1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 kfree(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 /* 177 * This adds the block group to the fs_info rb tree for the block group cache 178 */ 179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 180 struct btrfs_block_group *block_group) 181 { 182 struct rb_node **p; 183 struct rb_node *parent = NULL; 184 struct btrfs_block_group *cache; 185 bool leftmost = true; 186 187 ASSERT(block_group->length != 0); 188 189 write_lock(&info->block_group_cache_lock); 190 p = &info->block_group_cache_tree.rb_root.rb_node; 191 192 while (*p) { 193 parent = *p; 194 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 195 if (block_group->start < cache->start) { 196 p = &(*p)->rb_left; 197 } else if (block_group->start > cache->start) { 198 p = &(*p)->rb_right; 199 leftmost = false; 200 } else { 201 write_unlock(&info->block_group_cache_lock); 202 return -EEXIST; 203 } 204 } 205 206 rb_link_node(&block_group->cache_node, parent, p); 207 rb_insert_color_cached(&block_group->cache_node, 208 &info->block_group_cache_tree, leftmost); 209 210 write_unlock(&info->block_group_cache_lock); 211 212 return 0; 213 } 214 215 /* 216 * This will return the block group at or after bytenr if contains is 0, else 217 * it will return the block group that contains the bytenr 218 */ 219 static struct btrfs_block_group *block_group_cache_tree_search( 220 struct btrfs_fs_info *info, u64 bytenr, int contains) 221 { 222 struct btrfs_block_group *cache, *ret = NULL; 223 struct rb_node *n; 224 u64 end, start; 225 226 read_lock(&info->block_group_cache_lock); 227 n = info->block_group_cache_tree.rb_root.rb_node; 228 229 while (n) { 230 cache = rb_entry(n, struct btrfs_block_group, cache_node); 231 end = cache->start + cache->length - 1; 232 start = cache->start; 233 234 if (bytenr < start) { 235 if (!contains && (!ret || start < ret->start)) 236 ret = cache; 237 n = n->rb_left; 238 } else if (bytenr > start) { 239 if (contains && bytenr <= end) { 240 ret = cache; 241 break; 242 } 243 n = n->rb_right; 244 } else { 245 ret = cache; 246 break; 247 } 248 } 249 if (ret) 250 btrfs_get_block_group(ret); 251 read_unlock(&info->block_group_cache_lock); 252 253 return ret; 254 } 255 256 /* 257 * Return the block group that starts at or after bytenr 258 */ 259 struct btrfs_block_group *btrfs_lookup_first_block_group( 260 struct btrfs_fs_info *info, u64 bytenr) 261 { 262 return block_group_cache_tree_search(info, bytenr, 0); 263 } 264 265 /* 266 * Return the block group that contains the given bytenr 267 */ 268 struct btrfs_block_group *btrfs_lookup_block_group( 269 struct btrfs_fs_info *info, u64 bytenr) 270 { 271 return block_group_cache_tree_search(info, bytenr, 1); 272 } 273 274 struct btrfs_block_group *btrfs_next_block_group( 275 struct btrfs_block_group *cache) 276 { 277 struct btrfs_fs_info *fs_info = cache->fs_info; 278 struct rb_node *node; 279 280 read_lock(&fs_info->block_group_cache_lock); 281 282 /* If our block group was removed, we need a full search. */ 283 if (RB_EMPTY_NODE(&cache->cache_node)) { 284 const u64 next_bytenr = cache->start + cache->length; 285 286 read_unlock(&fs_info->block_group_cache_lock); 287 btrfs_put_block_group(cache); 288 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 289 } 290 node = rb_next(&cache->cache_node); 291 btrfs_put_block_group(cache); 292 if (node) { 293 cache = rb_entry(node, struct btrfs_block_group, cache_node); 294 btrfs_get_block_group(cache); 295 } else 296 cache = NULL; 297 read_unlock(&fs_info->block_group_cache_lock); 298 return cache; 299 } 300 301 /* 302 * Check if we can do a NOCOW write for a given extent. 303 * 304 * @fs_info: The filesystem information object. 305 * @bytenr: Logical start address of the extent. 306 * 307 * Check if we can do a NOCOW write for the given extent, and increments the 308 * number of NOCOW writers in the block group that contains the extent, as long 309 * as the block group exists and it's currently not in read-only mode. 310 * 311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 312 * is responsible for calling btrfs_dec_nocow_writers() later. 313 * 314 * Or NULL if we can not do a NOCOW write 315 */ 316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 317 u64 bytenr) 318 { 319 struct btrfs_block_group *bg; 320 bool can_nocow = true; 321 322 bg = btrfs_lookup_block_group(fs_info, bytenr); 323 if (!bg) 324 return NULL; 325 326 spin_lock(&bg->lock); 327 if (bg->ro) 328 can_nocow = false; 329 else 330 atomic_inc(&bg->nocow_writers); 331 spin_unlock(&bg->lock); 332 333 if (!can_nocow) { 334 btrfs_put_block_group(bg); 335 return NULL; 336 } 337 338 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 339 return bg; 340 } 341 342 /* 343 * Decrement the number of NOCOW writers in a block group. 344 * 345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 346 * and on the block group returned by that call. Typically this is called after 347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 348 * relocation. 349 * 350 * After this call, the caller should not use the block group anymore. It it wants 351 * to use it, then it should get a reference on it before calling this function. 352 */ 353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 354 { 355 if (atomic_dec_and_test(&bg->nocow_writers)) 356 wake_up_var(&bg->nocow_writers); 357 358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 359 btrfs_put_block_group(bg); 360 } 361 362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 363 { 364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 365 } 366 367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 368 const u64 start) 369 { 370 struct btrfs_block_group *bg; 371 372 bg = btrfs_lookup_block_group(fs_info, start); 373 ASSERT(bg); 374 if (atomic_dec_and_test(&bg->reservations)) 375 wake_up_var(&bg->reservations); 376 btrfs_put_block_group(bg); 377 } 378 379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 380 { 381 struct btrfs_space_info *space_info = bg->space_info; 382 383 ASSERT(bg->ro); 384 385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 386 return; 387 388 /* 389 * Our block group is read only but before we set it to read only, 390 * some task might have had allocated an extent from it already, but it 391 * has not yet created a respective ordered extent (and added it to a 392 * root's list of ordered extents). 393 * Therefore wait for any task currently allocating extents, since the 394 * block group's reservations counter is incremented while a read lock 395 * on the groups' semaphore is held and decremented after releasing 396 * the read access on that semaphore and creating the ordered extent. 397 */ 398 down_write(&space_info->groups_sem); 399 up_write(&space_info->groups_sem); 400 401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 402 } 403 404 struct btrfs_caching_control *btrfs_get_caching_control( 405 struct btrfs_block_group *cache) 406 { 407 struct btrfs_caching_control *ctl; 408 409 spin_lock(&cache->lock); 410 if (!cache->caching_ctl) { 411 spin_unlock(&cache->lock); 412 return NULL; 413 } 414 415 ctl = cache->caching_ctl; 416 refcount_inc(&ctl->count); 417 spin_unlock(&cache->lock); 418 return ctl; 419 } 420 421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 422 { 423 if (refcount_dec_and_test(&ctl->count)) 424 kfree(ctl); 425 } 426 427 /* 428 * When we wait for progress in the block group caching, its because our 429 * allocation attempt failed at least once. So, we must sleep and let some 430 * progress happen before we try again. 431 * 432 * This function will sleep at least once waiting for new free space to show 433 * up, and then it will check the block group free space numbers for our min 434 * num_bytes. Another option is to have it go ahead and look in the rbtree for 435 * a free extent of a given size, but this is a good start. 436 * 437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 438 * any of the information in this block group. 439 */ 440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 441 u64 num_bytes) 442 { 443 struct btrfs_caching_control *caching_ctl; 444 int progress; 445 446 caching_ctl = btrfs_get_caching_control(cache); 447 if (!caching_ctl) 448 return; 449 450 /* 451 * We've already failed to allocate from this block group, so even if 452 * there's enough space in the block group it isn't contiguous enough to 453 * allow for an allocation, so wait for at least the next wakeup tick, 454 * or for the thing to be done. 455 */ 456 progress = atomic_read(&caching_ctl->progress); 457 458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 459 (progress != atomic_read(&caching_ctl->progress) && 460 (cache->free_space_ctl->free_space >= num_bytes))); 461 462 btrfs_put_caching_control(caching_ctl); 463 } 464 465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 466 struct btrfs_caching_control *caching_ctl) 467 { 468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 470 } 471 472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 473 { 474 struct btrfs_caching_control *caching_ctl; 475 int ret; 476 477 caching_ctl = btrfs_get_caching_control(cache); 478 if (!caching_ctl) 479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 481 btrfs_put_caching_control(caching_ctl); 482 return ret; 483 } 484 485 #ifdef CONFIG_BTRFS_DEBUG 486 static void fragment_free_space(struct btrfs_block_group *block_group) 487 { 488 struct btrfs_fs_info *fs_info = block_group->fs_info; 489 u64 start = block_group->start; 490 u64 len = block_group->length; 491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 492 fs_info->nodesize : fs_info->sectorsize; 493 u64 step = chunk << 1; 494 495 while (len > chunk) { 496 btrfs_remove_free_space(block_group, start, chunk); 497 start += step; 498 if (len < step) 499 len = 0; 500 else 501 len -= step; 502 } 503 } 504 #endif 505 506 /* 507 * Add a free space range to the in memory free space cache of a block group. 508 * This checks if the range contains super block locations and any such 509 * locations are not added to the free space cache. 510 * 511 * @block_group: The target block group. 512 * @start: Start offset of the range. 513 * @end: End offset of the range (exclusive). 514 * @total_added_ret: Optional pointer to return the total amount of space 515 * added to the block group's free space cache. 516 * 517 * Returns 0 on success or < 0 on error. 518 */ 519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 520 u64 end, u64 *total_added_ret) 521 { 522 struct btrfs_fs_info *info = block_group->fs_info; 523 u64 extent_start, extent_end, size; 524 int ret; 525 526 if (total_added_ret) 527 *total_added_ret = 0; 528 529 while (start < end) { 530 if (!find_first_extent_bit(&info->excluded_extents, start, 531 &extent_start, &extent_end, 532 EXTENT_DIRTY | EXTENT_UPTODATE, 533 NULL)) 534 break; 535 536 if (extent_start <= start) { 537 start = extent_end + 1; 538 } else if (extent_start > start && extent_start < end) { 539 size = extent_start - start; 540 ret = btrfs_add_free_space_async_trimmed(block_group, 541 start, size); 542 if (ret) 543 return ret; 544 if (total_added_ret) 545 *total_added_ret += size; 546 start = extent_end + 1; 547 } else { 548 break; 549 } 550 } 551 552 if (start < end) { 553 size = end - start; 554 ret = btrfs_add_free_space_async_trimmed(block_group, start, 555 size); 556 if (ret) 557 return ret; 558 if (total_added_ret) 559 *total_added_ret += size; 560 } 561 562 return 0; 563 } 564 565 /* 566 * Get an arbitrary extent item index / max_index through the block group 567 * 568 * @block_group the block group to sample from 569 * @index: the integral step through the block group to grab from 570 * @max_index: the granularity of the sampling 571 * @key: return value parameter for the item we find 572 * 573 * Pre-conditions on indices: 574 * 0 <= index <= max_index 575 * 0 < max_index 576 * 577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 578 * error code on error. 579 */ 580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 581 struct btrfs_block_group *block_group, 582 int index, int max_index, 583 struct btrfs_key *found_key) 584 { 585 struct btrfs_fs_info *fs_info = block_group->fs_info; 586 struct btrfs_root *extent_root; 587 u64 search_offset; 588 u64 search_end = block_group->start + block_group->length; 589 struct btrfs_path *path; 590 struct btrfs_key search_key; 591 int ret = 0; 592 593 ASSERT(index >= 0); 594 ASSERT(index <= max_index); 595 ASSERT(max_index > 0); 596 lockdep_assert_held(&caching_ctl->mutex); 597 lockdep_assert_held_read(&fs_info->commit_root_sem); 598 599 path = btrfs_alloc_path(); 600 if (!path) 601 return -ENOMEM; 602 603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 604 BTRFS_SUPER_INFO_OFFSET)); 605 606 path->skip_locking = 1; 607 path->search_commit_root = 1; 608 path->reada = READA_FORWARD; 609 610 search_offset = index * div_u64(block_group->length, max_index); 611 search_key.objectid = block_group->start + search_offset; 612 search_key.type = BTRFS_EXTENT_ITEM_KEY; 613 search_key.offset = 0; 614 615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 616 /* Success; sampled an extent item in the block group */ 617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 618 found_key->objectid >= block_group->start && 619 found_key->objectid + found_key->offset <= search_end) 620 break; 621 622 /* We can't possibly find a valid extent item anymore */ 623 if (found_key->objectid >= search_end) { 624 ret = 1; 625 break; 626 } 627 } 628 629 lockdep_assert_held(&caching_ctl->mutex); 630 lockdep_assert_held_read(&fs_info->commit_root_sem); 631 btrfs_free_path(path); 632 return ret; 633 } 634 635 /* 636 * Best effort attempt to compute a block group's size class while caching it. 637 * 638 * @block_group: the block group we are caching 639 * 640 * We cannot infer the size class while adding free space extents, because that 641 * logic doesn't care about contiguous file extents (it doesn't differentiate 642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 643 * file extent items. Reading all of them is quite wasteful, because usually 644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 645 * them at even steps through the block group and pick the smallest size class 646 * we see. Since size class is best effort, and not guaranteed in general, 647 * inaccuracy is acceptable. 648 * 649 * To be more explicit about why this algorithm makes sense: 650 * 651 * If we are caching in a block group from disk, then there are three major cases 652 * to consider: 653 * 1. the block group is well behaved and all extents in it are the same size 654 * class. 655 * 2. the block group is mostly one size class with rare exceptions for last 656 * ditch allocations 657 * 3. the block group was populated before size classes and can have a totally 658 * arbitrary mix of size classes. 659 * 660 * In case 1, looking at any extent in the block group will yield the correct 661 * result. For the mixed cases, taking the minimum size class seems like a good 662 * approximation, since gaps from frees will be usable to the size class. For 663 * 2., a small handful of file extents is likely to yield the right answer. For 664 * 3, we can either read every file extent, or admit that this is best effort 665 * anyway and try to stay fast. 666 * 667 * Returns: 0 on success, negative error code on error. 668 */ 669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 670 struct btrfs_block_group *block_group) 671 { 672 struct btrfs_fs_info *fs_info = block_group->fs_info; 673 struct btrfs_key key; 674 int i; 675 u64 min_size = block_group->length; 676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 677 int ret; 678 679 if (!btrfs_block_group_should_use_size_class(block_group)) 680 return 0; 681 682 lockdep_assert_held(&caching_ctl->mutex); 683 lockdep_assert_held_read(&fs_info->commit_root_sem); 684 for (i = 0; i < 5; ++i) { 685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 686 if (ret < 0) 687 goto out; 688 if (ret > 0) 689 continue; 690 min_size = min_t(u64, min_size, key.offset); 691 size_class = btrfs_calc_block_group_size_class(min_size); 692 } 693 if (size_class != BTRFS_BG_SZ_NONE) { 694 spin_lock(&block_group->lock); 695 block_group->size_class = size_class; 696 spin_unlock(&block_group->lock); 697 } 698 out: 699 return ret; 700 } 701 702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 703 { 704 struct btrfs_block_group *block_group = caching_ctl->block_group; 705 struct btrfs_fs_info *fs_info = block_group->fs_info; 706 struct btrfs_root *extent_root; 707 struct btrfs_path *path; 708 struct extent_buffer *leaf; 709 struct btrfs_key key; 710 u64 total_found = 0; 711 u64 last = 0; 712 u32 nritems; 713 int ret; 714 bool wakeup = true; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 721 extent_root = btrfs_extent_root(fs_info, last); 722 723 #ifdef CONFIG_BTRFS_DEBUG 724 /* 725 * If we're fragmenting we don't want to make anybody think we can 726 * allocate from this block group until we've had a chance to fragment 727 * the free space. 728 */ 729 if (btrfs_should_fragment_free_space(block_group)) 730 wakeup = false; 731 #endif 732 /* 733 * We don't want to deadlock with somebody trying to allocate a new 734 * extent for the extent root while also trying to search the extent 735 * root to add free space. So we skip locking and search the commit 736 * root, since its read-only 737 */ 738 path->skip_locking = 1; 739 path->search_commit_root = 1; 740 path->reada = READA_FORWARD; 741 742 key.objectid = last; 743 key.offset = 0; 744 key.type = BTRFS_EXTENT_ITEM_KEY; 745 746 next: 747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 748 if (ret < 0) 749 goto out; 750 751 leaf = path->nodes[0]; 752 nritems = btrfs_header_nritems(leaf); 753 754 while (1) { 755 if (btrfs_fs_closing(fs_info) > 1) { 756 last = (u64)-1; 757 break; 758 } 759 760 if (path->slots[0] < nritems) { 761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 762 } else { 763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 764 if (ret) 765 break; 766 767 if (need_resched() || 768 rwsem_is_contended(&fs_info->commit_root_sem)) { 769 btrfs_release_path(path); 770 up_read(&fs_info->commit_root_sem); 771 mutex_unlock(&caching_ctl->mutex); 772 cond_resched(); 773 mutex_lock(&caching_ctl->mutex); 774 down_read(&fs_info->commit_root_sem); 775 goto next; 776 } 777 778 ret = btrfs_next_leaf(extent_root, path); 779 if (ret < 0) 780 goto out; 781 if (ret) 782 break; 783 leaf = path->nodes[0]; 784 nritems = btrfs_header_nritems(leaf); 785 continue; 786 } 787 788 if (key.objectid < last) { 789 key.objectid = last; 790 key.offset = 0; 791 key.type = BTRFS_EXTENT_ITEM_KEY; 792 btrfs_release_path(path); 793 goto next; 794 } 795 796 if (key.objectid < block_group->start) { 797 path->slots[0]++; 798 continue; 799 } 800 801 if (key.objectid >= block_group->start + block_group->length) 802 break; 803 804 if (key.type == BTRFS_EXTENT_ITEM_KEY || 805 key.type == BTRFS_METADATA_ITEM_KEY) { 806 u64 space_added; 807 808 ret = btrfs_add_new_free_space(block_group, last, 809 key.objectid, &space_added); 810 if (ret) 811 goto out; 812 total_found += space_added; 813 if (key.type == BTRFS_METADATA_ITEM_KEY) 814 last = key.objectid + 815 fs_info->nodesize; 816 else 817 last = key.objectid + key.offset; 818 819 if (total_found > CACHING_CTL_WAKE_UP) { 820 total_found = 0; 821 if (wakeup) { 822 atomic_inc(&caching_ctl->progress); 823 wake_up(&caching_ctl->wait); 824 } 825 } 826 } 827 path->slots[0]++; 828 } 829 830 ret = btrfs_add_new_free_space(block_group, last, 831 block_group->start + block_group->length, 832 NULL); 833 out: 834 btrfs_free_path(path); 835 return ret; 836 } 837 838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 839 { 840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start, 841 bg->start + bg->length - 1, EXTENT_UPTODATE); 842 } 843 844 static noinline void caching_thread(struct btrfs_work *work) 845 { 846 struct btrfs_block_group *block_group; 847 struct btrfs_fs_info *fs_info; 848 struct btrfs_caching_control *caching_ctl; 849 int ret; 850 851 caching_ctl = container_of(work, struct btrfs_caching_control, work); 852 block_group = caching_ctl->block_group; 853 fs_info = block_group->fs_info; 854 855 mutex_lock(&caching_ctl->mutex); 856 down_read(&fs_info->commit_root_sem); 857 858 load_block_group_size_class(caching_ctl, block_group); 859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 860 ret = load_free_space_cache(block_group); 861 if (ret == 1) { 862 ret = 0; 863 goto done; 864 } 865 866 /* 867 * We failed to load the space cache, set ourselves to 868 * CACHE_STARTED and carry on. 869 */ 870 spin_lock(&block_group->lock); 871 block_group->cached = BTRFS_CACHE_STARTED; 872 spin_unlock(&block_group->lock); 873 wake_up(&caching_ctl->wait); 874 } 875 876 /* 877 * If we are in the transaction that populated the free space tree we 878 * can't actually cache from the free space tree as our commit root and 879 * real root are the same, so we could change the contents of the blocks 880 * while caching. Instead do the slow caching in this case, and after 881 * the transaction has committed we will be safe. 882 */ 883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 885 ret = load_free_space_tree(caching_ctl); 886 else 887 ret = load_extent_tree_free(caching_ctl); 888 done: 889 spin_lock(&block_group->lock); 890 block_group->caching_ctl = NULL; 891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 892 spin_unlock(&block_group->lock); 893 894 #ifdef CONFIG_BTRFS_DEBUG 895 if (btrfs_should_fragment_free_space(block_group)) { 896 u64 bytes_used; 897 898 spin_lock(&block_group->space_info->lock); 899 spin_lock(&block_group->lock); 900 bytes_used = block_group->length - block_group->used; 901 block_group->space_info->bytes_used += bytes_used >> 1; 902 spin_unlock(&block_group->lock); 903 spin_unlock(&block_group->space_info->lock); 904 fragment_free_space(block_group); 905 } 906 #endif 907 908 up_read(&fs_info->commit_root_sem); 909 btrfs_free_excluded_extents(block_group); 910 mutex_unlock(&caching_ctl->mutex); 911 912 wake_up(&caching_ctl->wait); 913 914 btrfs_put_caching_control(caching_ctl); 915 btrfs_put_block_group(block_group); 916 } 917 918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 919 { 920 struct btrfs_fs_info *fs_info = cache->fs_info; 921 struct btrfs_caching_control *caching_ctl = NULL; 922 int ret = 0; 923 924 /* Allocator for zoned filesystems does not use the cache at all */ 925 if (btrfs_is_zoned(fs_info)) 926 return 0; 927 928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 929 if (!caching_ctl) 930 return -ENOMEM; 931 932 INIT_LIST_HEAD(&caching_ctl->list); 933 mutex_init(&caching_ctl->mutex); 934 init_waitqueue_head(&caching_ctl->wait); 935 caching_ctl->block_group = cache; 936 refcount_set(&caching_ctl->count, 2); 937 atomic_set(&caching_ctl->progress, 0); 938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL); 939 940 spin_lock(&cache->lock); 941 if (cache->cached != BTRFS_CACHE_NO) { 942 kfree(caching_ctl); 943 944 caching_ctl = cache->caching_ctl; 945 if (caching_ctl) 946 refcount_inc(&caching_ctl->count); 947 spin_unlock(&cache->lock); 948 goto out; 949 } 950 WARN_ON(cache->caching_ctl); 951 cache->caching_ctl = caching_ctl; 952 cache->cached = BTRFS_CACHE_STARTED; 953 spin_unlock(&cache->lock); 954 955 write_lock(&fs_info->block_group_cache_lock); 956 refcount_inc(&caching_ctl->count); 957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 958 write_unlock(&fs_info->block_group_cache_lock); 959 960 btrfs_get_block_group(cache); 961 962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 963 out: 964 if (wait && caching_ctl) 965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 966 if (caching_ctl) 967 btrfs_put_caching_control(caching_ctl); 968 969 return ret; 970 } 971 972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 973 { 974 u64 extra_flags = chunk_to_extended(flags) & 975 BTRFS_EXTENDED_PROFILE_MASK; 976 977 write_seqlock(&fs_info->profiles_lock); 978 if (flags & BTRFS_BLOCK_GROUP_DATA) 979 fs_info->avail_data_alloc_bits &= ~extra_flags; 980 if (flags & BTRFS_BLOCK_GROUP_METADATA) 981 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 983 fs_info->avail_system_alloc_bits &= ~extra_flags; 984 write_sequnlock(&fs_info->profiles_lock); 985 } 986 987 /* 988 * Clear incompat bits for the following feature(s): 989 * 990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 991 * in the whole filesystem 992 * 993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 994 */ 995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 996 { 997 bool found_raid56 = false; 998 bool found_raid1c34 = false; 999 1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1003 struct list_head *head = &fs_info->space_info; 1004 struct btrfs_space_info *sinfo; 1005 1006 list_for_each_entry_rcu(sinfo, head, list) { 1007 down_read(&sinfo->groups_sem); 1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1009 found_raid56 = true; 1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1011 found_raid56 = true; 1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1013 found_raid1c34 = true; 1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1015 found_raid1c34 = true; 1016 up_read(&sinfo->groups_sem); 1017 } 1018 if (!found_raid56) 1019 btrfs_clear_fs_incompat(fs_info, RAID56); 1020 if (!found_raid1c34) 1021 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1022 } 1023 } 1024 1025 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1026 struct btrfs_path *path, 1027 struct btrfs_block_group *block_group) 1028 { 1029 struct btrfs_fs_info *fs_info = trans->fs_info; 1030 struct btrfs_root *root; 1031 struct btrfs_key key; 1032 int ret; 1033 1034 root = btrfs_block_group_root(fs_info); 1035 key.objectid = block_group->start; 1036 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1037 key.offset = block_group->length; 1038 1039 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1040 if (ret > 0) 1041 ret = -ENOENT; 1042 if (ret < 0) 1043 return ret; 1044 1045 ret = btrfs_del_item(trans, root, path); 1046 return ret; 1047 } 1048 1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1050 u64 group_start, struct extent_map *em) 1051 { 1052 struct btrfs_fs_info *fs_info = trans->fs_info; 1053 struct btrfs_path *path; 1054 struct btrfs_block_group *block_group; 1055 struct btrfs_free_cluster *cluster; 1056 struct inode *inode; 1057 struct kobject *kobj = NULL; 1058 int ret; 1059 int index; 1060 int factor; 1061 struct btrfs_caching_control *caching_ctl = NULL; 1062 bool remove_em; 1063 bool remove_rsv = false; 1064 1065 block_group = btrfs_lookup_block_group(fs_info, group_start); 1066 BUG_ON(!block_group); 1067 BUG_ON(!block_group->ro); 1068 1069 trace_btrfs_remove_block_group(block_group); 1070 /* 1071 * Free the reserved super bytes from this block group before 1072 * remove it. 1073 */ 1074 btrfs_free_excluded_extents(block_group); 1075 btrfs_free_ref_tree_range(fs_info, block_group->start, 1076 block_group->length); 1077 1078 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1079 factor = btrfs_bg_type_to_factor(block_group->flags); 1080 1081 /* make sure this block group isn't part of an allocation cluster */ 1082 cluster = &fs_info->data_alloc_cluster; 1083 spin_lock(&cluster->refill_lock); 1084 btrfs_return_cluster_to_free_space(block_group, cluster); 1085 spin_unlock(&cluster->refill_lock); 1086 1087 /* 1088 * make sure this block group isn't part of a metadata 1089 * allocation cluster 1090 */ 1091 cluster = &fs_info->meta_alloc_cluster; 1092 spin_lock(&cluster->refill_lock); 1093 btrfs_return_cluster_to_free_space(block_group, cluster); 1094 spin_unlock(&cluster->refill_lock); 1095 1096 btrfs_clear_treelog_bg(block_group); 1097 btrfs_clear_data_reloc_bg(block_group); 1098 1099 path = btrfs_alloc_path(); 1100 if (!path) { 1101 ret = -ENOMEM; 1102 goto out; 1103 } 1104 1105 /* 1106 * get the inode first so any iput calls done for the io_list 1107 * aren't the final iput (no unlinks allowed now) 1108 */ 1109 inode = lookup_free_space_inode(block_group, path); 1110 1111 mutex_lock(&trans->transaction->cache_write_mutex); 1112 /* 1113 * Make sure our free space cache IO is done before removing the 1114 * free space inode 1115 */ 1116 spin_lock(&trans->transaction->dirty_bgs_lock); 1117 if (!list_empty(&block_group->io_list)) { 1118 list_del_init(&block_group->io_list); 1119 1120 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1121 1122 spin_unlock(&trans->transaction->dirty_bgs_lock); 1123 btrfs_wait_cache_io(trans, block_group, path); 1124 btrfs_put_block_group(block_group); 1125 spin_lock(&trans->transaction->dirty_bgs_lock); 1126 } 1127 1128 if (!list_empty(&block_group->dirty_list)) { 1129 list_del_init(&block_group->dirty_list); 1130 remove_rsv = true; 1131 btrfs_put_block_group(block_group); 1132 } 1133 spin_unlock(&trans->transaction->dirty_bgs_lock); 1134 mutex_unlock(&trans->transaction->cache_write_mutex); 1135 1136 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1137 if (ret) 1138 goto out; 1139 1140 write_lock(&fs_info->block_group_cache_lock); 1141 rb_erase_cached(&block_group->cache_node, 1142 &fs_info->block_group_cache_tree); 1143 RB_CLEAR_NODE(&block_group->cache_node); 1144 1145 /* Once for the block groups rbtree */ 1146 btrfs_put_block_group(block_group); 1147 1148 write_unlock(&fs_info->block_group_cache_lock); 1149 1150 down_write(&block_group->space_info->groups_sem); 1151 /* 1152 * we must use list_del_init so people can check to see if they 1153 * are still on the list after taking the semaphore 1154 */ 1155 list_del_init(&block_group->list); 1156 if (list_empty(&block_group->space_info->block_groups[index])) { 1157 kobj = block_group->space_info->block_group_kobjs[index]; 1158 block_group->space_info->block_group_kobjs[index] = NULL; 1159 clear_avail_alloc_bits(fs_info, block_group->flags); 1160 } 1161 up_write(&block_group->space_info->groups_sem); 1162 clear_incompat_bg_bits(fs_info, block_group->flags); 1163 if (kobj) { 1164 kobject_del(kobj); 1165 kobject_put(kobj); 1166 } 1167 1168 if (block_group->cached == BTRFS_CACHE_STARTED) 1169 btrfs_wait_block_group_cache_done(block_group); 1170 1171 write_lock(&fs_info->block_group_cache_lock); 1172 caching_ctl = btrfs_get_caching_control(block_group); 1173 if (!caching_ctl) { 1174 struct btrfs_caching_control *ctl; 1175 1176 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1177 if (ctl->block_group == block_group) { 1178 caching_ctl = ctl; 1179 refcount_inc(&caching_ctl->count); 1180 break; 1181 } 1182 } 1183 } 1184 if (caching_ctl) 1185 list_del_init(&caching_ctl->list); 1186 write_unlock(&fs_info->block_group_cache_lock); 1187 1188 if (caching_ctl) { 1189 /* Once for the caching bgs list and once for us. */ 1190 btrfs_put_caching_control(caching_ctl); 1191 btrfs_put_caching_control(caching_ctl); 1192 } 1193 1194 spin_lock(&trans->transaction->dirty_bgs_lock); 1195 WARN_ON(!list_empty(&block_group->dirty_list)); 1196 WARN_ON(!list_empty(&block_group->io_list)); 1197 spin_unlock(&trans->transaction->dirty_bgs_lock); 1198 1199 btrfs_remove_free_space_cache(block_group); 1200 1201 spin_lock(&block_group->space_info->lock); 1202 list_del_init(&block_group->ro_list); 1203 1204 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1205 WARN_ON(block_group->space_info->total_bytes 1206 < block_group->length); 1207 WARN_ON(block_group->space_info->bytes_readonly 1208 < block_group->length - block_group->zone_unusable); 1209 WARN_ON(block_group->space_info->bytes_zone_unusable 1210 < block_group->zone_unusable); 1211 WARN_ON(block_group->space_info->disk_total 1212 < block_group->length * factor); 1213 } 1214 block_group->space_info->total_bytes -= block_group->length; 1215 block_group->space_info->bytes_readonly -= 1216 (block_group->length - block_group->zone_unusable); 1217 block_group->space_info->bytes_zone_unusable -= 1218 block_group->zone_unusable; 1219 block_group->space_info->disk_total -= block_group->length * factor; 1220 1221 spin_unlock(&block_group->space_info->lock); 1222 1223 /* 1224 * Remove the free space for the block group from the free space tree 1225 * and the block group's item from the extent tree before marking the 1226 * block group as removed. This is to prevent races with tasks that 1227 * freeze and unfreeze a block group, this task and another task 1228 * allocating a new block group - the unfreeze task ends up removing 1229 * the block group's extent map before the task calling this function 1230 * deletes the block group item from the extent tree, allowing for 1231 * another task to attempt to create another block group with the same 1232 * item key (and failing with -EEXIST and a transaction abort). 1233 */ 1234 ret = remove_block_group_free_space(trans, block_group); 1235 if (ret) 1236 goto out; 1237 1238 ret = remove_block_group_item(trans, path, block_group); 1239 if (ret < 0) 1240 goto out; 1241 1242 spin_lock(&block_group->lock); 1243 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1244 1245 /* 1246 * At this point trimming or scrub can't start on this block group, 1247 * because we removed the block group from the rbtree 1248 * fs_info->block_group_cache_tree so no one can't find it anymore and 1249 * even if someone already got this block group before we removed it 1250 * from the rbtree, they have already incremented block_group->frozen - 1251 * if they didn't, for the trimming case they won't find any free space 1252 * entries because we already removed them all when we called 1253 * btrfs_remove_free_space_cache(). 1254 * 1255 * And we must not remove the extent map from the fs_info->mapping_tree 1256 * to prevent the same logical address range and physical device space 1257 * ranges from being reused for a new block group. This is needed to 1258 * avoid races with trimming and scrub. 1259 * 1260 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1261 * completely transactionless, so while it is trimming a range the 1262 * currently running transaction might finish and a new one start, 1263 * allowing for new block groups to be created that can reuse the same 1264 * physical device locations unless we take this special care. 1265 * 1266 * There may also be an implicit trim operation if the file system 1267 * is mounted with -odiscard. The same protections must remain 1268 * in place until the extents have been discarded completely when 1269 * the transaction commit has completed. 1270 */ 1271 remove_em = (atomic_read(&block_group->frozen) == 0); 1272 spin_unlock(&block_group->lock); 1273 1274 if (remove_em) { 1275 struct extent_map_tree *em_tree; 1276 1277 em_tree = &fs_info->mapping_tree; 1278 write_lock(&em_tree->lock); 1279 remove_extent_mapping(em_tree, em); 1280 write_unlock(&em_tree->lock); 1281 /* once for the tree */ 1282 free_extent_map(em); 1283 } 1284 1285 out: 1286 /* Once for the lookup reference */ 1287 btrfs_put_block_group(block_group); 1288 if (remove_rsv) 1289 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 1290 btrfs_free_path(path); 1291 return ret; 1292 } 1293 1294 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1295 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1296 { 1297 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1298 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1299 struct extent_map *em; 1300 struct map_lookup *map; 1301 unsigned int num_items; 1302 1303 read_lock(&em_tree->lock); 1304 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1305 read_unlock(&em_tree->lock); 1306 ASSERT(em && em->start == chunk_offset); 1307 1308 /* 1309 * We need to reserve 3 + N units from the metadata space info in order 1310 * to remove a block group (done at btrfs_remove_chunk() and at 1311 * btrfs_remove_block_group()), which are used for: 1312 * 1313 * 1 unit for adding the free space inode's orphan (located in the tree 1314 * of tree roots). 1315 * 1 unit for deleting the block group item (located in the extent 1316 * tree). 1317 * 1 unit for deleting the free space item (located in tree of tree 1318 * roots). 1319 * N units for deleting N device extent items corresponding to each 1320 * stripe (located in the device tree). 1321 * 1322 * In order to remove a block group we also need to reserve units in the 1323 * system space info in order to update the chunk tree (update one or 1324 * more device items and remove one chunk item), but this is done at 1325 * btrfs_remove_chunk() through a call to check_system_chunk(). 1326 */ 1327 map = em->map_lookup; 1328 num_items = 3 + map->num_stripes; 1329 free_extent_map(em); 1330 1331 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1332 } 1333 1334 /* 1335 * Mark block group @cache read-only, so later write won't happen to block 1336 * group @cache. 1337 * 1338 * If @force is not set, this function will only mark the block group readonly 1339 * if we have enough free space (1M) in other metadata/system block groups. 1340 * If @force is not set, this function will mark the block group readonly 1341 * without checking free space. 1342 * 1343 * NOTE: This function doesn't care if other block groups can contain all the 1344 * data in this block group. That check should be done by relocation routine, 1345 * not this function. 1346 */ 1347 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1348 { 1349 struct btrfs_space_info *sinfo = cache->space_info; 1350 u64 num_bytes; 1351 int ret = -ENOSPC; 1352 1353 spin_lock(&sinfo->lock); 1354 spin_lock(&cache->lock); 1355 1356 if (cache->swap_extents) { 1357 ret = -ETXTBSY; 1358 goto out; 1359 } 1360 1361 if (cache->ro) { 1362 cache->ro++; 1363 ret = 0; 1364 goto out; 1365 } 1366 1367 num_bytes = cache->length - cache->reserved - cache->pinned - 1368 cache->bytes_super - cache->zone_unusable - cache->used; 1369 1370 /* 1371 * Data never overcommits, even in mixed mode, so do just the straight 1372 * check of left over space in how much we have allocated. 1373 */ 1374 if (force) { 1375 ret = 0; 1376 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1377 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1378 1379 /* 1380 * Here we make sure if we mark this bg RO, we still have enough 1381 * free space as buffer. 1382 */ 1383 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1384 ret = 0; 1385 } else { 1386 /* 1387 * We overcommit metadata, so we need to do the 1388 * btrfs_can_overcommit check here, and we need to pass in 1389 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1390 * leeway to allow us to mark this block group as read only. 1391 */ 1392 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1393 BTRFS_RESERVE_NO_FLUSH)) 1394 ret = 0; 1395 } 1396 1397 if (!ret) { 1398 sinfo->bytes_readonly += num_bytes; 1399 if (btrfs_is_zoned(cache->fs_info)) { 1400 /* Migrate zone_unusable bytes to readonly */ 1401 sinfo->bytes_readonly += cache->zone_unusable; 1402 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1403 cache->zone_unusable = 0; 1404 } 1405 cache->ro++; 1406 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1407 } 1408 out: 1409 spin_unlock(&cache->lock); 1410 spin_unlock(&sinfo->lock); 1411 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1412 btrfs_info(cache->fs_info, 1413 "unable to make block group %llu ro", cache->start); 1414 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1415 } 1416 return ret; 1417 } 1418 1419 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1420 struct btrfs_block_group *bg) 1421 { 1422 struct btrfs_fs_info *fs_info = bg->fs_info; 1423 struct btrfs_transaction *prev_trans = NULL; 1424 const u64 start = bg->start; 1425 const u64 end = start + bg->length - 1; 1426 int ret; 1427 1428 spin_lock(&fs_info->trans_lock); 1429 if (trans->transaction->list.prev != &fs_info->trans_list) { 1430 prev_trans = list_last_entry(&trans->transaction->list, 1431 struct btrfs_transaction, list); 1432 refcount_inc(&prev_trans->use_count); 1433 } 1434 spin_unlock(&fs_info->trans_lock); 1435 1436 /* 1437 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1438 * btrfs_finish_extent_commit(). If we are at transaction N, another 1439 * task might be running finish_extent_commit() for the previous 1440 * transaction N - 1, and have seen a range belonging to the block 1441 * group in pinned_extents before we were able to clear the whole block 1442 * group range from pinned_extents. This means that task can lookup for 1443 * the block group after we unpinned it from pinned_extents and removed 1444 * it, leading to a BUG_ON() at unpin_extent_range(). 1445 */ 1446 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1447 if (prev_trans) { 1448 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1449 EXTENT_DIRTY); 1450 if (ret) 1451 goto out; 1452 } 1453 1454 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1455 EXTENT_DIRTY); 1456 out: 1457 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1458 if (prev_trans) 1459 btrfs_put_transaction(prev_trans); 1460 1461 return ret == 0; 1462 } 1463 1464 /* 1465 * Process the unused_bgs list and remove any that don't have any allocated 1466 * space inside of them. 1467 */ 1468 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1469 { 1470 struct btrfs_block_group *block_group; 1471 struct btrfs_space_info *space_info; 1472 struct btrfs_trans_handle *trans; 1473 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1474 int ret = 0; 1475 1476 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1477 return; 1478 1479 if (btrfs_fs_closing(fs_info)) 1480 return; 1481 1482 /* 1483 * Long running balances can keep us blocked here for eternity, so 1484 * simply skip deletion if we're unable to get the mutex. 1485 */ 1486 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1487 return; 1488 1489 spin_lock(&fs_info->unused_bgs_lock); 1490 while (!list_empty(&fs_info->unused_bgs)) { 1491 int trimming; 1492 1493 block_group = list_first_entry(&fs_info->unused_bgs, 1494 struct btrfs_block_group, 1495 bg_list); 1496 list_del_init(&block_group->bg_list); 1497 1498 space_info = block_group->space_info; 1499 1500 if (ret || btrfs_mixed_space_info(space_info)) { 1501 btrfs_put_block_group(block_group); 1502 continue; 1503 } 1504 spin_unlock(&fs_info->unused_bgs_lock); 1505 1506 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1507 1508 /* Don't want to race with allocators so take the groups_sem */ 1509 down_write(&space_info->groups_sem); 1510 1511 /* 1512 * Async discard moves the final block group discard to be prior 1513 * to the unused_bgs code path. Therefore, if it's not fully 1514 * trimmed, punt it back to the async discard lists. 1515 */ 1516 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1517 !btrfs_is_free_space_trimmed(block_group)) { 1518 trace_btrfs_skip_unused_block_group(block_group); 1519 up_write(&space_info->groups_sem); 1520 /* Requeue if we failed because of async discard */ 1521 btrfs_discard_queue_work(&fs_info->discard_ctl, 1522 block_group); 1523 goto next; 1524 } 1525 1526 spin_lock(&block_group->lock); 1527 if (block_group->reserved || block_group->pinned || 1528 block_group->used || block_group->ro || 1529 list_is_singular(&block_group->list)) { 1530 /* 1531 * We want to bail if we made new allocations or have 1532 * outstanding allocations in this block group. We do 1533 * the ro check in case balance is currently acting on 1534 * this block group. 1535 */ 1536 trace_btrfs_skip_unused_block_group(block_group); 1537 spin_unlock(&block_group->lock); 1538 up_write(&space_info->groups_sem); 1539 goto next; 1540 } 1541 spin_unlock(&block_group->lock); 1542 1543 /* We don't want to force the issue, only flip if it's ok. */ 1544 ret = inc_block_group_ro(block_group, 0); 1545 up_write(&space_info->groups_sem); 1546 if (ret < 0) { 1547 ret = 0; 1548 goto next; 1549 } 1550 1551 ret = btrfs_zone_finish(block_group); 1552 if (ret < 0) { 1553 btrfs_dec_block_group_ro(block_group); 1554 if (ret == -EAGAIN) 1555 ret = 0; 1556 goto next; 1557 } 1558 1559 /* 1560 * Want to do this before we do anything else so we can recover 1561 * properly if we fail to join the transaction. 1562 */ 1563 trans = btrfs_start_trans_remove_block_group(fs_info, 1564 block_group->start); 1565 if (IS_ERR(trans)) { 1566 btrfs_dec_block_group_ro(block_group); 1567 ret = PTR_ERR(trans); 1568 goto next; 1569 } 1570 1571 /* 1572 * We could have pending pinned extents for this block group, 1573 * just delete them, we don't care about them anymore. 1574 */ 1575 if (!clean_pinned_extents(trans, block_group)) { 1576 btrfs_dec_block_group_ro(block_group); 1577 goto end_trans; 1578 } 1579 1580 /* 1581 * At this point, the block_group is read only and should fail 1582 * new allocations. However, btrfs_finish_extent_commit() can 1583 * cause this block_group to be placed back on the discard 1584 * lists because now the block_group isn't fully discarded. 1585 * Bail here and try again later after discarding everything. 1586 */ 1587 spin_lock(&fs_info->discard_ctl.lock); 1588 if (!list_empty(&block_group->discard_list)) { 1589 spin_unlock(&fs_info->discard_ctl.lock); 1590 btrfs_dec_block_group_ro(block_group); 1591 btrfs_discard_queue_work(&fs_info->discard_ctl, 1592 block_group); 1593 goto end_trans; 1594 } 1595 spin_unlock(&fs_info->discard_ctl.lock); 1596 1597 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1598 spin_lock(&space_info->lock); 1599 spin_lock(&block_group->lock); 1600 1601 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1602 -block_group->pinned); 1603 space_info->bytes_readonly += block_group->pinned; 1604 block_group->pinned = 0; 1605 1606 spin_unlock(&block_group->lock); 1607 spin_unlock(&space_info->lock); 1608 1609 /* 1610 * The normal path here is an unused block group is passed here, 1611 * then trimming is handled in the transaction commit path. 1612 * Async discard interposes before this to do the trimming 1613 * before coming down the unused block group path as trimming 1614 * will no longer be done later in the transaction commit path. 1615 */ 1616 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1617 goto flip_async; 1618 1619 /* 1620 * DISCARD can flip during remount. On zoned filesystems, we 1621 * need to reset sequential-required zones. 1622 */ 1623 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1624 btrfs_is_zoned(fs_info); 1625 1626 /* Implicit trim during transaction commit. */ 1627 if (trimming) 1628 btrfs_freeze_block_group(block_group); 1629 1630 /* 1631 * Btrfs_remove_chunk will abort the transaction if things go 1632 * horribly wrong. 1633 */ 1634 ret = btrfs_remove_chunk(trans, block_group->start); 1635 1636 if (ret) { 1637 if (trimming) 1638 btrfs_unfreeze_block_group(block_group); 1639 goto end_trans; 1640 } 1641 1642 /* 1643 * If we're not mounted with -odiscard, we can just forget 1644 * about this block group. Otherwise we'll need to wait 1645 * until transaction commit to do the actual discard. 1646 */ 1647 if (trimming) { 1648 spin_lock(&fs_info->unused_bgs_lock); 1649 /* 1650 * A concurrent scrub might have added us to the list 1651 * fs_info->unused_bgs, so use a list_move operation 1652 * to add the block group to the deleted_bgs list. 1653 */ 1654 list_move(&block_group->bg_list, 1655 &trans->transaction->deleted_bgs); 1656 spin_unlock(&fs_info->unused_bgs_lock); 1657 btrfs_get_block_group(block_group); 1658 } 1659 end_trans: 1660 btrfs_end_transaction(trans); 1661 next: 1662 btrfs_put_block_group(block_group); 1663 spin_lock(&fs_info->unused_bgs_lock); 1664 } 1665 spin_unlock(&fs_info->unused_bgs_lock); 1666 mutex_unlock(&fs_info->reclaim_bgs_lock); 1667 return; 1668 1669 flip_async: 1670 btrfs_end_transaction(trans); 1671 mutex_unlock(&fs_info->reclaim_bgs_lock); 1672 btrfs_put_block_group(block_group); 1673 btrfs_discard_punt_unused_bgs_list(fs_info); 1674 } 1675 1676 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1677 { 1678 struct btrfs_fs_info *fs_info = bg->fs_info; 1679 1680 spin_lock(&fs_info->unused_bgs_lock); 1681 if (list_empty(&bg->bg_list)) { 1682 btrfs_get_block_group(bg); 1683 trace_btrfs_add_unused_block_group(bg); 1684 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1685 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1686 /* Pull out the block group from the reclaim_bgs list. */ 1687 trace_btrfs_add_unused_block_group(bg); 1688 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1689 } 1690 spin_unlock(&fs_info->unused_bgs_lock); 1691 } 1692 1693 /* 1694 * We want block groups with a low number of used bytes to be in the beginning 1695 * of the list, so they will get reclaimed first. 1696 */ 1697 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1698 const struct list_head *b) 1699 { 1700 const struct btrfs_block_group *bg1, *bg2; 1701 1702 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1703 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1704 1705 return bg1->used > bg2->used; 1706 } 1707 1708 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1709 { 1710 if (btrfs_is_zoned(fs_info)) 1711 return btrfs_zoned_should_reclaim(fs_info); 1712 return true; 1713 } 1714 1715 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1716 { 1717 const struct btrfs_space_info *space_info = bg->space_info; 1718 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 1719 const u64 new_val = bg->used; 1720 const u64 old_val = new_val + bytes_freed; 1721 u64 thresh; 1722 1723 if (reclaim_thresh == 0) 1724 return false; 1725 1726 thresh = mult_perc(bg->length, reclaim_thresh); 1727 1728 /* 1729 * If we were below the threshold before don't reclaim, we are likely a 1730 * brand new block group and we don't want to relocate new block groups. 1731 */ 1732 if (old_val < thresh) 1733 return false; 1734 if (new_val >= thresh) 1735 return false; 1736 return true; 1737 } 1738 1739 void btrfs_reclaim_bgs_work(struct work_struct *work) 1740 { 1741 struct btrfs_fs_info *fs_info = 1742 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1743 struct btrfs_block_group *bg; 1744 struct btrfs_space_info *space_info; 1745 1746 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1747 return; 1748 1749 if (btrfs_fs_closing(fs_info)) 1750 return; 1751 1752 if (!btrfs_should_reclaim(fs_info)) 1753 return; 1754 1755 sb_start_write(fs_info->sb); 1756 1757 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1758 sb_end_write(fs_info->sb); 1759 return; 1760 } 1761 1762 /* 1763 * Long running balances can keep us blocked here for eternity, so 1764 * simply skip reclaim if we're unable to get the mutex. 1765 */ 1766 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1767 btrfs_exclop_finish(fs_info); 1768 sb_end_write(fs_info->sb); 1769 return; 1770 } 1771 1772 spin_lock(&fs_info->unused_bgs_lock); 1773 /* 1774 * Sort happens under lock because we can't simply splice it and sort. 1775 * The block groups might still be in use and reachable via bg_list, 1776 * and their presence in the reclaim_bgs list must be preserved. 1777 */ 1778 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1779 while (!list_empty(&fs_info->reclaim_bgs)) { 1780 u64 zone_unusable; 1781 int ret = 0; 1782 1783 bg = list_first_entry(&fs_info->reclaim_bgs, 1784 struct btrfs_block_group, 1785 bg_list); 1786 list_del_init(&bg->bg_list); 1787 1788 space_info = bg->space_info; 1789 spin_unlock(&fs_info->unused_bgs_lock); 1790 1791 /* Don't race with allocators so take the groups_sem */ 1792 down_write(&space_info->groups_sem); 1793 1794 spin_lock(&bg->lock); 1795 if (bg->reserved || bg->pinned || bg->ro) { 1796 /* 1797 * We want to bail if we made new allocations or have 1798 * outstanding allocations in this block group. We do 1799 * the ro check in case balance is currently acting on 1800 * this block group. 1801 */ 1802 spin_unlock(&bg->lock); 1803 up_write(&space_info->groups_sem); 1804 goto next; 1805 } 1806 if (bg->used == 0) { 1807 /* 1808 * It is possible that we trigger relocation on a block 1809 * group as its extents are deleted and it first goes 1810 * below the threshold, then shortly after goes empty. 1811 * 1812 * In this case, relocating it does delete it, but has 1813 * some overhead in relocation specific metadata, looking 1814 * for the non-existent extents and running some extra 1815 * transactions, which we can avoid by using one of the 1816 * other mechanisms for dealing with empty block groups. 1817 */ 1818 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1819 btrfs_mark_bg_unused(bg); 1820 spin_unlock(&bg->lock); 1821 up_write(&space_info->groups_sem); 1822 goto next; 1823 1824 } 1825 /* 1826 * The block group might no longer meet the reclaim condition by 1827 * the time we get around to reclaiming it, so to avoid 1828 * reclaiming overly full block_groups, skip reclaiming them. 1829 * 1830 * Since the decision making process also depends on the amount 1831 * being freed, pass in a fake giant value to skip that extra 1832 * check, which is more meaningful when adding to the list in 1833 * the first place. 1834 */ 1835 if (!should_reclaim_block_group(bg, bg->length)) { 1836 spin_unlock(&bg->lock); 1837 up_write(&space_info->groups_sem); 1838 goto next; 1839 } 1840 spin_unlock(&bg->lock); 1841 1842 /* 1843 * Get out fast, in case we're read-only or unmounting the 1844 * filesystem. It is OK to drop block groups from the list even 1845 * for the read-only case. As we did sb_start_write(), 1846 * "mount -o remount,ro" won't happen and read-only filesystem 1847 * means it is forced read-only due to a fatal error. So, it 1848 * never gets back to read-write to let us reclaim again. 1849 */ 1850 if (btrfs_need_cleaner_sleep(fs_info)) { 1851 up_write(&space_info->groups_sem); 1852 goto next; 1853 } 1854 1855 /* 1856 * Cache the zone_unusable value before turning the block group 1857 * to read only. As soon as the blog group is read only it's 1858 * zone_unusable value gets moved to the block group's read-only 1859 * bytes and isn't available for calculations anymore. 1860 */ 1861 zone_unusable = bg->zone_unusable; 1862 ret = inc_block_group_ro(bg, 0); 1863 up_write(&space_info->groups_sem); 1864 if (ret < 0) 1865 goto next; 1866 1867 btrfs_info(fs_info, 1868 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1869 bg->start, 1870 div64_u64(bg->used * 100, bg->length), 1871 div64_u64(zone_unusable * 100, bg->length)); 1872 trace_btrfs_reclaim_block_group(bg); 1873 ret = btrfs_relocate_chunk(fs_info, bg->start); 1874 if (ret) { 1875 btrfs_dec_block_group_ro(bg); 1876 btrfs_err(fs_info, "error relocating chunk %llu", 1877 bg->start); 1878 } 1879 1880 next: 1881 if (ret) 1882 btrfs_mark_bg_to_reclaim(bg); 1883 btrfs_put_block_group(bg); 1884 1885 mutex_unlock(&fs_info->reclaim_bgs_lock); 1886 /* 1887 * Reclaiming all the block groups in the list can take really 1888 * long. Prioritize cleaning up unused block groups. 1889 */ 1890 btrfs_delete_unused_bgs(fs_info); 1891 /* 1892 * If we are interrupted by a balance, we can just bail out. The 1893 * cleaner thread restart again if necessary. 1894 */ 1895 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1896 goto end; 1897 spin_lock(&fs_info->unused_bgs_lock); 1898 } 1899 spin_unlock(&fs_info->unused_bgs_lock); 1900 mutex_unlock(&fs_info->reclaim_bgs_lock); 1901 end: 1902 btrfs_exclop_finish(fs_info); 1903 sb_end_write(fs_info->sb); 1904 } 1905 1906 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1907 { 1908 spin_lock(&fs_info->unused_bgs_lock); 1909 if (!list_empty(&fs_info->reclaim_bgs)) 1910 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1911 spin_unlock(&fs_info->unused_bgs_lock); 1912 } 1913 1914 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1915 { 1916 struct btrfs_fs_info *fs_info = bg->fs_info; 1917 1918 spin_lock(&fs_info->unused_bgs_lock); 1919 if (list_empty(&bg->bg_list)) { 1920 btrfs_get_block_group(bg); 1921 trace_btrfs_add_reclaim_block_group(bg); 1922 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1923 } 1924 spin_unlock(&fs_info->unused_bgs_lock); 1925 } 1926 1927 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1928 struct btrfs_path *path) 1929 { 1930 struct extent_map_tree *em_tree; 1931 struct extent_map *em; 1932 struct btrfs_block_group_item bg; 1933 struct extent_buffer *leaf; 1934 int slot; 1935 u64 flags; 1936 int ret = 0; 1937 1938 slot = path->slots[0]; 1939 leaf = path->nodes[0]; 1940 1941 em_tree = &fs_info->mapping_tree; 1942 read_lock(&em_tree->lock); 1943 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1944 read_unlock(&em_tree->lock); 1945 if (!em) { 1946 btrfs_err(fs_info, 1947 "logical %llu len %llu found bg but no related chunk", 1948 key->objectid, key->offset); 1949 return -ENOENT; 1950 } 1951 1952 if (em->start != key->objectid || em->len != key->offset) { 1953 btrfs_err(fs_info, 1954 "block group %llu len %llu mismatch with chunk %llu len %llu", 1955 key->objectid, key->offset, em->start, em->len); 1956 ret = -EUCLEAN; 1957 goto out_free_em; 1958 } 1959 1960 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1961 sizeof(bg)); 1962 flags = btrfs_stack_block_group_flags(&bg) & 1963 BTRFS_BLOCK_GROUP_TYPE_MASK; 1964 1965 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1966 btrfs_err(fs_info, 1967 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1968 key->objectid, key->offset, flags, 1969 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1970 ret = -EUCLEAN; 1971 } 1972 1973 out_free_em: 1974 free_extent_map(em); 1975 return ret; 1976 } 1977 1978 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1979 struct btrfs_path *path, 1980 struct btrfs_key *key) 1981 { 1982 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1983 int ret; 1984 struct btrfs_key found_key; 1985 1986 btrfs_for_each_slot(root, key, &found_key, path, ret) { 1987 if (found_key.objectid >= key->objectid && 1988 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1989 return read_bg_from_eb(fs_info, &found_key, path); 1990 } 1991 } 1992 return ret; 1993 } 1994 1995 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1996 { 1997 u64 extra_flags = chunk_to_extended(flags) & 1998 BTRFS_EXTENDED_PROFILE_MASK; 1999 2000 write_seqlock(&fs_info->profiles_lock); 2001 if (flags & BTRFS_BLOCK_GROUP_DATA) 2002 fs_info->avail_data_alloc_bits |= extra_flags; 2003 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2004 fs_info->avail_metadata_alloc_bits |= extra_flags; 2005 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2006 fs_info->avail_system_alloc_bits |= extra_flags; 2007 write_sequnlock(&fs_info->profiles_lock); 2008 } 2009 2010 /* 2011 * Map a physical disk address to a list of logical addresses. 2012 * 2013 * @fs_info: the filesystem 2014 * @chunk_start: logical address of block group 2015 * @physical: physical address to map to logical addresses 2016 * @logical: return array of logical addresses which map to @physical 2017 * @naddrs: length of @logical 2018 * @stripe_len: size of IO stripe for the given block group 2019 * 2020 * Maps a particular @physical disk address to a list of @logical addresses. 2021 * Used primarily to exclude those portions of a block group that contain super 2022 * block copies. 2023 */ 2024 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2025 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2026 { 2027 struct extent_map *em; 2028 struct map_lookup *map; 2029 u64 *buf; 2030 u64 bytenr; 2031 u64 data_stripe_length; 2032 u64 io_stripe_size; 2033 int i, nr = 0; 2034 int ret = 0; 2035 2036 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2037 if (IS_ERR(em)) 2038 return -EIO; 2039 2040 map = em->map_lookup; 2041 data_stripe_length = em->orig_block_len; 2042 io_stripe_size = BTRFS_STRIPE_LEN; 2043 chunk_start = em->start; 2044 2045 /* For RAID5/6 adjust to a full IO stripe length */ 2046 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2047 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2048 2049 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2050 if (!buf) { 2051 ret = -ENOMEM; 2052 goto out; 2053 } 2054 2055 for (i = 0; i < map->num_stripes; i++) { 2056 bool already_inserted = false; 2057 u32 stripe_nr; 2058 u32 offset; 2059 int j; 2060 2061 if (!in_range(physical, map->stripes[i].physical, 2062 data_stripe_length)) 2063 continue; 2064 2065 stripe_nr = (physical - map->stripes[i].physical) >> 2066 BTRFS_STRIPE_LEN_SHIFT; 2067 offset = (physical - map->stripes[i].physical) & 2068 BTRFS_STRIPE_LEN_MASK; 2069 2070 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2071 BTRFS_BLOCK_GROUP_RAID10)) 2072 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2073 map->sub_stripes); 2074 /* 2075 * The remaining case would be for RAID56, multiply by 2076 * nr_data_stripes(). Alternatively, just use rmap_len below 2077 * instead of map->stripe_len 2078 */ 2079 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2080 2081 /* Ensure we don't add duplicate addresses */ 2082 for (j = 0; j < nr; j++) { 2083 if (buf[j] == bytenr) { 2084 already_inserted = true; 2085 break; 2086 } 2087 } 2088 2089 if (!already_inserted) 2090 buf[nr++] = bytenr; 2091 } 2092 2093 *logical = buf; 2094 *naddrs = nr; 2095 *stripe_len = io_stripe_size; 2096 out: 2097 free_extent_map(em); 2098 return ret; 2099 } 2100 2101 static int exclude_super_stripes(struct btrfs_block_group *cache) 2102 { 2103 struct btrfs_fs_info *fs_info = cache->fs_info; 2104 const bool zoned = btrfs_is_zoned(fs_info); 2105 u64 bytenr; 2106 u64 *logical; 2107 int stripe_len; 2108 int i, nr, ret; 2109 2110 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2111 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2112 cache->bytes_super += stripe_len; 2113 ret = set_extent_bit(&fs_info->excluded_extents, cache->start, 2114 cache->start + stripe_len - 1, 2115 EXTENT_UPTODATE, NULL); 2116 if (ret) 2117 return ret; 2118 } 2119 2120 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2121 bytenr = btrfs_sb_offset(i); 2122 ret = btrfs_rmap_block(fs_info, cache->start, 2123 bytenr, &logical, &nr, &stripe_len); 2124 if (ret) 2125 return ret; 2126 2127 /* Shouldn't have super stripes in sequential zones */ 2128 if (zoned && nr) { 2129 kfree(logical); 2130 btrfs_err(fs_info, 2131 "zoned: block group %llu must not contain super block", 2132 cache->start); 2133 return -EUCLEAN; 2134 } 2135 2136 while (nr--) { 2137 u64 len = min_t(u64, stripe_len, 2138 cache->start + cache->length - logical[nr]); 2139 2140 cache->bytes_super += len; 2141 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr], 2142 logical[nr] + len - 1, 2143 EXTENT_UPTODATE, NULL); 2144 if (ret) { 2145 kfree(logical); 2146 return ret; 2147 } 2148 } 2149 2150 kfree(logical); 2151 } 2152 return 0; 2153 } 2154 2155 static struct btrfs_block_group *btrfs_create_block_group_cache( 2156 struct btrfs_fs_info *fs_info, u64 start) 2157 { 2158 struct btrfs_block_group *cache; 2159 2160 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2161 if (!cache) 2162 return NULL; 2163 2164 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2165 GFP_NOFS); 2166 if (!cache->free_space_ctl) { 2167 kfree(cache); 2168 return NULL; 2169 } 2170 2171 cache->start = start; 2172 2173 cache->fs_info = fs_info; 2174 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2175 2176 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2177 2178 refcount_set(&cache->refs, 1); 2179 spin_lock_init(&cache->lock); 2180 init_rwsem(&cache->data_rwsem); 2181 INIT_LIST_HEAD(&cache->list); 2182 INIT_LIST_HEAD(&cache->cluster_list); 2183 INIT_LIST_HEAD(&cache->bg_list); 2184 INIT_LIST_HEAD(&cache->ro_list); 2185 INIT_LIST_HEAD(&cache->discard_list); 2186 INIT_LIST_HEAD(&cache->dirty_list); 2187 INIT_LIST_HEAD(&cache->io_list); 2188 INIT_LIST_HEAD(&cache->active_bg_list); 2189 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2190 atomic_set(&cache->frozen, 0); 2191 mutex_init(&cache->free_space_lock); 2192 2193 return cache; 2194 } 2195 2196 /* 2197 * Iterate all chunks and verify that each of them has the corresponding block 2198 * group 2199 */ 2200 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2201 { 2202 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2203 struct extent_map *em; 2204 struct btrfs_block_group *bg; 2205 u64 start = 0; 2206 int ret = 0; 2207 2208 while (1) { 2209 read_lock(&map_tree->lock); 2210 /* 2211 * lookup_extent_mapping will return the first extent map 2212 * intersecting the range, so setting @len to 1 is enough to 2213 * get the first chunk. 2214 */ 2215 em = lookup_extent_mapping(map_tree, start, 1); 2216 read_unlock(&map_tree->lock); 2217 if (!em) 2218 break; 2219 2220 bg = btrfs_lookup_block_group(fs_info, em->start); 2221 if (!bg) { 2222 btrfs_err(fs_info, 2223 "chunk start=%llu len=%llu doesn't have corresponding block group", 2224 em->start, em->len); 2225 ret = -EUCLEAN; 2226 free_extent_map(em); 2227 break; 2228 } 2229 if (bg->start != em->start || bg->length != em->len || 2230 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2231 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2232 btrfs_err(fs_info, 2233 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2234 em->start, em->len, 2235 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2236 bg->start, bg->length, 2237 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2238 ret = -EUCLEAN; 2239 free_extent_map(em); 2240 btrfs_put_block_group(bg); 2241 break; 2242 } 2243 start = em->start + em->len; 2244 free_extent_map(em); 2245 btrfs_put_block_group(bg); 2246 } 2247 return ret; 2248 } 2249 2250 static int read_one_block_group(struct btrfs_fs_info *info, 2251 struct btrfs_block_group_item *bgi, 2252 const struct btrfs_key *key, 2253 int need_clear) 2254 { 2255 struct btrfs_block_group *cache; 2256 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2257 int ret; 2258 2259 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2260 2261 cache = btrfs_create_block_group_cache(info, key->objectid); 2262 if (!cache) 2263 return -ENOMEM; 2264 2265 cache->length = key->offset; 2266 cache->used = btrfs_stack_block_group_used(bgi); 2267 cache->commit_used = cache->used; 2268 cache->flags = btrfs_stack_block_group_flags(bgi); 2269 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2270 2271 set_free_space_tree_thresholds(cache); 2272 2273 if (need_clear) { 2274 /* 2275 * When we mount with old space cache, we need to 2276 * set BTRFS_DC_CLEAR and set dirty flag. 2277 * 2278 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2279 * truncate the old free space cache inode and 2280 * setup a new one. 2281 * b) Setting 'dirty flag' makes sure that we flush 2282 * the new space cache info onto disk. 2283 */ 2284 if (btrfs_test_opt(info, SPACE_CACHE)) 2285 cache->disk_cache_state = BTRFS_DC_CLEAR; 2286 } 2287 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2288 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2289 btrfs_err(info, 2290 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2291 cache->start); 2292 ret = -EINVAL; 2293 goto error; 2294 } 2295 2296 ret = btrfs_load_block_group_zone_info(cache, false); 2297 if (ret) { 2298 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2299 cache->start); 2300 goto error; 2301 } 2302 2303 /* 2304 * We need to exclude the super stripes now so that the space info has 2305 * super bytes accounted for, otherwise we'll think we have more space 2306 * than we actually do. 2307 */ 2308 ret = exclude_super_stripes(cache); 2309 if (ret) { 2310 /* We may have excluded something, so call this just in case. */ 2311 btrfs_free_excluded_extents(cache); 2312 goto error; 2313 } 2314 2315 /* 2316 * For zoned filesystem, space after the allocation offset is the only 2317 * free space for a block group. So, we don't need any caching work. 2318 * btrfs_calc_zone_unusable() will set the amount of free space and 2319 * zone_unusable space. 2320 * 2321 * For regular filesystem, check for two cases, either we are full, and 2322 * therefore don't need to bother with the caching work since we won't 2323 * find any space, or we are empty, and we can just add all the space 2324 * in and be done with it. This saves us _a_lot_ of time, particularly 2325 * in the full case. 2326 */ 2327 if (btrfs_is_zoned(info)) { 2328 btrfs_calc_zone_unusable(cache); 2329 /* Should not have any excluded extents. Just in case, though. */ 2330 btrfs_free_excluded_extents(cache); 2331 } else if (cache->length == cache->used) { 2332 cache->cached = BTRFS_CACHE_FINISHED; 2333 btrfs_free_excluded_extents(cache); 2334 } else if (cache->used == 0) { 2335 cache->cached = BTRFS_CACHE_FINISHED; 2336 ret = btrfs_add_new_free_space(cache, cache->start, 2337 cache->start + cache->length, NULL); 2338 btrfs_free_excluded_extents(cache); 2339 if (ret) 2340 goto error; 2341 } 2342 2343 ret = btrfs_add_block_group_cache(info, cache); 2344 if (ret) { 2345 btrfs_remove_free_space_cache(cache); 2346 goto error; 2347 } 2348 trace_btrfs_add_block_group(info, cache, 0); 2349 btrfs_add_bg_to_space_info(info, cache); 2350 2351 set_avail_alloc_bits(info, cache->flags); 2352 if (btrfs_chunk_writeable(info, cache->start)) { 2353 if (cache->used == 0) { 2354 ASSERT(list_empty(&cache->bg_list)); 2355 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2356 btrfs_discard_queue_work(&info->discard_ctl, cache); 2357 else 2358 btrfs_mark_bg_unused(cache); 2359 } 2360 } else { 2361 inc_block_group_ro(cache, 1); 2362 } 2363 2364 return 0; 2365 error: 2366 btrfs_put_block_group(cache); 2367 return ret; 2368 } 2369 2370 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2371 { 2372 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2373 struct rb_node *node; 2374 int ret = 0; 2375 2376 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2377 struct extent_map *em; 2378 struct map_lookup *map; 2379 struct btrfs_block_group *bg; 2380 2381 em = rb_entry(node, struct extent_map, rb_node); 2382 map = em->map_lookup; 2383 bg = btrfs_create_block_group_cache(fs_info, em->start); 2384 if (!bg) { 2385 ret = -ENOMEM; 2386 break; 2387 } 2388 2389 /* Fill dummy cache as FULL */ 2390 bg->length = em->len; 2391 bg->flags = map->type; 2392 bg->cached = BTRFS_CACHE_FINISHED; 2393 bg->used = em->len; 2394 bg->flags = map->type; 2395 ret = btrfs_add_block_group_cache(fs_info, bg); 2396 /* 2397 * We may have some valid block group cache added already, in 2398 * that case we skip to the next one. 2399 */ 2400 if (ret == -EEXIST) { 2401 ret = 0; 2402 btrfs_put_block_group(bg); 2403 continue; 2404 } 2405 2406 if (ret) { 2407 btrfs_remove_free_space_cache(bg); 2408 btrfs_put_block_group(bg); 2409 break; 2410 } 2411 2412 btrfs_add_bg_to_space_info(fs_info, bg); 2413 2414 set_avail_alloc_bits(fs_info, bg->flags); 2415 } 2416 if (!ret) 2417 btrfs_init_global_block_rsv(fs_info); 2418 return ret; 2419 } 2420 2421 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2422 { 2423 struct btrfs_root *root = btrfs_block_group_root(info); 2424 struct btrfs_path *path; 2425 int ret; 2426 struct btrfs_block_group *cache; 2427 struct btrfs_space_info *space_info; 2428 struct btrfs_key key; 2429 int need_clear = 0; 2430 u64 cache_gen; 2431 2432 /* 2433 * Either no extent root (with ibadroots rescue option) or we have 2434 * unsupported RO options. The fs can never be mounted read-write, so no 2435 * need to waste time searching block group items. 2436 * 2437 * This also allows new extent tree related changes to be RO compat, 2438 * no need for a full incompat flag. 2439 */ 2440 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2441 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2442 return fill_dummy_bgs(info); 2443 2444 key.objectid = 0; 2445 key.offset = 0; 2446 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2447 path = btrfs_alloc_path(); 2448 if (!path) 2449 return -ENOMEM; 2450 2451 cache_gen = btrfs_super_cache_generation(info->super_copy); 2452 if (btrfs_test_opt(info, SPACE_CACHE) && 2453 btrfs_super_generation(info->super_copy) != cache_gen) 2454 need_clear = 1; 2455 if (btrfs_test_opt(info, CLEAR_CACHE)) 2456 need_clear = 1; 2457 2458 while (1) { 2459 struct btrfs_block_group_item bgi; 2460 struct extent_buffer *leaf; 2461 int slot; 2462 2463 ret = find_first_block_group(info, path, &key); 2464 if (ret > 0) 2465 break; 2466 if (ret != 0) 2467 goto error; 2468 2469 leaf = path->nodes[0]; 2470 slot = path->slots[0]; 2471 2472 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2473 sizeof(bgi)); 2474 2475 btrfs_item_key_to_cpu(leaf, &key, slot); 2476 btrfs_release_path(path); 2477 ret = read_one_block_group(info, &bgi, &key, need_clear); 2478 if (ret < 0) 2479 goto error; 2480 key.objectid += key.offset; 2481 key.offset = 0; 2482 } 2483 btrfs_release_path(path); 2484 2485 list_for_each_entry(space_info, &info->space_info, list) { 2486 int i; 2487 2488 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2489 if (list_empty(&space_info->block_groups[i])) 2490 continue; 2491 cache = list_first_entry(&space_info->block_groups[i], 2492 struct btrfs_block_group, 2493 list); 2494 btrfs_sysfs_add_block_group_type(cache); 2495 } 2496 2497 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2498 (BTRFS_BLOCK_GROUP_RAID10 | 2499 BTRFS_BLOCK_GROUP_RAID1_MASK | 2500 BTRFS_BLOCK_GROUP_RAID56_MASK | 2501 BTRFS_BLOCK_GROUP_DUP))) 2502 continue; 2503 /* 2504 * Avoid allocating from un-mirrored block group if there are 2505 * mirrored block groups. 2506 */ 2507 list_for_each_entry(cache, 2508 &space_info->block_groups[BTRFS_RAID_RAID0], 2509 list) 2510 inc_block_group_ro(cache, 1); 2511 list_for_each_entry(cache, 2512 &space_info->block_groups[BTRFS_RAID_SINGLE], 2513 list) 2514 inc_block_group_ro(cache, 1); 2515 } 2516 2517 btrfs_init_global_block_rsv(info); 2518 ret = check_chunk_block_group_mappings(info); 2519 error: 2520 btrfs_free_path(path); 2521 /* 2522 * We've hit some error while reading the extent tree, and have 2523 * rescue=ibadroots mount option. 2524 * Try to fill the tree using dummy block groups so that the user can 2525 * continue to mount and grab their data. 2526 */ 2527 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2528 ret = fill_dummy_bgs(info); 2529 return ret; 2530 } 2531 2532 /* 2533 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2534 * allocation. 2535 * 2536 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2537 * phases. 2538 */ 2539 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2540 struct btrfs_block_group *block_group) 2541 { 2542 struct btrfs_fs_info *fs_info = trans->fs_info; 2543 struct btrfs_block_group_item bgi; 2544 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2545 struct btrfs_key key; 2546 u64 old_commit_used; 2547 int ret; 2548 2549 spin_lock(&block_group->lock); 2550 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2551 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2552 block_group->global_root_id); 2553 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2554 old_commit_used = block_group->commit_used; 2555 block_group->commit_used = block_group->used; 2556 key.objectid = block_group->start; 2557 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2558 key.offset = block_group->length; 2559 spin_unlock(&block_group->lock); 2560 2561 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2562 if (ret < 0) { 2563 spin_lock(&block_group->lock); 2564 block_group->commit_used = old_commit_used; 2565 spin_unlock(&block_group->lock); 2566 } 2567 2568 return ret; 2569 } 2570 2571 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2572 struct btrfs_device *device, u64 chunk_offset, 2573 u64 start, u64 num_bytes) 2574 { 2575 struct btrfs_fs_info *fs_info = device->fs_info; 2576 struct btrfs_root *root = fs_info->dev_root; 2577 struct btrfs_path *path; 2578 struct btrfs_dev_extent *extent; 2579 struct extent_buffer *leaf; 2580 struct btrfs_key key; 2581 int ret; 2582 2583 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2584 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2585 path = btrfs_alloc_path(); 2586 if (!path) 2587 return -ENOMEM; 2588 2589 key.objectid = device->devid; 2590 key.type = BTRFS_DEV_EXTENT_KEY; 2591 key.offset = start; 2592 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2593 if (ret) 2594 goto out; 2595 2596 leaf = path->nodes[0]; 2597 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2598 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2599 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2600 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2601 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2602 2603 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2604 btrfs_mark_buffer_dirty(trans, leaf); 2605 out: 2606 btrfs_free_path(path); 2607 return ret; 2608 } 2609 2610 /* 2611 * This function belongs to phase 2. 2612 * 2613 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2614 * phases. 2615 */ 2616 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2617 u64 chunk_offset, u64 chunk_size) 2618 { 2619 struct btrfs_fs_info *fs_info = trans->fs_info; 2620 struct btrfs_device *device; 2621 struct extent_map *em; 2622 struct map_lookup *map; 2623 u64 dev_offset; 2624 u64 stripe_size; 2625 int i; 2626 int ret = 0; 2627 2628 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2629 if (IS_ERR(em)) 2630 return PTR_ERR(em); 2631 2632 map = em->map_lookup; 2633 stripe_size = em->orig_block_len; 2634 2635 /* 2636 * Take the device list mutex to prevent races with the final phase of 2637 * a device replace operation that replaces the device object associated 2638 * with the map's stripes, because the device object's id can change 2639 * at any time during that final phase of the device replace operation 2640 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2641 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2642 * resulting in persisting a device extent item with such ID. 2643 */ 2644 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2645 for (i = 0; i < map->num_stripes; i++) { 2646 device = map->stripes[i].dev; 2647 dev_offset = map->stripes[i].physical; 2648 2649 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2650 stripe_size); 2651 if (ret) 2652 break; 2653 } 2654 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2655 2656 free_extent_map(em); 2657 return ret; 2658 } 2659 2660 /* 2661 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2662 * chunk allocation. 2663 * 2664 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2665 * phases. 2666 */ 2667 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2668 { 2669 struct btrfs_fs_info *fs_info = trans->fs_info; 2670 struct btrfs_block_group *block_group; 2671 int ret = 0; 2672 2673 while (!list_empty(&trans->new_bgs)) { 2674 int index; 2675 2676 block_group = list_first_entry(&trans->new_bgs, 2677 struct btrfs_block_group, 2678 bg_list); 2679 if (ret) 2680 goto next; 2681 2682 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2683 2684 ret = insert_block_group_item(trans, block_group); 2685 if (ret) 2686 btrfs_abort_transaction(trans, ret); 2687 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2688 &block_group->runtime_flags)) { 2689 mutex_lock(&fs_info->chunk_mutex); 2690 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2691 mutex_unlock(&fs_info->chunk_mutex); 2692 if (ret) 2693 btrfs_abort_transaction(trans, ret); 2694 } 2695 ret = insert_dev_extents(trans, block_group->start, 2696 block_group->length); 2697 if (ret) 2698 btrfs_abort_transaction(trans, ret); 2699 add_block_group_free_space(trans, block_group); 2700 2701 /* 2702 * If we restriped during balance, we may have added a new raid 2703 * type, so now add the sysfs entries when it is safe to do so. 2704 * We don't have to worry about locking here as it's handled in 2705 * btrfs_sysfs_add_block_group_type. 2706 */ 2707 if (block_group->space_info->block_group_kobjs[index] == NULL) 2708 btrfs_sysfs_add_block_group_type(block_group); 2709 2710 /* Already aborted the transaction if it failed. */ 2711 next: 2712 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2713 list_del_init(&block_group->bg_list); 2714 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2715 } 2716 btrfs_trans_release_chunk_metadata(trans); 2717 } 2718 2719 /* 2720 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2721 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2722 */ 2723 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2724 { 2725 u64 div = SZ_1G; 2726 u64 index; 2727 2728 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2729 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2730 2731 /* If we have a smaller fs index based on 128MiB. */ 2732 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2733 div = SZ_128M; 2734 2735 offset = div64_u64(offset, div); 2736 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2737 return index; 2738 } 2739 2740 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2741 u64 type, 2742 u64 chunk_offset, u64 size) 2743 { 2744 struct btrfs_fs_info *fs_info = trans->fs_info; 2745 struct btrfs_block_group *cache; 2746 int ret; 2747 2748 btrfs_set_log_full_commit(trans); 2749 2750 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2751 if (!cache) 2752 return ERR_PTR(-ENOMEM); 2753 2754 /* 2755 * Mark it as new before adding it to the rbtree of block groups or any 2756 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2757 * before the new flag is set. 2758 */ 2759 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2760 2761 cache->length = size; 2762 set_free_space_tree_thresholds(cache); 2763 cache->flags = type; 2764 cache->cached = BTRFS_CACHE_FINISHED; 2765 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2766 2767 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2768 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2769 2770 ret = btrfs_load_block_group_zone_info(cache, true); 2771 if (ret) { 2772 btrfs_put_block_group(cache); 2773 return ERR_PTR(ret); 2774 } 2775 2776 ret = exclude_super_stripes(cache); 2777 if (ret) { 2778 /* We may have excluded something, so call this just in case */ 2779 btrfs_free_excluded_extents(cache); 2780 btrfs_put_block_group(cache); 2781 return ERR_PTR(ret); 2782 } 2783 2784 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2785 btrfs_free_excluded_extents(cache); 2786 if (ret) { 2787 btrfs_put_block_group(cache); 2788 return ERR_PTR(ret); 2789 } 2790 2791 /* 2792 * Ensure the corresponding space_info object is created and 2793 * assigned to our block group. We want our bg to be added to the rbtree 2794 * with its ->space_info set. 2795 */ 2796 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2797 ASSERT(cache->space_info); 2798 2799 ret = btrfs_add_block_group_cache(fs_info, cache); 2800 if (ret) { 2801 btrfs_remove_free_space_cache(cache); 2802 btrfs_put_block_group(cache); 2803 return ERR_PTR(ret); 2804 } 2805 2806 /* 2807 * Now that our block group has its ->space_info set and is inserted in 2808 * the rbtree, update the space info's counters. 2809 */ 2810 trace_btrfs_add_block_group(fs_info, cache, 1); 2811 btrfs_add_bg_to_space_info(fs_info, cache); 2812 btrfs_update_global_block_rsv(fs_info); 2813 2814 #ifdef CONFIG_BTRFS_DEBUG 2815 if (btrfs_should_fragment_free_space(cache)) { 2816 cache->space_info->bytes_used += size >> 1; 2817 fragment_free_space(cache); 2818 } 2819 #endif 2820 2821 list_add_tail(&cache->bg_list, &trans->new_bgs); 2822 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info); 2823 2824 set_avail_alloc_bits(fs_info, type); 2825 return cache; 2826 } 2827 2828 /* 2829 * Mark one block group RO, can be called several times for the same block 2830 * group. 2831 * 2832 * @cache: the destination block group 2833 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2834 * ensure we still have some free space after marking this 2835 * block group RO. 2836 */ 2837 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2838 bool do_chunk_alloc) 2839 { 2840 struct btrfs_fs_info *fs_info = cache->fs_info; 2841 struct btrfs_trans_handle *trans; 2842 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2843 u64 alloc_flags; 2844 int ret; 2845 bool dirty_bg_running; 2846 2847 /* 2848 * This can only happen when we are doing read-only scrub on read-only 2849 * mount. 2850 * In that case we should not start a new transaction on read-only fs. 2851 * Thus here we skip all chunk allocations. 2852 */ 2853 if (sb_rdonly(fs_info->sb)) { 2854 mutex_lock(&fs_info->ro_block_group_mutex); 2855 ret = inc_block_group_ro(cache, 0); 2856 mutex_unlock(&fs_info->ro_block_group_mutex); 2857 return ret; 2858 } 2859 2860 do { 2861 trans = btrfs_join_transaction(root); 2862 if (IS_ERR(trans)) 2863 return PTR_ERR(trans); 2864 2865 dirty_bg_running = false; 2866 2867 /* 2868 * We're not allowed to set block groups readonly after the dirty 2869 * block group cache has started writing. If it already started, 2870 * back off and let this transaction commit. 2871 */ 2872 mutex_lock(&fs_info->ro_block_group_mutex); 2873 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2874 u64 transid = trans->transid; 2875 2876 mutex_unlock(&fs_info->ro_block_group_mutex); 2877 btrfs_end_transaction(trans); 2878 2879 ret = btrfs_wait_for_commit(fs_info, transid); 2880 if (ret) 2881 return ret; 2882 dirty_bg_running = true; 2883 } 2884 } while (dirty_bg_running); 2885 2886 if (do_chunk_alloc) { 2887 /* 2888 * If we are changing raid levels, try to allocate a 2889 * corresponding block group with the new raid level. 2890 */ 2891 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2892 if (alloc_flags != cache->flags) { 2893 ret = btrfs_chunk_alloc(trans, alloc_flags, 2894 CHUNK_ALLOC_FORCE); 2895 /* 2896 * ENOSPC is allowed here, we may have enough space 2897 * already allocated at the new raid level to carry on 2898 */ 2899 if (ret == -ENOSPC) 2900 ret = 0; 2901 if (ret < 0) 2902 goto out; 2903 } 2904 } 2905 2906 ret = inc_block_group_ro(cache, 0); 2907 if (!ret) 2908 goto out; 2909 if (ret == -ETXTBSY) 2910 goto unlock_out; 2911 2912 /* 2913 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system 2914 * chunk allocation storm to exhaust the system chunk array. Otherwise 2915 * we still want to try our best to mark the block group read-only. 2916 */ 2917 if (!do_chunk_alloc && ret == -ENOSPC && 2918 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 2919 goto unlock_out; 2920 2921 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2922 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2923 if (ret < 0) 2924 goto out; 2925 /* 2926 * We have allocated a new chunk. We also need to activate that chunk to 2927 * grant metadata tickets for zoned filesystem. 2928 */ 2929 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2930 if (ret < 0) 2931 goto out; 2932 2933 ret = inc_block_group_ro(cache, 0); 2934 if (ret == -ETXTBSY) 2935 goto unlock_out; 2936 out: 2937 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2938 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2939 mutex_lock(&fs_info->chunk_mutex); 2940 check_system_chunk(trans, alloc_flags); 2941 mutex_unlock(&fs_info->chunk_mutex); 2942 } 2943 unlock_out: 2944 mutex_unlock(&fs_info->ro_block_group_mutex); 2945 2946 btrfs_end_transaction(trans); 2947 return ret; 2948 } 2949 2950 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2951 { 2952 struct btrfs_space_info *sinfo = cache->space_info; 2953 u64 num_bytes; 2954 2955 BUG_ON(!cache->ro); 2956 2957 spin_lock(&sinfo->lock); 2958 spin_lock(&cache->lock); 2959 if (!--cache->ro) { 2960 if (btrfs_is_zoned(cache->fs_info)) { 2961 /* Migrate zone_unusable bytes back */ 2962 cache->zone_unusable = 2963 (cache->alloc_offset - cache->used) + 2964 (cache->length - cache->zone_capacity); 2965 sinfo->bytes_zone_unusable += cache->zone_unusable; 2966 sinfo->bytes_readonly -= cache->zone_unusable; 2967 } 2968 num_bytes = cache->length - cache->reserved - 2969 cache->pinned - cache->bytes_super - 2970 cache->zone_unusable - cache->used; 2971 sinfo->bytes_readonly -= num_bytes; 2972 list_del_init(&cache->ro_list); 2973 } 2974 spin_unlock(&cache->lock); 2975 spin_unlock(&sinfo->lock); 2976 } 2977 2978 static int update_block_group_item(struct btrfs_trans_handle *trans, 2979 struct btrfs_path *path, 2980 struct btrfs_block_group *cache) 2981 { 2982 struct btrfs_fs_info *fs_info = trans->fs_info; 2983 int ret; 2984 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2985 unsigned long bi; 2986 struct extent_buffer *leaf; 2987 struct btrfs_block_group_item bgi; 2988 struct btrfs_key key; 2989 u64 old_commit_used; 2990 u64 used; 2991 2992 /* 2993 * Block group items update can be triggered out of commit transaction 2994 * critical section, thus we need a consistent view of used bytes. 2995 * We cannot use cache->used directly outside of the spin lock, as it 2996 * may be changed. 2997 */ 2998 spin_lock(&cache->lock); 2999 old_commit_used = cache->commit_used; 3000 used = cache->used; 3001 /* No change in used bytes, can safely skip it. */ 3002 if (cache->commit_used == used) { 3003 spin_unlock(&cache->lock); 3004 return 0; 3005 } 3006 cache->commit_used = used; 3007 spin_unlock(&cache->lock); 3008 3009 key.objectid = cache->start; 3010 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3011 key.offset = cache->length; 3012 3013 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3014 if (ret) { 3015 if (ret > 0) 3016 ret = -ENOENT; 3017 goto fail; 3018 } 3019 3020 leaf = path->nodes[0]; 3021 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3022 btrfs_set_stack_block_group_used(&bgi, used); 3023 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3024 cache->global_root_id); 3025 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3026 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3027 btrfs_mark_buffer_dirty(trans, leaf); 3028 fail: 3029 btrfs_release_path(path); 3030 /* 3031 * We didn't update the block group item, need to revert commit_used 3032 * unless the block group item didn't exist yet - this is to prevent a 3033 * race with a concurrent insertion of the block group item, with 3034 * insert_block_group_item(), that happened just after we attempted to 3035 * update. In that case we would reset commit_used to 0 just after the 3036 * insertion set it to a value greater than 0 - if the block group later 3037 * becomes with 0 used bytes, we would incorrectly skip its update. 3038 */ 3039 if (ret < 0 && ret != -ENOENT) { 3040 spin_lock(&cache->lock); 3041 cache->commit_used = old_commit_used; 3042 spin_unlock(&cache->lock); 3043 } 3044 return ret; 3045 3046 } 3047 3048 static int cache_save_setup(struct btrfs_block_group *block_group, 3049 struct btrfs_trans_handle *trans, 3050 struct btrfs_path *path) 3051 { 3052 struct btrfs_fs_info *fs_info = block_group->fs_info; 3053 struct inode *inode = NULL; 3054 struct extent_changeset *data_reserved = NULL; 3055 u64 alloc_hint = 0; 3056 int dcs = BTRFS_DC_ERROR; 3057 u64 cache_size = 0; 3058 int retries = 0; 3059 int ret = 0; 3060 3061 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3062 return 0; 3063 3064 /* 3065 * If this block group is smaller than 100 megs don't bother caching the 3066 * block group. 3067 */ 3068 if (block_group->length < (100 * SZ_1M)) { 3069 spin_lock(&block_group->lock); 3070 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3071 spin_unlock(&block_group->lock); 3072 return 0; 3073 } 3074 3075 if (TRANS_ABORTED(trans)) 3076 return 0; 3077 again: 3078 inode = lookup_free_space_inode(block_group, path); 3079 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3080 ret = PTR_ERR(inode); 3081 btrfs_release_path(path); 3082 goto out; 3083 } 3084 3085 if (IS_ERR(inode)) { 3086 BUG_ON(retries); 3087 retries++; 3088 3089 if (block_group->ro) 3090 goto out_free; 3091 3092 ret = create_free_space_inode(trans, block_group, path); 3093 if (ret) 3094 goto out_free; 3095 goto again; 3096 } 3097 3098 /* 3099 * We want to set the generation to 0, that way if anything goes wrong 3100 * from here on out we know not to trust this cache when we load up next 3101 * time. 3102 */ 3103 BTRFS_I(inode)->generation = 0; 3104 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 3105 if (ret) { 3106 /* 3107 * So theoretically we could recover from this, simply set the 3108 * super cache generation to 0 so we know to invalidate the 3109 * cache, but then we'd have to keep track of the block groups 3110 * that fail this way so we know we _have_ to reset this cache 3111 * before the next commit or risk reading stale cache. So to 3112 * limit our exposure to horrible edge cases lets just abort the 3113 * transaction, this only happens in really bad situations 3114 * anyway. 3115 */ 3116 btrfs_abort_transaction(trans, ret); 3117 goto out_put; 3118 } 3119 WARN_ON(ret); 3120 3121 /* We've already setup this transaction, go ahead and exit */ 3122 if (block_group->cache_generation == trans->transid && 3123 i_size_read(inode)) { 3124 dcs = BTRFS_DC_SETUP; 3125 goto out_put; 3126 } 3127 3128 if (i_size_read(inode) > 0) { 3129 ret = btrfs_check_trunc_cache_free_space(fs_info, 3130 &fs_info->global_block_rsv); 3131 if (ret) 3132 goto out_put; 3133 3134 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3135 if (ret) 3136 goto out_put; 3137 } 3138 3139 spin_lock(&block_group->lock); 3140 if (block_group->cached != BTRFS_CACHE_FINISHED || 3141 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3142 /* 3143 * don't bother trying to write stuff out _if_ 3144 * a) we're not cached, 3145 * b) we're with nospace_cache mount option, 3146 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3147 */ 3148 dcs = BTRFS_DC_WRITTEN; 3149 spin_unlock(&block_group->lock); 3150 goto out_put; 3151 } 3152 spin_unlock(&block_group->lock); 3153 3154 /* 3155 * We hit an ENOSPC when setting up the cache in this transaction, just 3156 * skip doing the setup, we've already cleared the cache so we're safe. 3157 */ 3158 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3159 ret = -ENOSPC; 3160 goto out_put; 3161 } 3162 3163 /* 3164 * Try to preallocate enough space based on how big the block group is. 3165 * Keep in mind this has to include any pinned space which could end up 3166 * taking up quite a bit since it's not folded into the other space 3167 * cache. 3168 */ 3169 cache_size = div_u64(block_group->length, SZ_256M); 3170 if (!cache_size) 3171 cache_size = 1; 3172 3173 cache_size *= 16; 3174 cache_size *= fs_info->sectorsize; 3175 3176 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3177 cache_size, false); 3178 if (ret) 3179 goto out_put; 3180 3181 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3182 cache_size, cache_size, 3183 &alloc_hint); 3184 /* 3185 * Our cache requires contiguous chunks so that we don't modify a bunch 3186 * of metadata or split extents when writing the cache out, which means 3187 * we can enospc if we are heavily fragmented in addition to just normal 3188 * out of space conditions. So if we hit this just skip setting up any 3189 * other block groups for this transaction, maybe we'll unpin enough 3190 * space the next time around. 3191 */ 3192 if (!ret) 3193 dcs = BTRFS_DC_SETUP; 3194 else if (ret == -ENOSPC) 3195 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3196 3197 out_put: 3198 iput(inode); 3199 out_free: 3200 btrfs_release_path(path); 3201 out: 3202 spin_lock(&block_group->lock); 3203 if (!ret && dcs == BTRFS_DC_SETUP) 3204 block_group->cache_generation = trans->transid; 3205 block_group->disk_cache_state = dcs; 3206 spin_unlock(&block_group->lock); 3207 3208 extent_changeset_free(data_reserved); 3209 return ret; 3210 } 3211 3212 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3213 { 3214 struct btrfs_fs_info *fs_info = trans->fs_info; 3215 struct btrfs_block_group *cache, *tmp; 3216 struct btrfs_transaction *cur_trans = trans->transaction; 3217 struct btrfs_path *path; 3218 3219 if (list_empty(&cur_trans->dirty_bgs) || 3220 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3221 return 0; 3222 3223 path = btrfs_alloc_path(); 3224 if (!path) 3225 return -ENOMEM; 3226 3227 /* Could add new block groups, use _safe just in case */ 3228 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3229 dirty_list) { 3230 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3231 cache_save_setup(cache, trans, path); 3232 } 3233 3234 btrfs_free_path(path); 3235 return 0; 3236 } 3237 3238 /* 3239 * Transaction commit does final block group cache writeback during a critical 3240 * section where nothing is allowed to change the FS. This is required in 3241 * order for the cache to actually match the block group, but can introduce a 3242 * lot of latency into the commit. 3243 * 3244 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3245 * There's a chance we'll have to redo some of it if the block group changes 3246 * again during the commit, but it greatly reduces the commit latency by 3247 * getting rid of the easy block groups while we're still allowing others to 3248 * join the commit. 3249 */ 3250 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3251 { 3252 struct btrfs_fs_info *fs_info = trans->fs_info; 3253 struct btrfs_block_group *cache; 3254 struct btrfs_transaction *cur_trans = trans->transaction; 3255 int ret = 0; 3256 int should_put; 3257 struct btrfs_path *path = NULL; 3258 LIST_HEAD(dirty); 3259 struct list_head *io = &cur_trans->io_bgs; 3260 int loops = 0; 3261 3262 spin_lock(&cur_trans->dirty_bgs_lock); 3263 if (list_empty(&cur_trans->dirty_bgs)) { 3264 spin_unlock(&cur_trans->dirty_bgs_lock); 3265 return 0; 3266 } 3267 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3268 spin_unlock(&cur_trans->dirty_bgs_lock); 3269 3270 again: 3271 /* Make sure all the block groups on our dirty list actually exist */ 3272 btrfs_create_pending_block_groups(trans); 3273 3274 if (!path) { 3275 path = btrfs_alloc_path(); 3276 if (!path) { 3277 ret = -ENOMEM; 3278 goto out; 3279 } 3280 } 3281 3282 /* 3283 * cache_write_mutex is here only to save us from balance or automatic 3284 * removal of empty block groups deleting this block group while we are 3285 * writing out the cache 3286 */ 3287 mutex_lock(&trans->transaction->cache_write_mutex); 3288 while (!list_empty(&dirty)) { 3289 bool drop_reserve = true; 3290 3291 cache = list_first_entry(&dirty, struct btrfs_block_group, 3292 dirty_list); 3293 /* 3294 * This can happen if something re-dirties a block group that 3295 * is already under IO. Just wait for it to finish and then do 3296 * it all again 3297 */ 3298 if (!list_empty(&cache->io_list)) { 3299 list_del_init(&cache->io_list); 3300 btrfs_wait_cache_io(trans, cache, path); 3301 btrfs_put_block_group(cache); 3302 } 3303 3304 3305 /* 3306 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3307 * it should update the cache_state. Don't delete until after 3308 * we wait. 3309 * 3310 * Since we're not running in the commit critical section 3311 * we need the dirty_bgs_lock to protect from update_block_group 3312 */ 3313 spin_lock(&cur_trans->dirty_bgs_lock); 3314 list_del_init(&cache->dirty_list); 3315 spin_unlock(&cur_trans->dirty_bgs_lock); 3316 3317 should_put = 1; 3318 3319 cache_save_setup(cache, trans, path); 3320 3321 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3322 cache->io_ctl.inode = NULL; 3323 ret = btrfs_write_out_cache(trans, cache, path); 3324 if (ret == 0 && cache->io_ctl.inode) { 3325 should_put = 0; 3326 3327 /* 3328 * The cache_write_mutex is protecting the 3329 * io_list, also refer to the definition of 3330 * btrfs_transaction::io_bgs for more details 3331 */ 3332 list_add_tail(&cache->io_list, io); 3333 } else { 3334 /* 3335 * If we failed to write the cache, the 3336 * generation will be bad and life goes on 3337 */ 3338 ret = 0; 3339 } 3340 } 3341 if (!ret) { 3342 ret = update_block_group_item(trans, path, cache); 3343 /* 3344 * Our block group might still be attached to the list 3345 * of new block groups in the transaction handle of some 3346 * other task (struct btrfs_trans_handle->new_bgs). This 3347 * means its block group item isn't yet in the extent 3348 * tree. If this happens ignore the error, as we will 3349 * try again later in the critical section of the 3350 * transaction commit. 3351 */ 3352 if (ret == -ENOENT) { 3353 ret = 0; 3354 spin_lock(&cur_trans->dirty_bgs_lock); 3355 if (list_empty(&cache->dirty_list)) { 3356 list_add_tail(&cache->dirty_list, 3357 &cur_trans->dirty_bgs); 3358 btrfs_get_block_group(cache); 3359 drop_reserve = false; 3360 } 3361 spin_unlock(&cur_trans->dirty_bgs_lock); 3362 } else if (ret) { 3363 btrfs_abort_transaction(trans, ret); 3364 } 3365 } 3366 3367 /* If it's not on the io list, we need to put the block group */ 3368 if (should_put) 3369 btrfs_put_block_group(cache); 3370 if (drop_reserve) 3371 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3372 /* 3373 * Avoid blocking other tasks for too long. It might even save 3374 * us from writing caches for block groups that are going to be 3375 * removed. 3376 */ 3377 mutex_unlock(&trans->transaction->cache_write_mutex); 3378 if (ret) 3379 goto out; 3380 mutex_lock(&trans->transaction->cache_write_mutex); 3381 } 3382 mutex_unlock(&trans->transaction->cache_write_mutex); 3383 3384 /* 3385 * Go through delayed refs for all the stuff we've just kicked off 3386 * and then loop back (just once) 3387 */ 3388 if (!ret) 3389 ret = btrfs_run_delayed_refs(trans, 0); 3390 if (!ret && loops == 0) { 3391 loops++; 3392 spin_lock(&cur_trans->dirty_bgs_lock); 3393 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3394 /* 3395 * dirty_bgs_lock protects us from concurrent block group 3396 * deletes too (not just cache_write_mutex). 3397 */ 3398 if (!list_empty(&dirty)) { 3399 spin_unlock(&cur_trans->dirty_bgs_lock); 3400 goto again; 3401 } 3402 spin_unlock(&cur_trans->dirty_bgs_lock); 3403 } 3404 out: 3405 if (ret < 0) { 3406 spin_lock(&cur_trans->dirty_bgs_lock); 3407 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3408 spin_unlock(&cur_trans->dirty_bgs_lock); 3409 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3410 } 3411 3412 btrfs_free_path(path); 3413 return ret; 3414 } 3415 3416 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3417 { 3418 struct btrfs_fs_info *fs_info = trans->fs_info; 3419 struct btrfs_block_group *cache; 3420 struct btrfs_transaction *cur_trans = trans->transaction; 3421 int ret = 0; 3422 int should_put; 3423 struct btrfs_path *path; 3424 struct list_head *io = &cur_trans->io_bgs; 3425 3426 path = btrfs_alloc_path(); 3427 if (!path) 3428 return -ENOMEM; 3429 3430 /* 3431 * Even though we are in the critical section of the transaction commit, 3432 * we can still have concurrent tasks adding elements to this 3433 * transaction's list of dirty block groups. These tasks correspond to 3434 * endio free space workers started when writeback finishes for a 3435 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3436 * allocate new block groups as a result of COWing nodes of the root 3437 * tree when updating the free space inode. The writeback for the space 3438 * caches is triggered by an earlier call to 3439 * btrfs_start_dirty_block_groups() and iterations of the following 3440 * loop. 3441 * Also we want to do the cache_save_setup first and then run the 3442 * delayed refs to make sure we have the best chance at doing this all 3443 * in one shot. 3444 */ 3445 spin_lock(&cur_trans->dirty_bgs_lock); 3446 while (!list_empty(&cur_trans->dirty_bgs)) { 3447 cache = list_first_entry(&cur_trans->dirty_bgs, 3448 struct btrfs_block_group, 3449 dirty_list); 3450 3451 /* 3452 * This can happen if cache_save_setup re-dirties a block group 3453 * that is already under IO. Just wait for it to finish and 3454 * then do it all again 3455 */ 3456 if (!list_empty(&cache->io_list)) { 3457 spin_unlock(&cur_trans->dirty_bgs_lock); 3458 list_del_init(&cache->io_list); 3459 btrfs_wait_cache_io(trans, cache, path); 3460 btrfs_put_block_group(cache); 3461 spin_lock(&cur_trans->dirty_bgs_lock); 3462 } 3463 3464 /* 3465 * Don't remove from the dirty list until after we've waited on 3466 * any pending IO 3467 */ 3468 list_del_init(&cache->dirty_list); 3469 spin_unlock(&cur_trans->dirty_bgs_lock); 3470 should_put = 1; 3471 3472 cache_save_setup(cache, trans, path); 3473 3474 if (!ret) 3475 ret = btrfs_run_delayed_refs(trans, U64_MAX); 3476 3477 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3478 cache->io_ctl.inode = NULL; 3479 ret = btrfs_write_out_cache(trans, cache, path); 3480 if (ret == 0 && cache->io_ctl.inode) { 3481 should_put = 0; 3482 list_add_tail(&cache->io_list, io); 3483 } else { 3484 /* 3485 * If we failed to write the cache, the 3486 * generation will be bad and life goes on 3487 */ 3488 ret = 0; 3489 } 3490 } 3491 if (!ret) { 3492 ret = update_block_group_item(trans, path, cache); 3493 /* 3494 * One of the free space endio workers might have 3495 * created a new block group while updating a free space 3496 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3497 * and hasn't released its transaction handle yet, in 3498 * which case the new block group is still attached to 3499 * its transaction handle and its creation has not 3500 * finished yet (no block group item in the extent tree 3501 * yet, etc). If this is the case, wait for all free 3502 * space endio workers to finish and retry. This is a 3503 * very rare case so no need for a more efficient and 3504 * complex approach. 3505 */ 3506 if (ret == -ENOENT) { 3507 wait_event(cur_trans->writer_wait, 3508 atomic_read(&cur_trans->num_writers) == 1); 3509 ret = update_block_group_item(trans, path, cache); 3510 } 3511 if (ret) 3512 btrfs_abort_transaction(trans, ret); 3513 } 3514 3515 /* If its not on the io list, we need to put the block group */ 3516 if (should_put) 3517 btrfs_put_block_group(cache); 3518 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3519 spin_lock(&cur_trans->dirty_bgs_lock); 3520 } 3521 spin_unlock(&cur_trans->dirty_bgs_lock); 3522 3523 /* 3524 * Refer to the definition of io_bgs member for details why it's safe 3525 * to use it without any locking 3526 */ 3527 while (!list_empty(io)) { 3528 cache = list_first_entry(io, struct btrfs_block_group, 3529 io_list); 3530 list_del_init(&cache->io_list); 3531 btrfs_wait_cache_io(trans, cache, path); 3532 btrfs_put_block_group(cache); 3533 } 3534 3535 btrfs_free_path(path); 3536 return ret; 3537 } 3538 3539 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3540 u64 bytenr, u64 num_bytes, bool alloc) 3541 { 3542 struct btrfs_fs_info *info = trans->fs_info; 3543 struct btrfs_space_info *space_info; 3544 struct btrfs_block_group *cache; 3545 u64 old_val; 3546 bool reclaim = false; 3547 bool bg_already_dirty = true; 3548 int factor; 3549 3550 /* Block accounting for super block */ 3551 spin_lock(&info->delalloc_root_lock); 3552 old_val = btrfs_super_bytes_used(info->super_copy); 3553 if (alloc) 3554 old_val += num_bytes; 3555 else 3556 old_val -= num_bytes; 3557 btrfs_set_super_bytes_used(info->super_copy, old_val); 3558 spin_unlock(&info->delalloc_root_lock); 3559 3560 cache = btrfs_lookup_block_group(info, bytenr); 3561 if (!cache) 3562 return -ENOENT; 3563 3564 /* An extent can not span multiple block groups. */ 3565 ASSERT(bytenr + num_bytes <= cache->start + cache->length); 3566 3567 space_info = cache->space_info; 3568 factor = btrfs_bg_type_to_factor(cache->flags); 3569 3570 /* 3571 * If this block group has free space cache written out, we need to make 3572 * sure to load it if we are removing space. This is because we need 3573 * the unpinning stage to actually add the space back to the block group, 3574 * otherwise we will leak space. 3575 */ 3576 if (!alloc && !btrfs_block_group_done(cache)) 3577 btrfs_cache_block_group(cache, true); 3578 3579 spin_lock(&space_info->lock); 3580 spin_lock(&cache->lock); 3581 3582 if (btrfs_test_opt(info, SPACE_CACHE) && 3583 cache->disk_cache_state < BTRFS_DC_CLEAR) 3584 cache->disk_cache_state = BTRFS_DC_CLEAR; 3585 3586 old_val = cache->used; 3587 if (alloc) { 3588 old_val += num_bytes; 3589 cache->used = old_val; 3590 cache->reserved -= num_bytes; 3591 space_info->bytes_reserved -= num_bytes; 3592 space_info->bytes_used += num_bytes; 3593 space_info->disk_used += num_bytes * factor; 3594 spin_unlock(&cache->lock); 3595 spin_unlock(&space_info->lock); 3596 } else { 3597 old_val -= num_bytes; 3598 cache->used = old_val; 3599 cache->pinned += num_bytes; 3600 btrfs_space_info_update_bytes_pinned(info, space_info, num_bytes); 3601 space_info->bytes_used -= num_bytes; 3602 space_info->disk_used -= num_bytes * factor; 3603 3604 reclaim = should_reclaim_block_group(cache, num_bytes); 3605 3606 spin_unlock(&cache->lock); 3607 spin_unlock(&space_info->lock); 3608 3609 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 3610 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 3611 } 3612 3613 spin_lock(&trans->transaction->dirty_bgs_lock); 3614 if (list_empty(&cache->dirty_list)) { 3615 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs); 3616 bg_already_dirty = false; 3617 btrfs_get_block_group(cache); 3618 } 3619 spin_unlock(&trans->transaction->dirty_bgs_lock); 3620 3621 /* 3622 * No longer have used bytes in this block group, queue it for deletion. 3623 * We do this after adding the block group to the dirty list to avoid 3624 * races between cleaner kthread and space cache writeout. 3625 */ 3626 if (!alloc && old_val == 0) { 3627 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3628 btrfs_mark_bg_unused(cache); 3629 } else if (!alloc && reclaim) { 3630 btrfs_mark_bg_to_reclaim(cache); 3631 } 3632 3633 btrfs_put_block_group(cache); 3634 3635 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3636 if (!bg_already_dirty) 3637 btrfs_inc_delayed_refs_rsv_bg_updates(info); 3638 3639 return 0; 3640 } 3641 3642 /* 3643 * Update the block_group and space info counters. 3644 * 3645 * @cache: The cache we are manipulating 3646 * @ram_bytes: The number of bytes of file content, and will be same to 3647 * @num_bytes except for the compress path. 3648 * @num_bytes: The number of bytes in question 3649 * @delalloc: The blocks are allocated for the delalloc write 3650 * 3651 * This is called by the allocator when it reserves space. If this is a 3652 * reservation and the block group has become read only we cannot make the 3653 * reservation and return -EAGAIN, otherwise this function always succeeds. 3654 */ 3655 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3656 u64 ram_bytes, u64 num_bytes, int delalloc, 3657 bool force_wrong_size_class) 3658 { 3659 struct btrfs_space_info *space_info = cache->space_info; 3660 enum btrfs_block_group_size_class size_class; 3661 int ret = 0; 3662 3663 spin_lock(&space_info->lock); 3664 spin_lock(&cache->lock); 3665 if (cache->ro) { 3666 ret = -EAGAIN; 3667 goto out; 3668 } 3669 3670 if (btrfs_block_group_should_use_size_class(cache)) { 3671 size_class = btrfs_calc_block_group_size_class(num_bytes); 3672 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3673 if (ret) 3674 goto out; 3675 } 3676 cache->reserved += num_bytes; 3677 space_info->bytes_reserved += num_bytes; 3678 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3679 space_info->flags, num_bytes, 1); 3680 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3681 space_info, -ram_bytes); 3682 if (delalloc) 3683 cache->delalloc_bytes += num_bytes; 3684 3685 /* 3686 * Compression can use less space than we reserved, so wake tickets if 3687 * that happens. 3688 */ 3689 if (num_bytes < ram_bytes) 3690 btrfs_try_granting_tickets(cache->fs_info, space_info); 3691 out: 3692 spin_unlock(&cache->lock); 3693 spin_unlock(&space_info->lock); 3694 return ret; 3695 } 3696 3697 /* 3698 * Update the block_group and space info counters. 3699 * 3700 * @cache: The cache we are manipulating 3701 * @num_bytes: The number of bytes in question 3702 * @delalloc: The blocks are allocated for the delalloc write 3703 * 3704 * This is called by somebody who is freeing space that was never actually used 3705 * on disk. For example if you reserve some space for a new leaf in transaction 3706 * A and before transaction A commits you free that leaf, you call this with 3707 * reserve set to 0 in order to clear the reservation. 3708 */ 3709 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3710 u64 num_bytes, int delalloc) 3711 { 3712 struct btrfs_space_info *space_info = cache->space_info; 3713 3714 spin_lock(&space_info->lock); 3715 spin_lock(&cache->lock); 3716 if (cache->ro) 3717 space_info->bytes_readonly += num_bytes; 3718 cache->reserved -= num_bytes; 3719 space_info->bytes_reserved -= num_bytes; 3720 space_info->max_extent_size = 0; 3721 3722 if (delalloc) 3723 cache->delalloc_bytes -= num_bytes; 3724 spin_unlock(&cache->lock); 3725 3726 btrfs_try_granting_tickets(cache->fs_info, space_info); 3727 spin_unlock(&space_info->lock); 3728 } 3729 3730 static void force_metadata_allocation(struct btrfs_fs_info *info) 3731 { 3732 struct list_head *head = &info->space_info; 3733 struct btrfs_space_info *found; 3734 3735 list_for_each_entry(found, head, list) { 3736 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3737 found->force_alloc = CHUNK_ALLOC_FORCE; 3738 } 3739 } 3740 3741 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3742 struct btrfs_space_info *sinfo, int force) 3743 { 3744 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3745 u64 thresh; 3746 3747 if (force == CHUNK_ALLOC_FORCE) 3748 return 1; 3749 3750 /* 3751 * in limited mode, we want to have some free space up to 3752 * about 1% of the FS size. 3753 */ 3754 if (force == CHUNK_ALLOC_LIMITED) { 3755 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3756 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3757 3758 if (sinfo->total_bytes - bytes_used < thresh) 3759 return 1; 3760 } 3761 3762 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3763 return 0; 3764 return 1; 3765 } 3766 3767 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3768 { 3769 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3770 3771 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3772 } 3773 3774 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3775 { 3776 struct btrfs_block_group *bg; 3777 int ret; 3778 3779 /* 3780 * Check if we have enough space in the system space info because we 3781 * will need to update device items in the chunk btree and insert a new 3782 * chunk item in the chunk btree as well. This will allocate a new 3783 * system block group if needed. 3784 */ 3785 check_system_chunk(trans, flags); 3786 3787 bg = btrfs_create_chunk(trans, flags); 3788 if (IS_ERR(bg)) { 3789 ret = PTR_ERR(bg); 3790 goto out; 3791 } 3792 3793 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3794 /* 3795 * Normally we are not expected to fail with -ENOSPC here, since we have 3796 * previously reserved space in the system space_info and allocated one 3797 * new system chunk if necessary. However there are three exceptions: 3798 * 3799 * 1) We may have enough free space in the system space_info but all the 3800 * existing system block groups have a profile which can not be used 3801 * for extent allocation. 3802 * 3803 * This happens when mounting in degraded mode. For example we have a 3804 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3805 * using the other device in degraded mode. If we then allocate a chunk, 3806 * we may have enough free space in the existing system space_info, but 3807 * none of the block groups can be used for extent allocation since they 3808 * have a RAID1 profile, and because we are in degraded mode with a 3809 * single device, we are forced to allocate a new system chunk with a 3810 * SINGLE profile. Making check_system_chunk() iterate over all system 3811 * block groups and check if they have a usable profile and enough space 3812 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3813 * try again after forcing allocation of a new system chunk. Like this 3814 * we avoid paying the cost of that search in normal circumstances, when 3815 * we were not mounted in degraded mode; 3816 * 3817 * 2) We had enough free space info the system space_info, and one suitable 3818 * block group to allocate from when we called check_system_chunk() 3819 * above. However right after we called it, the only system block group 3820 * with enough free space got turned into RO mode by a running scrub, 3821 * and in this case we have to allocate a new one and retry. We only 3822 * need do this allocate and retry once, since we have a transaction 3823 * handle and scrub uses the commit root to search for block groups; 3824 * 3825 * 3) We had one system block group with enough free space when we called 3826 * check_system_chunk(), but after that, right before we tried to 3827 * allocate the last extent buffer we needed, a discard operation came 3828 * in and it temporarily removed the last free space entry from the 3829 * block group (discard removes a free space entry, discards it, and 3830 * then adds back the entry to the block group cache). 3831 */ 3832 if (ret == -ENOSPC) { 3833 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3834 struct btrfs_block_group *sys_bg; 3835 3836 sys_bg = btrfs_create_chunk(trans, sys_flags); 3837 if (IS_ERR(sys_bg)) { 3838 ret = PTR_ERR(sys_bg); 3839 btrfs_abort_transaction(trans, ret); 3840 goto out; 3841 } 3842 3843 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3844 if (ret) { 3845 btrfs_abort_transaction(trans, ret); 3846 goto out; 3847 } 3848 3849 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3850 if (ret) { 3851 btrfs_abort_transaction(trans, ret); 3852 goto out; 3853 } 3854 } else if (ret) { 3855 btrfs_abort_transaction(trans, ret); 3856 goto out; 3857 } 3858 out: 3859 btrfs_trans_release_chunk_metadata(trans); 3860 3861 if (ret) 3862 return ERR_PTR(ret); 3863 3864 btrfs_get_block_group(bg); 3865 return bg; 3866 } 3867 3868 /* 3869 * Chunk allocation is done in 2 phases: 3870 * 3871 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3872 * the chunk, the chunk mapping, create its block group and add the items 3873 * that belong in the chunk btree to it - more specifically, we need to 3874 * update device items in the chunk btree and add a new chunk item to it. 3875 * 3876 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3877 * group item to the extent btree and the device extent items to the devices 3878 * btree. 3879 * 3880 * This is done to prevent deadlocks. For example when COWing a node from the 3881 * extent btree we are holding a write lock on the node's parent and if we 3882 * trigger chunk allocation and attempted to insert the new block group item 3883 * in the extent btree right way, we could deadlock because the path for the 3884 * insertion can include that parent node. At first glance it seems impossible 3885 * to trigger chunk allocation after starting a transaction since tasks should 3886 * reserve enough transaction units (metadata space), however while that is true 3887 * most of the time, chunk allocation may still be triggered for several reasons: 3888 * 3889 * 1) When reserving metadata, we check if there is enough free space in the 3890 * metadata space_info and therefore don't trigger allocation of a new chunk. 3891 * However later when the task actually tries to COW an extent buffer from 3892 * the extent btree or from the device btree for example, it is forced to 3893 * allocate a new block group (chunk) because the only one that had enough 3894 * free space was just turned to RO mode by a running scrub for example (or 3895 * device replace, block group reclaim thread, etc), so we can not use it 3896 * for allocating an extent and end up being forced to allocate a new one; 3897 * 3898 * 2) Because we only check that the metadata space_info has enough free bytes, 3899 * we end up not allocating a new metadata chunk in that case. However if 3900 * the filesystem was mounted in degraded mode, none of the existing block 3901 * groups might be suitable for extent allocation due to their incompatible 3902 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3903 * use a RAID1 profile, in degraded mode using a single device). In this case 3904 * when the task attempts to COW some extent buffer of the extent btree for 3905 * example, it will trigger allocation of a new metadata block group with a 3906 * suitable profile (SINGLE profile in the example of the degraded mount of 3907 * the RAID1 filesystem); 3908 * 3909 * 3) The task has reserved enough transaction units / metadata space, but when 3910 * it attempts to COW an extent buffer from the extent or device btree for 3911 * example, it does not find any free extent in any metadata block group, 3912 * therefore forced to try to allocate a new metadata block group. 3913 * This is because some other task allocated all available extents in the 3914 * meanwhile - this typically happens with tasks that don't reserve space 3915 * properly, either intentionally or as a bug. One example where this is 3916 * done intentionally is fsync, as it does not reserve any transaction units 3917 * and ends up allocating a variable number of metadata extents for log 3918 * tree extent buffers; 3919 * 3920 * 4) The task has reserved enough transaction units / metadata space, but right 3921 * before it tries to allocate the last extent buffer it needs, a discard 3922 * operation comes in and, temporarily, removes the last free space entry from 3923 * the only metadata block group that had free space (discard starts by 3924 * removing a free space entry from a block group, then does the discard 3925 * operation and, once it's done, it adds back the free space entry to the 3926 * block group). 3927 * 3928 * We also need this 2 phases setup when adding a device to a filesystem with 3929 * a seed device - we must create new metadata and system chunks without adding 3930 * any of the block group items to the chunk, extent and device btrees. If we 3931 * did not do it this way, we would get ENOSPC when attempting to update those 3932 * btrees, since all the chunks from the seed device are read-only. 3933 * 3934 * Phase 1 does the updates and insertions to the chunk btree because if we had 3935 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3936 * parallel, we risk having too many system chunks allocated by many tasks if 3937 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3938 * extreme case this leads to exhaustion of the system chunk array in the 3939 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3940 * and with RAID filesystems (so we have more device items in the chunk btree). 3941 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3942 * the system chunk array due to concurrent allocations") provides more details. 3943 * 3944 * Allocation of system chunks does not happen through this function. A task that 3945 * needs to update the chunk btree (the only btree that uses system chunks), must 3946 * preallocate chunk space by calling either check_system_chunk() or 3947 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3948 * metadata chunk or when removing a chunk, while the later is used before doing 3949 * a modification to the chunk btree - use cases for the later are adding, 3950 * removing and resizing a device as well as relocation of a system chunk. 3951 * See the comment below for more details. 3952 * 3953 * The reservation of system space, done through check_system_chunk(), as well 3954 * as all the updates and insertions into the chunk btree must be done while 3955 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3956 * an extent buffer from the chunks btree we never trigger allocation of a new 3957 * system chunk, which would result in a deadlock (trying to lock twice an 3958 * extent buffer of the chunk btree, first time before triggering the chunk 3959 * allocation and the second time during chunk allocation while attempting to 3960 * update the chunks btree). The system chunk array is also updated while holding 3961 * that mutex. The same logic applies to removing chunks - we must reserve system 3962 * space, update the chunk btree and the system chunk array in the superblock 3963 * while holding fs_info->chunk_mutex. 3964 * 3965 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3966 * 3967 * If @force is CHUNK_ALLOC_FORCE: 3968 * - return 1 if it successfully allocates a chunk, 3969 * - return errors including -ENOSPC otherwise. 3970 * If @force is NOT CHUNK_ALLOC_FORCE: 3971 * - return 0 if it doesn't need to allocate a new chunk, 3972 * - return 1 if it successfully allocates a chunk, 3973 * - return errors including -ENOSPC otherwise. 3974 */ 3975 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3976 enum btrfs_chunk_alloc_enum force) 3977 { 3978 struct btrfs_fs_info *fs_info = trans->fs_info; 3979 struct btrfs_space_info *space_info; 3980 struct btrfs_block_group *ret_bg; 3981 bool wait_for_alloc = false; 3982 bool should_alloc = false; 3983 bool from_extent_allocation = false; 3984 int ret = 0; 3985 3986 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 3987 from_extent_allocation = true; 3988 force = CHUNK_ALLOC_FORCE; 3989 } 3990 3991 /* Don't re-enter if we're already allocating a chunk */ 3992 if (trans->allocating_chunk) 3993 return -ENOSPC; 3994 /* 3995 * Allocation of system chunks can not happen through this path, as we 3996 * could end up in a deadlock if we are allocating a data or metadata 3997 * chunk and there is another task modifying the chunk btree. 3998 * 3999 * This is because while we are holding the chunk mutex, we will attempt 4000 * to add the new chunk item to the chunk btree or update an existing 4001 * device item in the chunk btree, while the other task that is modifying 4002 * the chunk btree is attempting to COW an extent buffer while holding a 4003 * lock on it and on its parent - if the COW operation triggers a system 4004 * chunk allocation, then we can deadlock because we are holding the 4005 * chunk mutex and we may need to access that extent buffer or its parent 4006 * in order to add the chunk item or update a device item. 4007 * 4008 * Tasks that want to modify the chunk tree should reserve system space 4009 * before updating the chunk btree, by calling either 4010 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4011 * It's possible that after a task reserves the space, it still ends up 4012 * here - this happens in the cases described above at do_chunk_alloc(). 4013 * The task will have to either retry or fail. 4014 */ 4015 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4016 return -ENOSPC; 4017 4018 space_info = btrfs_find_space_info(fs_info, flags); 4019 ASSERT(space_info); 4020 4021 do { 4022 spin_lock(&space_info->lock); 4023 if (force < space_info->force_alloc) 4024 force = space_info->force_alloc; 4025 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4026 if (space_info->full) { 4027 /* No more free physical space */ 4028 if (should_alloc) 4029 ret = -ENOSPC; 4030 else 4031 ret = 0; 4032 spin_unlock(&space_info->lock); 4033 return ret; 4034 } else if (!should_alloc) { 4035 spin_unlock(&space_info->lock); 4036 return 0; 4037 } else if (space_info->chunk_alloc) { 4038 /* 4039 * Someone is already allocating, so we need to block 4040 * until this someone is finished and then loop to 4041 * recheck if we should continue with our allocation 4042 * attempt. 4043 */ 4044 wait_for_alloc = true; 4045 force = CHUNK_ALLOC_NO_FORCE; 4046 spin_unlock(&space_info->lock); 4047 mutex_lock(&fs_info->chunk_mutex); 4048 mutex_unlock(&fs_info->chunk_mutex); 4049 } else { 4050 /* Proceed with allocation */ 4051 space_info->chunk_alloc = 1; 4052 wait_for_alloc = false; 4053 spin_unlock(&space_info->lock); 4054 } 4055 4056 cond_resched(); 4057 } while (wait_for_alloc); 4058 4059 mutex_lock(&fs_info->chunk_mutex); 4060 trans->allocating_chunk = true; 4061 4062 /* 4063 * If we have mixed data/metadata chunks we want to make sure we keep 4064 * allocating mixed chunks instead of individual chunks. 4065 */ 4066 if (btrfs_mixed_space_info(space_info)) 4067 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4068 4069 /* 4070 * if we're doing a data chunk, go ahead and make sure that 4071 * we keep a reasonable number of metadata chunks allocated in the 4072 * FS as well. 4073 */ 4074 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4075 fs_info->data_chunk_allocations++; 4076 if (!(fs_info->data_chunk_allocations % 4077 fs_info->metadata_ratio)) 4078 force_metadata_allocation(fs_info); 4079 } 4080 4081 ret_bg = do_chunk_alloc(trans, flags); 4082 trans->allocating_chunk = false; 4083 4084 if (IS_ERR(ret_bg)) { 4085 ret = PTR_ERR(ret_bg); 4086 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4087 /* 4088 * New block group is likely to be used soon. Try to activate 4089 * it now. Failure is OK for now. 4090 */ 4091 btrfs_zone_activate(ret_bg); 4092 } 4093 4094 if (!ret) 4095 btrfs_put_block_group(ret_bg); 4096 4097 spin_lock(&space_info->lock); 4098 if (ret < 0) { 4099 if (ret == -ENOSPC) 4100 space_info->full = 1; 4101 else 4102 goto out; 4103 } else { 4104 ret = 1; 4105 space_info->max_extent_size = 0; 4106 } 4107 4108 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4109 out: 4110 space_info->chunk_alloc = 0; 4111 spin_unlock(&space_info->lock); 4112 mutex_unlock(&fs_info->chunk_mutex); 4113 4114 return ret; 4115 } 4116 4117 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4118 { 4119 u64 num_dev; 4120 4121 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4122 if (!num_dev) 4123 num_dev = fs_info->fs_devices->rw_devices; 4124 4125 return num_dev; 4126 } 4127 4128 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4129 u64 bytes, 4130 u64 type) 4131 { 4132 struct btrfs_fs_info *fs_info = trans->fs_info; 4133 struct btrfs_space_info *info; 4134 u64 left; 4135 int ret = 0; 4136 4137 /* 4138 * Needed because we can end up allocating a system chunk and for an 4139 * atomic and race free space reservation in the chunk block reserve. 4140 */ 4141 lockdep_assert_held(&fs_info->chunk_mutex); 4142 4143 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4144 spin_lock(&info->lock); 4145 left = info->total_bytes - btrfs_space_info_used(info, true); 4146 spin_unlock(&info->lock); 4147 4148 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4149 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4150 left, bytes, type); 4151 btrfs_dump_space_info(fs_info, info, 0, 0); 4152 } 4153 4154 if (left < bytes) { 4155 u64 flags = btrfs_system_alloc_profile(fs_info); 4156 struct btrfs_block_group *bg; 4157 4158 /* 4159 * Ignore failure to create system chunk. We might end up not 4160 * needing it, as we might not need to COW all nodes/leafs from 4161 * the paths we visit in the chunk tree (they were already COWed 4162 * or created in the current transaction for example). 4163 */ 4164 bg = btrfs_create_chunk(trans, flags); 4165 if (IS_ERR(bg)) { 4166 ret = PTR_ERR(bg); 4167 } else { 4168 /* 4169 * We have a new chunk. We also need to activate it for 4170 * zoned filesystem. 4171 */ 4172 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4173 if (ret < 0) 4174 return; 4175 4176 /* 4177 * If we fail to add the chunk item here, we end up 4178 * trying again at phase 2 of chunk allocation, at 4179 * btrfs_create_pending_block_groups(). So ignore 4180 * any error here. An ENOSPC here could happen, due to 4181 * the cases described at do_chunk_alloc() - the system 4182 * block group we just created was just turned into RO 4183 * mode by a scrub for example, or a running discard 4184 * temporarily removed its free space entries, etc. 4185 */ 4186 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4187 } 4188 } 4189 4190 if (!ret) { 4191 ret = btrfs_block_rsv_add(fs_info, 4192 &fs_info->chunk_block_rsv, 4193 bytes, BTRFS_RESERVE_NO_FLUSH); 4194 if (!ret) 4195 trans->chunk_bytes_reserved += bytes; 4196 } 4197 } 4198 4199 /* 4200 * Reserve space in the system space for allocating or removing a chunk. 4201 * The caller must be holding fs_info->chunk_mutex. 4202 */ 4203 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4204 { 4205 struct btrfs_fs_info *fs_info = trans->fs_info; 4206 const u64 num_devs = get_profile_num_devs(fs_info, type); 4207 u64 bytes; 4208 4209 /* num_devs device items to update and 1 chunk item to add or remove. */ 4210 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4211 btrfs_calc_insert_metadata_size(fs_info, 1); 4212 4213 reserve_chunk_space(trans, bytes, type); 4214 } 4215 4216 /* 4217 * Reserve space in the system space, if needed, for doing a modification to the 4218 * chunk btree. 4219 * 4220 * @trans: A transaction handle. 4221 * @is_item_insertion: Indicate if the modification is for inserting a new item 4222 * in the chunk btree or if it's for the deletion or update 4223 * of an existing item. 4224 * 4225 * This is used in a context where we need to update the chunk btree outside 4226 * block group allocation and removal, to avoid a deadlock with a concurrent 4227 * task that is allocating a metadata or data block group and therefore needs to 4228 * update the chunk btree while holding the chunk mutex. After the update to the 4229 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4230 * 4231 */ 4232 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4233 bool is_item_insertion) 4234 { 4235 struct btrfs_fs_info *fs_info = trans->fs_info; 4236 u64 bytes; 4237 4238 if (is_item_insertion) 4239 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4240 else 4241 bytes = btrfs_calc_metadata_size(fs_info, 1); 4242 4243 mutex_lock(&fs_info->chunk_mutex); 4244 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4245 mutex_unlock(&fs_info->chunk_mutex); 4246 } 4247 4248 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4249 { 4250 struct btrfs_block_group *block_group; 4251 4252 block_group = btrfs_lookup_first_block_group(info, 0); 4253 while (block_group) { 4254 btrfs_wait_block_group_cache_done(block_group); 4255 spin_lock(&block_group->lock); 4256 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4257 &block_group->runtime_flags)) { 4258 struct inode *inode = block_group->inode; 4259 4260 block_group->inode = NULL; 4261 spin_unlock(&block_group->lock); 4262 4263 ASSERT(block_group->io_ctl.inode == NULL); 4264 iput(inode); 4265 } else { 4266 spin_unlock(&block_group->lock); 4267 } 4268 block_group = btrfs_next_block_group(block_group); 4269 } 4270 } 4271 4272 /* 4273 * Must be called only after stopping all workers, since we could have block 4274 * group caching kthreads running, and therefore they could race with us if we 4275 * freed the block groups before stopping them. 4276 */ 4277 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4278 { 4279 struct btrfs_block_group *block_group; 4280 struct btrfs_space_info *space_info; 4281 struct btrfs_caching_control *caching_ctl; 4282 struct rb_node *n; 4283 4284 if (btrfs_is_zoned(info)) { 4285 if (info->active_meta_bg) { 4286 btrfs_put_block_group(info->active_meta_bg); 4287 info->active_meta_bg = NULL; 4288 } 4289 if (info->active_system_bg) { 4290 btrfs_put_block_group(info->active_system_bg); 4291 info->active_system_bg = NULL; 4292 } 4293 } 4294 4295 write_lock(&info->block_group_cache_lock); 4296 while (!list_empty(&info->caching_block_groups)) { 4297 caching_ctl = list_entry(info->caching_block_groups.next, 4298 struct btrfs_caching_control, list); 4299 list_del(&caching_ctl->list); 4300 btrfs_put_caching_control(caching_ctl); 4301 } 4302 write_unlock(&info->block_group_cache_lock); 4303 4304 spin_lock(&info->unused_bgs_lock); 4305 while (!list_empty(&info->unused_bgs)) { 4306 block_group = list_first_entry(&info->unused_bgs, 4307 struct btrfs_block_group, 4308 bg_list); 4309 list_del_init(&block_group->bg_list); 4310 btrfs_put_block_group(block_group); 4311 } 4312 4313 while (!list_empty(&info->reclaim_bgs)) { 4314 block_group = list_first_entry(&info->reclaim_bgs, 4315 struct btrfs_block_group, 4316 bg_list); 4317 list_del_init(&block_group->bg_list); 4318 btrfs_put_block_group(block_group); 4319 } 4320 spin_unlock(&info->unused_bgs_lock); 4321 4322 spin_lock(&info->zone_active_bgs_lock); 4323 while (!list_empty(&info->zone_active_bgs)) { 4324 block_group = list_first_entry(&info->zone_active_bgs, 4325 struct btrfs_block_group, 4326 active_bg_list); 4327 list_del_init(&block_group->active_bg_list); 4328 btrfs_put_block_group(block_group); 4329 } 4330 spin_unlock(&info->zone_active_bgs_lock); 4331 4332 write_lock(&info->block_group_cache_lock); 4333 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4334 block_group = rb_entry(n, struct btrfs_block_group, 4335 cache_node); 4336 rb_erase_cached(&block_group->cache_node, 4337 &info->block_group_cache_tree); 4338 RB_CLEAR_NODE(&block_group->cache_node); 4339 write_unlock(&info->block_group_cache_lock); 4340 4341 down_write(&block_group->space_info->groups_sem); 4342 list_del(&block_group->list); 4343 up_write(&block_group->space_info->groups_sem); 4344 4345 /* 4346 * We haven't cached this block group, which means we could 4347 * possibly have excluded extents on this block group. 4348 */ 4349 if (block_group->cached == BTRFS_CACHE_NO || 4350 block_group->cached == BTRFS_CACHE_ERROR) 4351 btrfs_free_excluded_extents(block_group); 4352 4353 btrfs_remove_free_space_cache(block_group); 4354 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4355 ASSERT(list_empty(&block_group->dirty_list)); 4356 ASSERT(list_empty(&block_group->io_list)); 4357 ASSERT(list_empty(&block_group->bg_list)); 4358 ASSERT(refcount_read(&block_group->refs) == 1); 4359 ASSERT(block_group->swap_extents == 0); 4360 btrfs_put_block_group(block_group); 4361 4362 write_lock(&info->block_group_cache_lock); 4363 } 4364 write_unlock(&info->block_group_cache_lock); 4365 4366 btrfs_release_global_block_rsv(info); 4367 4368 while (!list_empty(&info->space_info)) { 4369 space_info = list_entry(info->space_info.next, 4370 struct btrfs_space_info, 4371 list); 4372 4373 /* 4374 * Do not hide this behind enospc_debug, this is actually 4375 * important and indicates a real bug if this happens. 4376 */ 4377 if (WARN_ON(space_info->bytes_pinned > 0 || 4378 space_info->bytes_may_use > 0)) 4379 btrfs_dump_space_info(info, space_info, 0, 0); 4380 4381 /* 4382 * If there was a failure to cleanup a log tree, very likely due 4383 * to an IO failure on a writeback attempt of one or more of its 4384 * extent buffers, we could not do proper (and cheap) unaccounting 4385 * of their reserved space, so don't warn on bytes_reserved > 0 in 4386 * that case. 4387 */ 4388 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4389 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4390 if (WARN_ON(space_info->bytes_reserved > 0)) 4391 btrfs_dump_space_info(info, space_info, 0, 0); 4392 } 4393 4394 WARN_ON(space_info->reclaim_size > 0); 4395 list_del(&space_info->list); 4396 btrfs_sysfs_remove_space_info(space_info); 4397 } 4398 return 0; 4399 } 4400 4401 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4402 { 4403 atomic_inc(&cache->frozen); 4404 } 4405 4406 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4407 { 4408 struct btrfs_fs_info *fs_info = block_group->fs_info; 4409 struct extent_map_tree *em_tree; 4410 struct extent_map *em; 4411 bool cleanup; 4412 4413 spin_lock(&block_group->lock); 4414 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4415 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4416 spin_unlock(&block_group->lock); 4417 4418 if (cleanup) { 4419 em_tree = &fs_info->mapping_tree; 4420 write_lock(&em_tree->lock); 4421 em = lookup_extent_mapping(em_tree, block_group->start, 4422 1); 4423 BUG_ON(!em); /* logic error, can't happen */ 4424 remove_extent_mapping(em_tree, em); 4425 write_unlock(&em_tree->lock); 4426 4427 /* once for us and once for the tree */ 4428 free_extent_map(em); 4429 free_extent_map(em); 4430 4431 /* 4432 * We may have left one free space entry and other possible 4433 * tasks trimming this block group have left 1 entry each one. 4434 * Free them if any. 4435 */ 4436 btrfs_remove_free_space_cache(block_group); 4437 } 4438 } 4439 4440 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4441 { 4442 bool ret = true; 4443 4444 spin_lock(&bg->lock); 4445 if (bg->ro) 4446 ret = false; 4447 else 4448 bg->swap_extents++; 4449 spin_unlock(&bg->lock); 4450 4451 return ret; 4452 } 4453 4454 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4455 { 4456 spin_lock(&bg->lock); 4457 ASSERT(!bg->ro); 4458 ASSERT(bg->swap_extents >= amount); 4459 bg->swap_extents -= amount; 4460 spin_unlock(&bg->lock); 4461 } 4462 4463 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4464 { 4465 if (size <= SZ_128K) 4466 return BTRFS_BG_SZ_SMALL; 4467 if (size <= SZ_8M) 4468 return BTRFS_BG_SZ_MEDIUM; 4469 return BTRFS_BG_SZ_LARGE; 4470 } 4471 4472 /* 4473 * Handle a block group allocating an extent in a size class 4474 * 4475 * @bg: The block group we allocated in. 4476 * @size_class: The size class of the allocation. 4477 * @force_wrong_size_class: Whether we are desperate enough to allow 4478 * mismatched size classes. 4479 * 4480 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4481 * case of a race that leads to the wrong size class without 4482 * force_wrong_size_class set. 4483 * 4484 * find_free_extent will skip block groups with a mismatched size class until 4485 * it really needs to avoid ENOSPC. In that case it will set 4486 * force_wrong_size_class. However, if a block group is newly allocated and 4487 * doesn't yet have a size class, then it is possible for two allocations of 4488 * different sizes to race and both try to use it. The loser is caught here and 4489 * has to retry. 4490 */ 4491 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4492 enum btrfs_block_group_size_class size_class, 4493 bool force_wrong_size_class) 4494 { 4495 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4496 4497 /* The new allocation is in the right size class, do nothing */ 4498 if (bg->size_class == size_class) 4499 return 0; 4500 /* 4501 * The new allocation is in a mismatched size class. 4502 * This means one of two things: 4503 * 4504 * 1. Two tasks in find_free_extent for different size_classes raced 4505 * and hit the same empty block_group. Make the loser try again. 4506 * 2. A call to find_free_extent got desperate enough to set 4507 * 'force_wrong_slab'. Don't change the size_class, but allow the 4508 * allocation. 4509 */ 4510 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4511 if (force_wrong_size_class) 4512 return 0; 4513 return -EAGAIN; 4514 } 4515 /* 4516 * The happy new block group case: the new allocation is the first 4517 * one in the block_group so we set size_class. 4518 */ 4519 bg->size_class = size_class; 4520 4521 return 0; 4522 } 4523 4524 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg) 4525 { 4526 if (btrfs_is_zoned(bg->fs_info)) 4527 return false; 4528 if (!btrfs_is_block_group_data_only(bg)) 4529 return false; 4530 return true; 4531 } 4532