1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 static inline bool has_unwritten_metadata(struct btrfs_block_group *block_group) 38 { 39 /* The meta_write_pointer is available only on the zoned setup. */ 40 if (!btrfs_is_zoned(block_group->fs_info)) 41 return false; 42 43 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 44 return false; 45 46 return block_group->start + block_group->alloc_offset > 47 block_group->meta_write_pointer; 48 } 49 50 /* 51 * Return target flags in extended format or 0 if restripe for this chunk_type 52 * is not in progress 53 * 54 * Should be called with balance_lock held 55 */ 56 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags) 57 { 58 const struct btrfs_balance_control *bctl = fs_info->balance_ctl; 59 u64 target = 0; 60 61 if (!bctl) 62 return 0; 63 64 if (flags & BTRFS_BLOCK_GROUP_DATA && 65 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 66 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 67 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 68 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 69 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 70 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 71 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 72 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 73 } 74 75 return target; 76 } 77 78 /* 79 * @flags: available profiles in extended format (see ctree.h) 80 * 81 * Return reduced profile in chunk format. If profile changing is in progress 82 * (either running or paused) picks the target profile (if it's already 83 * available), otherwise falls back to plain reducing. 84 */ 85 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 86 { 87 u64 num_devices = fs_info->fs_devices->rw_devices; 88 u64 target; 89 u64 raid_type; 90 u64 allowed = 0; 91 92 /* 93 * See if restripe for this chunk_type is in progress, if so try to 94 * reduce to the target profile 95 */ 96 spin_lock(&fs_info->balance_lock); 97 target = get_restripe_target(fs_info, flags); 98 if (target) { 99 spin_unlock(&fs_info->balance_lock); 100 return extended_to_chunk(target); 101 } 102 spin_unlock(&fs_info->balance_lock); 103 104 /* First, mask out the RAID levels which aren't possible */ 105 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 106 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 107 allowed |= btrfs_raid_array[raid_type].bg_flag; 108 } 109 allowed &= flags; 110 111 /* Select the highest-redundancy RAID level. */ 112 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 113 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 114 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 115 allowed = BTRFS_BLOCK_GROUP_RAID6; 116 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 117 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 118 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 119 allowed = BTRFS_BLOCK_GROUP_RAID5; 120 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 121 allowed = BTRFS_BLOCK_GROUP_RAID10; 122 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 123 allowed = BTRFS_BLOCK_GROUP_RAID1; 124 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 125 allowed = BTRFS_BLOCK_GROUP_DUP; 126 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 127 allowed = BTRFS_BLOCK_GROUP_RAID0; 128 129 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 130 131 return extended_to_chunk(flags | allowed); 132 } 133 134 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 135 { 136 unsigned seq; 137 u64 flags; 138 139 do { 140 flags = orig_flags; 141 seq = read_seqbegin(&fs_info->profiles_lock); 142 143 if (flags & BTRFS_BLOCK_GROUP_DATA) 144 flags |= fs_info->avail_data_alloc_bits; 145 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 146 flags |= fs_info->avail_system_alloc_bits; 147 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 148 flags |= fs_info->avail_metadata_alloc_bits; 149 } while (read_seqretry(&fs_info->profiles_lock, seq)); 150 151 return btrfs_reduce_alloc_profile(fs_info, flags); 152 } 153 154 void btrfs_get_block_group(struct btrfs_block_group *cache) 155 { 156 refcount_inc(&cache->refs); 157 } 158 159 void btrfs_put_block_group(struct btrfs_block_group *cache) 160 { 161 if (refcount_dec_and_test(&cache->refs)) { 162 WARN_ON(cache->pinned > 0); 163 /* 164 * If there was a failure to cleanup a log tree, very likely due 165 * to an IO failure on a writeback attempt of one or more of its 166 * extent buffers, we could not do proper (and cheap) unaccounting 167 * of their reserved space, so don't warn on reserved > 0 in that 168 * case. 169 */ 170 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 171 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 172 WARN_ON(cache->reserved > 0); 173 174 /* 175 * A block_group shouldn't be on the discard_list anymore. 176 * Remove the block_group from the discard_list to prevent us 177 * from causing a panic due to NULL pointer dereference. 178 */ 179 if (WARN_ON(!list_empty(&cache->discard_list))) 180 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 181 cache); 182 183 kfree(cache->free_space_ctl); 184 btrfs_free_chunk_map(cache->physical_map); 185 kfree(cache); 186 } 187 } 188 189 static int btrfs_bg_start_cmp(const struct rb_node *new, 190 const struct rb_node *exist) 191 { 192 const struct btrfs_block_group *new_bg = 193 rb_entry(new, struct btrfs_block_group, cache_node); 194 const struct btrfs_block_group *exist_bg = 195 rb_entry(exist, struct btrfs_block_group, cache_node); 196 197 if (new_bg->start < exist_bg->start) 198 return -1; 199 if (new_bg->start > exist_bg->start) 200 return 1; 201 return 0; 202 } 203 204 /* 205 * This adds the block group to the fs_info rb tree for the block group cache 206 */ 207 static int btrfs_add_block_group_cache(struct btrfs_block_group *block_group) 208 { 209 struct btrfs_fs_info *fs_info = block_group->fs_info; 210 struct rb_node *exist; 211 int ret = 0; 212 213 ASSERT(block_group->length != 0); 214 215 write_lock(&fs_info->block_group_cache_lock); 216 217 exist = rb_find_add_cached(&block_group->cache_node, 218 &fs_info->block_group_cache_tree, btrfs_bg_start_cmp); 219 if (exist) 220 ret = -EEXIST; 221 write_unlock(&fs_info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 /* 227 * This will return the block group at or after bytenr if contains is 0, else 228 * it will return the block group that contains the bytenr 229 */ 230 static struct btrfs_block_group *block_group_cache_tree_search( 231 struct btrfs_fs_info *info, u64 bytenr, int contains) 232 { 233 struct btrfs_block_group *cache, *ret = NULL; 234 struct rb_node *n; 235 u64 end, start; 236 237 read_lock(&info->block_group_cache_lock); 238 n = info->block_group_cache_tree.rb_root.rb_node; 239 240 while (n) { 241 cache = rb_entry(n, struct btrfs_block_group, cache_node); 242 end = cache->start + cache->length - 1; 243 start = cache->start; 244 245 if (bytenr < start) { 246 if (!contains && (!ret || start < ret->start)) 247 ret = cache; 248 n = n->rb_left; 249 } else if (bytenr > start) { 250 if (contains && bytenr <= end) { 251 ret = cache; 252 break; 253 } 254 n = n->rb_right; 255 } else { 256 ret = cache; 257 break; 258 } 259 } 260 if (ret) 261 btrfs_get_block_group(ret); 262 read_unlock(&info->block_group_cache_lock); 263 264 return ret; 265 } 266 267 /* 268 * Return the block group that starts at or after bytenr 269 */ 270 struct btrfs_block_group *btrfs_lookup_first_block_group( 271 struct btrfs_fs_info *info, u64 bytenr) 272 { 273 return block_group_cache_tree_search(info, bytenr, 0); 274 } 275 276 /* 277 * Return the block group that contains the given bytenr 278 */ 279 struct btrfs_block_group *btrfs_lookup_block_group( 280 struct btrfs_fs_info *info, u64 bytenr) 281 { 282 return block_group_cache_tree_search(info, bytenr, 1); 283 } 284 285 struct btrfs_block_group *btrfs_next_block_group( 286 struct btrfs_block_group *cache) 287 { 288 struct btrfs_fs_info *fs_info = cache->fs_info; 289 struct rb_node *node; 290 291 read_lock(&fs_info->block_group_cache_lock); 292 293 /* If our block group was removed, we need a full search. */ 294 if (RB_EMPTY_NODE(&cache->cache_node)) { 295 const u64 next_bytenr = cache->start + cache->length; 296 297 read_unlock(&fs_info->block_group_cache_lock); 298 btrfs_put_block_group(cache); 299 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 300 } 301 node = rb_next(&cache->cache_node); 302 btrfs_put_block_group(cache); 303 if (node) { 304 cache = rb_entry(node, struct btrfs_block_group, cache_node); 305 btrfs_get_block_group(cache); 306 } else 307 cache = NULL; 308 read_unlock(&fs_info->block_group_cache_lock); 309 return cache; 310 } 311 312 /* 313 * Check if we can do a NOCOW write for a given extent. 314 * 315 * @fs_info: The filesystem information object. 316 * @bytenr: Logical start address of the extent. 317 * 318 * Check if we can do a NOCOW write for the given extent, and increments the 319 * number of NOCOW writers in the block group that contains the extent, as long 320 * as the block group exists and it's currently not in read-only mode. 321 * 322 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 323 * is responsible for calling btrfs_dec_nocow_writers() later. 324 * 325 * Or NULL if we can not do a NOCOW write 326 */ 327 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 328 u64 bytenr) 329 { 330 struct btrfs_block_group *bg; 331 bool can_nocow = true; 332 333 bg = btrfs_lookup_block_group(fs_info, bytenr); 334 if (!bg) 335 return NULL; 336 337 spin_lock(&bg->lock); 338 if (bg->ro) 339 can_nocow = false; 340 else 341 atomic_inc(&bg->nocow_writers); 342 spin_unlock(&bg->lock); 343 344 if (!can_nocow) { 345 btrfs_put_block_group(bg); 346 return NULL; 347 } 348 349 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 350 return bg; 351 } 352 353 /* 354 * Decrement the number of NOCOW writers in a block group. 355 * 356 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 357 * and on the block group returned by that call. Typically this is called after 358 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 359 * relocation. 360 * 361 * After this call, the caller should not use the block group anymore. It it wants 362 * to use it, then it should get a reference on it before calling this function. 363 */ 364 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 365 { 366 if (atomic_dec_and_test(&bg->nocow_writers)) 367 wake_up_var(&bg->nocow_writers); 368 369 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 370 btrfs_put_block_group(bg); 371 } 372 373 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 374 { 375 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 376 } 377 378 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 379 const u64 start) 380 { 381 struct btrfs_block_group *bg; 382 383 bg = btrfs_lookup_block_group(fs_info, start); 384 ASSERT(bg); 385 if (atomic_dec_and_test(&bg->reservations)) 386 wake_up_var(&bg->reservations); 387 btrfs_put_block_group(bg); 388 } 389 390 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 391 { 392 struct btrfs_space_info *space_info = bg->space_info; 393 394 ASSERT(bg->ro); 395 396 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 397 return; 398 399 /* 400 * Our block group is read only but before we set it to read only, 401 * some task might have had allocated an extent from it already, but it 402 * has not yet created a respective ordered extent (and added it to a 403 * root's list of ordered extents). 404 * Therefore wait for any task currently allocating extents, since the 405 * block group's reservations counter is incremented while a read lock 406 * on the groups' semaphore is held and decremented after releasing 407 * the read access on that semaphore and creating the ordered extent. 408 */ 409 down_write(&space_info->groups_sem); 410 up_write(&space_info->groups_sem); 411 412 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 413 } 414 415 struct btrfs_caching_control *btrfs_get_caching_control( 416 struct btrfs_block_group *cache) 417 { 418 struct btrfs_caching_control *ctl; 419 420 spin_lock(&cache->lock); 421 if (!cache->caching_ctl) { 422 spin_unlock(&cache->lock); 423 return NULL; 424 } 425 426 ctl = cache->caching_ctl; 427 refcount_inc(&ctl->count); 428 spin_unlock(&cache->lock); 429 return ctl; 430 } 431 432 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 433 { 434 if (refcount_dec_and_test(&ctl->count)) 435 kfree(ctl); 436 } 437 438 /* 439 * When we wait for progress in the block group caching, its because our 440 * allocation attempt failed at least once. So, we must sleep and let some 441 * progress happen before we try again. 442 * 443 * This function will sleep at least once waiting for new free space to show 444 * up, and then it will check the block group free space numbers for our min 445 * num_bytes. Another option is to have it go ahead and look in the rbtree for 446 * a free extent of a given size, but this is a good start. 447 * 448 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 449 * any of the information in this block group. 450 */ 451 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 452 u64 num_bytes) 453 { 454 struct btrfs_caching_control *caching_ctl; 455 int progress; 456 457 caching_ctl = btrfs_get_caching_control(cache); 458 if (!caching_ctl) 459 return; 460 461 /* 462 * We've already failed to allocate from this block group, so even if 463 * there's enough space in the block group it isn't contiguous enough to 464 * allow for an allocation, so wait for at least the next wakeup tick, 465 * or for the thing to be done. 466 */ 467 progress = atomic_read(&caching_ctl->progress); 468 469 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 470 (progress != atomic_read(&caching_ctl->progress) && 471 (cache->free_space_ctl->free_space >= num_bytes))); 472 473 btrfs_put_caching_control(caching_ctl); 474 } 475 476 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 477 struct btrfs_caching_control *caching_ctl) 478 { 479 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 480 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 481 } 482 483 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 484 { 485 struct btrfs_caching_control *caching_ctl; 486 int ret; 487 488 caching_ctl = btrfs_get_caching_control(cache); 489 if (!caching_ctl) 490 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 491 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 492 btrfs_put_caching_control(caching_ctl); 493 return ret; 494 } 495 496 #ifdef CONFIG_BTRFS_DEBUG 497 static void fragment_free_space(struct btrfs_block_group *block_group) 498 { 499 struct btrfs_fs_info *fs_info = block_group->fs_info; 500 u64 start = block_group->start; 501 u64 len = block_group->length; 502 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 503 fs_info->nodesize : fs_info->sectorsize; 504 u64 step = chunk << 1; 505 506 while (len > chunk) { 507 btrfs_remove_free_space(block_group, start, chunk); 508 start += step; 509 if (len < step) 510 len = 0; 511 else 512 len -= step; 513 } 514 } 515 #endif 516 517 /* 518 * Add a free space range to the in memory free space cache of a block group. 519 * This checks if the range contains super block locations and any such 520 * locations are not added to the free space cache. 521 * 522 * @block_group: The target block group. 523 * @start: Start offset of the range. 524 * @end: End offset of the range (exclusive). 525 * @total_added_ret: Optional pointer to return the total amount of space 526 * added to the block group's free space cache. 527 * 528 * Returns 0 on success or < 0 on error. 529 */ 530 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 531 u64 end, u64 *total_added_ret) 532 { 533 struct btrfs_fs_info *info = block_group->fs_info; 534 u64 extent_start, extent_end, size; 535 int ret; 536 537 if (total_added_ret) 538 *total_added_ret = 0; 539 540 while (start < end) { 541 if (!btrfs_find_first_extent_bit(&info->excluded_extents, start, 542 &extent_start, &extent_end, 543 EXTENT_DIRTY, NULL)) 544 break; 545 546 if (extent_start <= start) { 547 start = extent_end + 1; 548 } else if (extent_start > start && extent_start < end) { 549 size = extent_start - start; 550 ret = btrfs_add_free_space_async_trimmed(block_group, 551 start, size); 552 if (ret) 553 return ret; 554 if (total_added_ret) 555 *total_added_ret += size; 556 start = extent_end + 1; 557 } else { 558 break; 559 } 560 } 561 562 if (start < end) { 563 size = end - start; 564 ret = btrfs_add_free_space_async_trimmed(block_group, start, 565 size); 566 if (ret) 567 return ret; 568 if (total_added_ret) 569 *total_added_ret += size; 570 } 571 572 return 0; 573 } 574 575 /* 576 * Get an arbitrary extent item index / max_index through the block group 577 * 578 * @block_group the block group to sample from 579 * @index: the integral step through the block group to grab from 580 * @max_index: the granularity of the sampling 581 * @key: return value parameter for the item we find 582 * 583 * Pre-conditions on indices: 584 * 0 <= index <= max_index 585 * 0 < max_index 586 * 587 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 588 * error code on error. 589 */ 590 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 591 struct btrfs_block_group *block_group, 592 int index, int max_index, 593 struct btrfs_key *found_key) 594 { 595 struct btrfs_fs_info *fs_info = block_group->fs_info; 596 struct btrfs_root *extent_root; 597 u64 search_offset; 598 u64 search_end = block_group->start + block_group->length; 599 BTRFS_PATH_AUTO_FREE(path); 600 struct btrfs_key search_key; 601 int ret = 0; 602 603 ASSERT(index >= 0); 604 ASSERT(index <= max_index); 605 ASSERT(max_index > 0); 606 lockdep_assert_held(&caching_ctl->mutex); 607 lockdep_assert_held_read(&fs_info->commit_root_sem); 608 609 path = btrfs_alloc_path(); 610 if (!path) 611 return -ENOMEM; 612 613 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 614 BTRFS_SUPER_INFO_OFFSET)); 615 616 path->skip_locking = true; 617 path->search_commit_root = true; 618 path->reada = READA_FORWARD; 619 620 search_offset = index * div_u64(block_group->length, max_index); 621 search_key.objectid = block_group->start + search_offset; 622 search_key.type = BTRFS_EXTENT_ITEM_KEY; 623 search_key.offset = 0; 624 625 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 626 /* Success; sampled an extent item in the block group */ 627 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 628 found_key->objectid >= block_group->start && 629 found_key->objectid + found_key->offset <= search_end) 630 break; 631 632 /* We can't possibly find a valid extent item anymore */ 633 if (found_key->objectid >= search_end) { 634 ret = 1; 635 break; 636 } 637 } 638 639 lockdep_assert_held(&caching_ctl->mutex); 640 lockdep_assert_held_read(&fs_info->commit_root_sem); 641 return ret; 642 } 643 644 /* 645 * Best effort attempt to compute a block group's size class while caching it. 646 * 647 * @block_group: the block group we are caching 648 * 649 * We cannot infer the size class while adding free space extents, because that 650 * logic doesn't care about contiguous file extents (it doesn't differentiate 651 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 652 * file extent items. Reading all of them is quite wasteful, because usually 653 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 654 * them at even steps through the block group and pick the smallest size class 655 * we see. Since size class is best effort, and not guaranteed in general, 656 * inaccuracy is acceptable. 657 * 658 * To be more explicit about why this algorithm makes sense: 659 * 660 * If we are caching in a block group from disk, then there are three major cases 661 * to consider: 662 * 1. the block group is well behaved and all extents in it are the same size 663 * class. 664 * 2. the block group is mostly one size class with rare exceptions for last 665 * ditch allocations 666 * 3. the block group was populated before size classes and can have a totally 667 * arbitrary mix of size classes. 668 * 669 * In case 1, looking at any extent in the block group will yield the correct 670 * result. For the mixed cases, taking the minimum size class seems like a good 671 * approximation, since gaps from frees will be usable to the size class. For 672 * 2., a small handful of file extents is likely to yield the right answer. For 673 * 3, we can either read every file extent, or admit that this is best effort 674 * anyway and try to stay fast. 675 * 676 * Returns: 0 on success, negative error code on error. 677 */ 678 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 679 struct btrfs_block_group *block_group) 680 { 681 struct btrfs_fs_info *fs_info = block_group->fs_info; 682 struct btrfs_key key; 683 int i; 684 u64 min_size = block_group->length; 685 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 686 int ret; 687 688 if (!btrfs_block_group_should_use_size_class(block_group)) 689 return 0; 690 691 lockdep_assert_held(&caching_ctl->mutex); 692 lockdep_assert_held_read(&fs_info->commit_root_sem); 693 for (i = 0; i < 5; ++i) { 694 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 695 if (ret < 0) 696 goto out; 697 if (ret > 0) 698 continue; 699 min_size = min_t(u64, min_size, key.offset); 700 size_class = btrfs_calc_block_group_size_class(min_size); 701 } 702 if (size_class != BTRFS_BG_SZ_NONE) { 703 spin_lock(&block_group->lock); 704 block_group->size_class = size_class; 705 spin_unlock(&block_group->lock); 706 } 707 out: 708 return ret; 709 } 710 711 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 712 { 713 struct btrfs_block_group *block_group = caching_ctl->block_group; 714 struct btrfs_fs_info *fs_info = block_group->fs_info; 715 struct btrfs_root *extent_root; 716 BTRFS_PATH_AUTO_FREE(path); 717 struct extent_buffer *leaf; 718 struct btrfs_key key; 719 u64 total_found = 0; 720 u64 last = 0; 721 u32 nritems; 722 int ret; 723 bool wakeup = true; 724 725 path = btrfs_alloc_path(); 726 if (!path) 727 return -ENOMEM; 728 729 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 730 extent_root = btrfs_extent_root(fs_info, last); 731 732 #ifdef CONFIG_BTRFS_DEBUG 733 /* 734 * If we're fragmenting we don't want to make anybody think we can 735 * allocate from this block group until we've had a chance to fragment 736 * the free space. 737 */ 738 if (btrfs_should_fragment_free_space(block_group)) 739 wakeup = false; 740 #endif 741 /* 742 * We don't want to deadlock with somebody trying to allocate a new 743 * extent for the extent root while also trying to search the extent 744 * root to add free space. So we skip locking and search the commit 745 * root, since its read-only 746 */ 747 path->skip_locking = true; 748 path->search_commit_root = true; 749 path->reada = READA_FORWARD; 750 751 key.objectid = last; 752 key.type = BTRFS_EXTENT_ITEM_KEY; 753 key.offset = 0; 754 755 next: 756 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 757 if (ret < 0) 758 goto out; 759 760 leaf = path->nodes[0]; 761 nritems = btrfs_header_nritems(leaf); 762 763 while (1) { 764 if (btrfs_fs_closing(fs_info) > 1) { 765 last = (u64)-1; 766 break; 767 } 768 769 if (path->slots[0] < nritems) { 770 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 771 } else { 772 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 773 if (ret) 774 break; 775 776 if (need_resched() || 777 rwsem_is_contended(&fs_info->commit_root_sem)) { 778 btrfs_release_path(path); 779 up_read(&fs_info->commit_root_sem); 780 mutex_unlock(&caching_ctl->mutex); 781 cond_resched(); 782 mutex_lock(&caching_ctl->mutex); 783 down_read(&fs_info->commit_root_sem); 784 goto next; 785 } 786 787 ret = btrfs_next_leaf(extent_root, path); 788 if (ret < 0) 789 goto out; 790 if (ret) 791 break; 792 leaf = path->nodes[0]; 793 nritems = btrfs_header_nritems(leaf); 794 continue; 795 } 796 797 if (key.objectid < last) { 798 key.objectid = last; 799 key.type = BTRFS_EXTENT_ITEM_KEY; 800 key.offset = 0; 801 btrfs_release_path(path); 802 goto next; 803 } 804 805 if (key.objectid < block_group->start) { 806 path->slots[0]++; 807 continue; 808 } 809 810 if (key.objectid >= block_group->start + block_group->length) 811 break; 812 813 if (key.type == BTRFS_EXTENT_ITEM_KEY || 814 key.type == BTRFS_METADATA_ITEM_KEY) { 815 u64 space_added; 816 817 ret = btrfs_add_new_free_space(block_group, last, 818 key.objectid, &space_added); 819 if (ret) 820 goto out; 821 total_found += space_added; 822 if (key.type == BTRFS_METADATA_ITEM_KEY) 823 last = key.objectid + 824 fs_info->nodesize; 825 else 826 last = key.objectid + key.offset; 827 828 if (total_found > CACHING_CTL_WAKE_UP) { 829 total_found = 0; 830 if (wakeup) { 831 atomic_inc(&caching_ctl->progress); 832 wake_up(&caching_ctl->wait); 833 } 834 } 835 } 836 path->slots[0]++; 837 } 838 839 ret = btrfs_add_new_free_space(block_group, last, 840 block_group->start + block_group->length, 841 NULL); 842 out: 843 return ret; 844 } 845 846 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 847 { 848 btrfs_clear_extent_bit(&bg->fs_info->excluded_extents, bg->start, 849 bg->start + bg->length - 1, EXTENT_DIRTY, NULL); 850 } 851 852 static noinline void caching_thread(struct btrfs_work *work) 853 { 854 struct btrfs_block_group *block_group; 855 struct btrfs_fs_info *fs_info; 856 struct btrfs_caching_control *caching_ctl; 857 int ret; 858 859 caching_ctl = container_of(work, struct btrfs_caching_control, work); 860 block_group = caching_ctl->block_group; 861 fs_info = block_group->fs_info; 862 863 mutex_lock(&caching_ctl->mutex); 864 down_read(&fs_info->commit_root_sem); 865 866 load_block_group_size_class(caching_ctl, block_group); 867 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 868 ret = load_free_space_cache(block_group); 869 if (ret == 1) { 870 ret = 0; 871 goto done; 872 } 873 874 /* 875 * We failed to load the space cache, set ourselves to 876 * CACHE_STARTED and carry on. 877 */ 878 spin_lock(&block_group->lock); 879 block_group->cached = BTRFS_CACHE_STARTED; 880 spin_unlock(&block_group->lock); 881 wake_up(&caching_ctl->wait); 882 } 883 884 /* 885 * If we are in the transaction that populated the free space tree we 886 * can't actually cache from the free space tree as our commit root and 887 * real root are the same, so we could change the contents of the blocks 888 * while caching. Instead do the slow caching in this case, and after 889 * the transaction has committed we will be safe. 890 */ 891 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 892 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 893 ret = btrfs_load_free_space_tree(caching_ctl); 894 else 895 ret = load_extent_tree_free(caching_ctl); 896 done: 897 spin_lock(&block_group->lock); 898 block_group->caching_ctl = NULL; 899 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 900 spin_unlock(&block_group->lock); 901 902 #ifdef CONFIG_BTRFS_DEBUG 903 if (btrfs_should_fragment_free_space(block_group)) { 904 u64 bytes_used; 905 906 spin_lock(&block_group->space_info->lock); 907 spin_lock(&block_group->lock); 908 bytes_used = block_group->length - block_group->used; 909 block_group->space_info->bytes_used += bytes_used >> 1; 910 spin_unlock(&block_group->lock); 911 spin_unlock(&block_group->space_info->lock); 912 fragment_free_space(block_group); 913 } 914 #endif 915 916 up_read(&fs_info->commit_root_sem); 917 btrfs_free_excluded_extents(block_group); 918 mutex_unlock(&caching_ctl->mutex); 919 920 wake_up(&caching_ctl->wait); 921 922 btrfs_put_caching_control(caching_ctl); 923 btrfs_put_block_group(block_group); 924 } 925 926 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 927 { 928 struct btrfs_fs_info *fs_info = cache->fs_info; 929 struct btrfs_caching_control *caching_ctl = NULL; 930 int ret = 0; 931 932 /* Allocator for zoned filesystems does not use the cache at all */ 933 if (btrfs_is_zoned(fs_info)) 934 return 0; 935 936 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 937 if (!caching_ctl) 938 return -ENOMEM; 939 940 INIT_LIST_HEAD(&caching_ctl->list); 941 mutex_init(&caching_ctl->mutex); 942 init_waitqueue_head(&caching_ctl->wait); 943 caching_ctl->block_group = cache; 944 refcount_set(&caching_ctl->count, 2); 945 atomic_set(&caching_ctl->progress, 0); 946 btrfs_init_work(&caching_ctl->work, caching_thread, NULL); 947 948 spin_lock(&cache->lock); 949 if (cache->cached != BTRFS_CACHE_NO) { 950 kfree(caching_ctl); 951 952 caching_ctl = cache->caching_ctl; 953 if (caching_ctl) 954 refcount_inc(&caching_ctl->count); 955 spin_unlock(&cache->lock); 956 goto out; 957 } 958 WARN_ON(cache->caching_ctl); 959 cache->caching_ctl = caching_ctl; 960 cache->cached = BTRFS_CACHE_STARTED; 961 spin_unlock(&cache->lock); 962 963 write_lock(&fs_info->block_group_cache_lock); 964 refcount_inc(&caching_ctl->count); 965 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 966 write_unlock(&fs_info->block_group_cache_lock); 967 968 btrfs_get_block_group(cache); 969 970 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 971 out: 972 if (wait && caching_ctl) 973 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 974 if (caching_ctl) 975 btrfs_put_caching_control(caching_ctl); 976 977 return ret; 978 } 979 980 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 981 { 982 u64 extra_flags = chunk_to_extended(flags) & 983 BTRFS_EXTENDED_PROFILE_MASK; 984 985 write_seqlock(&fs_info->profiles_lock); 986 if (flags & BTRFS_BLOCK_GROUP_DATA) 987 fs_info->avail_data_alloc_bits &= ~extra_flags; 988 if (flags & BTRFS_BLOCK_GROUP_METADATA) 989 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 990 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 991 fs_info->avail_system_alloc_bits &= ~extra_flags; 992 write_sequnlock(&fs_info->profiles_lock); 993 } 994 995 /* 996 * Clear incompat bits for the following feature(s): 997 * 998 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 999 * in the whole filesystem 1000 * 1001 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 1002 */ 1003 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 1004 { 1005 bool found_raid56 = false; 1006 bool found_raid1c34 = false; 1007 1008 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 1009 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 1010 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1011 struct list_head *head = &fs_info->space_info; 1012 struct btrfs_space_info *sinfo; 1013 1014 list_for_each_entry_rcu(sinfo, head, list) { 1015 down_read(&sinfo->groups_sem); 1016 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1017 found_raid56 = true; 1018 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1019 found_raid56 = true; 1020 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1021 found_raid1c34 = true; 1022 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1023 found_raid1c34 = true; 1024 up_read(&sinfo->groups_sem); 1025 } 1026 if (!found_raid56) 1027 btrfs_clear_fs_incompat(fs_info, RAID56); 1028 if (!found_raid1c34) 1029 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1030 } 1031 } 1032 1033 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1034 { 1035 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1036 return fs_info->block_group_root; 1037 return btrfs_extent_root(fs_info, 0); 1038 } 1039 1040 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1041 struct btrfs_path *path, 1042 struct btrfs_block_group *block_group) 1043 { 1044 struct btrfs_fs_info *fs_info = trans->fs_info; 1045 struct btrfs_root *root; 1046 struct btrfs_key key; 1047 int ret; 1048 1049 root = btrfs_block_group_root(fs_info); 1050 key.objectid = block_group->start; 1051 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1052 key.offset = block_group->length; 1053 1054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1055 if (ret > 0) 1056 ret = -ENOENT; 1057 if (ret < 0) 1058 return ret; 1059 1060 ret = btrfs_del_item(trans, root, path); 1061 return ret; 1062 } 1063 1064 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1065 struct btrfs_chunk_map *map) 1066 { 1067 struct btrfs_fs_info *fs_info = trans->fs_info; 1068 BTRFS_PATH_AUTO_FREE(path); 1069 struct btrfs_block_group *block_group; 1070 struct btrfs_free_cluster *cluster; 1071 struct inode *inode; 1072 struct kobject *kobj = NULL; 1073 int ret; 1074 int index; 1075 int factor; 1076 struct btrfs_caching_control *caching_ctl = NULL; 1077 bool remove_map; 1078 bool remove_rsv = false; 1079 1080 block_group = btrfs_lookup_block_group(fs_info, map->start); 1081 if (!block_group) 1082 return -ENOENT; 1083 1084 BUG_ON(!block_group->ro); 1085 1086 trace_btrfs_remove_block_group(block_group); 1087 /* 1088 * Free the reserved super bytes from this block group before 1089 * remove it. 1090 */ 1091 btrfs_free_excluded_extents(block_group); 1092 btrfs_free_ref_tree_range(fs_info, block_group->start, 1093 block_group->length); 1094 1095 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1096 factor = btrfs_bg_type_to_factor(block_group->flags); 1097 1098 /* make sure this block group isn't part of an allocation cluster */ 1099 cluster = &fs_info->data_alloc_cluster; 1100 spin_lock(&cluster->refill_lock); 1101 btrfs_return_cluster_to_free_space(block_group, cluster); 1102 spin_unlock(&cluster->refill_lock); 1103 1104 /* 1105 * make sure this block group isn't part of a metadata 1106 * allocation cluster 1107 */ 1108 cluster = &fs_info->meta_alloc_cluster; 1109 spin_lock(&cluster->refill_lock); 1110 btrfs_return_cluster_to_free_space(block_group, cluster); 1111 spin_unlock(&cluster->refill_lock); 1112 1113 btrfs_clear_treelog_bg(block_group); 1114 btrfs_clear_data_reloc_bg(block_group); 1115 1116 path = btrfs_alloc_path(); 1117 if (!path) { 1118 ret = -ENOMEM; 1119 goto out; 1120 } 1121 1122 /* 1123 * get the inode first so any iput calls done for the io_list 1124 * aren't the final iput (no unlinks allowed now) 1125 */ 1126 inode = lookup_free_space_inode(block_group, path); 1127 1128 mutex_lock(&trans->transaction->cache_write_mutex); 1129 /* 1130 * Make sure our free space cache IO is done before removing the 1131 * free space inode 1132 */ 1133 spin_lock(&trans->transaction->dirty_bgs_lock); 1134 if (!list_empty(&block_group->io_list)) { 1135 list_del_init(&block_group->io_list); 1136 1137 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1138 1139 spin_unlock(&trans->transaction->dirty_bgs_lock); 1140 btrfs_wait_cache_io(trans, block_group, path); 1141 btrfs_put_block_group(block_group); 1142 spin_lock(&trans->transaction->dirty_bgs_lock); 1143 } 1144 1145 if (!list_empty(&block_group->dirty_list)) { 1146 list_del_init(&block_group->dirty_list); 1147 remove_rsv = true; 1148 btrfs_put_block_group(block_group); 1149 } 1150 spin_unlock(&trans->transaction->dirty_bgs_lock); 1151 mutex_unlock(&trans->transaction->cache_write_mutex); 1152 1153 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1154 if (ret) 1155 goto out; 1156 1157 write_lock(&fs_info->block_group_cache_lock); 1158 rb_erase_cached(&block_group->cache_node, 1159 &fs_info->block_group_cache_tree); 1160 RB_CLEAR_NODE(&block_group->cache_node); 1161 1162 /* Once for the block groups rbtree */ 1163 btrfs_put_block_group(block_group); 1164 1165 write_unlock(&fs_info->block_group_cache_lock); 1166 1167 down_write(&block_group->space_info->groups_sem); 1168 /* 1169 * we must use list_del_init so people can check to see if they 1170 * are still on the list after taking the semaphore 1171 */ 1172 list_del_init(&block_group->list); 1173 if (list_empty(&block_group->space_info->block_groups[index])) { 1174 kobj = block_group->space_info->block_group_kobjs[index]; 1175 block_group->space_info->block_group_kobjs[index] = NULL; 1176 clear_avail_alloc_bits(fs_info, block_group->flags); 1177 } 1178 up_write(&block_group->space_info->groups_sem); 1179 clear_incompat_bg_bits(fs_info, block_group->flags); 1180 if (kobj) { 1181 kobject_del(kobj); 1182 kobject_put(kobj); 1183 } 1184 1185 if (block_group->cached == BTRFS_CACHE_STARTED) 1186 btrfs_wait_block_group_cache_done(block_group); 1187 1188 write_lock(&fs_info->block_group_cache_lock); 1189 caching_ctl = btrfs_get_caching_control(block_group); 1190 if (!caching_ctl) { 1191 struct btrfs_caching_control *ctl; 1192 1193 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1194 if (ctl->block_group == block_group) { 1195 caching_ctl = ctl; 1196 refcount_inc(&caching_ctl->count); 1197 break; 1198 } 1199 } 1200 } 1201 if (caching_ctl) 1202 list_del_init(&caching_ctl->list); 1203 write_unlock(&fs_info->block_group_cache_lock); 1204 1205 if (caching_ctl) { 1206 /* Once for the caching bgs list and once for us. */ 1207 btrfs_put_caching_control(caching_ctl); 1208 btrfs_put_caching_control(caching_ctl); 1209 } 1210 1211 spin_lock(&trans->transaction->dirty_bgs_lock); 1212 WARN_ON(!list_empty(&block_group->dirty_list)); 1213 WARN_ON(!list_empty(&block_group->io_list)); 1214 spin_unlock(&trans->transaction->dirty_bgs_lock); 1215 1216 btrfs_remove_free_space_cache(block_group); 1217 1218 spin_lock(&block_group->space_info->lock); 1219 list_del_init(&block_group->ro_list); 1220 1221 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1222 WARN_ON(block_group->space_info->total_bytes 1223 < block_group->length); 1224 WARN_ON(block_group->space_info->bytes_readonly 1225 < block_group->length - block_group->zone_unusable); 1226 WARN_ON(block_group->space_info->bytes_zone_unusable 1227 < block_group->zone_unusable); 1228 WARN_ON(block_group->space_info->disk_total 1229 < block_group->length * factor); 1230 } 1231 block_group->space_info->total_bytes -= block_group->length; 1232 block_group->space_info->bytes_readonly -= 1233 (block_group->length - block_group->zone_unusable); 1234 btrfs_space_info_update_bytes_zone_unusable(block_group->space_info, 1235 -block_group->zone_unusable); 1236 block_group->space_info->disk_total -= block_group->length * factor; 1237 1238 spin_unlock(&block_group->space_info->lock); 1239 1240 /* 1241 * Remove the free space for the block group from the free space tree 1242 * and the block group's item from the extent tree before marking the 1243 * block group as removed. This is to prevent races with tasks that 1244 * freeze and unfreeze a block group, this task and another task 1245 * allocating a new block group - the unfreeze task ends up removing 1246 * the block group's extent map before the task calling this function 1247 * deletes the block group item from the extent tree, allowing for 1248 * another task to attempt to create another block group with the same 1249 * item key (and failing with -EEXIST and a transaction abort). 1250 */ 1251 ret = btrfs_remove_block_group_free_space(trans, block_group); 1252 if (ret) 1253 goto out; 1254 1255 ret = remove_block_group_item(trans, path, block_group); 1256 if (ret < 0) 1257 goto out; 1258 1259 spin_lock(&block_group->lock); 1260 /* 1261 * Hitting this WARN means we removed a block group with an unwritten 1262 * region. It will cause "unable to find chunk map for logical" errors. 1263 */ 1264 if (WARN_ON(has_unwritten_metadata(block_group))) 1265 btrfs_warn(fs_info, 1266 "block group %llu is removed before metadata write out", 1267 block_group->start); 1268 1269 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1270 1271 /* 1272 * At this point trimming or scrub can't start on this block group, 1273 * because we removed the block group from the rbtree 1274 * fs_info->block_group_cache_tree so no one can't find it anymore and 1275 * even if someone already got this block group before we removed it 1276 * from the rbtree, they have already incremented block_group->frozen - 1277 * if they didn't, for the trimming case they won't find any free space 1278 * entries because we already removed them all when we called 1279 * btrfs_remove_free_space_cache(). 1280 * 1281 * And we must not remove the chunk map from the fs_info->mapping_tree 1282 * to prevent the same logical address range and physical device space 1283 * ranges from being reused for a new block group. This is needed to 1284 * avoid races with trimming and scrub. 1285 * 1286 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1287 * completely transactionless, so while it is trimming a range the 1288 * currently running transaction might finish and a new one start, 1289 * allowing for new block groups to be created that can reuse the same 1290 * physical device locations unless we take this special care. 1291 * 1292 * There may also be an implicit trim operation if the file system 1293 * is mounted with -odiscard. The same protections must remain 1294 * in place until the extents have been discarded completely when 1295 * the transaction commit has completed. 1296 */ 1297 remove_map = (atomic_read(&block_group->frozen) == 0); 1298 spin_unlock(&block_group->lock); 1299 1300 if (remove_map) 1301 btrfs_remove_chunk_map(fs_info, map); 1302 1303 out: 1304 /* Once for the lookup reference */ 1305 btrfs_put_block_group(block_group); 1306 if (remove_rsv) 1307 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 1308 return ret; 1309 } 1310 1311 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1312 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1313 { 1314 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1315 struct btrfs_chunk_map *map; 1316 unsigned int num_items; 1317 1318 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 1319 ASSERT(map != NULL); 1320 ASSERT(map->start == chunk_offset); 1321 1322 /* 1323 * We need to reserve 3 + N units from the metadata space info in order 1324 * to remove a block group (done at btrfs_remove_chunk() and at 1325 * btrfs_remove_block_group()), which are used for: 1326 * 1327 * 1 unit for adding the free space inode's orphan (located in the tree 1328 * of tree roots). 1329 * 1 unit for deleting the block group item (located in the extent 1330 * tree). 1331 * 1 unit for deleting the free space item (located in tree of tree 1332 * roots). 1333 * N units for deleting N device extent items corresponding to each 1334 * stripe (located in the device tree). 1335 * 1336 * In order to remove a block group we also need to reserve units in the 1337 * system space info in order to update the chunk tree (update one or 1338 * more device items and remove one chunk item), but this is done at 1339 * btrfs_remove_chunk() through a call to check_system_chunk(). 1340 */ 1341 num_items = 3 + map->num_stripes; 1342 btrfs_free_chunk_map(map); 1343 1344 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1345 } 1346 1347 /* 1348 * Mark block group @cache read-only, so later write won't happen to block 1349 * group @cache. 1350 * 1351 * If @force is not set, this function will only mark the block group readonly 1352 * if we have enough free space (1M) in other metadata/system block groups. 1353 * If @force is not set, this function will mark the block group readonly 1354 * without checking free space. 1355 * 1356 * NOTE: This function doesn't care if other block groups can contain all the 1357 * data in this block group. That check should be done by relocation routine, 1358 * not this function. 1359 */ 1360 static int inc_block_group_ro(struct btrfs_block_group *cache, bool force) 1361 { 1362 struct btrfs_space_info *sinfo = cache->space_info; 1363 u64 num_bytes; 1364 int ret = -ENOSPC; 1365 1366 spin_lock(&sinfo->lock); 1367 spin_lock(&cache->lock); 1368 1369 if (cache->swap_extents) { 1370 ret = -ETXTBSY; 1371 goto out; 1372 } 1373 1374 if (cache->ro) { 1375 cache->ro++; 1376 ret = 0; 1377 goto out; 1378 } 1379 1380 num_bytes = cache->length - cache->reserved - cache->pinned - 1381 cache->bytes_super - cache->zone_unusable - cache->used; 1382 1383 /* 1384 * Data never overcommits, even in mixed mode, so do just the straight 1385 * check of left over space in how much we have allocated. 1386 */ 1387 if (force) { 1388 ret = 0; 1389 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1390 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1391 1392 /* 1393 * Here we make sure if we mark this bg RO, we still have enough 1394 * free space as buffer. 1395 */ 1396 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1397 ret = 0; 1398 } else { 1399 /* 1400 * We overcommit metadata, so we need to do the 1401 * btrfs_can_overcommit check here, and we need to pass in 1402 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1403 * leeway to allow us to mark this block group as read only. 1404 */ 1405 if (btrfs_can_overcommit(sinfo, num_bytes, BTRFS_RESERVE_NO_FLUSH)) 1406 ret = 0; 1407 } 1408 1409 if (!ret) { 1410 sinfo->bytes_readonly += num_bytes; 1411 if (btrfs_is_zoned(cache->fs_info)) { 1412 /* Migrate zone_unusable bytes to readonly */ 1413 sinfo->bytes_readonly += cache->zone_unusable; 1414 btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable); 1415 cache->zone_unusable = 0; 1416 } 1417 cache->ro++; 1418 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1419 } 1420 out: 1421 spin_unlock(&cache->lock); 1422 spin_unlock(&sinfo->lock); 1423 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1424 btrfs_info(cache->fs_info, 1425 "unable to make block group %llu ro", cache->start); 1426 btrfs_dump_space_info(cache->space_info, 0, false); 1427 } 1428 return ret; 1429 } 1430 1431 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1432 const struct btrfs_block_group *bg) 1433 { 1434 struct btrfs_fs_info *fs_info = trans->fs_info; 1435 struct btrfs_transaction *prev_trans = NULL; 1436 const u64 start = bg->start; 1437 const u64 end = start + bg->length - 1; 1438 int ret; 1439 1440 spin_lock(&fs_info->trans_lock); 1441 if (!list_is_first(&trans->transaction->list, &fs_info->trans_list)) { 1442 prev_trans = list_prev_entry(trans->transaction, list); 1443 refcount_inc(&prev_trans->use_count); 1444 } 1445 spin_unlock(&fs_info->trans_lock); 1446 1447 /* 1448 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1449 * btrfs_finish_extent_commit(). If we are at transaction N, another 1450 * task might be running finish_extent_commit() for the previous 1451 * transaction N - 1, and have seen a range belonging to the block 1452 * group in pinned_extents before we were able to clear the whole block 1453 * group range from pinned_extents. This means that task can lookup for 1454 * the block group after we unpinned it from pinned_extents and removed 1455 * it, leading to an error at unpin_extent_range(). 1456 */ 1457 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1458 if (prev_trans) { 1459 ret = btrfs_clear_extent_bit(&prev_trans->pinned_extents, start, end, 1460 EXTENT_DIRTY, NULL); 1461 if (ret) 1462 goto out; 1463 } 1464 1465 ret = btrfs_clear_extent_bit(&trans->transaction->pinned_extents, start, end, 1466 EXTENT_DIRTY, NULL); 1467 out: 1468 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1469 if (prev_trans) 1470 btrfs_put_transaction(prev_trans); 1471 1472 return ret == 0; 1473 } 1474 1475 /* 1476 * Link the block_group to a list via bg_list. 1477 * 1478 * @bg: The block_group to link to the list. 1479 * @list: The list to link it to. 1480 * 1481 * Use this rather than list_add_tail() directly to ensure proper respect 1482 * to locking and refcounting. 1483 * 1484 * Returns: true if the bg was linked with a refcount bump and false otherwise. 1485 */ 1486 static bool btrfs_link_bg_list(struct btrfs_block_group *bg, struct list_head *list) 1487 { 1488 struct btrfs_fs_info *fs_info = bg->fs_info; 1489 bool added = false; 1490 1491 spin_lock(&fs_info->unused_bgs_lock); 1492 if (list_empty(&bg->bg_list)) { 1493 btrfs_get_block_group(bg); 1494 list_add_tail(&bg->bg_list, list); 1495 added = true; 1496 } 1497 spin_unlock(&fs_info->unused_bgs_lock); 1498 return added; 1499 } 1500 1501 /* 1502 * Process the unused_bgs list and remove any that don't have any allocated 1503 * space inside of them. 1504 */ 1505 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1506 { 1507 LIST_HEAD(retry_list); 1508 struct btrfs_block_group *block_group; 1509 struct btrfs_space_info *space_info; 1510 struct btrfs_trans_handle *trans; 1511 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1512 int ret = 0; 1513 1514 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1515 return; 1516 1517 if (btrfs_fs_closing(fs_info)) 1518 return; 1519 1520 /* 1521 * Long running balances can keep us blocked here for eternity, so 1522 * simply skip deletion if we're unable to get the mutex. 1523 */ 1524 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1525 return; 1526 1527 spin_lock(&fs_info->unused_bgs_lock); 1528 while (!list_empty(&fs_info->unused_bgs)) { 1529 u64 used; 1530 int trimming; 1531 1532 block_group = list_first_entry(&fs_info->unused_bgs, 1533 struct btrfs_block_group, 1534 bg_list); 1535 list_del_init(&block_group->bg_list); 1536 1537 space_info = block_group->space_info; 1538 1539 if (ret || btrfs_mixed_space_info(space_info)) { 1540 btrfs_put_block_group(block_group); 1541 continue; 1542 } 1543 spin_unlock(&fs_info->unused_bgs_lock); 1544 1545 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1546 1547 /* Don't want to race with allocators so take the groups_sem */ 1548 down_write(&space_info->groups_sem); 1549 1550 /* 1551 * Async discard moves the final block group discard to be prior 1552 * to the unused_bgs code path. Therefore, if it's not fully 1553 * trimmed, punt it back to the async discard lists. 1554 */ 1555 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1556 !btrfs_is_free_space_trimmed(block_group)) { 1557 trace_btrfs_skip_unused_block_group(block_group); 1558 up_write(&space_info->groups_sem); 1559 /* Requeue if we failed because of async discard */ 1560 btrfs_discard_queue_work(&fs_info->discard_ctl, 1561 block_group); 1562 goto next; 1563 } 1564 1565 spin_lock(&space_info->lock); 1566 spin_lock(&block_group->lock); 1567 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1568 list_is_singular(&block_group->list)) { 1569 /* 1570 * We want to bail if we made new allocations or have 1571 * outstanding allocations in this block group. We do 1572 * the ro check in case balance is currently acting on 1573 * this block group. 1574 * 1575 * Also bail out if this is the only block group for its 1576 * type, because otherwise we would lose profile 1577 * information from fs_info->avail_*_alloc_bits and the 1578 * next block group of this type would be created with a 1579 * "single" profile (even if we're in a raid fs) because 1580 * fs_info->avail_*_alloc_bits would be 0. 1581 */ 1582 trace_btrfs_skip_unused_block_group(block_group); 1583 spin_unlock(&block_group->lock); 1584 spin_unlock(&space_info->lock); 1585 up_write(&space_info->groups_sem); 1586 goto next; 1587 } 1588 1589 /* 1590 * The block group may be unused but there may be space reserved 1591 * accounting with the existence of that block group, that is, 1592 * space_info->bytes_may_use was incremented by a task but no 1593 * space was yet allocated from the block group by the task. 1594 * That space may or may not be allocated, as we are generally 1595 * pessimistic about space reservation for metadata as well as 1596 * for data when using compression (as we reserve space based on 1597 * the worst case, when data can't be compressed, and before 1598 * actually attempting compression, before starting writeback). 1599 * 1600 * So check if the total space of the space_info minus the size 1601 * of this block group is less than the used space of the 1602 * space_info - if that's the case, then it means we have tasks 1603 * that might be relying on the block group in order to allocate 1604 * extents, and add back the block group to the unused list when 1605 * we finish, so that we retry later in case no tasks ended up 1606 * needing to allocate extents from the block group. 1607 */ 1608 used = btrfs_space_info_used(space_info, true); 1609 if ((space_info->total_bytes - block_group->length < used && 1610 block_group->zone_unusable < block_group->length) || 1611 has_unwritten_metadata(block_group)) { 1612 /* 1613 * Add a reference for the list, compensate for the ref 1614 * drop under the "next" label for the 1615 * fs_info->unused_bgs list. 1616 */ 1617 btrfs_link_bg_list(block_group, &retry_list); 1618 1619 trace_btrfs_skip_unused_block_group(block_group); 1620 spin_unlock(&block_group->lock); 1621 spin_unlock(&space_info->lock); 1622 up_write(&space_info->groups_sem); 1623 goto next; 1624 } 1625 1626 spin_unlock(&block_group->lock); 1627 spin_unlock(&space_info->lock); 1628 1629 /* We don't want to force the issue, only flip if it's ok. */ 1630 ret = inc_block_group_ro(block_group, 0); 1631 up_write(&space_info->groups_sem); 1632 if (ret < 0) { 1633 ret = 0; 1634 goto next; 1635 } 1636 1637 ret = btrfs_zone_finish(block_group); 1638 if (ret < 0) { 1639 btrfs_dec_block_group_ro(block_group); 1640 if (ret == -EAGAIN) { 1641 btrfs_link_bg_list(block_group, &retry_list); 1642 ret = 0; 1643 } 1644 goto next; 1645 } 1646 1647 /* 1648 * Want to do this before we do anything else so we can recover 1649 * properly if we fail to join the transaction. 1650 */ 1651 trans = btrfs_start_trans_remove_block_group(fs_info, 1652 block_group->start); 1653 if (IS_ERR(trans)) { 1654 btrfs_dec_block_group_ro(block_group); 1655 ret = PTR_ERR(trans); 1656 goto next; 1657 } 1658 1659 /* 1660 * We could have pending pinned extents for this block group, 1661 * just delete them, we don't care about them anymore. 1662 */ 1663 if (!clean_pinned_extents(trans, block_group)) { 1664 btrfs_dec_block_group_ro(block_group); 1665 goto end_trans; 1666 } 1667 1668 /* 1669 * At this point, the block_group is read only and should fail 1670 * new allocations. However, btrfs_finish_extent_commit() can 1671 * cause this block_group to be placed back on the discard 1672 * lists because now the block_group isn't fully discarded. 1673 * Bail here and try again later after discarding everything. 1674 */ 1675 spin_lock(&fs_info->discard_ctl.lock); 1676 if (!list_empty(&block_group->discard_list)) { 1677 spin_unlock(&fs_info->discard_ctl.lock); 1678 btrfs_dec_block_group_ro(block_group); 1679 btrfs_discard_queue_work(&fs_info->discard_ctl, 1680 block_group); 1681 goto end_trans; 1682 } 1683 spin_unlock(&fs_info->discard_ctl.lock); 1684 1685 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1686 spin_lock(&space_info->lock); 1687 spin_lock(&block_group->lock); 1688 1689 btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned); 1690 space_info->bytes_readonly += block_group->pinned; 1691 block_group->pinned = 0; 1692 1693 spin_unlock(&block_group->lock); 1694 spin_unlock(&space_info->lock); 1695 1696 /* 1697 * The normal path here is an unused block group is passed here, 1698 * then trimming is handled in the transaction commit path. 1699 * Async discard interposes before this to do the trimming 1700 * before coming down the unused block group path as trimming 1701 * will no longer be done later in the transaction commit path. 1702 */ 1703 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1704 goto flip_async; 1705 1706 /* 1707 * DISCARD can flip during remount. On zoned filesystems, we 1708 * need to reset sequential-required zones. 1709 */ 1710 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1711 btrfs_is_zoned(fs_info); 1712 1713 /* Implicit trim during transaction commit. */ 1714 if (trimming) 1715 btrfs_freeze_block_group(block_group); 1716 1717 /* 1718 * Btrfs_remove_chunk will abort the transaction if things go 1719 * horribly wrong. 1720 */ 1721 ret = btrfs_remove_chunk(trans, block_group->start); 1722 1723 if (ret) { 1724 if (trimming) 1725 btrfs_unfreeze_block_group(block_group); 1726 goto end_trans; 1727 } 1728 1729 /* 1730 * If we're not mounted with -odiscard, we can just forget 1731 * about this block group. Otherwise we'll need to wait 1732 * until transaction commit to do the actual discard. 1733 */ 1734 if (trimming) { 1735 spin_lock(&fs_info->unused_bgs_lock); 1736 /* 1737 * A concurrent scrub might have added us to the list 1738 * fs_info->unused_bgs, so use a list_move operation 1739 * to add the block group to the deleted_bgs list. 1740 */ 1741 list_move(&block_group->bg_list, 1742 &trans->transaction->deleted_bgs); 1743 spin_unlock(&fs_info->unused_bgs_lock); 1744 btrfs_get_block_group(block_group); 1745 } 1746 end_trans: 1747 btrfs_end_transaction(trans); 1748 next: 1749 btrfs_put_block_group(block_group); 1750 spin_lock(&fs_info->unused_bgs_lock); 1751 } 1752 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1753 spin_unlock(&fs_info->unused_bgs_lock); 1754 mutex_unlock(&fs_info->reclaim_bgs_lock); 1755 return; 1756 1757 flip_async: 1758 btrfs_end_transaction(trans); 1759 spin_lock(&fs_info->unused_bgs_lock); 1760 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1761 spin_unlock(&fs_info->unused_bgs_lock); 1762 mutex_unlock(&fs_info->reclaim_bgs_lock); 1763 btrfs_put_block_group(block_group); 1764 btrfs_discard_punt_unused_bgs_list(fs_info); 1765 } 1766 1767 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1768 { 1769 struct btrfs_fs_info *fs_info = bg->fs_info; 1770 1771 spin_lock(&fs_info->unused_bgs_lock); 1772 if (list_empty(&bg->bg_list)) { 1773 btrfs_get_block_group(bg); 1774 trace_btrfs_add_unused_block_group(bg); 1775 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1776 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1777 /* Pull out the block group from the reclaim_bgs list. */ 1778 trace_btrfs_add_unused_block_group(bg); 1779 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1780 } 1781 spin_unlock(&fs_info->unused_bgs_lock); 1782 } 1783 1784 /* 1785 * We want block groups with a low number of used bytes to be in the beginning 1786 * of the list, so they will get reclaimed first. 1787 */ 1788 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1789 const struct list_head *b) 1790 { 1791 const struct btrfs_block_group *bg1, *bg2; 1792 1793 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1794 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1795 1796 /* 1797 * Some other task may be updating the ->used field concurrently, but it 1798 * is not serious if we get a stale value or load/store tearing issues, 1799 * as sorting the list of block groups to reclaim is not critical and an 1800 * occasional imperfect order is ok. So silence KCSAN and avoid the 1801 * overhead of locking or any other synchronization. 1802 */ 1803 return data_race(bg1->used > bg2->used); 1804 } 1805 1806 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info) 1807 { 1808 if (btrfs_is_zoned(fs_info)) 1809 return btrfs_zoned_should_reclaim(fs_info); 1810 return true; 1811 } 1812 1813 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed) 1814 { 1815 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info); 1816 u64 thresh_bytes = mult_perc(bg->length, thresh_pct); 1817 const u64 new_val = bg->used; 1818 const u64 old_val = new_val + bytes_freed; 1819 1820 if (thresh_bytes == 0) 1821 return false; 1822 1823 /* 1824 * If we were below the threshold before don't reclaim, we are likely a 1825 * brand new block group and we don't want to relocate new block groups. 1826 */ 1827 if (old_val < thresh_bytes) 1828 return false; 1829 if (new_val >= thresh_bytes) 1830 return false; 1831 return true; 1832 } 1833 1834 void btrfs_reclaim_bgs_work(struct work_struct *work) 1835 { 1836 struct btrfs_fs_info *fs_info = 1837 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1838 struct btrfs_block_group *bg; 1839 struct btrfs_space_info *space_info; 1840 LIST_HEAD(retry_list); 1841 1842 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1843 return; 1844 1845 if (btrfs_fs_closing(fs_info)) 1846 return; 1847 1848 if (!btrfs_should_reclaim(fs_info)) 1849 return; 1850 1851 guard(super_write)(fs_info->sb); 1852 1853 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 1854 return; 1855 1856 /* 1857 * Long running balances can keep us blocked here for eternity, so 1858 * simply skip reclaim if we're unable to get the mutex. 1859 */ 1860 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1861 btrfs_exclop_finish(fs_info); 1862 return; 1863 } 1864 1865 spin_lock(&fs_info->unused_bgs_lock); 1866 /* 1867 * Sort happens under lock because we can't simply splice it and sort. 1868 * The block groups might still be in use and reachable via bg_list, 1869 * and their presence in the reclaim_bgs list must be preserved. 1870 */ 1871 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1872 while (!list_empty(&fs_info->reclaim_bgs)) { 1873 u64 used; 1874 u64 reserved; 1875 int ret = 0; 1876 1877 bg = list_first_entry(&fs_info->reclaim_bgs, 1878 struct btrfs_block_group, 1879 bg_list); 1880 list_del_init(&bg->bg_list); 1881 1882 space_info = bg->space_info; 1883 spin_unlock(&fs_info->unused_bgs_lock); 1884 1885 /* Don't race with allocators so take the groups_sem */ 1886 down_write(&space_info->groups_sem); 1887 1888 spin_lock(&space_info->lock); 1889 spin_lock(&bg->lock); 1890 if (bg->reserved || bg->pinned || bg->ro) { 1891 /* 1892 * We want to bail if we made new allocations or have 1893 * outstanding allocations in this block group. We do 1894 * the ro check in case balance is currently acting on 1895 * this block group. 1896 */ 1897 spin_unlock(&bg->lock); 1898 spin_unlock(&space_info->lock); 1899 up_write(&space_info->groups_sem); 1900 goto next; 1901 } 1902 if (bg->used == 0) { 1903 /* 1904 * It is possible that we trigger relocation on a block 1905 * group as its extents are deleted and it first goes 1906 * below the threshold, then shortly after goes empty. 1907 * 1908 * In this case, relocating it does delete it, but has 1909 * some overhead in relocation specific metadata, looking 1910 * for the non-existent extents and running some extra 1911 * transactions, which we can avoid by using one of the 1912 * other mechanisms for dealing with empty block groups. 1913 */ 1914 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1915 btrfs_mark_bg_unused(bg); 1916 spin_unlock(&bg->lock); 1917 spin_unlock(&space_info->lock); 1918 up_write(&space_info->groups_sem); 1919 goto next; 1920 1921 } 1922 /* 1923 * The block group might no longer meet the reclaim condition by 1924 * the time we get around to reclaiming it, so to avoid 1925 * reclaiming overly full block_groups, skip reclaiming them. 1926 * 1927 * Since the decision making process also depends on the amount 1928 * being freed, pass in a fake giant value to skip that extra 1929 * check, which is more meaningful when adding to the list in 1930 * the first place. 1931 */ 1932 if (!should_reclaim_block_group(bg, bg->length)) { 1933 spin_unlock(&bg->lock); 1934 spin_unlock(&space_info->lock); 1935 up_write(&space_info->groups_sem); 1936 goto next; 1937 } 1938 1939 spin_unlock(&bg->lock); 1940 spin_unlock(&space_info->lock); 1941 1942 /* 1943 * Get out fast, in case we're read-only or unmounting the 1944 * filesystem. It is OK to drop block groups from the list even 1945 * for the read-only case. As we did take the super write lock, 1946 * "mount -o remount,ro" won't happen and read-only filesystem 1947 * means it is forced read-only due to a fatal error. So, it 1948 * never gets back to read-write to let us reclaim again. 1949 */ 1950 if (btrfs_need_cleaner_sleep(fs_info)) { 1951 up_write(&space_info->groups_sem); 1952 goto next; 1953 } 1954 1955 ret = inc_block_group_ro(bg, 0); 1956 up_write(&space_info->groups_sem); 1957 if (ret < 0) 1958 goto next; 1959 1960 /* 1961 * The amount of bytes reclaimed corresponds to the sum of the 1962 * "used" and "reserved" counters. We have set the block group 1963 * to RO above, which prevents reservations from happening but 1964 * we may have existing reservations for which allocation has 1965 * not yet been done - btrfs_update_block_group() was not yet 1966 * called, which is where we will transfer a reserved extent's 1967 * size from the "reserved" counter to the "used" counter - this 1968 * happens when running delayed references. When we relocate the 1969 * chunk below, relocation first flushes delalloc, waits for 1970 * ordered extent completion (which is where we create delayed 1971 * references for data extents) and commits the current 1972 * transaction (which runs delayed references), and only after 1973 * it does the actual work to move extents out of the block 1974 * group. So the reported amount of reclaimed bytes is 1975 * effectively the sum of the 'used' and 'reserved' counters. 1976 */ 1977 spin_lock(&bg->lock); 1978 used = bg->used; 1979 reserved = bg->reserved; 1980 spin_unlock(&bg->lock); 1981 1982 trace_btrfs_reclaim_block_group(bg); 1983 ret = btrfs_relocate_chunk(fs_info, bg->start, false); 1984 if (ret) { 1985 btrfs_dec_block_group_ro(bg); 1986 btrfs_err(fs_info, "error relocating chunk %llu", 1987 bg->start); 1988 used = 0; 1989 reserved = 0; 1990 spin_lock(&space_info->lock); 1991 space_info->reclaim_errors++; 1992 if (READ_ONCE(space_info->periodic_reclaim)) 1993 space_info->periodic_reclaim_ready = false; 1994 spin_unlock(&space_info->lock); 1995 } 1996 spin_lock(&space_info->lock); 1997 space_info->reclaim_count++; 1998 space_info->reclaim_bytes += used; 1999 space_info->reclaim_bytes += reserved; 2000 spin_unlock(&space_info->lock); 2001 2002 next: 2003 if (ret && !READ_ONCE(space_info->periodic_reclaim)) 2004 btrfs_link_bg_list(bg, &retry_list); 2005 btrfs_put_block_group(bg); 2006 2007 mutex_unlock(&fs_info->reclaim_bgs_lock); 2008 /* 2009 * Reclaiming all the block groups in the list can take really 2010 * long. Prioritize cleaning up unused block groups. 2011 */ 2012 btrfs_delete_unused_bgs(fs_info); 2013 /* 2014 * If we are interrupted by a balance, we can just bail out. The 2015 * cleaner thread restart again if necessary. 2016 */ 2017 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 2018 goto end; 2019 spin_lock(&fs_info->unused_bgs_lock); 2020 } 2021 spin_unlock(&fs_info->unused_bgs_lock); 2022 mutex_unlock(&fs_info->reclaim_bgs_lock); 2023 end: 2024 spin_lock(&fs_info->unused_bgs_lock); 2025 list_splice_tail(&retry_list, &fs_info->reclaim_bgs); 2026 spin_unlock(&fs_info->unused_bgs_lock); 2027 btrfs_exclop_finish(fs_info); 2028 } 2029 2030 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 2031 { 2032 btrfs_reclaim_sweep(fs_info); 2033 spin_lock(&fs_info->unused_bgs_lock); 2034 if (!list_empty(&fs_info->reclaim_bgs)) 2035 queue_work(system_dfl_wq, &fs_info->reclaim_bgs_work); 2036 spin_unlock(&fs_info->unused_bgs_lock); 2037 } 2038 2039 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 2040 { 2041 struct btrfs_fs_info *fs_info = bg->fs_info; 2042 2043 if (btrfs_link_bg_list(bg, &fs_info->reclaim_bgs)) 2044 trace_btrfs_add_reclaim_block_group(bg); 2045 } 2046 2047 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key, 2048 const struct btrfs_path *path) 2049 { 2050 struct btrfs_chunk_map *map; 2051 struct btrfs_block_group_item bg; 2052 struct extent_buffer *leaf; 2053 int slot; 2054 u64 flags; 2055 int ret = 0; 2056 2057 slot = path->slots[0]; 2058 leaf = path->nodes[0]; 2059 2060 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset); 2061 if (!map) { 2062 btrfs_err(fs_info, 2063 "logical %llu len %llu found bg but no related chunk", 2064 key->objectid, key->offset); 2065 return -ENOENT; 2066 } 2067 2068 if (unlikely(map->start != key->objectid || map->chunk_len != key->offset)) { 2069 btrfs_err(fs_info, 2070 "block group %llu len %llu mismatch with chunk %llu len %llu", 2071 key->objectid, key->offset, map->start, map->chunk_len); 2072 ret = -EUCLEAN; 2073 goto out_free_map; 2074 } 2075 2076 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 2077 sizeof(bg)); 2078 flags = btrfs_stack_block_group_flags(&bg) & 2079 BTRFS_BLOCK_GROUP_TYPE_MASK; 2080 2081 if (unlikely(flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK))) { 2082 btrfs_err(fs_info, 2083 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 2084 key->objectid, key->offset, flags, 2085 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type)); 2086 ret = -EUCLEAN; 2087 } 2088 2089 out_free_map: 2090 btrfs_free_chunk_map(map); 2091 return ret; 2092 } 2093 2094 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2095 struct btrfs_path *path, 2096 const struct btrfs_key *key) 2097 { 2098 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2099 int ret; 2100 struct btrfs_key found_key; 2101 2102 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2103 if (found_key.objectid >= key->objectid && 2104 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2105 return read_bg_from_eb(fs_info, &found_key, path); 2106 } 2107 } 2108 return ret; 2109 } 2110 2111 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2112 { 2113 u64 extra_flags = chunk_to_extended(flags) & 2114 BTRFS_EXTENDED_PROFILE_MASK; 2115 2116 write_seqlock(&fs_info->profiles_lock); 2117 if (flags & BTRFS_BLOCK_GROUP_DATA) 2118 fs_info->avail_data_alloc_bits |= extra_flags; 2119 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2120 fs_info->avail_metadata_alloc_bits |= extra_flags; 2121 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2122 fs_info->avail_system_alloc_bits |= extra_flags; 2123 write_sequnlock(&fs_info->profiles_lock); 2124 } 2125 2126 /* 2127 * Map a physical disk address to a list of logical addresses. 2128 * 2129 * @fs_info: the filesystem 2130 * @chunk_start: logical address of block group 2131 * @physical: physical address to map to logical addresses 2132 * @logical: return array of logical addresses which map to @physical 2133 * @naddrs: length of @logical 2134 * @stripe_len: size of IO stripe for the given block group 2135 * 2136 * Maps a particular @physical disk address to a list of @logical addresses. 2137 * Used primarily to exclude those portions of a block group that contain super 2138 * block copies. 2139 */ 2140 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2141 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2142 { 2143 struct btrfs_chunk_map *map; 2144 u64 *buf; 2145 u64 bytenr; 2146 u64 data_stripe_length; 2147 u64 io_stripe_size; 2148 int i, nr = 0; 2149 int ret = 0; 2150 2151 map = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2152 if (IS_ERR(map)) 2153 return -EIO; 2154 2155 data_stripe_length = map->stripe_size; 2156 io_stripe_size = BTRFS_STRIPE_LEN; 2157 chunk_start = map->start; 2158 2159 /* For RAID5/6 adjust to a full IO stripe length */ 2160 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2161 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2162 2163 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2164 if (!buf) { 2165 ret = -ENOMEM; 2166 goto out; 2167 } 2168 2169 for (i = 0; i < map->num_stripes; i++) { 2170 bool already_inserted = false; 2171 u32 stripe_nr; 2172 u32 offset; 2173 int j; 2174 2175 if (!in_range(physical, map->stripes[i].physical, 2176 data_stripe_length)) 2177 continue; 2178 2179 stripe_nr = (physical - map->stripes[i].physical) >> 2180 BTRFS_STRIPE_LEN_SHIFT; 2181 offset = (physical - map->stripes[i].physical) & 2182 BTRFS_STRIPE_LEN_MASK; 2183 2184 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2185 BTRFS_BLOCK_GROUP_RAID10)) 2186 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2187 map->sub_stripes); 2188 /* 2189 * The remaining case would be for RAID56, multiply by 2190 * nr_data_stripes(). Alternatively, just use rmap_len below 2191 * instead of map->stripe_len 2192 */ 2193 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2194 2195 /* Ensure we don't add duplicate addresses */ 2196 for (j = 0; j < nr; j++) { 2197 if (buf[j] == bytenr) { 2198 already_inserted = true; 2199 break; 2200 } 2201 } 2202 2203 if (!already_inserted) 2204 buf[nr++] = bytenr; 2205 } 2206 2207 *logical = buf; 2208 *naddrs = nr; 2209 *stripe_len = io_stripe_size; 2210 out: 2211 btrfs_free_chunk_map(map); 2212 return ret; 2213 } 2214 2215 static int exclude_super_stripes(struct btrfs_block_group *cache) 2216 { 2217 struct btrfs_fs_info *fs_info = cache->fs_info; 2218 const bool zoned = btrfs_is_zoned(fs_info); 2219 u64 bytenr; 2220 u64 *logical; 2221 int stripe_len; 2222 int i, nr, ret; 2223 2224 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2225 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2226 cache->bytes_super += stripe_len; 2227 ret = btrfs_set_extent_bit(&fs_info->excluded_extents, cache->start, 2228 cache->start + stripe_len - 1, 2229 EXTENT_DIRTY, NULL); 2230 if (ret) 2231 return ret; 2232 } 2233 2234 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2235 bytenr = btrfs_sb_offset(i); 2236 ret = btrfs_rmap_block(fs_info, cache->start, 2237 bytenr, &logical, &nr, &stripe_len); 2238 if (ret) 2239 return ret; 2240 2241 /* Shouldn't have super stripes in sequential zones */ 2242 if (unlikely(zoned && nr)) { 2243 kfree(logical); 2244 btrfs_err(fs_info, 2245 "zoned: block group %llu must not contain super block", 2246 cache->start); 2247 return -EUCLEAN; 2248 } 2249 2250 while (nr--) { 2251 u64 len = min_t(u64, stripe_len, 2252 cache->start + cache->length - logical[nr]); 2253 2254 cache->bytes_super += len; 2255 ret = btrfs_set_extent_bit(&fs_info->excluded_extents, 2256 logical[nr], logical[nr] + len - 1, 2257 EXTENT_DIRTY, NULL); 2258 if (ret) { 2259 kfree(logical); 2260 return ret; 2261 } 2262 } 2263 2264 kfree(logical); 2265 } 2266 return 0; 2267 } 2268 2269 static struct btrfs_block_group *btrfs_create_block_group_cache( 2270 struct btrfs_fs_info *fs_info, u64 start) 2271 { 2272 struct btrfs_block_group *cache; 2273 2274 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2275 if (!cache) 2276 return NULL; 2277 2278 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2279 GFP_NOFS); 2280 if (!cache->free_space_ctl) { 2281 kfree(cache); 2282 return NULL; 2283 } 2284 2285 cache->start = start; 2286 2287 cache->fs_info = fs_info; 2288 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2289 2290 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2291 2292 refcount_set(&cache->refs, 1); 2293 spin_lock_init(&cache->lock); 2294 init_rwsem(&cache->data_rwsem); 2295 INIT_LIST_HEAD(&cache->list); 2296 INIT_LIST_HEAD(&cache->cluster_list); 2297 INIT_LIST_HEAD(&cache->bg_list); 2298 INIT_LIST_HEAD(&cache->ro_list); 2299 INIT_LIST_HEAD(&cache->discard_list); 2300 INIT_LIST_HEAD(&cache->dirty_list); 2301 INIT_LIST_HEAD(&cache->io_list); 2302 INIT_LIST_HEAD(&cache->active_bg_list); 2303 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2304 atomic_set(&cache->frozen, 0); 2305 mutex_init(&cache->free_space_lock); 2306 2307 return cache; 2308 } 2309 2310 /* 2311 * Iterate all chunks and verify that each of them has the corresponding block 2312 * group 2313 */ 2314 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2315 { 2316 u64 start = 0; 2317 int ret = 0; 2318 2319 while (1) { 2320 struct btrfs_chunk_map *map; 2321 struct btrfs_block_group *bg; 2322 2323 /* 2324 * btrfs_find_chunk_map() will return the first chunk map 2325 * intersecting the range, so setting @length to 1 is enough to 2326 * get the first chunk. 2327 */ 2328 map = btrfs_find_chunk_map(fs_info, start, 1); 2329 if (!map) 2330 break; 2331 2332 bg = btrfs_lookup_block_group(fs_info, map->start); 2333 if (unlikely(!bg)) { 2334 btrfs_err(fs_info, 2335 "chunk start=%llu len=%llu doesn't have corresponding block group", 2336 map->start, map->chunk_len); 2337 ret = -EUCLEAN; 2338 btrfs_free_chunk_map(map); 2339 break; 2340 } 2341 if (unlikely(bg->start != map->start || bg->length != map->chunk_len || 2342 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2343 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK))) { 2344 btrfs_err(fs_info, 2345 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2346 map->start, map->chunk_len, 2347 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2348 bg->start, bg->length, 2349 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2350 ret = -EUCLEAN; 2351 btrfs_free_chunk_map(map); 2352 btrfs_put_block_group(bg); 2353 break; 2354 } 2355 start = map->start + map->chunk_len; 2356 btrfs_free_chunk_map(map); 2357 btrfs_put_block_group(bg); 2358 } 2359 return ret; 2360 } 2361 2362 static int read_one_block_group(struct btrfs_fs_info *info, 2363 struct btrfs_block_group_item *bgi, 2364 const struct btrfs_key *key, 2365 int need_clear) 2366 { 2367 struct btrfs_block_group *cache; 2368 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2369 int ret; 2370 2371 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2372 2373 cache = btrfs_create_block_group_cache(info, key->objectid); 2374 if (!cache) 2375 return -ENOMEM; 2376 2377 cache->length = key->offset; 2378 cache->used = btrfs_stack_block_group_used(bgi); 2379 cache->commit_used = cache->used; 2380 cache->flags = btrfs_stack_block_group_flags(bgi); 2381 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2382 cache->space_info = btrfs_find_space_info(info, cache->flags); 2383 2384 btrfs_set_free_space_tree_thresholds(cache); 2385 2386 if (need_clear) { 2387 /* 2388 * When we mount with old space cache, we need to 2389 * set BTRFS_DC_CLEAR and set dirty flag. 2390 * 2391 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2392 * truncate the old free space cache inode and 2393 * setup a new one. 2394 * b) Setting 'dirty flag' makes sure that we flush 2395 * the new space cache info onto disk. 2396 */ 2397 if (btrfs_test_opt(info, SPACE_CACHE)) 2398 cache->disk_cache_state = BTRFS_DC_CLEAR; 2399 } 2400 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2401 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2402 btrfs_err(info, 2403 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2404 cache->start); 2405 ret = -EINVAL; 2406 goto error; 2407 } 2408 2409 ret = btrfs_load_block_group_zone_info(cache, false); 2410 if (ret) { 2411 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2412 cache->start); 2413 goto error; 2414 } 2415 2416 /* 2417 * We need to exclude the super stripes now so that the space info has 2418 * super bytes accounted for, otherwise we'll think we have more space 2419 * than we actually do. 2420 */ 2421 ret = exclude_super_stripes(cache); 2422 if (ret) { 2423 /* We may have excluded something, so call this just in case. */ 2424 btrfs_free_excluded_extents(cache); 2425 goto error; 2426 } 2427 2428 /* 2429 * For zoned filesystem, space after the allocation offset is the only 2430 * free space for a block group. So, we don't need any caching work. 2431 * btrfs_calc_zone_unusable() will set the amount of free space and 2432 * zone_unusable space. 2433 * 2434 * For regular filesystem, check for two cases, either we are full, and 2435 * therefore don't need to bother with the caching work since we won't 2436 * find any space, or we are empty, and we can just add all the space 2437 * in and be done with it. This saves us _a_lot_ of time, particularly 2438 * in the full case. 2439 */ 2440 if (btrfs_is_zoned(info)) { 2441 btrfs_calc_zone_unusable(cache); 2442 /* Should not have any excluded extents. Just in case, though. */ 2443 btrfs_free_excluded_extents(cache); 2444 } else if (cache->length == cache->used) { 2445 cache->cached = BTRFS_CACHE_FINISHED; 2446 btrfs_free_excluded_extents(cache); 2447 } else if (cache->used == 0) { 2448 cache->cached = BTRFS_CACHE_FINISHED; 2449 ret = btrfs_add_new_free_space(cache, cache->start, 2450 cache->start + cache->length, NULL); 2451 btrfs_free_excluded_extents(cache); 2452 if (ret) 2453 goto error; 2454 } 2455 2456 ret = btrfs_add_block_group_cache(cache); 2457 if (ret) { 2458 btrfs_remove_free_space_cache(cache); 2459 goto error; 2460 } 2461 2462 trace_btrfs_add_block_group(info, cache, 0); 2463 btrfs_add_bg_to_space_info(info, cache); 2464 2465 set_avail_alloc_bits(info, cache->flags); 2466 if (btrfs_chunk_writeable(info, cache->start)) { 2467 if (cache->used == 0) { 2468 ASSERT(list_empty(&cache->bg_list)); 2469 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2470 btrfs_discard_queue_work(&info->discard_ctl, cache); 2471 else 2472 btrfs_mark_bg_unused(cache); 2473 } 2474 } else { 2475 inc_block_group_ro(cache, 1); 2476 } 2477 2478 return 0; 2479 error: 2480 btrfs_put_block_group(cache); 2481 return ret; 2482 } 2483 2484 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2485 { 2486 struct rb_node *node; 2487 int ret = 0; 2488 2489 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 2490 struct btrfs_chunk_map *map; 2491 struct btrfs_block_group *bg; 2492 2493 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 2494 bg = btrfs_create_block_group_cache(fs_info, map->start); 2495 if (!bg) { 2496 ret = -ENOMEM; 2497 break; 2498 } 2499 2500 /* Fill dummy cache as FULL */ 2501 bg->length = map->chunk_len; 2502 bg->flags = map->type; 2503 bg->cached = BTRFS_CACHE_FINISHED; 2504 bg->used = map->chunk_len; 2505 bg->flags = map->type; 2506 bg->space_info = btrfs_find_space_info(fs_info, bg->flags); 2507 ret = btrfs_add_block_group_cache(bg); 2508 /* 2509 * We may have some valid block group cache added already, in 2510 * that case we skip to the next one. 2511 */ 2512 if (ret == -EEXIST) { 2513 ret = 0; 2514 btrfs_put_block_group(bg); 2515 continue; 2516 } 2517 2518 if (ret) { 2519 btrfs_remove_free_space_cache(bg); 2520 btrfs_put_block_group(bg); 2521 break; 2522 } 2523 2524 btrfs_add_bg_to_space_info(fs_info, bg); 2525 2526 set_avail_alloc_bits(fs_info, bg->flags); 2527 } 2528 if (!ret) 2529 btrfs_init_global_block_rsv(fs_info); 2530 return ret; 2531 } 2532 2533 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2534 { 2535 struct btrfs_root *root = btrfs_block_group_root(info); 2536 struct btrfs_path *path; 2537 int ret; 2538 struct btrfs_block_group *cache; 2539 struct btrfs_space_info *space_info; 2540 struct btrfs_key key; 2541 int need_clear = 0; 2542 u64 cache_gen; 2543 2544 /* 2545 * Either no extent root (with ibadroots rescue option) or we have 2546 * unsupported RO options. The fs can never be mounted read-write, so no 2547 * need to waste time searching block group items. 2548 * 2549 * This also allows new extent tree related changes to be RO compat, 2550 * no need for a full incompat flag. 2551 */ 2552 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2553 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2554 return fill_dummy_bgs(info); 2555 2556 key.objectid = 0; 2557 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2558 key.offset = 0; 2559 path = btrfs_alloc_path(); 2560 if (!path) 2561 return -ENOMEM; 2562 2563 cache_gen = btrfs_super_cache_generation(info->super_copy); 2564 if (btrfs_test_opt(info, SPACE_CACHE) && 2565 btrfs_super_generation(info->super_copy) != cache_gen) 2566 need_clear = 1; 2567 if (btrfs_test_opt(info, CLEAR_CACHE)) 2568 need_clear = 1; 2569 2570 while (1) { 2571 struct btrfs_block_group_item bgi; 2572 struct extent_buffer *leaf; 2573 int slot; 2574 2575 ret = find_first_block_group(info, path, &key); 2576 if (ret > 0) 2577 break; 2578 if (ret != 0) 2579 goto error; 2580 2581 leaf = path->nodes[0]; 2582 slot = path->slots[0]; 2583 2584 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2585 sizeof(bgi)); 2586 2587 btrfs_item_key_to_cpu(leaf, &key, slot); 2588 btrfs_release_path(path); 2589 ret = read_one_block_group(info, &bgi, &key, need_clear); 2590 if (ret < 0) 2591 goto error; 2592 key.objectid += key.offset; 2593 key.offset = 0; 2594 } 2595 btrfs_release_path(path); 2596 2597 list_for_each_entry(space_info, &info->space_info, list) { 2598 int i; 2599 2600 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2601 if (list_empty(&space_info->block_groups[i])) 2602 continue; 2603 cache = list_first_entry(&space_info->block_groups[i], 2604 struct btrfs_block_group, 2605 list); 2606 btrfs_sysfs_add_block_group_type(cache); 2607 } 2608 2609 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2610 (BTRFS_BLOCK_GROUP_RAID10 | 2611 BTRFS_BLOCK_GROUP_RAID1_MASK | 2612 BTRFS_BLOCK_GROUP_RAID56_MASK | 2613 BTRFS_BLOCK_GROUP_DUP))) 2614 continue; 2615 /* 2616 * Avoid allocating from un-mirrored block group if there are 2617 * mirrored block groups. 2618 */ 2619 list_for_each_entry(cache, 2620 &space_info->block_groups[BTRFS_RAID_RAID0], 2621 list) 2622 inc_block_group_ro(cache, 1); 2623 list_for_each_entry(cache, 2624 &space_info->block_groups[BTRFS_RAID_SINGLE], 2625 list) 2626 inc_block_group_ro(cache, 1); 2627 } 2628 2629 btrfs_init_global_block_rsv(info); 2630 ret = check_chunk_block_group_mappings(info); 2631 error: 2632 btrfs_free_path(path); 2633 /* 2634 * We've hit some error while reading the extent tree, and have 2635 * rescue=ibadroots mount option. 2636 * Try to fill the tree using dummy block groups so that the user can 2637 * continue to mount and grab their data. 2638 */ 2639 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2640 ret = fill_dummy_bgs(info); 2641 return ret; 2642 } 2643 2644 /* 2645 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2646 * allocation. 2647 * 2648 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2649 * phases. 2650 */ 2651 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2652 struct btrfs_block_group *block_group) 2653 { 2654 struct btrfs_fs_info *fs_info = trans->fs_info; 2655 struct btrfs_block_group_item bgi; 2656 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2657 struct btrfs_key key; 2658 u64 old_commit_used; 2659 int ret; 2660 2661 spin_lock(&block_group->lock); 2662 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2663 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2664 block_group->global_root_id); 2665 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2666 old_commit_used = block_group->commit_used; 2667 block_group->commit_used = block_group->used; 2668 key.objectid = block_group->start; 2669 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2670 key.offset = block_group->length; 2671 spin_unlock(&block_group->lock); 2672 2673 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2674 if (ret < 0) { 2675 spin_lock(&block_group->lock); 2676 block_group->commit_used = old_commit_used; 2677 spin_unlock(&block_group->lock); 2678 } 2679 2680 return ret; 2681 } 2682 2683 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2684 const struct btrfs_device *device, u64 chunk_offset, 2685 u64 start, u64 num_bytes) 2686 { 2687 struct btrfs_fs_info *fs_info = device->fs_info; 2688 struct btrfs_root *root = fs_info->dev_root; 2689 BTRFS_PATH_AUTO_FREE(path); 2690 struct btrfs_dev_extent *extent; 2691 struct extent_buffer *leaf; 2692 struct btrfs_key key; 2693 int ret; 2694 2695 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2696 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2697 path = btrfs_alloc_path(); 2698 if (!path) 2699 return -ENOMEM; 2700 2701 key.objectid = device->devid; 2702 key.type = BTRFS_DEV_EXTENT_KEY; 2703 key.offset = start; 2704 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2705 if (ret) 2706 return ret; 2707 2708 leaf = path->nodes[0]; 2709 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2710 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2711 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2712 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2713 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2714 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2715 2716 return ret; 2717 } 2718 2719 /* 2720 * This function belongs to phase 2. 2721 * 2722 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2723 * phases. 2724 */ 2725 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2726 u64 chunk_offset, u64 chunk_size) 2727 { 2728 struct btrfs_fs_info *fs_info = trans->fs_info; 2729 struct btrfs_device *device; 2730 struct btrfs_chunk_map *map; 2731 u64 dev_offset; 2732 int i; 2733 int ret = 0; 2734 2735 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2736 if (IS_ERR(map)) 2737 return PTR_ERR(map); 2738 2739 /* 2740 * Take the device list mutex to prevent races with the final phase of 2741 * a device replace operation that replaces the device object associated 2742 * with the map's stripes, because the device object's id can change 2743 * at any time during that final phase of the device replace operation 2744 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2745 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2746 * resulting in persisting a device extent item with such ID. 2747 */ 2748 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2749 for (i = 0; i < map->num_stripes; i++) { 2750 device = map->stripes[i].dev; 2751 dev_offset = map->stripes[i].physical; 2752 2753 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2754 map->stripe_size); 2755 if (ret) 2756 break; 2757 } 2758 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2759 2760 btrfs_free_chunk_map(map); 2761 return ret; 2762 } 2763 2764 /* 2765 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2766 * chunk allocation. 2767 * 2768 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2769 * phases. 2770 */ 2771 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2772 { 2773 struct btrfs_fs_info *fs_info = trans->fs_info; 2774 struct btrfs_block_group *block_group; 2775 int ret = 0; 2776 2777 while (!list_empty(&trans->new_bgs)) { 2778 int index; 2779 2780 block_group = list_first_entry(&trans->new_bgs, 2781 struct btrfs_block_group, 2782 bg_list); 2783 if (ret) 2784 goto next; 2785 2786 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2787 2788 ret = insert_block_group_item(trans, block_group); 2789 if (ret) 2790 btrfs_abort_transaction(trans, ret); 2791 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2792 &block_group->runtime_flags)) { 2793 mutex_lock(&fs_info->chunk_mutex); 2794 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2795 mutex_unlock(&fs_info->chunk_mutex); 2796 if (ret) 2797 btrfs_abort_transaction(trans, ret); 2798 } 2799 ret = insert_dev_extents(trans, block_group->start, 2800 block_group->length); 2801 if (ret) 2802 btrfs_abort_transaction(trans, ret); 2803 btrfs_add_block_group_free_space(trans, block_group); 2804 2805 /* 2806 * If we restriped during balance, we may have added a new raid 2807 * type, so now add the sysfs entries when it is safe to do so. 2808 * We don't have to worry about locking here as it's handled in 2809 * btrfs_sysfs_add_block_group_type. 2810 */ 2811 if (block_group->space_info->block_group_kobjs[index] == NULL) 2812 btrfs_sysfs_add_block_group_type(block_group); 2813 2814 /* Already aborted the transaction if it failed. */ 2815 next: 2816 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2817 2818 spin_lock(&fs_info->unused_bgs_lock); 2819 list_del_init(&block_group->bg_list); 2820 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2821 btrfs_put_block_group(block_group); 2822 spin_unlock(&fs_info->unused_bgs_lock); 2823 2824 /* 2825 * If the block group is still unused, add it to the list of 2826 * unused block groups. The block group may have been created in 2827 * order to satisfy a space reservation, in which case the 2828 * extent allocation only happens later. But often we don't 2829 * actually need to allocate space that we previously reserved, 2830 * so the block group may become unused for a long time. For 2831 * example for metadata we generally reserve space for a worst 2832 * possible scenario, but then don't end up allocating all that 2833 * space or none at all (due to no need to COW, extent buffers 2834 * were already COWed in the current transaction and still 2835 * unwritten, tree heights lower than the maximum possible 2836 * height, etc). For data we generally reserve the exact amount 2837 * of space we are going to allocate later, the exception is 2838 * when using compression, as we must reserve space based on the 2839 * uncompressed data size, because the compression is only done 2840 * when writeback triggered and we don't know how much space we 2841 * are actually going to need, so we reserve the uncompressed 2842 * size because the data may be incompressible in the worst case. 2843 */ 2844 if (ret == 0) { 2845 bool used; 2846 2847 spin_lock(&block_group->lock); 2848 used = btrfs_is_block_group_used(block_group); 2849 spin_unlock(&block_group->lock); 2850 2851 if (!used) 2852 btrfs_mark_bg_unused(block_group); 2853 } 2854 } 2855 btrfs_trans_release_chunk_metadata(trans); 2856 } 2857 2858 /* 2859 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2860 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2861 */ 2862 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset) 2863 { 2864 u64 div = SZ_1G; 2865 u64 index; 2866 2867 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2868 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2869 2870 /* If we have a smaller fs index based on 128MiB. */ 2871 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2872 div = SZ_128M; 2873 2874 offset = div64_u64(offset, div); 2875 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2876 return index; 2877 } 2878 2879 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2880 struct btrfs_space_info *space_info, 2881 u64 type, u64 chunk_offset, u64 size) 2882 { 2883 struct btrfs_fs_info *fs_info = trans->fs_info; 2884 struct btrfs_block_group *cache; 2885 int ret; 2886 2887 btrfs_set_log_full_commit(trans); 2888 2889 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2890 if (!cache) 2891 return ERR_PTR(-ENOMEM); 2892 2893 /* 2894 * Mark it as new before adding it to the rbtree of block groups or any 2895 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2896 * before the new flag is set. 2897 */ 2898 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2899 2900 cache->length = size; 2901 btrfs_set_free_space_tree_thresholds(cache); 2902 cache->flags = type; 2903 cache->cached = BTRFS_CACHE_FINISHED; 2904 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2905 2906 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2907 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2908 2909 ret = btrfs_load_block_group_zone_info(cache, true); 2910 if (ret) { 2911 btrfs_put_block_group(cache); 2912 return ERR_PTR(ret); 2913 } 2914 2915 ret = exclude_super_stripes(cache); 2916 if (ret) { 2917 /* We may have excluded something, so call this just in case */ 2918 btrfs_free_excluded_extents(cache); 2919 btrfs_put_block_group(cache); 2920 return ERR_PTR(ret); 2921 } 2922 2923 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2924 btrfs_free_excluded_extents(cache); 2925 if (ret) { 2926 btrfs_put_block_group(cache); 2927 return ERR_PTR(ret); 2928 } 2929 2930 /* 2931 * Ensure the corresponding space_info object is created and 2932 * assigned to our block group. We want our bg to be added to the rbtree 2933 * with its ->space_info set. 2934 */ 2935 cache->space_info = space_info; 2936 ASSERT(cache->space_info); 2937 2938 ret = btrfs_add_block_group_cache(cache); 2939 if (ret) { 2940 btrfs_remove_free_space_cache(cache); 2941 btrfs_put_block_group(cache); 2942 return ERR_PTR(ret); 2943 } 2944 2945 /* 2946 * Now that our block group has its ->space_info set and is inserted in 2947 * the rbtree, update the space info's counters. 2948 */ 2949 trace_btrfs_add_block_group(fs_info, cache, 1); 2950 btrfs_add_bg_to_space_info(fs_info, cache); 2951 btrfs_update_global_block_rsv(fs_info); 2952 2953 #ifdef CONFIG_BTRFS_DEBUG 2954 if (btrfs_should_fragment_free_space(cache)) { 2955 cache->space_info->bytes_used += size >> 1; 2956 fragment_free_space(cache); 2957 } 2958 #endif 2959 2960 btrfs_link_bg_list(cache, &trans->new_bgs); 2961 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info); 2962 2963 set_avail_alloc_bits(fs_info, type); 2964 return cache; 2965 } 2966 2967 /* 2968 * Mark one block group RO, can be called several times for the same block 2969 * group. 2970 * 2971 * @cache: the destination block group 2972 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2973 * ensure we still have some free space after marking this 2974 * block group RO. 2975 */ 2976 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2977 bool do_chunk_alloc) 2978 { 2979 struct btrfs_fs_info *fs_info = cache->fs_info; 2980 struct btrfs_space_info *space_info = cache->space_info; 2981 struct btrfs_trans_handle *trans; 2982 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2983 u64 alloc_flags; 2984 int ret; 2985 bool dirty_bg_running; 2986 2987 /* 2988 * This can only happen when we are doing read-only scrub on read-only 2989 * mount. 2990 * In that case we should not start a new transaction on read-only fs. 2991 * Thus here we skip all chunk allocations. 2992 */ 2993 if (sb_rdonly(fs_info->sb)) { 2994 mutex_lock(&fs_info->ro_block_group_mutex); 2995 ret = inc_block_group_ro(cache, 0); 2996 mutex_unlock(&fs_info->ro_block_group_mutex); 2997 return ret; 2998 } 2999 3000 do { 3001 trans = btrfs_join_transaction(root); 3002 if (IS_ERR(trans)) 3003 return PTR_ERR(trans); 3004 3005 dirty_bg_running = false; 3006 3007 /* 3008 * We're not allowed to set block groups readonly after the dirty 3009 * block group cache has started writing. If it already started, 3010 * back off and let this transaction commit. 3011 */ 3012 mutex_lock(&fs_info->ro_block_group_mutex); 3013 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 3014 u64 transid = trans->transid; 3015 3016 mutex_unlock(&fs_info->ro_block_group_mutex); 3017 btrfs_end_transaction(trans); 3018 3019 ret = btrfs_wait_for_commit(fs_info, transid); 3020 if (ret) 3021 return ret; 3022 dirty_bg_running = true; 3023 } 3024 } while (dirty_bg_running); 3025 3026 if (do_chunk_alloc) { 3027 /* 3028 * If we are changing raid levels, try to allocate a 3029 * corresponding block group with the new raid level. 3030 */ 3031 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3032 if (alloc_flags != cache->flags) { 3033 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, 3034 CHUNK_ALLOC_FORCE); 3035 /* 3036 * ENOSPC is allowed here, we may have enough space 3037 * already allocated at the new raid level to carry on 3038 */ 3039 if (ret == -ENOSPC) 3040 ret = 0; 3041 if (ret < 0) 3042 goto out; 3043 } 3044 } 3045 3046 ret = inc_block_group_ro(cache, 0); 3047 if (!ret) 3048 goto out; 3049 if (ret == -ETXTBSY) 3050 goto unlock_out; 3051 3052 /* 3053 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system 3054 * chunk allocation storm to exhaust the system chunk array. Otherwise 3055 * we still want to try our best to mark the block group read-only. 3056 */ 3057 if (!do_chunk_alloc && ret == -ENOSPC && 3058 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 3059 goto unlock_out; 3060 3061 alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags); 3062 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE); 3063 if (ret < 0) 3064 goto out; 3065 /* 3066 * We have allocated a new chunk. We also need to activate that chunk to 3067 * grant metadata tickets for zoned filesystem. 3068 */ 3069 ret = btrfs_zoned_activate_one_bg(space_info, true); 3070 if (ret < 0) 3071 goto out; 3072 3073 ret = inc_block_group_ro(cache, 0); 3074 if (ret == -ETXTBSY) 3075 goto unlock_out; 3076 out: 3077 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 3078 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3079 mutex_lock(&fs_info->chunk_mutex); 3080 check_system_chunk(trans, alloc_flags); 3081 mutex_unlock(&fs_info->chunk_mutex); 3082 } 3083 unlock_out: 3084 mutex_unlock(&fs_info->ro_block_group_mutex); 3085 3086 btrfs_end_transaction(trans); 3087 return ret; 3088 } 3089 3090 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 3091 { 3092 struct btrfs_space_info *sinfo = cache->space_info; 3093 u64 num_bytes; 3094 3095 BUG_ON(!cache->ro); 3096 3097 spin_lock(&sinfo->lock); 3098 spin_lock(&cache->lock); 3099 if (!--cache->ro) { 3100 if (btrfs_is_zoned(cache->fs_info)) { 3101 /* Migrate zone_unusable bytes back */ 3102 cache->zone_unusable = 3103 (cache->alloc_offset - cache->used - cache->pinned - 3104 cache->reserved) + 3105 (cache->length - cache->zone_capacity); 3106 btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable); 3107 sinfo->bytes_readonly -= cache->zone_unusable; 3108 } 3109 num_bytes = cache->length - cache->reserved - 3110 cache->pinned - cache->bytes_super - 3111 cache->zone_unusable - cache->used; 3112 sinfo->bytes_readonly -= num_bytes; 3113 list_del_init(&cache->ro_list); 3114 } 3115 spin_unlock(&cache->lock); 3116 spin_unlock(&sinfo->lock); 3117 } 3118 3119 static int update_block_group_item(struct btrfs_trans_handle *trans, 3120 struct btrfs_path *path, 3121 struct btrfs_block_group *cache) 3122 { 3123 struct btrfs_fs_info *fs_info = trans->fs_info; 3124 int ret; 3125 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3126 unsigned long bi; 3127 struct extent_buffer *leaf; 3128 struct btrfs_block_group_item bgi; 3129 struct btrfs_key key; 3130 u64 old_commit_used; 3131 u64 used; 3132 3133 /* 3134 * Block group items update can be triggered out of commit transaction 3135 * critical section, thus we need a consistent view of used bytes. 3136 * We cannot use cache->used directly outside of the spin lock, as it 3137 * may be changed. 3138 */ 3139 spin_lock(&cache->lock); 3140 old_commit_used = cache->commit_used; 3141 used = cache->used; 3142 /* No change in used bytes, can safely skip it. */ 3143 if (cache->commit_used == used) { 3144 spin_unlock(&cache->lock); 3145 return 0; 3146 } 3147 cache->commit_used = used; 3148 spin_unlock(&cache->lock); 3149 3150 key.objectid = cache->start; 3151 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3152 key.offset = cache->length; 3153 3154 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3155 if (ret) { 3156 if (ret > 0) 3157 ret = -ENOENT; 3158 goto fail; 3159 } 3160 3161 leaf = path->nodes[0]; 3162 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3163 btrfs_set_stack_block_group_used(&bgi, used); 3164 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3165 cache->global_root_id); 3166 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3167 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3168 fail: 3169 btrfs_release_path(path); 3170 /* 3171 * We didn't update the block group item, need to revert commit_used 3172 * unless the block group item didn't exist yet - this is to prevent a 3173 * race with a concurrent insertion of the block group item, with 3174 * insert_block_group_item(), that happened just after we attempted to 3175 * update. In that case we would reset commit_used to 0 just after the 3176 * insertion set it to a value greater than 0 - if the block group later 3177 * becomes with 0 used bytes, we would incorrectly skip its update. 3178 */ 3179 if (ret < 0 && ret != -ENOENT) { 3180 spin_lock(&cache->lock); 3181 cache->commit_used = old_commit_used; 3182 spin_unlock(&cache->lock); 3183 } 3184 return ret; 3185 3186 } 3187 3188 static int cache_save_setup(struct btrfs_block_group *block_group, 3189 struct btrfs_trans_handle *trans, 3190 struct btrfs_path *path) 3191 { 3192 struct btrfs_fs_info *fs_info = block_group->fs_info; 3193 struct inode *inode = NULL; 3194 struct extent_changeset *data_reserved = NULL; 3195 u64 alloc_hint = 0; 3196 int dcs = BTRFS_DC_ERROR; 3197 u64 cache_size = 0; 3198 int retries = 0; 3199 int ret = 0; 3200 3201 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3202 return 0; 3203 3204 /* 3205 * If this block group is smaller than 100 megs don't bother caching the 3206 * block group. 3207 */ 3208 if (block_group->length < (100 * SZ_1M)) { 3209 spin_lock(&block_group->lock); 3210 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3211 spin_unlock(&block_group->lock); 3212 return 0; 3213 } 3214 3215 if (TRANS_ABORTED(trans)) 3216 return 0; 3217 again: 3218 inode = lookup_free_space_inode(block_group, path); 3219 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3220 ret = PTR_ERR(inode); 3221 btrfs_release_path(path); 3222 goto out; 3223 } 3224 3225 if (IS_ERR(inode)) { 3226 BUG_ON(retries); 3227 retries++; 3228 3229 if (block_group->ro) 3230 goto out_free; 3231 3232 ret = create_free_space_inode(trans, block_group, path); 3233 if (ret) 3234 goto out_free; 3235 goto again; 3236 } 3237 3238 /* 3239 * We want to set the generation to 0, that way if anything goes wrong 3240 * from here on out we know not to trust this cache when we load up next 3241 * time. 3242 */ 3243 BTRFS_I(inode)->generation = 0; 3244 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 3245 if (unlikely(ret)) { 3246 /* 3247 * So theoretically we could recover from this, simply set the 3248 * super cache generation to 0 so we know to invalidate the 3249 * cache, but then we'd have to keep track of the block groups 3250 * that fail this way so we know we _have_ to reset this cache 3251 * before the next commit or risk reading stale cache. So to 3252 * limit our exposure to horrible edge cases lets just abort the 3253 * transaction, this only happens in really bad situations 3254 * anyway. 3255 */ 3256 btrfs_abort_transaction(trans, ret); 3257 goto out_put; 3258 } 3259 WARN_ON(ret); 3260 3261 /* We've already setup this transaction, go ahead and exit */ 3262 if (block_group->cache_generation == trans->transid && 3263 i_size_read(inode)) { 3264 dcs = BTRFS_DC_SETUP; 3265 goto out_put; 3266 } 3267 3268 if (i_size_read(inode) > 0) { 3269 ret = btrfs_check_trunc_cache_free_space(fs_info, 3270 &fs_info->global_block_rsv); 3271 if (ret) 3272 goto out_put; 3273 3274 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3275 if (ret) 3276 goto out_put; 3277 } 3278 3279 spin_lock(&block_group->lock); 3280 if (block_group->cached != BTRFS_CACHE_FINISHED || 3281 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3282 /* 3283 * don't bother trying to write stuff out _if_ 3284 * a) we're not cached, 3285 * b) we're with nospace_cache mount option, 3286 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3287 */ 3288 dcs = BTRFS_DC_WRITTEN; 3289 spin_unlock(&block_group->lock); 3290 goto out_put; 3291 } 3292 spin_unlock(&block_group->lock); 3293 3294 /* 3295 * We hit an ENOSPC when setting up the cache in this transaction, just 3296 * skip doing the setup, we've already cleared the cache so we're safe. 3297 */ 3298 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3299 ret = -ENOSPC; 3300 goto out_put; 3301 } 3302 3303 /* 3304 * Try to preallocate enough space based on how big the block group is. 3305 * Keep in mind this has to include any pinned space which could end up 3306 * taking up quite a bit since it's not folded into the other space 3307 * cache. 3308 */ 3309 cache_size = div_u64(block_group->length, SZ_256M); 3310 if (!cache_size) 3311 cache_size = 1; 3312 3313 cache_size *= 16; 3314 cache_size *= fs_info->sectorsize; 3315 3316 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3317 cache_size, false); 3318 if (ret) 3319 goto out_put; 3320 3321 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3322 cache_size, cache_size, 3323 &alloc_hint); 3324 /* 3325 * Our cache requires contiguous chunks so that we don't modify a bunch 3326 * of metadata or split extents when writing the cache out, which means 3327 * we can enospc if we are heavily fragmented in addition to just normal 3328 * out of space conditions. So if we hit this just skip setting up any 3329 * other block groups for this transaction, maybe we'll unpin enough 3330 * space the next time around. 3331 */ 3332 if (!ret) 3333 dcs = BTRFS_DC_SETUP; 3334 else if (ret == -ENOSPC) 3335 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3336 3337 out_put: 3338 iput(inode); 3339 out_free: 3340 btrfs_release_path(path); 3341 out: 3342 spin_lock(&block_group->lock); 3343 if (!ret && dcs == BTRFS_DC_SETUP) 3344 block_group->cache_generation = trans->transid; 3345 block_group->disk_cache_state = dcs; 3346 spin_unlock(&block_group->lock); 3347 3348 extent_changeset_free(data_reserved); 3349 return ret; 3350 } 3351 3352 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3353 { 3354 struct btrfs_fs_info *fs_info = trans->fs_info; 3355 struct btrfs_block_group *cache, *tmp; 3356 struct btrfs_transaction *cur_trans = trans->transaction; 3357 BTRFS_PATH_AUTO_FREE(path); 3358 3359 if (list_empty(&cur_trans->dirty_bgs) || 3360 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3361 return 0; 3362 3363 path = btrfs_alloc_path(); 3364 if (!path) 3365 return -ENOMEM; 3366 3367 /* Could add new block groups, use _safe just in case */ 3368 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3369 dirty_list) { 3370 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3371 cache_save_setup(cache, trans, path); 3372 } 3373 3374 return 0; 3375 } 3376 3377 /* 3378 * Transaction commit does final block group cache writeback during a critical 3379 * section where nothing is allowed to change the FS. This is required in 3380 * order for the cache to actually match the block group, but can introduce a 3381 * lot of latency into the commit. 3382 * 3383 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3384 * There's a chance we'll have to redo some of it if the block group changes 3385 * again during the commit, but it greatly reduces the commit latency by 3386 * getting rid of the easy block groups while we're still allowing others to 3387 * join the commit. 3388 */ 3389 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3390 { 3391 struct btrfs_fs_info *fs_info = trans->fs_info; 3392 struct btrfs_block_group *cache; 3393 struct btrfs_transaction *cur_trans = trans->transaction; 3394 int ret = 0; 3395 int should_put; 3396 BTRFS_PATH_AUTO_FREE(path); 3397 LIST_HEAD(dirty); 3398 struct list_head *io = &cur_trans->io_bgs; 3399 int loops = 0; 3400 3401 spin_lock(&cur_trans->dirty_bgs_lock); 3402 if (list_empty(&cur_trans->dirty_bgs)) { 3403 spin_unlock(&cur_trans->dirty_bgs_lock); 3404 return 0; 3405 } 3406 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3407 spin_unlock(&cur_trans->dirty_bgs_lock); 3408 3409 again: 3410 /* Make sure all the block groups on our dirty list actually exist */ 3411 btrfs_create_pending_block_groups(trans); 3412 3413 if (!path) { 3414 path = btrfs_alloc_path(); 3415 if (!path) { 3416 ret = -ENOMEM; 3417 goto out; 3418 } 3419 } 3420 3421 /* 3422 * cache_write_mutex is here only to save us from balance or automatic 3423 * removal of empty block groups deleting this block group while we are 3424 * writing out the cache 3425 */ 3426 mutex_lock(&trans->transaction->cache_write_mutex); 3427 while (!list_empty(&dirty)) { 3428 bool drop_reserve = true; 3429 3430 cache = list_first_entry(&dirty, struct btrfs_block_group, 3431 dirty_list); 3432 /* 3433 * This can happen if something re-dirties a block group that 3434 * is already under IO. Just wait for it to finish and then do 3435 * it all again 3436 */ 3437 if (!list_empty(&cache->io_list)) { 3438 list_del_init(&cache->io_list); 3439 btrfs_wait_cache_io(trans, cache, path); 3440 btrfs_put_block_group(cache); 3441 } 3442 3443 3444 /* 3445 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3446 * it should update the cache_state. Don't delete until after 3447 * we wait. 3448 * 3449 * Since we're not running in the commit critical section 3450 * we need the dirty_bgs_lock to protect from update_block_group 3451 */ 3452 spin_lock(&cur_trans->dirty_bgs_lock); 3453 list_del_init(&cache->dirty_list); 3454 spin_unlock(&cur_trans->dirty_bgs_lock); 3455 3456 should_put = 1; 3457 3458 cache_save_setup(cache, trans, path); 3459 3460 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3461 cache->io_ctl.inode = NULL; 3462 ret = btrfs_write_out_cache(trans, cache, path); 3463 if (ret == 0 && cache->io_ctl.inode) { 3464 should_put = 0; 3465 3466 /* 3467 * The cache_write_mutex is protecting the 3468 * io_list, also refer to the definition of 3469 * btrfs_transaction::io_bgs for more details 3470 */ 3471 list_add_tail(&cache->io_list, io); 3472 } else { 3473 /* 3474 * If we failed to write the cache, the 3475 * generation will be bad and life goes on 3476 */ 3477 ret = 0; 3478 } 3479 } 3480 if (!ret) { 3481 ret = update_block_group_item(trans, path, cache); 3482 /* 3483 * Our block group might still be attached to the list 3484 * of new block groups in the transaction handle of some 3485 * other task (struct btrfs_trans_handle->new_bgs). This 3486 * means its block group item isn't yet in the extent 3487 * tree. If this happens ignore the error, as we will 3488 * try again later in the critical section of the 3489 * transaction commit. 3490 */ 3491 if (ret == -ENOENT) { 3492 ret = 0; 3493 spin_lock(&cur_trans->dirty_bgs_lock); 3494 if (list_empty(&cache->dirty_list)) { 3495 list_add_tail(&cache->dirty_list, 3496 &cur_trans->dirty_bgs); 3497 btrfs_get_block_group(cache); 3498 drop_reserve = false; 3499 } 3500 spin_unlock(&cur_trans->dirty_bgs_lock); 3501 } else if (ret) { 3502 btrfs_abort_transaction(trans, ret); 3503 } 3504 } 3505 3506 /* If it's not on the io list, we need to put the block group */ 3507 if (should_put) 3508 btrfs_put_block_group(cache); 3509 if (drop_reserve) 3510 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3511 /* 3512 * Avoid blocking other tasks for too long. It might even save 3513 * us from writing caches for block groups that are going to be 3514 * removed. 3515 */ 3516 mutex_unlock(&trans->transaction->cache_write_mutex); 3517 if (ret) 3518 goto out; 3519 mutex_lock(&trans->transaction->cache_write_mutex); 3520 } 3521 mutex_unlock(&trans->transaction->cache_write_mutex); 3522 3523 /* 3524 * Go through delayed refs for all the stuff we've just kicked off 3525 * and then loop back (just once) 3526 */ 3527 if (!ret) 3528 ret = btrfs_run_delayed_refs(trans, 0); 3529 if (!ret && loops == 0) { 3530 loops++; 3531 spin_lock(&cur_trans->dirty_bgs_lock); 3532 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3533 /* 3534 * dirty_bgs_lock protects us from concurrent block group 3535 * deletes too (not just cache_write_mutex). 3536 */ 3537 if (!list_empty(&dirty)) { 3538 spin_unlock(&cur_trans->dirty_bgs_lock); 3539 goto again; 3540 } 3541 spin_unlock(&cur_trans->dirty_bgs_lock); 3542 } 3543 out: 3544 if (ret < 0) { 3545 spin_lock(&cur_trans->dirty_bgs_lock); 3546 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3547 spin_unlock(&cur_trans->dirty_bgs_lock); 3548 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3549 } 3550 3551 return ret; 3552 } 3553 3554 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3555 { 3556 struct btrfs_fs_info *fs_info = trans->fs_info; 3557 struct btrfs_block_group *cache; 3558 struct btrfs_transaction *cur_trans = trans->transaction; 3559 int ret = 0; 3560 int should_put; 3561 BTRFS_PATH_AUTO_FREE(path); 3562 struct list_head *io = &cur_trans->io_bgs; 3563 3564 path = btrfs_alloc_path(); 3565 if (!path) 3566 return -ENOMEM; 3567 3568 /* 3569 * Even though we are in the critical section of the transaction commit, 3570 * we can still have concurrent tasks adding elements to this 3571 * transaction's list of dirty block groups. These tasks correspond to 3572 * endio free space workers started when writeback finishes for a 3573 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3574 * allocate new block groups as a result of COWing nodes of the root 3575 * tree when updating the free space inode. The writeback for the space 3576 * caches is triggered by an earlier call to 3577 * btrfs_start_dirty_block_groups() and iterations of the following 3578 * loop. 3579 * Also we want to do the cache_save_setup first and then run the 3580 * delayed refs to make sure we have the best chance at doing this all 3581 * in one shot. 3582 */ 3583 spin_lock(&cur_trans->dirty_bgs_lock); 3584 while (!list_empty(&cur_trans->dirty_bgs)) { 3585 cache = list_first_entry(&cur_trans->dirty_bgs, 3586 struct btrfs_block_group, 3587 dirty_list); 3588 3589 /* 3590 * This can happen if cache_save_setup re-dirties a block group 3591 * that is already under IO. Just wait for it to finish and 3592 * then do it all again 3593 */ 3594 if (!list_empty(&cache->io_list)) { 3595 spin_unlock(&cur_trans->dirty_bgs_lock); 3596 list_del_init(&cache->io_list); 3597 btrfs_wait_cache_io(trans, cache, path); 3598 btrfs_put_block_group(cache); 3599 spin_lock(&cur_trans->dirty_bgs_lock); 3600 } 3601 3602 /* 3603 * Don't remove from the dirty list until after we've waited on 3604 * any pending IO 3605 */ 3606 list_del_init(&cache->dirty_list); 3607 spin_unlock(&cur_trans->dirty_bgs_lock); 3608 should_put = 1; 3609 3610 cache_save_setup(cache, trans, path); 3611 3612 if (!ret) 3613 ret = btrfs_run_delayed_refs(trans, U64_MAX); 3614 3615 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3616 cache->io_ctl.inode = NULL; 3617 ret = btrfs_write_out_cache(trans, cache, path); 3618 if (ret == 0 && cache->io_ctl.inode) { 3619 should_put = 0; 3620 list_add_tail(&cache->io_list, io); 3621 } else { 3622 /* 3623 * If we failed to write the cache, the 3624 * generation will be bad and life goes on 3625 */ 3626 ret = 0; 3627 } 3628 } 3629 if (!ret) { 3630 ret = update_block_group_item(trans, path, cache); 3631 /* 3632 * One of the free space endio workers might have 3633 * created a new block group while updating a free space 3634 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3635 * and hasn't released its transaction handle yet, in 3636 * which case the new block group is still attached to 3637 * its transaction handle and its creation has not 3638 * finished yet (no block group item in the extent tree 3639 * yet, etc). If this is the case, wait for all free 3640 * space endio workers to finish and retry. This is a 3641 * very rare case so no need for a more efficient and 3642 * complex approach. 3643 */ 3644 if (ret == -ENOENT) { 3645 wait_event(cur_trans->writer_wait, 3646 atomic_read(&cur_trans->num_writers) == 1); 3647 ret = update_block_group_item(trans, path, cache); 3648 if (ret) 3649 btrfs_abort_transaction(trans, ret); 3650 } else if (ret) { 3651 btrfs_abort_transaction(trans, ret); 3652 } 3653 } 3654 3655 /* If its not on the io list, we need to put the block group */ 3656 if (should_put) 3657 btrfs_put_block_group(cache); 3658 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3659 spin_lock(&cur_trans->dirty_bgs_lock); 3660 } 3661 spin_unlock(&cur_trans->dirty_bgs_lock); 3662 3663 /* 3664 * Refer to the definition of io_bgs member for details why it's safe 3665 * to use it without any locking 3666 */ 3667 while (!list_empty(io)) { 3668 cache = list_first_entry(io, struct btrfs_block_group, 3669 io_list); 3670 list_del_init(&cache->io_list); 3671 btrfs_wait_cache_io(trans, cache, path); 3672 btrfs_put_block_group(cache); 3673 } 3674 3675 return ret; 3676 } 3677 3678 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3679 u64 bytenr, u64 num_bytes, bool alloc) 3680 { 3681 struct btrfs_fs_info *info = trans->fs_info; 3682 struct btrfs_space_info *space_info; 3683 struct btrfs_block_group *cache; 3684 u64 old_val; 3685 bool reclaim = false; 3686 bool bg_already_dirty = true; 3687 int factor; 3688 3689 /* Block accounting for super block */ 3690 spin_lock(&info->delalloc_root_lock); 3691 old_val = btrfs_super_bytes_used(info->super_copy); 3692 if (alloc) 3693 old_val += num_bytes; 3694 else 3695 old_val -= num_bytes; 3696 btrfs_set_super_bytes_used(info->super_copy, old_val); 3697 spin_unlock(&info->delalloc_root_lock); 3698 3699 cache = btrfs_lookup_block_group(info, bytenr); 3700 if (!cache) 3701 return -ENOENT; 3702 3703 /* An extent can not span multiple block groups. */ 3704 ASSERT(bytenr + num_bytes <= cache->start + cache->length); 3705 3706 space_info = cache->space_info; 3707 factor = btrfs_bg_type_to_factor(cache->flags); 3708 3709 /* 3710 * If this block group has free space cache written out, we need to make 3711 * sure to load it if we are removing space. This is because we need 3712 * the unpinning stage to actually add the space back to the block group, 3713 * otherwise we will leak space. 3714 */ 3715 if (!alloc && !btrfs_block_group_done(cache)) 3716 btrfs_cache_block_group(cache, true); 3717 3718 spin_lock(&space_info->lock); 3719 spin_lock(&cache->lock); 3720 3721 if (btrfs_test_opt(info, SPACE_CACHE) && 3722 cache->disk_cache_state < BTRFS_DC_CLEAR) 3723 cache->disk_cache_state = BTRFS_DC_CLEAR; 3724 3725 old_val = cache->used; 3726 if (alloc) { 3727 old_val += num_bytes; 3728 cache->used = old_val; 3729 cache->reserved -= num_bytes; 3730 cache->reclaim_mark = 0; 3731 space_info->bytes_reserved -= num_bytes; 3732 space_info->bytes_used += num_bytes; 3733 space_info->disk_used += num_bytes * factor; 3734 if (READ_ONCE(space_info->periodic_reclaim)) 3735 btrfs_space_info_update_reclaimable(space_info, -num_bytes); 3736 spin_unlock(&cache->lock); 3737 spin_unlock(&space_info->lock); 3738 } else { 3739 old_val -= num_bytes; 3740 cache->used = old_val; 3741 cache->pinned += num_bytes; 3742 btrfs_space_info_update_bytes_pinned(space_info, num_bytes); 3743 space_info->bytes_used -= num_bytes; 3744 space_info->disk_used -= num_bytes * factor; 3745 if (READ_ONCE(space_info->periodic_reclaim)) 3746 btrfs_space_info_update_reclaimable(space_info, num_bytes); 3747 else 3748 reclaim = should_reclaim_block_group(cache, num_bytes); 3749 3750 spin_unlock(&cache->lock); 3751 spin_unlock(&space_info->lock); 3752 3753 btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr, 3754 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 3755 } 3756 3757 spin_lock(&trans->transaction->dirty_bgs_lock); 3758 if (list_empty(&cache->dirty_list)) { 3759 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs); 3760 bg_already_dirty = false; 3761 btrfs_get_block_group(cache); 3762 } 3763 spin_unlock(&trans->transaction->dirty_bgs_lock); 3764 3765 /* 3766 * No longer have used bytes in this block group, queue it for deletion. 3767 * We do this after adding the block group to the dirty list to avoid 3768 * races between cleaner kthread and space cache writeout. 3769 */ 3770 if (!alloc && old_val == 0) { 3771 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3772 btrfs_mark_bg_unused(cache); 3773 } else if (!alloc && reclaim) { 3774 btrfs_mark_bg_to_reclaim(cache); 3775 } 3776 3777 btrfs_put_block_group(cache); 3778 3779 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3780 if (!bg_already_dirty) 3781 btrfs_inc_delayed_refs_rsv_bg_updates(info); 3782 3783 return 0; 3784 } 3785 3786 /* 3787 * Update the block_group and space info counters. 3788 * 3789 * @cache: The cache we are manipulating 3790 * @ram_bytes: The number of bytes of file content, and will be same to 3791 * @num_bytes except for the compress path. 3792 * @num_bytes: The number of bytes in question 3793 * @delalloc: The blocks are allocated for the delalloc write 3794 * 3795 * This is called by the allocator when it reserves space. If this is a 3796 * reservation and the block group has become read only we cannot make the 3797 * reservation and return -EAGAIN, otherwise this function always succeeds. 3798 */ 3799 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3800 u64 ram_bytes, u64 num_bytes, bool delalloc, 3801 bool force_wrong_size_class) 3802 { 3803 struct btrfs_space_info *space_info = cache->space_info; 3804 enum btrfs_block_group_size_class size_class; 3805 int ret = 0; 3806 3807 spin_lock(&space_info->lock); 3808 spin_lock(&cache->lock); 3809 if (cache->ro) { 3810 ret = -EAGAIN; 3811 goto out_error; 3812 } 3813 3814 if (btrfs_block_group_should_use_size_class(cache)) { 3815 size_class = btrfs_calc_block_group_size_class(num_bytes); 3816 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3817 if (ret) 3818 goto out_error; 3819 } 3820 3821 cache->reserved += num_bytes; 3822 if (delalloc) 3823 cache->delalloc_bytes += num_bytes; 3824 3825 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3826 space_info->flags, num_bytes, 1); 3827 spin_unlock(&cache->lock); 3828 3829 space_info->bytes_reserved += num_bytes; 3830 btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes); 3831 3832 /* 3833 * Compression can use less space than we reserved, so wake tickets if 3834 * that happens. 3835 */ 3836 if (num_bytes < ram_bytes) 3837 btrfs_try_granting_tickets(space_info); 3838 spin_unlock(&space_info->lock); 3839 3840 return 0; 3841 3842 out_error: 3843 spin_unlock(&cache->lock); 3844 spin_unlock(&space_info->lock); 3845 return ret; 3846 } 3847 3848 /* 3849 * Update the block_group and space info counters. 3850 * 3851 * @cache: The cache we are manipulating. 3852 * @num_bytes: The number of bytes in question. 3853 * @is_delalloc: Whether the blocks are allocated for a delalloc write. 3854 * 3855 * This is called by somebody who is freeing space that was never actually used 3856 * on disk. For example if you reserve some space for a new leaf in transaction 3857 * A and before transaction A commits you free that leaf, you call this with 3858 * reserve set to 0 in order to clear the reservation. 3859 */ 3860 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, u64 num_bytes, 3861 bool is_delalloc) 3862 { 3863 struct btrfs_space_info *space_info = cache->space_info; 3864 bool bg_ro; 3865 3866 spin_lock(&space_info->lock); 3867 spin_lock(&cache->lock); 3868 bg_ro = cache->ro; 3869 cache->reserved -= num_bytes; 3870 if (is_delalloc) 3871 cache->delalloc_bytes -= num_bytes; 3872 spin_unlock(&cache->lock); 3873 3874 if (bg_ro) 3875 space_info->bytes_readonly += num_bytes; 3876 else if (btrfs_is_zoned(cache->fs_info)) 3877 space_info->bytes_zone_unusable += num_bytes; 3878 3879 space_info->bytes_reserved -= num_bytes; 3880 space_info->max_extent_size = 0; 3881 3882 btrfs_try_granting_tickets(space_info); 3883 spin_unlock(&space_info->lock); 3884 } 3885 3886 static void force_metadata_allocation(struct btrfs_fs_info *info) 3887 { 3888 struct list_head *head = &info->space_info; 3889 struct btrfs_space_info *found; 3890 3891 list_for_each_entry(found, head, list) { 3892 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3893 found->force_alloc = CHUNK_ALLOC_FORCE; 3894 } 3895 } 3896 3897 static bool should_alloc_chunk(const struct btrfs_fs_info *fs_info, 3898 const struct btrfs_space_info *sinfo, int force) 3899 { 3900 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3901 u64 thresh; 3902 3903 if (force == CHUNK_ALLOC_FORCE) 3904 return true; 3905 3906 /* 3907 * in limited mode, we want to have some free space up to 3908 * about 1% of the FS size. 3909 */ 3910 if (force == CHUNK_ALLOC_LIMITED) { 3911 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3912 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3913 3914 if (sinfo->total_bytes - bytes_used < thresh) 3915 return true; 3916 } 3917 3918 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3919 return false; 3920 return true; 3921 } 3922 3923 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3924 { 3925 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3926 struct btrfs_space_info *space_info; 3927 3928 space_info = btrfs_find_space_info(trans->fs_info, type); 3929 if (!space_info) { 3930 DEBUG_WARN(); 3931 return -EINVAL; 3932 } 3933 3934 return btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE); 3935 } 3936 3937 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, 3938 struct btrfs_space_info *space_info, 3939 u64 flags) 3940 { 3941 struct btrfs_block_group *bg; 3942 int ret; 3943 3944 /* 3945 * Check if we have enough space in the system space info because we 3946 * will need to update device items in the chunk btree and insert a new 3947 * chunk item in the chunk btree as well. This will allocate a new 3948 * system block group if needed. 3949 */ 3950 check_system_chunk(trans, flags); 3951 3952 bg = btrfs_create_chunk(trans, space_info, flags); 3953 if (IS_ERR(bg)) { 3954 ret = PTR_ERR(bg); 3955 goto out; 3956 } 3957 3958 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3959 /* 3960 * Normally we are not expected to fail with -ENOSPC here, since we have 3961 * previously reserved space in the system space_info and allocated one 3962 * new system chunk if necessary. However there are three exceptions: 3963 * 3964 * 1) We may have enough free space in the system space_info but all the 3965 * existing system block groups have a profile which can not be used 3966 * for extent allocation. 3967 * 3968 * This happens when mounting in degraded mode. For example we have a 3969 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3970 * using the other device in degraded mode. If we then allocate a chunk, 3971 * we may have enough free space in the existing system space_info, but 3972 * none of the block groups can be used for extent allocation since they 3973 * have a RAID1 profile, and because we are in degraded mode with a 3974 * single device, we are forced to allocate a new system chunk with a 3975 * SINGLE profile. Making check_system_chunk() iterate over all system 3976 * block groups and check if they have a usable profile and enough space 3977 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3978 * try again after forcing allocation of a new system chunk. Like this 3979 * we avoid paying the cost of that search in normal circumstances, when 3980 * we were not mounted in degraded mode; 3981 * 3982 * 2) We had enough free space info the system space_info, and one suitable 3983 * block group to allocate from when we called check_system_chunk() 3984 * above. However right after we called it, the only system block group 3985 * with enough free space got turned into RO mode by a running scrub, 3986 * and in this case we have to allocate a new one and retry. We only 3987 * need do this allocate and retry once, since we have a transaction 3988 * handle and scrub uses the commit root to search for block groups; 3989 * 3990 * 3) We had one system block group with enough free space when we called 3991 * check_system_chunk(), but after that, right before we tried to 3992 * allocate the last extent buffer we needed, a discard operation came 3993 * in and it temporarily removed the last free space entry from the 3994 * block group (discard removes a free space entry, discards it, and 3995 * then adds back the entry to the block group cache). 3996 */ 3997 if (ret == -ENOSPC) { 3998 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3999 struct btrfs_block_group *sys_bg; 4000 struct btrfs_space_info *sys_space_info; 4001 4002 sys_space_info = btrfs_find_space_info(trans->fs_info, sys_flags); 4003 if (unlikely(!sys_space_info)) { 4004 ret = -EINVAL; 4005 btrfs_abort_transaction(trans, ret); 4006 goto out; 4007 } 4008 4009 sys_bg = btrfs_create_chunk(trans, sys_space_info, sys_flags); 4010 if (IS_ERR(sys_bg)) { 4011 ret = PTR_ERR(sys_bg); 4012 btrfs_abort_transaction(trans, ret); 4013 goto out; 4014 } 4015 4016 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 4017 if (unlikely(ret)) { 4018 btrfs_abort_transaction(trans, ret); 4019 goto out; 4020 } 4021 4022 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 4023 if (unlikely(ret)) { 4024 btrfs_abort_transaction(trans, ret); 4025 goto out; 4026 } 4027 } else if (unlikely(ret)) { 4028 btrfs_abort_transaction(trans, ret); 4029 goto out; 4030 } 4031 out: 4032 btrfs_trans_release_chunk_metadata(trans); 4033 4034 if (ret) 4035 return ERR_PTR(ret); 4036 4037 btrfs_get_block_group(bg); 4038 return bg; 4039 } 4040 4041 /* 4042 * Chunk allocation is done in 2 phases: 4043 * 4044 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 4045 * the chunk, the chunk mapping, create its block group and add the items 4046 * that belong in the chunk btree to it - more specifically, we need to 4047 * update device items in the chunk btree and add a new chunk item to it. 4048 * 4049 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 4050 * group item to the extent btree and the device extent items to the devices 4051 * btree. 4052 * 4053 * This is done to prevent deadlocks. For example when COWing a node from the 4054 * extent btree we are holding a write lock on the node's parent and if we 4055 * trigger chunk allocation and attempted to insert the new block group item 4056 * in the extent btree right way, we could deadlock because the path for the 4057 * insertion can include that parent node. At first glance it seems impossible 4058 * to trigger chunk allocation after starting a transaction since tasks should 4059 * reserve enough transaction units (metadata space), however while that is true 4060 * most of the time, chunk allocation may still be triggered for several reasons: 4061 * 4062 * 1) When reserving metadata, we check if there is enough free space in the 4063 * metadata space_info and therefore don't trigger allocation of a new chunk. 4064 * However later when the task actually tries to COW an extent buffer from 4065 * the extent btree or from the device btree for example, it is forced to 4066 * allocate a new block group (chunk) because the only one that had enough 4067 * free space was just turned to RO mode by a running scrub for example (or 4068 * device replace, block group reclaim thread, etc), so we can not use it 4069 * for allocating an extent and end up being forced to allocate a new one; 4070 * 4071 * 2) Because we only check that the metadata space_info has enough free bytes, 4072 * we end up not allocating a new metadata chunk in that case. However if 4073 * the filesystem was mounted in degraded mode, none of the existing block 4074 * groups might be suitable for extent allocation due to their incompatible 4075 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 4076 * use a RAID1 profile, in degraded mode using a single device). In this case 4077 * when the task attempts to COW some extent buffer of the extent btree for 4078 * example, it will trigger allocation of a new metadata block group with a 4079 * suitable profile (SINGLE profile in the example of the degraded mount of 4080 * the RAID1 filesystem); 4081 * 4082 * 3) The task has reserved enough transaction units / metadata space, but when 4083 * it attempts to COW an extent buffer from the extent or device btree for 4084 * example, it does not find any free extent in any metadata block group, 4085 * therefore forced to try to allocate a new metadata block group. 4086 * This is because some other task allocated all available extents in the 4087 * meanwhile - this typically happens with tasks that don't reserve space 4088 * properly, either intentionally or as a bug. One example where this is 4089 * done intentionally is fsync, as it does not reserve any transaction units 4090 * and ends up allocating a variable number of metadata extents for log 4091 * tree extent buffers; 4092 * 4093 * 4) The task has reserved enough transaction units / metadata space, but right 4094 * before it tries to allocate the last extent buffer it needs, a discard 4095 * operation comes in and, temporarily, removes the last free space entry from 4096 * the only metadata block group that had free space (discard starts by 4097 * removing a free space entry from a block group, then does the discard 4098 * operation and, once it's done, it adds back the free space entry to the 4099 * block group). 4100 * 4101 * We also need this 2 phases setup when adding a device to a filesystem with 4102 * a seed device - we must create new metadata and system chunks without adding 4103 * any of the block group items to the chunk, extent and device btrees. If we 4104 * did not do it this way, we would get ENOSPC when attempting to update those 4105 * btrees, since all the chunks from the seed device are read-only. 4106 * 4107 * Phase 1 does the updates and insertions to the chunk btree because if we had 4108 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 4109 * parallel, we risk having too many system chunks allocated by many tasks if 4110 * many tasks reach phase 1 without the previous ones completing phase 2. In the 4111 * extreme case this leads to exhaustion of the system chunk array in the 4112 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 4113 * and with RAID filesystems (so we have more device items in the chunk btree). 4114 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 4115 * the system chunk array due to concurrent allocations") provides more details. 4116 * 4117 * Allocation of system chunks does not happen through this function. A task that 4118 * needs to update the chunk btree (the only btree that uses system chunks), must 4119 * preallocate chunk space by calling either check_system_chunk() or 4120 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 4121 * metadata chunk or when removing a chunk, while the later is used before doing 4122 * a modification to the chunk btree - use cases for the later are adding, 4123 * removing and resizing a device as well as relocation of a system chunk. 4124 * See the comment below for more details. 4125 * 4126 * The reservation of system space, done through check_system_chunk(), as well 4127 * as all the updates and insertions into the chunk btree must be done while 4128 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4129 * an extent buffer from the chunks btree we never trigger allocation of a new 4130 * system chunk, which would result in a deadlock (trying to lock twice an 4131 * extent buffer of the chunk btree, first time before triggering the chunk 4132 * allocation and the second time during chunk allocation while attempting to 4133 * update the chunks btree). The system chunk array is also updated while holding 4134 * that mutex. The same logic applies to removing chunks - we must reserve system 4135 * space, update the chunk btree and the system chunk array in the superblock 4136 * while holding fs_info->chunk_mutex. 4137 * 4138 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4139 * 4140 * @space_info: specify which space_info the new chunk should belong to. 4141 * 4142 * If @force is CHUNK_ALLOC_FORCE: 4143 * - return 1 if it successfully allocates a chunk, 4144 * - return errors including -ENOSPC otherwise. 4145 * If @force is NOT CHUNK_ALLOC_FORCE: 4146 * - return 0 if it doesn't need to allocate a new chunk, 4147 * - return 1 if it successfully allocates a chunk, 4148 * - return errors including -ENOSPC otherwise. 4149 */ 4150 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, 4151 struct btrfs_space_info *space_info, u64 flags, 4152 enum btrfs_chunk_alloc_enum force) 4153 { 4154 struct btrfs_fs_info *fs_info = trans->fs_info; 4155 struct btrfs_block_group *ret_bg; 4156 bool wait_for_alloc = false; 4157 bool should_alloc = false; 4158 bool from_extent_allocation = false; 4159 int ret = 0; 4160 4161 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4162 from_extent_allocation = true; 4163 force = CHUNK_ALLOC_FORCE; 4164 } 4165 4166 /* Don't re-enter if we're already allocating a chunk */ 4167 if (trans->allocating_chunk) 4168 return -ENOSPC; 4169 /* 4170 * Allocation of system chunks can not happen through this path, as we 4171 * could end up in a deadlock if we are allocating a data or metadata 4172 * chunk and there is another task modifying the chunk btree. 4173 * 4174 * This is because while we are holding the chunk mutex, we will attempt 4175 * to add the new chunk item to the chunk btree or update an existing 4176 * device item in the chunk btree, while the other task that is modifying 4177 * the chunk btree is attempting to COW an extent buffer while holding a 4178 * lock on it and on its parent - if the COW operation triggers a system 4179 * chunk allocation, then we can deadlock because we are holding the 4180 * chunk mutex and we may need to access that extent buffer or its parent 4181 * in order to add the chunk item or update a device item. 4182 * 4183 * Tasks that want to modify the chunk tree should reserve system space 4184 * before updating the chunk btree, by calling either 4185 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4186 * It's possible that after a task reserves the space, it still ends up 4187 * here - this happens in the cases described above at do_chunk_alloc(). 4188 * The task will have to either retry or fail. 4189 */ 4190 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4191 return -ENOSPC; 4192 4193 do { 4194 spin_lock(&space_info->lock); 4195 if (force < space_info->force_alloc) 4196 force = space_info->force_alloc; 4197 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4198 if (space_info->full) { 4199 /* No more free physical space */ 4200 spin_unlock(&space_info->lock); 4201 if (should_alloc) 4202 ret = -ENOSPC; 4203 else 4204 ret = 0; 4205 return ret; 4206 } else if (!should_alloc) { 4207 spin_unlock(&space_info->lock); 4208 return 0; 4209 } else if (space_info->chunk_alloc) { 4210 /* 4211 * Someone is already allocating, so we need to block 4212 * until this someone is finished and then loop to 4213 * recheck if we should continue with our allocation 4214 * attempt. 4215 */ 4216 spin_unlock(&space_info->lock); 4217 wait_for_alloc = true; 4218 force = CHUNK_ALLOC_NO_FORCE; 4219 mutex_lock(&fs_info->chunk_mutex); 4220 mutex_unlock(&fs_info->chunk_mutex); 4221 } else { 4222 /* Proceed with allocation */ 4223 space_info->chunk_alloc = true; 4224 spin_unlock(&space_info->lock); 4225 wait_for_alloc = false; 4226 } 4227 4228 cond_resched(); 4229 } while (wait_for_alloc); 4230 4231 mutex_lock(&fs_info->chunk_mutex); 4232 trans->allocating_chunk = true; 4233 4234 /* 4235 * If we have mixed data/metadata chunks we want to make sure we keep 4236 * allocating mixed chunks instead of individual chunks. 4237 */ 4238 if (btrfs_mixed_space_info(space_info)) 4239 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4240 4241 /* 4242 * if we're doing a data chunk, go ahead and make sure that 4243 * we keep a reasonable number of metadata chunks allocated in the 4244 * FS as well. 4245 */ 4246 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4247 fs_info->data_chunk_allocations++; 4248 if (!(fs_info->data_chunk_allocations % 4249 fs_info->metadata_ratio)) 4250 force_metadata_allocation(fs_info); 4251 } 4252 4253 ret_bg = do_chunk_alloc(trans, space_info, flags); 4254 trans->allocating_chunk = false; 4255 4256 if (IS_ERR(ret_bg)) { 4257 ret = PTR_ERR(ret_bg); 4258 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4259 /* 4260 * New block group is likely to be used soon. Try to activate 4261 * it now. Failure is OK for now. 4262 */ 4263 btrfs_zone_activate(ret_bg); 4264 } 4265 4266 if (!ret) 4267 btrfs_put_block_group(ret_bg); 4268 4269 spin_lock(&space_info->lock); 4270 if (ret < 0) { 4271 if (ret == -ENOSPC) 4272 space_info->full = true; 4273 else 4274 goto out; 4275 } else { 4276 ret = 1; 4277 space_info->max_extent_size = 0; 4278 } 4279 4280 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4281 out: 4282 space_info->chunk_alloc = false; 4283 spin_unlock(&space_info->lock); 4284 mutex_unlock(&fs_info->chunk_mutex); 4285 4286 return ret; 4287 } 4288 4289 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type) 4290 { 4291 u64 num_dev; 4292 4293 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4294 if (!num_dev) 4295 num_dev = fs_info->fs_devices->rw_devices; 4296 4297 return num_dev; 4298 } 4299 4300 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4301 u64 bytes, 4302 u64 type) 4303 { 4304 struct btrfs_fs_info *fs_info = trans->fs_info; 4305 struct btrfs_space_info *info; 4306 u64 left; 4307 int ret = 0; 4308 4309 /* 4310 * Needed because we can end up allocating a system chunk and for an 4311 * atomic and race free space reservation in the chunk block reserve. 4312 */ 4313 lockdep_assert_held(&fs_info->chunk_mutex); 4314 4315 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4316 spin_lock(&info->lock); 4317 left = info->total_bytes - btrfs_space_info_used(info, true); 4318 spin_unlock(&info->lock); 4319 4320 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4321 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4322 left, bytes, type); 4323 btrfs_dump_space_info(info, 0, false); 4324 } 4325 4326 if (left < bytes) { 4327 u64 flags = btrfs_system_alloc_profile(fs_info); 4328 struct btrfs_block_group *bg; 4329 struct btrfs_space_info *space_info; 4330 4331 space_info = btrfs_find_space_info(fs_info, flags); 4332 ASSERT(space_info); 4333 4334 /* 4335 * Ignore failure to create system chunk. We might end up not 4336 * needing it, as we might not need to COW all nodes/leafs from 4337 * the paths we visit in the chunk tree (they were already COWed 4338 * or created in the current transaction for example). 4339 */ 4340 bg = btrfs_create_chunk(trans, space_info, flags); 4341 if (IS_ERR(bg)) { 4342 ret = PTR_ERR(bg); 4343 } else { 4344 /* 4345 * We have a new chunk. We also need to activate it for 4346 * zoned filesystem. 4347 */ 4348 ret = btrfs_zoned_activate_one_bg(info, true); 4349 if (ret < 0) 4350 return; 4351 4352 /* 4353 * If we fail to add the chunk item here, we end up 4354 * trying again at phase 2 of chunk allocation, at 4355 * btrfs_create_pending_block_groups(). So ignore 4356 * any error here. An ENOSPC here could happen, due to 4357 * the cases described at do_chunk_alloc() - the system 4358 * block group we just created was just turned into RO 4359 * mode by a scrub for example, or a running discard 4360 * temporarily removed its free space entries, etc. 4361 */ 4362 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4363 } 4364 } 4365 4366 if (!ret) { 4367 ret = btrfs_block_rsv_add(fs_info, 4368 &fs_info->chunk_block_rsv, 4369 bytes, BTRFS_RESERVE_NO_FLUSH); 4370 if (!ret) 4371 trans->chunk_bytes_reserved += bytes; 4372 } 4373 } 4374 4375 /* 4376 * Reserve space in the system space for allocating or removing a chunk. 4377 * The caller must be holding fs_info->chunk_mutex. 4378 */ 4379 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4380 { 4381 struct btrfs_fs_info *fs_info = trans->fs_info; 4382 const u64 num_devs = get_profile_num_devs(fs_info, type); 4383 u64 bytes; 4384 4385 /* num_devs device items to update and 1 chunk item to add or remove. */ 4386 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4387 btrfs_calc_insert_metadata_size(fs_info, 1); 4388 4389 reserve_chunk_space(trans, bytes, type); 4390 } 4391 4392 /* 4393 * Reserve space in the system space, if needed, for doing a modification to the 4394 * chunk btree. 4395 * 4396 * @trans: A transaction handle. 4397 * @is_item_insertion: Indicate if the modification is for inserting a new item 4398 * in the chunk btree or if it's for the deletion or update 4399 * of an existing item. 4400 * 4401 * This is used in a context where we need to update the chunk btree outside 4402 * block group allocation and removal, to avoid a deadlock with a concurrent 4403 * task that is allocating a metadata or data block group and therefore needs to 4404 * update the chunk btree while holding the chunk mutex. After the update to the 4405 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4406 * 4407 */ 4408 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4409 bool is_item_insertion) 4410 { 4411 struct btrfs_fs_info *fs_info = trans->fs_info; 4412 u64 bytes; 4413 4414 if (is_item_insertion) 4415 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4416 else 4417 bytes = btrfs_calc_metadata_size(fs_info, 1); 4418 4419 mutex_lock(&fs_info->chunk_mutex); 4420 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4421 mutex_unlock(&fs_info->chunk_mutex); 4422 } 4423 4424 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4425 { 4426 struct btrfs_block_group *block_group; 4427 4428 block_group = btrfs_lookup_first_block_group(info, 0); 4429 while (block_group) { 4430 btrfs_wait_block_group_cache_done(block_group); 4431 spin_lock(&block_group->lock); 4432 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4433 &block_group->runtime_flags)) { 4434 struct btrfs_inode *inode = block_group->inode; 4435 4436 block_group->inode = NULL; 4437 spin_unlock(&block_group->lock); 4438 4439 ASSERT(block_group->io_ctl.inode == NULL); 4440 iput(&inode->vfs_inode); 4441 } else { 4442 spin_unlock(&block_group->lock); 4443 } 4444 block_group = btrfs_next_block_group(block_group); 4445 } 4446 } 4447 4448 static void check_removing_space_info(struct btrfs_space_info *space_info) 4449 { 4450 struct btrfs_fs_info *info = space_info->fs_info; 4451 4452 if (space_info->subgroup_id == BTRFS_SUB_GROUP_PRIMARY) { 4453 /* This is a top space_info, proceed with its children first. */ 4454 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) { 4455 if (space_info->sub_group[i]) { 4456 check_removing_space_info(space_info->sub_group[i]); 4457 kfree(space_info->sub_group[i]); 4458 space_info->sub_group[i] = NULL; 4459 } 4460 } 4461 } 4462 4463 /* 4464 * Do not hide this behind enospc_debug, this is actually important and 4465 * indicates a real bug if this happens. 4466 */ 4467 if (WARN_ON(space_info->bytes_pinned > 0 || space_info->bytes_may_use > 0)) 4468 btrfs_dump_space_info(space_info, 0, false); 4469 4470 /* 4471 * If there was a failure to cleanup a log tree, very likely due to an 4472 * IO failure on a writeback attempt of one or more of its extent 4473 * buffers, we could not do proper (and cheap) unaccounting of their 4474 * reserved space, so don't warn on bytes_reserved > 0 in that case. 4475 */ 4476 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4477 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4478 if (WARN_ON(space_info->bytes_reserved > 0)) 4479 btrfs_dump_space_info(space_info, 0, false); 4480 } 4481 4482 WARN_ON(space_info->reclaim_size > 0); 4483 } 4484 4485 /* 4486 * Must be called only after stopping all workers, since we could have block 4487 * group caching kthreads running, and therefore they could race with us if we 4488 * freed the block groups before stopping them. 4489 */ 4490 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4491 { 4492 struct btrfs_block_group *block_group; 4493 struct btrfs_space_info *space_info; 4494 struct btrfs_caching_control *caching_ctl; 4495 struct rb_node *n; 4496 4497 if (btrfs_is_zoned(info)) { 4498 if (info->active_meta_bg) { 4499 btrfs_put_block_group(info->active_meta_bg); 4500 info->active_meta_bg = NULL; 4501 } 4502 if (info->active_system_bg) { 4503 btrfs_put_block_group(info->active_system_bg); 4504 info->active_system_bg = NULL; 4505 } 4506 } 4507 4508 write_lock(&info->block_group_cache_lock); 4509 while (!list_empty(&info->caching_block_groups)) { 4510 caching_ctl = list_first_entry(&info->caching_block_groups, 4511 struct btrfs_caching_control, list); 4512 list_del(&caching_ctl->list); 4513 btrfs_put_caching_control(caching_ctl); 4514 } 4515 write_unlock(&info->block_group_cache_lock); 4516 4517 spin_lock(&info->unused_bgs_lock); 4518 while (!list_empty(&info->unused_bgs)) { 4519 block_group = list_first_entry(&info->unused_bgs, 4520 struct btrfs_block_group, 4521 bg_list); 4522 list_del_init(&block_group->bg_list); 4523 btrfs_put_block_group(block_group); 4524 } 4525 4526 while (!list_empty(&info->reclaim_bgs)) { 4527 block_group = list_first_entry(&info->reclaim_bgs, 4528 struct btrfs_block_group, 4529 bg_list); 4530 list_del_init(&block_group->bg_list); 4531 btrfs_put_block_group(block_group); 4532 } 4533 spin_unlock(&info->unused_bgs_lock); 4534 4535 spin_lock(&info->zone_active_bgs_lock); 4536 while (!list_empty(&info->zone_active_bgs)) { 4537 block_group = list_first_entry(&info->zone_active_bgs, 4538 struct btrfs_block_group, 4539 active_bg_list); 4540 list_del_init(&block_group->active_bg_list); 4541 btrfs_put_block_group(block_group); 4542 } 4543 spin_unlock(&info->zone_active_bgs_lock); 4544 4545 write_lock(&info->block_group_cache_lock); 4546 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4547 block_group = rb_entry(n, struct btrfs_block_group, 4548 cache_node); 4549 rb_erase_cached(&block_group->cache_node, 4550 &info->block_group_cache_tree); 4551 RB_CLEAR_NODE(&block_group->cache_node); 4552 write_unlock(&info->block_group_cache_lock); 4553 4554 down_write(&block_group->space_info->groups_sem); 4555 list_del(&block_group->list); 4556 up_write(&block_group->space_info->groups_sem); 4557 4558 /* 4559 * We haven't cached this block group, which means we could 4560 * possibly have excluded extents on this block group. 4561 */ 4562 if (block_group->cached == BTRFS_CACHE_NO || 4563 block_group->cached == BTRFS_CACHE_ERROR) 4564 btrfs_free_excluded_extents(block_group); 4565 4566 btrfs_remove_free_space_cache(block_group); 4567 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4568 ASSERT(list_empty(&block_group->dirty_list)); 4569 ASSERT(list_empty(&block_group->io_list)); 4570 ASSERT(list_empty(&block_group->bg_list)); 4571 ASSERT(refcount_read(&block_group->refs) == 1); 4572 ASSERT(block_group->swap_extents == 0); 4573 btrfs_put_block_group(block_group); 4574 4575 write_lock(&info->block_group_cache_lock); 4576 } 4577 write_unlock(&info->block_group_cache_lock); 4578 4579 btrfs_release_global_block_rsv(info); 4580 4581 while (!list_empty(&info->space_info)) { 4582 space_info = list_first_entry(&info->space_info, 4583 struct btrfs_space_info, list); 4584 4585 check_removing_space_info(space_info); 4586 list_del(&space_info->list); 4587 btrfs_sysfs_remove_space_info(space_info); 4588 } 4589 return 0; 4590 } 4591 4592 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4593 { 4594 atomic_inc(&cache->frozen); 4595 } 4596 4597 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4598 { 4599 struct btrfs_fs_info *fs_info = block_group->fs_info; 4600 bool cleanup; 4601 4602 spin_lock(&block_group->lock); 4603 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4604 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4605 spin_unlock(&block_group->lock); 4606 4607 if (cleanup) { 4608 struct btrfs_chunk_map *map; 4609 4610 map = btrfs_find_chunk_map(fs_info, block_group->start, 1); 4611 /* Logic error, can't happen. */ 4612 ASSERT(map); 4613 4614 btrfs_remove_chunk_map(fs_info, map); 4615 4616 /* Once for our lookup reference. */ 4617 btrfs_free_chunk_map(map); 4618 4619 /* 4620 * We may have left one free space entry and other possible 4621 * tasks trimming this block group have left 1 entry each one. 4622 * Free them if any. 4623 */ 4624 btrfs_remove_free_space_cache(block_group); 4625 } 4626 } 4627 4628 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4629 { 4630 bool ret = true; 4631 4632 spin_lock(&bg->lock); 4633 if (bg->ro) 4634 ret = false; 4635 else 4636 bg->swap_extents++; 4637 spin_unlock(&bg->lock); 4638 4639 return ret; 4640 } 4641 4642 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4643 { 4644 spin_lock(&bg->lock); 4645 ASSERT(!bg->ro); 4646 ASSERT(bg->swap_extents >= amount); 4647 bg->swap_extents -= amount; 4648 spin_unlock(&bg->lock); 4649 } 4650 4651 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4652 { 4653 if (size <= SZ_128K) 4654 return BTRFS_BG_SZ_SMALL; 4655 if (size <= SZ_8M) 4656 return BTRFS_BG_SZ_MEDIUM; 4657 return BTRFS_BG_SZ_LARGE; 4658 } 4659 4660 /* 4661 * Handle a block group allocating an extent in a size class 4662 * 4663 * @bg: The block group we allocated in. 4664 * @size_class: The size class of the allocation. 4665 * @force_wrong_size_class: Whether we are desperate enough to allow 4666 * mismatched size classes. 4667 * 4668 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4669 * case of a race that leads to the wrong size class without 4670 * force_wrong_size_class set. 4671 * 4672 * find_free_extent will skip block groups with a mismatched size class until 4673 * it really needs to avoid ENOSPC. In that case it will set 4674 * force_wrong_size_class. However, if a block group is newly allocated and 4675 * doesn't yet have a size class, then it is possible for two allocations of 4676 * different sizes to race and both try to use it. The loser is caught here and 4677 * has to retry. 4678 */ 4679 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4680 enum btrfs_block_group_size_class size_class, 4681 bool force_wrong_size_class) 4682 { 4683 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4684 4685 /* The new allocation is in the right size class, do nothing */ 4686 if (bg->size_class == size_class) 4687 return 0; 4688 /* 4689 * The new allocation is in a mismatched size class. 4690 * This means one of two things: 4691 * 4692 * 1. Two tasks in find_free_extent for different size_classes raced 4693 * and hit the same empty block_group. Make the loser try again. 4694 * 2. A call to find_free_extent got desperate enough to set 4695 * 'force_wrong_slab'. Don't change the size_class, but allow the 4696 * allocation. 4697 */ 4698 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4699 if (force_wrong_size_class) 4700 return 0; 4701 return -EAGAIN; 4702 } 4703 /* 4704 * The happy new block group case: the new allocation is the first 4705 * one in the block_group so we set size_class. 4706 */ 4707 bg->size_class = size_class; 4708 4709 return 0; 4710 } 4711 4712 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg) 4713 { 4714 if (btrfs_is_zoned(bg->fs_info)) 4715 return false; 4716 if (!btrfs_is_block_group_data_only(bg)) 4717 return false; 4718 return true; 4719 } 4720