1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 99 allowed = BTRFS_BLOCK_GROUP_RAID6; 100 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 101 allowed = BTRFS_BLOCK_GROUP_RAID5; 102 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 103 allowed = BTRFS_BLOCK_GROUP_RAID10; 104 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 105 allowed = BTRFS_BLOCK_GROUP_RAID1; 106 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 107 allowed = BTRFS_BLOCK_GROUP_RAID0; 108 109 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 110 111 return extended_to_chunk(flags | allowed); 112 } 113 114 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 115 { 116 unsigned seq; 117 u64 flags; 118 119 do { 120 flags = orig_flags; 121 seq = read_seqbegin(&fs_info->profiles_lock); 122 123 if (flags & BTRFS_BLOCK_GROUP_DATA) 124 flags |= fs_info->avail_data_alloc_bits; 125 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 126 flags |= fs_info->avail_system_alloc_bits; 127 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 128 flags |= fs_info->avail_metadata_alloc_bits; 129 } while (read_seqretry(&fs_info->profiles_lock, seq)); 130 131 return btrfs_reduce_alloc_profile(fs_info, flags); 132 } 133 134 void btrfs_get_block_group(struct btrfs_block_group *cache) 135 { 136 refcount_inc(&cache->refs); 137 } 138 139 void btrfs_put_block_group(struct btrfs_block_group *cache) 140 { 141 if (refcount_dec_and_test(&cache->refs)) { 142 WARN_ON(cache->pinned > 0); 143 /* 144 * If there was a failure to cleanup a log tree, very likely due 145 * to an IO failure on a writeback attempt of one or more of its 146 * extent buffers, we could not do proper (and cheap) unaccounting 147 * of their reserved space, so don't warn on reserved > 0 in that 148 * case. 149 */ 150 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 151 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 152 WARN_ON(cache->reserved > 0); 153 154 /* 155 * A block_group shouldn't be on the discard_list anymore. 156 * Remove the block_group from the discard_list to prevent us 157 * from causing a panic due to NULL pointer dereference. 158 */ 159 if (WARN_ON(!list_empty(&cache->discard_list))) 160 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 161 cache); 162 163 /* 164 * If not empty, someone is still holding mutex of 165 * full_stripe_lock, which can only be released by caller. 166 * And it will definitely cause use-after-free when caller 167 * tries to release full stripe lock. 168 * 169 * No better way to resolve, but only to warn. 170 */ 171 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 172 kfree(cache->free_space_ctl); 173 kfree(cache->physical_map); 174 kfree(cache); 175 } 176 } 177 178 /* 179 * This adds the block group to the fs_info rb tree for the block group cache 180 */ 181 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 182 struct btrfs_block_group *block_group) 183 { 184 struct rb_node **p; 185 struct rb_node *parent = NULL; 186 struct btrfs_block_group *cache; 187 bool leftmost = true; 188 189 ASSERT(block_group->length != 0); 190 191 write_lock(&info->block_group_cache_lock); 192 p = &info->block_group_cache_tree.rb_root.rb_node; 193 194 while (*p) { 195 parent = *p; 196 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 197 if (block_group->start < cache->start) { 198 p = &(*p)->rb_left; 199 } else if (block_group->start > cache->start) { 200 p = &(*p)->rb_right; 201 leftmost = false; 202 } else { 203 write_unlock(&info->block_group_cache_lock); 204 return -EEXIST; 205 } 206 } 207 208 rb_link_node(&block_group->cache_node, parent, p); 209 rb_insert_color_cached(&block_group->cache_node, 210 &info->block_group_cache_tree, leftmost); 211 212 write_unlock(&info->block_group_cache_lock); 213 214 return 0; 215 } 216 217 /* 218 * This will return the block group at or after bytenr if contains is 0, else 219 * it will return the block group that contains the bytenr 220 */ 221 static struct btrfs_block_group *block_group_cache_tree_search( 222 struct btrfs_fs_info *info, u64 bytenr, int contains) 223 { 224 struct btrfs_block_group *cache, *ret = NULL; 225 struct rb_node *n; 226 u64 end, start; 227 228 read_lock(&info->block_group_cache_lock); 229 n = info->block_group_cache_tree.rb_root.rb_node; 230 231 while (n) { 232 cache = rb_entry(n, struct btrfs_block_group, cache_node); 233 end = cache->start + cache->length - 1; 234 start = cache->start; 235 236 if (bytenr < start) { 237 if (!contains && (!ret || start < ret->start)) 238 ret = cache; 239 n = n->rb_left; 240 } else if (bytenr > start) { 241 if (contains && bytenr <= end) { 242 ret = cache; 243 break; 244 } 245 n = n->rb_right; 246 } else { 247 ret = cache; 248 break; 249 } 250 } 251 if (ret) 252 btrfs_get_block_group(ret); 253 read_unlock(&info->block_group_cache_lock); 254 255 return ret; 256 } 257 258 /* 259 * Return the block group that starts at or after bytenr 260 */ 261 struct btrfs_block_group *btrfs_lookup_first_block_group( 262 struct btrfs_fs_info *info, u64 bytenr) 263 { 264 return block_group_cache_tree_search(info, bytenr, 0); 265 } 266 267 /* 268 * Return the block group that contains the given bytenr 269 */ 270 struct btrfs_block_group *btrfs_lookup_block_group( 271 struct btrfs_fs_info *info, u64 bytenr) 272 { 273 return block_group_cache_tree_search(info, bytenr, 1); 274 } 275 276 struct btrfs_block_group *btrfs_next_block_group( 277 struct btrfs_block_group *cache) 278 { 279 struct btrfs_fs_info *fs_info = cache->fs_info; 280 struct rb_node *node; 281 282 read_lock(&fs_info->block_group_cache_lock); 283 284 /* If our block group was removed, we need a full search. */ 285 if (RB_EMPTY_NODE(&cache->cache_node)) { 286 const u64 next_bytenr = cache->start + cache->length; 287 288 read_unlock(&fs_info->block_group_cache_lock); 289 btrfs_put_block_group(cache); 290 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 291 } 292 node = rb_next(&cache->cache_node); 293 btrfs_put_block_group(cache); 294 if (node) { 295 cache = rb_entry(node, struct btrfs_block_group, cache_node); 296 btrfs_get_block_group(cache); 297 } else 298 cache = NULL; 299 read_unlock(&fs_info->block_group_cache_lock); 300 return cache; 301 } 302 303 /* 304 * Check if we can do a NOCOW write for a given extent. 305 * 306 * @fs_info: The filesystem information object. 307 * @bytenr: Logical start address of the extent. 308 * 309 * Check if we can do a NOCOW write for the given extent, and increments the 310 * number of NOCOW writers in the block group that contains the extent, as long 311 * as the block group exists and it's currently not in read-only mode. 312 * 313 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 314 * is responsible for calling btrfs_dec_nocow_writers() later. 315 * 316 * Or NULL if we can not do a NOCOW write 317 */ 318 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 319 u64 bytenr) 320 { 321 struct btrfs_block_group *bg; 322 bool can_nocow = true; 323 324 bg = btrfs_lookup_block_group(fs_info, bytenr); 325 if (!bg) 326 return NULL; 327 328 spin_lock(&bg->lock); 329 if (bg->ro) 330 can_nocow = false; 331 else 332 atomic_inc(&bg->nocow_writers); 333 spin_unlock(&bg->lock); 334 335 if (!can_nocow) { 336 btrfs_put_block_group(bg); 337 return NULL; 338 } 339 340 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 341 return bg; 342 } 343 344 /* 345 * Decrement the number of NOCOW writers in a block group. 346 * 347 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 348 * and on the block group returned by that call. Typically this is called after 349 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 350 * relocation. 351 * 352 * After this call, the caller should not use the block group anymore. It it wants 353 * to use it, then it should get a reference on it before calling this function. 354 */ 355 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 356 { 357 if (atomic_dec_and_test(&bg->nocow_writers)) 358 wake_up_var(&bg->nocow_writers); 359 360 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 361 btrfs_put_block_group(bg); 362 } 363 364 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 365 { 366 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 367 } 368 369 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 370 const u64 start) 371 { 372 struct btrfs_block_group *bg; 373 374 bg = btrfs_lookup_block_group(fs_info, start); 375 ASSERT(bg); 376 if (atomic_dec_and_test(&bg->reservations)) 377 wake_up_var(&bg->reservations); 378 btrfs_put_block_group(bg); 379 } 380 381 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 382 { 383 struct btrfs_space_info *space_info = bg->space_info; 384 385 ASSERT(bg->ro); 386 387 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 388 return; 389 390 /* 391 * Our block group is read only but before we set it to read only, 392 * some task might have had allocated an extent from it already, but it 393 * has not yet created a respective ordered extent (and added it to a 394 * root's list of ordered extents). 395 * Therefore wait for any task currently allocating extents, since the 396 * block group's reservations counter is incremented while a read lock 397 * on the groups' semaphore is held and decremented after releasing 398 * the read access on that semaphore and creating the ordered extent. 399 */ 400 down_write(&space_info->groups_sem); 401 up_write(&space_info->groups_sem); 402 403 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 404 } 405 406 struct btrfs_caching_control *btrfs_get_caching_control( 407 struct btrfs_block_group *cache) 408 { 409 struct btrfs_caching_control *ctl; 410 411 spin_lock(&cache->lock); 412 if (!cache->caching_ctl) { 413 spin_unlock(&cache->lock); 414 return NULL; 415 } 416 417 ctl = cache->caching_ctl; 418 refcount_inc(&ctl->count); 419 spin_unlock(&cache->lock); 420 return ctl; 421 } 422 423 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 424 { 425 if (refcount_dec_and_test(&ctl->count)) 426 kfree(ctl); 427 } 428 429 /* 430 * When we wait for progress in the block group caching, its because our 431 * allocation attempt failed at least once. So, we must sleep and let some 432 * progress happen before we try again. 433 * 434 * This function will sleep at least once waiting for new free space to show 435 * up, and then it will check the block group free space numbers for our min 436 * num_bytes. Another option is to have it go ahead and look in the rbtree for 437 * a free extent of a given size, but this is a good start. 438 * 439 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 440 * any of the information in this block group. 441 */ 442 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 443 u64 num_bytes) 444 { 445 struct btrfs_caching_control *caching_ctl; 446 447 caching_ctl = btrfs_get_caching_control(cache); 448 if (!caching_ctl) 449 return; 450 451 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 452 (cache->free_space_ctl->free_space >= num_bytes)); 453 454 btrfs_put_caching_control(caching_ctl); 455 } 456 457 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 458 struct btrfs_caching_control *caching_ctl) 459 { 460 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 461 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 462 } 463 464 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 465 { 466 struct btrfs_caching_control *caching_ctl; 467 int ret; 468 469 caching_ctl = btrfs_get_caching_control(cache); 470 if (!caching_ctl) 471 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 472 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 473 btrfs_put_caching_control(caching_ctl); 474 return ret; 475 } 476 477 #ifdef CONFIG_BTRFS_DEBUG 478 static void fragment_free_space(struct btrfs_block_group *block_group) 479 { 480 struct btrfs_fs_info *fs_info = block_group->fs_info; 481 u64 start = block_group->start; 482 u64 len = block_group->length; 483 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 484 fs_info->nodesize : fs_info->sectorsize; 485 u64 step = chunk << 1; 486 487 while (len > chunk) { 488 btrfs_remove_free_space(block_group, start, chunk); 489 start += step; 490 if (len < step) 491 len = 0; 492 else 493 len -= step; 494 } 495 } 496 #endif 497 498 /* 499 * This is only called by btrfs_cache_block_group, since we could have freed 500 * extents we need to check the pinned_extents for any extents that can't be 501 * used yet since their free space will be released as soon as the transaction 502 * commits. 503 */ 504 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 505 { 506 struct btrfs_fs_info *info = block_group->fs_info; 507 u64 extent_start, extent_end, size, total_added = 0; 508 int ret; 509 510 while (start < end) { 511 ret = find_first_extent_bit(&info->excluded_extents, start, 512 &extent_start, &extent_end, 513 EXTENT_DIRTY | EXTENT_UPTODATE, 514 NULL); 515 if (ret) 516 break; 517 518 if (extent_start <= start) { 519 start = extent_end + 1; 520 } else if (extent_start > start && extent_start < end) { 521 size = extent_start - start; 522 total_added += size; 523 ret = btrfs_add_free_space_async_trimmed(block_group, 524 start, size); 525 BUG_ON(ret); /* -ENOMEM or logic error */ 526 start = extent_end + 1; 527 } else { 528 break; 529 } 530 } 531 532 if (start < end) { 533 size = end - start; 534 total_added += size; 535 ret = btrfs_add_free_space_async_trimmed(block_group, start, 536 size); 537 BUG_ON(ret); /* -ENOMEM or logic error */ 538 } 539 540 return total_added; 541 } 542 543 /* 544 * Get an arbitrary extent item index / max_index through the block group 545 * 546 * @block_group the block group to sample from 547 * @index: the integral step through the block group to grab from 548 * @max_index: the granularity of the sampling 549 * @key: return value parameter for the item we find 550 * 551 * Pre-conditions on indices: 552 * 0 <= index <= max_index 553 * 0 < max_index 554 * 555 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 556 * error code on error. 557 */ 558 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 559 struct btrfs_block_group *block_group, 560 int index, int max_index, 561 struct btrfs_key *key) 562 { 563 struct btrfs_fs_info *fs_info = block_group->fs_info; 564 struct btrfs_root *extent_root; 565 int ret = 0; 566 u64 search_offset; 567 u64 search_end = block_group->start + block_group->length; 568 struct btrfs_path *path; 569 570 ASSERT(index >= 0); 571 ASSERT(index <= max_index); 572 ASSERT(max_index > 0); 573 lockdep_assert_held(&caching_ctl->mutex); 574 lockdep_assert_held_read(&fs_info->commit_root_sem); 575 576 path = btrfs_alloc_path(); 577 if (!path) 578 return -ENOMEM; 579 580 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 581 BTRFS_SUPER_INFO_OFFSET)); 582 583 path->skip_locking = 1; 584 path->search_commit_root = 1; 585 path->reada = READA_FORWARD; 586 587 search_offset = index * div_u64(block_group->length, max_index); 588 key->objectid = block_group->start + search_offset; 589 key->type = BTRFS_EXTENT_ITEM_KEY; 590 key->offset = 0; 591 592 while (1) { 593 ret = btrfs_search_forward(extent_root, key, path, 0); 594 if (ret != 0) 595 goto out; 596 /* Success; sampled an extent item in the block group */ 597 if (key->type == BTRFS_EXTENT_ITEM_KEY && 598 key->objectid >= block_group->start && 599 key->objectid + key->offset <= search_end) 600 goto out; 601 602 /* We can't possibly find a valid extent item anymore */ 603 if (key->objectid >= search_end) { 604 ret = 1; 605 break; 606 } 607 if (key->type < BTRFS_EXTENT_ITEM_KEY) 608 key->type = BTRFS_EXTENT_ITEM_KEY; 609 else 610 key->objectid++; 611 btrfs_release_path(path); 612 up_read(&fs_info->commit_root_sem); 613 mutex_unlock(&caching_ctl->mutex); 614 cond_resched(); 615 mutex_lock(&caching_ctl->mutex); 616 down_read(&fs_info->commit_root_sem); 617 } 618 out: 619 lockdep_assert_held(&caching_ctl->mutex); 620 lockdep_assert_held_read(&fs_info->commit_root_sem); 621 btrfs_free_path(path); 622 return ret; 623 } 624 625 /* 626 * Best effort attempt to compute a block group's size class while caching it. 627 * 628 * @block_group: the block group we are caching 629 * 630 * We cannot infer the size class while adding free space extents, because that 631 * logic doesn't care about contiguous file extents (it doesn't differentiate 632 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 633 * file extent items. Reading all of them is quite wasteful, because usually 634 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 635 * them at even steps through the block group and pick the smallest size class 636 * we see. Since size class is best effort, and not guaranteed in general, 637 * inaccuracy is acceptable. 638 * 639 * To be more explicit about why this algorithm makes sense: 640 * 641 * If we are caching in a block group from disk, then there are three major cases 642 * to consider: 643 * 1. the block group is well behaved and all extents in it are the same size 644 * class. 645 * 2. the block group is mostly one size class with rare exceptions for last 646 * ditch allocations 647 * 3. the block group was populated before size classes and can have a totally 648 * arbitrary mix of size classes. 649 * 650 * In case 1, looking at any extent in the block group will yield the correct 651 * result. For the mixed cases, taking the minimum size class seems like a good 652 * approximation, since gaps from frees will be usable to the size class. For 653 * 2., a small handful of file extents is likely to yield the right answer. For 654 * 3, we can either read every file extent, or admit that this is best effort 655 * anyway and try to stay fast. 656 * 657 * Returns: 0 on success, negative error code on error. 658 */ 659 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 660 struct btrfs_block_group *block_group) 661 { 662 struct btrfs_key key; 663 int i; 664 u64 min_size = block_group->length; 665 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 666 int ret; 667 668 if (!btrfs_block_group_should_use_size_class(block_group)) 669 return 0; 670 671 for (i = 0; i < 5; ++i) { 672 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 673 if (ret < 0) 674 goto out; 675 if (ret > 0) 676 continue; 677 min_size = min_t(u64, min_size, key.offset); 678 size_class = btrfs_calc_block_group_size_class(min_size); 679 } 680 if (size_class != BTRFS_BG_SZ_NONE) { 681 spin_lock(&block_group->lock); 682 block_group->size_class = size_class; 683 spin_unlock(&block_group->lock); 684 } 685 686 out: 687 return ret; 688 } 689 690 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 691 { 692 struct btrfs_block_group *block_group = caching_ctl->block_group; 693 struct btrfs_fs_info *fs_info = block_group->fs_info; 694 struct btrfs_root *extent_root; 695 struct btrfs_path *path; 696 struct extent_buffer *leaf; 697 struct btrfs_key key; 698 u64 total_found = 0; 699 u64 last = 0; 700 u32 nritems; 701 int ret; 702 bool wakeup = true; 703 704 path = btrfs_alloc_path(); 705 if (!path) 706 return -ENOMEM; 707 708 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 709 extent_root = btrfs_extent_root(fs_info, last); 710 711 #ifdef CONFIG_BTRFS_DEBUG 712 /* 713 * If we're fragmenting we don't want to make anybody think we can 714 * allocate from this block group until we've had a chance to fragment 715 * the free space. 716 */ 717 if (btrfs_should_fragment_free_space(block_group)) 718 wakeup = false; 719 #endif 720 /* 721 * We don't want to deadlock with somebody trying to allocate a new 722 * extent for the extent root while also trying to search the extent 723 * root to add free space. So we skip locking and search the commit 724 * root, since its read-only 725 */ 726 path->skip_locking = 1; 727 path->search_commit_root = 1; 728 path->reada = READA_FORWARD; 729 730 key.objectid = last; 731 key.offset = 0; 732 key.type = BTRFS_EXTENT_ITEM_KEY; 733 734 next: 735 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 736 if (ret < 0) 737 goto out; 738 739 leaf = path->nodes[0]; 740 nritems = btrfs_header_nritems(leaf); 741 742 while (1) { 743 if (btrfs_fs_closing(fs_info) > 1) { 744 last = (u64)-1; 745 break; 746 } 747 748 if (path->slots[0] < nritems) { 749 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 750 } else { 751 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 752 if (ret) 753 break; 754 755 if (need_resched() || 756 rwsem_is_contended(&fs_info->commit_root_sem)) { 757 btrfs_release_path(path); 758 up_read(&fs_info->commit_root_sem); 759 mutex_unlock(&caching_ctl->mutex); 760 cond_resched(); 761 mutex_lock(&caching_ctl->mutex); 762 down_read(&fs_info->commit_root_sem); 763 goto next; 764 } 765 766 ret = btrfs_next_leaf(extent_root, path); 767 if (ret < 0) 768 goto out; 769 if (ret) 770 break; 771 leaf = path->nodes[0]; 772 nritems = btrfs_header_nritems(leaf); 773 continue; 774 } 775 776 if (key.objectid < last) { 777 key.objectid = last; 778 key.offset = 0; 779 key.type = BTRFS_EXTENT_ITEM_KEY; 780 btrfs_release_path(path); 781 goto next; 782 } 783 784 if (key.objectid < block_group->start) { 785 path->slots[0]++; 786 continue; 787 } 788 789 if (key.objectid >= block_group->start + block_group->length) 790 break; 791 792 if (key.type == BTRFS_EXTENT_ITEM_KEY || 793 key.type == BTRFS_METADATA_ITEM_KEY) { 794 total_found += add_new_free_space(block_group, last, 795 key.objectid); 796 if (key.type == BTRFS_METADATA_ITEM_KEY) 797 last = key.objectid + 798 fs_info->nodesize; 799 else 800 last = key.objectid + key.offset; 801 802 if (total_found > CACHING_CTL_WAKE_UP) { 803 total_found = 0; 804 if (wakeup) 805 wake_up(&caching_ctl->wait); 806 } 807 } 808 path->slots[0]++; 809 } 810 ret = 0; 811 812 total_found += add_new_free_space(block_group, last, 813 block_group->start + block_group->length); 814 815 out: 816 btrfs_free_path(path); 817 return ret; 818 } 819 820 static noinline void caching_thread(struct btrfs_work *work) 821 { 822 struct btrfs_block_group *block_group; 823 struct btrfs_fs_info *fs_info; 824 struct btrfs_caching_control *caching_ctl; 825 int ret; 826 827 caching_ctl = container_of(work, struct btrfs_caching_control, work); 828 block_group = caching_ctl->block_group; 829 fs_info = block_group->fs_info; 830 831 mutex_lock(&caching_ctl->mutex); 832 down_read(&fs_info->commit_root_sem); 833 834 load_block_group_size_class(caching_ctl, block_group); 835 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 836 ret = load_free_space_cache(block_group); 837 if (ret == 1) { 838 ret = 0; 839 goto done; 840 } 841 842 /* 843 * We failed to load the space cache, set ourselves to 844 * CACHE_STARTED and carry on. 845 */ 846 spin_lock(&block_group->lock); 847 block_group->cached = BTRFS_CACHE_STARTED; 848 spin_unlock(&block_group->lock); 849 wake_up(&caching_ctl->wait); 850 } 851 852 /* 853 * If we are in the transaction that populated the free space tree we 854 * can't actually cache from the free space tree as our commit root and 855 * real root are the same, so we could change the contents of the blocks 856 * while caching. Instead do the slow caching in this case, and after 857 * the transaction has committed we will be safe. 858 */ 859 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 860 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 861 ret = load_free_space_tree(caching_ctl); 862 else 863 ret = load_extent_tree_free(caching_ctl); 864 done: 865 spin_lock(&block_group->lock); 866 block_group->caching_ctl = NULL; 867 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 868 spin_unlock(&block_group->lock); 869 870 #ifdef CONFIG_BTRFS_DEBUG 871 if (btrfs_should_fragment_free_space(block_group)) { 872 u64 bytes_used; 873 874 spin_lock(&block_group->space_info->lock); 875 spin_lock(&block_group->lock); 876 bytes_used = block_group->length - block_group->used; 877 block_group->space_info->bytes_used += bytes_used >> 1; 878 spin_unlock(&block_group->lock); 879 spin_unlock(&block_group->space_info->lock); 880 fragment_free_space(block_group); 881 } 882 #endif 883 884 up_read(&fs_info->commit_root_sem); 885 btrfs_free_excluded_extents(block_group); 886 mutex_unlock(&caching_ctl->mutex); 887 888 wake_up(&caching_ctl->wait); 889 890 btrfs_put_caching_control(caching_ctl); 891 btrfs_put_block_group(block_group); 892 } 893 894 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 895 { 896 struct btrfs_fs_info *fs_info = cache->fs_info; 897 struct btrfs_caching_control *caching_ctl = NULL; 898 int ret = 0; 899 900 /* Allocator for zoned filesystems does not use the cache at all */ 901 if (btrfs_is_zoned(fs_info)) 902 return 0; 903 904 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 905 if (!caching_ctl) 906 return -ENOMEM; 907 908 INIT_LIST_HEAD(&caching_ctl->list); 909 mutex_init(&caching_ctl->mutex); 910 init_waitqueue_head(&caching_ctl->wait); 911 caching_ctl->block_group = cache; 912 refcount_set(&caching_ctl->count, 2); 913 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 914 915 spin_lock(&cache->lock); 916 if (cache->cached != BTRFS_CACHE_NO) { 917 kfree(caching_ctl); 918 919 caching_ctl = cache->caching_ctl; 920 if (caching_ctl) 921 refcount_inc(&caching_ctl->count); 922 spin_unlock(&cache->lock); 923 goto out; 924 } 925 WARN_ON(cache->caching_ctl); 926 cache->caching_ctl = caching_ctl; 927 cache->cached = BTRFS_CACHE_STARTED; 928 spin_unlock(&cache->lock); 929 930 write_lock(&fs_info->block_group_cache_lock); 931 refcount_inc(&caching_ctl->count); 932 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 933 write_unlock(&fs_info->block_group_cache_lock); 934 935 btrfs_get_block_group(cache); 936 937 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 938 out: 939 if (wait && caching_ctl) 940 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 941 if (caching_ctl) 942 btrfs_put_caching_control(caching_ctl); 943 944 return ret; 945 } 946 947 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 948 { 949 u64 extra_flags = chunk_to_extended(flags) & 950 BTRFS_EXTENDED_PROFILE_MASK; 951 952 write_seqlock(&fs_info->profiles_lock); 953 if (flags & BTRFS_BLOCK_GROUP_DATA) 954 fs_info->avail_data_alloc_bits &= ~extra_flags; 955 if (flags & BTRFS_BLOCK_GROUP_METADATA) 956 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 957 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 958 fs_info->avail_system_alloc_bits &= ~extra_flags; 959 write_sequnlock(&fs_info->profiles_lock); 960 } 961 962 /* 963 * Clear incompat bits for the following feature(s): 964 * 965 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 966 * in the whole filesystem 967 * 968 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 969 */ 970 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 971 { 972 bool found_raid56 = false; 973 bool found_raid1c34 = false; 974 975 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 976 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 977 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 978 struct list_head *head = &fs_info->space_info; 979 struct btrfs_space_info *sinfo; 980 981 list_for_each_entry_rcu(sinfo, head, list) { 982 down_read(&sinfo->groups_sem); 983 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 984 found_raid56 = true; 985 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 986 found_raid56 = true; 987 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 988 found_raid1c34 = true; 989 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 990 found_raid1c34 = true; 991 up_read(&sinfo->groups_sem); 992 } 993 if (!found_raid56) 994 btrfs_clear_fs_incompat(fs_info, RAID56); 995 if (!found_raid1c34) 996 btrfs_clear_fs_incompat(fs_info, RAID1C34); 997 } 998 } 999 1000 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1001 struct btrfs_path *path, 1002 struct btrfs_block_group *block_group) 1003 { 1004 struct btrfs_fs_info *fs_info = trans->fs_info; 1005 struct btrfs_root *root; 1006 struct btrfs_key key; 1007 int ret; 1008 1009 root = btrfs_block_group_root(fs_info); 1010 key.objectid = block_group->start; 1011 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1012 key.offset = block_group->length; 1013 1014 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1015 if (ret > 0) 1016 ret = -ENOENT; 1017 if (ret < 0) 1018 return ret; 1019 1020 ret = btrfs_del_item(trans, root, path); 1021 return ret; 1022 } 1023 1024 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1025 u64 group_start, struct extent_map *em) 1026 { 1027 struct btrfs_fs_info *fs_info = trans->fs_info; 1028 struct btrfs_path *path; 1029 struct btrfs_block_group *block_group; 1030 struct btrfs_free_cluster *cluster; 1031 struct inode *inode; 1032 struct kobject *kobj = NULL; 1033 int ret; 1034 int index; 1035 int factor; 1036 struct btrfs_caching_control *caching_ctl = NULL; 1037 bool remove_em; 1038 bool remove_rsv = false; 1039 1040 block_group = btrfs_lookup_block_group(fs_info, group_start); 1041 BUG_ON(!block_group); 1042 BUG_ON(!block_group->ro); 1043 1044 trace_btrfs_remove_block_group(block_group); 1045 /* 1046 * Free the reserved super bytes from this block group before 1047 * remove it. 1048 */ 1049 btrfs_free_excluded_extents(block_group); 1050 btrfs_free_ref_tree_range(fs_info, block_group->start, 1051 block_group->length); 1052 1053 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1054 factor = btrfs_bg_type_to_factor(block_group->flags); 1055 1056 /* make sure this block group isn't part of an allocation cluster */ 1057 cluster = &fs_info->data_alloc_cluster; 1058 spin_lock(&cluster->refill_lock); 1059 btrfs_return_cluster_to_free_space(block_group, cluster); 1060 spin_unlock(&cluster->refill_lock); 1061 1062 /* 1063 * make sure this block group isn't part of a metadata 1064 * allocation cluster 1065 */ 1066 cluster = &fs_info->meta_alloc_cluster; 1067 spin_lock(&cluster->refill_lock); 1068 btrfs_return_cluster_to_free_space(block_group, cluster); 1069 spin_unlock(&cluster->refill_lock); 1070 1071 btrfs_clear_treelog_bg(block_group); 1072 btrfs_clear_data_reloc_bg(block_group); 1073 1074 path = btrfs_alloc_path(); 1075 if (!path) { 1076 ret = -ENOMEM; 1077 goto out; 1078 } 1079 1080 /* 1081 * get the inode first so any iput calls done for the io_list 1082 * aren't the final iput (no unlinks allowed now) 1083 */ 1084 inode = lookup_free_space_inode(block_group, path); 1085 1086 mutex_lock(&trans->transaction->cache_write_mutex); 1087 /* 1088 * Make sure our free space cache IO is done before removing the 1089 * free space inode 1090 */ 1091 spin_lock(&trans->transaction->dirty_bgs_lock); 1092 if (!list_empty(&block_group->io_list)) { 1093 list_del_init(&block_group->io_list); 1094 1095 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1096 1097 spin_unlock(&trans->transaction->dirty_bgs_lock); 1098 btrfs_wait_cache_io(trans, block_group, path); 1099 btrfs_put_block_group(block_group); 1100 spin_lock(&trans->transaction->dirty_bgs_lock); 1101 } 1102 1103 if (!list_empty(&block_group->dirty_list)) { 1104 list_del_init(&block_group->dirty_list); 1105 remove_rsv = true; 1106 btrfs_put_block_group(block_group); 1107 } 1108 spin_unlock(&trans->transaction->dirty_bgs_lock); 1109 mutex_unlock(&trans->transaction->cache_write_mutex); 1110 1111 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1112 if (ret) 1113 goto out; 1114 1115 write_lock(&fs_info->block_group_cache_lock); 1116 rb_erase_cached(&block_group->cache_node, 1117 &fs_info->block_group_cache_tree); 1118 RB_CLEAR_NODE(&block_group->cache_node); 1119 1120 /* Once for the block groups rbtree */ 1121 btrfs_put_block_group(block_group); 1122 1123 write_unlock(&fs_info->block_group_cache_lock); 1124 1125 down_write(&block_group->space_info->groups_sem); 1126 /* 1127 * we must use list_del_init so people can check to see if they 1128 * are still on the list after taking the semaphore 1129 */ 1130 list_del_init(&block_group->list); 1131 if (list_empty(&block_group->space_info->block_groups[index])) { 1132 kobj = block_group->space_info->block_group_kobjs[index]; 1133 block_group->space_info->block_group_kobjs[index] = NULL; 1134 clear_avail_alloc_bits(fs_info, block_group->flags); 1135 } 1136 up_write(&block_group->space_info->groups_sem); 1137 clear_incompat_bg_bits(fs_info, block_group->flags); 1138 if (kobj) { 1139 kobject_del(kobj); 1140 kobject_put(kobj); 1141 } 1142 1143 if (block_group->cached == BTRFS_CACHE_STARTED) 1144 btrfs_wait_block_group_cache_done(block_group); 1145 1146 write_lock(&fs_info->block_group_cache_lock); 1147 caching_ctl = btrfs_get_caching_control(block_group); 1148 if (!caching_ctl) { 1149 struct btrfs_caching_control *ctl; 1150 1151 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1152 if (ctl->block_group == block_group) { 1153 caching_ctl = ctl; 1154 refcount_inc(&caching_ctl->count); 1155 break; 1156 } 1157 } 1158 } 1159 if (caching_ctl) 1160 list_del_init(&caching_ctl->list); 1161 write_unlock(&fs_info->block_group_cache_lock); 1162 1163 if (caching_ctl) { 1164 /* Once for the caching bgs list and once for us. */ 1165 btrfs_put_caching_control(caching_ctl); 1166 btrfs_put_caching_control(caching_ctl); 1167 } 1168 1169 spin_lock(&trans->transaction->dirty_bgs_lock); 1170 WARN_ON(!list_empty(&block_group->dirty_list)); 1171 WARN_ON(!list_empty(&block_group->io_list)); 1172 spin_unlock(&trans->transaction->dirty_bgs_lock); 1173 1174 btrfs_remove_free_space_cache(block_group); 1175 1176 spin_lock(&block_group->space_info->lock); 1177 list_del_init(&block_group->ro_list); 1178 1179 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1180 WARN_ON(block_group->space_info->total_bytes 1181 < block_group->length); 1182 WARN_ON(block_group->space_info->bytes_readonly 1183 < block_group->length - block_group->zone_unusable); 1184 WARN_ON(block_group->space_info->bytes_zone_unusable 1185 < block_group->zone_unusable); 1186 WARN_ON(block_group->space_info->disk_total 1187 < block_group->length * factor); 1188 WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 1189 &block_group->runtime_flags) && 1190 block_group->space_info->active_total_bytes 1191 < block_group->length); 1192 } 1193 block_group->space_info->total_bytes -= block_group->length; 1194 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1195 block_group->space_info->active_total_bytes -= block_group->length; 1196 block_group->space_info->bytes_readonly -= 1197 (block_group->length - block_group->zone_unusable); 1198 block_group->space_info->bytes_zone_unusable -= 1199 block_group->zone_unusable; 1200 block_group->space_info->disk_total -= block_group->length * factor; 1201 1202 spin_unlock(&block_group->space_info->lock); 1203 1204 /* 1205 * Remove the free space for the block group from the free space tree 1206 * and the block group's item from the extent tree before marking the 1207 * block group as removed. This is to prevent races with tasks that 1208 * freeze and unfreeze a block group, this task and another task 1209 * allocating a new block group - the unfreeze task ends up removing 1210 * the block group's extent map before the task calling this function 1211 * deletes the block group item from the extent tree, allowing for 1212 * another task to attempt to create another block group with the same 1213 * item key (and failing with -EEXIST and a transaction abort). 1214 */ 1215 ret = remove_block_group_free_space(trans, block_group); 1216 if (ret) 1217 goto out; 1218 1219 ret = remove_block_group_item(trans, path, block_group); 1220 if (ret < 0) 1221 goto out; 1222 1223 spin_lock(&block_group->lock); 1224 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1225 1226 /* 1227 * At this point trimming or scrub can't start on this block group, 1228 * because we removed the block group from the rbtree 1229 * fs_info->block_group_cache_tree so no one can't find it anymore and 1230 * even if someone already got this block group before we removed it 1231 * from the rbtree, they have already incremented block_group->frozen - 1232 * if they didn't, for the trimming case they won't find any free space 1233 * entries because we already removed them all when we called 1234 * btrfs_remove_free_space_cache(). 1235 * 1236 * And we must not remove the extent map from the fs_info->mapping_tree 1237 * to prevent the same logical address range and physical device space 1238 * ranges from being reused for a new block group. This is needed to 1239 * avoid races with trimming and scrub. 1240 * 1241 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1242 * completely transactionless, so while it is trimming a range the 1243 * currently running transaction might finish and a new one start, 1244 * allowing for new block groups to be created that can reuse the same 1245 * physical device locations unless we take this special care. 1246 * 1247 * There may also be an implicit trim operation if the file system 1248 * is mounted with -odiscard. The same protections must remain 1249 * in place until the extents have been discarded completely when 1250 * the transaction commit has completed. 1251 */ 1252 remove_em = (atomic_read(&block_group->frozen) == 0); 1253 spin_unlock(&block_group->lock); 1254 1255 if (remove_em) { 1256 struct extent_map_tree *em_tree; 1257 1258 em_tree = &fs_info->mapping_tree; 1259 write_lock(&em_tree->lock); 1260 remove_extent_mapping(em_tree, em); 1261 write_unlock(&em_tree->lock); 1262 /* once for the tree */ 1263 free_extent_map(em); 1264 } 1265 1266 out: 1267 /* Once for the lookup reference */ 1268 btrfs_put_block_group(block_group); 1269 if (remove_rsv) 1270 btrfs_delayed_refs_rsv_release(fs_info, 1); 1271 btrfs_free_path(path); 1272 return ret; 1273 } 1274 1275 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1276 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1277 { 1278 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1279 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1280 struct extent_map *em; 1281 struct map_lookup *map; 1282 unsigned int num_items; 1283 1284 read_lock(&em_tree->lock); 1285 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1286 read_unlock(&em_tree->lock); 1287 ASSERT(em && em->start == chunk_offset); 1288 1289 /* 1290 * We need to reserve 3 + N units from the metadata space info in order 1291 * to remove a block group (done at btrfs_remove_chunk() and at 1292 * btrfs_remove_block_group()), which are used for: 1293 * 1294 * 1 unit for adding the free space inode's orphan (located in the tree 1295 * of tree roots). 1296 * 1 unit for deleting the block group item (located in the extent 1297 * tree). 1298 * 1 unit for deleting the free space item (located in tree of tree 1299 * roots). 1300 * N units for deleting N device extent items corresponding to each 1301 * stripe (located in the device tree). 1302 * 1303 * In order to remove a block group we also need to reserve units in the 1304 * system space info in order to update the chunk tree (update one or 1305 * more device items and remove one chunk item), but this is done at 1306 * btrfs_remove_chunk() through a call to check_system_chunk(). 1307 */ 1308 map = em->map_lookup; 1309 num_items = 3 + map->num_stripes; 1310 free_extent_map(em); 1311 1312 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1313 } 1314 1315 /* 1316 * Mark block group @cache read-only, so later write won't happen to block 1317 * group @cache. 1318 * 1319 * If @force is not set, this function will only mark the block group readonly 1320 * if we have enough free space (1M) in other metadata/system block groups. 1321 * If @force is not set, this function will mark the block group readonly 1322 * without checking free space. 1323 * 1324 * NOTE: This function doesn't care if other block groups can contain all the 1325 * data in this block group. That check should be done by relocation routine, 1326 * not this function. 1327 */ 1328 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1329 { 1330 struct btrfs_space_info *sinfo = cache->space_info; 1331 u64 num_bytes; 1332 int ret = -ENOSPC; 1333 1334 spin_lock(&sinfo->lock); 1335 spin_lock(&cache->lock); 1336 1337 if (cache->swap_extents) { 1338 ret = -ETXTBSY; 1339 goto out; 1340 } 1341 1342 if (cache->ro) { 1343 cache->ro++; 1344 ret = 0; 1345 goto out; 1346 } 1347 1348 num_bytes = cache->length - cache->reserved - cache->pinned - 1349 cache->bytes_super - cache->zone_unusable - cache->used; 1350 1351 /* 1352 * Data never overcommits, even in mixed mode, so do just the straight 1353 * check of left over space in how much we have allocated. 1354 */ 1355 if (force) { 1356 ret = 0; 1357 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1358 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1359 1360 /* 1361 * Here we make sure if we mark this bg RO, we still have enough 1362 * free space as buffer. 1363 */ 1364 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1365 ret = 0; 1366 } else { 1367 /* 1368 * We overcommit metadata, so we need to do the 1369 * btrfs_can_overcommit check here, and we need to pass in 1370 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1371 * leeway to allow us to mark this block group as read only. 1372 */ 1373 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1374 BTRFS_RESERVE_NO_FLUSH)) 1375 ret = 0; 1376 } 1377 1378 if (!ret) { 1379 sinfo->bytes_readonly += num_bytes; 1380 if (btrfs_is_zoned(cache->fs_info)) { 1381 /* Migrate zone_unusable bytes to readonly */ 1382 sinfo->bytes_readonly += cache->zone_unusable; 1383 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1384 cache->zone_unusable = 0; 1385 } 1386 cache->ro++; 1387 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1388 } 1389 out: 1390 spin_unlock(&cache->lock); 1391 spin_unlock(&sinfo->lock); 1392 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1393 btrfs_info(cache->fs_info, 1394 "unable to make block group %llu ro", cache->start); 1395 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1396 } 1397 return ret; 1398 } 1399 1400 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1401 struct btrfs_block_group *bg) 1402 { 1403 struct btrfs_fs_info *fs_info = bg->fs_info; 1404 struct btrfs_transaction *prev_trans = NULL; 1405 const u64 start = bg->start; 1406 const u64 end = start + bg->length - 1; 1407 int ret; 1408 1409 spin_lock(&fs_info->trans_lock); 1410 if (trans->transaction->list.prev != &fs_info->trans_list) { 1411 prev_trans = list_last_entry(&trans->transaction->list, 1412 struct btrfs_transaction, list); 1413 refcount_inc(&prev_trans->use_count); 1414 } 1415 spin_unlock(&fs_info->trans_lock); 1416 1417 /* 1418 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1419 * btrfs_finish_extent_commit(). If we are at transaction N, another 1420 * task might be running finish_extent_commit() for the previous 1421 * transaction N - 1, and have seen a range belonging to the block 1422 * group in pinned_extents before we were able to clear the whole block 1423 * group range from pinned_extents. This means that task can lookup for 1424 * the block group after we unpinned it from pinned_extents and removed 1425 * it, leading to a BUG_ON() at unpin_extent_range(). 1426 */ 1427 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1428 if (prev_trans) { 1429 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1430 EXTENT_DIRTY); 1431 if (ret) 1432 goto out; 1433 } 1434 1435 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1436 EXTENT_DIRTY); 1437 out: 1438 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1439 if (prev_trans) 1440 btrfs_put_transaction(prev_trans); 1441 1442 return ret == 0; 1443 } 1444 1445 /* 1446 * Process the unused_bgs list and remove any that don't have any allocated 1447 * space inside of them. 1448 */ 1449 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1450 { 1451 struct btrfs_block_group *block_group; 1452 struct btrfs_space_info *space_info; 1453 struct btrfs_trans_handle *trans; 1454 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1455 int ret = 0; 1456 1457 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1458 return; 1459 1460 if (btrfs_fs_closing(fs_info)) 1461 return; 1462 1463 /* 1464 * Long running balances can keep us blocked here for eternity, so 1465 * simply skip deletion if we're unable to get the mutex. 1466 */ 1467 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1468 return; 1469 1470 spin_lock(&fs_info->unused_bgs_lock); 1471 while (!list_empty(&fs_info->unused_bgs)) { 1472 int trimming; 1473 1474 block_group = list_first_entry(&fs_info->unused_bgs, 1475 struct btrfs_block_group, 1476 bg_list); 1477 list_del_init(&block_group->bg_list); 1478 1479 space_info = block_group->space_info; 1480 1481 if (ret || btrfs_mixed_space_info(space_info)) { 1482 btrfs_put_block_group(block_group); 1483 continue; 1484 } 1485 spin_unlock(&fs_info->unused_bgs_lock); 1486 1487 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1488 1489 /* Don't want to race with allocators so take the groups_sem */ 1490 down_write(&space_info->groups_sem); 1491 1492 /* 1493 * Async discard moves the final block group discard to be prior 1494 * to the unused_bgs code path. Therefore, if it's not fully 1495 * trimmed, punt it back to the async discard lists. 1496 */ 1497 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1498 !btrfs_is_free_space_trimmed(block_group)) { 1499 trace_btrfs_skip_unused_block_group(block_group); 1500 up_write(&space_info->groups_sem); 1501 /* Requeue if we failed because of async discard */ 1502 btrfs_discard_queue_work(&fs_info->discard_ctl, 1503 block_group); 1504 goto next; 1505 } 1506 1507 spin_lock(&block_group->lock); 1508 if (block_group->reserved || block_group->pinned || 1509 block_group->used || block_group->ro || 1510 list_is_singular(&block_group->list)) { 1511 /* 1512 * We want to bail if we made new allocations or have 1513 * outstanding allocations in this block group. We do 1514 * the ro check in case balance is currently acting on 1515 * this block group. 1516 */ 1517 trace_btrfs_skip_unused_block_group(block_group); 1518 spin_unlock(&block_group->lock); 1519 up_write(&space_info->groups_sem); 1520 goto next; 1521 } 1522 spin_unlock(&block_group->lock); 1523 1524 /* We don't want to force the issue, only flip if it's ok. */ 1525 ret = inc_block_group_ro(block_group, 0); 1526 up_write(&space_info->groups_sem); 1527 if (ret < 0) { 1528 ret = 0; 1529 goto next; 1530 } 1531 1532 ret = btrfs_zone_finish(block_group); 1533 if (ret < 0) { 1534 btrfs_dec_block_group_ro(block_group); 1535 if (ret == -EAGAIN) 1536 ret = 0; 1537 goto next; 1538 } 1539 1540 /* 1541 * Want to do this before we do anything else so we can recover 1542 * properly if we fail to join the transaction. 1543 */ 1544 trans = btrfs_start_trans_remove_block_group(fs_info, 1545 block_group->start); 1546 if (IS_ERR(trans)) { 1547 btrfs_dec_block_group_ro(block_group); 1548 ret = PTR_ERR(trans); 1549 goto next; 1550 } 1551 1552 /* 1553 * We could have pending pinned extents for this block group, 1554 * just delete them, we don't care about them anymore. 1555 */ 1556 if (!clean_pinned_extents(trans, block_group)) { 1557 btrfs_dec_block_group_ro(block_group); 1558 goto end_trans; 1559 } 1560 1561 /* 1562 * At this point, the block_group is read only and should fail 1563 * new allocations. However, btrfs_finish_extent_commit() can 1564 * cause this block_group to be placed back on the discard 1565 * lists because now the block_group isn't fully discarded. 1566 * Bail here and try again later after discarding everything. 1567 */ 1568 spin_lock(&fs_info->discard_ctl.lock); 1569 if (!list_empty(&block_group->discard_list)) { 1570 spin_unlock(&fs_info->discard_ctl.lock); 1571 btrfs_dec_block_group_ro(block_group); 1572 btrfs_discard_queue_work(&fs_info->discard_ctl, 1573 block_group); 1574 goto end_trans; 1575 } 1576 spin_unlock(&fs_info->discard_ctl.lock); 1577 1578 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1579 spin_lock(&space_info->lock); 1580 spin_lock(&block_group->lock); 1581 1582 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1583 -block_group->pinned); 1584 space_info->bytes_readonly += block_group->pinned; 1585 block_group->pinned = 0; 1586 1587 spin_unlock(&block_group->lock); 1588 spin_unlock(&space_info->lock); 1589 1590 /* 1591 * The normal path here is an unused block group is passed here, 1592 * then trimming is handled in the transaction commit path. 1593 * Async discard interposes before this to do the trimming 1594 * before coming down the unused block group path as trimming 1595 * will no longer be done later in the transaction commit path. 1596 */ 1597 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1598 goto flip_async; 1599 1600 /* 1601 * DISCARD can flip during remount. On zoned filesystems, we 1602 * need to reset sequential-required zones. 1603 */ 1604 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1605 btrfs_is_zoned(fs_info); 1606 1607 /* Implicit trim during transaction commit. */ 1608 if (trimming) 1609 btrfs_freeze_block_group(block_group); 1610 1611 /* 1612 * Btrfs_remove_chunk will abort the transaction if things go 1613 * horribly wrong. 1614 */ 1615 ret = btrfs_remove_chunk(trans, block_group->start); 1616 1617 if (ret) { 1618 if (trimming) 1619 btrfs_unfreeze_block_group(block_group); 1620 goto end_trans; 1621 } 1622 1623 /* 1624 * If we're not mounted with -odiscard, we can just forget 1625 * about this block group. Otherwise we'll need to wait 1626 * until transaction commit to do the actual discard. 1627 */ 1628 if (trimming) { 1629 spin_lock(&fs_info->unused_bgs_lock); 1630 /* 1631 * A concurrent scrub might have added us to the list 1632 * fs_info->unused_bgs, so use a list_move operation 1633 * to add the block group to the deleted_bgs list. 1634 */ 1635 list_move(&block_group->bg_list, 1636 &trans->transaction->deleted_bgs); 1637 spin_unlock(&fs_info->unused_bgs_lock); 1638 btrfs_get_block_group(block_group); 1639 } 1640 end_trans: 1641 btrfs_end_transaction(trans); 1642 next: 1643 btrfs_put_block_group(block_group); 1644 spin_lock(&fs_info->unused_bgs_lock); 1645 } 1646 spin_unlock(&fs_info->unused_bgs_lock); 1647 mutex_unlock(&fs_info->reclaim_bgs_lock); 1648 return; 1649 1650 flip_async: 1651 btrfs_end_transaction(trans); 1652 mutex_unlock(&fs_info->reclaim_bgs_lock); 1653 btrfs_put_block_group(block_group); 1654 btrfs_discard_punt_unused_bgs_list(fs_info); 1655 } 1656 1657 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1658 { 1659 struct btrfs_fs_info *fs_info = bg->fs_info; 1660 1661 spin_lock(&fs_info->unused_bgs_lock); 1662 if (list_empty(&bg->bg_list)) { 1663 btrfs_get_block_group(bg); 1664 trace_btrfs_add_unused_block_group(bg); 1665 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1666 } 1667 spin_unlock(&fs_info->unused_bgs_lock); 1668 } 1669 1670 /* 1671 * We want block groups with a low number of used bytes to be in the beginning 1672 * of the list, so they will get reclaimed first. 1673 */ 1674 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1675 const struct list_head *b) 1676 { 1677 const struct btrfs_block_group *bg1, *bg2; 1678 1679 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1680 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1681 1682 return bg1->used > bg2->used; 1683 } 1684 1685 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1686 { 1687 if (btrfs_is_zoned(fs_info)) 1688 return btrfs_zoned_should_reclaim(fs_info); 1689 return true; 1690 } 1691 1692 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1693 { 1694 const struct btrfs_space_info *space_info = bg->space_info; 1695 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 1696 const u64 new_val = bg->used; 1697 const u64 old_val = new_val + bytes_freed; 1698 u64 thresh; 1699 1700 if (reclaim_thresh == 0) 1701 return false; 1702 1703 thresh = mult_perc(bg->length, reclaim_thresh); 1704 1705 /* 1706 * If we were below the threshold before don't reclaim, we are likely a 1707 * brand new block group and we don't want to relocate new block groups. 1708 */ 1709 if (old_val < thresh) 1710 return false; 1711 if (new_val >= thresh) 1712 return false; 1713 return true; 1714 } 1715 1716 void btrfs_reclaim_bgs_work(struct work_struct *work) 1717 { 1718 struct btrfs_fs_info *fs_info = 1719 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1720 struct btrfs_block_group *bg; 1721 struct btrfs_space_info *space_info; 1722 1723 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1724 return; 1725 1726 if (btrfs_fs_closing(fs_info)) 1727 return; 1728 1729 if (!btrfs_should_reclaim(fs_info)) 1730 return; 1731 1732 sb_start_write(fs_info->sb); 1733 1734 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1735 sb_end_write(fs_info->sb); 1736 return; 1737 } 1738 1739 /* 1740 * Long running balances can keep us blocked here for eternity, so 1741 * simply skip reclaim if we're unable to get the mutex. 1742 */ 1743 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1744 btrfs_exclop_finish(fs_info); 1745 sb_end_write(fs_info->sb); 1746 return; 1747 } 1748 1749 spin_lock(&fs_info->unused_bgs_lock); 1750 /* 1751 * Sort happens under lock because we can't simply splice it and sort. 1752 * The block groups might still be in use and reachable via bg_list, 1753 * and their presence in the reclaim_bgs list must be preserved. 1754 */ 1755 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1756 while (!list_empty(&fs_info->reclaim_bgs)) { 1757 u64 zone_unusable; 1758 int ret = 0; 1759 1760 bg = list_first_entry(&fs_info->reclaim_bgs, 1761 struct btrfs_block_group, 1762 bg_list); 1763 list_del_init(&bg->bg_list); 1764 1765 space_info = bg->space_info; 1766 spin_unlock(&fs_info->unused_bgs_lock); 1767 1768 /* Don't race with allocators so take the groups_sem */ 1769 down_write(&space_info->groups_sem); 1770 1771 spin_lock(&bg->lock); 1772 if (bg->reserved || bg->pinned || bg->ro) { 1773 /* 1774 * We want to bail if we made new allocations or have 1775 * outstanding allocations in this block group. We do 1776 * the ro check in case balance is currently acting on 1777 * this block group. 1778 */ 1779 spin_unlock(&bg->lock); 1780 up_write(&space_info->groups_sem); 1781 goto next; 1782 } 1783 if (bg->used == 0) { 1784 /* 1785 * It is possible that we trigger relocation on a block 1786 * group as its extents are deleted and it first goes 1787 * below the threshold, then shortly after goes empty. 1788 * 1789 * In this case, relocating it does delete it, but has 1790 * some overhead in relocation specific metadata, looking 1791 * for the non-existent extents and running some extra 1792 * transactions, which we can avoid by using one of the 1793 * other mechanisms for dealing with empty block groups. 1794 */ 1795 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1796 btrfs_mark_bg_unused(bg); 1797 spin_unlock(&bg->lock); 1798 up_write(&space_info->groups_sem); 1799 goto next; 1800 1801 } 1802 /* 1803 * The block group might no longer meet the reclaim condition by 1804 * the time we get around to reclaiming it, so to avoid 1805 * reclaiming overly full block_groups, skip reclaiming them. 1806 * 1807 * Since the decision making process also depends on the amount 1808 * being freed, pass in a fake giant value to skip that extra 1809 * check, which is more meaningful when adding to the list in 1810 * the first place. 1811 */ 1812 if (!should_reclaim_block_group(bg, bg->length)) { 1813 spin_unlock(&bg->lock); 1814 up_write(&space_info->groups_sem); 1815 goto next; 1816 } 1817 spin_unlock(&bg->lock); 1818 1819 /* Get out fast, in case we're unmounting the filesystem */ 1820 if (btrfs_fs_closing(fs_info)) { 1821 up_write(&space_info->groups_sem); 1822 goto next; 1823 } 1824 1825 /* 1826 * Cache the zone_unusable value before turning the block group 1827 * to read only. As soon as the blog group is read only it's 1828 * zone_unusable value gets moved to the block group's read-only 1829 * bytes and isn't available for calculations anymore. 1830 */ 1831 zone_unusable = bg->zone_unusable; 1832 ret = inc_block_group_ro(bg, 0); 1833 up_write(&space_info->groups_sem); 1834 if (ret < 0) 1835 goto next; 1836 1837 btrfs_info(fs_info, 1838 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1839 bg->start, div_u64(bg->used * 100, bg->length), 1840 div64_u64(zone_unusable * 100, bg->length)); 1841 trace_btrfs_reclaim_block_group(bg); 1842 ret = btrfs_relocate_chunk(fs_info, bg->start); 1843 if (ret) { 1844 btrfs_dec_block_group_ro(bg); 1845 btrfs_err(fs_info, "error relocating chunk %llu", 1846 bg->start); 1847 } 1848 1849 next: 1850 btrfs_put_block_group(bg); 1851 spin_lock(&fs_info->unused_bgs_lock); 1852 } 1853 spin_unlock(&fs_info->unused_bgs_lock); 1854 mutex_unlock(&fs_info->reclaim_bgs_lock); 1855 btrfs_exclop_finish(fs_info); 1856 sb_end_write(fs_info->sb); 1857 } 1858 1859 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1860 { 1861 spin_lock(&fs_info->unused_bgs_lock); 1862 if (!list_empty(&fs_info->reclaim_bgs)) 1863 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1864 spin_unlock(&fs_info->unused_bgs_lock); 1865 } 1866 1867 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1868 { 1869 struct btrfs_fs_info *fs_info = bg->fs_info; 1870 1871 spin_lock(&fs_info->unused_bgs_lock); 1872 if (list_empty(&bg->bg_list)) { 1873 btrfs_get_block_group(bg); 1874 trace_btrfs_add_reclaim_block_group(bg); 1875 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1876 } 1877 spin_unlock(&fs_info->unused_bgs_lock); 1878 } 1879 1880 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1881 struct btrfs_path *path) 1882 { 1883 struct extent_map_tree *em_tree; 1884 struct extent_map *em; 1885 struct btrfs_block_group_item bg; 1886 struct extent_buffer *leaf; 1887 int slot; 1888 u64 flags; 1889 int ret = 0; 1890 1891 slot = path->slots[0]; 1892 leaf = path->nodes[0]; 1893 1894 em_tree = &fs_info->mapping_tree; 1895 read_lock(&em_tree->lock); 1896 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1897 read_unlock(&em_tree->lock); 1898 if (!em) { 1899 btrfs_err(fs_info, 1900 "logical %llu len %llu found bg but no related chunk", 1901 key->objectid, key->offset); 1902 return -ENOENT; 1903 } 1904 1905 if (em->start != key->objectid || em->len != key->offset) { 1906 btrfs_err(fs_info, 1907 "block group %llu len %llu mismatch with chunk %llu len %llu", 1908 key->objectid, key->offset, em->start, em->len); 1909 ret = -EUCLEAN; 1910 goto out_free_em; 1911 } 1912 1913 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1914 sizeof(bg)); 1915 flags = btrfs_stack_block_group_flags(&bg) & 1916 BTRFS_BLOCK_GROUP_TYPE_MASK; 1917 1918 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1919 btrfs_err(fs_info, 1920 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1921 key->objectid, key->offset, flags, 1922 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1923 ret = -EUCLEAN; 1924 } 1925 1926 out_free_em: 1927 free_extent_map(em); 1928 return ret; 1929 } 1930 1931 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1932 struct btrfs_path *path, 1933 struct btrfs_key *key) 1934 { 1935 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1936 int ret; 1937 struct btrfs_key found_key; 1938 1939 btrfs_for_each_slot(root, key, &found_key, path, ret) { 1940 if (found_key.objectid >= key->objectid && 1941 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1942 return read_bg_from_eb(fs_info, &found_key, path); 1943 } 1944 } 1945 return ret; 1946 } 1947 1948 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1949 { 1950 u64 extra_flags = chunk_to_extended(flags) & 1951 BTRFS_EXTENDED_PROFILE_MASK; 1952 1953 write_seqlock(&fs_info->profiles_lock); 1954 if (flags & BTRFS_BLOCK_GROUP_DATA) 1955 fs_info->avail_data_alloc_bits |= extra_flags; 1956 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1957 fs_info->avail_metadata_alloc_bits |= extra_flags; 1958 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1959 fs_info->avail_system_alloc_bits |= extra_flags; 1960 write_sequnlock(&fs_info->profiles_lock); 1961 } 1962 1963 /* 1964 * Map a physical disk address to a list of logical addresses. 1965 * 1966 * @fs_info: the filesystem 1967 * @chunk_start: logical address of block group 1968 * @physical: physical address to map to logical addresses 1969 * @logical: return array of logical addresses which map to @physical 1970 * @naddrs: length of @logical 1971 * @stripe_len: size of IO stripe for the given block group 1972 * 1973 * Maps a particular @physical disk address to a list of @logical addresses. 1974 * Used primarily to exclude those portions of a block group that contain super 1975 * block copies. 1976 */ 1977 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1978 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 1979 { 1980 struct extent_map *em; 1981 struct map_lookup *map; 1982 u64 *buf; 1983 u64 bytenr; 1984 u64 data_stripe_length; 1985 u64 io_stripe_size; 1986 int i, nr = 0; 1987 int ret = 0; 1988 1989 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1990 if (IS_ERR(em)) 1991 return -EIO; 1992 1993 map = em->map_lookup; 1994 data_stripe_length = em->orig_block_len; 1995 io_stripe_size = map->stripe_len; 1996 chunk_start = em->start; 1997 1998 /* For RAID5/6 adjust to a full IO stripe length */ 1999 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2000 io_stripe_size = map->stripe_len * nr_data_stripes(map); 2001 2002 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2003 if (!buf) { 2004 ret = -ENOMEM; 2005 goto out; 2006 } 2007 2008 for (i = 0; i < map->num_stripes; i++) { 2009 bool already_inserted = false; 2010 u64 stripe_nr; 2011 u64 offset; 2012 int j; 2013 2014 if (!in_range(physical, map->stripes[i].physical, 2015 data_stripe_length)) 2016 continue; 2017 2018 stripe_nr = physical - map->stripes[i].physical; 2019 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 2020 2021 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2022 BTRFS_BLOCK_GROUP_RAID10)) { 2023 stripe_nr = stripe_nr * map->num_stripes + i; 2024 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 2025 } 2026 /* 2027 * The remaining case would be for RAID56, multiply by 2028 * nr_data_stripes(). Alternatively, just use rmap_len below 2029 * instead of map->stripe_len 2030 */ 2031 2032 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2033 2034 /* Ensure we don't add duplicate addresses */ 2035 for (j = 0; j < nr; j++) { 2036 if (buf[j] == bytenr) { 2037 already_inserted = true; 2038 break; 2039 } 2040 } 2041 2042 if (!already_inserted) 2043 buf[nr++] = bytenr; 2044 } 2045 2046 *logical = buf; 2047 *naddrs = nr; 2048 *stripe_len = io_stripe_size; 2049 out: 2050 free_extent_map(em); 2051 return ret; 2052 } 2053 2054 static int exclude_super_stripes(struct btrfs_block_group *cache) 2055 { 2056 struct btrfs_fs_info *fs_info = cache->fs_info; 2057 const bool zoned = btrfs_is_zoned(fs_info); 2058 u64 bytenr; 2059 u64 *logical; 2060 int stripe_len; 2061 int i, nr, ret; 2062 2063 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2064 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2065 cache->bytes_super += stripe_len; 2066 ret = btrfs_add_excluded_extent(fs_info, cache->start, 2067 stripe_len); 2068 if (ret) 2069 return ret; 2070 } 2071 2072 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2073 bytenr = btrfs_sb_offset(i); 2074 ret = btrfs_rmap_block(fs_info, cache->start, 2075 bytenr, &logical, &nr, &stripe_len); 2076 if (ret) 2077 return ret; 2078 2079 /* Shouldn't have super stripes in sequential zones */ 2080 if (zoned && nr) { 2081 btrfs_err(fs_info, 2082 "zoned: block group %llu must not contain super block", 2083 cache->start); 2084 return -EUCLEAN; 2085 } 2086 2087 while (nr--) { 2088 u64 len = min_t(u64, stripe_len, 2089 cache->start + cache->length - logical[nr]); 2090 2091 cache->bytes_super += len; 2092 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 2093 len); 2094 if (ret) { 2095 kfree(logical); 2096 return ret; 2097 } 2098 } 2099 2100 kfree(logical); 2101 } 2102 return 0; 2103 } 2104 2105 static struct btrfs_block_group *btrfs_create_block_group_cache( 2106 struct btrfs_fs_info *fs_info, u64 start) 2107 { 2108 struct btrfs_block_group *cache; 2109 2110 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2111 if (!cache) 2112 return NULL; 2113 2114 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2115 GFP_NOFS); 2116 if (!cache->free_space_ctl) { 2117 kfree(cache); 2118 return NULL; 2119 } 2120 2121 cache->start = start; 2122 2123 cache->fs_info = fs_info; 2124 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2125 2126 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2127 2128 refcount_set(&cache->refs, 1); 2129 spin_lock_init(&cache->lock); 2130 init_rwsem(&cache->data_rwsem); 2131 INIT_LIST_HEAD(&cache->list); 2132 INIT_LIST_HEAD(&cache->cluster_list); 2133 INIT_LIST_HEAD(&cache->bg_list); 2134 INIT_LIST_HEAD(&cache->ro_list); 2135 INIT_LIST_HEAD(&cache->discard_list); 2136 INIT_LIST_HEAD(&cache->dirty_list); 2137 INIT_LIST_HEAD(&cache->io_list); 2138 INIT_LIST_HEAD(&cache->active_bg_list); 2139 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2140 atomic_set(&cache->frozen, 0); 2141 mutex_init(&cache->free_space_lock); 2142 cache->full_stripe_locks_root.root = RB_ROOT; 2143 mutex_init(&cache->full_stripe_locks_root.lock); 2144 2145 return cache; 2146 } 2147 2148 /* 2149 * Iterate all chunks and verify that each of them has the corresponding block 2150 * group 2151 */ 2152 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2153 { 2154 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2155 struct extent_map *em; 2156 struct btrfs_block_group *bg; 2157 u64 start = 0; 2158 int ret = 0; 2159 2160 while (1) { 2161 read_lock(&map_tree->lock); 2162 /* 2163 * lookup_extent_mapping will return the first extent map 2164 * intersecting the range, so setting @len to 1 is enough to 2165 * get the first chunk. 2166 */ 2167 em = lookup_extent_mapping(map_tree, start, 1); 2168 read_unlock(&map_tree->lock); 2169 if (!em) 2170 break; 2171 2172 bg = btrfs_lookup_block_group(fs_info, em->start); 2173 if (!bg) { 2174 btrfs_err(fs_info, 2175 "chunk start=%llu len=%llu doesn't have corresponding block group", 2176 em->start, em->len); 2177 ret = -EUCLEAN; 2178 free_extent_map(em); 2179 break; 2180 } 2181 if (bg->start != em->start || bg->length != em->len || 2182 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2183 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2184 btrfs_err(fs_info, 2185 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2186 em->start, em->len, 2187 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2188 bg->start, bg->length, 2189 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2190 ret = -EUCLEAN; 2191 free_extent_map(em); 2192 btrfs_put_block_group(bg); 2193 break; 2194 } 2195 start = em->start + em->len; 2196 free_extent_map(em); 2197 btrfs_put_block_group(bg); 2198 } 2199 return ret; 2200 } 2201 2202 static int read_one_block_group(struct btrfs_fs_info *info, 2203 struct btrfs_block_group_item *bgi, 2204 const struct btrfs_key *key, 2205 int need_clear) 2206 { 2207 struct btrfs_block_group *cache; 2208 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2209 int ret; 2210 2211 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2212 2213 cache = btrfs_create_block_group_cache(info, key->objectid); 2214 if (!cache) 2215 return -ENOMEM; 2216 2217 cache->length = key->offset; 2218 cache->used = btrfs_stack_block_group_used(bgi); 2219 cache->commit_used = cache->used; 2220 cache->flags = btrfs_stack_block_group_flags(bgi); 2221 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2222 2223 set_free_space_tree_thresholds(cache); 2224 2225 if (need_clear) { 2226 /* 2227 * When we mount with old space cache, we need to 2228 * set BTRFS_DC_CLEAR and set dirty flag. 2229 * 2230 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2231 * truncate the old free space cache inode and 2232 * setup a new one. 2233 * b) Setting 'dirty flag' makes sure that we flush 2234 * the new space cache info onto disk. 2235 */ 2236 if (btrfs_test_opt(info, SPACE_CACHE)) 2237 cache->disk_cache_state = BTRFS_DC_CLEAR; 2238 } 2239 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2240 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2241 btrfs_err(info, 2242 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2243 cache->start); 2244 ret = -EINVAL; 2245 goto error; 2246 } 2247 2248 ret = btrfs_load_block_group_zone_info(cache, false); 2249 if (ret) { 2250 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2251 cache->start); 2252 goto error; 2253 } 2254 2255 /* 2256 * We need to exclude the super stripes now so that the space info has 2257 * super bytes accounted for, otherwise we'll think we have more space 2258 * than we actually do. 2259 */ 2260 ret = exclude_super_stripes(cache); 2261 if (ret) { 2262 /* We may have excluded something, so call this just in case. */ 2263 btrfs_free_excluded_extents(cache); 2264 goto error; 2265 } 2266 2267 /* 2268 * For zoned filesystem, space after the allocation offset is the only 2269 * free space for a block group. So, we don't need any caching work. 2270 * btrfs_calc_zone_unusable() will set the amount of free space and 2271 * zone_unusable space. 2272 * 2273 * For regular filesystem, check for two cases, either we are full, and 2274 * therefore don't need to bother with the caching work since we won't 2275 * find any space, or we are empty, and we can just add all the space 2276 * in and be done with it. This saves us _a_lot_ of time, particularly 2277 * in the full case. 2278 */ 2279 if (btrfs_is_zoned(info)) { 2280 btrfs_calc_zone_unusable(cache); 2281 /* Should not have any excluded extents. Just in case, though. */ 2282 btrfs_free_excluded_extents(cache); 2283 } else if (cache->length == cache->used) { 2284 cache->cached = BTRFS_CACHE_FINISHED; 2285 btrfs_free_excluded_extents(cache); 2286 } else if (cache->used == 0) { 2287 cache->cached = BTRFS_CACHE_FINISHED; 2288 add_new_free_space(cache, cache->start, 2289 cache->start + cache->length); 2290 btrfs_free_excluded_extents(cache); 2291 } 2292 2293 ret = btrfs_add_block_group_cache(info, cache); 2294 if (ret) { 2295 btrfs_remove_free_space_cache(cache); 2296 goto error; 2297 } 2298 trace_btrfs_add_block_group(info, cache, 0); 2299 btrfs_add_bg_to_space_info(info, cache); 2300 2301 set_avail_alloc_bits(info, cache->flags); 2302 if (btrfs_chunk_writeable(info, cache->start)) { 2303 if (cache->used == 0) { 2304 ASSERT(list_empty(&cache->bg_list)); 2305 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2306 btrfs_discard_queue_work(&info->discard_ctl, cache); 2307 else 2308 btrfs_mark_bg_unused(cache); 2309 } 2310 } else { 2311 inc_block_group_ro(cache, 1); 2312 } 2313 2314 return 0; 2315 error: 2316 btrfs_put_block_group(cache); 2317 return ret; 2318 } 2319 2320 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2321 { 2322 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2323 struct rb_node *node; 2324 int ret = 0; 2325 2326 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2327 struct extent_map *em; 2328 struct map_lookup *map; 2329 struct btrfs_block_group *bg; 2330 2331 em = rb_entry(node, struct extent_map, rb_node); 2332 map = em->map_lookup; 2333 bg = btrfs_create_block_group_cache(fs_info, em->start); 2334 if (!bg) { 2335 ret = -ENOMEM; 2336 break; 2337 } 2338 2339 /* Fill dummy cache as FULL */ 2340 bg->length = em->len; 2341 bg->flags = map->type; 2342 bg->cached = BTRFS_CACHE_FINISHED; 2343 bg->used = em->len; 2344 bg->flags = map->type; 2345 ret = btrfs_add_block_group_cache(fs_info, bg); 2346 /* 2347 * We may have some valid block group cache added already, in 2348 * that case we skip to the next one. 2349 */ 2350 if (ret == -EEXIST) { 2351 ret = 0; 2352 btrfs_put_block_group(bg); 2353 continue; 2354 } 2355 2356 if (ret) { 2357 btrfs_remove_free_space_cache(bg); 2358 btrfs_put_block_group(bg); 2359 break; 2360 } 2361 2362 btrfs_add_bg_to_space_info(fs_info, bg); 2363 2364 set_avail_alloc_bits(fs_info, bg->flags); 2365 } 2366 if (!ret) 2367 btrfs_init_global_block_rsv(fs_info); 2368 return ret; 2369 } 2370 2371 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2372 { 2373 struct btrfs_root *root = btrfs_block_group_root(info); 2374 struct btrfs_path *path; 2375 int ret; 2376 struct btrfs_block_group *cache; 2377 struct btrfs_space_info *space_info; 2378 struct btrfs_key key; 2379 int need_clear = 0; 2380 u64 cache_gen; 2381 2382 /* 2383 * Either no extent root (with ibadroots rescue option) or we have 2384 * unsupported RO options. The fs can never be mounted read-write, so no 2385 * need to waste time searching block group items. 2386 * 2387 * This also allows new extent tree related changes to be RO compat, 2388 * no need for a full incompat flag. 2389 */ 2390 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2391 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2392 return fill_dummy_bgs(info); 2393 2394 key.objectid = 0; 2395 key.offset = 0; 2396 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2397 path = btrfs_alloc_path(); 2398 if (!path) 2399 return -ENOMEM; 2400 2401 cache_gen = btrfs_super_cache_generation(info->super_copy); 2402 if (btrfs_test_opt(info, SPACE_CACHE) && 2403 btrfs_super_generation(info->super_copy) != cache_gen) 2404 need_clear = 1; 2405 if (btrfs_test_opt(info, CLEAR_CACHE)) 2406 need_clear = 1; 2407 2408 while (1) { 2409 struct btrfs_block_group_item bgi; 2410 struct extent_buffer *leaf; 2411 int slot; 2412 2413 ret = find_first_block_group(info, path, &key); 2414 if (ret > 0) 2415 break; 2416 if (ret != 0) 2417 goto error; 2418 2419 leaf = path->nodes[0]; 2420 slot = path->slots[0]; 2421 2422 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2423 sizeof(bgi)); 2424 2425 btrfs_item_key_to_cpu(leaf, &key, slot); 2426 btrfs_release_path(path); 2427 ret = read_one_block_group(info, &bgi, &key, need_clear); 2428 if (ret < 0) 2429 goto error; 2430 key.objectid += key.offset; 2431 key.offset = 0; 2432 } 2433 btrfs_release_path(path); 2434 2435 list_for_each_entry(space_info, &info->space_info, list) { 2436 int i; 2437 2438 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2439 if (list_empty(&space_info->block_groups[i])) 2440 continue; 2441 cache = list_first_entry(&space_info->block_groups[i], 2442 struct btrfs_block_group, 2443 list); 2444 btrfs_sysfs_add_block_group_type(cache); 2445 } 2446 2447 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2448 (BTRFS_BLOCK_GROUP_RAID10 | 2449 BTRFS_BLOCK_GROUP_RAID1_MASK | 2450 BTRFS_BLOCK_GROUP_RAID56_MASK | 2451 BTRFS_BLOCK_GROUP_DUP))) 2452 continue; 2453 /* 2454 * Avoid allocating from un-mirrored block group if there are 2455 * mirrored block groups. 2456 */ 2457 list_for_each_entry(cache, 2458 &space_info->block_groups[BTRFS_RAID_RAID0], 2459 list) 2460 inc_block_group_ro(cache, 1); 2461 list_for_each_entry(cache, 2462 &space_info->block_groups[BTRFS_RAID_SINGLE], 2463 list) 2464 inc_block_group_ro(cache, 1); 2465 } 2466 2467 btrfs_init_global_block_rsv(info); 2468 ret = check_chunk_block_group_mappings(info); 2469 error: 2470 btrfs_free_path(path); 2471 /* 2472 * We've hit some error while reading the extent tree, and have 2473 * rescue=ibadroots mount option. 2474 * Try to fill the tree using dummy block groups so that the user can 2475 * continue to mount and grab their data. 2476 */ 2477 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2478 ret = fill_dummy_bgs(info); 2479 return ret; 2480 } 2481 2482 /* 2483 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2484 * allocation. 2485 * 2486 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2487 * phases. 2488 */ 2489 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2490 struct btrfs_block_group *block_group) 2491 { 2492 struct btrfs_fs_info *fs_info = trans->fs_info; 2493 struct btrfs_block_group_item bgi; 2494 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2495 struct btrfs_key key; 2496 2497 spin_lock(&block_group->lock); 2498 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2499 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2500 block_group->global_root_id); 2501 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2502 key.objectid = block_group->start; 2503 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2504 key.offset = block_group->length; 2505 spin_unlock(&block_group->lock); 2506 2507 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2508 } 2509 2510 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2511 struct btrfs_device *device, u64 chunk_offset, 2512 u64 start, u64 num_bytes) 2513 { 2514 struct btrfs_fs_info *fs_info = device->fs_info; 2515 struct btrfs_root *root = fs_info->dev_root; 2516 struct btrfs_path *path; 2517 struct btrfs_dev_extent *extent; 2518 struct extent_buffer *leaf; 2519 struct btrfs_key key; 2520 int ret; 2521 2522 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2523 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2524 path = btrfs_alloc_path(); 2525 if (!path) 2526 return -ENOMEM; 2527 2528 key.objectid = device->devid; 2529 key.type = BTRFS_DEV_EXTENT_KEY; 2530 key.offset = start; 2531 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2532 if (ret) 2533 goto out; 2534 2535 leaf = path->nodes[0]; 2536 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2537 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2538 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2539 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2540 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2541 2542 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2543 btrfs_mark_buffer_dirty(leaf); 2544 out: 2545 btrfs_free_path(path); 2546 return ret; 2547 } 2548 2549 /* 2550 * This function belongs to phase 2. 2551 * 2552 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2553 * phases. 2554 */ 2555 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2556 u64 chunk_offset, u64 chunk_size) 2557 { 2558 struct btrfs_fs_info *fs_info = trans->fs_info; 2559 struct btrfs_device *device; 2560 struct extent_map *em; 2561 struct map_lookup *map; 2562 u64 dev_offset; 2563 u64 stripe_size; 2564 int i; 2565 int ret = 0; 2566 2567 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2568 if (IS_ERR(em)) 2569 return PTR_ERR(em); 2570 2571 map = em->map_lookup; 2572 stripe_size = em->orig_block_len; 2573 2574 /* 2575 * Take the device list mutex to prevent races with the final phase of 2576 * a device replace operation that replaces the device object associated 2577 * with the map's stripes, because the device object's id can change 2578 * at any time during that final phase of the device replace operation 2579 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2580 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2581 * resulting in persisting a device extent item with such ID. 2582 */ 2583 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2584 for (i = 0; i < map->num_stripes; i++) { 2585 device = map->stripes[i].dev; 2586 dev_offset = map->stripes[i].physical; 2587 2588 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2589 stripe_size); 2590 if (ret) 2591 break; 2592 } 2593 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2594 2595 free_extent_map(em); 2596 return ret; 2597 } 2598 2599 /* 2600 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2601 * chunk allocation. 2602 * 2603 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2604 * phases. 2605 */ 2606 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2607 { 2608 struct btrfs_fs_info *fs_info = trans->fs_info; 2609 struct btrfs_block_group *block_group; 2610 int ret = 0; 2611 2612 while (!list_empty(&trans->new_bgs)) { 2613 int index; 2614 2615 block_group = list_first_entry(&trans->new_bgs, 2616 struct btrfs_block_group, 2617 bg_list); 2618 if (ret) 2619 goto next; 2620 2621 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2622 2623 ret = insert_block_group_item(trans, block_group); 2624 if (ret) 2625 btrfs_abort_transaction(trans, ret); 2626 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2627 &block_group->runtime_flags)) { 2628 mutex_lock(&fs_info->chunk_mutex); 2629 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2630 mutex_unlock(&fs_info->chunk_mutex); 2631 if (ret) 2632 btrfs_abort_transaction(trans, ret); 2633 } 2634 ret = insert_dev_extents(trans, block_group->start, 2635 block_group->length); 2636 if (ret) 2637 btrfs_abort_transaction(trans, ret); 2638 add_block_group_free_space(trans, block_group); 2639 2640 /* 2641 * If we restriped during balance, we may have added a new raid 2642 * type, so now add the sysfs entries when it is safe to do so. 2643 * We don't have to worry about locking here as it's handled in 2644 * btrfs_sysfs_add_block_group_type. 2645 */ 2646 if (block_group->space_info->block_group_kobjs[index] == NULL) 2647 btrfs_sysfs_add_block_group_type(block_group); 2648 2649 /* Already aborted the transaction if it failed. */ 2650 next: 2651 btrfs_delayed_refs_rsv_release(fs_info, 1); 2652 list_del_init(&block_group->bg_list); 2653 } 2654 btrfs_trans_release_chunk_metadata(trans); 2655 } 2656 2657 /* 2658 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2659 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2660 */ 2661 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2662 { 2663 u64 div = SZ_1G; 2664 u64 index; 2665 2666 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2667 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2668 2669 /* If we have a smaller fs index based on 128MiB. */ 2670 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2671 div = SZ_128M; 2672 2673 offset = div64_u64(offset, div); 2674 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2675 return index; 2676 } 2677 2678 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2679 u64 bytes_used, u64 type, 2680 u64 chunk_offset, u64 size) 2681 { 2682 struct btrfs_fs_info *fs_info = trans->fs_info; 2683 struct btrfs_block_group *cache; 2684 int ret; 2685 2686 btrfs_set_log_full_commit(trans); 2687 2688 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2689 if (!cache) 2690 return ERR_PTR(-ENOMEM); 2691 2692 cache->length = size; 2693 set_free_space_tree_thresholds(cache); 2694 cache->used = bytes_used; 2695 cache->flags = type; 2696 cache->cached = BTRFS_CACHE_FINISHED; 2697 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2698 2699 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2700 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2701 2702 ret = btrfs_load_block_group_zone_info(cache, true); 2703 if (ret) { 2704 btrfs_put_block_group(cache); 2705 return ERR_PTR(ret); 2706 } 2707 2708 ret = exclude_super_stripes(cache); 2709 if (ret) { 2710 /* We may have excluded something, so call this just in case */ 2711 btrfs_free_excluded_extents(cache); 2712 btrfs_put_block_group(cache); 2713 return ERR_PTR(ret); 2714 } 2715 2716 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2717 2718 btrfs_free_excluded_extents(cache); 2719 2720 /* 2721 * Ensure the corresponding space_info object is created and 2722 * assigned to our block group. We want our bg to be added to the rbtree 2723 * with its ->space_info set. 2724 */ 2725 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2726 ASSERT(cache->space_info); 2727 2728 ret = btrfs_add_block_group_cache(fs_info, cache); 2729 if (ret) { 2730 btrfs_remove_free_space_cache(cache); 2731 btrfs_put_block_group(cache); 2732 return ERR_PTR(ret); 2733 } 2734 2735 /* 2736 * Now that our block group has its ->space_info set and is inserted in 2737 * the rbtree, update the space info's counters. 2738 */ 2739 trace_btrfs_add_block_group(fs_info, cache, 1); 2740 btrfs_add_bg_to_space_info(fs_info, cache); 2741 btrfs_update_global_block_rsv(fs_info); 2742 2743 #ifdef CONFIG_BTRFS_DEBUG 2744 if (btrfs_should_fragment_free_space(cache)) { 2745 u64 new_bytes_used = size - bytes_used; 2746 2747 cache->space_info->bytes_used += new_bytes_used >> 1; 2748 fragment_free_space(cache); 2749 } 2750 #endif 2751 2752 list_add_tail(&cache->bg_list, &trans->new_bgs); 2753 trans->delayed_ref_updates++; 2754 btrfs_update_delayed_refs_rsv(trans); 2755 2756 set_avail_alloc_bits(fs_info, type); 2757 return cache; 2758 } 2759 2760 /* 2761 * Mark one block group RO, can be called several times for the same block 2762 * group. 2763 * 2764 * @cache: the destination block group 2765 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2766 * ensure we still have some free space after marking this 2767 * block group RO. 2768 */ 2769 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2770 bool do_chunk_alloc) 2771 { 2772 struct btrfs_fs_info *fs_info = cache->fs_info; 2773 struct btrfs_trans_handle *trans; 2774 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2775 u64 alloc_flags; 2776 int ret; 2777 bool dirty_bg_running; 2778 2779 /* 2780 * This can only happen when we are doing read-only scrub on read-only 2781 * mount. 2782 * In that case we should not start a new transaction on read-only fs. 2783 * Thus here we skip all chunk allocations. 2784 */ 2785 if (sb_rdonly(fs_info->sb)) { 2786 mutex_lock(&fs_info->ro_block_group_mutex); 2787 ret = inc_block_group_ro(cache, 0); 2788 mutex_unlock(&fs_info->ro_block_group_mutex); 2789 return ret; 2790 } 2791 2792 do { 2793 trans = btrfs_join_transaction(root); 2794 if (IS_ERR(trans)) 2795 return PTR_ERR(trans); 2796 2797 dirty_bg_running = false; 2798 2799 /* 2800 * We're not allowed to set block groups readonly after the dirty 2801 * block group cache has started writing. If it already started, 2802 * back off and let this transaction commit. 2803 */ 2804 mutex_lock(&fs_info->ro_block_group_mutex); 2805 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2806 u64 transid = trans->transid; 2807 2808 mutex_unlock(&fs_info->ro_block_group_mutex); 2809 btrfs_end_transaction(trans); 2810 2811 ret = btrfs_wait_for_commit(fs_info, transid); 2812 if (ret) 2813 return ret; 2814 dirty_bg_running = true; 2815 } 2816 } while (dirty_bg_running); 2817 2818 if (do_chunk_alloc) { 2819 /* 2820 * If we are changing raid levels, try to allocate a 2821 * corresponding block group with the new raid level. 2822 */ 2823 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2824 if (alloc_flags != cache->flags) { 2825 ret = btrfs_chunk_alloc(trans, alloc_flags, 2826 CHUNK_ALLOC_FORCE); 2827 /* 2828 * ENOSPC is allowed here, we may have enough space 2829 * already allocated at the new raid level to carry on 2830 */ 2831 if (ret == -ENOSPC) 2832 ret = 0; 2833 if (ret < 0) 2834 goto out; 2835 } 2836 } 2837 2838 ret = inc_block_group_ro(cache, 0); 2839 if (!do_chunk_alloc || ret == -ETXTBSY) 2840 goto unlock_out; 2841 if (!ret) 2842 goto out; 2843 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2844 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2845 if (ret < 0) 2846 goto out; 2847 /* 2848 * We have allocated a new chunk. We also need to activate that chunk to 2849 * grant metadata tickets for zoned filesystem. 2850 */ 2851 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2852 if (ret < 0) 2853 goto out; 2854 2855 ret = inc_block_group_ro(cache, 0); 2856 if (ret == -ETXTBSY) 2857 goto unlock_out; 2858 out: 2859 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2860 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2861 mutex_lock(&fs_info->chunk_mutex); 2862 check_system_chunk(trans, alloc_flags); 2863 mutex_unlock(&fs_info->chunk_mutex); 2864 } 2865 unlock_out: 2866 mutex_unlock(&fs_info->ro_block_group_mutex); 2867 2868 btrfs_end_transaction(trans); 2869 return ret; 2870 } 2871 2872 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2873 { 2874 struct btrfs_space_info *sinfo = cache->space_info; 2875 u64 num_bytes; 2876 2877 BUG_ON(!cache->ro); 2878 2879 spin_lock(&sinfo->lock); 2880 spin_lock(&cache->lock); 2881 if (!--cache->ro) { 2882 if (btrfs_is_zoned(cache->fs_info)) { 2883 /* Migrate zone_unusable bytes back */ 2884 cache->zone_unusable = 2885 (cache->alloc_offset - cache->used) + 2886 (cache->length - cache->zone_capacity); 2887 sinfo->bytes_zone_unusable += cache->zone_unusable; 2888 sinfo->bytes_readonly -= cache->zone_unusable; 2889 } 2890 num_bytes = cache->length - cache->reserved - 2891 cache->pinned - cache->bytes_super - 2892 cache->zone_unusable - cache->used; 2893 sinfo->bytes_readonly -= num_bytes; 2894 list_del_init(&cache->ro_list); 2895 } 2896 spin_unlock(&cache->lock); 2897 spin_unlock(&sinfo->lock); 2898 } 2899 2900 static int update_block_group_item(struct btrfs_trans_handle *trans, 2901 struct btrfs_path *path, 2902 struct btrfs_block_group *cache) 2903 { 2904 struct btrfs_fs_info *fs_info = trans->fs_info; 2905 int ret; 2906 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2907 unsigned long bi; 2908 struct extent_buffer *leaf; 2909 struct btrfs_block_group_item bgi; 2910 struct btrfs_key key; 2911 u64 old_commit_used; 2912 u64 used; 2913 2914 /* 2915 * Block group items update can be triggered out of commit transaction 2916 * critical section, thus we need a consistent view of used bytes. 2917 * We cannot use cache->used directly outside of the spin lock, as it 2918 * may be changed. 2919 */ 2920 spin_lock(&cache->lock); 2921 old_commit_used = cache->commit_used; 2922 used = cache->used; 2923 /* No change in used bytes, can safely skip it. */ 2924 if (cache->commit_used == used) { 2925 spin_unlock(&cache->lock); 2926 return 0; 2927 } 2928 cache->commit_used = used; 2929 spin_unlock(&cache->lock); 2930 2931 key.objectid = cache->start; 2932 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2933 key.offset = cache->length; 2934 2935 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2936 if (ret) { 2937 if (ret > 0) 2938 ret = -ENOENT; 2939 goto fail; 2940 } 2941 2942 leaf = path->nodes[0]; 2943 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2944 btrfs_set_stack_block_group_used(&bgi, used); 2945 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2946 cache->global_root_id); 2947 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2948 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2949 btrfs_mark_buffer_dirty(leaf); 2950 fail: 2951 btrfs_release_path(path); 2952 /* We didn't update the block group item, need to revert @commit_used. */ 2953 if (ret < 0) { 2954 spin_lock(&cache->lock); 2955 cache->commit_used = old_commit_used; 2956 spin_unlock(&cache->lock); 2957 } 2958 return ret; 2959 2960 } 2961 2962 static int cache_save_setup(struct btrfs_block_group *block_group, 2963 struct btrfs_trans_handle *trans, 2964 struct btrfs_path *path) 2965 { 2966 struct btrfs_fs_info *fs_info = block_group->fs_info; 2967 struct btrfs_root *root = fs_info->tree_root; 2968 struct inode *inode = NULL; 2969 struct extent_changeset *data_reserved = NULL; 2970 u64 alloc_hint = 0; 2971 int dcs = BTRFS_DC_ERROR; 2972 u64 cache_size = 0; 2973 int retries = 0; 2974 int ret = 0; 2975 2976 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2977 return 0; 2978 2979 /* 2980 * If this block group is smaller than 100 megs don't bother caching the 2981 * block group. 2982 */ 2983 if (block_group->length < (100 * SZ_1M)) { 2984 spin_lock(&block_group->lock); 2985 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2986 spin_unlock(&block_group->lock); 2987 return 0; 2988 } 2989 2990 if (TRANS_ABORTED(trans)) 2991 return 0; 2992 again: 2993 inode = lookup_free_space_inode(block_group, path); 2994 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2995 ret = PTR_ERR(inode); 2996 btrfs_release_path(path); 2997 goto out; 2998 } 2999 3000 if (IS_ERR(inode)) { 3001 BUG_ON(retries); 3002 retries++; 3003 3004 if (block_group->ro) 3005 goto out_free; 3006 3007 ret = create_free_space_inode(trans, block_group, path); 3008 if (ret) 3009 goto out_free; 3010 goto again; 3011 } 3012 3013 /* 3014 * We want to set the generation to 0, that way if anything goes wrong 3015 * from here on out we know not to trust this cache when we load up next 3016 * time. 3017 */ 3018 BTRFS_I(inode)->generation = 0; 3019 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3020 if (ret) { 3021 /* 3022 * So theoretically we could recover from this, simply set the 3023 * super cache generation to 0 so we know to invalidate the 3024 * cache, but then we'd have to keep track of the block groups 3025 * that fail this way so we know we _have_ to reset this cache 3026 * before the next commit or risk reading stale cache. So to 3027 * limit our exposure to horrible edge cases lets just abort the 3028 * transaction, this only happens in really bad situations 3029 * anyway. 3030 */ 3031 btrfs_abort_transaction(trans, ret); 3032 goto out_put; 3033 } 3034 WARN_ON(ret); 3035 3036 /* We've already setup this transaction, go ahead and exit */ 3037 if (block_group->cache_generation == trans->transid && 3038 i_size_read(inode)) { 3039 dcs = BTRFS_DC_SETUP; 3040 goto out_put; 3041 } 3042 3043 if (i_size_read(inode) > 0) { 3044 ret = btrfs_check_trunc_cache_free_space(fs_info, 3045 &fs_info->global_block_rsv); 3046 if (ret) 3047 goto out_put; 3048 3049 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3050 if (ret) 3051 goto out_put; 3052 } 3053 3054 spin_lock(&block_group->lock); 3055 if (block_group->cached != BTRFS_CACHE_FINISHED || 3056 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3057 /* 3058 * don't bother trying to write stuff out _if_ 3059 * a) we're not cached, 3060 * b) we're with nospace_cache mount option, 3061 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3062 */ 3063 dcs = BTRFS_DC_WRITTEN; 3064 spin_unlock(&block_group->lock); 3065 goto out_put; 3066 } 3067 spin_unlock(&block_group->lock); 3068 3069 /* 3070 * We hit an ENOSPC when setting up the cache in this transaction, just 3071 * skip doing the setup, we've already cleared the cache so we're safe. 3072 */ 3073 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3074 ret = -ENOSPC; 3075 goto out_put; 3076 } 3077 3078 /* 3079 * Try to preallocate enough space based on how big the block group is. 3080 * Keep in mind this has to include any pinned space which could end up 3081 * taking up quite a bit since it's not folded into the other space 3082 * cache. 3083 */ 3084 cache_size = div_u64(block_group->length, SZ_256M); 3085 if (!cache_size) 3086 cache_size = 1; 3087 3088 cache_size *= 16; 3089 cache_size *= fs_info->sectorsize; 3090 3091 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3092 cache_size, false); 3093 if (ret) 3094 goto out_put; 3095 3096 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3097 cache_size, cache_size, 3098 &alloc_hint); 3099 /* 3100 * Our cache requires contiguous chunks so that we don't modify a bunch 3101 * of metadata or split extents when writing the cache out, which means 3102 * we can enospc if we are heavily fragmented in addition to just normal 3103 * out of space conditions. So if we hit this just skip setting up any 3104 * other block groups for this transaction, maybe we'll unpin enough 3105 * space the next time around. 3106 */ 3107 if (!ret) 3108 dcs = BTRFS_DC_SETUP; 3109 else if (ret == -ENOSPC) 3110 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3111 3112 out_put: 3113 iput(inode); 3114 out_free: 3115 btrfs_release_path(path); 3116 out: 3117 spin_lock(&block_group->lock); 3118 if (!ret && dcs == BTRFS_DC_SETUP) 3119 block_group->cache_generation = trans->transid; 3120 block_group->disk_cache_state = dcs; 3121 spin_unlock(&block_group->lock); 3122 3123 extent_changeset_free(data_reserved); 3124 return ret; 3125 } 3126 3127 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3128 { 3129 struct btrfs_fs_info *fs_info = trans->fs_info; 3130 struct btrfs_block_group *cache, *tmp; 3131 struct btrfs_transaction *cur_trans = trans->transaction; 3132 struct btrfs_path *path; 3133 3134 if (list_empty(&cur_trans->dirty_bgs) || 3135 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3136 return 0; 3137 3138 path = btrfs_alloc_path(); 3139 if (!path) 3140 return -ENOMEM; 3141 3142 /* Could add new block groups, use _safe just in case */ 3143 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3144 dirty_list) { 3145 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3146 cache_save_setup(cache, trans, path); 3147 } 3148 3149 btrfs_free_path(path); 3150 return 0; 3151 } 3152 3153 /* 3154 * Transaction commit does final block group cache writeback during a critical 3155 * section where nothing is allowed to change the FS. This is required in 3156 * order for the cache to actually match the block group, but can introduce a 3157 * lot of latency into the commit. 3158 * 3159 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3160 * There's a chance we'll have to redo some of it if the block group changes 3161 * again during the commit, but it greatly reduces the commit latency by 3162 * getting rid of the easy block groups while we're still allowing others to 3163 * join the commit. 3164 */ 3165 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3166 { 3167 struct btrfs_fs_info *fs_info = trans->fs_info; 3168 struct btrfs_block_group *cache; 3169 struct btrfs_transaction *cur_trans = trans->transaction; 3170 int ret = 0; 3171 int should_put; 3172 struct btrfs_path *path = NULL; 3173 LIST_HEAD(dirty); 3174 struct list_head *io = &cur_trans->io_bgs; 3175 int loops = 0; 3176 3177 spin_lock(&cur_trans->dirty_bgs_lock); 3178 if (list_empty(&cur_trans->dirty_bgs)) { 3179 spin_unlock(&cur_trans->dirty_bgs_lock); 3180 return 0; 3181 } 3182 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3183 spin_unlock(&cur_trans->dirty_bgs_lock); 3184 3185 again: 3186 /* Make sure all the block groups on our dirty list actually exist */ 3187 btrfs_create_pending_block_groups(trans); 3188 3189 if (!path) { 3190 path = btrfs_alloc_path(); 3191 if (!path) { 3192 ret = -ENOMEM; 3193 goto out; 3194 } 3195 } 3196 3197 /* 3198 * cache_write_mutex is here only to save us from balance or automatic 3199 * removal of empty block groups deleting this block group while we are 3200 * writing out the cache 3201 */ 3202 mutex_lock(&trans->transaction->cache_write_mutex); 3203 while (!list_empty(&dirty)) { 3204 bool drop_reserve = true; 3205 3206 cache = list_first_entry(&dirty, struct btrfs_block_group, 3207 dirty_list); 3208 /* 3209 * This can happen if something re-dirties a block group that 3210 * is already under IO. Just wait for it to finish and then do 3211 * it all again 3212 */ 3213 if (!list_empty(&cache->io_list)) { 3214 list_del_init(&cache->io_list); 3215 btrfs_wait_cache_io(trans, cache, path); 3216 btrfs_put_block_group(cache); 3217 } 3218 3219 3220 /* 3221 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3222 * it should update the cache_state. Don't delete until after 3223 * we wait. 3224 * 3225 * Since we're not running in the commit critical section 3226 * we need the dirty_bgs_lock to protect from update_block_group 3227 */ 3228 spin_lock(&cur_trans->dirty_bgs_lock); 3229 list_del_init(&cache->dirty_list); 3230 spin_unlock(&cur_trans->dirty_bgs_lock); 3231 3232 should_put = 1; 3233 3234 cache_save_setup(cache, trans, path); 3235 3236 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3237 cache->io_ctl.inode = NULL; 3238 ret = btrfs_write_out_cache(trans, cache, path); 3239 if (ret == 0 && cache->io_ctl.inode) { 3240 should_put = 0; 3241 3242 /* 3243 * The cache_write_mutex is protecting the 3244 * io_list, also refer to the definition of 3245 * btrfs_transaction::io_bgs for more details 3246 */ 3247 list_add_tail(&cache->io_list, io); 3248 } else { 3249 /* 3250 * If we failed to write the cache, the 3251 * generation will be bad and life goes on 3252 */ 3253 ret = 0; 3254 } 3255 } 3256 if (!ret) { 3257 ret = update_block_group_item(trans, path, cache); 3258 /* 3259 * Our block group might still be attached to the list 3260 * of new block groups in the transaction handle of some 3261 * other task (struct btrfs_trans_handle->new_bgs). This 3262 * means its block group item isn't yet in the extent 3263 * tree. If this happens ignore the error, as we will 3264 * try again later in the critical section of the 3265 * transaction commit. 3266 */ 3267 if (ret == -ENOENT) { 3268 ret = 0; 3269 spin_lock(&cur_trans->dirty_bgs_lock); 3270 if (list_empty(&cache->dirty_list)) { 3271 list_add_tail(&cache->dirty_list, 3272 &cur_trans->dirty_bgs); 3273 btrfs_get_block_group(cache); 3274 drop_reserve = false; 3275 } 3276 spin_unlock(&cur_trans->dirty_bgs_lock); 3277 } else if (ret) { 3278 btrfs_abort_transaction(trans, ret); 3279 } 3280 } 3281 3282 /* If it's not on the io list, we need to put the block group */ 3283 if (should_put) 3284 btrfs_put_block_group(cache); 3285 if (drop_reserve) 3286 btrfs_delayed_refs_rsv_release(fs_info, 1); 3287 /* 3288 * Avoid blocking other tasks for too long. It might even save 3289 * us from writing caches for block groups that are going to be 3290 * removed. 3291 */ 3292 mutex_unlock(&trans->transaction->cache_write_mutex); 3293 if (ret) 3294 goto out; 3295 mutex_lock(&trans->transaction->cache_write_mutex); 3296 } 3297 mutex_unlock(&trans->transaction->cache_write_mutex); 3298 3299 /* 3300 * Go through delayed refs for all the stuff we've just kicked off 3301 * and then loop back (just once) 3302 */ 3303 if (!ret) 3304 ret = btrfs_run_delayed_refs(trans, 0); 3305 if (!ret && loops == 0) { 3306 loops++; 3307 spin_lock(&cur_trans->dirty_bgs_lock); 3308 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3309 /* 3310 * dirty_bgs_lock protects us from concurrent block group 3311 * deletes too (not just cache_write_mutex). 3312 */ 3313 if (!list_empty(&dirty)) { 3314 spin_unlock(&cur_trans->dirty_bgs_lock); 3315 goto again; 3316 } 3317 spin_unlock(&cur_trans->dirty_bgs_lock); 3318 } 3319 out: 3320 if (ret < 0) { 3321 spin_lock(&cur_trans->dirty_bgs_lock); 3322 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3323 spin_unlock(&cur_trans->dirty_bgs_lock); 3324 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3325 } 3326 3327 btrfs_free_path(path); 3328 return ret; 3329 } 3330 3331 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3332 { 3333 struct btrfs_fs_info *fs_info = trans->fs_info; 3334 struct btrfs_block_group *cache; 3335 struct btrfs_transaction *cur_trans = trans->transaction; 3336 int ret = 0; 3337 int should_put; 3338 struct btrfs_path *path; 3339 struct list_head *io = &cur_trans->io_bgs; 3340 3341 path = btrfs_alloc_path(); 3342 if (!path) 3343 return -ENOMEM; 3344 3345 /* 3346 * Even though we are in the critical section of the transaction commit, 3347 * we can still have concurrent tasks adding elements to this 3348 * transaction's list of dirty block groups. These tasks correspond to 3349 * endio free space workers started when writeback finishes for a 3350 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3351 * allocate new block groups as a result of COWing nodes of the root 3352 * tree when updating the free space inode. The writeback for the space 3353 * caches is triggered by an earlier call to 3354 * btrfs_start_dirty_block_groups() and iterations of the following 3355 * loop. 3356 * Also we want to do the cache_save_setup first and then run the 3357 * delayed refs to make sure we have the best chance at doing this all 3358 * in one shot. 3359 */ 3360 spin_lock(&cur_trans->dirty_bgs_lock); 3361 while (!list_empty(&cur_trans->dirty_bgs)) { 3362 cache = list_first_entry(&cur_trans->dirty_bgs, 3363 struct btrfs_block_group, 3364 dirty_list); 3365 3366 /* 3367 * This can happen if cache_save_setup re-dirties a block group 3368 * that is already under IO. Just wait for it to finish and 3369 * then do it all again 3370 */ 3371 if (!list_empty(&cache->io_list)) { 3372 spin_unlock(&cur_trans->dirty_bgs_lock); 3373 list_del_init(&cache->io_list); 3374 btrfs_wait_cache_io(trans, cache, path); 3375 btrfs_put_block_group(cache); 3376 spin_lock(&cur_trans->dirty_bgs_lock); 3377 } 3378 3379 /* 3380 * Don't remove from the dirty list until after we've waited on 3381 * any pending IO 3382 */ 3383 list_del_init(&cache->dirty_list); 3384 spin_unlock(&cur_trans->dirty_bgs_lock); 3385 should_put = 1; 3386 3387 cache_save_setup(cache, trans, path); 3388 3389 if (!ret) 3390 ret = btrfs_run_delayed_refs(trans, 3391 (unsigned long) -1); 3392 3393 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3394 cache->io_ctl.inode = NULL; 3395 ret = btrfs_write_out_cache(trans, cache, path); 3396 if (ret == 0 && cache->io_ctl.inode) { 3397 should_put = 0; 3398 list_add_tail(&cache->io_list, io); 3399 } else { 3400 /* 3401 * If we failed to write the cache, the 3402 * generation will be bad and life goes on 3403 */ 3404 ret = 0; 3405 } 3406 } 3407 if (!ret) { 3408 ret = update_block_group_item(trans, path, cache); 3409 /* 3410 * One of the free space endio workers might have 3411 * created a new block group while updating a free space 3412 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3413 * and hasn't released its transaction handle yet, in 3414 * which case the new block group is still attached to 3415 * its transaction handle and its creation has not 3416 * finished yet (no block group item in the extent tree 3417 * yet, etc). If this is the case, wait for all free 3418 * space endio workers to finish and retry. This is a 3419 * very rare case so no need for a more efficient and 3420 * complex approach. 3421 */ 3422 if (ret == -ENOENT) { 3423 wait_event(cur_trans->writer_wait, 3424 atomic_read(&cur_trans->num_writers) == 1); 3425 ret = update_block_group_item(trans, path, cache); 3426 } 3427 if (ret) 3428 btrfs_abort_transaction(trans, ret); 3429 } 3430 3431 /* If its not on the io list, we need to put the block group */ 3432 if (should_put) 3433 btrfs_put_block_group(cache); 3434 btrfs_delayed_refs_rsv_release(fs_info, 1); 3435 spin_lock(&cur_trans->dirty_bgs_lock); 3436 } 3437 spin_unlock(&cur_trans->dirty_bgs_lock); 3438 3439 /* 3440 * Refer to the definition of io_bgs member for details why it's safe 3441 * to use it without any locking 3442 */ 3443 while (!list_empty(io)) { 3444 cache = list_first_entry(io, struct btrfs_block_group, 3445 io_list); 3446 list_del_init(&cache->io_list); 3447 btrfs_wait_cache_io(trans, cache, path); 3448 btrfs_put_block_group(cache); 3449 } 3450 3451 btrfs_free_path(path); 3452 return ret; 3453 } 3454 3455 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3456 u64 bytenr, u64 num_bytes, bool alloc) 3457 { 3458 struct btrfs_fs_info *info = trans->fs_info; 3459 struct btrfs_block_group *cache = NULL; 3460 u64 total = num_bytes; 3461 u64 old_val; 3462 u64 byte_in_group; 3463 int factor; 3464 int ret = 0; 3465 3466 /* Block accounting for super block */ 3467 spin_lock(&info->delalloc_root_lock); 3468 old_val = btrfs_super_bytes_used(info->super_copy); 3469 if (alloc) 3470 old_val += num_bytes; 3471 else 3472 old_val -= num_bytes; 3473 btrfs_set_super_bytes_used(info->super_copy, old_val); 3474 spin_unlock(&info->delalloc_root_lock); 3475 3476 while (total) { 3477 bool reclaim = false; 3478 3479 cache = btrfs_lookup_block_group(info, bytenr); 3480 if (!cache) { 3481 ret = -ENOENT; 3482 break; 3483 } 3484 factor = btrfs_bg_type_to_factor(cache->flags); 3485 3486 /* 3487 * If this block group has free space cache written out, we 3488 * need to make sure to load it if we are removing space. This 3489 * is because we need the unpinning stage to actually add the 3490 * space back to the block group, otherwise we will leak space. 3491 */ 3492 if (!alloc && !btrfs_block_group_done(cache)) 3493 btrfs_cache_block_group(cache, true); 3494 3495 byte_in_group = bytenr - cache->start; 3496 WARN_ON(byte_in_group > cache->length); 3497 3498 spin_lock(&cache->space_info->lock); 3499 spin_lock(&cache->lock); 3500 3501 if (btrfs_test_opt(info, SPACE_CACHE) && 3502 cache->disk_cache_state < BTRFS_DC_CLEAR) 3503 cache->disk_cache_state = BTRFS_DC_CLEAR; 3504 3505 old_val = cache->used; 3506 num_bytes = min(total, cache->length - byte_in_group); 3507 if (alloc) { 3508 old_val += num_bytes; 3509 cache->used = old_val; 3510 cache->reserved -= num_bytes; 3511 cache->space_info->bytes_reserved -= num_bytes; 3512 cache->space_info->bytes_used += num_bytes; 3513 cache->space_info->disk_used += num_bytes * factor; 3514 spin_unlock(&cache->lock); 3515 spin_unlock(&cache->space_info->lock); 3516 } else { 3517 old_val -= num_bytes; 3518 cache->used = old_val; 3519 cache->pinned += num_bytes; 3520 btrfs_space_info_update_bytes_pinned(info, 3521 cache->space_info, num_bytes); 3522 cache->space_info->bytes_used -= num_bytes; 3523 cache->space_info->disk_used -= num_bytes * factor; 3524 3525 reclaim = should_reclaim_block_group(cache, num_bytes); 3526 3527 spin_unlock(&cache->lock); 3528 spin_unlock(&cache->space_info->lock); 3529 3530 set_extent_dirty(&trans->transaction->pinned_extents, 3531 bytenr, bytenr + num_bytes - 1, 3532 GFP_NOFS | __GFP_NOFAIL); 3533 } 3534 3535 spin_lock(&trans->transaction->dirty_bgs_lock); 3536 if (list_empty(&cache->dirty_list)) { 3537 list_add_tail(&cache->dirty_list, 3538 &trans->transaction->dirty_bgs); 3539 trans->delayed_ref_updates++; 3540 btrfs_get_block_group(cache); 3541 } 3542 spin_unlock(&trans->transaction->dirty_bgs_lock); 3543 3544 /* 3545 * No longer have used bytes in this block group, queue it for 3546 * deletion. We do this after adding the block group to the 3547 * dirty list to avoid races between cleaner kthread and space 3548 * cache writeout. 3549 */ 3550 if (!alloc && old_val == 0) { 3551 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3552 btrfs_mark_bg_unused(cache); 3553 } else if (!alloc && reclaim) { 3554 btrfs_mark_bg_to_reclaim(cache); 3555 } 3556 3557 btrfs_put_block_group(cache); 3558 total -= num_bytes; 3559 bytenr += num_bytes; 3560 } 3561 3562 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3563 btrfs_update_delayed_refs_rsv(trans); 3564 return ret; 3565 } 3566 3567 /* 3568 * Update the block_group and space info counters. 3569 * 3570 * @cache: The cache we are manipulating 3571 * @ram_bytes: The number of bytes of file content, and will be same to 3572 * @num_bytes except for the compress path. 3573 * @num_bytes: The number of bytes in question 3574 * @delalloc: The blocks are allocated for the delalloc write 3575 * 3576 * This is called by the allocator when it reserves space. If this is a 3577 * reservation and the block group has become read only we cannot make the 3578 * reservation and return -EAGAIN, otherwise this function always succeeds. 3579 */ 3580 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3581 u64 ram_bytes, u64 num_bytes, int delalloc, 3582 bool force_wrong_size_class) 3583 { 3584 struct btrfs_space_info *space_info = cache->space_info; 3585 enum btrfs_block_group_size_class size_class; 3586 int ret = 0; 3587 3588 spin_lock(&space_info->lock); 3589 spin_lock(&cache->lock); 3590 if (cache->ro) { 3591 ret = -EAGAIN; 3592 goto out; 3593 } 3594 3595 if (btrfs_block_group_should_use_size_class(cache)) { 3596 size_class = btrfs_calc_block_group_size_class(num_bytes); 3597 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3598 if (ret) 3599 goto out; 3600 } 3601 cache->reserved += num_bytes; 3602 space_info->bytes_reserved += num_bytes; 3603 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3604 space_info->flags, num_bytes, 1); 3605 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3606 space_info, -ram_bytes); 3607 if (delalloc) 3608 cache->delalloc_bytes += num_bytes; 3609 3610 /* 3611 * Compression can use less space than we reserved, so wake tickets if 3612 * that happens. 3613 */ 3614 if (num_bytes < ram_bytes) 3615 btrfs_try_granting_tickets(cache->fs_info, space_info); 3616 out: 3617 spin_unlock(&cache->lock); 3618 spin_unlock(&space_info->lock); 3619 return ret; 3620 } 3621 3622 /* 3623 * Update the block_group and space info counters. 3624 * 3625 * @cache: The cache we are manipulating 3626 * @num_bytes: The number of bytes in question 3627 * @delalloc: The blocks are allocated for the delalloc write 3628 * 3629 * This is called by somebody who is freeing space that was never actually used 3630 * on disk. For example if you reserve some space for a new leaf in transaction 3631 * A and before transaction A commits you free that leaf, you call this with 3632 * reserve set to 0 in order to clear the reservation. 3633 */ 3634 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3635 u64 num_bytes, int delalloc) 3636 { 3637 struct btrfs_space_info *space_info = cache->space_info; 3638 3639 spin_lock(&space_info->lock); 3640 spin_lock(&cache->lock); 3641 if (cache->ro) 3642 space_info->bytes_readonly += num_bytes; 3643 cache->reserved -= num_bytes; 3644 space_info->bytes_reserved -= num_bytes; 3645 space_info->max_extent_size = 0; 3646 3647 if (delalloc) 3648 cache->delalloc_bytes -= num_bytes; 3649 spin_unlock(&cache->lock); 3650 3651 btrfs_try_granting_tickets(cache->fs_info, space_info); 3652 spin_unlock(&space_info->lock); 3653 } 3654 3655 static void force_metadata_allocation(struct btrfs_fs_info *info) 3656 { 3657 struct list_head *head = &info->space_info; 3658 struct btrfs_space_info *found; 3659 3660 list_for_each_entry(found, head, list) { 3661 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3662 found->force_alloc = CHUNK_ALLOC_FORCE; 3663 } 3664 } 3665 3666 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3667 struct btrfs_space_info *sinfo, int force) 3668 { 3669 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3670 u64 thresh; 3671 3672 if (force == CHUNK_ALLOC_FORCE) 3673 return 1; 3674 3675 /* 3676 * in limited mode, we want to have some free space up to 3677 * about 1% of the FS size. 3678 */ 3679 if (force == CHUNK_ALLOC_LIMITED) { 3680 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3681 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3682 3683 if (sinfo->total_bytes - bytes_used < thresh) 3684 return 1; 3685 } 3686 3687 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3688 return 0; 3689 return 1; 3690 } 3691 3692 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3693 { 3694 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3695 3696 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3697 } 3698 3699 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3700 { 3701 struct btrfs_block_group *bg; 3702 int ret; 3703 3704 /* 3705 * Check if we have enough space in the system space info because we 3706 * will need to update device items in the chunk btree and insert a new 3707 * chunk item in the chunk btree as well. This will allocate a new 3708 * system block group if needed. 3709 */ 3710 check_system_chunk(trans, flags); 3711 3712 bg = btrfs_create_chunk(trans, flags); 3713 if (IS_ERR(bg)) { 3714 ret = PTR_ERR(bg); 3715 goto out; 3716 } 3717 3718 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3719 /* 3720 * Normally we are not expected to fail with -ENOSPC here, since we have 3721 * previously reserved space in the system space_info and allocated one 3722 * new system chunk if necessary. However there are three exceptions: 3723 * 3724 * 1) We may have enough free space in the system space_info but all the 3725 * existing system block groups have a profile which can not be used 3726 * for extent allocation. 3727 * 3728 * This happens when mounting in degraded mode. For example we have a 3729 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3730 * using the other device in degraded mode. If we then allocate a chunk, 3731 * we may have enough free space in the existing system space_info, but 3732 * none of the block groups can be used for extent allocation since they 3733 * have a RAID1 profile, and because we are in degraded mode with a 3734 * single device, we are forced to allocate a new system chunk with a 3735 * SINGLE profile. Making check_system_chunk() iterate over all system 3736 * block groups and check if they have a usable profile and enough space 3737 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3738 * try again after forcing allocation of a new system chunk. Like this 3739 * we avoid paying the cost of that search in normal circumstances, when 3740 * we were not mounted in degraded mode; 3741 * 3742 * 2) We had enough free space info the system space_info, and one suitable 3743 * block group to allocate from when we called check_system_chunk() 3744 * above. However right after we called it, the only system block group 3745 * with enough free space got turned into RO mode by a running scrub, 3746 * and in this case we have to allocate a new one and retry. We only 3747 * need do this allocate and retry once, since we have a transaction 3748 * handle and scrub uses the commit root to search for block groups; 3749 * 3750 * 3) We had one system block group with enough free space when we called 3751 * check_system_chunk(), but after that, right before we tried to 3752 * allocate the last extent buffer we needed, a discard operation came 3753 * in and it temporarily removed the last free space entry from the 3754 * block group (discard removes a free space entry, discards it, and 3755 * then adds back the entry to the block group cache). 3756 */ 3757 if (ret == -ENOSPC) { 3758 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3759 struct btrfs_block_group *sys_bg; 3760 3761 sys_bg = btrfs_create_chunk(trans, sys_flags); 3762 if (IS_ERR(sys_bg)) { 3763 ret = PTR_ERR(sys_bg); 3764 btrfs_abort_transaction(trans, ret); 3765 goto out; 3766 } 3767 3768 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3769 if (ret) { 3770 btrfs_abort_transaction(trans, ret); 3771 goto out; 3772 } 3773 3774 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3775 if (ret) { 3776 btrfs_abort_transaction(trans, ret); 3777 goto out; 3778 } 3779 } else if (ret) { 3780 btrfs_abort_transaction(trans, ret); 3781 goto out; 3782 } 3783 out: 3784 btrfs_trans_release_chunk_metadata(trans); 3785 3786 if (ret) 3787 return ERR_PTR(ret); 3788 3789 btrfs_get_block_group(bg); 3790 return bg; 3791 } 3792 3793 /* 3794 * Chunk allocation is done in 2 phases: 3795 * 3796 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3797 * the chunk, the chunk mapping, create its block group and add the items 3798 * that belong in the chunk btree to it - more specifically, we need to 3799 * update device items in the chunk btree and add a new chunk item to it. 3800 * 3801 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3802 * group item to the extent btree and the device extent items to the devices 3803 * btree. 3804 * 3805 * This is done to prevent deadlocks. For example when COWing a node from the 3806 * extent btree we are holding a write lock on the node's parent and if we 3807 * trigger chunk allocation and attempted to insert the new block group item 3808 * in the extent btree right way, we could deadlock because the path for the 3809 * insertion can include that parent node. At first glance it seems impossible 3810 * to trigger chunk allocation after starting a transaction since tasks should 3811 * reserve enough transaction units (metadata space), however while that is true 3812 * most of the time, chunk allocation may still be triggered for several reasons: 3813 * 3814 * 1) When reserving metadata, we check if there is enough free space in the 3815 * metadata space_info and therefore don't trigger allocation of a new chunk. 3816 * However later when the task actually tries to COW an extent buffer from 3817 * the extent btree or from the device btree for example, it is forced to 3818 * allocate a new block group (chunk) because the only one that had enough 3819 * free space was just turned to RO mode by a running scrub for example (or 3820 * device replace, block group reclaim thread, etc), so we can not use it 3821 * for allocating an extent and end up being forced to allocate a new one; 3822 * 3823 * 2) Because we only check that the metadata space_info has enough free bytes, 3824 * we end up not allocating a new metadata chunk in that case. However if 3825 * the filesystem was mounted in degraded mode, none of the existing block 3826 * groups might be suitable for extent allocation due to their incompatible 3827 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3828 * use a RAID1 profile, in degraded mode using a single device). In this case 3829 * when the task attempts to COW some extent buffer of the extent btree for 3830 * example, it will trigger allocation of a new metadata block group with a 3831 * suitable profile (SINGLE profile in the example of the degraded mount of 3832 * the RAID1 filesystem); 3833 * 3834 * 3) The task has reserved enough transaction units / metadata space, but when 3835 * it attempts to COW an extent buffer from the extent or device btree for 3836 * example, it does not find any free extent in any metadata block group, 3837 * therefore forced to try to allocate a new metadata block group. 3838 * This is because some other task allocated all available extents in the 3839 * meanwhile - this typically happens with tasks that don't reserve space 3840 * properly, either intentionally or as a bug. One example where this is 3841 * done intentionally is fsync, as it does not reserve any transaction units 3842 * and ends up allocating a variable number of metadata extents for log 3843 * tree extent buffers; 3844 * 3845 * 4) The task has reserved enough transaction units / metadata space, but right 3846 * before it tries to allocate the last extent buffer it needs, a discard 3847 * operation comes in and, temporarily, removes the last free space entry from 3848 * the only metadata block group that had free space (discard starts by 3849 * removing a free space entry from a block group, then does the discard 3850 * operation and, once it's done, it adds back the free space entry to the 3851 * block group). 3852 * 3853 * We also need this 2 phases setup when adding a device to a filesystem with 3854 * a seed device - we must create new metadata and system chunks without adding 3855 * any of the block group items to the chunk, extent and device btrees. If we 3856 * did not do it this way, we would get ENOSPC when attempting to update those 3857 * btrees, since all the chunks from the seed device are read-only. 3858 * 3859 * Phase 1 does the updates and insertions to the chunk btree because if we had 3860 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3861 * parallel, we risk having too many system chunks allocated by many tasks if 3862 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3863 * extreme case this leads to exhaustion of the system chunk array in the 3864 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3865 * and with RAID filesystems (so we have more device items in the chunk btree). 3866 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3867 * the system chunk array due to concurrent allocations") provides more details. 3868 * 3869 * Allocation of system chunks does not happen through this function. A task that 3870 * needs to update the chunk btree (the only btree that uses system chunks), must 3871 * preallocate chunk space by calling either check_system_chunk() or 3872 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3873 * metadata chunk or when removing a chunk, while the later is used before doing 3874 * a modification to the chunk btree - use cases for the later are adding, 3875 * removing and resizing a device as well as relocation of a system chunk. 3876 * See the comment below for more details. 3877 * 3878 * The reservation of system space, done through check_system_chunk(), as well 3879 * as all the updates and insertions into the chunk btree must be done while 3880 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3881 * an extent buffer from the chunks btree we never trigger allocation of a new 3882 * system chunk, which would result in a deadlock (trying to lock twice an 3883 * extent buffer of the chunk btree, first time before triggering the chunk 3884 * allocation and the second time during chunk allocation while attempting to 3885 * update the chunks btree). The system chunk array is also updated while holding 3886 * that mutex. The same logic applies to removing chunks - we must reserve system 3887 * space, update the chunk btree and the system chunk array in the superblock 3888 * while holding fs_info->chunk_mutex. 3889 * 3890 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3891 * 3892 * If @force is CHUNK_ALLOC_FORCE: 3893 * - return 1 if it successfully allocates a chunk, 3894 * - return errors including -ENOSPC otherwise. 3895 * If @force is NOT CHUNK_ALLOC_FORCE: 3896 * - return 0 if it doesn't need to allocate a new chunk, 3897 * - return 1 if it successfully allocates a chunk, 3898 * - return errors including -ENOSPC otherwise. 3899 */ 3900 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3901 enum btrfs_chunk_alloc_enum force) 3902 { 3903 struct btrfs_fs_info *fs_info = trans->fs_info; 3904 struct btrfs_space_info *space_info; 3905 struct btrfs_block_group *ret_bg; 3906 bool wait_for_alloc = false; 3907 bool should_alloc = false; 3908 bool from_extent_allocation = false; 3909 int ret = 0; 3910 3911 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 3912 from_extent_allocation = true; 3913 force = CHUNK_ALLOC_FORCE; 3914 } 3915 3916 /* Don't re-enter if we're already allocating a chunk */ 3917 if (trans->allocating_chunk) 3918 return -ENOSPC; 3919 /* 3920 * Allocation of system chunks can not happen through this path, as we 3921 * could end up in a deadlock if we are allocating a data or metadata 3922 * chunk and there is another task modifying the chunk btree. 3923 * 3924 * This is because while we are holding the chunk mutex, we will attempt 3925 * to add the new chunk item to the chunk btree or update an existing 3926 * device item in the chunk btree, while the other task that is modifying 3927 * the chunk btree is attempting to COW an extent buffer while holding a 3928 * lock on it and on its parent - if the COW operation triggers a system 3929 * chunk allocation, then we can deadlock because we are holding the 3930 * chunk mutex and we may need to access that extent buffer or its parent 3931 * in order to add the chunk item or update a device item. 3932 * 3933 * Tasks that want to modify the chunk tree should reserve system space 3934 * before updating the chunk btree, by calling either 3935 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 3936 * It's possible that after a task reserves the space, it still ends up 3937 * here - this happens in the cases described above at do_chunk_alloc(). 3938 * The task will have to either retry or fail. 3939 */ 3940 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3941 return -ENOSPC; 3942 3943 space_info = btrfs_find_space_info(fs_info, flags); 3944 ASSERT(space_info); 3945 3946 do { 3947 spin_lock(&space_info->lock); 3948 if (force < space_info->force_alloc) 3949 force = space_info->force_alloc; 3950 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3951 if (space_info->full) { 3952 /* No more free physical space */ 3953 if (should_alloc) 3954 ret = -ENOSPC; 3955 else 3956 ret = 0; 3957 spin_unlock(&space_info->lock); 3958 return ret; 3959 } else if (!should_alloc) { 3960 spin_unlock(&space_info->lock); 3961 return 0; 3962 } else if (space_info->chunk_alloc) { 3963 /* 3964 * Someone is already allocating, so we need to block 3965 * until this someone is finished and then loop to 3966 * recheck if we should continue with our allocation 3967 * attempt. 3968 */ 3969 wait_for_alloc = true; 3970 force = CHUNK_ALLOC_NO_FORCE; 3971 spin_unlock(&space_info->lock); 3972 mutex_lock(&fs_info->chunk_mutex); 3973 mutex_unlock(&fs_info->chunk_mutex); 3974 } else { 3975 /* Proceed with allocation */ 3976 space_info->chunk_alloc = 1; 3977 wait_for_alloc = false; 3978 spin_unlock(&space_info->lock); 3979 } 3980 3981 cond_resched(); 3982 } while (wait_for_alloc); 3983 3984 mutex_lock(&fs_info->chunk_mutex); 3985 trans->allocating_chunk = true; 3986 3987 /* 3988 * If we have mixed data/metadata chunks we want to make sure we keep 3989 * allocating mixed chunks instead of individual chunks. 3990 */ 3991 if (btrfs_mixed_space_info(space_info)) 3992 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3993 3994 /* 3995 * if we're doing a data chunk, go ahead and make sure that 3996 * we keep a reasonable number of metadata chunks allocated in the 3997 * FS as well. 3998 */ 3999 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4000 fs_info->data_chunk_allocations++; 4001 if (!(fs_info->data_chunk_allocations % 4002 fs_info->metadata_ratio)) 4003 force_metadata_allocation(fs_info); 4004 } 4005 4006 ret_bg = do_chunk_alloc(trans, flags); 4007 trans->allocating_chunk = false; 4008 4009 if (IS_ERR(ret_bg)) { 4010 ret = PTR_ERR(ret_bg); 4011 } else if (from_extent_allocation) { 4012 /* 4013 * New block group is likely to be used soon. Try to activate 4014 * it now. Failure is OK for now. 4015 */ 4016 btrfs_zone_activate(ret_bg); 4017 } 4018 4019 if (!ret) 4020 btrfs_put_block_group(ret_bg); 4021 4022 spin_lock(&space_info->lock); 4023 if (ret < 0) { 4024 if (ret == -ENOSPC) 4025 space_info->full = 1; 4026 else 4027 goto out; 4028 } else { 4029 ret = 1; 4030 space_info->max_extent_size = 0; 4031 } 4032 4033 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4034 out: 4035 space_info->chunk_alloc = 0; 4036 spin_unlock(&space_info->lock); 4037 mutex_unlock(&fs_info->chunk_mutex); 4038 4039 return ret; 4040 } 4041 4042 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4043 { 4044 u64 num_dev; 4045 4046 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4047 if (!num_dev) 4048 num_dev = fs_info->fs_devices->rw_devices; 4049 4050 return num_dev; 4051 } 4052 4053 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4054 u64 bytes, 4055 u64 type) 4056 { 4057 struct btrfs_fs_info *fs_info = trans->fs_info; 4058 struct btrfs_space_info *info; 4059 u64 left; 4060 int ret = 0; 4061 4062 /* 4063 * Needed because we can end up allocating a system chunk and for an 4064 * atomic and race free space reservation in the chunk block reserve. 4065 */ 4066 lockdep_assert_held(&fs_info->chunk_mutex); 4067 4068 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4069 spin_lock(&info->lock); 4070 left = info->total_bytes - btrfs_space_info_used(info, true); 4071 spin_unlock(&info->lock); 4072 4073 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4074 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4075 left, bytes, type); 4076 btrfs_dump_space_info(fs_info, info, 0, 0); 4077 } 4078 4079 if (left < bytes) { 4080 u64 flags = btrfs_system_alloc_profile(fs_info); 4081 struct btrfs_block_group *bg; 4082 4083 /* 4084 * Ignore failure to create system chunk. We might end up not 4085 * needing it, as we might not need to COW all nodes/leafs from 4086 * the paths we visit in the chunk tree (they were already COWed 4087 * or created in the current transaction for example). 4088 */ 4089 bg = btrfs_create_chunk(trans, flags); 4090 if (IS_ERR(bg)) { 4091 ret = PTR_ERR(bg); 4092 } else { 4093 /* 4094 * We have a new chunk. We also need to activate it for 4095 * zoned filesystem. 4096 */ 4097 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4098 if (ret < 0) 4099 return; 4100 4101 /* 4102 * If we fail to add the chunk item here, we end up 4103 * trying again at phase 2 of chunk allocation, at 4104 * btrfs_create_pending_block_groups(). So ignore 4105 * any error here. An ENOSPC here could happen, due to 4106 * the cases described at do_chunk_alloc() - the system 4107 * block group we just created was just turned into RO 4108 * mode by a scrub for example, or a running discard 4109 * temporarily removed its free space entries, etc. 4110 */ 4111 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4112 } 4113 } 4114 4115 if (!ret) { 4116 ret = btrfs_block_rsv_add(fs_info, 4117 &fs_info->chunk_block_rsv, 4118 bytes, BTRFS_RESERVE_NO_FLUSH); 4119 if (!ret) 4120 trans->chunk_bytes_reserved += bytes; 4121 } 4122 } 4123 4124 /* 4125 * Reserve space in the system space for allocating or removing a chunk. 4126 * The caller must be holding fs_info->chunk_mutex. 4127 */ 4128 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4129 { 4130 struct btrfs_fs_info *fs_info = trans->fs_info; 4131 const u64 num_devs = get_profile_num_devs(fs_info, type); 4132 u64 bytes; 4133 4134 /* num_devs device items to update and 1 chunk item to add or remove. */ 4135 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4136 btrfs_calc_insert_metadata_size(fs_info, 1); 4137 4138 reserve_chunk_space(trans, bytes, type); 4139 } 4140 4141 /* 4142 * Reserve space in the system space, if needed, for doing a modification to the 4143 * chunk btree. 4144 * 4145 * @trans: A transaction handle. 4146 * @is_item_insertion: Indicate if the modification is for inserting a new item 4147 * in the chunk btree or if it's for the deletion or update 4148 * of an existing item. 4149 * 4150 * This is used in a context where we need to update the chunk btree outside 4151 * block group allocation and removal, to avoid a deadlock with a concurrent 4152 * task that is allocating a metadata or data block group and therefore needs to 4153 * update the chunk btree while holding the chunk mutex. After the update to the 4154 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4155 * 4156 */ 4157 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4158 bool is_item_insertion) 4159 { 4160 struct btrfs_fs_info *fs_info = trans->fs_info; 4161 u64 bytes; 4162 4163 if (is_item_insertion) 4164 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4165 else 4166 bytes = btrfs_calc_metadata_size(fs_info, 1); 4167 4168 mutex_lock(&fs_info->chunk_mutex); 4169 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4170 mutex_unlock(&fs_info->chunk_mutex); 4171 } 4172 4173 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4174 { 4175 struct btrfs_block_group *block_group; 4176 4177 block_group = btrfs_lookup_first_block_group(info, 0); 4178 while (block_group) { 4179 btrfs_wait_block_group_cache_done(block_group); 4180 spin_lock(&block_group->lock); 4181 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4182 &block_group->runtime_flags)) { 4183 struct inode *inode = block_group->inode; 4184 4185 block_group->inode = NULL; 4186 spin_unlock(&block_group->lock); 4187 4188 ASSERT(block_group->io_ctl.inode == NULL); 4189 iput(inode); 4190 } else { 4191 spin_unlock(&block_group->lock); 4192 } 4193 block_group = btrfs_next_block_group(block_group); 4194 } 4195 } 4196 4197 /* 4198 * Must be called only after stopping all workers, since we could have block 4199 * group caching kthreads running, and therefore they could race with us if we 4200 * freed the block groups before stopping them. 4201 */ 4202 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4203 { 4204 struct btrfs_block_group *block_group; 4205 struct btrfs_space_info *space_info; 4206 struct btrfs_caching_control *caching_ctl; 4207 struct rb_node *n; 4208 4209 write_lock(&info->block_group_cache_lock); 4210 while (!list_empty(&info->caching_block_groups)) { 4211 caching_ctl = list_entry(info->caching_block_groups.next, 4212 struct btrfs_caching_control, list); 4213 list_del(&caching_ctl->list); 4214 btrfs_put_caching_control(caching_ctl); 4215 } 4216 write_unlock(&info->block_group_cache_lock); 4217 4218 spin_lock(&info->unused_bgs_lock); 4219 while (!list_empty(&info->unused_bgs)) { 4220 block_group = list_first_entry(&info->unused_bgs, 4221 struct btrfs_block_group, 4222 bg_list); 4223 list_del_init(&block_group->bg_list); 4224 btrfs_put_block_group(block_group); 4225 } 4226 4227 while (!list_empty(&info->reclaim_bgs)) { 4228 block_group = list_first_entry(&info->reclaim_bgs, 4229 struct btrfs_block_group, 4230 bg_list); 4231 list_del_init(&block_group->bg_list); 4232 btrfs_put_block_group(block_group); 4233 } 4234 spin_unlock(&info->unused_bgs_lock); 4235 4236 spin_lock(&info->zone_active_bgs_lock); 4237 while (!list_empty(&info->zone_active_bgs)) { 4238 block_group = list_first_entry(&info->zone_active_bgs, 4239 struct btrfs_block_group, 4240 active_bg_list); 4241 list_del_init(&block_group->active_bg_list); 4242 btrfs_put_block_group(block_group); 4243 } 4244 spin_unlock(&info->zone_active_bgs_lock); 4245 4246 write_lock(&info->block_group_cache_lock); 4247 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4248 block_group = rb_entry(n, struct btrfs_block_group, 4249 cache_node); 4250 rb_erase_cached(&block_group->cache_node, 4251 &info->block_group_cache_tree); 4252 RB_CLEAR_NODE(&block_group->cache_node); 4253 write_unlock(&info->block_group_cache_lock); 4254 4255 down_write(&block_group->space_info->groups_sem); 4256 list_del(&block_group->list); 4257 up_write(&block_group->space_info->groups_sem); 4258 4259 /* 4260 * We haven't cached this block group, which means we could 4261 * possibly have excluded extents on this block group. 4262 */ 4263 if (block_group->cached == BTRFS_CACHE_NO || 4264 block_group->cached == BTRFS_CACHE_ERROR) 4265 btrfs_free_excluded_extents(block_group); 4266 4267 btrfs_remove_free_space_cache(block_group); 4268 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4269 ASSERT(list_empty(&block_group->dirty_list)); 4270 ASSERT(list_empty(&block_group->io_list)); 4271 ASSERT(list_empty(&block_group->bg_list)); 4272 ASSERT(refcount_read(&block_group->refs) == 1); 4273 ASSERT(block_group->swap_extents == 0); 4274 btrfs_put_block_group(block_group); 4275 4276 write_lock(&info->block_group_cache_lock); 4277 } 4278 write_unlock(&info->block_group_cache_lock); 4279 4280 btrfs_release_global_block_rsv(info); 4281 4282 while (!list_empty(&info->space_info)) { 4283 space_info = list_entry(info->space_info.next, 4284 struct btrfs_space_info, 4285 list); 4286 4287 /* 4288 * Do not hide this behind enospc_debug, this is actually 4289 * important and indicates a real bug if this happens. 4290 */ 4291 if (WARN_ON(space_info->bytes_pinned > 0 || 4292 space_info->bytes_may_use > 0)) 4293 btrfs_dump_space_info(info, space_info, 0, 0); 4294 4295 /* 4296 * If there was a failure to cleanup a log tree, very likely due 4297 * to an IO failure on a writeback attempt of one or more of its 4298 * extent buffers, we could not do proper (and cheap) unaccounting 4299 * of their reserved space, so don't warn on bytes_reserved > 0 in 4300 * that case. 4301 */ 4302 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4303 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4304 if (WARN_ON(space_info->bytes_reserved > 0)) 4305 btrfs_dump_space_info(info, space_info, 0, 0); 4306 } 4307 4308 WARN_ON(space_info->reclaim_size > 0); 4309 list_del(&space_info->list); 4310 btrfs_sysfs_remove_space_info(space_info); 4311 } 4312 return 0; 4313 } 4314 4315 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4316 { 4317 atomic_inc(&cache->frozen); 4318 } 4319 4320 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4321 { 4322 struct btrfs_fs_info *fs_info = block_group->fs_info; 4323 struct extent_map_tree *em_tree; 4324 struct extent_map *em; 4325 bool cleanup; 4326 4327 spin_lock(&block_group->lock); 4328 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4329 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4330 spin_unlock(&block_group->lock); 4331 4332 if (cleanup) { 4333 em_tree = &fs_info->mapping_tree; 4334 write_lock(&em_tree->lock); 4335 em = lookup_extent_mapping(em_tree, block_group->start, 4336 1); 4337 BUG_ON(!em); /* logic error, can't happen */ 4338 remove_extent_mapping(em_tree, em); 4339 write_unlock(&em_tree->lock); 4340 4341 /* once for us and once for the tree */ 4342 free_extent_map(em); 4343 free_extent_map(em); 4344 4345 /* 4346 * We may have left one free space entry and other possible 4347 * tasks trimming this block group have left 1 entry each one. 4348 * Free them if any. 4349 */ 4350 btrfs_remove_free_space_cache(block_group); 4351 } 4352 } 4353 4354 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4355 { 4356 bool ret = true; 4357 4358 spin_lock(&bg->lock); 4359 if (bg->ro) 4360 ret = false; 4361 else 4362 bg->swap_extents++; 4363 spin_unlock(&bg->lock); 4364 4365 return ret; 4366 } 4367 4368 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4369 { 4370 spin_lock(&bg->lock); 4371 ASSERT(!bg->ro); 4372 ASSERT(bg->swap_extents >= amount); 4373 bg->swap_extents -= amount; 4374 spin_unlock(&bg->lock); 4375 } 4376 4377 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4378 { 4379 if (size <= SZ_128K) 4380 return BTRFS_BG_SZ_SMALL; 4381 if (size <= SZ_8M) 4382 return BTRFS_BG_SZ_MEDIUM; 4383 return BTRFS_BG_SZ_LARGE; 4384 } 4385 4386 /* 4387 * Handle a block group allocating an extent in a size class 4388 * 4389 * @bg: The block group we allocated in. 4390 * @size_class: The size class of the allocation. 4391 * @force_wrong_size_class: Whether we are desperate enough to allow 4392 * mismatched size classes. 4393 * 4394 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4395 * case of a race that leads to the wrong size class without 4396 * force_wrong_size_class set. 4397 * 4398 * find_free_extent will skip block groups with a mismatched size class until 4399 * it really needs to avoid ENOSPC. In that case it will set 4400 * force_wrong_size_class. However, if a block group is newly allocated and 4401 * doesn't yet have a size class, then it is possible for two allocations of 4402 * different sizes to race and both try to use it. The loser is caught here and 4403 * has to retry. 4404 */ 4405 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4406 enum btrfs_block_group_size_class size_class, 4407 bool force_wrong_size_class) 4408 { 4409 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4410 4411 /* The new allocation is in the right size class, do nothing */ 4412 if (bg->size_class == size_class) 4413 return 0; 4414 /* 4415 * The new allocation is in a mismatched size class. 4416 * This means one of two things: 4417 * 4418 * 1. Two tasks in find_free_extent for different size_classes raced 4419 * and hit the same empty block_group. Make the loser try again. 4420 * 2. A call to find_free_extent got desperate enough to set 4421 * 'force_wrong_slab'. Don't change the size_class, but allow the 4422 * allocation. 4423 */ 4424 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4425 if (force_wrong_size_class) 4426 return 0; 4427 return -EAGAIN; 4428 } 4429 /* 4430 * The happy new block group case: the new allocation is the first 4431 * one in the block_group so we set size_class. 4432 */ 4433 bg->size_class = size_class; 4434 4435 return 0; 4436 } 4437 4438 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg) 4439 { 4440 if (btrfs_is_zoned(bg->fs_info)) 4441 return false; 4442 if (!btrfs_is_block_group_data_only(bg)) 4443 return false; 4444 return true; 4445 } 4446