xref: /linux/fs/btrfs/bio.c (revision dadf03cfd4eaa09f1d0e8b2521de1e11d3e3bec1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "dev-replace.h"
14 #include "zoned.h"
15 #include "file-item.h"
16 #include "raid-stripe-tree.h"
17 
18 static struct bio_set btrfs_bioset;
19 static struct bio_set btrfs_clone_bioset;
20 static struct bio_set btrfs_repair_bioset;
21 static mempool_t btrfs_failed_bio_pool;
22 
23 struct btrfs_failed_bio {
24 	struct btrfs_bio *bbio;
25 	int num_copies;
26 	atomic_t repair_count;
27 };
28 
29 /* Is this a data path I/O that needs storage layer checksum and repair? */
30 static inline bool is_data_bbio(struct btrfs_bio *bbio)
31 {
32 	return bbio->inode && is_data_inode(bbio->inode);
33 }
34 
35 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
36 {
37 	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
38 }
39 
40 /*
41  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
42  * is already initialized by the block layer.
43  */
44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
45 		    btrfs_bio_end_io_t end_io, void *private)
46 {
47 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
48 	bbio->fs_info = fs_info;
49 	bbio->end_io = end_io;
50 	bbio->private = private;
51 	atomic_set(&bbio->pending_ios, 1);
52 	WRITE_ONCE(bbio->status, BLK_STS_OK);
53 }
54 
55 /*
56  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
57  * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
58  *
59  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60  * a mempool.
61  */
62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63 				  struct btrfs_fs_info *fs_info,
64 				  btrfs_bio_end_io_t end_io, void *private)
65 {
66 	struct btrfs_bio *bbio;
67 	struct bio *bio;
68 
69 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70 	bbio = btrfs_bio(bio);
71 	btrfs_bio_init(bbio, fs_info, end_io, private);
72 	return bbio;
73 }
74 
75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76 					 struct btrfs_bio *orig_bbio,
77 					 u64 map_length)
78 {
79 	struct btrfs_bio *bbio;
80 	struct bio *bio;
81 
82 	bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
83 			&btrfs_clone_bioset);
84 	if (IS_ERR(bio))
85 		return ERR_CAST(bio);
86 
87 	bbio = btrfs_bio(bio);
88 	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
89 	bbio->inode = orig_bbio->inode;
90 	bbio->file_offset = orig_bbio->file_offset;
91 	orig_bbio->file_offset += map_length;
92 	if (bbio_has_ordered_extent(bbio)) {
93 		refcount_inc(&orig_bbio->ordered->refs);
94 		bbio->ordered = orig_bbio->ordered;
95 	}
96 	atomic_inc(&orig_bbio->pending_ios);
97 	return bbio;
98 }
99 
100 /* Free a bio that was never submitted to the underlying device. */
101 static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
102 {
103 	if (bbio_has_ordered_extent(bbio))
104 		btrfs_put_ordered_extent(bbio->ordered);
105 	bio_put(&bbio->bio);
106 }
107 
108 static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
109 {
110 	if (bbio_has_ordered_extent(bbio)) {
111 		struct btrfs_ordered_extent *ordered = bbio->ordered;
112 
113 		bbio->end_io(bbio);
114 		btrfs_put_ordered_extent(ordered);
115 	} else {
116 		bbio->end_io(bbio);
117 	}
118 }
119 
120 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
121 {
122 	bbio->bio.bi_status = status;
123 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
124 		struct btrfs_bio *orig_bbio = bbio->private;
125 
126 		btrfs_cleanup_bio(bbio);
127 		bbio = orig_bbio;
128 	}
129 
130 	/*
131 	 * At this point, bbio always points to the original btrfs_bio. Save
132 	 * the first error in it.
133 	 */
134 	if (status != BLK_STS_OK)
135 		cmpxchg(&bbio->status, BLK_STS_OK, status);
136 
137 	if (atomic_dec_and_test(&bbio->pending_ios)) {
138 		/* Load split bio's error which might be set above. */
139 		if (status == BLK_STS_OK)
140 			bbio->bio.bi_status = READ_ONCE(bbio->status);
141 		__btrfs_bio_end_io(bbio);
142 	}
143 }
144 
145 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
146 {
147 	if (cur_mirror == fbio->num_copies)
148 		return cur_mirror + 1 - fbio->num_copies;
149 	return cur_mirror + 1;
150 }
151 
152 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
153 {
154 	if (cur_mirror == 1)
155 		return fbio->num_copies;
156 	return cur_mirror - 1;
157 }
158 
159 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
160 {
161 	if (atomic_dec_and_test(&fbio->repair_count)) {
162 		btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
163 		mempool_free(fbio, &btrfs_failed_bio_pool);
164 	}
165 }
166 
167 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
168 				 struct btrfs_device *dev)
169 {
170 	struct btrfs_failed_bio *fbio = repair_bbio->private;
171 	struct btrfs_inode *inode = repair_bbio->inode;
172 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
173 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
174 	int mirror = repair_bbio->mirror_num;
175 
176 	/*
177 	 * We can only trigger this for data bio, which doesn't support larger
178 	 * folios yet.
179 	 */
180 	ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
181 
182 	if (repair_bbio->bio.bi_status ||
183 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
184 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
185 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
186 
187 		mirror = next_repair_mirror(fbio, mirror);
188 		if (mirror == fbio->bbio->mirror_num) {
189 			btrfs_debug(fs_info, "no mirror left");
190 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
191 			goto done;
192 		}
193 
194 		btrfs_submit_bbio(repair_bbio, mirror);
195 		return;
196 	}
197 
198 	do {
199 		mirror = prev_repair_mirror(fbio, mirror);
200 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
201 				  repair_bbio->file_offset, fs_info->sectorsize,
202 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
203 				  page_folio(bv->bv_page), bv->bv_offset, mirror);
204 	} while (mirror != fbio->bbio->mirror_num);
205 
206 done:
207 	btrfs_repair_done(fbio);
208 	bio_put(&repair_bbio->bio);
209 }
210 
211 /*
212  * Try to kick off a repair read to the next available mirror for a bad sector.
213  *
214  * This primarily tries to recover good data to serve the actual read request,
215  * but also tries to write the good data back to the bad mirror(s) when a
216  * read succeeded to restore the redundancy.
217  */
218 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
219 						  u32 bio_offset,
220 						  struct bio_vec *bv,
221 						  struct btrfs_failed_bio *fbio)
222 {
223 	struct btrfs_inode *inode = failed_bbio->inode;
224 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
225 	const u32 sectorsize = fs_info->sectorsize;
226 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
227 	struct btrfs_bio *repair_bbio;
228 	struct bio *repair_bio;
229 	int num_copies;
230 	int mirror;
231 
232 	btrfs_debug(fs_info, "repair read error: read error at %llu",
233 		    failed_bbio->file_offset + bio_offset);
234 
235 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
236 	if (num_copies == 1) {
237 		btrfs_debug(fs_info, "no copy to repair from");
238 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
239 		return fbio;
240 	}
241 
242 	if (!fbio) {
243 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
244 		fbio->bbio = failed_bbio;
245 		fbio->num_copies = num_copies;
246 		atomic_set(&fbio->repair_count, 1);
247 	}
248 
249 	atomic_inc(&fbio->repair_count);
250 
251 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
252 				      &btrfs_repair_bioset);
253 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
254 	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
255 
256 	repair_bbio = btrfs_bio(repair_bio);
257 	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
258 	repair_bbio->inode = failed_bbio->inode;
259 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
260 
261 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
262 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
263 	btrfs_submit_bbio(repair_bbio, mirror);
264 	return fbio;
265 }
266 
267 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
268 {
269 	struct btrfs_inode *inode = bbio->inode;
270 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
271 	u32 sectorsize = fs_info->sectorsize;
272 	struct bvec_iter *iter = &bbio->saved_iter;
273 	blk_status_t status = bbio->bio.bi_status;
274 	struct btrfs_failed_bio *fbio = NULL;
275 	u32 offset = 0;
276 
277 	/* Read-repair requires the inode field to be set by the submitter. */
278 	ASSERT(inode);
279 
280 	/*
281 	 * Hand off repair bios to the repair code as there is no upper level
282 	 * submitter for them.
283 	 */
284 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
285 		btrfs_end_repair_bio(bbio, dev);
286 		return;
287 	}
288 
289 	/* Clear the I/O error. A failed repair will reset it. */
290 	bbio->bio.bi_status = BLK_STS_OK;
291 
292 	while (iter->bi_size) {
293 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
294 
295 		bv.bv_len = min(bv.bv_len, sectorsize);
296 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
297 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
298 
299 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
300 		offset += sectorsize;
301 	}
302 
303 	if (bbio->csum != bbio->csum_inline)
304 		kfree(bbio->csum);
305 
306 	if (fbio)
307 		btrfs_repair_done(fbio);
308 	else
309 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
310 }
311 
312 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
313 {
314 	if (!dev || !dev->bdev)
315 		return;
316 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
317 		return;
318 
319 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
320 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
321 	else if (!(bio->bi_opf & REQ_RAHEAD))
322 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
323 	if (bio->bi_opf & REQ_PREFLUSH)
324 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
325 }
326 
327 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
328 						struct bio *bio)
329 {
330 	if (bio->bi_opf & REQ_META)
331 		return fs_info->endio_meta_workers;
332 	return fs_info->endio_workers;
333 }
334 
335 static void btrfs_end_bio_work(struct work_struct *work)
336 {
337 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
338 
339 	/* Metadata reads are checked and repaired by the submitter. */
340 	if (is_data_bbio(bbio))
341 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
342 	else
343 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
344 }
345 
346 static void btrfs_simple_end_io(struct bio *bio)
347 {
348 	struct btrfs_bio *bbio = btrfs_bio(bio);
349 	struct btrfs_device *dev = bio->bi_private;
350 	struct btrfs_fs_info *fs_info = bbio->fs_info;
351 
352 	btrfs_bio_counter_dec(fs_info);
353 
354 	if (bio->bi_status)
355 		btrfs_log_dev_io_error(bio, dev);
356 
357 	if (bio_op(bio) == REQ_OP_READ) {
358 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
359 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
360 	} else {
361 		if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
362 			btrfs_record_physical_zoned(bbio);
363 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
364 	}
365 }
366 
367 static void btrfs_raid56_end_io(struct bio *bio)
368 {
369 	struct btrfs_io_context *bioc = bio->bi_private;
370 	struct btrfs_bio *bbio = btrfs_bio(bio);
371 
372 	btrfs_bio_counter_dec(bioc->fs_info);
373 	bbio->mirror_num = bioc->mirror_num;
374 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
375 		btrfs_check_read_bio(bbio, NULL);
376 	else
377 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
378 
379 	btrfs_put_bioc(bioc);
380 }
381 
382 static void btrfs_orig_write_end_io(struct bio *bio)
383 {
384 	struct btrfs_io_stripe *stripe = bio->bi_private;
385 	struct btrfs_io_context *bioc = stripe->bioc;
386 	struct btrfs_bio *bbio = btrfs_bio(bio);
387 
388 	btrfs_bio_counter_dec(bioc->fs_info);
389 
390 	if (bio->bi_status) {
391 		atomic_inc(&bioc->error);
392 		btrfs_log_dev_io_error(bio, stripe->dev);
393 	}
394 
395 	/*
396 	 * Only send an error to the higher layers if it is beyond the tolerance
397 	 * threshold.
398 	 */
399 	if (atomic_read(&bioc->error) > bioc->max_errors)
400 		bio->bi_status = BLK_STS_IOERR;
401 	else
402 		bio->bi_status = BLK_STS_OK;
403 
404 	if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
405 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
406 
407 	btrfs_bio_end_io(bbio, bbio->bio.bi_status);
408 	btrfs_put_bioc(bioc);
409 }
410 
411 static void btrfs_clone_write_end_io(struct bio *bio)
412 {
413 	struct btrfs_io_stripe *stripe = bio->bi_private;
414 
415 	if (bio->bi_status) {
416 		atomic_inc(&stripe->bioc->error);
417 		btrfs_log_dev_io_error(bio, stripe->dev);
418 	} else if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
419 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
420 	}
421 
422 	/* Pass on control to the original bio this one was cloned from */
423 	bio_endio(stripe->bioc->orig_bio);
424 	bio_put(bio);
425 }
426 
427 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
428 {
429 	if (!dev || !dev->bdev ||
430 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
431 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
432 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
433 		bio_io_error(bio);
434 		return;
435 	}
436 
437 	bio_set_dev(bio, dev->bdev);
438 
439 	/*
440 	 * For zone append writing, bi_sector must point the beginning of the
441 	 * zone
442 	 */
443 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
444 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
445 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
446 
447 		ASSERT(btrfs_dev_is_sequential(dev, physical));
448 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
449 	}
450 	btrfs_debug_in_rcu(dev->fs_info,
451 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
452 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
453 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
454 		dev->devid, bio->bi_iter.bi_size);
455 
456 	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
457 		blkcg_punt_bio_submit(bio);
458 	else
459 		submit_bio(bio);
460 }
461 
462 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
463 {
464 	struct bio *orig_bio = bioc->orig_bio, *bio;
465 
466 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
467 
468 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
469 	if (dev_nr == bioc->num_stripes - 1) {
470 		bio = orig_bio;
471 		bio->bi_end_io = btrfs_orig_write_end_io;
472 	} else {
473 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
474 		bio_inc_remaining(orig_bio);
475 		bio->bi_end_io = btrfs_clone_write_end_io;
476 	}
477 
478 	bio->bi_private = &bioc->stripes[dev_nr];
479 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
480 	bioc->stripes[dev_nr].bioc = bioc;
481 	bioc->size = bio->bi_iter.bi_size;
482 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
483 }
484 
485 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
486 			     struct btrfs_io_stripe *smap, int mirror_num)
487 {
488 	if (!bioc) {
489 		/* Single mirror read/write fast path. */
490 		btrfs_bio(bio)->mirror_num = mirror_num;
491 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
492 		if (bio_op(bio) != REQ_OP_READ)
493 			btrfs_bio(bio)->orig_physical = smap->physical;
494 		bio->bi_private = smap->dev;
495 		bio->bi_end_io = btrfs_simple_end_io;
496 		btrfs_submit_dev_bio(smap->dev, bio);
497 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
498 		/* Parity RAID write or read recovery. */
499 		bio->bi_private = bioc;
500 		bio->bi_end_io = btrfs_raid56_end_io;
501 		if (bio_op(bio) == REQ_OP_READ)
502 			raid56_parity_recover(bio, bioc, mirror_num);
503 		else
504 			raid56_parity_write(bio, bioc);
505 	} else {
506 		/* Write to multiple mirrors. */
507 		int total_devs = bioc->num_stripes;
508 
509 		bioc->orig_bio = bio;
510 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
511 			btrfs_submit_mirrored_bio(bioc, dev_nr);
512 	}
513 }
514 
515 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
516 {
517 	if (bbio->bio.bi_opf & REQ_META)
518 		return btree_csum_one_bio(bbio);
519 	return btrfs_csum_one_bio(bbio);
520 }
521 
522 /*
523  * Async submit bios are used to offload expensive checksumming onto the worker
524  * threads.
525  */
526 struct async_submit_bio {
527 	struct btrfs_bio *bbio;
528 	struct btrfs_io_context *bioc;
529 	struct btrfs_io_stripe smap;
530 	int mirror_num;
531 	struct btrfs_work work;
532 };
533 
534 /*
535  * In order to insert checksums into the metadata in large chunks, we wait
536  * until bio submission time.   All the pages in the bio are checksummed and
537  * sums are attached onto the ordered extent record.
538  *
539  * At IO completion time the csums attached on the ordered extent record are
540  * inserted into the btree.
541  */
542 static void run_one_async_start(struct btrfs_work *work)
543 {
544 	struct async_submit_bio *async =
545 		container_of(work, struct async_submit_bio, work);
546 	blk_status_t ret;
547 
548 	ret = btrfs_bio_csum(async->bbio);
549 	if (ret)
550 		async->bbio->bio.bi_status = ret;
551 }
552 
553 /*
554  * In order to insert checksums into the metadata in large chunks, we wait
555  * until bio submission time.   All the pages in the bio are checksummed and
556  * sums are attached onto the ordered extent record.
557  *
558  * At IO completion time the csums attached on the ordered extent record are
559  * inserted into the tree.
560  *
561  * If called with @do_free == true, then it will free the work struct.
562  */
563 static void run_one_async_done(struct btrfs_work *work, bool do_free)
564 {
565 	struct async_submit_bio *async =
566 		container_of(work, struct async_submit_bio, work);
567 	struct bio *bio = &async->bbio->bio;
568 
569 	if (do_free) {
570 		kfree(container_of(work, struct async_submit_bio, work));
571 		return;
572 	}
573 
574 	/* If an error occurred we just want to clean up the bio and move on. */
575 	if (bio->bi_status) {
576 		btrfs_bio_end_io(async->bbio, async->bbio->bio.bi_status);
577 		return;
578 	}
579 
580 	/*
581 	 * All of the bios that pass through here are from async helpers.
582 	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
583 	 * context.  This changes nothing when cgroups aren't in use.
584 	 */
585 	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
586 	btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
587 }
588 
589 static bool should_async_write(struct btrfs_bio *bbio)
590 {
591 	bool auto_csum_mode = true;
592 
593 #ifdef CONFIG_BTRFS_EXPERIMENTAL
594 	struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
595 	enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
596 
597 	if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
598 		return false;
599 
600 	auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
601 #endif
602 
603 	/* Submit synchronously if the checksum implementation is fast. */
604 	if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
605 		return false;
606 
607 	/*
608 	 * Try to defer the submission to a workqueue to parallelize the
609 	 * checksum calculation unless the I/O is issued synchronously.
610 	 */
611 	if (op_is_sync(bbio->bio.bi_opf))
612 		return false;
613 
614 	/* Zoned devices require I/O to be submitted in order. */
615 	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
616 		return false;
617 
618 	return true;
619 }
620 
621 /*
622  * Submit bio to an async queue.
623  *
624  * Return true if the work has been successfully submitted, else false.
625  */
626 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
627 				struct btrfs_io_context *bioc,
628 				struct btrfs_io_stripe *smap, int mirror_num)
629 {
630 	struct btrfs_fs_info *fs_info = bbio->fs_info;
631 	struct async_submit_bio *async;
632 
633 	async = kmalloc(sizeof(*async), GFP_NOFS);
634 	if (!async)
635 		return false;
636 
637 	async->bbio = bbio;
638 	async->bioc = bioc;
639 	async->smap = *smap;
640 	async->mirror_num = mirror_num;
641 
642 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
643 	btrfs_queue_work(fs_info->workers, &async->work);
644 	return true;
645 }
646 
647 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
648 {
649 	unsigned int nr_segs;
650 	int sector_offset;
651 
652 	map_length = min(map_length, bbio->fs_info->max_zone_append_size);
653 	sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
654 					&nr_segs, map_length);
655 	if (sector_offset)
656 		return sector_offset << SECTOR_SHIFT;
657 	return map_length;
658 }
659 
660 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
661 {
662 	struct btrfs_inode *inode = bbio->inode;
663 	struct btrfs_fs_info *fs_info = bbio->fs_info;
664 	struct bio *bio = &bbio->bio;
665 	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
666 	u64 length = bio->bi_iter.bi_size;
667 	u64 map_length = length;
668 	bool use_append = btrfs_use_zone_append(bbio);
669 	struct btrfs_io_context *bioc = NULL;
670 	struct btrfs_io_stripe smap;
671 	blk_status_t ret;
672 	int error;
673 
674 	if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
675 		smap.rst_search_commit_root = true;
676 	else
677 		smap.rst_search_commit_root = false;
678 
679 	btrfs_bio_counter_inc_blocked(fs_info);
680 	error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
681 				&bioc, &smap, &mirror_num);
682 	if (error) {
683 		ret = errno_to_blk_status(error);
684 		btrfs_bio_counter_dec(fs_info);
685 		goto end_bbio;
686 	}
687 
688 	map_length = min(map_length, length);
689 	if (use_append)
690 		map_length = btrfs_append_map_length(bbio, map_length);
691 
692 	if (map_length < length) {
693 		struct btrfs_bio *split;
694 
695 		split = btrfs_split_bio(fs_info, bbio, map_length);
696 		if (IS_ERR(split)) {
697 			ret = errno_to_blk_status(PTR_ERR(split));
698 			btrfs_bio_counter_dec(fs_info);
699 			goto end_bbio;
700 		}
701 		bbio = split;
702 		bio = &bbio->bio;
703 	}
704 
705 	/*
706 	 * Save the iter for the end_io handler and preload the checksums for
707 	 * data reads.
708 	 */
709 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
710 		bbio->saved_iter = bio->bi_iter;
711 		ret = btrfs_lookup_bio_sums(bbio);
712 		if (ret)
713 			goto fail;
714 	}
715 
716 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
717 		if (use_append) {
718 			bio->bi_opf &= ~REQ_OP_WRITE;
719 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
720 		}
721 
722 		if (is_data_bbio(bbio) && bioc &&
723 		    btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) {
724 			/*
725 			 * No locking for the list update, as we only add to
726 			 * the list in the I/O submission path, and list
727 			 * iteration only happens in the completion path, which
728 			 * can't happen until after the last submission.
729 			 */
730 			btrfs_get_bioc(bioc);
731 			list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
732 		}
733 
734 		/*
735 		 * Csum items for reloc roots have already been cloned at this
736 		 * point, so they are handled as part of the no-checksum case.
737 		 */
738 		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
739 		    !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
740 		    !btrfs_is_data_reloc_root(inode->root)) {
741 			if (should_async_write(bbio) &&
742 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
743 				goto done;
744 
745 			ret = btrfs_bio_csum(bbio);
746 			if (ret)
747 				goto fail;
748 		} else if (use_append ||
749 			   (btrfs_is_zoned(fs_info) && inode &&
750 			    inode->flags & BTRFS_INODE_NODATASUM)) {
751 			ret = btrfs_alloc_dummy_sum(bbio);
752 			if (ret)
753 				goto fail;
754 		}
755 	}
756 
757 	btrfs_submit_bio(bio, bioc, &smap, mirror_num);
758 done:
759 	return map_length == length;
760 
761 fail:
762 	btrfs_bio_counter_dec(fs_info);
763 	/*
764 	 * We have split the original bbio, now we have to end both the current
765 	 * @bbio and remaining one, as the remaining one will never be submitted.
766 	 */
767 	if (map_length < length) {
768 		struct btrfs_bio *remaining = bbio->private;
769 
770 		ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
771 		ASSERT(remaining);
772 
773 		btrfs_bio_end_io(remaining, ret);
774 	}
775 end_bbio:
776 	btrfs_bio_end_io(bbio, ret);
777 	/* Do not submit another chunk */
778 	return true;
779 }
780 
781 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
782 {
783 	/* If bbio->inode is not populated, its file_offset must be 0. */
784 	ASSERT(bbio->inode || bbio->file_offset == 0);
785 
786 	while (!btrfs_submit_chunk(bbio, mirror_num))
787 		;
788 }
789 
790 /*
791  * Submit a repair write.
792  *
793  * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
794  * RAID setup.  Here we only want to write the one bad copy, so we do the
795  * mapping ourselves and submit the bio directly.
796  *
797  * The I/O is issued synchronously to block the repair read completion from
798  * freeing the bio.
799  */
800 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
801 			    u64 length, u64 logical, struct folio *folio,
802 			    unsigned int folio_offset, int mirror_num)
803 {
804 	struct btrfs_io_stripe smap = { 0 };
805 	struct bio_vec bvec;
806 	struct bio bio;
807 	int ret = 0;
808 
809 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
810 	BUG_ON(!mirror_num);
811 
812 	if (btrfs_repair_one_zone(fs_info, logical))
813 		return 0;
814 
815 	/*
816 	 * Avoid races with device replace and make sure our bioc has devices
817 	 * associated to its stripes that don't go away while we are doing the
818 	 * read repair operation.
819 	 */
820 	btrfs_bio_counter_inc_blocked(fs_info);
821 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
822 	if (ret < 0)
823 		goto out_counter_dec;
824 
825 	if (!smap.dev->bdev ||
826 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
827 		ret = -EIO;
828 		goto out_counter_dec;
829 	}
830 
831 	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
832 	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
833 	ret = bio_add_folio(&bio, folio, length, folio_offset);
834 	ASSERT(ret);
835 	ret = submit_bio_wait(&bio);
836 	if (ret) {
837 		/* try to remap that extent elsewhere? */
838 		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
839 		goto out_bio_uninit;
840 	}
841 
842 	btrfs_info_rl_in_rcu(fs_info,
843 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
844 			     ino, start, btrfs_dev_name(smap.dev),
845 			     smap.physical >> SECTOR_SHIFT);
846 	ret = 0;
847 
848 out_bio_uninit:
849 	bio_uninit(&bio);
850 out_counter_dec:
851 	btrfs_bio_counter_dec(fs_info);
852 	return ret;
853 }
854 
855 /*
856  * Submit a btrfs_bio based repair write.
857  *
858  * If @dev_replace is true, the write would be submitted to dev-replace target.
859  */
860 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
861 {
862 	struct btrfs_fs_info *fs_info = bbio->fs_info;
863 	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
864 	u64 length = bbio->bio.bi_iter.bi_size;
865 	struct btrfs_io_stripe smap = { 0 };
866 	int ret;
867 
868 	ASSERT(fs_info);
869 	ASSERT(mirror_num > 0);
870 	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
871 	ASSERT(!bbio->inode);
872 
873 	btrfs_bio_counter_inc_blocked(fs_info);
874 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
875 	if (ret < 0)
876 		goto fail;
877 
878 	if (dev_replace) {
879 		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
880 		smap.dev = fs_info->dev_replace.tgtdev;
881 	}
882 	btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
883 	return;
884 
885 fail:
886 	btrfs_bio_counter_dec(fs_info);
887 	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
888 }
889 
890 int __init btrfs_bioset_init(void)
891 {
892 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
893 			offsetof(struct btrfs_bio, bio),
894 			BIOSET_NEED_BVECS))
895 		return -ENOMEM;
896 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
897 			offsetof(struct btrfs_bio, bio), 0))
898 		goto out_free_bioset;
899 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
900 			offsetof(struct btrfs_bio, bio),
901 			BIOSET_NEED_BVECS))
902 		goto out_free_clone_bioset;
903 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
904 				      sizeof(struct btrfs_failed_bio)))
905 		goto out_free_repair_bioset;
906 	return 0;
907 
908 out_free_repair_bioset:
909 	bioset_exit(&btrfs_repair_bioset);
910 out_free_clone_bioset:
911 	bioset_exit(&btrfs_clone_bioset);
912 out_free_bioset:
913 	bioset_exit(&btrfs_bioset);
914 	return -ENOMEM;
915 }
916 
917 void __cold btrfs_bioset_exit(void)
918 {
919 	mempool_exit(&btrfs_failed_bio_pool);
920 	bioset_exit(&btrfs_repair_bioset);
921 	bioset_exit(&btrfs_clone_bioset);
922 	bioset_exit(&btrfs_bioset);
923 }
924