	if (ret == -ENOSPC) {
3517 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3518 		struct btrfs_block_group *sys_bg;
3519 
3520 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3521 		if (IS_ERR(sys_bg)) {
3522 			ret = PTR_ERR(sys_bg);
3523 			btrfs_abort_transaction(trans, ret);
3524 			goto out;
3525 		}
3526 
3527 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3528 		if (ret) {
3529 			btrfs_abort_transaction(trans, ret);
3530 			goto out;
3531 		}
3532 
3533 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3534 		if (ret) {
3535 			btrfs_abort_transaction(trans, ret);
3536 			goto out;
3537 		}
3538 	} else if (ret) {
3539 		btrfs_abort_transaction(trans, ret);
3540 		goto out;
3541 	}
3542 out:
3543 	btrfs_trans_release_chunk_metadata(trans);
3544 
3545 	return ret;
3546 }
3547 
3548 /*
3549  * Chunk allocation is done in 2 phases:
3550  *
3551  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3552  *    the chunk, the chunk mapping, create its block group and add the items
3553  *    that belong in the chunk btree to it - more specifically, we need to
3554  *    update device items in the chunk btree and add a new chunk item to it.
3555  *
3556  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3557  *    group item to the extent btree and the device extent items to the devices
3558  *    btree.
3559  *
3560  * This is done to prevent deadlocks. For example when COWing a node from the
3561  * extent btree we are holding a write lock on the node's parent and if we
3562  * trigger chunk allocation and attempted to insert the new block group item
3563  * in the extent btree right way, we could deadlock because the path for the
3564  * insertion can include that parent node. At first glance it seems impossible
3565  * to trigger chunk allocation after starting a transaction since tasks should
3566  * reserve enough transaction units (metadata space), however while that is true
3567  * most of the time, chunk allocation may still be triggered for several reasons:
3568  *
3569  * 1) When reserving metadata, we check if there is enough free space in the
3570  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3571  *    However later when the task actually tries to COW an extent buffer from
3572  *    the extent btree or from the device btree for example, it is forced to
3573  *    allocate a new block group (chunk) because the only one that had enough
3574  *    free space was just turned to RO mode by a running scrub for example (or
3575  *    device replace, block group reclaim thread, etc), so we can not use it
3576  *    for allocating an extent and end up being forced to allocate a new one;
3577  *
3578  * 2) Because we only check that the metadata space_info has enough free bytes,
3579  *    we end up not allocating a new metadata chunk in that case. However if
3580  *    the filesystem was mounted in degraded mode, none of the existing block
3581  *    groups might be suitable for extent allocation due to their incompatible
3582  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3583  *    use a RAID1 profile, in degraded mode using a single device). In this case
3584  *    when the task attempts to COW some extent buffer of the extent btree for
3585  *    example, it will trigger allocation of a new metadata block group with a
3586  *    suitable profile (SINGLE profile in the example of the degraded mount of
3587  *    the RAID1 filesystem);
3588  *
3589  * 3) The task has reserved enough transaction units / metadata space, but when
3590  *    it attempts to COW an extent buffer from the extent or device btree for
3591  *    example, it does not find any free extent in any metadata block group,
3592  *    therefore forced to try to allocate a new metadata block group.
3593  *    This is because some other task allocated all available extents in the
3594  *    meanwhile - this typically happens with tasks that don't reserve space
3595  *    properly, either intentionally or as a bug. One example where this is
3596  *    done intentionally is fsync, as it does not reserve any transaction units
3597  *    and ends up allocating a variable number of metadata extents for log
3598  *    tree extent buffers;
3599  *
3600  * 4) The task has reserved enough transaction units / metadata space, but right
3601  *    before it tries to allocate the last extent buffer it needs, a discard
3602  *    operation comes in and, temporarily, removes the last free space entry from
3603  *    the only metadata block group that had free space (discard starts by
3604  *    removing a free space entry from a block group, then does the discard
3605  *    operation and, once it's done, it adds back the free space entry to the
3606  *    block group).
3607  *
3608  * We also need this 2 phases setup when adding a device to a filesystem with
3609  * a seed device - we must create new metadata and system chunks without adding
3610  * any of the block group items to the chunk, extent and device btrees. If we
3611  * did not do it this way, we would get ENOSPC when attempting to update those
3612  * btrees, since all the chunks from the seed device are read-only.
3613  *
3614  * Phase 1 does the updates and insertions to the chunk btree because if we had
3615  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3616  * parallel, we risk having too many system chunks allocated by many tasks if
3617  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3618  * extreme case this leads to exhaustion of the system chunk array in the
3619  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3620  * and with RAID filesystems (so we have more device items in the chunk btree).
3621  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3622  * the system chunk array due to concurrent allocations") provides more details.
3623  *
3624  * Allocation of system chunks does not happen through this function. A task that
3625  * needs to update the chunk btree (the only btree that uses system chunks), must
3626  * preallocate chunk space by calling either check_system_chunk() or
3627  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3628  * metadata chunk or when removing a chunk, while the later is used before doing
3629  * a modification to the chunk btree - use cases for the later are adding,
3630  * removing and resizing a device as well as relocation of a system chunk.
3631  * See the comment below for more details.
3632  *
3633  * The reservation of system space, done through check_system_chunk(), as well
3634  * as all the updates and insertions into the chunk btree must be done while
3635  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3636  * an extent buffer from the chunks btree we never trigger allocation of a new
3637  * system chunk, which would result in a deadlock (trying to lock twice an
3638  * extent buffer of the chunk btree, first time before triggering the chunk
3639  * allocation and the second time during chunk allocation while attempting to
3640  * update the chunks btree). The system chunk array is also updated while holding
3641  * that mutex. The same logic applies to removing chunks - we must reserve system
3642  * space, update the chunk btree and the system chunk array in the superblock
3643  * while holding fs_info->chunk_mutex.
3644  *
3645  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3646  *
3647  * If @force is CHUNK_ALLOC_FORCE:
3648  *    - return 1 if it successfully allocates a chunk,
3649  *    - return errors including -ENOSPC otherwise.
3650  * If @force is NOT CHUNK_ALLOC_FORCE:
3651  *    - return 0 if it doesn't need to allocate a new chunk,
3652  *    - return 1 if it successfully allocates a chunk,
3653  *    - return errors including -ENOSPC otherwise.
3654  */
3655 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3656 		      enum btrfs_chunk_alloc_enum force)
3657 {
3658 	struct btrfs_fs_info *fs_info = trans->fs_info;
3659 	struct btrfs_space_info *space_info;
3660 	bool wait_for_alloc = false;
3661 	bool should_alloc = false;
3662 	int ret = 0;
3663 
3664 	/* Don't re-enter if we're already allocating a chunk */
3665 	if (trans->allocating_chunk)
3666 		return -ENOSPC;
3667 	/*
3668 	 * Allocation of system chunks can not happen through this path, as we
3669 	 * could end up in a deadlock if we are allocating a data or metadata
3670 	 * chunk and there is another task modifying the chunk btree.
3671 	 *
3672 	 * This is because while we are holding the chunk mutex, we will attempt
3673 	 * to add the new chunk item to the chunk btree or update an existing
3674 	 * device item in the chunk btree, while the other task that is modifying
3675 	 * the chunk btree is attempting to COW an extent buffer while holding a
3676 	 * lock on it and on its parent - if the COW operation triggers a system
3677 	 * chunk allocation, then we can deadlock because we are holding the
3678 	 * chunk mutex and we may need to access that extent buffer or its parent
3679 	 * in order to add the chunk item or update a device item.
3680 	 *
3681 	 * Tasks that want to modify the chunk tree should reserve system space
3682 	 * before updating the chunk btree, by calling either
3683 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3684 	 * It's possible that after a task reserves the space, it still ends up
3685 	 * here - this happens in the cases described above at do_chunk_alloc().
3686 	 * The task will have to either retry or fail.
3687 	 */
3688 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3689 		return -ENOSPC;
3690 
3691 	space_info = btrfs_find_space_info(fs_info, flags);
3692 	ASSERT(space_info);
3693 
3694 	do {
3695 		spin_lock(&space_info->lock);
3696 		if (force < space_info->force_alloc)
3697 			force = space_info->force_alloc;
3698 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3699 		if (space_info->full) {
3700 			/* No more free physical space */
3701 			if (should_alloc)
3702 				ret = -ENOSPC;
3703 			else
3704 				ret = 0;
3705 			spin_unlock(&space_info->lock);
3706 			return ret;
3707 		} else if (!should_alloc) {
3708 			spin_unlock(&space_info->lock);
3709 			return 0;
3710 		} else if (space_info->chunk_alloc) {
3711 			/*
3712 			 * Someone is already allocating, so we need to block
3713 			 * until this someone is finished and then loop to
3714 			 * recheck if we should continue with our allocation
3715 			 * attempt.
3716 			 */
3717 			wait_for_alloc = true;
3718 			spin_unlock(&space_info->lock);
3719 			mutex_lock(&fs_info->chunk_mutex);
3720 			mutex_unlock(&fs_info->chunk_mutex);
3721 		} else {
3722 			/* Proceed with allocation */
3723 			space_info->chunk_alloc = 1;
3724 			wait_for_alloc = false;
3725 			spin_unlock(&space_info->lock);
3726 		}
3727 
3728 		cond_resched();
3729 	} while (wait_for_alloc);
3730 
3731 	mutex_lock(&fs_info->chunk_mutex);
3732 	trans->allocating_chunk = true;
3733 
3734 	/*
3735 	 * If we have mixed data/metadata chunks we want to make sure we keep
3736 	 * allocating mixed chunks instead of individual chunks.
3737 	 */
3738 	if (btrfs_mixed_space_info(space_info))
3739 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3740 
3741 	/*
3742 	 * if we're doing a data chunk, go ahead and make sure that
3743 	 * we keep a reasonable number of metadata chunks allocated in the
3744 	 * FS as well.
3745 	 */
3746 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3747 		fs_info->data_chunk_allocations++;
3748 		if (!(fs_info->data_chunk_allocations %
3749 		      fs_info->metadata_ratio))
3750 			force_metadata_allocation(fs_info);
3751 	}
3752 
3753 	ret = do_chunk_alloc(trans, flags);
3754 	trans->allocating_chunk = false;
3755 
3756 	spin_lock(&space_info->lock);
3757 	if (ret < 0) {
3758 		if (ret == -ENOSPC)
3759 			space_info->full = 1;
3760 		else
3761 			goto out;
3762 	} else {
3763 		ret = 1;
3764 		space_info->max_extent_size = 0;
3765 	}
3766 
3767 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3768 out:
3769 	space_info->chunk_alloc = 0;
3770 	spin_unlock(&space_info->lock);
3771 	mutex_unlock(&fs_info->chunk_mutex);
3772 
3773 	return ret;
3774 }
3775 
3776 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3777 {
3778 	u64 num_dev;
3779 
3780 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3781 	if (!num_dev)
3782 		num_dev = fs_info->fs_devices->rw_devices;
3783 
3784 	return num_dev;
3785 }
3786 
3787 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3788 				u64 bytes,
3789 				u64 type)
3790 {
3791 	struct btrfs_fs_info *fs_info = trans->fs_info;
3792 	struct btrfs_space_info *info;
3793 	u64 left;
3794 	int ret = 0;
3795 
3796 	/*
3797 	 * Needed because we can end up allocating a system chunk and for an
3798 	 * atomic and race free space reservation in the chunk block reserve.
3799 	 */
3800 	lockdep_assert_held(&fs_info->chunk_mutex);
3801 
3802 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3803 	spin_lock(&info->lock);
3804 	left = info->total_bytes - btrfs_space_info_used(info, true);
3805 	spin_unlock(&info->lock);
3806 
3807 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3808 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3809 			   left, bytes, type);
3810 		btrfs_dump_space_info(fs_info, info, 0, 0);
3811 	}
3812 
3813 	if (left < bytes) {
3814 		u64 flags = btrfs_system_alloc_profile(fs_info);
3815 		struct btrfs_block_group *bg;
3816 
3817 		/*
3818 		 * Ignore failure to create system chunk. We might end up not
3819 		 * needing it, as we might not need to COW all nodes/leafs from
3820 		 * the paths we visit in the chunk tree (they were already COWed
3821 		 * or created in the current transaction for example).
3822 		 */
3823 		bg = btrfs_create_chunk(trans, flags);
3824 		if (IS_ERR(bg)) {
3825 			ret = PTR_ERR(bg);
3826 		} else {
3827 			/*
3828 			 * If we fail to add the chunk item here, we end up
3829 			 * trying again at phase 2 of chunk allocation, at
3830 			 * btrfs_create_pending_block_groups(). So ignore
3831 			 * any error here. An ENOSPC here could happen, due to
3832 			 * the cases described at do_chunk_alloc() - the system
3833 			 * block group we just created was just turned into RO
3834 			 * mode by a scrub for example, or a running discard
3835 			 * temporarily removed its free space entries, etc.
3836 			 */
3837 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3838 		}
3839 	}
3840 
3841 	if (!ret) {
3842 		ret = btrfs_block_rsv_add(fs_info,
3843 					  &fs_info->chunk_block_rsv,
3844 					  bytes, BTRFS_RESERVE_NO_FLUSH);
3845 		if (!ret)
3846 			trans->chunk_bytes_reserved += bytes;
3847 	}
3848 }
3849 
3850 /*
3851  * Reserve space in the system space for allocating or removing a chunk.
3852  * The caller must be holding fs_info->chunk_mutex.
3853  */
3854 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3855 {
3856 	struct btrfs_fs_info *fs_info = trans->fs_info;
3857 	const u64 num_devs = get_profile_num_devs(fs_info, type);
3858 	u64 bytes;
3859 
3860 	/* num_devs device items to update and 1 chunk item to add or remove. */
3861 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3862 		btrfs_calc_insert_metadata_size(fs_info, 1);
3863 
3864 	reserve_chunk_space(trans, bytes, type);
3865 }
3866 
3867 /*
3868  * Reserve space in the system space, if needed, for doing a modification to the
3869  * chunk btree.
3870  *
3871  * @trans:		A transaction handle.
3872  * @is_item_insertion:	Indicate if the modification is for inserting a new item
3873  *			in the chunk btree or if it's for the deletion or update
3874  *			of an existing item.
3875  *
3876  * This is used in a context where we need to update the chunk btree outside
3877  * block group allocation and removal, to avoid a deadlock with a concurrent
3878  * task that is allocating a metadata or data block group and therefore needs to
3879  * update the chunk btree while holding the chunk mutex. After the update to the
3880  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3881  *
3882  */
3883 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3884 				  bool is_item_insertion)
3885 {
3886 	struct btrfs_fs_info *fs_info = trans->fs_info;
3887 	u64 bytes;
3888 
3889 	if (is_item_insertion)
3890 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3891 	else
3892 		bytes = btrfs_calc_metadata_size(fs_info, 1);
3893 
3894 	mutex_lock(&fs_info->chunk_mutex);
3895 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3896 	mutex_unlock(&fs_info->chunk_mutex);
3897 }
3898 
3899 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3900 {
3901 	struct btrfs_block_group *block_group;
3902 	u64 last = 0;
3903 
3904 	while (1) {
3905 		struct inode *inode;
3906 
3907 		block_group = btrfs_lookup_first_block_group(info, last);
3908 		while (block_group) {
3909 			btrfs_wait_block_group_cache_done(block_group);
3910 			spin_lock(&block_group->lock);
3911 			if (block_group->iref)
3912 				break;
3913 			spin_unlock(&block_group->lock);
3914 			block_group = btrfs_next_block_group(block_group);
3915 		}
3916 		if (!block_group) {
3917 			if (last == 0)
3918 				break;
3919 			last = 0;
3920 			continue;
3921 		}
3922 
3923 		inode = block_group->inode;
3924 		block_group->iref = 0;
3925 		block_group->inode = NULL;
3926 		spin_unlock(&block_group->lock);
3927 		ASSERT(block_group->io_ctl.inode == NULL);
3928 		iput(inode);
3929 		last = block_group->start + block_group->length;
3930 		btrfs_put_block_group(block_group);
3931 	}
3932 }
3933 
3934 /*
3935  * Must be called only after stopping all workers, since we could have block
3936  * group caching kthreads running, and therefore they could race with us if we
3937  * freed the block groups before stopping them.
3938  */
3939 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3940 {
3941 	struct btrfs_block_group *block_group;
3942 	struct btrfs_space_info *space_info;
3943 	struct btrfs_caching_control *caching_ctl;
3944 	struct rb_node *n;
3945 
3946 	spin_lock(&info->block_group_cache_lock);
3947 	while (!list_empty(&info->caching_block_groups)) {
3948 		caching_ctl = list_entry(info->caching_block_groups.next,
3949 					 struct btrfs_caching_control, list);
3950 		list_del(&caching_ctl->list);
3951 		btrfs_put_caching_control(caching_ctl);
3952 	}
3953 	spin_unlock(&info->block_group_cache_lock);
3954 
3955 	spin_lock(&info->unused_bgs_lock);
3956 	while (!list_empty(&info->unused_bgs)) {
3957 		block_group = list_first_entry(&info->unused_bgs,
3958 					       struct btrfs_block_group,
3959 					       bg_list);
3960 		list_del_init(&block_group->bg_list);
3961 		btrfs_put_block_group(block_group);
3962 	}
3963 
3964 	while (!list_empty(&info->reclaim_bgs)) {
3965 		block_group = list_first_entry(&info->reclaim_bgs,
3966 					       struct btrfs_block_group,
3967 					       bg_list);
3968 		list_del_init(&block_group->bg_list);
3969 		btrfs_put_block_group(block_group);
3970 	}
3971 	spin_unlock(&info->unused_bgs_lock);
3972 
3973 	spin_lock(&info->zone_active_bgs_lock);
3974 	while (!list_empty(&info->zone_active_bgs)) {
3975 		block_group = list_first_entry(&info->zone_active_bgs,
3976 					       struct btrfs_block_group,
3977 					       active_bg_list);
3978 		list_del_init(&block_group->active_bg_list);
3979 		btrfs_put_block_group(block_group);
3980 	}
3981 	spin_unlock(&info->zone_active_bgs_lock);
3982 
3983 	spin_lock(&info->block_group_cache_lock);
3984 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3985 		block_group = rb_entry(n, struct btrfs_block_group,
3986 				       cache_node);
3987 		rb_erase(&block_group->cache_node,
3988 			 &info->block_group_cache_tree);
3989 		RB_CLEAR_NODE(&block_group->cache_node);
3990 		spin_unlock(&info->block_group_cache_lock);
3991 
3992 		down_write(&block_group->space_info->groups_sem);
3993 		list_del(&block_group->list);
3994 		up_write(&block_group->space_info->groups_sem);
3995 
3996 		/*
3997 		 * We haven't cached this block group, which means we could
3998 		 * possibly have excluded extents on this block group.
3999 		 */
4000 		if (block_group->cached == BTRFS_CACHE_NO ||
4001 		    block_group->cached == BTRFS_CACHE_ERROR)
4002 			btrfs_free_excluded_extents(block_group);
4003 
4004 		btrfs_remove_free_space_cache(block_group);
4005 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4006 		ASSERT(list_empty(&block_group->dirty_list));
4007 		ASSERT(list_empty(&block_group->io_list));
4008 		ASSERT(list_empty(&block_group->bg_list));
4009 		ASSERT(refcount_read(&block_group->refs) == 1);
4010 		ASSERT(block_group->swap_extents == 0);
4011 		btrfs_put_block_group(block_group);
4012 
4013 		spin_lock(&info->block_group_cache_lock);
4014 	}
4015 	spin_unlock(&info->block_group_cache_lock);
4016 
4017 	btrfs_release_global_block_rsv(info);
4018 
4019 	while (!list_empty(&info->space_info)) {
4020 		space_info = list_entry(info->space_info.next,
4021 					struct btrfs_space_info,
4022 					list);
4023 
4024 		/*
4025 		 * Do not hide this behind enospc_debug, this is actually
4026 		 * important and indicates a real bug if this happens.
4027 		 */
4028 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4029 			    space_info->bytes_may_use > 0))
4030 			btrfs_dump_space_info(info, space_info, 0, 0);
4031 
4032 		/*
4033 		 * If there was a failure to cleanup a log tree, very likely due
4034 		 * to an IO failure on a writeback attempt of one or more of its
4035 		 * extent buffers, we could not do proper (and cheap) unaccounting
4036 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4037 		 * that case.
4038 		 */
4039 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4040 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4041 			if (WARN_ON(space_info->bytes_reserved > 0))
4042 				btrfs_dump_space_info(info, space_info, 0, 0);
4043 		}
4044 
4045 		WARN_ON(space_info->reclaim_size > 0);
4046 		list_del(&space_info->list);
4047 		btrfs_sysfs_remove_space_info(space_info);
4048 	}
4049 	return 0;
4050 }
4051 
4052 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4053 {
4054 	atomic_inc(&cache->frozen);
4055 }
4056 
4057 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4058 {
4059 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4060 	struct extent_map_tree *em_tree;
4061 	struct extent_map *em;
4062 	bool cleanup;
4063 
4064 	spin_lock(&block_group->lock);
4065 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4066 		   block_group->removed);
4067 	spin_unlock(&block_group->lock);
4068 
4069 	if (cleanup) {
4070 		em_tree = &fs_info->mapping_tree;
4071 		write_lock(&em_tree->lock);
4072 		em = lookup_extent_mapping(em_tree, block_group->start,
4073 					   1);
4074 		BUG_ON(!em); /* logic error, can't happen */
4075 		remove_extent_mapping(em_tree, em);
4076 		write_unlock(&em_tree->lock);
4077 
4078 		/* once for us and once for the tree */
4079 		free_extent_map(em);
4080 		free_extent_map(em);
4081 
4082 		/*
4083 		 * We may have left one free space entry and other possible
4084 		 * tasks trimming this block group have left 1 entry each one.
4085 		 * Free them if any.
4086 		 */
4087 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
4088 	}
4089 }
4090 
4091 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4092 {
4093 	bool ret = true;
4094 
4095 	spin_lock(&bg->lock);
4096 	if (bg->ro)
4097 		ret = false;
4098 	else
4099 		bg->swap_extents++;
4100 	spin_unlock(&bg->lock);
4101 
4102 	return ret;
4103 }
4104 
4105 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4106 {
4107 	spin_lock(&bg->lock);
4108 	ASSERT(!bg->ro);
4109 	ASSERT(bg->swap_extents >= amount);
4110 	bg->swap_extents -= amount;
4111 	spin_unlock(&bg->lock);
4112 }
4113