xref: /linux/fs/btrfs/bio.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "dev-replace.h"
14 #include "zoned.h"
15 #include "file-item.h"
16 #include "raid-stripe-tree.h"
17 
18 static struct bio_set btrfs_bioset;
19 static struct bio_set btrfs_clone_bioset;
20 static struct bio_set btrfs_repair_bioset;
21 static mempool_t btrfs_failed_bio_pool;
22 
23 struct btrfs_failed_bio {
24 	struct btrfs_bio *bbio;
25 	int num_copies;
26 	atomic_t repair_count;
27 };
28 
29 /* Is this a data path I/O that needs storage layer checksum and repair? */
30 static inline bool is_data_bbio(struct btrfs_bio *bbio)
31 {
32 	return bbio->inode && is_data_inode(bbio->inode);
33 }
34 
35 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
36 {
37 	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
38 }
39 
40 /*
41  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
42  * is already initialized by the block layer.
43  */
44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
45 		    btrfs_bio_end_io_t end_io, void *private)
46 {
47 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
48 	bbio->fs_info = fs_info;
49 	bbio->end_io = end_io;
50 	bbio->private = private;
51 	atomic_set(&bbio->pending_ios, 1);
52 }
53 
54 /*
55  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
56  * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
57  *
58  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
59  * a mempool.
60  */
61 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
62 				  struct btrfs_fs_info *fs_info,
63 				  btrfs_bio_end_io_t end_io, void *private)
64 {
65 	struct btrfs_bio *bbio;
66 	struct bio *bio;
67 
68 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
69 	bbio = btrfs_bio(bio);
70 	btrfs_bio_init(bbio, fs_info, end_io, private);
71 	return bbio;
72 }
73 
74 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
75 					 struct btrfs_bio *orig_bbio,
76 					 u64 map_length)
77 {
78 	struct btrfs_bio *bbio;
79 	struct bio *bio;
80 
81 	bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
82 			&btrfs_clone_bioset);
83 	bbio = btrfs_bio(bio);
84 	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
85 	bbio->inode = orig_bbio->inode;
86 	bbio->file_offset = orig_bbio->file_offset;
87 	orig_bbio->file_offset += map_length;
88 	if (bbio_has_ordered_extent(bbio)) {
89 		refcount_inc(&orig_bbio->ordered->refs);
90 		bbio->ordered = orig_bbio->ordered;
91 	}
92 	atomic_inc(&orig_bbio->pending_ios);
93 	return bbio;
94 }
95 
96 /* Free a bio that was never submitted to the underlying device. */
97 static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
98 {
99 	if (bbio_has_ordered_extent(bbio))
100 		btrfs_put_ordered_extent(bbio->ordered);
101 	bio_put(&bbio->bio);
102 }
103 
104 static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
105 {
106 	if (bbio_has_ordered_extent(bbio)) {
107 		struct btrfs_ordered_extent *ordered = bbio->ordered;
108 
109 		bbio->end_io(bbio);
110 		btrfs_put_ordered_extent(ordered);
111 	} else {
112 		bbio->end_io(bbio);
113 	}
114 }
115 
116 static void btrfs_orig_write_end_io(struct bio *bio);
117 
118 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
119 				       struct btrfs_bio *orig_bbio)
120 {
121 	/*
122 	 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
123 	 * just blindly propagate a write failure here.  Instead increment the
124 	 * error count in the original I/O context so that it is guaranteed to
125 	 * be larger than the error tolerance.
126 	 */
127 	if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
128 		struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
129 		struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
130 
131 		atomic_add(orig_bioc->max_errors, &orig_bioc->error);
132 	} else {
133 		orig_bbio->bio.bi_status = bbio->bio.bi_status;
134 	}
135 }
136 
137 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
138 {
139 	bbio->bio.bi_status = status;
140 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
141 		struct btrfs_bio *orig_bbio = bbio->private;
142 
143 		if (bbio->bio.bi_status)
144 			btrfs_bbio_propagate_error(bbio, orig_bbio);
145 		btrfs_cleanup_bio(bbio);
146 		bbio = orig_bbio;
147 	}
148 
149 	if (atomic_dec_and_test(&bbio->pending_ios))
150 		__btrfs_bio_end_io(bbio);
151 }
152 
153 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
154 {
155 	if (cur_mirror == fbio->num_copies)
156 		return cur_mirror + 1 - fbio->num_copies;
157 	return cur_mirror + 1;
158 }
159 
160 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
161 {
162 	if (cur_mirror == 1)
163 		return fbio->num_copies;
164 	return cur_mirror - 1;
165 }
166 
167 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
168 {
169 	if (atomic_dec_and_test(&fbio->repair_count)) {
170 		btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
171 		mempool_free(fbio, &btrfs_failed_bio_pool);
172 	}
173 }
174 
175 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
176 				 struct btrfs_device *dev)
177 {
178 	struct btrfs_failed_bio *fbio = repair_bbio->private;
179 	struct btrfs_inode *inode = repair_bbio->inode;
180 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
181 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
182 	int mirror = repair_bbio->mirror_num;
183 
184 	/*
185 	 * We can only trigger this for data bio, which doesn't support larger
186 	 * folios yet.
187 	 */
188 	ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
189 
190 	if (repair_bbio->bio.bi_status ||
191 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
192 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
193 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
194 
195 		mirror = next_repair_mirror(fbio, mirror);
196 		if (mirror == fbio->bbio->mirror_num) {
197 			btrfs_debug(fs_info, "no mirror left");
198 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
199 			goto done;
200 		}
201 
202 		btrfs_submit_bbio(repair_bbio, mirror);
203 		return;
204 	}
205 
206 	do {
207 		mirror = prev_repair_mirror(fbio, mirror);
208 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
209 				  repair_bbio->file_offset, fs_info->sectorsize,
210 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
211 				  page_folio(bv->bv_page), bv->bv_offset, mirror);
212 	} while (mirror != fbio->bbio->mirror_num);
213 
214 done:
215 	btrfs_repair_done(fbio);
216 	bio_put(&repair_bbio->bio);
217 }
218 
219 /*
220  * Try to kick off a repair read to the next available mirror for a bad sector.
221  *
222  * This primarily tries to recover good data to serve the actual read request,
223  * but also tries to write the good data back to the bad mirror(s) when a
224  * read succeeded to restore the redundancy.
225  */
226 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
227 						  u32 bio_offset,
228 						  struct bio_vec *bv,
229 						  struct btrfs_failed_bio *fbio)
230 {
231 	struct btrfs_inode *inode = failed_bbio->inode;
232 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
233 	const u32 sectorsize = fs_info->sectorsize;
234 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
235 	struct btrfs_bio *repair_bbio;
236 	struct bio *repair_bio;
237 	int num_copies;
238 	int mirror;
239 
240 	btrfs_debug(fs_info, "repair read error: read error at %llu",
241 		    failed_bbio->file_offset + bio_offset);
242 
243 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
244 	if (num_copies == 1) {
245 		btrfs_debug(fs_info, "no copy to repair from");
246 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
247 		return fbio;
248 	}
249 
250 	if (!fbio) {
251 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
252 		fbio->bbio = failed_bbio;
253 		fbio->num_copies = num_copies;
254 		atomic_set(&fbio->repair_count, 1);
255 	}
256 
257 	atomic_inc(&fbio->repair_count);
258 
259 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
260 				      &btrfs_repair_bioset);
261 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
262 	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
263 
264 	repair_bbio = btrfs_bio(repair_bio);
265 	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
266 	repair_bbio->inode = failed_bbio->inode;
267 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
268 
269 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
270 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
271 	btrfs_submit_bbio(repair_bbio, mirror);
272 	return fbio;
273 }
274 
275 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
276 {
277 	struct btrfs_inode *inode = bbio->inode;
278 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
279 	u32 sectorsize = fs_info->sectorsize;
280 	struct bvec_iter *iter = &bbio->saved_iter;
281 	blk_status_t status = bbio->bio.bi_status;
282 	struct btrfs_failed_bio *fbio = NULL;
283 	u32 offset = 0;
284 
285 	/* Read-repair requires the inode field to be set by the submitter. */
286 	ASSERT(inode);
287 
288 	/*
289 	 * Hand off repair bios to the repair code as there is no upper level
290 	 * submitter for them.
291 	 */
292 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
293 		btrfs_end_repair_bio(bbio, dev);
294 		return;
295 	}
296 
297 	/* Clear the I/O error. A failed repair will reset it. */
298 	bbio->bio.bi_status = BLK_STS_OK;
299 
300 	while (iter->bi_size) {
301 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
302 
303 		bv.bv_len = min(bv.bv_len, sectorsize);
304 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
305 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
306 
307 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
308 		offset += sectorsize;
309 	}
310 
311 	if (bbio->csum != bbio->csum_inline)
312 		kfree(bbio->csum);
313 
314 	if (fbio)
315 		btrfs_repair_done(fbio);
316 	else
317 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
318 }
319 
320 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
321 {
322 	if (!dev || !dev->bdev)
323 		return;
324 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
325 		return;
326 
327 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
328 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
329 	else if (!(bio->bi_opf & REQ_RAHEAD))
330 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
331 	if (bio->bi_opf & REQ_PREFLUSH)
332 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
333 }
334 
335 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
336 						struct bio *bio)
337 {
338 	if (bio->bi_opf & REQ_META)
339 		return fs_info->endio_meta_workers;
340 	return fs_info->endio_workers;
341 }
342 
343 static void btrfs_end_bio_work(struct work_struct *work)
344 {
345 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
346 
347 	/* Metadata reads are checked and repaired by the submitter. */
348 	if (is_data_bbio(bbio))
349 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
350 	else
351 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
352 }
353 
354 static void btrfs_simple_end_io(struct bio *bio)
355 {
356 	struct btrfs_bio *bbio = btrfs_bio(bio);
357 	struct btrfs_device *dev = bio->bi_private;
358 	struct btrfs_fs_info *fs_info = bbio->fs_info;
359 
360 	btrfs_bio_counter_dec(fs_info);
361 
362 	if (bio->bi_status)
363 		btrfs_log_dev_io_error(bio, dev);
364 
365 	if (bio_op(bio) == REQ_OP_READ) {
366 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
367 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
368 	} else {
369 		if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
370 			btrfs_record_physical_zoned(bbio);
371 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
372 	}
373 }
374 
375 static void btrfs_raid56_end_io(struct bio *bio)
376 {
377 	struct btrfs_io_context *bioc = bio->bi_private;
378 	struct btrfs_bio *bbio = btrfs_bio(bio);
379 
380 	btrfs_bio_counter_dec(bioc->fs_info);
381 	bbio->mirror_num = bioc->mirror_num;
382 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
383 		btrfs_check_read_bio(bbio, NULL);
384 	else
385 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
386 
387 	btrfs_put_bioc(bioc);
388 }
389 
390 static void btrfs_orig_write_end_io(struct bio *bio)
391 {
392 	struct btrfs_io_stripe *stripe = bio->bi_private;
393 	struct btrfs_io_context *bioc = stripe->bioc;
394 	struct btrfs_bio *bbio = btrfs_bio(bio);
395 
396 	btrfs_bio_counter_dec(bioc->fs_info);
397 
398 	if (bio->bi_status) {
399 		atomic_inc(&bioc->error);
400 		btrfs_log_dev_io_error(bio, stripe->dev);
401 	}
402 
403 	/*
404 	 * Only send an error to the higher layers if it is beyond the tolerance
405 	 * threshold.
406 	 */
407 	if (atomic_read(&bioc->error) > bioc->max_errors)
408 		bio->bi_status = BLK_STS_IOERR;
409 	else
410 		bio->bi_status = BLK_STS_OK;
411 
412 	if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
413 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
414 
415 	btrfs_bio_end_io(bbio, bbio->bio.bi_status);
416 	btrfs_put_bioc(bioc);
417 }
418 
419 static void btrfs_clone_write_end_io(struct bio *bio)
420 {
421 	struct btrfs_io_stripe *stripe = bio->bi_private;
422 
423 	if (bio->bi_status) {
424 		atomic_inc(&stripe->bioc->error);
425 		btrfs_log_dev_io_error(bio, stripe->dev);
426 	} else if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
427 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
428 	}
429 
430 	/* Pass on control to the original bio this one was cloned from */
431 	bio_endio(stripe->bioc->orig_bio);
432 	bio_put(bio);
433 }
434 
435 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
436 {
437 	if (!dev || !dev->bdev ||
438 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
439 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
440 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
441 		bio_io_error(bio);
442 		return;
443 	}
444 
445 	bio_set_dev(bio, dev->bdev);
446 
447 	/*
448 	 * For zone append writing, bi_sector must point the beginning of the
449 	 * zone
450 	 */
451 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
452 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
453 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
454 
455 		ASSERT(btrfs_dev_is_sequential(dev, physical));
456 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
457 	}
458 	btrfs_debug_in_rcu(dev->fs_info,
459 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
460 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
461 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
462 		dev->devid, bio->bi_iter.bi_size);
463 
464 	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
465 		blkcg_punt_bio_submit(bio);
466 	else
467 		submit_bio(bio);
468 }
469 
470 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
471 {
472 	struct bio *orig_bio = bioc->orig_bio, *bio;
473 
474 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
475 
476 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
477 	if (dev_nr == bioc->num_stripes - 1) {
478 		bio = orig_bio;
479 		bio->bi_end_io = btrfs_orig_write_end_io;
480 	} else {
481 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
482 		bio_inc_remaining(orig_bio);
483 		bio->bi_end_io = btrfs_clone_write_end_io;
484 	}
485 
486 	bio->bi_private = &bioc->stripes[dev_nr];
487 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
488 	bioc->stripes[dev_nr].bioc = bioc;
489 	bioc->size = bio->bi_iter.bi_size;
490 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
491 }
492 
493 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
494 			     struct btrfs_io_stripe *smap, int mirror_num)
495 {
496 	if (!bioc) {
497 		/* Single mirror read/write fast path. */
498 		btrfs_bio(bio)->mirror_num = mirror_num;
499 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
500 		if (bio_op(bio) != REQ_OP_READ)
501 			btrfs_bio(bio)->orig_physical = smap->physical;
502 		bio->bi_private = smap->dev;
503 		bio->bi_end_io = btrfs_simple_end_io;
504 		btrfs_submit_dev_bio(smap->dev, bio);
505 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
506 		/* Parity RAID write or read recovery. */
507 		bio->bi_private = bioc;
508 		bio->bi_end_io = btrfs_raid56_end_io;
509 		if (bio_op(bio) == REQ_OP_READ)
510 			raid56_parity_recover(bio, bioc, mirror_num);
511 		else
512 			raid56_parity_write(bio, bioc);
513 	} else {
514 		/* Write to multiple mirrors. */
515 		int total_devs = bioc->num_stripes;
516 
517 		bioc->orig_bio = bio;
518 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
519 			btrfs_submit_mirrored_bio(bioc, dev_nr);
520 	}
521 }
522 
523 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
524 {
525 	if (bbio->bio.bi_opf & REQ_META)
526 		return btree_csum_one_bio(bbio);
527 	return btrfs_csum_one_bio(bbio);
528 }
529 
530 /*
531  * Async submit bios are used to offload expensive checksumming onto the worker
532  * threads.
533  */
534 struct async_submit_bio {
535 	struct btrfs_bio *bbio;
536 	struct btrfs_io_context *bioc;
537 	struct btrfs_io_stripe smap;
538 	int mirror_num;
539 	struct btrfs_work work;
540 };
541 
542 /*
543  * In order to insert checksums into the metadata in large chunks, we wait
544  * until bio submission time.   All the pages in the bio are checksummed and
545  * sums are attached onto the ordered extent record.
546  *
547  * At IO completion time the csums attached on the ordered extent record are
548  * inserted into the btree.
549  */
550 static void run_one_async_start(struct btrfs_work *work)
551 {
552 	struct async_submit_bio *async =
553 		container_of(work, struct async_submit_bio, work);
554 	blk_status_t ret;
555 
556 	ret = btrfs_bio_csum(async->bbio);
557 	if (ret)
558 		async->bbio->bio.bi_status = ret;
559 }
560 
561 /*
562  * In order to insert checksums into the metadata in large chunks, we wait
563  * until bio submission time.   All the pages in the bio are checksummed and
564  * sums are attached onto the ordered extent record.
565  *
566  * At IO completion time the csums attached on the ordered extent record are
567  * inserted into the tree.
568  *
569  * If called with @do_free == true, then it will free the work struct.
570  */
571 static void run_one_async_done(struct btrfs_work *work, bool do_free)
572 {
573 	struct async_submit_bio *async =
574 		container_of(work, struct async_submit_bio, work);
575 	struct bio *bio = &async->bbio->bio;
576 
577 	if (do_free) {
578 		kfree(container_of(work, struct async_submit_bio, work));
579 		return;
580 	}
581 
582 	/* If an error occurred we just want to clean up the bio and move on. */
583 	if (bio->bi_status) {
584 		btrfs_bio_end_io(async->bbio, async->bbio->bio.bi_status);
585 		return;
586 	}
587 
588 	/*
589 	 * All of the bios that pass through here are from async helpers.
590 	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
591 	 * context.  This changes nothing when cgroups aren't in use.
592 	 */
593 	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
594 	btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
595 }
596 
597 static bool should_async_write(struct btrfs_bio *bbio)
598 {
599 	bool auto_csum_mode = true;
600 
601 #ifdef CONFIG_BTRFS_DEBUG
602 	struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
603 	enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
604 
605 	if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
606 		return false;
607 
608 	auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
609 #endif
610 
611 	/* Submit synchronously if the checksum implementation is fast. */
612 	if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
613 		return false;
614 
615 	/*
616 	 * Try to defer the submission to a workqueue to parallelize the
617 	 * checksum calculation unless the I/O is issued synchronously.
618 	 */
619 	if (op_is_sync(bbio->bio.bi_opf))
620 		return false;
621 
622 	/* Zoned devices require I/O to be submitted in order. */
623 	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
624 		return false;
625 
626 	return true;
627 }
628 
629 /*
630  * Submit bio to an async queue.
631  *
632  * Return true if the work has been successfully submitted, else false.
633  */
634 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
635 				struct btrfs_io_context *bioc,
636 				struct btrfs_io_stripe *smap, int mirror_num)
637 {
638 	struct btrfs_fs_info *fs_info = bbio->fs_info;
639 	struct async_submit_bio *async;
640 
641 	async = kmalloc(sizeof(*async), GFP_NOFS);
642 	if (!async)
643 		return false;
644 
645 	async->bbio = bbio;
646 	async->bioc = bioc;
647 	async->smap = *smap;
648 	async->mirror_num = mirror_num;
649 
650 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
651 	btrfs_queue_work(fs_info->workers, &async->work);
652 	return true;
653 }
654 
655 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
656 {
657 	unsigned int nr_segs;
658 	int sector_offset;
659 
660 	map_length = min(map_length, bbio->fs_info->max_zone_append_size);
661 	sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
662 					&nr_segs, map_length);
663 	if (sector_offset)
664 		return sector_offset << SECTOR_SHIFT;
665 	return map_length;
666 }
667 
668 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
669 {
670 	struct btrfs_inode *inode = bbio->inode;
671 	struct btrfs_fs_info *fs_info = bbio->fs_info;
672 	struct bio *bio = &bbio->bio;
673 	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
674 	u64 length = bio->bi_iter.bi_size;
675 	u64 map_length = length;
676 	bool use_append = btrfs_use_zone_append(bbio);
677 	struct btrfs_io_context *bioc = NULL;
678 	struct btrfs_io_stripe smap;
679 	blk_status_t ret;
680 	int error;
681 
682 	if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
683 		smap.rst_search_commit_root = true;
684 	else
685 		smap.rst_search_commit_root = false;
686 
687 	btrfs_bio_counter_inc_blocked(fs_info);
688 	error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
689 				&bioc, &smap, &mirror_num);
690 	if (error) {
691 		ret = errno_to_blk_status(error);
692 		goto fail;
693 	}
694 
695 	map_length = min(map_length, length);
696 	if (use_append)
697 		map_length = btrfs_append_map_length(bbio, map_length);
698 
699 	if (map_length < length) {
700 		bbio = btrfs_split_bio(fs_info, bbio, map_length);
701 		bio = &bbio->bio;
702 	}
703 
704 	/*
705 	 * Save the iter for the end_io handler and preload the checksums for
706 	 * data reads.
707 	 */
708 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
709 		bbio->saved_iter = bio->bi_iter;
710 		ret = btrfs_lookup_bio_sums(bbio);
711 		if (ret)
712 			goto fail;
713 	}
714 
715 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
716 		if (use_append) {
717 			bio->bi_opf &= ~REQ_OP_WRITE;
718 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
719 		}
720 
721 		if (is_data_bbio(bbio) && bioc &&
722 		    btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) {
723 			/*
724 			 * No locking for the list update, as we only add to
725 			 * the list in the I/O submission path, and list
726 			 * iteration only happens in the completion path, which
727 			 * can't happen until after the last submission.
728 			 */
729 			btrfs_get_bioc(bioc);
730 			list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
731 		}
732 
733 		/*
734 		 * Csum items for reloc roots have already been cloned at this
735 		 * point, so they are handled as part of the no-checksum case.
736 		 */
737 		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
738 		    !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
739 		    !btrfs_is_data_reloc_root(inode->root)) {
740 			if (should_async_write(bbio) &&
741 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
742 				goto done;
743 
744 			ret = btrfs_bio_csum(bbio);
745 			if (ret)
746 				goto fail;
747 		} else if (use_append ||
748 			   (btrfs_is_zoned(fs_info) && inode &&
749 			    inode->flags & BTRFS_INODE_NODATASUM)) {
750 			ret = btrfs_alloc_dummy_sum(bbio);
751 			if (ret)
752 				goto fail;
753 		}
754 	}
755 
756 	btrfs_submit_bio(bio, bioc, &smap, mirror_num);
757 done:
758 	return map_length == length;
759 
760 fail:
761 	btrfs_bio_counter_dec(fs_info);
762 	/*
763 	 * We have split the original bbio, now we have to end both the current
764 	 * @bbio and remaining one, as the remaining one will never be submitted.
765 	 */
766 	if (map_length < length) {
767 		struct btrfs_bio *remaining = bbio->private;
768 
769 		ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
770 		ASSERT(remaining);
771 
772 		btrfs_bio_end_io(remaining, ret);
773 	}
774 	btrfs_bio_end_io(bbio, ret);
775 	/* Do not submit another chunk */
776 	return true;
777 }
778 
779 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
780 {
781 	/* If bbio->inode is not populated, its file_offset must be 0. */
782 	ASSERT(bbio->inode || bbio->file_offset == 0);
783 
784 	while (!btrfs_submit_chunk(bbio, mirror_num))
785 		;
786 }
787 
788 /*
789  * Submit a repair write.
790  *
791  * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
792  * RAID setup.  Here we only want to write the one bad copy, so we do the
793  * mapping ourselves and submit the bio directly.
794  *
795  * The I/O is issued synchronously to block the repair read completion from
796  * freeing the bio.
797  */
798 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
799 			    u64 length, u64 logical, struct folio *folio,
800 			    unsigned int folio_offset, int mirror_num)
801 {
802 	struct btrfs_io_stripe smap = { 0 };
803 	struct bio_vec bvec;
804 	struct bio bio;
805 	int ret = 0;
806 
807 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
808 	BUG_ON(!mirror_num);
809 
810 	if (btrfs_repair_one_zone(fs_info, logical))
811 		return 0;
812 
813 	/*
814 	 * Avoid races with device replace and make sure our bioc has devices
815 	 * associated to its stripes that don't go away while we are doing the
816 	 * read repair operation.
817 	 */
818 	btrfs_bio_counter_inc_blocked(fs_info);
819 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
820 	if (ret < 0)
821 		goto out_counter_dec;
822 
823 	if (!smap.dev->bdev ||
824 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
825 		ret = -EIO;
826 		goto out_counter_dec;
827 	}
828 
829 	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
830 	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
831 	ret = bio_add_folio(&bio, folio, length, folio_offset);
832 	ASSERT(ret);
833 	ret = submit_bio_wait(&bio);
834 	if (ret) {
835 		/* try to remap that extent elsewhere? */
836 		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
837 		goto out_bio_uninit;
838 	}
839 
840 	btrfs_info_rl_in_rcu(fs_info,
841 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
842 			     ino, start, btrfs_dev_name(smap.dev),
843 			     smap.physical >> SECTOR_SHIFT);
844 	ret = 0;
845 
846 out_bio_uninit:
847 	bio_uninit(&bio);
848 out_counter_dec:
849 	btrfs_bio_counter_dec(fs_info);
850 	return ret;
851 }
852 
853 /*
854  * Submit a btrfs_bio based repair write.
855  *
856  * If @dev_replace is true, the write would be submitted to dev-replace target.
857  */
858 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
859 {
860 	struct btrfs_fs_info *fs_info = bbio->fs_info;
861 	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
862 	u64 length = bbio->bio.bi_iter.bi_size;
863 	struct btrfs_io_stripe smap = { 0 };
864 	int ret;
865 
866 	ASSERT(fs_info);
867 	ASSERT(mirror_num > 0);
868 	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
869 	ASSERT(!bbio->inode);
870 
871 	btrfs_bio_counter_inc_blocked(fs_info);
872 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
873 	if (ret < 0)
874 		goto fail;
875 
876 	if (dev_replace) {
877 		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
878 		smap.dev = fs_info->dev_replace.tgtdev;
879 	}
880 	btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
881 	return;
882 
883 fail:
884 	btrfs_bio_counter_dec(fs_info);
885 	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
886 }
887 
888 int __init btrfs_bioset_init(void)
889 {
890 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
891 			offsetof(struct btrfs_bio, bio),
892 			BIOSET_NEED_BVECS))
893 		return -ENOMEM;
894 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
895 			offsetof(struct btrfs_bio, bio), 0))
896 		goto out_free_bioset;
897 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
898 			offsetof(struct btrfs_bio, bio),
899 			BIOSET_NEED_BVECS))
900 		goto out_free_clone_bioset;
901 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
902 				      sizeof(struct btrfs_failed_bio)))
903 		goto out_free_repair_bioset;
904 	return 0;
905 
906 out_free_repair_bioset:
907 	bioset_exit(&btrfs_repair_bioset);
908 out_free_clone_bioset:
909 	bioset_exit(&btrfs_clone_bioset);
910 out_free_bioset:
911 	bioset_exit(&btrfs_bioset);
912 	return -ENOMEM;
913 }
914 
915 void __cold btrfs_bioset_exit(void)
916 {
917 	mempool_exit(&btrfs_failed_bio_pool);
918 	bioset_exit(&btrfs_repair_bioset);
919 	bioset_exit(&btrfs_clone_bioset);
920 	bioset_exit(&btrfs_bioset);
921 }
922