1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/list_sort.h> 4 #include "misc.h" 5 #include "ctree.h" 6 #include "block-group.h" 7 #include "space-info.h" 8 #include "disk-io.h" 9 #include "free-space-cache.h" 10 #include "free-space-tree.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 #include "discard.h" 18 #include "raid56.h" 19 #include "zoned.h" 20 21 /* 22 * Return target flags in extended format or 0 if restripe for this chunk_type 23 * is not in progress 24 * 25 * Should be called with balance_lock held 26 */ 27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 28 { 29 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 30 u64 target = 0; 31 32 if (!bctl) 33 return 0; 34 35 if (flags & BTRFS_BLOCK_GROUP_DATA && 36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 44 } 45 46 return target; 47 } 48 49 /* 50 * @flags: available profiles in extended format (see ctree.h) 51 * 52 * Return reduced profile in chunk format. If profile changing is in progress 53 * (either running or paused) picks the target profile (if it's already 54 * available), otherwise falls back to plain reducing. 55 */ 56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 57 { 58 u64 num_devices = fs_info->fs_devices->rw_devices; 59 u64 target; 60 u64 raid_type; 61 u64 allowed = 0; 62 63 /* 64 * See if restripe for this chunk_type is in progress, if so try to 65 * reduce to the target profile 66 */ 67 spin_lock(&fs_info->balance_lock); 68 target = get_restripe_target(fs_info, flags); 69 if (target) { 70 spin_unlock(&fs_info->balance_lock); 71 return extended_to_chunk(target); 72 } 73 spin_unlock(&fs_info->balance_lock); 74 75 /* First, mask out the RAID levels which aren't possible */ 76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 77 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 78 allowed |= btrfs_raid_array[raid_type].bg_flag; 79 } 80 allowed &= flags; 81 82 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 83 allowed = BTRFS_BLOCK_GROUP_RAID6; 84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 85 allowed = BTRFS_BLOCK_GROUP_RAID5; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 87 allowed = BTRFS_BLOCK_GROUP_RAID10; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 89 allowed = BTRFS_BLOCK_GROUP_RAID1; 90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 91 allowed = BTRFS_BLOCK_GROUP_RAID0; 92 93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 94 95 return extended_to_chunk(flags | allowed); 96 } 97 98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 99 { 100 unsigned seq; 101 u64 flags; 102 103 do { 104 flags = orig_flags; 105 seq = read_seqbegin(&fs_info->profiles_lock); 106 107 if (flags & BTRFS_BLOCK_GROUP_DATA) 108 flags |= fs_info->avail_data_alloc_bits; 109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 110 flags |= fs_info->avail_system_alloc_bits; 111 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 112 flags |= fs_info->avail_metadata_alloc_bits; 113 } while (read_seqretry(&fs_info->profiles_lock, seq)); 114 115 return btrfs_reduce_alloc_profile(fs_info, flags); 116 } 117 118 void btrfs_get_block_group(struct btrfs_block_group *cache) 119 { 120 refcount_inc(&cache->refs); 121 } 122 123 void btrfs_put_block_group(struct btrfs_block_group *cache) 124 { 125 if (refcount_dec_and_test(&cache->refs)) { 126 WARN_ON(cache->pinned > 0); 127 /* 128 * If there was a failure to cleanup a log tree, very likely due 129 * to an IO failure on a writeback attempt of one or more of its 130 * extent buffers, we could not do proper (and cheap) unaccounting 131 * of their reserved space, so don't warn on reserved > 0 in that 132 * case. 133 */ 134 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 135 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 136 WARN_ON(cache->reserved > 0); 137 138 /* 139 * A block_group shouldn't be on the discard_list anymore. 140 * Remove the block_group from the discard_list to prevent us 141 * from causing a panic due to NULL pointer dereference. 142 */ 143 if (WARN_ON(!list_empty(&cache->discard_list))) 144 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 145 cache); 146 147 /* 148 * If not empty, someone is still holding mutex of 149 * full_stripe_lock, which can only be released by caller. 150 * And it will definitely cause use-after-free when caller 151 * tries to release full stripe lock. 152 * 153 * No better way to resolve, but only to warn. 154 */ 155 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 156 kfree(cache->free_space_ctl); 157 kfree(cache->physical_map); 158 kfree(cache); 159 } 160 } 161 162 /* 163 * This adds the block group to the fs_info rb tree for the block group cache 164 */ 165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 166 struct btrfs_block_group *block_group) 167 { 168 struct rb_node **p; 169 struct rb_node *parent = NULL; 170 struct btrfs_block_group *cache; 171 bool leftmost = true; 172 173 ASSERT(block_group->length != 0); 174 175 write_lock(&info->block_group_cache_lock); 176 p = &info->block_group_cache_tree.rb_root.rb_node; 177 178 while (*p) { 179 parent = *p; 180 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 181 if (block_group->start < cache->start) { 182 p = &(*p)->rb_left; 183 } else if (block_group->start > cache->start) { 184 p = &(*p)->rb_right; 185 leftmost = false; 186 } else { 187 write_unlock(&info->block_group_cache_lock); 188 return -EEXIST; 189 } 190 } 191 192 rb_link_node(&block_group->cache_node, parent, p); 193 rb_insert_color_cached(&block_group->cache_node, 194 &info->block_group_cache_tree, leftmost); 195 196 write_unlock(&info->block_group_cache_lock); 197 198 return 0; 199 } 200 201 /* 202 * This will return the block group at or after bytenr if contains is 0, else 203 * it will return the block group that contains the bytenr 204 */ 205 static struct btrfs_block_group *block_group_cache_tree_search( 206 struct btrfs_fs_info *info, u64 bytenr, int contains) 207 { 208 struct btrfs_block_group *cache, *ret = NULL; 209 struct rb_node *n; 210 u64 end, start; 211 212 read_lock(&info->block_group_cache_lock); 213 n = info->block_group_cache_tree.rb_root.rb_node; 214 215 while (n) { 216 cache = rb_entry(n, struct btrfs_block_group, cache_node); 217 end = cache->start + cache->length - 1; 218 start = cache->start; 219 220 if (bytenr < start) { 221 if (!contains && (!ret || start < ret->start)) 222 ret = cache; 223 n = n->rb_left; 224 } else if (bytenr > start) { 225 if (contains && bytenr <= end) { 226 ret = cache; 227 break; 228 } 229 n = n->rb_right; 230 } else { 231 ret = cache; 232 break; 233 } 234 } 235 if (ret) 236 btrfs_get_block_group(ret); 237 read_unlock(&info->block_group_cache_lock); 238 239 return ret; 240 } 241 242 /* 243 * Return the block group that starts at or after bytenr 244 */ 245 struct btrfs_block_group *btrfs_lookup_first_block_group( 246 struct btrfs_fs_info *info, u64 bytenr) 247 { 248 return block_group_cache_tree_search(info, bytenr, 0); 249 } 250 251 /* 252 * Return the block group that contains the given bytenr 253 */ 254 struct btrfs_block_group *btrfs_lookup_block_group( 255 struct btrfs_fs_info *info, u64 bytenr) 256 { 257 return block_group_cache_tree_search(info, bytenr, 1); 258 } 259 260 struct btrfs_block_group *btrfs_next_block_group( 261 struct btrfs_block_group *cache) 262 { 263 struct btrfs_fs_info *fs_info = cache->fs_info; 264 struct rb_node *node; 265 266 read_lock(&fs_info->block_group_cache_lock); 267 268 /* If our block group was removed, we need a full search. */ 269 if (RB_EMPTY_NODE(&cache->cache_node)) { 270 const u64 next_bytenr = cache->start + cache->length; 271 272 read_unlock(&fs_info->block_group_cache_lock); 273 btrfs_put_block_group(cache); 274 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 275 } 276 node = rb_next(&cache->cache_node); 277 btrfs_put_block_group(cache); 278 if (node) { 279 cache = rb_entry(node, struct btrfs_block_group, cache_node); 280 btrfs_get_block_group(cache); 281 } else 282 cache = NULL; 283 read_unlock(&fs_info->block_group_cache_lock); 284 return cache; 285 } 286 287 /** 288 * Check if we can do a NOCOW write for a given extent. 289 * 290 * @fs_info: The filesystem information object. 291 * @bytenr: Logical start address of the extent. 292 * 293 * Check if we can do a NOCOW write for the given extent, and increments the 294 * number of NOCOW writers in the block group that contains the extent, as long 295 * as the block group exists and it's currently not in read-only mode. 296 * 297 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 298 * is responsible for calling btrfs_dec_nocow_writers() later. 299 * 300 * Or NULL if we can not do a NOCOW write 301 */ 302 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 303 u64 bytenr) 304 { 305 struct btrfs_block_group *bg; 306 bool can_nocow = true; 307 308 bg = btrfs_lookup_block_group(fs_info, bytenr); 309 if (!bg) 310 return NULL; 311 312 spin_lock(&bg->lock); 313 if (bg->ro) 314 can_nocow = false; 315 else 316 atomic_inc(&bg->nocow_writers); 317 spin_unlock(&bg->lock); 318 319 if (!can_nocow) { 320 btrfs_put_block_group(bg); 321 return NULL; 322 } 323 324 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 325 return bg; 326 } 327 328 /** 329 * Decrement the number of NOCOW writers in a block group. 330 * 331 * @bg: The block group. 332 * 333 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 334 * and on the block group returned by that call. Typically this is called after 335 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 336 * relocation. 337 * 338 * After this call, the caller should not use the block group anymore. It it wants 339 * to use it, then it should get a reference on it before calling this function. 340 */ 341 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 342 { 343 if (atomic_dec_and_test(&bg->nocow_writers)) 344 wake_up_var(&bg->nocow_writers); 345 346 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 347 btrfs_put_block_group(bg); 348 } 349 350 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 351 { 352 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 353 } 354 355 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 356 const u64 start) 357 { 358 struct btrfs_block_group *bg; 359 360 bg = btrfs_lookup_block_group(fs_info, start); 361 ASSERT(bg); 362 if (atomic_dec_and_test(&bg->reservations)) 363 wake_up_var(&bg->reservations); 364 btrfs_put_block_group(bg); 365 } 366 367 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 368 { 369 struct btrfs_space_info *space_info = bg->space_info; 370 371 ASSERT(bg->ro); 372 373 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 374 return; 375 376 /* 377 * Our block group is read only but before we set it to read only, 378 * some task might have had allocated an extent from it already, but it 379 * has not yet created a respective ordered extent (and added it to a 380 * root's list of ordered extents). 381 * Therefore wait for any task currently allocating extents, since the 382 * block group's reservations counter is incremented while a read lock 383 * on the groups' semaphore is held and decremented after releasing 384 * the read access on that semaphore and creating the ordered extent. 385 */ 386 down_write(&space_info->groups_sem); 387 up_write(&space_info->groups_sem); 388 389 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 390 } 391 392 struct btrfs_caching_control *btrfs_get_caching_control( 393 struct btrfs_block_group *cache) 394 { 395 struct btrfs_caching_control *ctl; 396 397 spin_lock(&cache->lock); 398 if (!cache->caching_ctl) { 399 spin_unlock(&cache->lock); 400 return NULL; 401 } 402 403 ctl = cache->caching_ctl; 404 refcount_inc(&ctl->count); 405 spin_unlock(&cache->lock); 406 return ctl; 407 } 408 409 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 410 { 411 if (refcount_dec_and_test(&ctl->count)) 412 kfree(ctl); 413 } 414 415 /* 416 * When we wait for progress in the block group caching, its because our 417 * allocation attempt failed at least once. So, we must sleep and let some 418 * progress happen before we try again. 419 * 420 * This function will sleep at least once waiting for new free space to show 421 * up, and then it will check the block group free space numbers for our min 422 * num_bytes. Another option is to have it go ahead and look in the rbtree for 423 * a free extent of a given size, but this is a good start. 424 * 425 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 426 * any of the information in this block group. 427 */ 428 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 429 u64 num_bytes) 430 { 431 struct btrfs_caching_control *caching_ctl; 432 433 caching_ctl = btrfs_get_caching_control(cache); 434 if (!caching_ctl) 435 return; 436 437 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 438 (cache->free_space_ctl->free_space >= num_bytes)); 439 440 btrfs_put_caching_control(caching_ctl); 441 } 442 443 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 444 { 445 struct btrfs_caching_control *caching_ctl; 446 int ret = 0; 447 448 caching_ctl = btrfs_get_caching_control(cache); 449 if (!caching_ctl) 450 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 451 452 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 453 if (cache->cached == BTRFS_CACHE_ERROR) 454 ret = -EIO; 455 btrfs_put_caching_control(caching_ctl); 456 return ret; 457 } 458 459 static bool space_cache_v1_done(struct btrfs_block_group *cache) 460 { 461 bool ret; 462 463 spin_lock(&cache->lock); 464 ret = cache->cached != BTRFS_CACHE_FAST; 465 spin_unlock(&cache->lock); 466 467 return ret; 468 } 469 470 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache, 471 struct btrfs_caching_control *caching_ctl) 472 { 473 wait_event(caching_ctl->wait, space_cache_v1_done(cache)); 474 } 475 476 #ifdef CONFIG_BTRFS_DEBUG 477 static void fragment_free_space(struct btrfs_block_group *block_group) 478 { 479 struct btrfs_fs_info *fs_info = block_group->fs_info; 480 u64 start = block_group->start; 481 u64 len = block_group->length; 482 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 483 fs_info->nodesize : fs_info->sectorsize; 484 u64 step = chunk << 1; 485 486 while (len > chunk) { 487 btrfs_remove_free_space(block_group, start, chunk); 488 start += step; 489 if (len < step) 490 len = 0; 491 else 492 len -= step; 493 } 494 } 495 #endif 496 497 /* 498 * This is only called by btrfs_cache_block_group, since we could have freed 499 * extents we need to check the pinned_extents for any extents that can't be 500 * used yet since their free space will be released as soon as the transaction 501 * commits. 502 */ 503 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 504 { 505 struct btrfs_fs_info *info = block_group->fs_info; 506 u64 extent_start, extent_end, size, total_added = 0; 507 int ret; 508 509 while (start < end) { 510 ret = find_first_extent_bit(&info->excluded_extents, start, 511 &extent_start, &extent_end, 512 EXTENT_DIRTY | EXTENT_UPTODATE, 513 NULL); 514 if (ret) 515 break; 516 517 if (extent_start <= start) { 518 start = extent_end + 1; 519 } else if (extent_start > start && extent_start < end) { 520 size = extent_start - start; 521 total_added += size; 522 ret = btrfs_add_free_space_async_trimmed(block_group, 523 start, size); 524 BUG_ON(ret); /* -ENOMEM or logic error */ 525 start = extent_end + 1; 526 } else { 527 break; 528 } 529 } 530 531 if (start < end) { 532 size = end - start; 533 total_added += size; 534 ret = btrfs_add_free_space_async_trimmed(block_group, start, 535 size); 536 BUG_ON(ret); /* -ENOMEM or logic error */ 537 } 538 539 return total_added; 540 } 541 542 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 543 { 544 struct btrfs_block_group *block_group = caching_ctl->block_group; 545 struct btrfs_fs_info *fs_info = block_group->fs_info; 546 struct btrfs_root *extent_root; 547 struct btrfs_path *path; 548 struct extent_buffer *leaf; 549 struct btrfs_key key; 550 u64 total_found = 0; 551 u64 last = 0; 552 u32 nritems; 553 int ret; 554 bool wakeup = true; 555 556 path = btrfs_alloc_path(); 557 if (!path) 558 return -ENOMEM; 559 560 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 561 extent_root = btrfs_extent_root(fs_info, last); 562 563 #ifdef CONFIG_BTRFS_DEBUG 564 /* 565 * If we're fragmenting we don't want to make anybody think we can 566 * allocate from this block group until we've had a chance to fragment 567 * the free space. 568 */ 569 if (btrfs_should_fragment_free_space(block_group)) 570 wakeup = false; 571 #endif 572 /* 573 * We don't want to deadlock with somebody trying to allocate a new 574 * extent for the extent root while also trying to search the extent 575 * root to add free space. So we skip locking and search the commit 576 * root, since its read-only 577 */ 578 path->skip_locking = 1; 579 path->search_commit_root = 1; 580 path->reada = READA_FORWARD; 581 582 key.objectid = last; 583 key.offset = 0; 584 key.type = BTRFS_EXTENT_ITEM_KEY; 585 586 next: 587 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 588 if (ret < 0) 589 goto out; 590 591 leaf = path->nodes[0]; 592 nritems = btrfs_header_nritems(leaf); 593 594 while (1) { 595 if (btrfs_fs_closing(fs_info) > 1) { 596 last = (u64)-1; 597 break; 598 } 599 600 if (path->slots[0] < nritems) { 601 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 602 } else { 603 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 604 if (ret) 605 break; 606 607 if (need_resched() || 608 rwsem_is_contended(&fs_info->commit_root_sem)) { 609 if (wakeup) 610 caching_ctl->progress = last; 611 btrfs_release_path(path); 612 up_read(&fs_info->commit_root_sem); 613 mutex_unlock(&caching_ctl->mutex); 614 cond_resched(); 615 mutex_lock(&caching_ctl->mutex); 616 down_read(&fs_info->commit_root_sem); 617 goto next; 618 } 619 620 ret = btrfs_next_leaf(extent_root, path); 621 if (ret < 0) 622 goto out; 623 if (ret) 624 break; 625 leaf = path->nodes[0]; 626 nritems = btrfs_header_nritems(leaf); 627 continue; 628 } 629 630 if (key.objectid < last) { 631 key.objectid = last; 632 key.offset = 0; 633 key.type = BTRFS_EXTENT_ITEM_KEY; 634 635 if (wakeup) 636 caching_ctl->progress = last; 637 btrfs_release_path(path); 638 goto next; 639 } 640 641 if (key.objectid < block_group->start) { 642 path->slots[0]++; 643 continue; 644 } 645 646 if (key.objectid >= block_group->start + block_group->length) 647 break; 648 649 if (key.type == BTRFS_EXTENT_ITEM_KEY || 650 key.type == BTRFS_METADATA_ITEM_KEY) { 651 total_found += add_new_free_space(block_group, last, 652 key.objectid); 653 if (key.type == BTRFS_METADATA_ITEM_KEY) 654 last = key.objectid + 655 fs_info->nodesize; 656 else 657 last = key.objectid + key.offset; 658 659 if (total_found > CACHING_CTL_WAKE_UP) { 660 total_found = 0; 661 if (wakeup) 662 wake_up(&caching_ctl->wait); 663 } 664 } 665 path->slots[0]++; 666 } 667 ret = 0; 668 669 total_found += add_new_free_space(block_group, last, 670 block_group->start + block_group->length); 671 caching_ctl->progress = (u64)-1; 672 673 out: 674 btrfs_free_path(path); 675 return ret; 676 } 677 678 static noinline void caching_thread(struct btrfs_work *work) 679 { 680 struct btrfs_block_group *block_group; 681 struct btrfs_fs_info *fs_info; 682 struct btrfs_caching_control *caching_ctl; 683 int ret; 684 685 caching_ctl = container_of(work, struct btrfs_caching_control, work); 686 block_group = caching_ctl->block_group; 687 fs_info = block_group->fs_info; 688 689 mutex_lock(&caching_ctl->mutex); 690 down_read(&fs_info->commit_root_sem); 691 692 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 693 ret = load_free_space_cache(block_group); 694 if (ret == 1) { 695 ret = 0; 696 goto done; 697 } 698 699 /* 700 * We failed to load the space cache, set ourselves to 701 * CACHE_STARTED and carry on. 702 */ 703 spin_lock(&block_group->lock); 704 block_group->cached = BTRFS_CACHE_STARTED; 705 spin_unlock(&block_group->lock); 706 wake_up(&caching_ctl->wait); 707 } 708 709 /* 710 * If we are in the transaction that populated the free space tree we 711 * can't actually cache from the free space tree as our commit root and 712 * real root are the same, so we could change the contents of the blocks 713 * while caching. Instead do the slow caching in this case, and after 714 * the transaction has committed we will be safe. 715 */ 716 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 717 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 718 ret = load_free_space_tree(caching_ctl); 719 else 720 ret = load_extent_tree_free(caching_ctl); 721 done: 722 spin_lock(&block_group->lock); 723 block_group->caching_ctl = NULL; 724 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 725 spin_unlock(&block_group->lock); 726 727 #ifdef CONFIG_BTRFS_DEBUG 728 if (btrfs_should_fragment_free_space(block_group)) { 729 u64 bytes_used; 730 731 spin_lock(&block_group->space_info->lock); 732 spin_lock(&block_group->lock); 733 bytes_used = block_group->length - block_group->used; 734 block_group->space_info->bytes_used += bytes_used >> 1; 735 spin_unlock(&block_group->lock); 736 spin_unlock(&block_group->space_info->lock); 737 fragment_free_space(block_group); 738 } 739 #endif 740 741 caching_ctl->progress = (u64)-1; 742 743 up_read(&fs_info->commit_root_sem); 744 btrfs_free_excluded_extents(block_group); 745 mutex_unlock(&caching_ctl->mutex); 746 747 wake_up(&caching_ctl->wait); 748 749 btrfs_put_caching_control(caching_ctl); 750 btrfs_put_block_group(block_group); 751 } 752 753 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 754 { 755 DEFINE_WAIT(wait); 756 struct btrfs_fs_info *fs_info = cache->fs_info; 757 struct btrfs_caching_control *caching_ctl = NULL; 758 int ret = 0; 759 760 /* Allocator for zoned filesystems does not use the cache at all */ 761 if (btrfs_is_zoned(fs_info)) 762 return 0; 763 764 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 765 if (!caching_ctl) 766 return -ENOMEM; 767 768 INIT_LIST_HEAD(&caching_ctl->list); 769 mutex_init(&caching_ctl->mutex); 770 init_waitqueue_head(&caching_ctl->wait); 771 caching_ctl->block_group = cache; 772 caching_ctl->progress = cache->start; 773 refcount_set(&caching_ctl->count, 2); 774 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 775 776 spin_lock(&cache->lock); 777 if (cache->cached != BTRFS_CACHE_NO) { 778 kfree(caching_ctl); 779 780 caching_ctl = cache->caching_ctl; 781 if (caching_ctl) 782 refcount_inc(&caching_ctl->count); 783 spin_unlock(&cache->lock); 784 goto out; 785 } 786 WARN_ON(cache->caching_ctl); 787 cache->caching_ctl = caching_ctl; 788 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 789 cache->cached = BTRFS_CACHE_FAST; 790 else 791 cache->cached = BTRFS_CACHE_STARTED; 792 cache->has_caching_ctl = 1; 793 spin_unlock(&cache->lock); 794 795 write_lock(&fs_info->block_group_cache_lock); 796 refcount_inc(&caching_ctl->count); 797 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 798 write_unlock(&fs_info->block_group_cache_lock); 799 800 btrfs_get_block_group(cache); 801 802 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 803 out: 804 if (load_cache_only && caching_ctl) 805 btrfs_wait_space_cache_v1_finished(cache, caching_ctl); 806 if (caching_ctl) 807 btrfs_put_caching_control(caching_ctl); 808 809 return ret; 810 } 811 812 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 813 { 814 u64 extra_flags = chunk_to_extended(flags) & 815 BTRFS_EXTENDED_PROFILE_MASK; 816 817 write_seqlock(&fs_info->profiles_lock); 818 if (flags & BTRFS_BLOCK_GROUP_DATA) 819 fs_info->avail_data_alloc_bits &= ~extra_flags; 820 if (flags & BTRFS_BLOCK_GROUP_METADATA) 821 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 822 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 823 fs_info->avail_system_alloc_bits &= ~extra_flags; 824 write_sequnlock(&fs_info->profiles_lock); 825 } 826 827 /* 828 * Clear incompat bits for the following feature(s): 829 * 830 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 831 * in the whole filesystem 832 * 833 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 834 */ 835 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 836 { 837 bool found_raid56 = false; 838 bool found_raid1c34 = false; 839 840 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 841 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 842 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 843 struct list_head *head = &fs_info->space_info; 844 struct btrfs_space_info *sinfo; 845 846 list_for_each_entry_rcu(sinfo, head, list) { 847 down_read(&sinfo->groups_sem); 848 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 849 found_raid56 = true; 850 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 851 found_raid56 = true; 852 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 853 found_raid1c34 = true; 854 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 855 found_raid1c34 = true; 856 up_read(&sinfo->groups_sem); 857 } 858 if (!found_raid56) 859 btrfs_clear_fs_incompat(fs_info, RAID56); 860 if (!found_raid1c34) 861 btrfs_clear_fs_incompat(fs_info, RAID1C34); 862 } 863 } 864 865 static int remove_block_group_item(struct btrfs_trans_handle *trans, 866 struct btrfs_path *path, 867 struct btrfs_block_group *block_group) 868 { 869 struct btrfs_fs_info *fs_info = trans->fs_info; 870 struct btrfs_root *root; 871 struct btrfs_key key; 872 int ret; 873 874 root = btrfs_block_group_root(fs_info); 875 key.objectid = block_group->start; 876 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 877 key.offset = block_group->length; 878 879 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 880 if (ret > 0) 881 ret = -ENOENT; 882 if (ret < 0) 883 return ret; 884 885 ret = btrfs_del_item(trans, root, path); 886 return ret; 887 } 888 889 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 890 u64 group_start, struct extent_map *em) 891 { 892 struct btrfs_fs_info *fs_info = trans->fs_info; 893 struct btrfs_path *path; 894 struct btrfs_block_group *block_group; 895 struct btrfs_free_cluster *cluster; 896 struct inode *inode; 897 struct kobject *kobj = NULL; 898 int ret; 899 int index; 900 int factor; 901 struct btrfs_caching_control *caching_ctl = NULL; 902 bool remove_em; 903 bool remove_rsv = false; 904 905 block_group = btrfs_lookup_block_group(fs_info, group_start); 906 BUG_ON(!block_group); 907 BUG_ON(!block_group->ro); 908 909 trace_btrfs_remove_block_group(block_group); 910 /* 911 * Free the reserved super bytes from this block group before 912 * remove it. 913 */ 914 btrfs_free_excluded_extents(block_group); 915 btrfs_free_ref_tree_range(fs_info, block_group->start, 916 block_group->length); 917 918 index = btrfs_bg_flags_to_raid_index(block_group->flags); 919 factor = btrfs_bg_type_to_factor(block_group->flags); 920 921 /* make sure this block group isn't part of an allocation cluster */ 922 cluster = &fs_info->data_alloc_cluster; 923 spin_lock(&cluster->refill_lock); 924 btrfs_return_cluster_to_free_space(block_group, cluster); 925 spin_unlock(&cluster->refill_lock); 926 927 /* 928 * make sure this block group isn't part of a metadata 929 * allocation cluster 930 */ 931 cluster = &fs_info->meta_alloc_cluster; 932 spin_lock(&cluster->refill_lock); 933 btrfs_return_cluster_to_free_space(block_group, cluster); 934 spin_unlock(&cluster->refill_lock); 935 936 btrfs_clear_treelog_bg(block_group); 937 btrfs_clear_data_reloc_bg(block_group); 938 939 path = btrfs_alloc_path(); 940 if (!path) { 941 ret = -ENOMEM; 942 goto out; 943 } 944 945 /* 946 * get the inode first so any iput calls done for the io_list 947 * aren't the final iput (no unlinks allowed now) 948 */ 949 inode = lookup_free_space_inode(block_group, path); 950 951 mutex_lock(&trans->transaction->cache_write_mutex); 952 /* 953 * Make sure our free space cache IO is done before removing the 954 * free space inode 955 */ 956 spin_lock(&trans->transaction->dirty_bgs_lock); 957 if (!list_empty(&block_group->io_list)) { 958 list_del_init(&block_group->io_list); 959 960 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 961 962 spin_unlock(&trans->transaction->dirty_bgs_lock); 963 btrfs_wait_cache_io(trans, block_group, path); 964 btrfs_put_block_group(block_group); 965 spin_lock(&trans->transaction->dirty_bgs_lock); 966 } 967 968 if (!list_empty(&block_group->dirty_list)) { 969 list_del_init(&block_group->dirty_list); 970 remove_rsv = true; 971 btrfs_put_block_group(block_group); 972 } 973 spin_unlock(&trans->transaction->dirty_bgs_lock); 974 mutex_unlock(&trans->transaction->cache_write_mutex); 975 976 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 977 if (ret) 978 goto out; 979 980 write_lock(&fs_info->block_group_cache_lock); 981 rb_erase_cached(&block_group->cache_node, 982 &fs_info->block_group_cache_tree); 983 RB_CLEAR_NODE(&block_group->cache_node); 984 985 /* Once for the block groups rbtree */ 986 btrfs_put_block_group(block_group); 987 988 write_unlock(&fs_info->block_group_cache_lock); 989 990 down_write(&block_group->space_info->groups_sem); 991 /* 992 * we must use list_del_init so people can check to see if they 993 * are still on the list after taking the semaphore 994 */ 995 list_del_init(&block_group->list); 996 if (list_empty(&block_group->space_info->block_groups[index])) { 997 kobj = block_group->space_info->block_group_kobjs[index]; 998 block_group->space_info->block_group_kobjs[index] = NULL; 999 clear_avail_alloc_bits(fs_info, block_group->flags); 1000 } 1001 up_write(&block_group->space_info->groups_sem); 1002 clear_incompat_bg_bits(fs_info, block_group->flags); 1003 if (kobj) { 1004 kobject_del(kobj); 1005 kobject_put(kobj); 1006 } 1007 1008 if (block_group->has_caching_ctl) 1009 caching_ctl = btrfs_get_caching_control(block_group); 1010 if (block_group->cached == BTRFS_CACHE_STARTED) 1011 btrfs_wait_block_group_cache_done(block_group); 1012 if (block_group->has_caching_ctl) { 1013 write_lock(&fs_info->block_group_cache_lock); 1014 if (!caching_ctl) { 1015 struct btrfs_caching_control *ctl; 1016 1017 list_for_each_entry(ctl, 1018 &fs_info->caching_block_groups, list) 1019 if (ctl->block_group == block_group) { 1020 caching_ctl = ctl; 1021 refcount_inc(&caching_ctl->count); 1022 break; 1023 } 1024 } 1025 if (caching_ctl) 1026 list_del_init(&caching_ctl->list); 1027 write_unlock(&fs_info->block_group_cache_lock); 1028 if (caching_ctl) { 1029 /* Once for the caching bgs list and once for us. */ 1030 btrfs_put_caching_control(caching_ctl); 1031 btrfs_put_caching_control(caching_ctl); 1032 } 1033 } 1034 1035 spin_lock(&trans->transaction->dirty_bgs_lock); 1036 WARN_ON(!list_empty(&block_group->dirty_list)); 1037 WARN_ON(!list_empty(&block_group->io_list)); 1038 spin_unlock(&trans->transaction->dirty_bgs_lock); 1039 1040 btrfs_remove_free_space_cache(block_group); 1041 1042 spin_lock(&block_group->space_info->lock); 1043 list_del_init(&block_group->ro_list); 1044 1045 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1046 WARN_ON(block_group->space_info->total_bytes 1047 < block_group->length); 1048 WARN_ON(block_group->space_info->bytes_readonly 1049 < block_group->length - block_group->zone_unusable); 1050 WARN_ON(block_group->space_info->bytes_zone_unusable 1051 < block_group->zone_unusable); 1052 WARN_ON(block_group->space_info->disk_total 1053 < block_group->length * factor); 1054 WARN_ON(block_group->zone_is_active && 1055 block_group->space_info->active_total_bytes 1056 < block_group->length); 1057 } 1058 block_group->space_info->total_bytes -= block_group->length; 1059 if (block_group->zone_is_active) 1060 block_group->space_info->active_total_bytes -= block_group->length; 1061 block_group->space_info->bytes_readonly -= 1062 (block_group->length - block_group->zone_unusable); 1063 block_group->space_info->bytes_zone_unusable -= 1064 block_group->zone_unusable; 1065 block_group->space_info->disk_total -= block_group->length * factor; 1066 1067 spin_unlock(&block_group->space_info->lock); 1068 1069 /* 1070 * Remove the free space for the block group from the free space tree 1071 * and the block group's item from the extent tree before marking the 1072 * block group as removed. This is to prevent races with tasks that 1073 * freeze and unfreeze a block group, this task and another task 1074 * allocating a new block group - the unfreeze task ends up removing 1075 * the block group's extent map before the task calling this function 1076 * deletes the block group item from the extent tree, allowing for 1077 * another task to attempt to create another block group with the same 1078 * item key (and failing with -EEXIST and a transaction abort). 1079 */ 1080 ret = remove_block_group_free_space(trans, block_group); 1081 if (ret) 1082 goto out; 1083 1084 ret = remove_block_group_item(trans, path, block_group); 1085 if (ret < 0) 1086 goto out; 1087 1088 spin_lock(&block_group->lock); 1089 block_group->removed = 1; 1090 /* 1091 * At this point trimming or scrub can't start on this block group, 1092 * because we removed the block group from the rbtree 1093 * fs_info->block_group_cache_tree so no one can't find it anymore and 1094 * even if someone already got this block group before we removed it 1095 * from the rbtree, they have already incremented block_group->frozen - 1096 * if they didn't, for the trimming case they won't find any free space 1097 * entries because we already removed them all when we called 1098 * btrfs_remove_free_space_cache(). 1099 * 1100 * And we must not remove the extent map from the fs_info->mapping_tree 1101 * to prevent the same logical address range and physical device space 1102 * ranges from being reused for a new block group. This is needed to 1103 * avoid races with trimming and scrub. 1104 * 1105 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1106 * completely transactionless, so while it is trimming a range the 1107 * currently running transaction might finish and a new one start, 1108 * allowing for new block groups to be created that can reuse the same 1109 * physical device locations unless we take this special care. 1110 * 1111 * There may also be an implicit trim operation if the file system 1112 * is mounted with -odiscard. The same protections must remain 1113 * in place until the extents have been discarded completely when 1114 * the transaction commit has completed. 1115 */ 1116 remove_em = (atomic_read(&block_group->frozen) == 0); 1117 spin_unlock(&block_group->lock); 1118 1119 if (remove_em) { 1120 struct extent_map_tree *em_tree; 1121 1122 em_tree = &fs_info->mapping_tree; 1123 write_lock(&em_tree->lock); 1124 remove_extent_mapping(em_tree, em); 1125 write_unlock(&em_tree->lock); 1126 /* once for the tree */ 1127 free_extent_map(em); 1128 } 1129 1130 out: 1131 /* Once for the lookup reference */ 1132 btrfs_put_block_group(block_group); 1133 if (remove_rsv) 1134 btrfs_delayed_refs_rsv_release(fs_info, 1); 1135 btrfs_free_path(path); 1136 return ret; 1137 } 1138 1139 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1140 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1141 { 1142 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1143 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1144 struct extent_map *em; 1145 struct map_lookup *map; 1146 unsigned int num_items; 1147 1148 read_lock(&em_tree->lock); 1149 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1150 read_unlock(&em_tree->lock); 1151 ASSERT(em && em->start == chunk_offset); 1152 1153 /* 1154 * We need to reserve 3 + N units from the metadata space info in order 1155 * to remove a block group (done at btrfs_remove_chunk() and at 1156 * btrfs_remove_block_group()), which are used for: 1157 * 1158 * 1 unit for adding the free space inode's orphan (located in the tree 1159 * of tree roots). 1160 * 1 unit for deleting the block group item (located in the extent 1161 * tree). 1162 * 1 unit for deleting the free space item (located in tree of tree 1163 * roots). 1164 * N units for deleting N device extent items corresponding to each 1165 * stripe (located in the device tree). 1166 * 1167 * In order to remove a block group we also need to reserve units in the 1168 * system space info in order to update the chunk tree (update one or 1169 * more device items and remove one chunk item), but this is done at 1170 * btrfs_remove_chunk() through a call to check_system_chunk(). 1171 */ 1172 map = em->map_lookup; 1173 num_items = 3 + map->num_stripes; 1174 free_extent_map(em); 1175 1176 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1177 } 1178 1179 /* 1180 * Mark block group @cache read-only, so later write won't happen to block 1181 * group @cache. 1182 * 1183 * If @force is not set, this function will only mark the block group readonly 1184 * if we have enough free space (1M) in other metadata/system block groups. 1185 * If @force is not set, this function will mark the block group readonly 1186 * without checking free space. 1187 * 1188 * NOTE: This function doesn't care if other block groups can contain all the 1189 * data in this block group. That check should be done by relocation routine, 1190 * not this function. 1191 */ 1192 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1193 { 1194 struct btrfs_space_info *sinfo = cache->space_info; 1195 u64 num_bytes; 1196 int ret = -ENOSPC; 1197 1198 spin_lock(&sinfo->lock); 1199 spin_lock(&cache->lock); 1200 1201 if (cache->swap_extents) { 1202 ret = -ETXTBSY; 1203 goto out; 1204 } 1205 1206 if (cache->ro) { 1207 cache->ro++; 1208 ret = 0; 1209 goto out; 1210 } 1211 1212 num_bytes = cache->length - cache->reserved - cache->pinned - 1213 cache->bytes_super - cache->zone_unusable - cache->used; 1214 1215 /* 1216 * Data never overcommits, even in mixed mode, so do just the straight 1217 * check of left over space in how much we have allocated. 1218 */ 1219 if (force) { 1220 ret = 0; 1221 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1222 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1223 1224 /* 1225 * Here we make sure if we mark this bg RO, we still have enough 1226 * free space as buffer. 1227 */ 1228 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1229 ret = 0; 1230 } else { 1231 /* 1232 * We overcommit metadata, so we need to do the 1233 * btrfs_can_overcommit check here, and we need to pass in 1234 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1235 * leeway to allow us to mark this block group as read only. 1236 */ 1237 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1238 BTRFS_RESERVE_NO_FLUSH)) 1239 ret = 0; 1240 } 1241 1242 if (!ret) { 1243 sinfo->bytes_readonly += num_bytes; 1244 if (btrfs_is_zoned(cache->fs_info)) { 1245 /* Migrate zone_unusable bytes to readonly */ 1246 sinfo->bytes_readonly += cache->zone_unusable; 1247 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1248 cache->zone_unusable = 0; 1249 } 1250 cache->ro++; 1251 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1252 } 1253 out: 1254 spin_unlock(&cache->lock); 1255 spin_unlock(&sinfo->lock); 1256 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1257 btrfs_info(cache->fs_info, 1258 "unable to make block group %llu ro", cache->start); 1259 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1260 } 1261 return ret; 1262 } 1263 1264 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1265 struct btrfs_block_group *bg) 1266 { 1267 struct btrfs_fs_info *fs_info = bg->fs_info; 1268 struct btrfs_transaction *prev_trans = NULL; 1269 const u64 start = bg->start; 1270 const u64 end = start + bg->length - 1; 1271 int ret; 1272 1273 spin_lock(&fs_info->trans_lock); 1274 if (trans->transaction->list.prev != &fs_info->trans_list) { 1275 prev_trans = list_last_entry(&trans->transaction->list, 1276 struct btrfs_transaction, list); 1277 refcount_inc(&prev_trans->use_count); 1278 } 1279 spin_unlock(&fs_info->trans_lock); 1280 1281 /* 1282 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1283 * btrfs_finish_extent_commit(). If we are at transaction N, another 1284 * task might be running finish_extent_commit() for the previous 1285 * transaction N - 1, and have seen a range belonging to the block 1286 * group in pinned_extents before we were able to clear the whole block 1287 * group range from pinned_extents. This means that task can lookup for 1288 * the block group after we unpinned it from pinned_extents and removed 1289 * it, leading to a BUG_ON() at unpin_extent_range(). 1290 */ 1291 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1292 if (prev_trans) { 1293 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1294 EXTENT_DIRTY); 1295 if (ret) 1296 goto out; 1297 } 1298 1299 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1300 EXTENT_DIRTY); 1301 out: 1302 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1303 if (prev_trans) 1304 btrfs_put_transaction(prev_trans); 1305 1306 return ret == 0; 1307 } 1308 1309 /* 1310 * Process the unused_bgs list and remove any that don't have any allocated 1311 * space inside of them. 1312 */ 1313 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1314 { 1315 struct btrfs_block_group *block_group; 1316 struct btrfs_space_info *space_info; 1317 struct btrfs_trans_handle *trans; 1318 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1319 int ret = 0; 1320 1321 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1322 return; 1323 1324 /* 1325 * Long running balances can keep us blocked here for eternity, so 1326 * simply skip deletion if we're unable to get the mutex. 1327 */ 1328 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1329 return; 1330 1331 spin_lock(&fs_info->unused_bgs_lock); 1332 while (!list_empty(&fs_info->unused_bgs)) { 1333 int trimming; 1334 1335 block_group = list_first_entry(&fs_info->unused_bgs, 1336 struct btrfs_block_group, 1337 bg_list); 1338 list_del_init(&block_group->bg_list); 1339 1340 space_info = block_group->space_info; 1341 1342 if (ret || btrfs_mixed_space_info(space_info)) { 1343 btrfs_put_block_group(block_group); 1344 continue; 1345 } 1346 spin_unlock(&fs_info->unused_bgs_lock); 1347 1348 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1349 1350 /* Don't want to race with allocators so take the groups_sem */ 1351 down_write(&space_info->groups_sem); 1352 1353 /* 1354 * Async discard moves the final block group discard to be prior 1355 * to the unused_bgs code path. Therefore, if it's not fully 1356 * trimmed, punt it back to the async discard lists. 1357 */ 1358 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1359 !btrfs_is_free_space_trimmed(block_group)) { 1360 trace_btrfs_skip_unused_block_group(block_group); 1361 up_write(&space_info->groups_sem); 1362 /* Requeue if we failed because of async discard */ 1363 btrfs_discard_queue_work(&fs_info->discard_ctl, 1364 block_group); 1365 goto next; 1366 } 1367 1368 spin_lock(&block_group->lock); 1369 if (block_group->reserved || block_group->pinned || 1370 block_group->used || block_group->ro || 1371 list_is_singular(&block_group->list)) { 1372 /* 1373 * We want to bail if we made new allocations or have 1374 * outstanding allocations in this block group. We do 1375 * the ro check in case balance is currently acting on 1376 * this block group. 1377 */ 1378 trace_btrfs_skip_unused_block_group(block_group); 1379 spin_unlock(&block_group->lock); 1380 up_write(&space_info->groups_sem); 1381 goto next; 1382 } 1383 spin_unlock(&block_group->lock); 1384 1385 /* We don't want to force the issue, only flip if it's ok. */ 1386 ret = inc_block_group_ro(block_group, 0); 1387 up_write(&space_info->groups_sem); 1388 if (ret < 0) { 1389 ret = 0; 1390 goto next; 1391 } 1392 1393 ret = btrfs_zone_finish(block_group); 1394 if (ret < 0) { 1395 btrfs_dec_block_group_ro(block_group); 1396 if (ret == -EAGAIN) 1397 ret = 0; 1398 goto next; 1399 } 1400 1401 /* 1402 * Want to do this before we do anything else so we can recover 1403 * properly if we fail to join the transaction. 1404 */ 1405 trans = btrfs_start_trans_remove_block_group(fs_info, 1406 block_group->start); 1407 if (IS_ERR(trans)) { 1408 btrfs_dec_block_group_ro(block_group); 1409 ret = PTR_ERR(trans); 1410 goto next; 1411 } 1412 1413 /* 1414 * We could have pending pinned extents for this block group, 1415 * just delete them, we don't care about them anymore. 1416 */ 1417 if (!clean_pinned_extents(trans, block_group)) { 1418 btrfs_dec_block_group_ro(block_group); 1419 goto end_trans; 1420 } 1421 1422 /* 1423 * At this point, the block_group is read only and should fail 1424 * new allocations. However, btrfs_finish_extent_commit() can 1425 * cause this block_group to be placed back on the discard 1426 * lists because now the block_group isn't fully discarded. 1427 * Bail here and try again later after discarding everything. 1428 */ 1429 spin_lock(&fs_info->discard_ctl.lock); 1430 if (!list_empty(&block_group->discard_list)) { 1431 spin_unlock(&fs_info->discard_ctl.lock); 1432 btrfs_dec_block_group_ro(block_group); 1433 btrfs_discard_queue_work(&fs_info->discard_ctl, 1434 block_group); 1435 goto end_trans; 1436 } 1437 spin_unlock(&fs_info->discard_ctl.lock); 1438 1439 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1440 spin_lock(&space_info->lock); 1441 spin_lock(&block_group->lock); 1442 1443 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1444 -block_group->pinned); 1445 space_info->bytes_readonly += block_group->pinned; 1446 block_group->pinned = 0; 1447 1448 spin_unlock(&block_group->lock); 1449 spin_unlock(&space_info->lock); 1450 1451 /* 1452 * The normal path here is an unused block group is passed here, 1453 * then trimming is handled in the transaction commit path. 1454 * Async discard interposes before this to do the trimming 1455 * before coming down the unused block group path as trimming 1456 * will no longer be done later in the transaction commit path. 1457 */ 1458 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1459 goto flip_async; 1460 1461 /* 1462 * DISCARD can flip during remount. On zoned filesystems, we 1463 * need to reset sequential-required zones. 1464 */ 1465 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1466 btrfs_is_zoned(fs_info); 1467 1468 /* Implicit trim during transaction commit. */ 1469 if (trimming) 1470 btrfs_freeze_block_group(block_group); 1471 1472 /* 1473 * Btrfs_remove_chunk will abort the transaction if things go 1474 * horribly wrong. 1475 */ 1476 ret = btrfs_remove_chunk(trans, block_group->start); 1477 1478 if (ret) { 1479 if (trimming) 1480 btrfs_unfreeze_block_group(block_group); 1481 goto end_trans; 1482 } 1483 1484 /* 1485 * If we're not mounted with -odiscard, we can just forget 1486 * about this block group. Otherwise we'll need to wait 1487 * until transaction commit to do the actual discard. 1488 */ 1489 if (trimming) { 1490 spin_lock(&fs_info->unused_bgs_lock); 1491 /* 1492 * A concurrent scrub might have added us to the list 1493 * fs_info->unused_bgs, so use a list_move operation 1494 * to add the block group to the deleted_bgs list. 1495 */ 1496 list_move(&block_group->bg_list, 1497 &trans->transaction->deleted_bgs); 1498 spin_unlock(&fs_info->unused_bgs_lock); 1499 btrfs_get_block_group(block_group); 1500 } 1501 end_trans: 1502 btrfs_end_transaction(trans); 1503 next: 1504 btrfs_put_block_group(block_group); 1505 spin_lock(&fs_info->unused_bgs_lock); 1506 } 1507 spin_unlock(&fs_info->unused_bgs_lock); 1508 mutex_unlock(&fs_info->reclaim_bgs_lock); 1509 return; 1510 1511 flip_async: 1512 btrfs_end_transaction(trans); 1513 mutex_unlock(&fs_info->reclaim_bgs_lock); 1514 btrfs_put_block_group(block_group); 1515 btrfs_discard_punt_unused_bgs_list(fs_info); 1516 } 1517 1518 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1519 { 1520 struct btrfs_fs_info *fs_info = bg->fs_info; 1521 1522 spin_lock(&fs_info->unused_bgs_lock); 1523 if (list_empty(&bg->bg_list)) { 1524 btrfs_get_block_group(bg); 1525 trace_btrfs_add_unused_block_group(bg); 1526 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1527 } 1528 spin_unlock(&fs_info->unused_bgs_lock); 1529 } 1530 1531 /* 1532 * We want block groups with a low number of used bytes to be in the beginning 1533 * of the list, so they will get reclaimed first. 1534 */ 1535 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1536 const struct list_head *b) 1537 { 1538 const struct btrfs_block_group *bg1, *bg2; 1539 1540 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1541 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1542 1543 return bg1->used > bg2->used; 1544 } 1545 1546 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1547 { 1548 if (btrfs_is_zoned(fs_info)) 1549 return btrfs_zoned_should_reclaim(fs_info); 1550 return true; 1551 } 1552 1553 void btrfs_reclaim_bgs_work(struct work_struct *work) 1554 { 1555 struct btrfs_fs_info *fs_info = 1556 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1557 struct btrfs_block_group *bg; 1558 struct btrfs_space_info *space_info; 1559 1560 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1561 return; 1562 1563 if (!btrfs_should_reclaim(fs_info)) 1564 return; 1565 1566 sb_start_write(fs_info->sb); 1567 1568 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1569 sb_end_write(fs_info->sb); 1570 return; 1571 } 1572 1573 /* 1574 * Long running balances can keep us blocked here for eternity, so 1575 * simply skip reclaim if we're unable to get the mutex. 1576 */ 1577 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1578 btrfs_exclop_finish(fs_info); 1579 sb_end_write(fs_info->sb); 1580 return; 1581 } 1582 1583 spin_lock(&fs_info->unused_bgs_lock); 1584 /* 1585 * Sort happens under lock because we can't simply splice it and sort. 1586 * The block groups might still be in use and reachable via bg_list, 1587 * and their presence in the reclaim_bgs list must be preserved. 1588 */ 1589 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1590 while (!list_empty(&fs_info->reclaim_bgs)) { 1591 u64 zone_unusable; 1592 int ret = 0; 1593 1594 bg = list_first_entry(&fs_info->reclaim_bgs, 1595 struct btrfs_block_group, 1596 bg_list); 1597 list_del_init(&bg->bg_list); 1598 1599 space_info = bg->space_info; 1600 spin_unlock(&fs_info->unused_bgs_lock); 1601 1602 /* Don't race with allocators so take the groups_sem */ 1603 down_write(&space_info->groups_sem); 1604 1605 spin_lock(&bg->lock); 1606 if (bg->reserved || bg->pinned || bg->ro) { 1607 /* 1608 * We want to bail if we made new allocations or have 1609 * outstanding allocations in this block group. We do 1610 * the ro check in case balance is currently acting on 1611 * this block group. 1612 */ 1613 spin_unlock(&bg->lock); 1614 up_write(&space_info->groups_sem); 1615 goto next; 1616 } 1617 spin_unlock(&bg->lock); 1618 1619 /* Get out fast, in case we're unmounting the filesystem */ 1620 if (btrfs_fs_closing(fs_info)) { 1621 up_write(&space_info->groups_sem); 1622 goto next; 1623 } 1624 1625 /* 1626 * Cache the zone_unusable value before turning the block group 1627 * to read only. As soon as the blog group is read only it's 1628 * zone_unusable value gets moved to the block group's read-only 1629 * bytes and isn't available for calculations anymore. 1630 */ 1631 zone_unusable = bg->zone_unusable; 1632 ret = inc_block_group_ro(bg, 0); 1633 up_write(&space_info->groups_sem); 1634 if (ret < 0) 1635 goto next; 1636 1637 btrfs_info(fs_info, 1638 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1639 bg->start, div_u64(bg->used * 100, bg->length), 1640 div64_u64(zone_unusable * 100, bg->length)); 1641 trace_btrfs_reclaim_block_group(bg); 1642 ret = btrfs_relocate_chunk(fs_info, bg->start); 1643 if (ret) 1644 btrfs_err(fs_info, "error relocating chunk %llu", 1645 bg->start); 1646 1647 next: 1648 btrfs_put_block_group(bg); 1649 spin_lock(&fs_info->unused_bgs_lock); 1650 } 1651 spin_unlock(&fs_info->unused_bgs_lock); 1652 mutex_unlock(&fs_info->reclaim_bgs_lock); 1653 btrfs_exclop_finish(fs_info); 1654 sb_end_write(fs_info->sb); 1655 } 1656 1657 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1658 { 1659 spin_lock(&fs_info->unused_bgs_lock); 1660 if (!list_empty(&fs_info->reclaim_bgs)) 1661 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1662 spin_unlock(&fs_info->unused_bgs_lock); 1663 } 1664 1665 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1666 { 1667 struct btrfs_fs_info *fs_info = bg->fs_info; 1668 1669 spin_lock(&fs_info->unused_bgs_lock); 1670 if (list_empty(&bg->bg_list)) { 1671 btrfs_get_block_group(bg); 1672 trace_btrfs_add_reclaim_block_group(bg); 1673 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1674 } 1675 spin_unlock(&fs_info->unused_bgs_lock); 1676 } 1677 1678 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1679 struct btrfs_path *path) 1680 { 1681 struct extent_map_tree *em_tree; 1682 struct extent_map *em; 1683 struct btrfs_block_group_item bg; 1684 struct extent_buffer *leaf; 1685 int slot; 1686 u64 flags; 1687 int ret = 0; 1688 1689 slot = path->slots[0]; 1690 leaf = path->nodes[0]; 1691 1692 em_tree = &fs_info->mapping_tree; 1693 read_lock(&em_tree->lock); 1694 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1695 read_unlock(&em_tree->lock); 1696 if (!em) { 1697 btrfs_err(fs_info, 1698 "logical %llu len %llu found bg but no related chunk", 1699 key->objectid, key->offset); 1700 return -ENOENT; 1701 } 1702 1703 if (em->start != key->objectid || em->len != key->offset) { 1704 btrfs_err(fs_info, 1705 "block group %llu len %llu mismatch with chunk %llu len %llu", 1706 key->objectid, key->offset, em->start, em->len); 1707 ret = -EUCLEAN; 1708 goto out_free_em; 1709 } 1710 1711 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1712 sizeof(bg)); 1713 flags = btrfs_stack_block_group_flags(&bg) & 1714 BTRFS_BLOCK_GROUP_TYPE_MASK; 1715 1716 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1717 btrfs_err(fs_info, 1718 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1719 key->objectid, key->offset, flags, 1720 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1721 ret = -EUCLEAN; 1722 } 1723 1724 out_free_em: 1725 free_extent_map(em); 1726 return ret; 1727 } 1728 1729 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1730 struct btrfs_path *path, 1731 struct btrfs_key *key) 1732 { 1733 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1734 int ret; 1735 struct btrfs_key found_key; 1736 1737 btrfs_for_each_slot(root, key, &found_key, path, ret) { 1738 if (found_key.objectid >= key->objectid && 1739 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1740 return read_bg_from_eb(fs_info, &found_key, path); 1741 } 1742 } 1743 return ret; 1744 } 1745 1746 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1747 { 1748 u64 extra_flags = chunk_to_extended(flags) & 1749 BTRFS_EXTENDED_PROFILE_MASK; 1750 1751 write_seqlock(&fs_info->profiles_lock); 1752 if (flags & BTRFS_BLOCK_GROUP_DATA) 1753 fs_info->avail_data_alloc_bits |= extra_flags; 1754 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1755 fs_info->avail_metadata_alloc_bits |= extra_flags; 1756 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1757 fs_info->avail_system_alloc_bits |= extra_flags; 1758 write_sequnlock(&fs_info->profiles_lock); 1759 } 1760 1761 /** 1762 * Map a physical disk address to a list of logical addresses 1763 * 1764 * @fs_info: the filesystem 1765 * @chunk_start: logical address of block group 1766 * @bdev: physical device to resolve, can be NULL to indicate any device 1767 * @physical: physical address to map to logical addresses 1768 * @logical: return array of logical addresses which map to @physical 1769 * @naddrs: length of @logical 1770 * @stripe_len: size of IO stripe for the given block group 1771 * 1772 * Maps a particular @physical disk address to a list of @logical addresses. 1773 * Used primarily to exclude those portions of a block group that contain super 1774 * block copies. 1775 */ 1776 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1777 struct block_device *bdev, u64 physical, u64 **logical, 1778 int *naddrs, int *stripe_len) 1779 { 1780 struct extent_map *em; 1781 struct map_lookup *map; 1782 u64 *buf; 1783 u64 bytenr; 1784 u64 data_stripe_length; 1785 u64 io_stripe_size; 1786 int i, nr = 0; 1787 int ret = 0; 1788 1789 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1790 if (IS_ERR(em)) 1791 return -EIO; 1792 1793 map = em->map_lookup; 1794 data_stripe_length = em->orig_block_len; 1795 io_stripe_size = map->stripe_len; 1796 chunk_start = em->start; 1797 1798 /* For RAID5/6 adjust to a full IO stripe length */ 1799 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1800 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1801 1802 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1803 if (!buf) { 1804 ret = -ENOMEM; 1805 goto out; 1806 } 1807 1808 for (i = 0; i < map->num_stripes; i++) { 1809 bool already_inserted = false; 1810 u64 stripe_nr; 1811 u64 offset; 1812 int j; 1813 1814 if (!in_range(physical, map->stripes[i].physical, 1815 data_stripe_length)) 1816 continue; 1817 1818 if (bdev && map->stripes[i].dev->bdev != bdev) 1819 continue; 1820 1821 stripe_nr = physical - map->stripes[i].physical; 1822 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 1823 1824 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 1825 BTRFS_BLOCK_GROUP_RAID10)) { 1826 stripe_nr = stripe_nr * map->num_stripes + i; 1827 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1828 } 1829 /* 1830 * The remaining case would be for RAID56, multiply by 1831 * nr_data_stripes(). Alternatively, just use rmap_len below 1832 * instead of map->stripe_len 1833 */ 1834 1835 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 1836 1837 /* Ensure we don't add duplicate addresses */ 1838 for (j = 0; j < nr; j++) { 1839 if (buf[j] == bytenr) { 1840 already_inserted = true; 1841 break; 1842 } 1843 } 1844 1845 if (!already_inserted) 1846 buf[nr++] = bytenr; 1847 } 1848 1849 *logical = buf; 1850 *naddrs = nr; 1851 *stripe_len = io_stripe_size; 1852 out: 1853 free_extent_map(em); 1854 return ret; 1855 } 1856 1857 static int exclude_super_stripes(struct btrfs_block_group *cache) 1858 { 1859 struct btrfs_fs_info *fs_info = cache->fs_info; 1860 const bool zoned = btrfs_is_zoned(fs_info); 1861 u64 bytenr; 1862 u64 *logical; 1863 int stripe_len; 1864 int i, nr, ret; 1865 1866 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1867 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1868 cache->bytes_super += stripe_len; 1869 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1870 stripe_len); 1871 if (ret) 1872 return ret; 1873 } 1874 1875 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1876 bytenr = btrfs_sb_offset(i); 1877 ret = btrfs_rmap_block(fs_info, cache->start, NULL, 1878 bytenr, &logical, &nr, &stripe_len); 1879 if (ret) 1880 return ret; 1881 1882 /* Shouldn't have super stripes in sequential zones */ 1883 if (zoned && nr) { 1884 btrfs_err(fs_info, 1885 "zoned: block group %llu must not contain super block", 1886 cache->start); 1887 return -EUCLEAN; 1888 } 1889 1890 while (nr--) { 1891 u64 len = min_t(u64, stripe_len, 1892 cache->start + cache->length - logical[nr]); 1893 1894 cache->bytes_super += len; 1895 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1896 len); 1897 if (ret) { 1898 kfree(logical); 1899 return ret; 1900 } 1901 } 1902 1903 kfree(logical); 1904 } 1905 return 0; 1906 } 1907 1908 static void link_block_group(struct btrfs_block_group *cache) 1909 { 1910 struct btrfs_space_info *space_info = cache->space_info; 1911 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1912 1913 down_write(&space_info->groups_sem); 1914 list_add_tail(&cache->list, &space_info->block_groups[index]); 1915 up_write(&space_info->groups_sem); 1916 } 1917 1918 static struct btrfs_block_group *btrfs_create_block_group_cache( 1919 struct btrfs_fs_info *fs_info, u64 start) 1920 { 1921 struct btrfs_block_group *cache; 1922 1923 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1924 if (!cache) 1925 return NULL; 1926 1927 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1928 GFP_NOFS); 1929 if (!cache->free_space_ctl) { 1930 kfree(cache); 1931 return NULL; 1932 } 1933 1934 cache->start = start; 1935 1936 cache->fs_info = fs_info; 1937 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1938 1939 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1940 1941 refcount_set(&cache->refs, 1); 1942 spin_lock_init(&cache->lock); 1943 init_rwsem(&cache->data_rwsem); 1944 INIT_LIST_HEAD(&cache->list); 1945 INIT_LIST_HEAD(&cache->cluster_list); 1946 INIT_LIST_HEAD(&cache->bg_list); 1947 INIT_LIST_HEAD(&cache->ro_list); 1948 INIT_LIST_HEAD(&cache->discard_list); 1949 INIT_LIST_HEAD(&cache->dirty_list); 1950 INIT_LIST_HEAD(&cache->io_list); 1951 INIT_LIST_HEAD(&cache->active_bg_list); 1952 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 1953 atomic_set(&cache->frozen, 0); 1954 mutex_init(&cache->free_space_lock); 1955 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1956 1957 return cache; 1958 } 1959 1960 /* 1961 * Iterate all chunks and verify that each of them has the corresponding block 1962 * group 1963 */ 1964 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1965 { 1966 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1967 struct extent_map *em; 1968 struct btrfs_block_group *bg; 1969 u64 start = 0; 1970 int ret = 0; 1971 1972 while (1) { 1973 read_lock(&map_tree->lock); 1974 /* 1975 * lookup_extent_mapping will return the first extent map 1976 * intersecting the range, so setting @len to 1 is enough to 1977 * get the first chunk. 1978 */ 1979 em = lookup_extent_mapping(map_tree, start, 1); 1980 read_unlock(&map_tree->lock); 1981 if (!em) 1982 break; 1983 1984 bg = btrfs_lookup_block_group(fs_info, em->start); 1985 if (!bg) { 1986 btrfs_err(fs_info, 1987 "chunk start=%llu len=%llu doesn't have corresponding block group", 1988 em->start, em->len); 1989 ret = -EUCLEAN; 1990 free_extent_map(em); 1991 break; 1992 } 1993 if (bg->start != em->start || bg->length != em->len || 1994 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1995 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1996 btrfs_err(fs_info, 1997 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1998 em->start, em->len, 1999 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2000 bg->start, bg->length, 2001 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2002 ret = -EUCLEAN; 2003 free_extent_map(em); 2004 btrfs_put_block_group(bg); 2005 break; 2006 } 2007 start = em->start + em->len; 2008 free_extent_map(em); 2009 btrfs_put_block_group(bg); 2010 } 2011 return ret; 2012 } 2013 2014 static int read_one_block_group(struct btrfs_fs_info *info, 2015 struct btrfs_block_group_item *bgi, 2016 const struct btrfs_key *key, 2017 int need_clear) 2018 { 2019 struct btrfs_block_group *cache; 2020 struct btrfs_space_info *space_info; 2021 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2022 int ret; 2023 2024 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2025 2026 cache = btrfs_create_block_group_cache(info, key->objectid); 2027 if (!cache) 2028 return -ENOMEM; 2029 2030 cache->length = key->offset; 2031 cache->used = btrfs_stack_block_group_used(bgi); 2032 cache->flags = btrfs_stack_block_group_flags(bgi); 2033 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2034 2035 set_free_space_tree_thresholds(cache); 2036 2037 if (need_clear) { 2038 /* 2039 * When we mount with old space cache, we need to 2040 * set BTRFS_DC_CLEAR and set dirty flag. 2041 * 2042 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2043 * truncate the old free space cache inode and 2044 * setup a new one. 2045 * b) Setting 'dirty flag' makes sure that we flush 2046 * the new space cache info onto disk. 2047 */ 2048 if (btrfs_test_opt(info, SPACE_CACHE)) 2049 cache->disk_cache_state = BTRFS_DC_CLEAR; 2050 } 2051 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2052 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2053 btrfs_err(info, 2054 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2055 cache->start); 2056 ret = -EINVAL; 2057 goto error; 2058 } 2059 2060 ret = btrfs_load_block_group_zone_info(cache, false); 2061 if (ret) { 2062 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2063 cache->start); 2064 goto error; 2065 } 2066 2067 /* 2068 * We need to exclude the super stripes now so that the space info has 2069 * super bytes accounted for, otherwise we'll think we have more space 2070 * than we actually do. 2071 */ 2072 ret = exclude_super_stripes(cache); 2073 if (ret) { 2074 /* We may have excluded something, so call this just in case. */ 2075 btrfs_free_excluded_extents(cache); 2076 goto error; 2077 } 2078 2079 /* 2080 * For zoned filesystem, space after the allocation offset is the only 2081 * free space for a block group. So, we don't need any caching work. 2082 * btrfs_calc_zone_unusable() will set the amount of free space and 2083 * zone_unusable space. 2084 * 2085 * For regular filesystem, check for two cases, either we are full, and 2086 * therefore don't need to bother with the caching work since we won't 2087 * find any space, or we are empty, and we can just add all the space 2088 * in and be done with it. This saves us _a_lot_ of time, particularly 2089 * in the full case. 2090 */ 2091 if (btrfs_is_zoned(info)) { 2092 btrfs_calc_zone_unusable(cache); 2093 /* Should not have any excluded extents. Just in case, though. */ 2094 btrfs_free_excluded_extents(cache); 2095 } else if (cache->length == cache->used) { 2096 cache->last_byte_to_unpin = (u64)-1; 2097 cache->cached = BTRFS_CACHE_FINISHED; 2098 btrfs_free_excluded_extents(cache); 2099 } else if (cache->used == 0) { 2100 cache->last_byte_to_unpin = (u64)-1; 2101 cache->cached = BTRFS_CACHE_FINISHED; 2102 add_new_free_space(cache, cache->start, 2103 cache->start + cache->length); 2104 btrfs_free_excluded_extents(cache); 2105 } 2106 2107 ret = btrfs_add_block_group_cache(info, cache); 2108 if (ret) { 2109 btrfs_remove_free_space_cache(cache); 2110 goto error; 2111 } 2112 trace_btrfs_add_block_group(info, cache, 0); 2113 btrfs_update_space_info(info, cache->flags, cache->length, 2114 cache->used, cache->bytes_super, 2115 cache->zone_unusable, cache->zone_is_active, 2116 &space_info); 2117 2118 cache->space_info = space_info; 2119 2120 link_block_group(cache); 2121 2122 set_avail_alloc_bits(info, cache->flags); 2123 if (btrfs_chunk_writeable(info, cache->start)) { 2124 if (cache->used == 0) { 2125 ASSERT(list_empty(&cache->bg_list)); 2126 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2127 btrfs_discard_queue_work(&info->discard_ctl, cache); 2128 else 2129 btrfs_mark_bg_unused(cache); 2130 } 2131 } else { 2132 inc_block_group_ro(cache, 1); 2133 } 2134 2135 return 0; 2136 error: 2137 btrfs_put_block_group(cache); 2138 return ret; 2139 } 2140 2141 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2142 { 2143 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2144 struct btrfs_space_info *space_info; 2145 struct rb_node *node; 2146 int ret = 0; 2147 2148 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2149 struct extent_map *em; 2150 struct map_lookup *map; 2151 struct btrfs_block_group *bg; 2152 2153 em = rb_entry(node, struct extent_map, rb_node); 2154 map = em->map_lookup; 2155 bg = btrfs_create_block_group_cache(fs_info, em->start); 2156 if (!bg) { 2157 ret = -ENOMEM; 2158 break; 2159 } 2160 2161 /* Fill dummy cache as FULL */ 2162 bg->length = em->len; 2163 bg->flags = map->type; 2164 bg->last_byte_to_unpin = (u64)-1; 2165 bg->cached = BTRFS_CACHE_FINISHED; 2166 bg->used = em->len; 2167 bg->flags = map->type; 2168 ret = btrfs_add_block_group_cache(fs_info, bg); 2169 /* 2170 * We may have some valid block group cache added already, in 2171 * that case we skip to the next one. 2172 */ 2173 if (ret == -EEXIST) { 2174 ret = 0; 2175 btrfs_put_block_group(bg); 2176 continue; 2177 } 2178 2179 if (ret) { 2180 btrfs_remove_free_space_cache(bg); 2181 btrfs_put_block_group(bg); 2182 break; 2183 } 2184 2185 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len, 2186 0, 0, false, &space_info); 2187 bg->space_info = space_info; 2188 link_block_group(bg); 2189 2190 set_avail_alloc_bits(fs_info, bg->flags); 2191 } 2192 if (!ret) 2193 btrfs_init_global_block_rsv(fs_info); 2194 return ret; 2195 } 2196 2197 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2198 { 2199 struct btrfs_root *root = btrfs_block_group_root(info); 2200 struct btrfs_path *path; 2201 int ret; 2202 struct btrfs_block_group *cache; 2203 struct btrfs_space_info *space_info; 2204 struct btrfs_key key; 2205 int need_clear = 0; 2206 u64 cache_gen; 2207 2208 if (!root) 2209 return fill_dummy_bgs(info); 2210 2211 key.objectid = 0; 2212 key.offset = 0; 2213 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2214 path = btrfs_alloc_path(); 2215 if (!path) 2216 return -ENOMEM; 2217 2218 cache_gen = btrfs_super_cache_generation(info->super_copy); 2219 if (btrfs_test_opt(info, SPACE_CACHE) && 2220 btrfs_super_generation(info->super_copy) != cache_gen) 2221 need_clear = 1; 2222 if (btrfs_test_opt(info, CLEAR_CACHE)) 2223 need_clear = 1; 2224 2225 while (1) { 2226 struct btrfs_block_group_item bgi; 2227 struct extent_buffer *leaf; 2228 int slot; 2229 2230 ret = find_first_block_group(info, path, &key); 2231 if (ret > 0) 2232 break; 2233 if (ret != 0) 2234 goto error; 2235 2236 leaf = path->nodes[0]; 2237 slot = path->slots[0]; 2238 2239 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2240 sizeof(bgi)); 2241 2242 btrfs_item_key_to_cpu(leaf, &key, slot); 2243 btrfs_release_path(path); 2244 ret = read_one_block_group(info, &bgi, &key, need_clear); 2245 if (ret < 0) 2246 goto error; 2247 key.objectid += key.offset; 2248 key.offset = 0; 2249 } 2250 btrfs_release_path(path); 2251 2252 list_for_each_entry(space_info, &info->space_info, list) { 2253 int i; 2254 2255 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2256 if (list_empty(&space_info->block_groups[i])) 2257 continue; 2258 cache = list_first_entry(&space_info->block_groups[i], 2259 struct btrfs_block_group, 2260 list); 2261 btrfs_sysfs_add_block_group_type(cache); 2262 } 2263 2264 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2265 (BTRFS_BLOCK_GROUP_RAID10 | 2266 BTRFS_BLOCK_GROUP_RAID1_MASK | 2267 BTRFS_BLOCK_GROUP_RAID56_MASK | 2268 BTRFS_BLOCK_GROUP_DUP))) 2269 continue; 2270 /* 2271 * Avoid allocating from un-mirrored block group if there are 2272 * mirrored block groups. 2273 */ 2274 list_for_each_entry(cache, 2275 &space_info->block_groups[BTRFS_RAID_RAID0], 2276 list) 2277 inc_block_group_ro(cache, 1); 2278 list_for_each_entry(cache, 2279 &space_info->block_groups[BTRFS_RAID_SINGLE], 2280 list) 2281 inc_block_group_ro(cache, 1); 2282 } 2283 2284 btrfs_init_global_block_rsv(info); 2285 ret = check_chunk_block_group_mappings(info); 2286 error: 2287 btrfs_free_path(path); 2288 /* 2289 * We've hit some error while reading the extent tree, and have 2290 * rescue=ibadroots mount option. 2291 * Try to fill the tree using dummy block groups so that the user can 2292 * continue to mount and grab their data. 2293 */ 2294 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2295 ret = fill_dummy_bgs(info); 2296 return ret; 2297 } 2298 2299 /* 2300 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2301 * allocation. 2302 * 2303 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2304 * phases. 2305 */ 2306 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2307 struct btrfs_block_group *block_group) 2308 { 2309 struct btrfs_fs_info *fs_info = trans->fs_info; 2310 struct btrfs_block_group_item bgi; 2311 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2312 struct btrfs_key key; 2313 2314 spin_lock(&block_group->lock); 2315 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2316 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2317 block_group->global_root_id); 2318 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2319 key.objectid = block_group->start; 2320 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2321 key.offset = block_group->length; 2322 spin_unlock(&block_group->lock); 2323 2324 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2325 } 2326 2327 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2328 struct btrfs_device *device, u64 chunk_offset, 2329 u64 start, u64 num_bytes) 2330 { 2331 struct btrfs_fs_info *fs_info = device->fs_info; 2332 struct btrfs_root *root = fs_info->dev_root; 2333 struct btrfs_path *path; 2334 struct btrfs_dev_extent *extent; 2335 struct extent_buffer *leaf; 2336 struct btrfs_key key; 2337 int ret; 2338 2339 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2340 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2341 path = btrfs_alloc_path(); 2342 if (!path) 2343 return -ENOMEM; 2344 2345 key.objectid = device->devid; 2346 key.type = BTRFS_DEV_EXTENT_KEY; 2347 key.offset = start; 2348 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2349 if (ret) 2350 goto out; 2351 2352 leaf = path->nodes[0]; 2353 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2354 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2355 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2356 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2357 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2358 2359 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2360 btrfs_mark_buffer_dirty(leaf); 2361 out: 2362 btrfs_free_path(path); 2363 return ret; 2364 } 2365 2366 /* 2367 * This function belongs to phase 2. 2368 * 2369 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2370 * phases. 2371 */ 2372 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2373 u64 chunk_offset, u64 chunk_size) 2374 { 2375 struct btrfs_fs_info *fs_info = trans->fs_info; 2376 struct btrfs_device *device; 2377 struct extent_map *em; 2378 struct map_lookup *map; 2379 u64 dev_offset; 2380 u64 stripe_size; 2381 int i; 2382 int ret = 0; 2383 2384 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2385 if (IS_ERR(em)) 2386 return PTR_ERR(em); 2387 2388 map = em->map_lookup; 2389 stripe_size = em->orig_block_len; 2390 2391 /* 2392 * Take the device list mutex to prevent races with the final phase of 2393 * a device replace operation that replaces the device object associated 2394 * with the map's stripes, because the device object's id can change 2395 * at any time during that final phase of the device replace operation 2396 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2397 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2398 * resulting in persisting a device extent item with such ID. 2399 */ 2400 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2401 for (i = 0; i < map->num_stripes; i++) { 2402 device = map->stripes[i].dev; 2403 dev_offset = map->stripes[i].physical; 2404 2405 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2406 stripe_size); 2407 if (ret) 2408 break; 2409 } 2410 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2411 2412 free_extent_map(em); 2413 return ret; 2414 } 2415 2416 /* 2417 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2418 * chunk allocation. 2419 * 2420 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2421 * phases. 2422 */ 2423 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2424 { 2425 struct btrfs_fs_info *fs_info = trans->fs_info; 2426 struct btrfs_block_group *block_group; 2427 int ret = 0; 2428 2429 while (!list_empty(&trans->new_bgs)) { 2430 int index; 2431 2432 block_group = list_first_entry(&trans->new_bgs, 2433 struct btrfs_block_group, 2434 bg_list); 2435 if (ret) 2436 goto next; 2437 2438 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2439 2440 ret = insert_block_group_item(trans, block_group); 2441 if (ret) 2442 btrfs_abort_transaction(trans, ret); 2443 if (!block_group->chunk_item_inserted) { 2444 mutex_lock(&fs_info->chunk_mutex); 2445 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2446 mutex_unlock(&fs_info->chunk_mutex); 2447 if (ret) 2448 btrfs_abort_transaction(trans, ret); 2449 } 2450 ret = insert_dev_extents(trans, block_group->start, 2451 block_group->length); 2452 if (ret) 2453 btrfs_abort_transaction(trans, ret); 2454 add_block_group_free_space(trans, block_group); 2455 2456 /* 2457 * If we restriped during balance, we may have added a new raid 2458 * type, so now add the sysfs entries when it is safe to do so. 2459 * We don't have to worry about locking here as it's handled in 2460 * btrfs_sysfs_add_block_group_type. 2461 */ 2462 if (block_group->space_info->block_group_kobjs[index] == NULL) 2463 btrfs_sysfs_add_block_group_type(block_group); 2464 2465 /* Already aborted the transaction if it failed. */ 2466 next: 2467 btrfs_delayed_refs_rsv_release(fs_info, 1); 2468 list_del_init(&block_group->bg_list); 2469 } 2470 btrfs_trans_release_chunk_metadata(trans); 2471 } 2472 2473 /* 2474 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2475 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2476 */ 2477 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2478 { 2479 u64 div = SZ_1G; 2480 u64 index; 2481 2482 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2483 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2484 2485 /* If we have a smaller fs index based on 128MiB. */ 2486 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2487 div = SZ_128M; 2488 2489 offset = div64_u64(offset, div); 2490 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2491 return index; 2492 } 2493 2494 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2495 u64 bytes_used, u64 type, 2496 u64 chunk_offset, u64 size) 2497 { 2498 struct btrfs_fs_info *fs_info = trans->fs_info; 2499 struct btrfs_block_group *cache; 2500 int ret; 2501 2502 btrfs_set_log_full_commit(trans); 2503 2504 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2505 if (!cache) 2506 return ERR_PTR(-ENOMEM); 2507 2508 cache->length = size; 2509 set_free_space_tree_thresholds(cache); 2510 cache->used = bytes_used; 2511 cache->flags = type; 2512 cache->last_byte_to_unpin = (u64)-1; 2513 cache->cached = BTRFS_CACHE_FINISHED; 2514 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2515 2516 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2517 cache->needs_free_space = 1; 2518 2519 ret = btrfs_load_block_group_zone_info(cache, true); 2520 if (ret) { 2521 btrfs_put_block_group(cache); 2522 return ERR_PTR(ret); 2523 } 2524 2525 ret = exclude_super_stripes(cache); 2526 if (ret) { 2527 /* We may have excluded something, so call this just in case */ 2528 btrfs_free_excluded_extents(cache); 2529 btrfs_put_block_group(cache); 2530 return ERR_PTR(ret); 2531 } 2532 2533 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2534 2535 btrfs_free_excluded_extents(cache); 2536 2537 #ifdef CONFIG_BTRFS_DEBUG 2538 if (btrfs_should_fragment_free_space(cache)) { 2539 u64 new_bytes_used = size - bytes_used; 2540 2541 bytes_used += new_bytes_used >> 1; 2542 fragment_free_space(cache); 2543 } 2544 #endif 2545 /* 2546 * Ensure the corresponding space_info object is created and 2547 * assigned to our block group. We want our bg to be added to the rbtree 2548 * with its ->space_info set. 2549 */ 2550 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2551 ASSERT(cache->space_info); 2552 2553 ret = btrfs_add_block_group_cache(fs_info, cache); 2554 if (ret) { 2555 btrfs_remove_free_space_cache(cache); 2556 btrfs_put_block_group(cache); 2557 return ERR_PTR(ret); 2558 } 2559 2560 /* 2561 * Now that our block group has its ->space_info set and is inserted in 2562 * the rbtree, update the space info's counters. 2563 */ 2564 trace_btrfs_add_block_group(fs_info, cache, 1); 2565 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2566 cache->bytes_super, cache->zone_unusable, 2567 cache->zone_is_active, &cache->space_info); 2568 btrfs_update_global_block_rsv(fs_info); 2569 2570 link_block_group(cache); 2571 2572 list_add_tail(&cache->bg_list, &trans->new_bgs); 2573 trans->delayed_ref_updates++; 2574 btrfs_update_delayed_refs_rsv(trans); 2575 2576 set_avail_alloc_bits(fs_info, type); 2577 return cache; 2578 } 2579 2580 /* 2581 * Mark one block group RO, can be called several times for the same block 2582 * group. 2583 * 2584 * @cache: the destination block group 2585 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2586 * ensure we still have some free space after marking this 2587 * block group RO. 2588 */ 2589 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2590 bool do_chunk_alloc) 2591 { 2592 struct btrfs_fs_info *fs_info = cache->fs_info; 2593 struct btrfs_trans_handle *trans; 2594 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2595 u64 alloc_flags; 2596 int ret; 2597 bool dirty_bg_running; 2598 2599 /* 2600 * This can only happen when we are doing read-only scrub on read-only 2601 * mount. 2602 * In that case we should not start a new transaction on read-only fs. 2603 * Thus here we skip all chunk allocations. 2604 */ 2605 if (sb_rdonly(fs_info->sb)) { 2606 mutex_lock(&fs_info->ro_block_group_mutex); 2607 ret = inc_block_group_ro(cache, 0); 2608 mutex_unlock(&fs_info->ro_block_group_mutex); 2609 return ret; 2610 } 2611 2612 do { 2613 trans = btrfs_join_transaction(root); 2614 if (IS_ERR(trans)) 2615 return PTR_ERR(trans); 2616 2617 dirty_bg_running = false; 2618 2619 /* 2620 * We're not allowed to set block groups readonly after the dirty 2621 * block group cache has started writing. If it already started, 2622 * back off and let this transaction commit. 2623 */ 2624 mutex_lock(&fs_info->ro_block_group_mutex); 2625 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2626 u64 transid = trans->transid; 2627 2628 mutex_unlock(&fs_info->ro_block_group_mutex); 2629 btrfs_end_transaction(trans); 2630 2631 ret = btrfs_wait_for_commit(fs_info, transid); 2632 if (ret) 2633 return ret; 2634 dirty_bg_running = true; 2635 } 2636 } while (dirty_bg_running); 2637 2638 if (do_chunk_alloc) { 2639 /* 2640 * If we are changing raid levels, try to allocate a 2641 * corresponding block group with the new raid level. 2642 */ 2643 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2644 if (alloc_flags != cache->flags) { 2645 ret = btrfs_chunk_alloc(trans, alloc_flags, 2646 CHUNK_ALLOC_FORCE); 2647 /* 2648 * ENOSPC is allowed here, we may have enough space 2649 * already allocated at the new raid level to carry on 2650 */ 2651 if (ret == -ENOSPC) 2652 ret = 0; 2653 if (ret < 0) 2654 goto out; 2655 } 2656 } 2657 2658 ret = inc_block_group_ro(cache, 0); 2659 if (!do_chunk_alloc || ret == -ETXTBSY) 2660 goto unlock_out; 2661 if (!ret) 2662 goto out; 2663 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2664 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2665 if (ret < 0) 2666 goto out; 2667 /* 2668 * We have allocated a new chunk. We also need to activate that chunk to 2669 * grant metadata tickets for zoned filesystem. 2670 */ 2671 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2672 if (ret < 0) 2673 goto out; 2674 2675 ret = inc_block_group_ro(cache, 0); 2676 if (ret == -ETXTBSY) 2677 goto unlock_out; 2678 out: 2679 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2680 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2681 mutex_lock(&fs_info->chunk_mutex); 2682 check_system_chunk(trans, alloc_flags); 2683 mutex_unlock(&fs_info->chunk_mutex); 2684 } 2685 unlock_out: 2686 mutex_unlock(&fs_info->ro_block_group_mutex); 2687 2688 btrfs_end_transaction(trans); 2689 return ret; 2690 } 2691 2692 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2693 { 2694 struct btrfs_space_info *sinfo = cache->space_info; 2695 u64 num_bytes; 2696 2697 BUG_ON(!cache->ro); 2698 2699 spin_lock(&sinfo->lock); 2700 spin_lock(&cache->lock); 2701 if (!--cache->ro) { 2702 if (btrfs_is_zoned(cache->fs_info)) { 2703 /* Migrate zone_unusable bytes back */ 2704 cache->zone_unusable = 2705 (cache->alloc_offset - cache->used) + 2706 (cache->length - cache->zone_capacity); 2707 sinfo->bytes_zone_unusable += cache->zone_unusable; 2708 sinfo->bytes_readonly -= cache->zone_unusable; 2709 } 2710 num_bytes = cache->length - cache->reserved - 2711 cache->pinned - cache->bytes_super - 2712 cache->zone_unusable - cache->used; 2713 sinfo->bytes_readonly -= num_bytes; 2714 list_del_init(&cache->ro_list); 2715 } 2716 spin_unlock(&cache->lock); 2717 spin_unlock(&sinfo->lock); 2718 } 2719 2720 static int update_block_group_item(struct btrfs_trans_handle *trans, 2721 struct btrfs_path *path, 2722 struct btrfs_block_group *cache) 2723 { 2724 struct btrfs_fs_info *fs_info = trans->fs_info; 2725 int ret; 2726 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2727 unsigned long bi; 2728 struct extent_buffer *leaf; 2729 struct btrfs_block_group_item bgi; 2730 struct btrfs_key key; 2731 2732 key.objectid = cache->start; 2733 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2734 key.offset = cache->length; 2735 2736 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2737 if (ret) { 2738 if (ret > 0) 2739 ret = -ENOENT; 2740 goto fail; 2741 } 2742 2743 leaf = path->nodes[0]; 2744 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2745 btrfs_set_stack_block_group_used(&bgi, cache->used); 2746 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2747 cache->global_root_id); 2748 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2749 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2750 btrfs_mark_buffer_dirty(leaf); 2751 fail: 2752 btrfs_release_path(path); 2753 return ret; 2754 2755 } 2756 2757 static int cache_save_setup(struct btrfs_block_group *block_group, 2758 struct btrfs_trans_handle *trans, 2759 struct btrfs_path *path) 2760 { 2761 struct btrfs_fs_info *fs_info = block_group->fs_info; 2762 struct btrfs_root *root = fs_info->tree_root; 2763 struct inode *inode = NULL; 2764 struct extent_changeset *data_reserved = NULL; 2765 u64 alloc_hint = 0; 2766 int dcs = BTRFS_DC_ERROR; 2767 u64 cache_size = 0; 2768 int retries = 0; 2769 int ret = 0; 2770 2771 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2772 return 0; 2773 2774 /* 2775 * If this block group is smaller than 100 megs don't bother caching the 2776 * block group. 2777 */ 2778 if (block_group->length < (100 * SZ_1M)) { 2779 spin_lock(&block_group->lock); 2780 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2781 spin_unlock(&block_group->lock); 2782 return 0; 2783 } 2784 2785 if (TRANS_ABORTED(trans)) 2786 return 0; 2787 again: 2788 inode = lookup_free_space_inode(block_group, path); 2789 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2790 ret = PTR_ERR(inode); 2791 btrfs_release_path(path); 2792 goto out; 2793 } 2794 2795 if (IS_ERR(inode)) { 2796 BUG_ON(retries); 2797 retries++; 2798 2799 if (block_group->ro) 2800 goto out_free; 2801 2802 ret = create_free_space_inode(trans, block_group, path); 2803 if (ret) 2804 goto out_free; 2805 goto again; 2806 } 2807 2808 /* 2809 * We want to set the generation to 0, that way if anything goes wrong 2810 * from here on out we know not to trust this cache when we load up next 2811 * time. 2812 */ 2813 BTRFS_I(inode)->generation = 0; 2814 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2815 if (ret) { 2816 /* 2817 * So theoretically we could recover from this, simply set the 2818 * super cache generation to 0 so we know to invalidate the 2819 * cache, but then we'd have to keep track of the block groups 2820 * that fail this way so we know we _have_ to reset this cache 2821 * before the next commit or risk reading stale cache. So to 2822 * limit our exposure to horrible edge cases lets just abort the 2823 * transaction, this only happens in really bad situations 2824 * anyway. 2825 */ 2826 btrfs_abort_transaction(trans, ret); 2827 goto out_put; 2828 } 2829 WARN_ON(ret); 2830 2831 /* We've already setup this transaction, go ahead and exit */ 2832 if (block_group->cache_generation == trans->transid && 2833 i_size_read(inode)) { 2834 dcs = BTRFS_DC_SETUP; 2835 goto out_put; 2836 } 2837 2838 if (i_size_read(inode) > 0) { 2839 ret = btrfs_check_trunc_cache_free_space(fs_info, 2840 &fs_info->global_block_rsv); 2841 if (ret) 2842 goto out_put; 2843 2844 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2845 if (ret) 2846 goto out_put; 2847 } 2848 2849 spin_lock(&block_group->lock); 2850 if (block_group->cached != BTRFS_CACHE_FINISHED || 2851 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2852 /* 2853 * don't bother trying to write stuff out _if_ 2854 * a) we're not cached, 2855 * b) we're with nospace_cache mount option, 2856 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2857 */ 2858 dcs = BTRFS_DC_WRITTEN; 2859 spin_unlock(&block_group->lock); 2860 goto out_put; 2861 } 2862 spin_unlock(&block_group->lock); 2863 2864 /* 2865 * We hit an ENOSPC when setting up the cache in this transaction, just 2866 * skip doing the setup, we've already cleared the cache so we're safe. 2867 */ 2868 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2869 ret = -ENOSPC; 2870 goto out_put; 2871 } 2872 2873 /* 2874 * Try to preallocate enough space based on how big the block group is. 2875 * Keep in mind this has to include any pinned space which could end up 2876 * taking up quite a bit since it's not folded into the other space 2877 * cache. 2878 */ 2879 cache_size = div_u64(block_group->length, SZ_256M); 2880 if (!cache_size) 2881 cache_size = 1; 2882 2883 cache_size *= 16; 2884 cache_size *= fs_info->sectorsize; 2885 2886 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2887 cache_size); 2888 if (ret) 2889 goto out_put; 2890 2891 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 2892 cache_size, cache_size, 2893 &alloc_hint); 2894 /* 2895 * Our cache requires contiguous chunks so that we don't modify a bunch 2896 * of metadata or split extents when writing the cache out, which means 2897 * we can enospc if we are heavily fragmented in addition to just normal 2898 * out of space conditions. So if we hit this just skip setting up any 2899 * other block groups for this transaction, maybe we'll unpin enough 2900 * space the next time around. 2901 */ 2902 if (!ret) 2903 dcs = BTRFS_DC_SETUP; 2904 else if (ret == -ENOSPC) 2905 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2906 2907 out_put: 2908 iput(inode); 2909 out_free: 2910 btrfs_release_path(path); 2911 out: 2912 spin_lock(&block_group->lock); 2913 if (!ret && dcs == BTRFS_DC_SETUP) 2914 block_group->cache_generation = trans->transid; 2915 block_group->disk_cache_state = dcs; 2916 spin_unlock(&block_group->lock); 2917 2918 extent_changeset_free(data_reserved); 2919 return ret; 2920 } 2921 2922 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2923 { 2924 struct btrfs_fs_info *fs_info = trans->fs_info; 2925 struct btrfs_block_group *cache, *tmp; 2926 struct btrfs_transaction *cur_trans = trans->transaction; 2927 struct btrfs_path *path; 2928 2929 if (list_empty(&cur_trans->dirty_bgs) || 2930 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2931 return 0; 2932 2933 path = btrfs_alloc_path(); 2934 if (!path) 2935 return -ENOMEM; 2936 2937 /* Could add new block groups, use _safe just in case */ 2938 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2939 dirty_list) { 2940 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2941 cache_save_setup(cache, trans, path); 2942 } 2943 2944 btrfs_free_path(path); 2945 return 0; 2946 } 2947 2948 /* 2949 * Transaction commit does final block group cache writeback during a critical 2950 * section where nothing is allowed to change the FS. This is required in 2951 * order for the cache to actually match the block group, but can introduce a 2952 * lot of latency into the commit. 2953 * 2954 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2955 * There's a chance we'll have to redo some of it if the block group changes 2956 * again during the commit, but it greatly reduces the commit latency by 2957 * getting rid of the easy block groups while we're still allowing others to 2958 * join the commit. 2959 */ 2960 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2961 { 2962 struct btrfs_fs_info *fs_info = trans->fs_info; 2963 struct btrfs_block_group *cache; 2964 struct btrfs_transaction *cur_trans = trans->transaction; 2965 int ret = 0; 2966 int should_put; 2967 struct btrfs_path *path = NULL; 2968 LIST_HEAD(dirty); 2969 struct list_head *io = &cur_trans->io_bgs; 2970 int loops = 0; 2971 2972 spin_lock(&cur_trans->dirty_bgs_lock); 2973 if (list_empty(&cur_trans->dirty_bgs)) { 2974 spin_unlock(&cur_trans->dirty_bgs_lock); 2975 return 0; 2976 } 2977 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2978 spin_unlock(&cur_trans->dirty_bgs_lock); 2979 2980 again: 2981 /* Make sure all the block groups on our dirty list actually exist */ 2982 btrfs_create_pending_block_groups(trans); 2983 2984 if (!path) { 2985 path = btrfs_alloc_path(); 2986 if (!path) { 2987 ret = -ENOMEM; 2988 goto out; 2989 } 2990 } 2991 2992 /* 2993 * cache_write_mutex is here only to save us from balance or automatic 2994 * removal of empty block groups deleting this block group while we are 2995 * writing out the cache 2996 */ 2997 mutex_lock(&trans->transaction->cache_write_mutex); 2998 while (!list_empty(&dirty)) { 2999 bool drop_reserve = true; 3000 3001 cache = list_first_entry(&dirty, struct btrfs_block_group, 3002 dirty_list); 3003 /* 3004 * This can happen if something re-dirties a block group that 3005 * is already under IO. Just wait for it to finish and then do 3006 * it all again 3007 */ 3008 if (!list_empty(&cache->io_list)) { 3009 list_del_init(&cache->io_list); 3010 btrfs_wait_cache_io(trans, cache, path); 3011 btrfs_put_block_group(cache); 3012 } 3013 3014 3015 /* 3016 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3017 * it should update the cache_state. Don't delete until after 3018 * we wait. 3019 * 3020 * Since we're not running in the commit critical section 3021 * we need the dirty_bgs_lock to protect from update_block_group 3022 */ 3023 spin_lock(&cur_trans->dirty_bgs_lock); 3024 list_del_init(&cache->dirty_list); 3025 spin_unlock(&cur_trans->dirty_bgs_lock); 3026 3027 should_put = 1; 3028 3029 cache_save_setup(cache, trans, path); 3030 3031 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3032 cache->io_ctl.inode = NULL; 3033 ret = btrfs_write_out_cache(trans, cache, path); 3034 if (ret == 0 && cache->io_ctl.inode) { 3035 should_put = 0; 3036 3037 /* 3038 * The cache_write_mutex is protecting the 3039 * io_list, also refer to the definition of 3040 * btrfs_transaction::io_bgs for more details 3041 */ 3042 list_add_tail(&cache->io_list, io); 3043 } else { 3044 /* 3045 * If we failed to write the cache, the 3046 * generation will be bad and life goes on 3047 */ 3048 ret = 0; 3049 } 3050 } 3051 if (!ret) { 3052 ret = update_block_group_item(trans, path, cache); 3053 /* 3054 * Our block group might still be attached to the list 3055 * of new block groups in the transaction handle of some 3056 * other task (struct btrfs_trans_handle->new_bgs). This 3057 * means its block group item isn't yet in the extent 3058 * tree. If this happens ignore the error, as we will 3059 * try again later in the critical section of the 3060 * transaction commit. 3061 */ 3062 if (ret == -ENOENT) { 3063 ret = 0; 3064 spin_lock(&cur_trans->dirty_bgs_lock); 3065 if (list_empty(&cache->dirty_list)) { 3066 list_add_tail(&cache->dirty_list, 3067 &cur_trans->dirty_bgs); 3068 btrfs_get_block_group(cache); 3069 drop_reserve = false; 3070 } 3071 spin_unlock(&cur_trans->dirty_bgs_lock); 3072 } else if (ret) { 3073 btrfs_abort_transaction(trans, ret); 3074 } 3075 } 3076 3077 /* If it's not on the io list, we need to put the block group */ 3078 if (should_put) 3079 btrfs_put_block_group(cache); 3080 if (drop_reserve) 3081 btrfs_delayed_refs_rsv_release(fs_info, 1); 3082 /* 3083 * Avoid blocking other tasks for too long. It might even save 3084 * us from writing caches for block groups that are going to be 3085 * removed. 3086 */ 3087 mutex_unlock(&trans->transaction->cache_write_mutex); 3088 if (ret) 3089 goto out; 3090 mutex_lock(&trans->transaction->cache_write_mutex); 3091 } 3092 mutex_unlock(&trans->transaction->cache_write_mutex); 3093 3094 /* 3095 * Go through delayed refs for all the stuff we've just kicked off 3096 * and then loop back (just once) 3097 */ 3098 if (!ret) 3099 ret = btrfs_run_delayed_refs(trans, 0); 3100 if (!ret && loops == 0) { 3101 loops++; 3102 spin_lock(&cur_trans->dirty_bgs_lock); 3103 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3104 /* 3105 * dirty_bgs_lock protects us from concurrent block group 3106 * deletes too (not just cache_write_mutex). 3107 */ 3108 if (!list_empty(&dirty)) { 3109 spin_unlock(&cur_trans->dirty_bgs_lock); 3110 goto again; 3111 } 3112 spin_unlock(&cur_trans->dirty_bgs_lock); 3113 } 3114 out: 3115 if (ret < 0) { 3116 spin_lock(&cur_trans->dirty_bgs_lock); 3117 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3118 spin_unlock(&cur_trans->dirty_bgs_lock); 3119 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3120 } 3121 3122 btrfs_free_path(path); 3123 return ret; 3124 } 3125 3126 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3127 { 3128 struct btrfs_fs_info *fs_info = trans->fs_info; 3129 struct btrfs_block_group *cache; 3130 struct btrfs_transaction *cur_trans = trans->transaction; 3131 int ret = 0; 3132 int should_put; 3133 struct btrfs_path *path; 3134 struct list_head *io = &cur_trans->io_bgs; 3135 3136 path = btrfs_alloc_path(); 3137 if (!path) 3138 return -ENOMEM; 3139 3140 /* 3141 * Even though we are in the critical section of the transaction commit, 3142 * we can still have concurrent tasks adding elements to this 3143 * transaction's list of dirty block groups. These tasks correspond to 3144 * endio free space workers started when writeback finishes for a 3145 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3146 * allocate new block groups as a result of COWing nodes of the root 3147 * tree when updating the free space inode. The writeback for the space 3148 * caches is triggered by an earlier call to 3149 * btrfs_start_dirty_block_groups() and iterations of the following 3150 * loop. 3151 * Also we want to do the cache_save_setup first and then run the 3152 * delayed refs to make sure we have the best chance at doing this all 3153 * in one shot. 3154 */ 3155 spin_lock(&cur_trans->dirty_bgs_lock); 3156 while (!list_empty(&cur_trans->dirty_bgs)) { 3157 cache = list_first_entry(&cur_trans->dirty_bgs, 3158 struct btrfs_block_group, 3159 dirty_list); 3160 3161 /* 3162 * This can happen if cache_save_setup re-dirties a block group 3163 * that is already under IO. Just wait for it to finish and 3164 * then do it all again 3165 */ 3166 if (!list_empty(&cache->io_list)) { 3167 spin_unlock(&cur_trans->dirty_bgs_lock); 3168 list_del_init(&cache->io_list); 3169 btrfs_wait_cache_io(trans, cache, path); 3170 btrfs_put_block_group(cache); 3171 spin_lock(&cur_trans->dirty_bgs_lock); 3172 } 3173 3174 /* 3175 * Don't remove from the dirty list until after we've waited on 3176 * any pending IO 3177 */ 3178 list_del_init(&cache->dirty_list); 3179 spin_unlock(&cur_trans->dirty_bgs_lock); 3180 should_put = 1; 3181 3182 cache_save_setup(cache, trans, path); 3183 3184 if (!ret) 3185 ret = btrfs_run_delayed_refs(trans, 3186 (unsigned long) -1); 3187 3188 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3189 cache->io_ctl.inode = NULL; 3190 ret = btrfs_write_out_cache(trans, cache, path); 3191 if (ret == 0 && cache->io_ctl.inode) { 3192 should_put = 0; 3193 list_add_tail(&cache->io_list, io); 3194 } else { 3195 /* 3196 * If we failed to write the cache, the 3197 * generation will be bad and life goes on 3198 */ 3199 ret = 0; 3200 } 3201 } 3202 if (!ret) { 3203 ret = update_block_group_item(trans, path, cache); 3204 /* 3205 * One of the free space endio workers might have 3206 * created a new block group while updating a free space 3207 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3208 * and hasn't released its transaction handle yet, in 3209 * which case the new block group is still attached to 3210 * its transaction handle and its creation has not 3211 * finished yet (no block group item in the extent tree 3212 * yet, etc). If this is the case, wait for all free 3213 * space endio workers to finish and retry. This is a 3214 * very rare case so no need for a more efficient and 3215 * complex approach. 3216 */ 3217 if (ret == -ENOENT) { 3218 wait_event(cur_trans->writer_wait, 3219 atomic_read(&cur_trans->num_writers) == 1); 3220 ret = update_block_group_item(trans, path, cache); 3221 } 3222 if (ret) 3223 btrfs_abort_transaction(trans, ret); 3224 } 3225 3226 /* If its not on the io list, we need to put the block group */ 3227 if (should_put) 3228 btrfs_put_block_group(cache); 3229 btrfs_delayed_refs_rsv_release(fs_info, 1); 3230 spin_lock(&cur_trans->dirty_bgs_lock); 3231 } 3232 spin_unlock(&cur_trans->dirty_bgs_lock); 3233 3234 /* 3235 * Refer to the definition of io_bgs member for details why it's safe 3236 * to use it without any locking 3237 */ 3238 while (!list_empty(io)) { 3239 cache = list_first_entry(io, struct btrfs_block_group, 3240 io_list); 3241 list_del_init(&cache->io_list); 3242 btrfs_wait_cache_io(trans, cache, path); 3243 btrfs_put_block_group(cache); 3244 } 3245 3246 btrfs_free_path(path); 3247 return ret; 3248 } 3249 3250 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg, 3251 u64 bytes_freed) 3252 { 3253 const struct btrfs_space_info *space_info = bg->space_info; 3254 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 3255 const u64 new_val = bg->used; 3256 const u64 old_val = new_val + bytes_freed; 3257 u64 thresh; 3258 3259 if (reclaim_thresh == 0) 3260 return false; 3261 3262 thresh = div_factor_fine(bg->length, reclaim_thresh); 3263 3264 /* 3265 * If we were below the threshold before don't reclaim, we are likely a 3266 * brand new block group and we don't want to relocate new block groups. 3267 */ 3268 if (old_val < thresh) 3269 return false; 3270 if (new_val >= thresh) 3271 return false; 3272 return true; 3273 } 3274 3275 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3276 u64 bytenr, u64 num_bytes, bool alloc) 3277 { 3278 struct btrfs_fs_info *info = trans->fs_info; 3279 struct btrfs_block_group *cache = NULL; 3280 u64 total = num_bytes; 3281 u64 old_val; 3282 u64 byte_in_group; 3283 int factor; 3284 int ret = 0; 3285 3286 /* Block accounting for super block */ 3287 spin_lock(&info->delalloc_root_lock); 3288 old_val = btrfs_super_bytes_used(info->super_copy); 3289 if (alloc) 3290 old_val += num_bytes; 3291 else 3292 old_val -= num_bytes; 3293 btrfs_set_super_bytes_used(info->super_copy, old_val); 3294 spin_unlock(&info->delalloc_root_lock); 3295 3296 while (total) { 3297 bool reclaim; 3298 3299 cache = btrfs_lookup_block_group(info, bytenr); 3300 if (!cache) { 3301 ret = -ENOENT; 3302 break; 3303 } 3304 factor = btrfs_bg_type_to_factor(cache->flags); 3305 3306 /* 3307 * If this block group has free space cache written out, we 3308 * need to make sure to load it if we are removing space. This 3309 * is because we need the unpinning stage to actually add the 3310 * space back to the block group, otherwise we will leak space. 3311 */ 3312 if (!alloc && !btrfs_block_group_done(cache)) 3313 btrfs_cache_block_group(cache, 1); 3314 3315 byte_in_group = bytenr - cache->start; 3316 WARN_ON(byte_in_group > cache->length); 3317 3318 spin_lock(&cache->space_info->lock); 3319 spin_lock(&cache->lock); 3320 3321 if (btrfs_test_opt(info, SPACE_CACHE) && 3322 cache->disk_cache_state < BTRFS_DC_CLEAR) 3323 cache->disk_cache_state = BTRFS_DC_CLEAR; 3324 3325 old_val = cache->used; 3326 num_bytes = min(total, cache->length - byte_in_group); 3327 if (alloc) { 3328 old_val += num_bytes; 3329 cache->used = old_val; 3330 cache->reserved -= num_bytes; 3331 cache->space_info->bytes_reserved -= num_bytes; 3332 cache->space_info->bytes_used += num_bytes; 3333 cache->space_info->disk_used += num_bytes * factor; 3334 spin_unlock(&cache->lock); 3335 spin_unlock(&cache->space_info->lock); 3336 } else { 3337 old_val -= num_bytes; 3338 cache->used = old_val; 3339 cache->pinned += num_bytes; 3340 btrfs_space_info_update_bytes_pinned(info, 3341 cache->space_info, num_bytes); 3342 cache->space_info->bytes_used -= num_bytes; 3343 cache->space_info->disk_used -= num_bytes * factor; 3344 3345 reclaim = should_reclaim_block_group(cache, num_bytes); 3346 spin_unlock(&cache->lock); 3347 spin_unlock(&cache->space_info->lock); 3348 3349 set_extent_dirty(&trans->transaction->pinned_extents, 3350 bytenr, bytenr + num_bytes - 1, 3351 GFP_NOFS | __GFP_NOFAIL); 3352 } 3353 3354 spin_lock(&trans->transaction->dirty_bgs_lock); 3355 if (list_empty(&cache->dirty_list)) { 3356 list_add_tail(&cache->dirty_list, 3357 &trans->transaction->dirty_bgs); 3358 trans->delayed_ref_updates++; 3359 btrfs_get_block_group(cache); 3360 } 3361 spin_unlock(&trans->transaction->dirty_bgs_lock); 3362 3363 /* 3364 * No longer have used bytes in this block group, queue it for 3365 * deletion. We do this after adding the block group to the 3366 * dirty list to avoid races between cleaner kthread and space 3367 * cache writeout. 3368 */ 3369 if (!alloc && old_val == 0) { 3370 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3371 btrfs_mark_bg_unused(cache); 3372 } else if (!alloc && reclaim) { 3373 btrfs_mark_bg_to_reclaim(cache); 3374 } 3375 3376 btrfs_put_block_group(cache); 3377 total -= num_bytes; 3378 bytenr += num_bytes; 3379 } 3380 3381 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3382 btrfs_update_delayed_refs_rsv(trans); 3383 return ret; 3384 } 3385 3386 /** 3387 * btrfs_add_reserved_bytes - update the block_group and space info counters 3388 * @cache: The cache we are manipulating 3389 * @ram_bytes: The number of bytes of file content, and will be same to 3390 * @num_bytes except for the compress path. 3391 * @num_bytes: The number of bytes in question 3392 * @delalloc: The blocks are allocated for the delalloc write 3393 * 3394 * This is called by the allocator when it reserves space. If this is a 3395 * reservation and the block group has become read only we cannot make the 3396 * reservation and return -EAGAIN, otherwise this function always succeeds. 3397 */ 3398 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3399 u64 ram_bytes, u64 num_bytes, int delalloc) 3400 { 3401 struct btrfs_space_info *space_info = cache->space_info; 3402 int ret = 0; 3403 3404 spin_lock(&space_info->lock); 3405 spin_lock(&cache->lock); 3406 if (cache->ro) { 3407 ret = -EAGAIN; 3408 } else { 3409 cache->reserved += num_bytes; 3410 space_info->bytes_reserved += num_bytes; 3411 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3412 space_info->flags, num_bytes, 1); 3413 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3414 space_info, -ram_bytes); 3415 if (delalloc) 3416 cache->delalloc_bytes += num_bytes; 3417 3418 /* 3419 * Compression can use less space than we reserved, so wake 3420 * tickets if that happens 3421 */ 3422 if (num_bytes < ram_bytes) 3423 btrfs_try_granting_tickets(cache->fs_info, space_info); 3424 } 3425 spin_unlock(&cache->lock); 3426 spin_unlock(&space_info->lock); 3427 return ret; 3428 } 3429 3430 /** 3431 * btrfs_free_reserved_bytes - update the block_group and space info counters 3432 * @cache: The cache we are manipulating 3433 * @num_bytes: The number of bytes in question 3434 * @delalloc: The blocks are allocated for the delalloc write 3435 * 3436 * This is called by somebody who is freeing space that was never actually used 3437 * on disk. For example if you reserve some space for a new leaf in transaction 3438 * A and before transaction A commits you free that leaf, you call this with 3439 * reserve set to 0 in order to clear the reservation. 3440 */ 3441 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3442 u64 num_bytes, int delalloc) 3443 { 3444 struct btrfs_space_info *space_info = cache->space_info; 3445 3446 spin_lock(&space_info->lock); 3447 spin_lock(&cache->lock); 3448 if (cache->ro) 3449 space_info->bytes_readonly += num_bytes; 3450 cache->reserved -= num_bytes; 3451 space_info->bytes_reserved -= num_bytes; 3452 space_info->max_extent_size = 0; 3453 3454 if (delalloc) 3455 cache->delalloc_bytes -= num_bytes; 3456 spin_unlock(&cache->lock); 3457 3458 btrfs_try_granting_tickets(cache->fs_info, space_info); 3459 spin_unlock(&space_info->lock); 3460 } 3461 3462 static void force_metadata_allocation(struct btrfs_fs_info *info) 3463 { 3464 struct list_head *head = &info->space_info; 3465 struct btrfs_space_info *found; 3466 3467 list_for_each_entry(found, head, list) { 3468 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3469 found->force_alloc = CHUNK_ALLOC_FORCE; 3470 } 3471 } 3472 3473 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3474 struct btrfs_space_info *sinfo, int force) 3475 { 3476 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3477 u64 thresh; 3478 3479 if (force == CHUNK_ALLOC_FORCE) 3480 return 1; 3481 3482 /* 3483 * in limited mode, we want to have some free space up to 3484 * about 1% of the FS size. 3485 */ 3486 if (force == CHUNK_ALLOC_LIMITED) { 3487 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3488 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3489 3490 if (sinfo->total_bytes - bytes_used < thresh) 3491 return 1; 3492 } 3493 3494 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3495 return 0; 3496 return 1; 3497 } 3498 3499 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3500 { 3501 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3502 3503 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3504 } 3505 3506 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3507 { 3508 struct btrfs_block_group *bg; 3509 int ret; 3510 3511 /* 3512 * Check if we have enough space in the system space info because we 3513 * will need to update device items in the chunk btree and insert a new 3514 * chunk item in the chunk btree as well. This will allocate a new 3515 * system block group if needed. 3516 */ 3517 check_system_chunk(trans, flags); 3518 3519 bg = btrfs_create_chunk(trans, flags); 3520 if (IS_ERR(bg)) { 3521 ret = PTR_ERR(bg); 3522 goto out; 3523 } 3524 3525 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3526 /* 3527 * Normally we are not expected to fail with -ENOSPC here, since we have 3528 * previously reserved space in the system space_info and allocated one 3529 * new system chunk if necessary. However there are three exceptions: 3530 * 3531 * 1) We may have enough free space in the system space_info but all the 3532 * existing system block groups have a profile which can not be used 3533 * for extent allocation. 3534 * 3535 * This happens when mounting in degraded mode. For example we have a 3536 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3537 * using the other device in degraded mode. If we then allocate a chunk, 3538 * we may have enough free space in the existing system space_info, but 3539 * none of the block groups can be used for extent allocation since they 3540 * have a RAID1 profile, and because we are in degraded mode with a 3541 * single device, we are forced to allocate a new system chunk with a 3542 * SINGLE profile. Making check_system_chunk() iterate over all system 3543 * block groups and check if they have a usable profile and enough space 3544 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3545 * try again after forcing allocation of a new system chunk. Like this 3546 * we avoid paying the cost of that search in normal circumstances, when 3547 * we were not mounted in degraded mode; 3548 * 3549 * 2) We had enough free space info the system space_info, and one suitable 3550 * block group to allocate from when we called check_system_chunk() 3551 * above. However right after we called it, the only system block group 3552 * with enough free space got turned into RO mode by a running scrub, 3553 * and in this case we have to allocate a new one and retry. We only 3554 * need do this allocate and retry once, since we have a transaction 3555 * handle and scrub uses the commit root to search for block groups; 3556 * 3557 * 3) We had one system block group with enough free space when we called 3558 * check_system_chunk(), but after that, right before we tried to 3559 * allocate the last extent buffer we needed, a discard operation came 3560 * in and it temporarily removed the last free space entry from the 3561 * block group (discard removes a free space entry, discards it, and 3562 * then adds back the entry to the block group cache). 3563 */ 3564 if (ret == -ENOSPC) { 3565 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3566 struct btrfs_block_group *sys_bg; 3567 3568 sys_bg = btrfs_create_chunk(trans, sys_flags); 3569 if (IS_ERR(sys_bg)) { 3570 ret = PTR_ERR(sys_bg); 3571 btrfs_abort_transaction(trans, ret); 3572 goto out; 3573 } 3574 3575 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3576 if (ret) { 3577 btrfs_abort_transaction(trans, ret); 3578 goto out; 3579 } 3580 3581 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3582 if (ret) { 3583 btrfs_abort_transaction(trans, ret); 3584 goto out; 3585 } 3586 } else if (ret) { 3587 btrfs_abort_transaction(trans, ret); 3588 goto out; 3589 } 3590 out: 3591 btrfs_trans_release_chunk_metadata(trans); 3592 3593 if (ret) 3594 return ERR_PTR(ret); 3595 3596 btrfs_get_block_group(bg); 3597 return bg; 3598 } 3599 3600 /* 3601 * Chunk allocation is done in 2 phases: 3602 * 3603 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3604 * the chunk, the chunk mapping, create its block group and add the items 3605 * that belong in the chunk btree to it - more specifically, we need to 3606 * update device items in the chunk btree and add a new chunk item to it. 3607 * 3608 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3609 * group item to the extent btree and the device extent items to the devices 3610 * btree. 3611 * 3612 * This is done to prevent deadlocks. For example when COWing a node from the 3613 * extent btree we are holding a write lock on the node's parent and if we 3614 * trigger chunk allocation and attempted to insert the new block group item 3615 * in the extent btree right way, we could deadlock because the path for the 3616 * insertion can include that parent node. At first glance it seems impossible 3617 * to trigger chunk allocation after starting a transaction since tasks should 3618 * reserve enough transaction units (metadata space), however while that is true 3619 * most of the time, chunk allocation may still be triggered for several reasons: 3620 * 3621 * 1) When reserving metadata, we check if there is enough free space in the 3622 * metadata space_info and therefore don't trigger allocation of a new chunk. 3623 * However later when the task actually tries to COW an extent buffer from 3624 * the extent btree or from the device btree for example, it is forced to 3625 * allocate a new block group (chunk) because the only one that had enough 3626 * free space was just turned to RO mode by a running scrub for example (or 3627 * device replace, block group reclaim thread, etc), so we can not use it 3628 * for allocating an extent and end up being forced to allocate a new one; 3629 * 3630 * 2) Because we only check that the metadata space_info has enough free bytes, 3631 * we end up not allocating a new metadata chunk in that case. However if 3632 * the filesystem was mounted in degraded mode, none of the existing block 3633 * groups might be suitable for extent allocation due to their incompatible 3634 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3635 * use a RAID1 profile, in degraded mode using a single device). In this case 3636 * when the task attempts to COW some extent buffer of the extent btree for 3637 * example, it will trigger allocation of a new metadata block group with a 3638 * suitable profile (SINGLE profile in the example of the degraded mount of 3639 * the RAID1 filesystem); 3640 * 3641 * 3) The task has reserved enough transaction units / metadata space, but when 3642 * it attempts to COW an extent buffer from the extent or device btree for 3643 * example, it does not find any free extent in any metadata block group, 3644 * therefore forced to try to allocate a new metadata block group. 3645 * This is because some other task allocated all available extents in the 3646 * meanwhile - this typically happens with tasks that don't reserve space 3647 * properly, either intentionally or as a bug. One example where this is 3648 * done intentionally is fsync, as it does not reserve any transaction units 3649 * and ends up allocating a variable number of metadata extents for log 3650 * tree extent buffers; 3651 * 3652 * 4) The task has reserved enough transaction units / metadata space, but right 3653 * before it tries to allocate the last extent buffer it needs, a discard 3654 * operation comes in and, temporarily, removes the last free space entry from 3655 * the only metadata block group that had free space (discard starts by 3656 * removing a free space entry from a block group, then does the discard 3657 * operation and, once it's done, it adds back the free space entry to the 3658 * block group). 3659 * 3660 * We also need this 2 phases setup when adding a device to a filesystem with 3661 * a seed device - we must create new metadata and system chunks without adding 3662 * any of the block group items to the chunk, extent and device btrees. If we 3663 * did not do it this way, we would get ENOSPC when attempting to update those 3664 * btrees, since all the chunks from the seed device are read-only. 3665 * 3666 * Phase 1 does the updates and insertions to the chunk btree because if we had 3667 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3668 * parallel, we risk having too many system chunks allocated by many tasks if 3669 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3670 * extreme case this leads to exhaustion of the system chunk array in the 3671 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3672 * and with RAID filesystems (so we have more device items in the chunk btree). 3673 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3674 * the system chunk array due to concurrent allocations") provides more details. 3675 * 3676 * Allocation of system chunks does not happen through this function. A task that 3677 * needs to update the chunk btree (the only btree that uses system chunks), must 3678 * preallocate chunk space by calling either check_system_chunk() or 3679 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3680 * metadata chunk or when removing a chunk, while the later is used before doing 3681 * a modification to the chunk btree - use cases for the later are adding, 3682 * removing and resizing a device as well as relocation of a system chunk. 3683 * See the comment below for more details. 3684 * 3685 * The reservation of system space, done through check_system_chunk(), as well 3686 * as all the updates and insertions into the chunk btree must be done while 3687 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3688 * an extent buffer from the chunks btree we never trigger allocation of a new 3689 * system chunk, which would result in a deadlock (trying to lock twice an 3690 * extent buffer of the chunk btree, first time before triggering the chunk 3691 * allocation and the second time during chunk allocation while attempting to 3692 * update the chunks btree). The system chunk array is also updated while holding 3693 * that mutex. The same logic applies to removing chunks - we must reserve system 3694 * space, update the chunk btree and the system chunk array in the superblock 3695 * while holding fs_info->chunk_mutex. 3696 * 3697 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3698 * 3699 * If @force is CHUNK_ALLOC_FORCE: 3700 * - return 1 if it successfully allocates a chunk, 3701 * - return errors including -ENOSPC otherwise. 3702 * If @force is NOT CHUNK_ALLOC_FORCE: 3703 * - return 0 if it doesn't need to allocate a new chunk, 3704 * - return 1 if it successfully allocates a chunk, 3705 * - return errors including -ENOSPC otherwise. 3706 */ 3707 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3708 enum btrfs_chunk_alloc_enum force) 3709 { 3710 struct btrfs_fs_info *fs_info = trans->fs_info; 3711 struct btrfs_space_info *space_info; 3712 struct btrfs_block_group *ret_bg; 3713 bool wait_for_alloc = false; 3714 bool should_alloc = false; 3715 bool from_extent_allocation = false; 3716 int ret = 0; 3717 3718 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 3719 from_extent_allocation = true; 3720 force = CHUNK_ALLOC_FORCE; 3721 } 3722 3723 /* Don't re-enter if we're already allocating a chunk */ 3724 if (trans->allocating_chunk) 3725 return -ENOSPC; 3726 /* 3727 * Allocation of system chunks can not happen through this path, as we 3728 * could end up in a deadlock if we are allocating a data or metadata 3729 * chunk and there is another task modifying the chunk btree. 3730 * 3731 * This is because while we are holding the chunk mutex, we will attempt 3732 * to add the new chunk item to the chunk btree or update an existing 3733 * device item in the chunk btree, while the other task that is modifying 3734 * the chunk btree is attempting to COW an extent buffer while holding a 3735 * lock on it and on its parent - if the COW operation triggers a system 3736 * chunk allocation, then we can deadlock because we are holding the 3737 * chunk mutex and we may need to access that extent buffer or its parent 3738 * in order to add the chunk item or update a device item. 3739 * 3740 * Tasks that want to modify the chunk tree should reserve system space 3741 * before updating the chunk btree, by calling either 3742 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 3743 * It's possible that after a task reserves the space, it still ends up 3744 * here - this happens in the cases described above at do_chunk_alloc(). 3745 * The task will have to either retry or fail. 3746 */ 3747 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3748 return -ENOSPC; 3749 3750 space_info = btrfs_find_space_info(fs_info, flags); 3751 ASSERT(space_info); 3752 3753 do { 3754 spin_lock(&space_info->lock); 3755 if (force < space_info->force_alloc) 3756 force = space_info->force_alloc; 3757 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3758 if (space_info->full) { 3759 /* No more free physical space */ 3760 if (should_alloc) 3761 ret = -ENOSPC; 3762 else 3763 ret = 0; 3764 spin_unlock(&space_info->lock); 3765 return ret; 3766 } else if (!should_alloc) { 3767 spin_unlock(&space_info->lock); 3768 return 0; 3769 } else if (space_info->chunk_alloc) { 3770 /* 3771 * Someone is already allocating, so we need to block 3772 * until this someone is finished and then loop to 3773 * recheck if we should continue with our allocation 3774 * attempt. 3775 */ 3776 wait_for_alloc = true; 3777 force = CHUNK_ALLOC_NO_FORCE; 3778 spin_unlock(&space_info->lock); 3779 mutex_lock(&fs_info->chunk_mutex); 3780 mutex_unlock(&fs_info->chunk_mutex); 3781 } else { 3782 /* Proceed with allocation */ 3783 space_info->chunk_alloc = 1; 3784 wait_for_alloc = false; 3785 spin_unlock(&space_info->lock); 3786 } 3787 3788 cond_resched(); 3789 } while (wait_for_alloc); 3790 3791 mutex_lock(&fs_info->chunk_mutex); 3792 trans->allocating_chunk = true; 3793 3794 /* 3795 * If we have mixed data/metadata chunks we want to make sure we keep 3796 * allocating mixed chunks instead of individual chunks. 3797 */ 3798 if (btrfs_mixed_space_info(space_info)) 3799 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3800 3801 /* 3802 * if we're doing a data chunk, go ahead and make sure that 3803 * we keep a reasonable number of metadata chunks allocated in the 3804 * FS as well. 3805 */ 3806 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3807 fs_info->data_chunk_allocations++; 3808 if (!(fs_info->data_chunk_allocations % 3809 fs_info->metadata_ratio)) 3810 force_metadata_allocation(fs_info); 3811 } 3812 3813 ret_bg = do_chunk_alloc(trans, flags); 3814 trans->allocating_chunk = false; 3815 3816 if (IS_ERR(ret_bg)) { 3817 ret = PTR_ERR(ret_bg); 3818 } else if (from_extent_allocation) { 3819 /* 3820 * New block group is likely to be used soon. Try to activate 3821 * it now. Failure is OK for now. 3822 */ 3823 btrfs_zone_activate(ret_bg); 3824 } 3825 3826 if (!ret) 3827 btrfs_put_block_group(ret_bg); 3828 3829 spin_lock(&space_info->lock); 3830 if (ret < 0) { 3831 if (ret == -ENOSPC) 3832 space_info->full = 1; 3833 else 3834 goto out; 3835 } else { 3836 ret = 1; 3837 space_info->max_extent_size = 0; 3838 } 3839 3840 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3841 out: 3842 space_info->chunk_alloc = 0; 3843 spin_unlock(&space_info->lock); 3844 mutex_unlock(&fs_info->chunk_mutex); 3845 3846 return ret; 3847 } 3848 3849 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3850 { 3851 u64 num_dev; 3852 3853 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3854 if (!num_dev) 3855 num_dev = fs_info->fs_devices->rw_devices; 3856 3857 return num_dev; 3858 } 3859 3860 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 3861 u64 bytes, 3862 u64 type) 3863 { 3864 struct btrfs_fs_info *fs_info = trans->fs_info; 3865 struct btrfs_space_info *info; 3866 u64 left; 3867 int ret = 0; 3868 3869 /* 3870 * Needed because we can end up allocating a system chunk and for an 3871 * atomic and race free space reservation in the chunk block reserve. 3872 */ 3873 lockdep_assert_held(&fs_info->chunk_mutex); 3874 3875 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3876 spin_lock(&info->lock); 3877 left = info->total_bytes - btrfs_space_info_used(info, true); 3878 spin_unlock(&info->lock); 3879 3880 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3881 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3882 left, bytes, type); 3883 btrfs_dump_space_info(fs_info, info, 0, 0); 3884 } 3885 3886 if (left < bytes) { 3887 u64 flags = btrfs_system_alloc_profile(fs_info); 3888 struct btrfs_block_group *bg; 3889 3890 /* 3891 * Ignore failure to create system chunk. We might end up not 3892 * needing it, as we might not need to COW all nodes/leafs from 3893 * the paths we visit in the chunk tree (they were already COWed 3894 * or created in the current transaction for example). 3895 */ 3896 bg = btrfs_create_chunk(trans, flags); 3897 if (IS_ERR(bg)) { 3898 ret = PTR_ERR(bg); 3899 } else { 3900 /* 3901 * We have a new chunk. We also need to activate it for 3902 * zoned filesystem. 3903 */ 3904 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 3905 if (ret < 0) 3906 return; 3907 3908 /* 3909 * If we fail to add the chunk item here, we end up 3910 * trying again at phase 2 of chunk allocation, at 3911 * btrfs_create_pending_block_groups(). So ignore 3912 * any error here. An ENOSPC here could happen, due to 3913 * the cases described at do_chunk_alloc() - the system 3914 * block group we just created was just turned into RO 3915 * mode by a scrub for example, or a running discard 3916 * temporarily removed its free space entries, etc. 3917 */ 3918 btrfs_chunk_alloc_add_chunk_item(trans, bg); 3919 } 3920 } 3921 3922 if (!ret) { 3923 ret = btrfs_block_rsv_add(fs_info, 3924 &fs_info->chunk_block_rsv, 3925 bytes, BTRFS_RESERVE_NO_FLUSH); 3926 if (!ret) 3927 trans->chunk_bytes_reserved += bytes; 3928 } 3929 } 3930 3931 /* 3932 * Reserve space in the system space for allocating or removing a chunk. 3933 * The caller must be holding fs_info->chunk_mutex. 3934 */ 3935 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3936 { 3937 struct btrfs_fs_info *fs_info = trans->fs_info; 3938 const u64 num_devs = get_profile_num_devs(fs_info, type); 3939 u64 bytes; 3940 3941 /* num_devs device items to update and 1 chunk item to add or remove. */ 3942 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 3943 btrfs_calc_insert_metadata_size(fs_info, 1); 3944 3945 reserve_chunk_space(trans, bytes, type); 3946 } 3947 3948 /* 3949 * Reserve space in the system space, if needed, for doing a modification to the 3950 * chunk btree. 3951 * 3952 * @trans: A transaction handle. 3953 * @is_item_insertion: Indicate if the modification is for inserting a new item 3954 * in the chunk btree or if it's for the deletion or update 3955 * of an existing item. 3956 * 3957 * This is used in a context where we need to update the chunk btree outside 3958 * block group allocation and removal, to avoid a deadlock with a concurrent 3959 * task that is allocating a metadata or data block group and therefore needs to 3960 * update the chunk btree while holding the chunk mutex. After the update to the 3961 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 3962 * 3963 */ 3964 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 3965 bool is_item_insertion) 3966 { 3967 struct btrfs_fs_info *fs_info = trans->fs_info; 3968 u64 bytes; 3969 3970 if (is_item_insertion) 3971 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 3972 else 3973 bytes = btrfs_calc_metadata_size(fs_info, 1); 3974 3975 mutex_lock(&fs_info->chunk_mutex); 3976 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 3977 mutex_unlock(&fs_info->chunk_mutex); 3978 } 3979 3980 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3981 { 3982 struct btrfs_block_group *block_group; 3983 u64 last = 0; 3984 3985 while (1) { 3986 struct inode *inode; 3987 3988 block_group = btrfs_lookup_first_block_group(info, last); 3989 while (block_group) { 3990 btrfs_wait_block_group_cache_done(block_group); 3991 spin_lock(&block_group->lock); 3992 if (block_group->iref) 3993 break; 3994 spin_unlock(&block_group->lock); 3995 block_group = btrfs_next_block_group(block_group); 3996 } 3997 if (!block_group) { 3998 if (last == 0) 3999 break; 4000 last = 0; 4001 continue; 4002 } 4003 4004 inode = block_group->inode; 4005 block_group->iref = 0; 4006 block_group->inode = NULL; 4007 spin_unlock(&block_group->lock); 4008 ASSERT(block_group->io_ctl.inode == NULL); 4009 iput(inode); 4010 last = block_group->start + block_group->length; 4011 btrfs_put_block_group(block_group); 4012 } 4013 } 4014 4015 /* 4016 * Must be called only after stopping all workers, since we could have block 4017 * group caching kthreads running, and therefore they could race with us if we 4018 * freed the block groups before stopping them. 4019 */ 4020 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4021 { 4022 struct btrfs_block_group *block_group; 4023 struct btrfs_space_info *space_info; 4024 struct btrfs_caching_control *caching_ctl; 4025 struct rb_node *n; 4026 4027 write_lock(&info->block_group_cache_lock); 4028 while (!list_empty(&info->caching_block_groups)) { 4029 caching_ctl = list_entry(info->caching_block_groups.next, 4030 struct btrfs_caching_control, list); 4031 list_del(&caching_ctl->list); 4032 btrfs_put_caching_control(caching_ctl); 4033 } 4034 write_unlock(&info->block_group_cache_lock); 4035 4036 spin_lock(&info->unused_bgs_lock); 4037 while (!list_empty(&info->unused_bgs)) { 4038 block_group = list_first_entry(&info->unused_bgs, 4039 struct btrfs_block_group, 4040 bg_list); 4041 list_del_init(&block_group->bg_list); 4042 btrfs_put_block_group(block_group); 4043 } 4044 4045 while (!list_empty(&info->reclaim_bgs)) { 4046 block_group = list_first_entry(&info->reclaim_bgs, 4047 struct btrfs_block_group, 4048 bg_list); 4049 list_del_init(&block_group->bg_list); 4050 btrfs_put_block_group(block_group); 4051 } 4052 spin_unlock(&info->unused_bgs_lock); 4053 4054 spin_lock(&info->zone_active_bgs_lock); 4055 while (!list_empty(&info->zone_active_bgs)) { 4056 block_group = list_first_entry(&info->zone_active_bgs, 4057 struct btrfs_block_group, 4058 active_bg_list); 4059 list_del_init(&block_group->active_bg_list); 4060 btrfs_put_block_group(block_group); 4061 } 4062 spin_unlock(&info->zone_active_bgs_lock); 4063 4064 write_lock(&info->block_group_cache_lock); 4065 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4066 block_group = rb_entry(n, struct btrfs_block_group, 4067 cache_node); 4068 rb_erase_cached(&block_group->cache_node, 4069 &info->block_group_cache_tree); 4070 RB_CLEAR_NODE(&block_group->cache_node); 4071 write_unlock(&info->block_group_cache_lock); 4072 4073 down_write(&block_group->space_info->groups_sem); 4074 list_del(&block_group->list); 4075 up_write(&block_group->space_info->groups_sem); 4076 4077 /* 4078 * We haven't cached this block group, which means we could 4079 * possibly have excluded extents on this block group. 4080 */ 4081 if (block_group->cached == BTRFS_CACHE_NO || 4082 block_group->cached == BTRFS_CACHE_ERROR) 4083 btrfs_free_excluded_extents(block_group); 4084 4085 btrfs_remove_free_space_cache(block_group); 4086 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4087 ASSERT(list_empty(&block_group->dirty_list)); 4088 ASSERT(list_empty(&block_group->io_list)); 4089 ASSERT(list_empty(&block_group->bg_list)); 4090 ASSERT(refcount_read(&block_group->refs) == 1); 4091 ASSERT(block_group->swap_extents == 0); 4092 btrfs_put_block_group(block_group); 4093 4094 write_lock(&info->block_group_cache_lock); 4095 } 4096 write_unlock(&info->block_group_cache_lock); 4097 4098 btrfs_release_global_block_rsv(info); 4099 4100 while (!list_empty(&info->space_info)) { 4101 space_info = list_entry(info->space_info.next, 4102 struct btrfs_space_info, 4103 list); 4104 4105 /* 4106 * Do not hide this behind enospc_debug, this is actually 4107 * important and indicates a real bug if this happens. 4108 */ 4109 if (WARN_ON(space_info->bytes_pinned > 0 || 4110 space_info->bytes_may_use > 0)) 4111 btrfs_dump_space_info(info, space_info, 0, 0); 4112 4113 /* 4114 * If there was a failure to cleanup a log tree, very likely due 4115 * to an IO failure on a writeback attempt of one or more of its 4116 * extent buffers, we could not do proper (and cheap) unaccounting 4117 * of their reserved space, so don't warn on bytes_reserved > 0 in 4118 * that case. 4119 */ 4120 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4121 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4122 if (WARN_ON(space_info->bytes_reserved > 0)) 4123 btrfs_dump_space_info(info, space_info, 0, 0); 4124 } 4125 4126 WARN_ON(space_info->reclaim_size > 0); 4127 list_del(&space_info->list); 4128 btrfs_sysfs_remove_space_info(space_info); 4129 } 4130 return 0; 4131 } 4132 4133 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4134 { 4135 atomic_inc(&cache->frozen); 4136 } 4137 4138 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4139 { 4140 struct btrfs_fs_info *fs_info = block_group->fs_info; 4141 struct extent_map_tree *em_tree; 4142 struct extent_map *em; 4143 bool cleanup; 4144 4145 spin_lock(&block_group->lock); 4146 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4147 block_group->removed); 4148 spin_unlock(&block_group->lock); 4149 4150 if (cleanup) { 4151 em_tree = &fs_info->mapping_tree; 4152 write_lock(&em_tree->lock); 4153 em = lookup_extent_mapping(em_tree, block_group->start, 4154 1); 4155 BUG_ON(!em); /* logic error, can't happen */ 4156 remove_extent_mapping(em_tree, em); 4157 write_unlock(&em_tree->lock); 4158 4159 /* once for us and once for the tree */ 4160 free_extent_map(em); 4161 free_extent_map(em); 4162 4163 /* 4164 * We may have left one free space entry and other possible 4165 * tasks trimming this block group have left 1 entry each one. 4166 * Free them if any. 4167 */ 4168 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 4169 } 4170 } 4171 4172 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4173 { 4174 bool ret = true; 4175 4176 spin_lock(&bg->lock); 4177 if (bg->ro) 4178 ret = false; 4179 else 4180 bg->swap_extents++; 4181 spin_unlock(&bg->lock); 4182 4183 return ret; 4184 } 4185 4186 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4187 { 4188 spin_lock(&bg->lock); 4189 ASSERT(!bg->ro); 4190 ASSERT(bg->swap_extents >= amount); 4191 bg->swap_extents -= amount; 4192 spin_unlock(&bg->lock); 4193 } 4194