1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 const struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 btrfs_free_chunk_map(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 static int btrfs_bg_start_cmp(const struct rb_node *new, 177 const struct rb_node *exist) 178 { 179 const struct btrfs_block_group *new_bg = 180 rb_entry(new, struct btrfs_block_group, cache_node); 181 const struct btrfs_block_group *exist_bg = 182 rb_entry(exist, struct btrfs_block_group, cache_node); 183 184 if (new_bg->start < exist_bg->start) 185 return -1; 186 if (new_bg->start > exist_bg->start) 187 return 1; 188 return 0; 189 } 190 191 /* 192 * This adds the block group to the fs_info rb tree for the block group cache 193 */ 194 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 195 struct btrfs_block_group *block_group) 196 { 197 struct rb_node *exist; 198 int ret = 0; 199 200 ASSERT(block_group->length != 0); 201 202 write_lock(&info->block_group_cache_lock); 203 204 exist = rb_find_add_cached(&block_group->cache_node, 205 &info->block_group_cache_tree, btrfs_bg_start_cmp); 206 if (exist) 207 ret = -EEXIST; 208 write_unlock(&info->block_group_cache_lock); 209 210 return ret; 211 } 212 213 /* 214 * This will return the block group at or after bytenr if contains is 0, else 215 * it will return the block group that contains the bytenr 216 */ 217 static struct btrfs_block_group *block_group_cache_tree_search( 218 struct btrfs_fs_info *info, u64 bytenr, int contains) 219 { 220 struct btrfs_block_group *cache, *ret = NULL; 221 struct rb_node *n; 222 u64 end, start; 223 224 read_lock(&info->block_group_cache_lock); 225 n = info->block_group_cache_tree.rb_root.rb_node; 226 227 while (n) { 228 cache = rb_entry(n, struct btrfs_block_group, cache_node); 229 end = cache->start + cache->length - 1; 230 start = cache->start; 231 232 if (bytenr < start) { 233 if (!contains && (!ret || start < ret->start)) 234 ret = cache; 235 n = n->rb_left; 236 } else if (bytenr > start) { 237 if (contains && bytenr <= end) { 238 ret = cache; 239 break; 240 } 241 n = n->rb_right; 242 } else { 243 ret = cache; 244 break; 245 } 246 } 247 if (ret) 248 btrfs_get_block_group(ret); 249 read_unlock(&info->block_group_cache_lock); 250 251 return ret; 252 } 253 254 /* 255 * Return the block group that starts at or after bytenr 256 */ 257 struct btrfs_block_group *btrfs_lookup_first_block_group( 258 struct btrfs_fs_info *info, u64 bytenr) 259 { 260 return block_group_cache_tree_search(info, bytenr, 0); 261 } 262 263 /* 264 * Return the block group that contains the given bytenr 265 */ 266 struct btrfs_block_group *btrfs_lookup_block_group( 267 struct btrfs_fs_info *info, u64 bytenr) 268 { 269 return block_group_cache_tree_search(info, bytenr, 1); 270 } 271 272 struct btrfs_block_group *btrfs_next_block_group( 273 struct btrfs_block_group *cache) 274 { 275 struct btrfs_fs_info *fs_info = cache->fs_info; 276 struct rb_node *node; 277 278 read_lock(&fs_info->block_group_cache_lock); 279 280 /* If our block group was removed, we need a full search. */ 281 if (RB_EMPTY_NODE(&cache->cache_node)) { 282 const u64 next_bytenr = cache->start + cache->length; 283 284 read_unlock(&fs_info->block_group_cache_lock); 285 btrfs_put_block_group(cache); 286 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 287 } 288 node = rb_next(&cache->cache_node); 289 btrfs_put_block_group(cache); 290 if (node) { 291 cache = rb_entry(node, struct btrfs_block_group, cache_node); 292 btrfs_get_block_group(cache); 293 } else 294 cache = NULL; 295 read_unlock(&fs_info->block_group_cache_lock); 296 return cache; 297 } 298 299 /* 300 * Check if we can do a NOCOW write for a given extent. 301 * 302 * @fs_info: The filesystem information object. 303 * @bytenr: Logical start address of the extent. 304 * 305 * Check if we can do a NOCOW write for the given extent, and increments the 306 * number of NOCOW writers in the block group that contains the extent, as long 307 * as the block group exists and it's currently not in read-only mode. 308 * 309 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 310 * is responsible for calling btrfs_dec_nocow_writers() later. 311 * 312 * Or NULL if we can not do a NOCOW write 313 */ 314 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 315 u64 bytenr) 316 { 317 struct btrfs_block_group *bg; 318 bool can_nocow = true; 319 320 bg = btrfs_lookup_block_group(fs_info, bytenr); 321 if (!bg) 322 return NULL; 323 324 spin_lock(&bg->lock); 325 if (bg->ro) 326 can_nocow = false; 327 else 328 atomic_inc(&bg->nocow_writers); 329 spin_unlock(&bg->lock); 330 331 if (!can_nocow) { 332 btrfs_put_block_group(bg); 333 return NULL; 334 } 335 336 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 337 return bg; 338 } 339 340 /* 341 * Decrement the number of NOCOW writers in a block group. 342 * 343 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 344 * and on the block group returned by that call. Typically this is called after 345 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 346 * relocation. 347 * 348 * After this call, the caller should not use the block group anymore. It it wants 349 * to use it, then it should get a reference on it before calling this function. 350 */ 351 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 352 { 353 if (atomic_dec_and_test(&bg->nocow_writers)) 354 wake_up_var(&bg->nocow_writers); 355 356 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 357 btrfs_put_block_group(bg); 358 } 359 360 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 361 { 362 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 363 } 364 365 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 366 const u64 start) 367 { 368 struct btrfs_block_group *bg; 369 370 bg = btrfs_lookup_block_group(fs_info, start); 371 ASSERT(bg); 372 if (atomic_dec_and_test(&bg->reservations)) 373 wake_up_var(&bg->reservations); 374 btrfs_put_block_group(bg); 375 } 376 377 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 378 { 379 struct btrfs_space_info *space_info = bg->space_info; 380 381 ASSERT(bg->ro); 382 383 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 384 return; 385 386 /* 387 * Our block group is read only but before we set it to read only, 388 * some task might have had allocated an extent from it already, but it 389 * has not yet created a respective ordered extent (and added it to a 390 * root's list of ordered extents). 391 * Therefore wait for any task currently allocating extents, since the 392 * block group's reservations counter is incremented while a read lock 393 * on the groups' semaphore is held and decremented after releasing 394 * the read access on that semaphore and creating the ordered extent. 395 */ 396 down_write(&space_info->groups_sem); 397 up_write(&space_info->groups_sem); 398 399 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 400 } 401 402 struct btrfs_caching_control *btrfs_get_caching_control( 403 struct btrfs_block_group *cache) 404 { 405 struct btrfs_caching_control *ctl; 406 407 spin_lock(&cache->lock); 408 if (!cache->caching_ctl) { 409 spin_unlock(&cache->lock); 410 return NULL; 411 } 412 413 ctl = cache->caching_ctl; 414 refcount_inc(&ctl->count); 415 spin_unlock(&cache->lock); 416 return ctl; 417 } 418 419 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 420 { 421 if (refcount_dec_and_test(&ctl->count)) 422 kfree(ctl); 423 } 424 425 /* 426 * When we wait for progress in the block group caching, its because our 427 * allocation attempt failed at least once. So, we must sleep and let some 428 * progress happen before we try again. 429 * 430 * This function will sleep at least once waiting for new free space to show 431 * up, and then it will check the block group free space numbers for our min 432 * num_bytes. Another option is to have it go ahead and look in the rbtree for 433 * a free extent of a given size, but this is a good start. 434 * 435 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 436 * any of the information in this block group. 437 */ 438 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 439 u64 num_bytes) 440 { 441 struct btrfs_caching_control *caching_ctl; 442 int progress; 443 444 caching_ctl = btrfs_get_caching_control(cache); 445 if (!caching_ctl) 446 return; 447 448 /* 449 * We've already failed to allocate from this block group, so even if 450 * there's enough space in the block group it isn't contiguous enough to 451 * allow for an allocation, so wait for at least the next wakeup tick, 452 * or for the thing to be done. 453 */ 454 progress = atomic_read(&caching_ctl->progress); 455 456 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 457 (progress != atomic_read(&caching_ctl->progress) && 458 (cache->free_space_ctl->free_space >= num_bytes))); 459 460 btrfs_put_caching_control(caching_ctl); 461 } 462 463 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 464 struct btrfs_caching_control *caching_ctl) 465 { 466 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 467 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 468 } 469 470 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 471 { 472 struct btrfs_caching_control *caching_ctl; 473 int ret; 474 475 caching_ctl = btrfs_get_caching_control(cache); 476 if (!caching_ctl) 477 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 478 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 479 btrfs_put_caching_control(caching_ctl); 480 return ret; 481 } 482 483 #ifdef CONFIG_BTRFS_DEBUG 484 static void fragment_free_space(struct btrfs_block_group *block_group) 485 { 486 struct btrfs_fs_info *fs_info = block_group->fs_info; 487 u64 start = block_group->start; 488 u64 len = block_group->length; 489 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 490 fs_info->nodesize : fs_info->sectorsize; 491 u64 step = chunk << 1; 492 493 while (len > chunk) { 494 btrfs_remove_free_space(block_group, start, chunk); 495 start += step; 496 if (len < step) 497 len = 0; 498 else 499 len -= step; 500 } 501 } 502 #endif 503 504 /* 505 * Add a free space range to the in memory free space cache of a block group. 506 * This checks if the range contains super block locations and any such 507 * locations are not added to the free space cache. 508 * 509 * @block_group: The target block group. 510 * @start: Start offset of the range. 511 * @end: End offset of the range (exclusive). 512 * @total_added_ret: Optional pointer to return the total amount of space 513 * added to the block group's free space cache. 514 * 515 * Returns 0 on success or < 0 on error. 516 */ 517 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 518 u64 end, u64 *total_added_ret) 519 { 520 struct btrfs_fs_info *info = block_group->fs_info; 521 u64 extent_start, extent_end, size; 522 int ret; 523 524 if (total_added_ret) 525 *total_added_ret = 0; 526 527 while (start < end) { 528 if (!find_first_extent_bit(&info->excluded_extents, start, 529 &extent_start, &extent_end, 530 EXTENT_DIRTY | EXTENT_UPTODATE, 531 NULL)) 532 break; 533 534 if (extent_start <= start) { 535 start = extent_end + 1; 536 } else if (extent_start > start && extent_start < end) { 537 size = extent_start - start; 538 ret = btrfs_add_free_space_async_trimmed(block_group, 539 start, size); 540 if (ret) 541 return ret; 542 if (total_added_ret) 543 *total_added_ret += size; 544 start = extent_end + 1; 545 } else { 546 break; 547 } 548 } 549 550 if (start < end) { 551 size = end - start; 552 ret = btrfs_add_free_space_async_trimmed(block_group, start, 553 size); 554 if (ret) 555 return ret; 556 if (total_added_ret) 557 *total_added_ret += size; 558 } 559 560 return 0; 561 } 562 563 /* 564 * Get an arbitrary extent item index / max_index through the block group 565 * 566 * @block_group the block group to sample from 567 * @index: the integral step through the block group to grab from 568 * @max_index: the granularity of the sampling 569 * @key: return value parameter for the item we find 570 * 571 * Pre-conditions on indices: 572 * 0 <= index <= max_index 573 * 0 < max_index 574 * 575 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 576 * error code on error. 577 */ 578 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 579 struct btrfs_block_group *block_group, 580 int index, int max_index, 581 struct btrfs_key *found_key) 582 { 583 struct btrfs_fs_info *fs_info = block_group->fs_info; 584 struct btrfs_root *extent_root; 585 u64 search_offset; 586 u64 search_end = block_group->start + block_group->length; 587 struct btrfs_path *path; 588 struct btrfs_key search_key; 589 int ret = 0; 590 591 ASSERT(index >= 0); 592 ASSERT(index <= max_index); 593 ASSERT(max_index > 0); 594 lockdep_assert_held(&caching_ctl->mutex); 595 lockdep_assert_held_read(&fs_info->commit_root_sem); 596 597 path = btrfs_alloc_path(); 598 if (!path) 599 return -ENOMEM; 600 601 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 602 BTRFS_SUPER_INFO_OFFSET)); 603 604 path->skip_locking = 1; 605 path->search_commit_root = 1; 606 path->reada = READA_FORWARD; 607 608 search_offset = index * div_u64(block_group->length, max_index); 609 search_key.objectid = block_group->start + search_offset; 610 search_key.type = BTRFS_EXTENT_ITEM_KEY; 611 search_key.offset = 0; 612 613 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 614 /* Success; sampled an extent item in the block group */ 615 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 616 found_key->objectid >= block_group->start && 617 found_key->objectid + found_key->offset <= search_end) 618 break; 619 620 /* We can't possibly find a valid extent item anymore */ 621 if (found_key->objectid >= search_end) { 622 ret = 1; 623 break; 624 } 625 } 626 627 lockdep_assert_held(&caching_ctl->mutex); 628 lockdep_assert_held_read(&fs_info->commit_root_sem); 629 btrfs_free_path(path); 630 return ret; 631 } 632 633 /* 634 * Best effort attempt to compute a block group's size class while caching it. 635 * 636 * @block_group: the block group we are caching 637 * 638 * We cannot infer the size class while adding free space extents, because that 639 * logic doesn't care about contiguous file extents (it doesn't differentiate 640 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 641 * file extent items. Reading all of them is quite wasteful, because usually 642 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 643 * them at even steps through the block group and pick the smallest size class 644 * we see. Since size class is best effort, and not guaranteed in general, 645 * inaccuracy is acceptable. 646 * 647 * To be more explicit about why this algorithm makes sense: 648 * 649 * If we are caching in a block group from disk, then there are three major cases 650 * to consider: 651 * 1. the block group is well behaved and all extents in it are the same size 652 * class. 653 * 2. the block group is mostly one size class with rare exceptions for last 654 * ditch allocations 655 * 3. the block group was populated before size classes and can have a totally 656 * arbitrary mix of size classes. 657 * 658 * In case 1, looking at any extent in the block group will yield the correct 659 * result. For the mixed cases, taking the minimum size class seems like a good 660 * approximation, since gaps from frees will be usable to the size class. For 661 * 2., a small handful of file extents is likely to yield the right answer. For 662 * 3, we can either read every file extent, or admit that this is best effort 663 * anyway and try to stay fast. 664 * 665 * Returns: 0 on success, negative error code on error. 666 */ 667 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 668 struct btrfs_block_group *block_group) 669 { 670 struct btrfs_fs_info *fs_info = block_group->fs_info; 671 struct btrfs_key key; 672 int i; 673 u64 min_size = block_group->length; 674 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 675 int ret; 676 677 if (!btrfs_block_group_should_use_size_class(block_group)) 678 return 0; 679 680 lockdep_assert_held(&caching_ctl->mutex); 681 lockdep_assert_held_read(&fs_info->commit_root_sem); 682 for (i = 0; i < 5; ++i) { 683 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 684 if (ret < 0) 685 goto out; 686 if (ret > 0) 687 continue; 688 min_size = min_t(u64, min_size, key.offset); 689 size_class = btrfs_calc_block_group_size_class(min_size); 690 } 691 if (size_class != BTRFS_BG_SZ_NONE) { 692 spin_lock(&block_group->lock); 693 block_group->size_class = size_class; 694 spin_unlock(&block_group->lock); 695 } 696 out: 697 return ret; 698 } 699 700 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 701 { 702 struct btrfs_block_group *block_group = caching_ctl->block_group; 703 struct btrfs_fs_info *fs_info = block_group->fs_info; 704 struct btrfs_root *extent_root; 705 struct btrfs_path *path; 706 struct extent_buffer *leaf; 707 struct btrfs_key key; 708 u64 total_found = 0; 709 u64 last = 0; 710 u32 nritems; 711 int ret; 712 bool wakeup = true; 713 714 path = btrfs_alloc_path(); 715 if (!path) 716 return -ENOMEM; 717 718 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 719 extent_root = btrfs_extent_root(fs_info, last); 720 721 #ifdef CONFIG_BTRFS_DEBUG 722 /* 723 * If we're fragmenting we don't want to make anybody think we can 724 * allocate from this block group until we've had a chance to fragment 725 * the free space. 726 */ 727 if (btrfs_should_fragment_free_space(block_group)) 728 wakeup = false; 729 #endif 730 /* 731 * We don't want to deadlock with somebody trying to allocate a new 732 * extent for the extent root while also trying to search the extent 733 * root to add free space. So we skip locking and search the commit 734 * root, since its read-only 735 */ 736 path->skip_locking = 1; 737 path->search_commit_root = 1; 738 path->reada = READA_FORWARD; 739 740 key.objectid = last; 741 key.offset = 0; 742 key.type = BTRFS_EXTENT_ITEM_KEY; 743 744 next: 745 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 746 if (ret < 0) 747 goto out; 748 749 leaf = path->nodes[0]; 750 nritems = btrfs_header_nritems(leaf); 751 752 while (1) { 753 if (btrfs_fs_closing(fs_info) > 1) { 754 last = (u64)-1; 755 break; 756 } 757 758 if (path->slots[0] < nritems) { 759 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 760 } else { 761 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 762 if (ret) 763 break; 764 765 if (need_resched() || 766 rwsem_is_contended(&fs_info->commit_root_sem)) { 767 btrfs_release_path(path); 768 up_read(&fs_info->commit_root_sem); 769 mutex_unlock(&caching_ctl->mutex); 770 cond_resched(); 771 mutex_lock(&caching_ctl->mutex); 772 down_read(&fs_info->commit_root_sem); 773 goto next; 774 } 775 776 ret = btrfs_next_leaf(extent_root, path); 777 if (ret < 0) 778 goto out; 779 if (ret) 780 break; 781 leaf = path->nodes[0]; 782 nritems = btrfs_header_nritems(leaf); 783 continue; 784 } 785 786 if (key.objectid < last) { 787 key.objectid = last; 788 key.offset = 0; 789 key.type = BTRFS_EXTENT_ITEM_KEY; 790 btrfs_release_path(path); 791 goto next; 792 } 793 794 if (key.objectid < block_group->start) { 795 path->slots[0]++; 796 continue; 797 } 798 799 if (key.objectid >= block_group->start + block_group->length) 800 break; 801 802 if (key.type == BTRFS_EXTENT_ITEM_KEY || 803 key.type == BTRFS_METADATA_ITEM_KEY) { 804 u64 space_added; 805 806 ret = btrfs_add_new_free_space(block_group, last, 807 key.objectid, &space_added); 808 if (ret) 809 goto out; 810 total_found += space_added; 811 if (key.type == BTRFS_METADATA_ITEM_KEY) 812 last = key.objectid + 813 fs_info->nodesize; 814 else 815 last = key.objectid + key.offset; 816 817 if (total_found > CACHING_CTL_WAKE_UP) { 818 total_found = 0; 819 if (wakeup) { 820 atomic_inc(&caching_ctl->progress); 821 wake_up(&caching_ctl->wait); 822 } 823 } 824 } 825 path->slots[0]++; 826 } 827 828 ret = btrfs_add_new_free_space(block_group, last, 829 block_group->start + block_group->length, 830 NULL); 831 out: 832 btrfs_free_path(path); 833 return ret; 834 } 835 836 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 837 { 838 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start, 839 bg->start + bg->length - 1, EXTENT_UPTODATE); 840 } 841 842 static noinline void caching_thread(struct btrfs_work *work) 843 { 844 struct btrfs_block_group *block_group; 845 struct btrfs_fs_info *fs_info; 846 struct btrfs_caching_control *caching_ctl; 847 int ret; 848 849 caching_ctl = container_of(work, struct btrfs_caching_control, work); 850 block_group = caching_ctl->block_group; 851 fs_info = block_group->fs_info; 852 853 mutex_lock(&caching_ctl->mutex); 854 down_read(&fs_info->commit_root_sem); 855 856 load_block_group_size_class(caching_ctl, block_group); 857 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 858 ret = load_free_space_cache(block_group); 859 if (ret == 1) { 860 ret = 0; 861 goto done; 862 } 863 864 /* 865 * We failed to load the space cache, set ourselves to 866 * CACHE_STARTED and carry on. 867 */ 868 spin_lock(&block_group->lock); 869 block_group->cached = BTRFS_CACHE_STARTED; 870 spin_unlock(&block_group->lock); 871 wake_up(&caching_ctl->wait); 872 } 873 874 /* 875 * If we are in the transaction that populated the free space tree we 876 * can't actually cache from the free space tree as our commit root and 877 * real root are the same, so we could change the contents of the blocks 878 * while caching. Instead do the slow caching in this case, and after 879 * the transaction has committed we will be safe. 880 */ 881 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 882 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 883 ret = load_free_space_tree(caching_ctl); 884 else 885 ret = load_extent_tree_free(caching_ctl); 886 done: 887 spin_lock(&block_group->lock); 888 block_group->caching_ctl = NULL; 889 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 890 spin_unlock(&block_group->lock); 891 892 #ifdef CONFIG_BTRFS_DEBUG 893 if (btrfs_should_fragment_free_space(block_group)) { 894 u64 bytes_used; 895 896 spin_lock(&block_group->space_info->lock); 897 spin_lock(&block_group->lock); 898 bytes_used = block_group->length - block_group->used; 899 block_group->space_info->bytes_used += bytes_used >> 1; 900 spin_unlock(&block_group->lock); 901 spin_unlock(&block_group->space_info->lock); 902 fragment_free_space(block_group); 903 } 904 #endif 905 906 up_read(&fs_info->commit_root_sem); 907 btrfs_free_excluded_extents(block_group); 908 mutex_unlock(&caching_ctl->mutex); 909 910 wake_up(&caching_ctl->wait); 911 912 btrfs_put_caching_control(caching_ctl); 913 btrfs_put_block_group(block_group); 914 } 915 916 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 917 { 918 struct btrfs_fs_info *fs_info = cache->fs_info; 919 struct btrfs_caching_control *caching_ctl = NULL; 920 int ret = 0; 921 922 /* Allocator for zoned filesystems does not use the cache at all */ 923 if (btrfs_is_zoned(fs_info)) 924 return 0; 925 926 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 927 if (!caching_ctl) 928 return -ENOMEM; 929 930 INIT_LIST_HEAD(&caching_ctl->list); 931 mutex_init(&caching_ctl->mutex); 932 init_waitqueue_head(&caching_ctl->wait); 933 caching_ctl->block_group = cache; 934 refcount_set(&caching_ctl->count, 2); 935 atomic_set(&caching_ctl->progress, 0); 936 btrfs_init_work(&caching_ctl->work, caching_thread, NULL); 937 938 spin_lock(&cache->lock); 939 if (cache->cached != BTRFS_CACHE_NO) { 940 kfree(caching_ctl); 941 942 caching_ctl = cache->caching_ctl; 943 if (caching_ctl) 944 refcount_inc(&caching_ctl->count); 945 spin_unlock(&cache->lock); 946 goto out; 947 } 948 WARN_ON(cache->caching_ctl); 949 cache->caching_ctl = caching_ctl; 950 cache->cached = BTRFS_CACHE_STARTED; 951 spin_unlock(&cache->lock); 952 953 write_lock(&fs_info->block_group_cache_lock); 954 refcount_inc(&caching_ctl->count); 955 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 956 write_unlock(&fs_info->block_group_cache_lock); 957 958 btrfs_get_block_group(cache); 959 960 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 961 out: 962 if (wait && caching_ctl) 963 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 964 if (caching_ctl) 965 btrfs_put_caching_control(caching_ctl); 966 967 return ret; 968 } 969 970 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 971 { 972 u64 extra_flags = chunk_to_extended(flags) & 973 BTRFS_EXTENDED_PROFILE_MASK; 974 975 write_seqlock(&fs_info->profiles_lock); 976 if (flags & BTRFS_BLOCK_GROUP_DATA) 977 fs_info->avail_data_alloc_bits &= ~extra_flags; 978 if (flags & BTRFS_BLOCK_GROUP_METADATA) 979 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 980 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 981 fs_info->avail_system_alloc_bits &= ~extra_flags; 982 write_sequnlock(&fs_info->profiles_lock); 983 } 984 985 /* 986 * Clear incompat bits for the following feature(s): 987 * 988 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 989 * in the whole filesystem 990 * 991 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 992 */ 993 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 994 { 995 bool found_raid56 = false; 996 bool found_raid1c34 = false; 997 998 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 999 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 1000 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1001 struct list_head *head = &fs_info->space_info; 1002 struct btrfs_space_info *sinfo; 1003 1004 list_for_each_entry_rcu(sinfo, head, list) { 1005 down_read(&sinfo->groups_sem); 1006 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1007 found_raid56 = true; 1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1009 found_raid56 = true; 1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1011 found_raid1c34 = true; 1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1013 found_raid1c34 = true; 1014 up_read(&sinfo->groups_sem); 1015 } 1016 if (!found_raid56) 1017 btrfs_clear_fs_incompat(fs_info, RAID56); 1018 if (!found_raid1c34) 1019 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1020 } 1021 } 1022 1023 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1024 { 1025 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1026 return fs_info->block_group_root; 1027 return btrfs_extent_root(fs_info, 0); 1028 } 1029 1030 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1031 struct btrfs_path *path, 1032 struct btrfs_block_group *block_group) 1033 { 1034 struct btrfs_fs_info *fs_info = trans->fs_info; 1035 struct btrfs_root *root; 1036 struct btrfs_key key; 1037 int ret; 1038 1039 root = btrfs_block_group_root(fs_info); 1040 key.objectid = block_group->start; 1041 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1042 key.offset = block_group->length; 1043 1044 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1045 if (ret > 0) 1046 ret = -ENOENT; 1047 if (ret < 0) 1048 return ret; 1049 1050 ret = btrfs_del_item(trans, root, path); 1051 return ret; 1052 } 1053 1054 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1055 struct btrfs_chunk_map *map) 1056 { 1057 struct btrfs_fs_info *fs_info = trans->fs_info; 1058 struct btrfs_path *path; 1059 struct btrfs_block_group *block_group; 1060 struct btrfs_free_cluster *cluster; 1061 struct inode *inode; 1062 struct kobject *kobj = NULL; 1063 int ret; 1064 int index; 1065 int factor; 1066 struct btrfs_caching_control *caching_ctl = NULL; 1067 bool remove_map; 1068 bool remove_rsv = false; 1069 1070 block_group = btrfs_lookup_block_group(fs_info, map->start); 1071 if (!block_group) 1072 return -ENOENT; 1073 1074 BUG_ON(!block_group->ro); 1075 1076 trace_btrfs_remove_block_group(block_group); 1077 /* 1078 * Free the reserved super bytes from this block group before 1079 * remove it. 1080 */ 1081 btrfs_free_excluded_extents(block_group); 1082 btrfs_free_ref_tree_range(fs_info, block_group->start, 1083 block_group->length); 1084 1085 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1086 factor = btrfs_bg_type_to_factor(block_group->flags); 1087 1088 /* make sure this block group isn't part of an allocation cluster */ 1089 cluster = &fs_info->data_alloc_cluster; 1090 spin_lock(&cluster->refill_lock); 1091 btrfs_return_cluster_to_free_space(block_group, cluster); 1092 spin_unlock(&cluster->refill_lock); 1093 1094 /* 1095 * make sure this block group isn't part of a metadata 1096 * allocation cluster 1097 */ 1098 cluster = &fs_info->meta_alloc_cluster; 1099 spin_lock(&cluster->refill_lock); 1100 btrfs_return_cluster_to_free_space(block_group, cluster); 1101 spin_unlock(&cluster->refill_lock); 1102 1103 btrfs_clear_treelog_bg(block_group); 1104 btrfs_clear_data_reloc_bg(block_group); 1105 1106 path = btrfs_alloc_path(); 1107 if (!path) { 1108 ret = -ENOMEM; 1109 goto out; 1110 } 1111 1112 /* 1113 * get the inode first so any iput calls done for the io_list 1114 * aren't the final iput (no unlinks allowed now) 1115 */ 1116 inode = lookup_free_space_inode(block_group, path); 1117 1118 mutex_lock(&trans->transaction->cache_write_mutex); 1119 /* 1120 * Make sure our free space cache IO is done before removing the 1121 * free space inode 1122 */ 1123 spin_lock(&trans->transaction->dirty_bgs_lock); 1124 if (!list_empty(&block_group->io_list)) { 1125 list_del_init(&block_group->io_list); 1126 1127 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1128 1129 spin_unlock(&trans->transaction->dirty_bgs_lock); 1130 btrfs_wait_cache_io(trans, block_group, path); 1131 btrfs_put_block_group(block_group); 1132 spin_lock(&trans->transaction->dirty_bgs_lock); 1133 } 1134 1135 if (!list_empty(&block_group->dirty_list)) { 1136 list_del_init(&block_group->dirty_list); 1137 remove_rsv = true; 1138 btrfs_put_block_group(block_group); 1139 } 1140 spin_unlock(&trans->transaction->dirty_bgs_lock); 1141 mutex_unlock(&trans->transaction->cache_write_mutex); 1142 1143 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1144 if (ret) 1145 goto out; 1146 1147 write_lock(&fs_info->block_group_cache_lock); 1148 rb_erase_cached(&block_group->cache_node, 1149 &fs_info->block_group_cache_tree); 1150 RB_CLEAR_NODE(&block_group->cache_node); 1151 1152 /* Once for the block groups rbtree */ 1153 btrfs_put_block_group(block_group); 1154 1155 write_unlock(&fs_info->block_group_cache_lock); 1156 1157 down_write(&block_group->space_info->groups_sem); 1158 /* 1159 * we must use list_del_init so people can check to see if they 1160 * are still on the list after taking the semaphore 1161 */ 1162 list_del_init(&block_group->list); 1163 if (list_empty(&block_group->space_info->block_groups[index])) { 1164 kobj = block_group->space_info->block_group_kobjs[index]; 1165 block_group->space_info->block_group_kobjs[index] = NULL; 1166 clear_avail_alloc_bits(fs_info, block_group->flags); 1167 } 1168 up_write(&block_group->space_info->groups_sem); 1169 clear_incompat_bg_bits(fs_info, block_group->flags); 1170 if (kobj) { 1171 kobject_del(kobj); 1172 kobject_put(kobj); 1173 } 1174 1175 if (block_group->cached == BTRFS_CACHE_STARTED) 1176 btrfs_wait_block_group_cache_done(block_group); 1177 1178 write_lock(&fs_info->block_group_cache_lock); 1179 caching_ctl = btrfs_get_caching_control(block_group); 1180 if (!caching_ctl) { 1181 struct btrfs_caching_control *ctl; 1182 1183 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1184 if (ctl->block_group == block_group) { 1185 caching_ctl = ctl; 1186 refcount_inc(&caching_ctl->count); 1187 break; 1188 } 1189 } 1190 } 1191 if (caching_ctl) 1192 list_del_init(&caching_ctl->list); 1193 write_unlock(&fs_info->block_group_cache_lock); 1194 1195 if (caching_ctl) { 1196 /* Once for the caching bgs list and once for us. */ 1197 btrfs_put_caching_control(caching_ctl); 1198 btrfs_put_caching_control(caching_ctl); 1199 } 1200 1201 spin_lock(&trans->transaction->dirty_bgs_lock); 1202 WARN_ON(!list_empty(&block_group->dirty_list)); 1203 WARN_ON(!list_empty(&block_group->io_list)); 1204 spin_unlock(&trans->transaction->dirty_bgs_lock); 1205 1206 btrfs_remove_free_space_cache(block_group); 1207 1208 spin_lock(&block_group->space_info->lock); 1209 list_del_init(&block_group->ro_list); 1210 1211 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1212 WARN_ON(block_group->space_info->total_bytes 1213 < block_group->length); 1214 WARN_ON(block_group->space_info->bytes_readonly 1215 < block_group->length - block_group->zone_unusable); 1216 WARN_ON(block_group->space_info->bytes_zone_unusable 1217 < block_group->zone_unusable); 1218 WARN_ON(block_group->space_info->disk_total 1219 < block_group->length * factor); 1220 } 1221 block_group->space_info->total_bytes -= block_group->length; 1222 block_group->space_info->bytes_readonly -= 1223 (block_group->length - block_group->zone_unusable); 1224 btrfs_space_info_update_bytes_zone_unusable(block_group->space_info, 1225 -block_group->zone_unusable); 1226 block_group->space_info->disk_total -= block_group->length * factor; 1227 1228 spin_unlock(&block_group->space_info->lock); 1229 1230 /* 1231 * Remove the free space for the block group from the free space tree 1232 * and the block group's item from the extent tree before marking the 1233 * block group as removed. This is to prevent races with tasks that 1234 * freeze and unfreeze a block group, this task and another task 1235 * allocating a new block group - the unfreeze task ends up removing 1236 * the block group's extent map before the task calling this function 1237 * deletes the block group item from the extent tree, allowing for 1238 * another task to attempt to create another block group with the same 1239 * item key (and failing with -EEXIST and a transaction abort). 1240 */ 1241 ret = remove_block_group_free_space(trans, block_group); 1242 if (ret) 1243 goto out; 1244 1245 ret = remove_block_group_item(trans, path, block_group); 1246 if (ret < 0) 1247 goto out; 1248 1249 spin_lock(&block_group->lock); 1250 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1251 1252 /* 1253 * At this point trimming or scrub can't start on this block group, 1254 * because we removed the block group from the rbtree 1255 * fs_info->block_group_cache_tree so no one can't find it anymore and 1256 * even if someone already got this block group before we removed it 1257 * from the rbtree, they have already incremented block_group->frozen - 1258 * if they didn't, for the trimming case they won't find any free space 1259 * entries because we already removed them all when we called 1260 * btrfs_remove_free_space_cache(). 1261 * 1262 * And we must not remove the chunk map from the fs_info->mapping_tree 1263 * to prevent the same logical address range and physical device space 1264 * ranges from being reused for a new block group. This is needed to 1265 * avoid races with trimming and scrub. 1266 * 1267 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1268 * completely transactionless, so while it is trimming a range the 1269 * currently running transaction might finish and a new one start, 1270 * allowing for new block groups to be created that can reuse the same 1271 * physical device locations unless we take this special care. 1272 * 1273 * There may also be an implicit trim operation if the file system 1274 * is mounted with -odiscard. The same protections must remain 1275 * in place until the extents have been discarded completely when 1276 * the transaction commit has completed. 1277 */ 1278 remove_map = (atomic_read(&block_group->frozen) == 0); 1279 spin_unlock(&block_group->lock); 1280 1281 if (remove_map) 1282 btrfs_remove_chunk_map(fs_info, map); 1283 1284 out: 1285 /* Once for the lookup reference */ 1286 btrfs_put_block_group(block_group); 1287 if (remove_rsv) 1288 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 1289 btrfs_free_path(path); 1290 return ret; 1291 } 1292 1293 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1294 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1295 { 1296 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1297 struct btrfs_chunk_map *map; 1298 unsigned int num_items; 1299 1300 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 1301 ASSERT(map != NULL); 1302 ASSERT(map->start == chunk_offset); 1303 1304 /* 1305 * We need to reserve 3 + N units from the metadata space info in order 1306 * to remove a block group (done at btrfs_remove_chunk() and at 1307 * btrfs_remove_block_group()), which are used for: 1308 * 1309 * 1 unit for adding the free space inode's orphan (located in the tree 1310 * of tree roots). 1311 * 1 unit for deleting the block group item (located in the extent 1312 * tree). 1313 * 1 unit for deleting the free space item (located in tree of tree 1314 * roots). 1315 * N units for deleting N device extent items corresponding to each 1316 * stripe (located in the device tree). 1317 * 1318 * In order to remove a block group we also need to reserve units in the 1319 * system space info in order to update the chunk tree (update one or 1320 * more device items and remove one chunk item), but this is done at 1321 * btrfs_remove_chunk() through a call to check_system_chunk(). 1322 */ 1323 num_items = 3 + map->num_stripes; 1324 btrfs_free_chunk_map(map); 1325 1326 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1327 } 1328 1329 /* 1330 * Mark block group @cache read-only, so later write won't happen to block 1331 * group @cache. 1332 * 1333 * If @force is not set, this function will only mark the block group readonly 1334 * if we have enough free space (1M) in other metadata/system block groups. 1335 * If @force is not set, this function will mark the block group readonly 1336 * without checking free space. 1337 * 1338 * NOTE: This function doesn't care if other block groups can contain all the 1339 * data in this block group. That check should be done by relocation routine, 1340 * not this function. 1341 */ 1342 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1343 { 1344 struct btrfs_space_info *sinfo = cache->space_info; 1345 u64 num_bytes; 1346 int ret = -ENOSPC; 1347 1348 spin_lock(&sinfo->lock); 1349 spin_lock(&cache->lock); 1350 1351 if (cache->swap_extents) { 1352 ret = -ETXTBSY; 1353 goto out; 1354 } 1355 1356 if (cache->ro) { 1357 cache->ro++; 1358 ret = 0; 1359 goto out; 1360 } 1361 1362 num_bytes = cache->length - cache->reserved - cache->pinned - 1363 cache->bytes_super - cache->zone_unusable - cache->used; 1364 1365 /* 1366 * Data never overcommits, even in mixed mode, so do just the straight 1367 * check of left over space in how much we have allocated. 1368 */ 1369 if (force) { 1370 ret = 0; 1371 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1372 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1373 1374 /* 1375 * Here we make sure if we mark this bg RO, we still have enough 1376 * free space as buffer. 1377 */ 1378 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1379 ret = 0; 1380 } else { 1381 /* 1382 * We overcommit metadata, so we need to do the 1383 * btrfs_can_overcommit check here, and we need to pass in 1384 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1385 * leeway to allow us to mark this block group as read only. 1386 */ 1387 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1388 BTRFS_RESERVE_NO_FLUSH)) 1389 ret = 0; 1390 } 1391 1392 if (!ret) { 1393 sinfo->bytes_readonly += num_bytes; 1394 if (btrfs_is_zoned(cache->fs_info)) { 1395 /* Migrate zone_unusable bytes to readonly */ 1396 sinfo->bytes_readonly += cache->zone_unusable; 1397 btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable); 1398 cache->zone_unusable = 0; 1399 } 1400 cache->ro++; 1401 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1402 } 1403 out: 1404 spin_unlock(&cache->lock); 1405 spin_unlock(&sinfo->lock); 1406 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1407 btrfs_info(cache->fs_info, 1408 "unable to make block group %llu ro", cache->start); 1409 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1410 } 1411 return ret; 1412 } 1413 1414 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1415 const struct btrfs_block_group *bg) 1416 { 1417 struct btrfs_fs_info *fs_info = trans->fs_info; 1418 struct btrfs_transaction *prev_trans = NULL; 1419 const u64 start = bg->start; 1420 const u64 end = start + bg->length - 1; 1421 int ret; 1422 1423 spin_lock(&fs_info->trans_lock); 1424 if (trans->transaction->list.prev != &fs_info->trans_list) { 1425 prev_trans = list_last_entry(&trans->transaction->list, 1426 struct btrfs_transaction, list); 1427 refcount_inc(&prev_trans->use_count); 1428 } 1429 spin_unlock(&fs_info->trans_lock); 1430 1431 /* 1432 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1433 * btrfs_finish_extent_commit(). If we are at transaction N, another 1434 * task might be running finish_extent_commit() for the previous 1435 * transaction N - 1, and have seen a range belonging to the block 1436 * group in pinned_extents before we were able to clear the whole block 1437 * group range from pinned_extents. This means that task can lookup for 1438 * the block group after we unpinned it from pinned_extents and removed 1439 * it, leading to an error at unpin_extent_range(). 1440 */ 1441 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1442 if (prev_trans) { 1443 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1444 EXTENT_DIRTY); 1445 if (ret) 1446 goto out; 1447 } 1448 1449 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1450 EXTENT_DIRTY); 1451 out: 1452 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1453 if (prev_trans) 1454 btrfs_put_transaction(prev_trans); 1455 1456 return ret == 0; 1457 } 1458 1459 /* 1460 * Process the unused_bgs list and remove any that don't have any allocated 1461 * space inside of them. 1462 */ 1463 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1464 { 1465 LIST_HEAD(retry_list); 1466 struct btrfs_block_group *block_group; 1467 struct btrfs_space_info *space_info; 1468 struct btrfs_trans_handle *trans; 1469 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1470 int ret = 0; 1471 1472 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1473 return; 1474 1475 if (btrfs_fs_closing(fs_info)) 1476 return; 1477 1478 /* 1479 * Long running balances can keep us blocked here for eternity, so 1480 * simply skip deletion if we're unable to get the mutex. 1481 */ 1482 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1483 return; 1484 1485 spin_lock(&fs_info->unused_bgs_lock); 1486 while (!list_empty(&fs_info->unused_bgs)) { 1487 u64 used; 1488 int trimming; 1489 1490 block_group = list_first_entry(&fs_info->unused_bgs, 1491 struct btrfs_block_group, 1492 bg_list); 1493 list_del_init(&block_group->bg_list); 1494 1495 space_info = block_group->space_info; 1496 1497 if (ret || btrfs_mixed_space_info(space_info)) { 1498 btrfs_put_block_group(block_group); 1499 continue; 1500 } 1501 spin_unlock(&fs_info->unused_bgs_lock); 1502 1503 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1504 1505 /* Don't want to race with allocators so take the groups_sem */ 1506 down_write(&space_info->groups_sem); 1507 1508 /* 1509 * Async discard moves the final block group discard to be prior 1510 * to the unused_bgs code path. Therefore, if it's not fully 1511 * trimmed, punt it back to the async discard lists. 1512 */ 1513 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1514 !btrfs_is_free_space_trimmed(block_group)) { 1515 trace_btrfs_skip_unused_block_group(block_group); 1516 up_write(&space_info->groups_sem); 1517 /* Requeue if we failed because of async discard */ 1518 btrfs_discard_queue_work(&fs_info->discard_ctl, 1519 block_group); 1520 goto next; 1521 } 1522 1523 spin_lock(&space_info->lock); 1524 spin_lock(&block_group->lock); 1525 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1526 list_is_singular(&block_group->list)) { 1527 /* 1528 * We want to bail if we made new allocations or have 1529 * outstanding allocations in this block group. We do 1530 * the ro check in case balance is currently acting on 1531 * this block group. 1532 * 1533 * Also bail out if this is the only block group for its 1534 * type, because otherwise we would lose profile 1535 * information from fs_info->avail_*_alloc_bits and the 1536 * next block group of this type would be created with a 1537 * "single" profile (even if we're in a raid fs) because 1538 * fs_info->avail_*_alloc_bits would be 0. 1539 */ 1540 trace_btrfs_skip_unused_block_group(block_group); 1541 spin_unlock(&block_group->lock); 1542 spin_unlock(&space_info->lock); 1543 up_write(&space_info->groups_sem); 1544 goto next; 1545 } 1546 1547 /* 1548 * The block group may be unused but there may be space reserved 1549 * accounting with the existence of that block group, that is, 1550 * space_info->bytes_may_use was incremented by a task but no 1551 * space was yet allocated from the block group by the task. 1552 * That space may or may not be allocated, as we are generally 1553 * pessimistic about space reservation for metadata as well as 1554 * for data when using compression (as we reserve space based on 1555 * the worst case, when data can't be compressed, and before 1556 * actually attempting compression, before starting writeback). 1557 * 1558 * So check if the total space of the space_info minus the size 1559 * of this block group is less than the used space of the 1560 * space_info - if that's the case, then it means we have tasks 1561 * that might be relying on the block group in order to allocate 1562 * extents, and add back the block group to the unused list when 1563 * we finish, so that we retry later in case no tasks ended up 1564 * needing to allocate extents from the block group. 1565 */ 1566 used = btrfs_space_info_used(space_info, true); 1567 if (space_info->total_bytes - block_group->length < used && 1568 block_group->zone_unusable < block_group->length) { 1569 /* 1570 * Add a reference for the list, compensate for the ref 1571 * drop under the "next" label for the 1572 * fs_info->unused_bgs list. 1573 */ 1574 btrfs_get_block_group(block_group); 1575 list_add_tail(&block_group->bg_list, &retry_list); 1576 1577 trace_btrfs_skip_unused_block_group(block_group); 1578 spin_unlock(&block_group->lock); 1579 spin_unlock(&space_info->lock); 1580 up_write(&space_info->groups_sem); 1581 goto next; 1582 } 1583 1584 spin_unlock(&block_group->lock); 1585 spin_unlock(&space_info->lock); 1586 1587 /* We don't want to force the issue, only flip if it's ok. */ 1588 ret = inc_block_group_ro(block_group, 0); 1589 up_write(&space_info->groups_sem); 1590 if (ret < 0) { 1591 ret = 0; 1592 goto next; 1593 } 1594 1595 ret = btrfs_zone_finish(block_group); 1596 if (ret < 0) { 1597 btrfs_dec_block_group_ro(block_group); 1598 if (ret == -EAGAIN) 1599 ret = 0; 1600 goto next; 1601 } 1602 1603 /* 1604 * Want to do this before we do anything else so we can recover 1605 * properly if we fail to join the transaction. 1606 */ 1607 trans = btrfs_start_trans_remove_block_group(fs_info, 1608 block_group->start); 1609 if (IS_ERR(trans)) { 1610 btrfs_dec_block_group_ro(block_group); 1611 ret = PTR_ERR(trans); 1612 goto next; 1613 } 1614 1615 /* 1616 * We could have pending pinned extents for this block group, 1617 * just delete them, we don't care about them anymore. 1618 */ 1619 if (!clean_pinned_extents(trans, block_group)) { 1620 btrfs_dec_block_group_ro(block_group); 1621 goto end_trans; 1622 } 1623 1624 /* 1625 * At this point, the block_group is read only and should fail 1626 * new allocations. However, btrfs_finish_extent_commit() can 1627 * cause this block_group to be placed back on the discard 1628 * lists because now the block_group isn't fully discarded. 1629 * Bail here and try again later after discarding everything. 1630 */ 1631 spin_lock(&fs_info->discard_ctl.lock); 1632 if (!list_empty(&block_group->discard_list)) { 1633 spin_unlock(&fs_info->discard_ctl.lock); 1634 btrfs_dec_block_group_ro(block_group); 1635 btrfs_discard_queue_work(&fs_info->discard_ctl, 1636 block_group); 1637 goto end_trans; 1638 } 1639 spin_unlock(&fs_info->discard_ctl.lock); 1640 1641 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1642 spin_lock(&space_info->lock); 1643 spin_lock(&block_group->lock); 1644 1645 btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned); 1646 space_info->bytes_readonly += block_group->pinned; 1647 block_group->pinned = 0; 1648 1649 spin_unlock(&block_group->lock); 1650 spin_unlock(&space_info->lock); 1651 1652 /* 1653 * The normal path here is an unused block group is passed here, 1654 * then trimming is handled in the transaction commit path. 1655 * Async discard interposes before this to do the trimming 1656 * before coming down the unused block group path as trimming 1657 * will no longer be done later in the transaction commit path. 1658 */ 1659 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1660 goto flip_async; 1661 1662 /* 1663 * DISCARD can flip during remount. On zoned filesystems, we 1664 * need to reset sequential-required zones. 1665 */ 1666 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1667 btrfs_is_zoned(fs_info); 1668 1669 /* Implicit trim during transaction commit. */ 1670 if (trimming) 1671 btrfs_freeze_block_group(block_group); 1672 1673 /* 1674 * Btrfs_remove_chunk will abort the transaction if things go 1675 * horribly wrong. 1676 */ 1677 ret = btrfs_remove_chunk(trans, block_group->start); 1678 1679 if (ret) { 1680 if (trimming) 1681 btrfs_unfreeze_block_group(block_group); 1682 goto end_trans; 1683 } 1684 1685 /* 1686 * If we're not mounted with -odiscard, we can just forget 1687 * about this block group. Otherwise we'll need to wait 1688 * until transaction commit to do the actual discard. 1689 */ 1690 if (trimming) { 1691 spin_lock(&fs_info->unused_bgs_lock); 1692 /* 1693 * A concurrent scrub might have added us to the list 1694 * fs_info->unused_bgs, so use a list_move operation 1695 * to add the block group to the deleted_bgs list. 1696 */ 1697 list_move(&block_group->bg_list, 1698 &trans->transaction->deleted_bgs); 1699 spin_unlock(&fs_info->unused_bgs_lock); 1700 btrfs_get_block_group(block_group); 1701 } 1702 end_trans: 1703 btrfs_end_transaction(trans); 1704 next: 1705 btrfs_put_block_group(block_group); 1706 spin_lock(&fs_info->unused_bgs_lock); 1707 } 1708 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1709 spin_unlock(&fs_info->unused_bgs_lock); 1710 mutex_unlock(&fs_info->reclaim_bgs_lock); 1711 return; 1712 1713 flip_async: 1714 btrfs_end_transaction(trans); 1715 spin_lock(&fs_info->unused_bgs_lock); 1716 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1717 spin_unlock(&fs_info->unused_bgs_lock); 1718 mutex_unlock(&fs_info->reclaim_bgs_lock); 1719 btrfs_put_block_group(block_group); 1720 btrfs_discard_punt_unused_bgs_list(fs_info); 1721 } 1722 1723 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1724 { 1725 struct btrfs_fs_info *fs_info = bg->fs_info; 1726 1727 spin_lock(&fs_info->unused_bgs_lock); 1728 if (list_empty(&bg->bg_list)) { 1729 btrfs_get_block_group(bg); 1730 trace_btrfs_add_unused_block_group(bg); 1731 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1732 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1733 /* Pull out the block group from the reclaim_bgs list. */ 1734 trace_btrfs_add_unused_block_group(bg); 1735 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1736 } 1737 spin_unlock(&fs_info->unused_bgs_lock); 1738 } 1739 1740 /* 1741 * We want block groups with a low number of used bytes to be in the beginning 1742 * of the list, so they will get reclaimed first. 1743 */ 1744 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1745 const struct list_head *b) 1746 { 1747 const struct btrfs_block_group *bg1, *bg2; 1748 1749 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1750 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1751 1752 return bg1->used > bg2->used; 1753 } 1754 1755 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info) 1756 { 1757 if (btrfs_is_zoned(fs_info)) 1758 return btrfs_zoned_should_reclaim(fs_info); 1759 return true; 1760 } 1761 1762 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed) 1763 { 1764 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info); 1765 u64 thresh_bytes = mult_perc(bg->length, thresh_pct); 1766 const u64 new_val = bg->used; 1767 const u64 old_val = new_val + bytes_freed; 1768 1769 if (thresh_bytes == 0) 1770 return false; 1771 1772 /* 1773 * If we were below the threshold before don't reclaim, we are likely a 1774 * brand new block group and we don't want to relocate new block groups. 1775 */ 1776 if (old_val < thresh_bytes) 1777 return false; 1778 if (new_val >= thresh_bytes) 1779 return false; 1780 return true; 1781 } 1782 1783 void btrfs_reclaim_bgs_work(struct work_struct *work) 1784 { 1785 struct btrfs_fs_info *fs_info = 1786 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1787 struct btrfs_block_group *bg; 1788 struct btrfs_space_info *space_info; 1789 LIST_HEAD(retry_list); 1790 1791 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1792 return; 1793 1794 if (btrfs_fs_closing(fs_info)) 1795 return; 1796 1797 if (!btrfs_should_reclaim(fs_info)) 1798 return; 1799 1800 sb_start_write(fs_info->sb); 1801 1802 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1803 sb_end_write(fs_info->sb); 1804 return; 1805 } 1806 1807 /* 1808 * Long running balances can keep us blocked here for eternity, so 1809 * simply skip reclaim if we're unable to get the mutex. 1810 */ 1811 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1812 btrfs_exclop_finish(fs_info); 1813 sb_end_write(fs_info->sb); 1814 return; 1815 } 1816 1817 spin_lock(&fs_info->unused_bgs_lock); 1818 /* 1819 * Sort happens under lock because we can't simply splice it and sort. 1820 * The block groups might still be in use and reachable via bg_list, 1821 * and their presence in the reclaim_bgs list must be preserved. 1822 */ 1823 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1824 while (!list_empty(&fs_info->reclaim_bgs)) { 1825 u64 zone_unusable; 1826 u64 reclaimed; 1827 int ret = 0; 1828 1829 bg = list_first_entry(&fs_info->reclaim_bgs, 1830 struct btrfs_block_group, 1831 bg_list); 1832 list_del_init(&bg->bg_list); 1833 1834 space_info = bg->space_info; 1835 spin_unlock(&fs_info->unused_bgs_lock); 1836 1837 /* Don't race with allocators so take the groups_sem */ 1838 down_write(&space_info->groups_sem); 1839 1840 spin_lock(&space_info->lock); 1841 spin_lock(&bg->lock); 1842 if (bg->reserved || bg->pinned || bg->ro) { 1843 /* 1844 * We want to bail if we made new allocations or have 1845 * outstanding allocations in this block group. We do 1846 * the ro check in case balance is currently acting on 1847 * this block group. 1848 */ 1849 spin_unlock(&bg->lock); 1850 spin_unlock(&space_info->lock); 1851 up_write(&space_info->groups_sem); 1852 goto next; 1853 } 1854 if (bg->used == 0) { 1855 /* 1856 * It is possible that we trigger relocation on a block 1857 * group as its extents are deleted and it first goes 1858 * below the threshold, then shortly after goes empty. 1859 * 1860 * In this case, relocating it does delete it, but has 1861 * some overhead in relocation specific metadata, looking 1862 * for the non-existent extents and running some extra 1863 * transactions, which we can avoid by using one of the 1864 * other mechanisms for dealing with empty block groups. 1865 */ 1866 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1867 btrfs_mark_bg_unused(bg); 1868 spin_unlock(&bg->lock); 1869 spin_unlock(&space_info->lock); 1870 up_write(&space_info->groups_sem); 1871 goto next; 1872 1873 } 1874 /* 1875 * The block group might no longer meet the reclaim condition by 1876 * the time we get around to reclaiming it, so to avoid 1877 * reclaiming overly full block_groups, skip reclaiming them. 1878 * 1879 * Since the decision making process also depends on the amount 1880 * being freed, pass in a fake giant value to skip that extra 1881 * check, which is more meaningful when adding to the list in 1882 * the first place. 1883 */ 1884 if (!should_reclaim_block_group(bg, bg->length)) { 1885 spin_unlock(&bg->lock); 1886 spin_unlock(&space_info->lock); 1887 up_write(&space_info->groups_sem); 1888 goto next; 1889 } 1890 spin_unlock(&bg->lock); 1891 spin_unlock(&space_info->lock); 1892 1893 /* 1894 * Get out fast, in case we're read-only or unmounting the 1895 * filesystem. It is OK to drop block groups from the list even 1896 * for the read-only case. As we did sb_start_write(), 1897 * "mount -o remount,ro" won't happen and read-only filesystem 1898 * means it is forced read-only due to a fatal error. So, it 1899 * never gets back to read-write to let us reclaim again. 1900 */ 1901 if (btrfs_need_cleaner_sleep(fs_info)) { 1902 up_write(&space_info->groups_sem); 1903 goto next; 1904 } 1905 1906 /* 1907 * Cache the zone_unusable value before turning the block group 1908 * to read only. As soon as the blog group is read only it's 1909 * zone_unusable value gets moved to the block group's read-only 1910 * bytes and isn't available for calculations anymore. 1911 */ 1912 zone_unusable = bg->zone_unusable; 1913 ret = inc_block_group_ro(bg, 0); 1914 up_write(&space_info->groups_sem); 1915 if (ret < 0) 1916 goto next; 1917 1918 btrfs_info(fs_info, 1919 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1920 bg->start, 1921 div64_u64(bg->used * 100, bg->length), 1922 div64_u64(zone_unusable * 100, bg->length)); 1923 trace_btrfs_reclaim_block_group(bg); 1924 reclaimed = bg->used; 1925 ret = btrfs_relocate_chunk(fs_info, bg->start); 1926 if (ret) { 1927 btrfs_dec_block_group_ro(bg); 1928 btrfs_err(fs_info, "error relocating chunk %llu", 1929 bg->start); 1930 reclaimed = 0; 1931 spin_lock(&space_info->lock); 1932 space_info->reclaim_errors++; 1933 if (READ_ONCE(space_info->periodic_reclaim)) 1934 space_info->periodic_reclaim_ready = false; 1935 spin_unlock(&space_info->lock); 1936 } 1937 spin_lock(&space_info->lock); 1938 space_info->reclaim_count++; 1939 space_info->reclaim_bytes += reclaimed; 1940 spin_unlock(&space_info->lock); 1941 1942 next: 1943 if (ret && !READ_ONCE(space_info->periodic_reclaim)) { 1944 /* Refcount held by the reclaim_bgs list after splice. */ 1945 spin_lock(&fs_info->unused_bgs_lock); 1946 /* 1947 * This block group might be added to the unused list 1948 * during the above process. Move it back to the 1949 * reclaim list otherwise. 1950 */ 1951 if (list_empty(&bg->bg_list)) { 1952 btrfs_get_block_group(bg); 1953 list_add_tail(&bg->bg_list, &retry_list); 1954 } 1955 spin_unlock(&fs_info->unused_bgs_lock); 1956 } 1957 btrfs_put_block_group(bg); 1958 1959 mutex_unlock(&fs_info->reclaim_bgs_lock); 1960 /* 1961 * Reclaiming all the block groups in the list can take really 1962 * long. Prioritize cleaning up unused block groups. 1963 */ 1964 btrfs_delete_unused_bgs(fs_info); 1965 /* 1966 * If we are interrupted by a balance, we can just bail out. The 1967 * cleaner thread restart again if necessary. 1968 */ 1969 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1970 goto end; 1971 spin_lock(&fs_info->unused_bgs_lock); 1972 } 1973 spin_unlock(&fs_info->unused_bgs_lock); 1974 mutex_unlock(&fs_info->reclaim_bgs_lock); 1975 end: 1976 spin_lock(&fs_info->unused_bgs_lock); 1977 list_splice_tail(&retry_list, &fs_info->reclaim_bgs); 1978 spin_unlock(&fs_info->unused_bgs_lock); 1979 btrfs_exclop_finish(fs_info); 1980 sb_end_write(fs_info->sb); 1981 } 1982 1983 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1984 { 1985 btrfs_reclaim_sweep(fs_info); 1986 spin_lock(&fs_info->unused_bgs_lock); 1987 if (!list_empty(&fs_info->reclaim_bgs)) 1988 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1989 spin_unlock(&fs_info->unused_bgs_lock); 1990 } 1991 1992 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1993 { 1994 struct btrfs_fs_info *fs_info = bg->fs_info; 1995 1996 spin_lock(&fs_info->unused_bgs_lock); 1997 if (list_empty(&bg->bg_list)) { 1998 btrfs_get_block_group(bg); 1999 trace_btrfs_add_reclaim_block_group(bg); 2000 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 2001 } 2002 spin_unlock(&fs_info->unused_bgs_lock); 2003 } 2004 2005 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key, 2006 const struct btrfs_path *path) 2007 { 2008 struct btrfs_chunk_map *map; 2009 struct btrfs_block_group_item bg; 2010 struct extent_buffer *leaf; 2011 int slot; 2012 u64 flags; 2013 int ret = 0; 2014 2015 slot = path->slots[0]; 2016 leaf = path->nodes[0]; 2017 2018 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset); 2019 if (!map) { 2020 btrfs_err(fs_info, 2021 "logical %llu len %llu found bg but no related chunk", 2022 key->objectid, key->offset); 2023 return -ENOENT; 2024 } 2025 2026 if (map->start != key->objectid || map->chunk_len != key->offset) { 2027 btrfs_err(fs_info, 2028 "block group %llu len %llu mismatch with chunk %llu len %llu", 2029 key->objectid, key->offset, map->start, map->chunk_len); 2030 ret = -EUCLEAN; 2031 goto out_free_map; 2032 } 2033 2034 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 2035 sizeof(bg)); 2036 flags = btrfs_stack_block_group_flags(&bg) & 2037 BTRFS_BLOCK_GROUP_TYPE_MASK; 2038 2039 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2040 btrfs_err(fs_info, 2041 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 2042 key->objectid, key->offset, flags, 2043 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type)); 2044 ret = -EUCLEAN; 2045 } 2046 2047 out_free_map: 2048 btrfs_free_chunk_map(map); 2049 return ret; 2050 } 2051 2052 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2053 struct btrfs_path *path, 2054 const struct btrfs_key *key) 2055 { 2056 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2057 int ret; 2058 struct btrfs_key found_key; 2059 2060 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2061 if (found_key.objectid >= key->objectid && 2062 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2063 return read_bg_from_eb(fs_info, &found_key, path); 2064 } 2065 } 2066 return ret; 2067 } 2068 2069 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2070 { 2071 u64 extra_flags = chunk_to_extended(flags) & 2072 BTRFS_EXTENDED_PROFILE_MASK; 2073 2074 write_seqlock(&fs_info->profiles_lock); 2075 if (flags & BTRFS_BLOCK_GROUP_DATA) 2076 fs_info->avail_data_alloc_bits |= extra_flags; 2077 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2078 fs_info->avail_metadata_alloc_bits |= extra_flags; 2079 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2080 fs_info->avail_system_alloc_bits |= extra_flags; 2081 write_sequnlock(&fs_info->profiles_lock); 2082 } 2083 2084 /* 2085 * Map a physical disk address to a list of logical addresses. 2086 * 2087 * @fs_info: the filesystem 2088 * @chunk_start: logical address of block group 2089 * @physical: physical address to map to logical addresses 2090 * @logical: return array of logical addresses which map to @physical 2091 * @naddrs: length of @logical 2092 * @stripe_len: size of IO stripe for the given block group 2093 * 2094 * Maps a particular @physical disk address to a list of @logical addresses. 2095 * Used primarily to exclude those portions of a block group that contain super 2096 * block copies. 2097 */ 2098 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2099 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2100 { 2101 struct btrfs_chunk_map *map; 2102 u64 *buf; 2103 u64 bytenr; 2104 u64 data_stripe_length; 2105 u64 io_stripe_size; 2106 int i, nr = 0; 2107 int ret = 0; 2108 2109 map = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2110 if (IS_ERR(map)) 2111 return -EIO; 2112 2113 data_stripe_length = map->stripe_size; 2114 io_stripe_size = BTRFS_STRIPE_LEN; 2115 chunk_start = map->start; 2116 2117 /* For RAID5/6 adjust to a full IO stripe length */ 2118 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2119 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2120 2121 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2122 if (!buf) { 2123 ret = -ENOMEM; 2124 goto out; 2125 } 2126 2127 for (i = 0; i < map->num_stripes; i++) { 2128 bool already_inserted = false; 2129 u32 stripe_nr; 2130 u32 offset; 2131 int j; 2132 2133 if (!in_range(physical, map->stripes[i].physical, 2134 data_stripe_length)) 2135 continue; 2136 2137 stripe_nr = (physical - map->stripes[i].physical) >> 2138 BTRFS_STRIPE_LEN_SHIFT; 2139 offset = (physical - map->stripes[i].physical) & 2140 BTRFS_STRIPE_LEN_MASK; 2141 2142 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2143 BTRFS_BLOCK_GROUP_RAID10)) 2144 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2145 map->sub_stripes); 2146 /* 2147 * The remaining case would be for RAID56, multiply by 2148 * nr_data_stripes(). Alternatively, just use rmap_len below 2149 * instead of map->stripe_len 2150 */ 2151 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2152 2153 /* Ensure we don't add duplicate addresses */ 2154 for (j = 0; j < nr; j++) { 2155 if (buf[j] == bytenr) { 2156 already_inserted = true; 2157 break; 2158 } 2159 } 2160 2161 if (!already_inserted) 2162 buf[nr++] = bytenr; 2163 } 2164 2165 *logical = buf; 2166 *naddrs = nr; 2167 *stripe_len = io_stripe_size; 2168 out: 2169 btrfs_free_chunk_map(map); 2170 return ret; 2171 } 2172 2173 static int exclude_super_stripes(struct btrfs_block_group *cache) 2174 { 2175 struct btrfs_fs_info *fs_info = cache->fs_info; 2176 const bool zoned = btrfs_is_zoned(fs_info); 2177 u64 bytenr; 2178 u64 *logical; 2179 int stripe_len; 2180 int i, nr, ret; 2181 2182 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2183 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2184 cache->bytes_super += stripe_len; 2185 ret = set_extent_bit(&fs_info->excluded_extents, cache->start, 2186 cache->start + stripe_len - 1, 2187 EXTENT_UPTODATE, NULL); 2188 if (ret) 2189 return ret; 2190 } 2191 2192 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2193 bytenr = btrfs_sb_offset(i); 2194 ret = btrfs_rmap_block(fs_info, cache->start, 2195 bytenr, &logical, &nr, &stripe_len); 2196 if (ret) 2197 return ret; 2198 2199 /* Shouldn't have super stripes in sequential zones */ 2200 if (zoned && nr) { 2201 kfree(logical); 2202 btrfs_err(fs_info, 2203 "zoned: block group %llu must not contain super block", 2204 cache->start); 2205 return -EUCLEAN; 2206 } 2207 2208 while (nr--) { 2209 u64 len = min_t(u64, stripe_len, 2210 cache->start + cache->length - logical[nr]); 2211 2212 cache->bytes_super += len; 2213 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr], 2214 logical[nr] + len - 1, 2215 EXTENT_UPTODATE, NULL); 2216 if (ret) { 2217 kfree(logical); 2218 return ret; 2219 } 2220 } 2221 2222 kfree(logical); 2223 } 2224 return 0; 2225 } 2226 2227 static struct btrfs_block_group *btrfs_create_block_group_cache( 2228 struct btrfs_fs_info *fs_info, u64 start) 2229 { 2230 struct btrfs_block_group *cache; 2231 2232 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2233 if (!cache) 2234 return NULL; 2235 2236 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2237 GFP_NOFS); 2238 if (!cache->free_space_ctl) { 2239 kfree(cache); 2240 return NULL; 2241 } 2242 2243 cache->start = start; 2244 2245 cache->fs_info = fs_info; 2246 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2247 2248 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2249 2250 refcount_set(&cache->refs, 1); 2251 spin_lock_init(&cache->lock); 2252 init_rwsem(&cache->data_rwsem); 2253 INIT_LIST_HEAD(&cache->list); 2254 INIT_LIST_HEAD(&cache->cluster_list); 2255 INIT_LIST_HEAD(&cache->bg_list); 2256 INIT_LIST_HEAD(&cache->ro_list); 2257 INIT_LIST_HEAD(&cache->discard_list); 2258 INIT_LIST_HEAD(&cache->dirty_list); 2259 INIT_LIST_HEAD(&cache->io_list); 2260 INIT_LIST_HEAD(&cache->active_bg_list); 2261 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2262 atomic_set(&cache->frozen, 0); 2263 mutex_init(&cache->free_space_lock); 2264 2265 return cache; 2266 } 2267 2268 /* 2269 * Iterate all chunks and verify that each of them has the corresponding block 2270 * group 2271 */ 2272 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2273 { 2274 u64 start = 0; 2275 int ret = 0; 2276 2277 while (1) { 2278 struct btrfs_chunk_map *map; 2279 struct btrfs_block_group *bg; 2280 2281 /* 2282 * btrfs_find_chunk_map() will return the first chunk map 2283 * intersecting the range, so setting @length to 1 is enough to 2284 * get the first chunk. 2285 */ 2286 map = btrfs_find_chunk_map(fs_info, start, 1); 2287 if (!map) 2288 break; 2289 2290 bg = btrfs_lookup_block_group(fs_info, map->start); 2291 if (!bg) { 2292 btrfs_err(fs_info, 2293 "chunk start=%llu len=%llu doesn't have corresponding block group", 2294 map->start, map->chunk_len); 2295 ret = -EUCLEAN; 2296 btrfs_free_chunk_map(map); 2297 break; 2298 } 2299 if (bg->start != map->start || bg->length != map->chunk_len || 2300 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2301 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2302 btrfs_err(fs_info, 2303 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2304 map->start, map->chunk_len, 2305 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2306 bg->start, bg->length, 2307 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2308 ret = -EUCLEAN; 2309 btrfs_free_chunk_map(map); 2310 btrfs_put_block_group(bg); 2311 break; 2312 } 2313 start = map->start + map->chunk_len; 2314 btrfs_free_chunk_map(map); 2315 btrfs_put_block_group(bg); 2316 } 2317 return ret; 2318 } 2319 2320 static int read_one_block_group(struct btrfs_fs_info *info, 2321 struct btrfs_block_group_item *bgi, 2322 const struct btrfs_key *key, 2323 int need_clear) 2324 { 2325 struct btrfs_block_group *cache; 2326 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2327 int ret; 2328 2329 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2330 2331 cache = btrfs_create_block_group_cache(info, key->objectid); 2332 if (!cache) 2333 return -ENOMEM; 2334 2335 cache->length = key->offset; 2336 cache->used = btrfs_stack_block_group_used(bgi); 2337 cache->commit_used = cache->used; 2338 cache->flags = btrfs_stack_block_group_flags(bgi); 2339 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2340 2341 set_free_space_tree_thresholds(cache); 2342 2343 if (need_clear) { 2344 /* 2345 * When we mount with old space cache, we need to 2346 * set BTRFS_DC_CLEAR and set dirty flag. 2347 * 2348 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2349 * truncate the old free space cache inode and 2350 * setup a new one. 2351 * b) Setting 'dirty flag' makes sure that we flush 2352 * the new space cache info onto disk. 2353 */ 2354 if (btrfs_test_opt(info, SPACE_CACHE)) 2355 cache->disk_cache_state = BTRFS_DC_CLEAR; 2356 } 2357 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2358 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2359 btrfs_err(info, 2360 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2361 cache->start); 2362 ret = -EINVAL; 2363 goto error; 2364 } 2365 2366 ret = btrfs_load_block_group_zone_info(cache, false); 2367 if (ret) { 2368 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2369 cache->start); 2370 goto error; 2371 } 2372 2373 /* 2374 * We need to exclude the super stripes now so that the space info has 2375 * super bytes accounted for, otherwise we'll think we have more space 2376 * than we actually do. 2377 */ 2378 ret = exclude_super_stripes(cache); 2379 if (ret) { 2380 /* We may have excluded something, so call this just in case. */ 2381 btrfs_free_excluded_extents(cache); 2382 goto error; 2383 } 2384 2385 /* 2386 * For zoned filesystem, space after the allocation offset is the only 2387 * free space for a block group. So, we don't need any caching work. 2388 * btrfs_calc_zone_unusable() will set the amount of free space and 2389 * zone_unusable space. 2390 * 2391 * For regular filesystem, check for two cases, either we are full, and 2392 * therefore don't need to bother with the caching work since we won't 2393 * find any space, or we are empty, and we can just add all the space 2394 * in and be done with it. This saves us _a_lot_ of time, particularly 2395 * in the full case. 2396 */ 2397 if (btrfs_is_zoned(info)) { 2398 btrfs_calc_zone_unusable(cache); 2399 /* Should not have any excluded extents. Just in case, though. */ 2400 btrfs_free_excluded_extents(cache); 2401 } else if (cache->length == cache->used) { 2402 cache->cached = BTRFS_CACHE_FINISHED; 2403 btrfs_free_excluded_extents(cache); 2404 } else if (cache->used == 0) { 2405 cache->cached = BTRFS_CACHE_FINISHED; 2406 ret = btrfs_add_new_free_space(cache, cache->start, 2407 cache->start + cache->length, NULL); 2408 btrfs_free_excluded_extents(cache); 2409 if (ret) 2410 goto error; 2411 } 2412 2413 ret = btrfs_add_block_group_cache(info, cache); 2414 if (ret) { 2415 btrfs_remove_free_space_cache(cache); 2416 goto error; 2417 } 2418 trace_btrfs_add_block_group(info, cache, 0); 2419 btrfs_add_bg_to_space_info(info, cache); 2420 2421 set_avail_alloc_bits(info, cache->flags); 2422 if (btrfs_chunk_writeable(info, cache->start)) { 2423 if (cache->used == 0) { 2424 ASSERT(list_empty(&cache->bg_list)); 2425 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2426 btrfs_discard_queue_work(&info->discard_ctl, cache); 2427 else 2428 btrfs_mark_bg_unused(cache); 2429 } 2430 } else { 2431 inc_block_group_ro(cache, 1); 2432 } 2433 2434 return 0; 2435 error: 2436 btrfs_put_block_group(cache); 2437 return ret; 2438 } 2439 2440 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2441 { 2442 struct rb_node *node; 2443 int ret = 0; 2444 2445 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 2446 struct btrfs_chunk_map *map; 2447 struct btrfs_block_group *bg; 2448 2449 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 2450 bg = btrfs_create_block_group_cache(fs_info, map->start); 2451 if (!bg) { 2452 ret = -ENOMEM; 2453 break; 2454 } 2455 2456 /* Fill dummy cache as FULL */ 2457 bg->length = map->chunk_len; 2458 bg->flags = map->type; 2459 bg->cached = BTRFS_CACHE_FINISHED; 2460 bg->used = map->chunk_len; 2461 bg->flags = map->type; 2462 ret = btrfs_add_block_group_cache(fs_info, bg); 2463 /* 2464 * We may have some valid block group cache added already, in 2465 * that case we skip to the next one. 2466 */ 2467 if (ret == -EEXIST) { 2468 ret = 0; 2469 btrfs_put_block_group(bg); 2470 continue; 2471 } 2472 2473 if (ret) { 2474 btrfs_remove_free_space_cache(bg); 2475 btrfs_put_block_group(bg); 2476 break; 2477 } 2478 2479 btrfs_add_bg_to_space_info(fs_info, bg); 2480 2481 set_avail_alloc_bits(fs_info, bg->flags); 2482 } 2483 if (!ret) 2484 btrfs_init_global_block_rsv(fs_info); 2485 return ret; 2486 } 2487 2488 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2489 { 2490 struct btrfs_root *root = btrfs_block_group_root(info); 2491 struct btrfs_path *path; 2492 int ret; 2493 struct btrfs_block_group *cache; 2494 struct btrfs_space_info *space_info; 2495 struct btrfs_key key; 2496 int need_clear = 0; 2497 u64 cache_gen; 2498 2499 /* 2500 * Either no extent root (with ibadroots rescue option) or we have 2501 * unsupported RO options. The fs can never be mounted read-write, so no 2502 * need to waste time searching block group items. 2503 * 2504 * This also allows new extent tree related changes to be RO compat, 2505 * no need for a full incompat flag. 2506 */ 2507 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2508 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2509 return fill_dummy_bgs(info); 2510 2511 key.objectid = 0; 2512 key.offset = 0; 2513 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2514 path = btrfs_alloc_path(); 2515 if (!path) 2516 return -ENOMEM; 2517 2518 cache_gen = btrfs_super_cache_generation(info->super_copy); 2519 if (btrfs_test_opt(info, SPACE_CACHE) && 2520 btrfs_super_generation(info->super_copy) != cache_gen) 2521 need_clear = 1; 2522 if (btrfs_test_opt(info, CLEAR_CACHE)) 2523 need_clear = 1; 2524 2525 while (1) { 2526 struct btrfs_block_group_item bgi; 2527 struct extent_buffer *leaf; 2528 int slot; 2529 2530 ret = find_first_block_group(info, path, &key); 2531 if (ret > 0) 2532 break; 2533 if (ret != 0) 2534 goto error; 2535 2536 leaf = path->nodes[0]; 2537 slot = path->slots[0]; 2538 2539 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2540 sizeof(bgi)); 2541 2542 btrfs_item_key_to_cpu(leaf, &key, slot); 2543 btrfs_release_path(path); 2544 ret = read_one_block_group(info, &bgi, &key, need_clear); 2545 if (ret < 0) 2546 goto error; 2547 key.objectid += key.offset; 2548 key.offset = 0; 2549 } 2550 btrfs_release_path(path); 2551 2552 list_for_each_entry(space_info, &info->space_info, list) { 2553 int i; 2554 2555 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2556 if (list_empty(&space_info->block_groups[i])) 2557 continue; 2558 cache = list_first_entry(&space_info->block_groups[i], 2559 struct btrfs_block_group, 2560 list); 2561 btrfs_sysfs_add_block_group_type(cache); 2562 } 2563 2564 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2565 (BTRFS_BLOCK_GROUP_RAID10 | 2566 BTRFS_BLOCK_GROUP_RAID1_MASK | 2567 BTRFS_BLOCK_GROUP_RAID56_MASK | 2568 BTRFS_BLOCK_GROUP_DUP))) 2569 continue; 2570 /* 2571 * Avoid allocating from un-mirrored block group if there are 2572 * mirrored block groups. 2573 */ 2574 list_for_each_entry(cache, 2575 &space_info->block_groups[BTRFS_RAID_RAID0], 2576 list) 2577 inc_block_group_ro(cache, 1); 2578 list_for_each_entry(cache, 2579 &space_info->block_groups[BTRFS_RAID_SINGLE], 2580 list) 2581 inc_block_group_ro(cache, 1); 2582 } 2583 2584 btrfs_init_global_block_rsv(info); 2585 ret = check_chunk_block_group_mappings(info); 2586 error: 2587 btrfs_free_path(path); 2588 /* 2589 * We've hit some error while reading the extent tree, and have 2590 * rescue=ibadroots mount option. 2591 * Try to fill the tree using dummy block groups so that the user can 2592 * continue to mount and grab their data. 2593 */ 2594 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2595 ret = fill_dummy_bgs(info); 2596 return ret; 2597 } 2598 2599 /* 2600 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2601 * allocation. 2602 * 2603 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2604 * phases. 2605 */ 2606 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2607 struct btrfs_block_group *block_group) 2608 { 2609 struct btrfs_fs_info *fs_info = trans->fs_info; 2610 struct btrfs_block_group_item bgi; 2611 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2612 struct btrfs_key key; 2613 u64 old_commit_used; 2614 int ret; 2615 2616 spin_lock(&block_group->lock); 2617 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2618 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2619 block_group->global_root_id); 2620 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2621 old_commit_used = block_group->commit_used; 2622 block_group->commit_used = block_group->used; 2623 key.objectid = block_group->start; 2624 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2625 key.offset = block_group->length; 2626 spin_unlock(&block_group->lock); 2627 2628 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2629 if (ret < 0) { 2630 spin_lock(&block_group->lock); 2631 block_group->commit_used = old_commit_used; 2632 spin_unlock(&block_group->lock); 2633 } 2634 2635 return ret; 2636 } 2637 2638 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2639 const struct btrfs_device *device, u64 chunk_offset, 2640 u64 start, u64 num_bytes) 2641 { 2642 struct btrfs_fs_info *fs_info = device->fs_info; 2643 struct btrfs_root *root = fs_info->dev_root; 2644 struct btrfs_path *path; 2645 struct btrfs_dev_extent *extent; 2646 struct extent_buffer *leaf; 2647 struct btrfs_key key; 2648 int ret; 2649 2650 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2651 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2652 path = btrfs_alloc_path(); 2653 if (!path) 2654 return -ENOMEM; 2655 2656 key.objectid = device->devid; 2657 key.type = BTRFS_DEV_EXTENT_KEY; 2658 key.offset = start; 2659 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2660 if (ret) 2661 goto out; 2662 2663 leaf = path->nodes[0]; 2664 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2665 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2666 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2667 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2668 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2669 2670 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2671 out: 2672 btrfs_free_path(path); 2673 return ret; 2674 } 2675 2676 /* 2677 * This function belongs to phase 2. 2678 * 2679 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2680 * phases. 2681 */ 2682 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2683 u64 chunk_offset, u64 chunk_size) 2684 { 2685 struct btrfs_fs_info *fs_info = trans->fs_info; 2686 struct btrfs_device *device; 2687 struct btrfs_chunk_map *map; 2688 u64 dev_offset; 2689 int i; 2690 int ret = 0; 2691 2692 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2693 if (IS_ERR(map)) 2694 return PTR_ERR(map); 2695 2696 /* 2697 * Take the device list mutex to prevent races with the final phase of 2698 * a device replace operation that replaces the device object associated 2699 * with the map's stripes, because the device object's id can change 2700 * at any time during that final phase of the device replace operation 2701 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2702 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2703 * resulting in persisting a device extent item with such ID. 2704 */ 2705 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2706 for (i = 0; i < map->num_stripes; i++) { 2707 device = map->stripes[i].dev; 2708 dev_offset = map->stripes[i].physical; 2709 2710 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2711 map->stripe_size); 2712 if (ret) 2713 break; 2714 } 2715 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2716 2717 btrfs_free_chunk_map(map); 2718 return ret; 2719 } 2720 2721 /* 2722 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2723 * chunk allocation. 2724 * 2725 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2726 * phases. 2727 */ 2728 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2729 { 2730 struct btrfs_fs_info *fs_info = trans->fs_info; 2731 struct btrfs_block_group *block_group; 2732 int ret = 0; 2733 2734 while (!list_empty(&trans->new_bgs)) { 2735 int index; 2736 2737 block_group = list_first_entry(&trans->new_bgs, 2738 struct btrfs_block_group, 2739 bg_list); 2740 if (ret) 2741 goto next; 2742 2743 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2744 2745 ret = insert_block_group_item(trans, block_group); 2746 if (ret) 2747 btrfs_abort_transaction(trans, ret); 2748 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2749 &block_group->runtime_flags)) { 2750 mutex_lock(&fs_info->chunk_mutex); 2751 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2752 mutex_unlock(&fs_info->chunk_mutex); 2753 if (ret) 2754 btrfs_abort_transaction(trans, ret); 2755 } 2756 ret = insert_dev_extents(trans, block_group->start, 2757 block_group->length); 2758 if (ret) 2759 btrfs_abort_transaction(trans, ret); 2760 add_block_group_free_space(trans, block_group); 2761 2762 /* 2763 * If we restriped during balance, we may have added a new raid 2764 * type, so now add the sysfs entries when it is safe to do so. 2765 * We don't have to worry about locking here as it's handled in 2766 * btrfs_sysfs_add_block_group_type. 2767 */ 2768 if (block_group->space_info->block_group_kobjs[index] == NULL) 2769 btrfs_sysfs_add_block_group_type(block_group); 2770 2771 /* Already aborted the transaction if it failed. */ 2772 next: 2773 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2774 list_del_init(&block_group->bg_list); 2775 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2776 2777 /* 2778 * If the block group is still unused, add it to the list of 2779 * unused block groups. The block group may have been created in 2780 * order to satisfy a space reservation, in which case the 2781 * extent allocation only happens later. But often we don't 2782 * actually need to allocate space that we previously reserved, 2783 * so the block group may become unused for a long time. For 2784 * example for metadata we generally reserve space for a worst 2785 * possible scenario, but then don't end up allocating all that 2786 * space or none at all (due to no need to COW, extent buffers 2787 * were already COWed in the current transaction and still 2788 * unwritten, tree heights lower than the maximum possible 2789 * height, etc). For data we generally reserve the axact amount 2790 * of space we are going to allocate later, the exception is 2791 * when using compression, as we must reserve space based on the 2792 * uncompressed data size, because the compression is only done 2793 * when writeback triggered and we don't know how much space we 2794 * are actually going to need, so we reserve the uncompressed 2795 * size because the data may be incompressible in the worst case. 2796 */ 2797 if (ret == 0) { 2798 bool used; 2799 2800 spin_lock(&block_group->lock); 2801 used = btrfs_is_block_group_used(block_group); 2802 spin_unlock(&block_group->lock); 2803 2804 if (!used) 2805 btrfs_mark_bg_unused(block_group); 2806 } 2807 } 2808 btrfs_trans_release_chunk_metadata(trans); 2809 } 2810 2811 /* 2812 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2813 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2814 */ 2815 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset) 2816 { 2817 u64 div = SZ_1G; 2818 u64 index; 2819 2820 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2821 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2822 2823 /* If we have a smaller fs index based on 128MiB. */ 2824 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2825 div = SZ_128M; 2826 2827 offset = div64_u64(offset, div); 2828 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2829 return index; 2830 } 2831 2832 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2833 u64 type, 2834 u64 chunk_offset, u64 size) 2835 { 2836 struct btrfs_fs_info *fs_info = trans->fs_info; 2837 struct btrfs_block_group *cache; 2838 int ret; 2839 2840 btrfs_set_log_full_commit(trans); 2841 2842 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2843 if (!cache) 2844 return ERR_PTR(-ENOMEM); 2845 2846 /* 2847 * Mark it as new before adding it to the rbtree of block groups or any 2848 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2849 * before the new flag is set. 2850 */ 2851 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2852 2853 cache->length = size; 2854 set_free_space_tree_thresholds(cache); 2855 cache->flags = type; 2856 cache->cached = BTRFS_CACHE_FINISHED; 2857 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2858 2859 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2860 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2861 2862 ret = btrfs_load_block_group_zone_info(cache, true); 2863 if (ret) { 2864 btrfs_put_block_group(cache); 2865 return ERR_PTR(ret); 2866 } 2867 2868 ret = exclude_super_stripes(cache); 2869 if (ret) { 2870 /* We may have excluded something, so call this just in case */ 2871 btrfs_free_excluded_extents(cache); 2872 btrfs_put_block_group(cache); 2873 return ERR_PTR(ret); 2874 } 2875 2876 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2877 btrfs_free_excluded_extents(cache); 2878 if (ret) { 2879 btrfs_put_block_group(cache); 2880 return ERR_PTR(ret); 2881 } 2882 2883 /* 2884 * Ensure the corresponding space_info object is created and 2885 * assigned to our block group. We want our bg to be added to the rbtree 2886 * with its ->space_info set. 2887 */ 2888 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2889 ASSERT(cache->space_info); 2890 2891 ret = btrfs_add_block_group_cache(fs_info, cache); 2892 if (ret) { 2893 btrfs_remove_free_space_cache(cache); 2894 btrfs_put_block_group(cache); 2895 return ERR_PTR(ret); 2896 } 2897 2898 /* 2899 * Now that our block group has its ->space_info set and is inserted in 2900 * the rbtree, update the space info's counters. 2901 */ 2902 trace_btrfs_add_block_group(fs_info, cache, 1); 2903 btrfs_add_bg_to_space_info(fs_info, cache); 2904 btrfs_update_global_block_rsv(fs_info); 2905 2906 #ifdef CONFIG_BTRFS_DEBUG 2907 if (btrfs_should_fragment_free_space(cache)) { 2908 cache->space_info->bytes_used += size >> 1; 2909 fragment_free_space(cache); 2910 } 2911 #endif 2912 2913 list_add_tail(&cache->bg_list, &trans->new_bgs); 2914 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info); 2915 2916 set_avail_alloc_bits(fs_info, type); 2917 return cache; 2918 } 2919 2920 /* 2921 * Mark one block group RO, can be called several times for the same block 2922 * group. 2923 * 2924 * @cache: the destination block group 2925 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2926 * ensure we still have some free space after marking this 2927 * block group RO. 2928 */ 2929 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2930 bool do_chunk_alloc) 2931 { 2932 struct btrfs_fs_info *fs_info = cache->fs_info; 2933 struct btrfs_trans_handle *trans; 2934 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2935 u64 alloc_flags; 2936 int ret; 2937 bool dirty_bg_running; 2938 2939 /* 2940 * This can only happen when we are doing read-only scrub on read-only 2941 * mount. 2942 * In that case we should not start a new transaction on read-only fs. 2943 * Thus here we skip all chunk allocations. 2944 */ 2945 if (sb_rdonly(fs_info->sb)) { 2946 mutex_lock(&fs_info->ro_block_group_mutex); 2947 ret = inc_block_group_ro(cache, 0); 2948 mutex_unlock(&fs_info->ro_block_group_mutex); 2949 return ret; 2950 } 2951 2952 do { 2953 trans = btrfs_join_transaction(root); 2954 if (IS_ERR(trans)) 2955 return PTR_ERR(trans); 2956 2957 dirty_bg_running = false; 2958 2959 /* 2960 * We're not allowed to set block groups readonly after the dirty 2961 * block group cache has started writing. If it already started, 2962 * back off and let this transaction commit. 2963 */ 2964 mutex_lock(&fs_info->ro_block_group_mutex); 2965 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2966 u64 transid = trans->transid; 2967 2968 mutex_unlock(&fs_info->ro_block_group_mutex); 2969 btrfs_end_transaction(trans); 2970 2971 ret = btrfs_wait_for_commit(fs_info, transid); 2972 if (ret) 2973 return ret; 2974 dirty_bg_running = true; 2975 } 2976 } while (dirty_bg_running); 2977 2978 if (do_chunk_alloc) { 2979 /* 2980 * If we are changing raid levels, try to allocate a 2981 * corresponding block group with the new raid level. 2982 */ 2983 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2984 if (alloc_flags != cache->flags) { 2985 ret = btrfs_chunk_alloc(trans, alloc_flags, 2986 CHUNK_ALLOC_FORCE); 2987 /* 2988 * ENOSPC is allowed here, we may have enough space 2989 * already allocated at the new raid level to carry on 2990 */ 2991 if (ret == -ENOSPC) 2992 ret = 0; 2993 if (ret < 0) 2994 goto out; 2995 } 2996 } 2997 2998 ret = inc_block_group_ro(cache, 0); 2999 if (!ret) 3000 goto out; 3001 if (ret == -ETXTBSY) 3002 goto unlock_out; 3003 3004 /* 3005 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system 3006 * chunk allocation storm to exhaust the system chunk array. Otherwise 3007 * we still want to try our best to mark the block group read-only. 3008 */ 3009 if (!do_chunk_alloc && ret == -ENOSPC && 3010 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 3011 goto unlock_out; 3012 3013 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 3014 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3015 if (ret < 0) 3016 goto out; 3017 /* 3018 * We have allocated a new chunk. We also need to activate that chunk to 3019 * grant metadata tickets for zoned filesystem. 3020 */ 3021 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 3022 if (ret < 0) 3023 goto out; 3024 3025 ret = inc_block_group_ro(cache, 0); 3026 if (ret == -ETXTBSY) 3027 goto unlock_out; 3028 out: 3029 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 3030 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3031 mutex_lock(&fs_info->chunk_mutex); 3032 check_system_chunk(trans, alloc_flags); 3033 mutex_unlock(&fs_info->chunk_mutex); 3034 } 3035 unlock_out: 3036 mutex_unlock(&fs_info->ro_block_group_mutex); 3037 3038 btrfs_end_transaction(trans); 3039 return ret; 3040 } 3041 3042 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 3043 { 3044 struct btrfs_space_info *sinfo = cache->space_info; 3045 u64 num_bytes; 3046 3047 BUG_ON(!cache->ro); 3048 3049 spin_lock(&sinfo->lock); 3050 spin_lock(&cache->lock); 3051 if (!--cache->ro) { 3052 if (btrfs_is_zoned(cache->fs_info)) { 3053 /* Migrate zone_unusable bytes back */ 3054 cache->zone_unusable = 3055 (cache->alloc_offset - cache->used - cache->pinned - 3056 cache->reserved) + 3057 (cache->length - cache->zone_capacity); 3058 btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable); 3059 sinfo->bytes_readonly -= cache->zone_unusable; 3060 } 3061 num_bytes = cache->length - cache->reserved - 3062 cache->pinned - cache->bytes_super - 3063 cache->zone_unusable - cache->used; 3064 sinfo->bytes_readonly -= num_bytes; 3065 list_del_init(&cache->ro_list); 3066 } 3067 spin_unlock(&cache->lock); 3068 spin_unlock(&sinfo->lock); 3069 } 3070 3071 static int update_block_group_item(struct btrfs_trans_handle *trans, 3072 struct btrfs_path *path, 3073 struct btrfs_block_group *cache) 3074 { 3075 struct btrfs_fs_info *fs_info = trans->fs_info; 3076 int ret; 3077 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3078 unsigned long bi; 3079 struct extent_buffer *leaf; 3080 struct btrfs_block_group_item bgi; 3081 struct btrfs_key key; 3082 u64 old_commit_used; 3083 u64 used; 3084 3085 /* 3086 * Block group items update can be triggered out of commit transaction 3087 * critical section, thus we need a consistent view of used bytes. 3088 * We cannot use cache->used directly outside of the spin lock, as it 3089 * may be changed. 3090 */ 3091 spin_lock(&cache->lock); 3092 old_commit_used = cache->commit_used; 3093 used = cache->used; 3094 /* No change in used bytes, can safely skip it. */ 3095 if (cache->commit_used == used) { 3096 spin_unlock(&cache->lock); 3097 return 0; 3098 } 3099 cache->commit_used = used; 3100 spin_unlock(&cache->lock); 3101 3102 key.objectid = cache->start; 3103 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3104 key.offset = cache->length; 3105 3106 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3107 if (ret) { 3108 if (ret > 0) 3109 ret = -ENOENT; 3110 goto fail; 3111 } 3112 3113 leaf = path->nodes[0]; 3114 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3115 btrfs_set_stack_block_group_used(&bgi, used); 3116 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3117 cache->global_root_id); 3118 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3119 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3120 fail: 3121 btrfs_release_path(path); 3122 /* 3123 * We didn't update the block group item, need to revert commit_used 3124 * unless the block group item didn't exist yet - this is to prevent a 3125 * race with a concurrent insertion of the block group item, with 3126 * insert_block_group_item(), that happened just after we attempted to 3127 * update. In that case we would reset commit_used to 0 just after the 3128 * insertion set it to a value greater than 0 - if the block group later 3129 * becomes with 0 used bytes, we would incorrectly skip its update. 3130 */ 3131 if (ret < 0 && ret != -ENOENT) { 3132 spin_lock(&cache->lock); 3133 cache->commit_used = old_commit_used; 3134 spin_unlock(&cache->lock); 3135 } 3136 return ret; 3137 3138 } 3139 3140 static int cache_save_setup(struct btrfs_block_group *block_group, 3141 struct btrfs_trans_handle *trans, 3142 struct btrfs_path *path) 3143 { 3144 struct btrfs_fs_info *fs_info = block_group->fs_info; 3145 struct inode *inode = NULL; 3146 struct extent_changeset *data_reserved = NULL; 3147 u64 alloc_hint = 0; 3148 int dcs = BTRFS_DC_ERROR; 3149 u64 cache_size = 0; 3150 int retries = 0; 3151 int ret = 0; 3152 3153 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3154 return 0; 3155 3156 /* 3157 * If this block group is smaller than 100 megs don't bother caching the 3158 * block group. 3159 */ 3160 if (block_group->length < (100 * SZ_1M)) { 3161 spin_lock(&block_group->lock); 3162 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3163 spin_unlock(&block_group->lock); 3164 return 0; 3165 } 3166 3167 if (TRANS_ABORTED(trans)) 3168 return 0; 3169 again: 3170 inode = lookup_free_space_inode(block_group, path); 3171 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3172 ret = PTR_ERR(inode); 3173 btrfs_release_path(path); 3174 goto out; 3175 } 3176 3177 if (IS_ERR(inode)) { 3178 BUG_ON(retries); 3179 retries++; 3180 3181 if (block_group->ro) 3182 goto out_free; 3183 3184 ret = create_free_space_inode(trans, block_group, path); 3185 if (ret) 3186 goto out_free; 3187 goto again; 3188 } 3189 3190 /* 3191 * We want to set the generation to 0, that way if anything goes wrong 3192 * from here on out we know not to trust this cache when we load up next 3193 * time. 3194 */ 3195 BTRFS_I(inode)->generation = 0; 3196 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 3197 if (ret) { 3198 /* 3199 * So theoretically we could recover from this, simply set the 3200 * super cache generation to 0 so we know to invalidate the 3201 * cache, but then we'd have to keep track of the block groups 3202 * that fail this way so we know we _have_ to reset this cache 3203 * before the next commit or risk reading stale cache. So to 3204 * limit our exposure to horrible edge cases lets just abort the 3205 * transaction, this only happens in really bad situations 3206 * anyway. 3207 */ 3208 btrfs_abort_transaction(trans, ret); 3209 goto out_put; 3210 } 3211 WARN_ON(ret); 3212 3213 /* We've already setup this transaction, go ahead and exit */ 3214 if (block_group->cache_generation == trans->transid && 3215 i_size_read(inode)) { 3216 dcs = BTRFS_DC_SETUP; 3217 goto out_put; 3218 } 3219 3220 if (i_size_read(inode) > 0) { 3221 ret = btrfs_check_trunc_cache_free_space(fs_info, 3222 &fs_info->global_block_rsv); 3223 if (ret) 3224 goto out_put; 3225 3226 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3227 if (ret) 3228 goto out_put; 3229 } 3230 3231 spin_lock(&block_group->lock); 3232 if (block_group->cached != BTRFS_CACHE_FINISHED || 3233 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3234 /* 3235 * don't bother trying to write stuff out _if_ 3236 * a) we're not cached, 3237 * b) we're with nospace_cache mount option, 3238 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3239 */ 3240 dcs = BTRFS_DC_WRITTEN; 3241 spin_unlock(&block_group->lock); 3242 goto out_put; 3243 } 3244 spin_unlock(&block_group->lock); 3245 3246 /* 3247 * We hit an ENOSPC when setting up the cache in this transaction, just 3248 * skip doing the setup, we've already cleared the cache so we're safe. 3249 */ 3250 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3251 ret = -ENOSPC; 3252 goto out_put; 3253 } 3254 3255 /* 3256 * Try to preallocate enough space based on how big the block group is. 3257 * Keep in mind this has to include any pinned space which could end up 3258 * taking up quite a bit since it's not folded into the other space 3259 * cache. 3260 */ 3261 cache_size = div_u64(block_group->length, SZ_256M); 3262 if (!cache_size) 3263 cache_size = 1; 3264 3265 cache_size *= 16; 3266 cache_size *= fs_info->sectorsize; 3267 3268 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3269 cache_size, false); 3270 if (ret) 3271 goto out_put; 3272 3273 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3274 cache_size, cache_size, 3275 &alloc_hint); 3276 /* 3277 * Our cache requires contiguous chunks so that we don't modify a bunch 3278 * of metadata or split extents when writing the cache out, which means 3279 * we can enospc if we are heavily fragmented in addition to just normal 3280 * out of space conditions. So if we hit this just skip setting up any 3281 * other block groups for this transaction, maybe we'll unpin enough 3282 * space the next time around. 3283 */ 3284 if (!ret) 3285 dcs = BTRFS_DC_SETUP; 3286 else if (ret == -ENOSPC) 3287 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3288 3289 out_put: 3290 iput(inode); 3291 out_free: 3292 btrfs_release_path(path); 3293 out: 3294 spin_lock(&block_group->lock); 3295 if (!ret && dcs == BTRFS_DC_SETUP) 3296 block_group->cache_generation = trans->transid; 3297 block_group->disk_cache_state = dcs; 3298 spin_unlock(&block_group->lock); 3299 3300 extent_changeset_free(data_reserved); 3301 return ret; 3302 } 3303 3304 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3305 { 3306 struct btrfs_fs_info *fs_info = trans->fs_info; 3307 struct btrfs_block_group *cache, *tmp; 3308 struct btrfs_transaction *cur_trans = trans->transaction; 3309 struct btrfs_path *path; 3310 3311 if (list_empty(&cur_trans->dirty_bgs) || 3312 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3313 return 0; 3314 3315 path = btrfs_alloc_path(); 3316 if (!path) 3317 return -ENOMEM; 3318 3319 /* Could add new block groups, use _safe just in case */ 3320 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3321 dirty_list) { 3322 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3323 cache_save_setup(cache, trans, path); 3324 } 3325 3326 btrfs_free_path(path); 3327 return 0; 3328 } 3329 3330 /* 3331 * Transaction commit does final block group cache writeback during a critical 3332 * section where nothing is allowed to change the FS. This is required in 3333 * order for the cache to actually match the block group, but can introduce a 3334 * lot of latency into the commit. 3335 * 3336 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3337 * There's a chance we'll have to redo some of it if the block group changes 3338 * again during the commit, but it greatly reduces the commit latency by 3339 * getting rid of the easy block groups while we're still allowing others to 3340 * join the commit. 3341 */ 3342 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3343 { 3344 struct btrfs_fs_info *fs_info = trans->fs_info; 3345 struct btrfs_block_group *cache; 3346 struct btrfs_transaction *cur_trans = trans->transaction; 3347 int ret = 0; 3348 int should_put; 3349 struct btrfs_path *path = NULL; 3350 LIST_HEAD(dirty); 3351 struct list_head *io = &cur_trans->io_bgs; 3352 int loops = 0; 3353 3354 spin_lock(&cur_trans->dirty_bgs_lock); 3355 if (list_empty(&cur_trans->dirty_bgs)) { 3356 spin_unlock(&cur_trans->dirty_bgs_lock); 3357 return 0; 3358 } 3359 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3360 spin_unlock(&cur_trans->dirty_bgs_lock); 3361 3362 again: 3363 /* Make sure all the block groups on our dirty list actually exist */ 3364 btrfs_create_pending_block_groups(trans); 3365 3366 if (!path) { 3367 path = btrfs_alloc_path(); 3368 if (!path) { 3369 ret = -ENOMEM; 3370 goto out; 3371 } 3372 } 3373 3374 /* 3375 * cache_write_mutex is here only to save us from balance or automatic 3376 * removal of empty block groups deleting this block group while we are 3377 * writing out the cache 3378 */ 3379 mutex_lock(&trans->transaction->cache_write_mutex); 3380 while (!list_empty(&dirty)) { 3381 bool drop_reserve = true; 3382 3383 cache = list_first_entry(&dirty, struct btrfs_block_group, 3384 dirty_list); 3385 /* 3386 * This can happen if something re-dirties a block group that 3387 * is already under IO. Just wait for it to finish and then do 3388 * it all again 3389 */ 3390 if (!list_empty(&cache->io_list)) { 3391 list_del_init(&cache->io_list); 3392 btrfs_wait_cache_io(trans, cache, path); 3393 btrfs_put_block_group(cache); 3394 } 3395 3396 3397 /* 3398 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3399 * it should update the cache_state. Don't delete until after 3400 * we wait. 3401 * 3402 * Since we're not running in the commit critical section 3403 * we need the dirty_bgs_lock to protect from update_block_group 3404 */ 3405 spin_lock(&cur_trans->dirty_bgs_lock); 3406 list_del_init(&cache->dirty_list); 3407 spin_unlock(&cur_trans->dirty_bgs_lock); 3408 3409 should_put = 1; 3410 3411 cache_save_setup(cache, trans, path); 3412 3413 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3414 cache->io_ctl.inode = NULL; 3415 ret = btrfs_write_out_cache(trans, cache, path); 3416 if (ret == 0 && cache->io_ctl.inode) { 3417 should_put = 0; 3418 3419 /* 3420 * The cache_write_mutex is protecting the 3421 * io_list, also refer to the definition of 3422 * btrfs_transaction::io_bgs for more details 3423 */ 3424 list_add_tail(&cache->io_list, io); 3425 } else { 3426 /* 3427 * If we failed to write the cache, the 3428 * generation will be bad and life goes on 3429 */ 3430 ret = 0; 3431 } 3432 } 3433 if (!ret) { 3434 ret = update_block_group_item(trans, path, cache); 3435 /* 3436 * Our block group might still be attached to the list 3437 * of new block groups in the transaction handle of some 3438 * other task (struct btrfs_trans_handle->new_bgs). This 3439 * means its block group item isn't yet in the extent 3440 * tree. If this happens ignore the error, as we will 3441 * try again later in the critical section of the 3442 * transaction commit. 3443 */ 3444 if (ret == -ENOENT) { 3445 ret = 0; 3446 spin_lock(&cur_trans->dirty_bgs_lock); 3447 if (list_empty(&cache->dirty_list)) { 3448 list_add_tail(&cache->dirty_list, 3449 &cur_trans->dirty_bgs); 3450 btrfs_get_block_group(cache); 3451 drop_reserve = false; 3452 } 3453 spin_unlock(&cur_trans->dirty_bgs_lock); 3454 } else if (ret) { 3455 btrfs_abort_transaction(trans, ret); 3456 } 3457 } 3458 3459 /* If it's not on the io list, we need to put the block group */ 3460 if (should_put) 3461 btrfs_put_block_group(cache); 3462 if (drop_reserve) 3463 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3464 /* 3465 * Avoid blocking other tasks for too long. It might even save 3466 * us from writing caches for block groups that are going to be 3467 * removed. 3468 */ 3469 mutex_unlock(&trans->transaction->cache_write_mutex); 3470 if (ret) 3471 goto out; 3472 mutex_lock(&trans->transaction->cache_write_mutex); 3473 } 3474 mutex_unlock(&trans->transaction->cache_write_mutex); 3475 3476 /* 3477 * Go through delayed refs for all the stuff we've just kicked off 3478 * and then loop back (just once) 3479 */ 3480 if (!ret) 3481 ret = btrfs_run_delayed_refs(trans, 0); 3482 if (!ret && loops == 0) { 3483 loops++; 3484 spin_lock(&cur_trans->dirty_bgs_lock); 3485 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3486 /* 3487 * dirty_bgs_lock protects us from concurrent block group 3488 * deletes too (not just cache_write_mutex). 3489 */ 3490 if (!list_empty(&dirty)) { 3491 spin_unlock(&cur_trans->dirty_bgs_lock); 3492 goto again; 3493 } 3494 spin_unlock(&cur_trans->dirty_bgs_lock); 3495 } 3496 out: 3497 if (ret < 0) { 3498 spin_lock(&cur_trans->dirty_bgs_lock); 3499 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3500 spin_unlock(&cur_trans->dirty_bgs_lock); 3501 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3502 } 3503 3504 btrfs_free_path(path); 3505 return ret; 3506 } 3507 3508 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3509 { 3510 struct btrfs_fs_info *fs_info = trans->fs_info; 3511 struct btrfs_block_group *cache; 3512 struct btrfs_transaction *cur_trans = trans->transaction; 3513 int ret = 0; 3514 int should_put; 3515 struct btrfs_path *path; 3516 struct list_head *io = &cur_trans->io_bgs; 3517 3518 path = btrfs_alloc_path(); 3519 if (!path) 3520 return -ENOMEM; 3521 3522 /* 3523 * Even though we are in the critical section of the transaction commit, 3524 * we can still have concurrent tasks adding elements to this 3525 * transaction's list of dirty block groups. These tasks correspond to 3526 * endio free space workers started when writeback finishes for a 3527 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3528 * allocate new block groups as a result of COWing nodes of the root 3529 * tree when updating the free space inode. The writeback for the space 3530 * caches is triggered by an earlier call to 3531 * btrfs_start_dirty_block_groups() and iterations of the following 3532 * loop. 3533 * Also we want to do the cache_save_setup first and then run the 3534 * delayed refs to make sure we have the best chance at doing this all 3535 * in one shot. 3536 */ 3537 spin_lock(&cur_trans->dirty_bgs_lock); 3538 while (!list_empty(&cur_trans->dirty_bgs)) { 3539 cache = list_first_entry(&cur_trans->dirty_bgs, 3540 struct btrfs_block_group, 3541 dirty_list); 3542 3543 /* 3544 * This can happen if cache_save_setup re-dirties a block group 3545 * that is already under IO. Just wait for it to finish and 3546 * then do it all again 3547 */ 3548 if (!list_empty(&cache->io_list)) { 3549 spin_unlock(&cur_trans->dirty_bgs_lock); 3550 list_del_init(&cache->io_list); 3551 btrfs_wait_cache_io(trans, cache, path); 3552 btrfs_put_block_group(cache); 3553 spin_lock(&cur_trans->dirty_bgs_lock); 3554 } 3555 3556 /* 3557 * Don't remove from the dirty list until after we've waited on 3558 * any pending IO 3559 */ 3560 list_del_init(&cache->dirty_list); 3561 spin_unlock(&cur_trans->dirty_bgs_lock); 3562 should_put = 1; 3563 3564 cache_save_setup(cache, trans, path); 3565 3566 if (!ret) 3567 ret = btrfs_run_delayed_refs(trans, U64_MAX); 3568 3569 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3570 cache->io_ctl.inode = NULL; 3571 ret = btrfs_write_out_cache(trans, cache, path); 3572 if (ret == 0 && cache->io_ctl.inode) { 3573 should_put = 0; 3574 list_add_tail(&cache->io_list, io); 3575 } else { 3576 /* 3577 * If we failed to write the cache, the 3578 * generation will be bad and life goes on 3579 */ 3580 ret = 0; 3581 } 3582 } 3583 if (!ret) { 3584 ret = update_block_group_item(trans, path, cache); 3585 /* 3586 * One of the free space endio workers might have 3587 * created a new block group while updating a free space 3588 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3589 * and hasn't released its transaction handle yet, in 3590 * which case the new block group is still attached to 3591 * its transaction handle and its creation has not 3592 * finished yet (no block group item in the extent tree 3593 * yet, etc). If this is the case, wait for all free 3594 * space endio workers to finish and retry. This is a 3595 * very rare case so no need for a more efficient and 3596 * complex approach. 3597 */ 3598 if (ret == -ENOENT) { 3599 wait_event(cur_trans->writer_wait, 3600 atomic_read(&cur_trans->num_writers) == 1); 3601 ret = update_block_group_item(trans, path, cache); 3602 } 3603 if (ret) 3604 btrfs_abort_transaction(trans, ret); 3605 } 3606 3607 /* If its not on the io list, we need to put the block group */ 3608 if (should_put) 3609 btrfs_put_block_group(cache); 3610 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3611 spin_lock(&cur_trans->dirty_bgs_lock); 3612 } 3613 spin_unlock(&cur_trans->dirty_bgs_lock); 3614 3615 /* 3616 * Refer to the definition of io_bgs member for details why it's safe 3617 * to use it without any locking 3618 */ 3619 while (!list_empty(io)) { 3620 cache = list_first_entry(io, struct btrfs_block_group, 3621 io_list); 3622 list_del_init(&cache->io_list); 3623 btrfs_wait_cache_io(trans, cache, path); 3624 btrfs_put_block_group(cache); 3625 } 3626 3627 btrfs_free_path(path); 3628 return ret; 3629 } 3630 3631 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3632 u64 bytenr, u64 num_bytes, bool alloc) 3633 { 3634 struct btrfs_fs_info *info = trans->fs_info; 3635 struct btrfs_space_info *space_info; 3636 struct btrfs_block_group *cache; 3637 u64 old_val; 3638 bool reclaim = false; 3639 bool bg_already_dirty = true; 3640 int factor; 3641 3642 /* Block accounting for super block */ 3643 spin_lock(&info->delalloc_root_lock); 3644 old_val = btrfs_super_bytes_used(info->super_copy); 3645 if (alloc) 3646 old_val += num_bytes; 3647 else 3648 old_val -= num_bytes; 3649 btrfs_set_super_bytes_used(info->super_copy, old_val); 3650 spin_unlock(&info->delalloc_root_lock); 3651 3652 cache = btrfs_lookup_block_group(info, bytenr); 3653 if (!cache) 3654 return -ENOENT; 3655 3656 /* An extent can not span multiple block groups. */ 3657 ASSERT(bytenr + num_bytes <= cache->start + cache->length); 3658 3659 space_info = cache->space_info; 3660 factor = btrfs_bg_type_to_factor(cache->flags); 3661 3662 /* 3663 * If this block group has free space cache written out, we need to make 3664 * sure to load it if we are removing space. This is because we need 3665 * the unpinning stage to actually add the space back to the block group, 3666 * otherwise we will leak space. 3667 */ 3668 if (!alloc && !btrfs_block_group_done(cache)) 3669 btrfs_cache_block_group(cache, true); 3670 3671 spin_lock(&space_info->lock); 3672 spin_lock(&cache->lock); 3673 3674 if (btrfs_test_opt(info, SPACE_CACHE) && 3675 cache->disk_cache_state < BTRFS_DC_CLEAR) 3676 cache->disk_cache_state = BTRFS_DC_CLEAR; 3677 3678 old_val = cache->used; 3679 if (alloc) { 3680 old_val += num_bytes; 3681 cache->used = old_val; 3682 cache->reserved -= num_bytes; 3683 cache->reclaim_mark = 0; 3684 space_info->bytes_reserved -= num_bytes; 3685 space_info->bytes_used += num_bytes; 3686 space_info->disk_used += num_bytes * factor; 3687 if (READ_ONCE(space_info->periodic_reclaim)) 3688 btrfs_space_info_update_reclaimable(space_info, -num_bytes); 3689 spin_unlock(&cache->lock); 3690 spin_unlock(&space_info->lock); 3691 } else { 3692 old_val -= num_bytes; 3693 cache->used = old_val; 3694 cache->pinned += num_bytes; 3695 btrfs_space_info_update_bytes_pinned(space_info, num_bytes); 3696 space_info->bytes_used -= num_bytes; 3697 space_info->disk_used -= num_bytes * factor; 3698 if (READ_ONCE(space_info->periodic_reclaim)) 3699 btrfs_space_info_update_reclaimable(space_info, num_bytes); 3700 else 3701 reclaim = should_reclaim_block_group(cache, num_bytes); 3702 3703 spin_unlock(&cache->lock); 3704 spin_unlock(&space_info->lock); 3705 3706 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 3707 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 3708 } 3709 3710 spin_lock(&trans->transaction->dirty_bgs_lock); 3711 if (list_empty(&cache->dirty_list)) { 3712 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs); 3713 bg_already_dirty = false; 3714 btrfs_get_block_group(cache); 3715 } 3716 spin_unlock(&trans->transaction->dirty_bgs_lock); 3717 3718 /* 3719 * No longer have used bytes in this block group, queue it for deletion. 3720 * We do this after adding the block group to the dirty list to avoid 3721 * races between cleaner kthread and space cache writeout. 3722 */ 3723 if (!alloc && old_val == 0) { 3724 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3725 btrfs_mark_bg_unused(cache); 3726 } else if (!alloc && reclaim) { 3727 btrfs_mark_bg_to_reclaim(cache); 3728 } 3729 3730 btrfs_put_block_group(cache); 3731 3732 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3733 if (!bg_already_dirty) 3734 btrfs_inc_delayed_refs_rsv_bg_updates(info); 3735 3736 return 0; 3737 } 3738 3739 /* 3740 * Update the block_group and space info counters. 3741 * 3742 * @cache: The cache we are manipulating 3743 * @ram_bytes: The number of bytes of file content, and will be same to 3744 * @num_bytes except for the compress path. 3745 * @num_bytes: The number of bytes in question 3746 * @delalloc: The blocks are allocated for the delalloc write 3747 * 3748 * This is called by the allocator when it reserves space. If this is a 3749 * reservation and the block group has become read only we cannot make the 3750 * reservation and return -EAGAIN, otherwise this function always succeeds. 3751 */ 3752 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3753 u64 ram_bytes, u64 num_bytes, int delalloc, 3754 bool force_wrong_size_class) 3755 { 3756 struct btrfs_space_info *space_info = cache->space_info; 3757 enum btrfs_block_group_size_class size_class; 3758 int ret = 0; 3759 3760 spin_lock(&space_info->lock); 3761 spin_lock(&cache->lock); 3762 if (cache->ro) { 3763 ret = -EAGAIN; 3764 goto out; 3765 } 3766 3767 if (btrfs_block_group_should_use_size_class(cache)) { 3768 size_class = btrfs_calc_block_group_size_class(num_bytes); 3769 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3770 if (ret) 3771 goto out; 3772 } 3773 cache->reserved += num_bytes; 3774 space_info->bytes_reserved += num_bytes; 3775 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3776 space_info->flags, num_bytes, 1); 3777 btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes); 3778 if (delalloc) 3779 cache->delalloc_bytes += num_bytes; 3780 3781 /* 3782 * Compression can use less space than we reserved, so wake tickets if 3783 * that happens. 3784 */ 3785 if (num_bytes < ram_bytes) 3786 btrfs_try_granting_tickets(cache->fs_info, space_info); 3787 out: 3788 spin_unlock(&cache->lock); 3789 spin_unlock(&space_info->lock); 3790 return ret; 3791 } 3792 3793 /* 3794 * Update the block_group and space info counters. 3795 * 3796 * @cache: The cache we are manipulating 3797 * @num_bytes: The number of bytes in question 3798 * @delalloc: The blocks are allocated for the delalloc write 3799 * 3800 * This is called by somebody who is freeing space that was never actually used 3801 * on disk. For example if you reserve some space for a new leaf in transaction 3802 * A and before transaction A commits you free that leaf, you call this with 3803 * reserve set to 0 in order to clear the reservation. 3804 */ 3805 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3806 u64 num_bytes, int delalloc) 3807 { 3808 struct btrfs_space_info *space_info = cache->space_info; 3809 3810 spin_lock(&space_info->lock); 3811 spin_lock(&cache->lock); 3812 if (cache->ro) 3813 space_info->bytes_readonly += num_bytes; 3814 else if (btrfs_is_zoned(cache->fs_info)) 3815 space_info->bytes_zone_unusable += num_bytes; 3816 cache->reserved -= num_bytes; 3817 space_info->bytes_reserved -= num_bytes; 3818 space_info->max_extent_size = 0; 3819 3820 if (delalloc) 3821 cache->delalloc_bytes -= num_bytes; 3822 spin_unlock(&cache->lock); 3823 3824 btrfs_try_granting_tickets(cache->fs_info, space_info); 3825 spin_unlock(&space_info->lock); 3826 } 3827 3828 static void force_metadata_allocation(struct btrfs_fs_info *info) 3829 { 3830 struct list_head *head = &info->space_info; 3831 struct btrfs_space_info *found; 3832 3833 list_for_each_entry(found, head, list) { 3834 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3835 found->force_alloc = CHUNK_ALLOC_FORCE; 3836 } 3837 } 3838 3839 static int should_alloc_chunk(const struct btrfs_fs_info *fs_info, 3840 const struct btrfs_space_info *sinfo, int force) 3841 { 3842 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3843 u64 thresh; 3844 3845 if (force == CHUNK_ALLOC_FORCE) 3846 return 1; 3847 3848 /* 3849 * in limited mode, we want to have some free space up to 3850 * about 1% of the FS size. 3851 */ 3852 if (force == CHUNK_ALLOC_LIMITED) { 3853 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3854 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3855 3856 if (sinfo->total_bytes - bytes_used < thresh) 3857 return 1; 3858 } 3859 3860 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3861 return 0; 3862 return 1; 3863 } 3864 3865 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3866 { 3867 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3868 3869 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3870 } 3871 3872 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3873 { 3874 struct btrfs_block_group *bg; 3875 int ret; 3876 3877 /* 3878 * Check if we have enough space in the system space info because we 3879 * will need to update device items in the chunk btree and insert a new 3880 * chunk item in the chunk btree as well. This will allocate a new 3881 * system block group if needed. 3882 */ 3883 check_system_chunk(trans, flags); 3884 3885 bg = btrfs_create_chunk(trans, flags); 3886 if (IS_ERR(bg)) { 3887 ret = PTR_ERR(bg); 3888 goto out; 3889 } 3890 3891 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3892 /* 3893 * Normally we are not expected to fail with -ENOSPC here, since we have 3894 * previously reserved space in the system space_info and allocated one 3895 * new system chunk if necessary. However there are three exceptions: 3896 * 3897 * 1) We may have enough free space in the system space_info but all the 3898 * existing system block groups have a profile which can not be used 3899 * for extent allocation. 3900 * 3901 * This happens when mounting in degraded mode. For example we have a 3902 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3903 * using the other device in degraded mode. If we then allocate a chunk, 3904 * we may have enough free space in the existing system space_info, but 3905 * none of the block groups can be used for extent allocation since they 3906 * have a RAID1 profile, and because we are in degraded mode with a 3907 * single device, we are forced to allocate a new system chunk with a 3908 * SINGLE profile. Making check_system_chunk() iterate over all system 3909 * block groups and check if they have a usable profile and enough space 3910 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3911 * try again after forcing allocation of a new system chunk. Like this 3912 * we avoid paying the cost of that search in normal circumstances, when 3913 * we were not mounted in degraded mode; 3914 * 3915 * 2) We had enough free space info the system space_info, and one suitable 3916 * block group to allocate from when we called check_system_chunk() 3917 * above. However right after we called it, the only system block group 3918 * with enough free space got turned into RO mode by a running scrub, 3919 * and in this case we have to allocate a new one and retry. We only 3920 * need do this allocate and retry once, since we have a transaction 3921 * handle and scrub uses the commit root to search for block groups; 3922 * 3923 * 3) We had one system block group with enough free space when we called 3924 * check_system_chunk(), but after that, right before we tried to 3925 * allocate the last extent buffer we needed, a discard operation came 3926 * in and it temporarily removed the last free space entry from the 3927 * block group (discard removes a free space entry, discards it, and 3928 * then adds back the entry to the block group cache). 3929 */ 3930 if (ret == -ENOSPC) { 3931 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3932 struct btrfs_block_group *sys_bg; 3933 3934 sys_bg = btrfs_create_chunk(trans, sys_flags); 3935 if (IS_ERR(sys_bg)) { 3936 ret = PTR_ERR(sys_bg); 3937 btrfs_abort_transaction(trans, ret); 3938 goto out; 3939 } 3940 3941 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3942 if (ret) { 3943 btrfs_abort_transaction(trans, ret); 3944 goto out; 3945 } 3946 3947 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3948 if (ret) { 3949 btrfs_abort_transaction(trans, ret); 3950 goto out; 3951 } 3952 } else if (ret) { 3953 btrfs_abort_transaction(trans, ret); 3954 goto out; 3955 } 3956 out: 3957 btrfs_trans_release_chunk_metadata(trans); 3958 3959 if (ret) 3960 return ERR_PTR(ret); 3961 3962 btrfs_get_block_group(bg); 3963 return bg; 3964 } 3965 3966 /* 3967 * Chunk allocation is done in 2 phases: 3968 * 3969 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3970 * the chunk, the chunk mapping, create its block group and add the items 3971 * that belong in the chunk btree to it - more specifically, we need to 3972 * update device items in the chunk btree and add a new chunk item to it. 3973 * 3974 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3975 * group item to the extent btree and the device extent items to the devices 3976 * btree. 3977 * 3978 * This is done to prevent deadlocks. For example when COWing a node from the 3979 * extent btree we are holding a write lock on the node's parent and if we 3980 * trigger chunk allocation and attempted to insert the new block group item 3981 * in the extent btree right way, we could deadlock because the path for the 3982 * insertion can include that parent node. At first glance it seems impossible 3983 * to trigger chunk allocation after starting a transaction since tasks should 3984 * reserve enough transaction units (metadata space), however while that is true 3985 * most of the time, chunk allocation may still be triggered for several reasons: 3986 * 3987 * 1) When reserving metadata, we check if there is enough free space in the 3988 * metadata space_info and therefore don't trigger allocation of a new chunk. 3989 * However later when the task actually tries to COW an extent buffer from 3990 * the extent btree or from the device btree for example, it is forced to 3991 * allocate a new block group (chunk) because the only one that had enough 3992 * free space was just turned to RO mode by a running scrub for example (or 3993 * device replace, block group reclaim thread, etc), so we can not use it 3994 * for allocating an extent and end up being forced to allocate a new one; 3995 * 3996 * 2) Because we only check that the metadata space_info has enough free bytes, 3997 * we end up not allocating a new metadata chunk in that case. However if 3998 * the filesystem was mounted in degraded mode, none of the existing block 3999 * groups might be suitable for extent allocation due to their incompatible 4000 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 4001 * use a RAID1 profile, in degraded mode using a single device). In this case 4002 * when the task attempts to COW some extent buffer of the extent btree for 4003 * example, it will trigger allocation of a new metadata block group with a 4004 * suitable profile (SINGLE profile in the example of the degraded mount of 4005 * the RAID1 filesystem); 4006 * 4007 * 3) The task has reserved enough transaction units / metadata space, but when 4008 * it attempts to COW an extent buffer from the extent or device btree for 4009 * example, it does not find any free extent in any metadata block group, 4010 * therefore forced to try to allocate a new metadata block group. 4011 * This is because some other task allocated all available extents in the 4012 * meanwhile - this typically happens with tasks that don't reserve space 4013 * properly, either intentionally or as a bug. One example where this is 4014 * done intentionally is fsync, as it does not reserve any transaction units 4015 * and ends up allocating a variable number of metadata extents for log 4016 * tree extent buffers; 4017 * 4018 * 4) The task has reserved enough transaction units / metadata space, but right 4019 * before it tries to allocate the last extent buffer it needs, a discard 4020 * operation comes in and, temporarily, removes the last free space entry from 4021 * the only metadata block group that had free space (discard starts by 4022 * removing a free space entry from a block group, then does the discard 4023 * operation and, once it's done, it adds back the free space entry to the 4024 * block group). 4025 * 4026 * We also need this 2 phases setup when adding a device to a filesystem with 4027 * a seed device - we must create new metadata and system chunks without adding 4028 * any of the block group items to the chunk, extent and device btrees. If we 4029 * did not do it this way, we would get ENOSPC when attempting to update those 4030 * btrees, since all the chunks from the seed device are read-only. 4031 * 4032 * Phase 1 does the updates and insertions to the chunk btree because if we had 4033 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 4034 * parallel, we risk having too many system chunks allocated by many tasks if 4035 * many tasks reach phase 1 without the previous ones completing phase 2. In the 4036 * extreme case this leads to exhaustion of the system chunk array in the 4037 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 4038 * and with RAID filesystems (so we have more device items in the chunk btree). 4039 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 4040 * the system chunk array due to concurrent allocations") provides more details. 4041 * 4042 * Allocation of system chunks does not happen through this function. A task that 4043 * needs to update the chunk btree (the only btree that uses system chunks), must 4044 * preallocate chunk space by calling either check_system_chunk() or 4045 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 4046 * metadata chunk or when removing a chunk, while the later is used before doing 4047 * a modification to the chunk btree - use cases for the later are adding, 4048 * removing and resizing a device as well as relocation of a system chunk. 4049 * See the comment below for more details. 4050 * 4051 * The reservation of system space, done through check_system_chunk(), as well 4052 * as all the updates and insertions into the chunk btree must be done while 4053 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4054 * an extent buffer from the chunks btree we never trigger allocation of a new 4055 * system chunk, which would result in a deadlock (trying to lock twice an 4056 * extent buffer of the chunk btree, first time before triggering the chunk 4057 * allocation and the second time during chunk allocation while attempting to 4058 * update the chunks btree). The system chunk array is also updated while holding 4059 * that mutex. The same logic applies to removing chunks - we must reserve system 4060 * space, update the chunk btree and the system chunk array in the superblock 4061 * while holding fs_info->chunk_mutex. 4062 * 4063 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4064 * 4065 * If @force is CHUNK_ALLOC_FORCE: 4066 * - return 1 if it successfully allocates a chunk, 4067 * - return errors including -ENOSPC otherwise. 4068 * If @force is NOT CHUNK_ALLOC_FORCE: 4069 * - return 0 if it doesn't need to allocate a new chunk, 4070 * - return 1 if it successfully allocates a chunk, 4071 * - return errors including -ENOSPC otherwise. 4072 */ 4073 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 4074 enum btrfs_chunk_alloc_enum force) 4075 { 4076 struct btrfs_fs_info *fs_info = trans->fs_info; 4077 struct btrfs_space_info *space_info; 4078 struct btrfs_block_group *ret_bg; 4079 bool wait_for_alloc = false; 4080 bool should_alloc = false; 4081 bool from_extent_allocation = false; 4082 int ret = 0; 4083 4084 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4085 from_extent_allocation = true; 4086 force = CHUNK_ALLOC_FORCE; 4087 } 4088 4089 /* Don't re-enter if we're already allocating a chunk */ 4090 if (trans->allocating_chunk) 4091 return -ENOSPC; 4092 /* 4093 * Allocation of system chunks can not happen through this path, as we 4094 * could end up in a deadlock if we are allocating a data or metadata 4095 * chunk and there is another task modifying the chunk btree. 4096 * 4097 * This is because while we are holding the chunk mutex, we will attempt 4098 * to add the new chunk item to the chunk btree or update an existing 4099 * device item in the chunk btree, while the other task that is modifying 4100 * the chunk btree is attempting to COW an extent buffer while holding a 4101 * lock on it and on its parent - if the COW operation triggers a system 4102 * chunk allocation, then we can deadlock because we are holding the 4103 * chunk mutex and we may need to access that extent buffer or its parent 4104 * in order to add the chunk item or update a device item. 4105 * 4106 * Tasks that want to modify the chunk tree should reserve system space 4107 * before updating the chunk btree, by calling either 4108 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4109 * It's possible that after a task reserves the space, it still ends up 4110 * here - this happens in the cases described above at do_chunk_alloc(). 4111 * The task will have to either retry or fail. 4112 */ 4113 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4114 return -ENOSPC; 4115 4116 space_info = btrfs_find_space_info(fs_info, flags); 4117 ASSERT(space_info); 4118 4119 do { 4120 spin_lock(&space_info->lock); 4121 if (force < space_info->force_alloc) 4122 force = space_info->force_alloc; 4123 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4124 if (space_info->full) { 4125 /* No more free physical space */ 4126 if (should_alloc) 4127 ret = -ENOSPC; 4128 else 4129 ret = 0; 4130 spin_unlock(&space_info->lock); 4131 return ret; 4132 } else if (!should_alloc) { 4133 spin_unlock(&space_info->lock); 4134 return 0; 4135 } else if (space_info->chunk_alloc) { 4136 /* 4137 * Someone is already allocating, so we need to block 4138 * until this someone is finished and then loop to 4139 * recheck if we should continue with our allocation 4140 * attempt. 4141 */ 4142 wait_for_alloc = true; 4143 force = CHUNK_ALLOC_NO_FORCE; 4144 spin_unlock(&space_info->lock); 4145 mutex_lock(&fs_info->chunk_mutex); 4146 mutex_unlock(&fs_info->chunk_mutex); 4147 } else { 4148 /* Proceed with allocation */ 4149 space_info->chunk_alloc = 1; 4150 wait_for_alloc = false; 4151 spin_unlock(&space_info->lock); 4152 } 4153 4154 cond_resched(); 4155 } while (wait_for_alloc); 4156 4157 mutex_lock(&fs_info->chunk_mutex); 4158 trans->allocating_chunk = true; 4159 4160 /* 4161 * If we have mixed data/metadata chunks we want to make sure we keep 4162 * allocating mixed chunks instead of individual chunks. 4163 */ 4164 if (btrfs_mixed_space_info(space_info)) 4165 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4166 4167 /* 4168 * if we're doing a data chunk, go ahead and make sure that 4169 * we keep a reasonable number of metadata chunks allocated in the 4170 * FS as well. 4171 */ 4172 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4173 fs_info->data_chunk_allocations++; 4174 if (!(fs_info->data_chunk_allocations % 4175 fs_info->metadata_ratio)) 4176 force_metadata_allocation(fs_info); 4177 } 4178 4179 ret_bg = do_chunk_alloc(trans, flags); 4180 trans->allocating_chunk = false; 4181 4182 if (IS_ERR(ret_bg)) { 4183 ret = PTR_ERR(ret_bg); 4184 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4185 /* 4186 * New block group is likely to be used soon. Try to activate 4187 * it now. Failure is OK for now. 4188 */ 4189 btrfs_zone_activate(ret_bg); 4190 } 4191 4192 if (!ret) 4193 btrfs_put_block_group(ret_bg); 4194 4195 spin_lock(&space_info->lock); 4196 if (ret < 0) { 4197 if (ret == -ENOSPC) 4198 space_info->full = 1; 4199 else 4200 goto out; 4201 } else { 4202 ret = 1; 4203 space_info->max_extent_size = 0; 4204 } 4205 4206 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4207 out: 4208 space_info->chunk_alloc = 0; 4209 spin_unlock(&space_info->lock); 4210 mutex_unlock(&fs_info->chunk_mutex); 4211 4212 return ret; 4213 } 4214 4215 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type) 4216 { 4217 u64 num_dev; 4218 4219 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4220 if (!num_dev) 4221 num_dev = fs_info->fs_devices->rw_devices; 4222 4223 return num_dev; 4224 } 4225 4226 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4227 u64 bytes, 4228 u64 type) 4229 { 4230 struct btrfs_fs_info *fs_info = trans->fs_info; 4231 struct btrfs_space_info *info; 4232 u64 left; 4233 int ret = 0; 4234 4235 /* 4236 * Needed because we can end up allocating a system chunk and for an 4237 * atomic and race free space reservation in the chunk block reserve. 4238 */ 4239 lockdep_assert_held(&fs_info->chunk_mutex); 4240 4241 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4242 spin_lock(&info->lock); 4243 left = info->total_bytes - btrfs_space_info_used(info, true); 4244 spin_unlock(&info->lock); 4245 4246 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4247 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4248 left, bytes, type); 4249 btrfs_dump_space_info(fs_info, info, 0, 0); 4250 } 4251 4252 if (left < bytes) { 4253 u64 flags = btrfs_system_alloc_profile(fs_info); 4254 struct btrfs_block_group *bg; 4255 4256 /* 4257 * Ignore failure to create system chunk. We might end up not 4258 * needing it, as we might not need to COW all nodes/leafs from 4259 * the paths we visit in the chunk tree (they were already COWed 4260 * or created in the current transaction for example). 4261 */ 4262 bg = btrfs_create_chunk(trans, flags); 4263 if (IS_ERR(bg)) { 4264 ret = PTR_ERR(bg); 4265 } else { 4266 /* 4267 * We have a new chunk. We also need to activate it for 4268 * zoned filesystem. 4269 */ 4270 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4271 if (ret < 0) 4272 return; 4273 4274 /* 4275 * If we fail to add the chunk item here, we end up 4276 * trying again at phase 2 of chunk allocation, at 4277 * btrfs_create_pending_block_groups(). So ignore 4278 * any error here. An ENOSPC here could happen, due to 4279 * the cases described at do_chunk_alloc() - the system 4280 * block group we just created was just turned into RO 4281 * mode by a scrub for example, or a running discard 4282 * temporarily removed its free space entries, etc. 4283 */ 4284 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4285 } 4286 } 4287 4288 if (!ret) { 4289 ret = btrfs_block_rsv_add(fs_info, 4290 &fs_info->chunk_block_rsv, 4291 bytes, BTRFS_RESERVE_NO_FLUSH); 4292 if (!ret) 4293 trans->chunk_bytes_reserved += bytes; 4294 } 4295 } 4296 4297 /* 4298 * Reserve space in the system space for allocating or removing a chunk. 4299 * The caller must be holding fs_info->chunk_mutex. 4300 */ 4301 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4302 { 4303 struct btrfs_fs_info *fs_info = trans->fs_info; 4304 const u64 num_devs = get_profile_num_devs(fs_info, type); 4305 u64 bytes; 4306 4307 /* num_devs device items to update and 1 chunk item to add or remove. */ 4308 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4309 btrfs_calc_insert_metadata_size(fs_info, 1); 4310 4311 reserve_chunk_space(trans, bytes, type); 4312 } 4313 4314 /* 4315 * Reserve space in the system space, if needed, for doing a modification to the 4316 * chunk btree. 4317 * 4318 * @trans: A transaction handle. 4319 * @is_item_insertion: Indicate if the modification is for inserting a new item 4320 * in the chunk btree or if it's for the deletion or update 4321 * of an existing item. 4322 * 4323 * This is used in a context where we need to update the chunk btree outside 4324 * block group allocation and removal, to avoid a deadlock with a concurrent 4325 * task that is allocating a metadata or data block group and therefore needs to 4326 * update the chunk btree while holding the chunk mutex. After the update to the 4327 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4328 * 4329 */ 4330 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4331 bool is_item_insertion) 4332 { 4333 struct btrfs_fs_info *fs_info = trans->fs_info; 4334 u64 bytes; 4335 4336 if (is_item_insertion) 4337 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4338 else 4339 bytes = btrfs_calc_metadata_size(fs_info, 1); 4340 4341 mutex_lock(&fs_info->chunk_mutex); 4342 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4343 mutex_unlock(&fs_info->chunk_mutex); 4344 } 4345 4346 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4347 { 4348 struct btrfs_block_group *block_group; 4349 4350 block_group = btrfs_lookup_first_block_group(info, 0); 4351 while (block_group) { 4352 btrfs_wait_block_group_cache_done(block_group); 4353 spin_lock(&block_group->lock); 4354 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4355 &block_group->runtime_flags)) { 4356 struct btrfs_inode *inode = block_group->inode; 4357 4358 block_group->inode = NULL; 4359 spin_unlock(&block_group->lock); 4360 4361 ASSERT(block_group->io_ctl.inode == NULL); 4362 iput(&inode->vfs_inode); 4363 } else { 4364 spin_unlock(&block_group->lock); 4365 } 4366 block_group = btrfs_next_block_group(block_group); 4367 } 4368 } 4369 4370 /* 4371 * Must be called only after stopping all workers, since we could have block 4372 * group caching kthreads running, and therefore they could race with us if we 4373 * freed the block groups before stopping them. 4374 */ 4375 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4376 { 4377 struct btrfs_block_group *block_group; 4378 struct btrfs_space_info *space_info; 4379 struct btrfs_caching_control *caching_ctl; 4380 struct rb_node *n; 4381 4382 if (btrfs_is_zoned(info)) { 4383 if (info->active_meta_bg) { 4384 btrfs_put_block_group(info->active_meta_bg); 4385 info->active_meta_bg = NULL; 4386 } 4387 if (info->active_system_bg) { 4388 btrfs_put_block_group(info->active_system_bg); 4389 info->active_system_bg = NULL; 4390 } 4391 } 4392 4393 write_lock(&info->block_group_cache_lock); 4394 while (!list_empty(&info->caching_block_groups)) { 4395 caching_ctl = list_entry(info->caching_block_groups.next, 4396 struct btrfs_caching_control, list); 4397 list_del(&caching_ctl->list); 4398 btrfs_put_caching_control(caching_ctl); 4399 } 4400 write_unlock(&info->block_group_cache_lock); 4401 4402 spin_lock(&info->unused_bgs_lock); 4403 while (!list_empty(&info->unused_bgs)) { 4404 block_group = list_first_entry(&info->unused_bgs, 4405 struct btrfs_block_group, 4406 bg_list); 4407 list_del_init(&block_group->bg_list); 4408 btrfs_put_block_group(block_group); 4409 } 4410 4411 while (!list_empty(&info->reclaim_bgs)) { 4412 block_group = list_first_entry(&info->reclaim_bgs, 4413 struct btrfs_block_group, 4414 bg_list); 4415 list_del_init(&block_group->bg_list); 4416 btrfs_put_block_group(block_group); 4417 } 4418 spin_unlock(&info->unused_bgs_lock); 4419 4420 spin_lock(&info->zone_active_bgs_lock); 4421 while (!list_empty(&info->zone_active_bgs)) { 4422 block_group = list_first_entry(&info->zone_active_bgs, 4423 struct btrfs_block_group, 4424 active_bg_list); 4425 list_del_init(&block_group->active_bg_list); 4426 btrfs_put_block_group(block_group); 4427 } 4428 spin_unlock(&info->zone_active_bgs_lock); 4429 4430 write_lock(&info->block_group_cache_lock); 4431 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4432 block_group = rb_entry(n, struct btrfs_block_group, 4433 cache_node); 4434 rb_erase_cached(&block_group->cache_node, 4435 &info->block_group_cache_tree); 4436 RB_CLEAR_NODE(&block_group->cache_node); 4437 write_unlock(&info->block_group_cache_lock); 4438 4439 down_write(&block_group->space_info->groups_sem); 4440 list_del(&block_group->list); 4441 up_write(&block_group->space_info->groups_sem); 4442 4443 /* 4444 * We haven't cached this block group, which means we could 4445 * possibly have excluded extents on this block group. 4446 */ 4447 if (block_group->cached == BTRFS_CACHE_NO || 4448 block_group->cached == BTRFS_CACHE_ERROR) 4449 btrfs_free_excluded_extents(block_group); 4450 4451 btrfs_remove_free_space_cache(block_group); 4452 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4453 ASSERT(list_empty(&block_group->dirty_list)); 4454 ASSERT(list_empty(&block_group->io_list)); 4455 ASSERT(list_empty(&block_group->bg_list)); 4456 ASSERT(refcount_read(&block_group->refs) == 1); 4457 ASSERT(block_group->swap_extents == 0); 4458 btrfs_put_block_group(block_group); 4459 4460 write_lock(&info->block_group_cache_lock); 4461 } 4462 write_unlock(&info->block_group_cache_lock); 4463 4464 btrfs_release_global_block_rsv(info); 4465 4466 while (!list_empty(&info->space_info)) { 4467 space_info = list_entry(info->space_info.next, 4468 struct btrfs_space_info, 4469 list); 4470 4471 /* 4472 * Do not hide this behind enospc_debug, this is actually 4473 * important and indicates a real bug if this happens. 4474 */ 4475 if (WARN_ON(space_info->bytes_pinned > 0 || 4476 space_info->bytes_may_use > 0)) 4477 btrfs_dump_space_info(info, space_info, 0, 0); 4478 4479 /* 4480 * If there was a failure to cleanup a log tree, very likely due 4481 * to an IO failure on a writeback attempt of one or more of its 4482 * extent buffers, we could not do proper (and cheap) unaccounting 4483 * of their reserved space, so don't warn on bytes_reserved > 0 in 4484 * that case. 4485 */ 4486 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4487 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4488 if (WARN_ON(space_info->bytes_reserved > 0)) 4489 btrfs_dump_space_info(info, space_info, 0, 0); 4490 } 4491 4492 WARN_ON(space_info->reclaim_size > 0); 4493 list_del(&space_info->list); 4494 btrfs_sysfs_remove_space_info(space_info); 4495 } 4496 return 0; 4497 } 4498 4499 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4500 { 4501 atomic_inc(&cache->frozen); 4502 } 4503 4504 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4505 { 4506 struct btrfs_fs_info *fs_info = block_group->fs_info; 4507 bool cleanup; 4508 4509 spin_lock(&block_group->lock); 4510 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4511 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4512 spin_unlock(&block_group->lock); 4513 4514 if (cleanup) { 4515 struct btrfs_chunk_map *map; 4516 4517 map = btrfs_find_chunk_map(fs_info, block_group->start, 1); 4518 /* Logic error, can't happen. */ 4519 ASSERT(map); 4520 4521 btrfs_remove_chunk_map(fs_info, map); 4522 4523 /* Once for our lookup reference. */ 4524 btrfs_free_chunk_map(map); 4525 4526 /* 4527 * We may have left one free space entry and other possible 4528 * tasks trimming this block group have left 1 entry each one. 4529 * Free them if any. 4530 */ 4531 btrfs_remove_free_space_cache(block_group); 4532 } 4533 } 4534 4535 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4536 { 4537 bool ret = true; 4538 4539 spin_lock(&bg->lock); 4540 if (bg->ro) 4541 ret = false; 4542 else 4543 bg->swap_extents++; 4544 spin_unlock(&bg->lock); 4545 4546 return ret; 4547 } 4548 4549 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4550 { 4551 spin_lock(&bg->lock); 4552 ASSERT(!bg->ro); 4553 ASSERT(bg->swap_extents >= amount); 4554 bg->swap_extents -= amount; 4555 spin_unlock(&bg->lock); 4556 } 4557 4558 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4559 { 4560 if (size <= SZ_128K) 4561 return BTRFS_BG_SZ_SMALL; 4562 if (size <= SZ_8M) 4563 return BTRFS_BG_SZ_MEDIUM; 4564 return BTRFS_BG_SZ_LARGE; 4565 } 4566 4567 /* 4568 * Handle a block group allocating an extent in a size class 4569 * 4570 * @bg: The block group we allocated in. 4571 * @size_class: The size class of the allocation. 4572 * @force_wrong_size_class: Whether we are desperate enough to allow 4573 * mismatched size classes. 4574 * 4575 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4576 * case of a race that leads to the wrong size class without 4577 * force_wrong_size_class set. 4578 * 4579 * find_free_extent will skip block groups with a mismatched size class until 4580 * it really needs to avoid ENOSPC. In that case it will set 4581 * force_wrong_size_class. However, if a block group is newly allocated and 4582 * doesn't yet have a size class, then it is possible for two allocations of 4583 * different sizes to race and both try to use it. The loser is caught here and 4584 * has to retry. 4585 */ 4586 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4587 enum btrfs_block_group_size_class size_class, 4588 bool force_wrong_size_class) 4589 { 4590 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4591 4592 /* The new allocation is in the right size class, do nothing */ 4593 if (bg->size_class == size_class) 4594 return 0; 4595 /* 4596 * The new allocation is in a mismatched size class. 4597 * This means one of two things: 4598 * 4599 * 1. Two tasks in find_free_extent for different size_classes raced 4600 * and hit the same empty block_group. Make the loser try again. 4601 * 2. A call to find_free_extent got desperate enough to set 4602 * 'force_wrong_slab'. Don't change the size_class, but allow the 4603 * allocation. 4604 */ 4605 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4606 if (force_wrong_size_class) 4607 return 0; 4608 return -EAGAIN; 4609 } 4610 /* 4611 * The happy new block group case: the new allocation is the first 4612 * one in the block_group so we set size_class. 4613 */ 4614 bg->size_class = size_class; 4615 4616 return 0; 4617 } 4618 4619 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg) 4620 { 4621 if (btrfs_is_zoned(bg->fs_info)) 4622 return false; 4623 if (!btrfs_is_block_group_data_only(bg)) 4624 return false; 4625 return true; 4626 } 4627