1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2022 Christoph Hellwig. 5 */ 6 7 #include <linux/bio.h> 8 #include "bio.h" 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "raid56.h" 12 #include "async-thread.h" 13 #include "check-integrity.h" 14 #include "dev-replace.h" 15 #include "rcu-string.h" 16 #include "zoned.h" 17 #include "file-item.h" 18 19 static struct bio_set btrfs_bioset; 20 static struct bio_set btrfs_clone_bioset; 21 static struct bio_set btrfs_repair_bioset; 22 static mempool_t btrfs_failed_bio_pool; 23 24 struct btrfs_failed_bio { 25 struct btrfs_bio *bbio; 26 int num_copies; 27 atomic_t repair_count; 28 }; 29 30 /* 31 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 32 * is already initialized by the block layer. 33 */ 34 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info, 35 btrfs_bio_end_io_t end_io, void *private) 36 { 37 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 38 bbio->fs_info = fs_info; 39 bbio->end_io = end_io; 40 bbio->private = private; 41 atomic_set(&bbio->pending_ios, 1); 42 } 43 44 /* 45 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 46 * btrfs, and is used for all I/O submitted through btrfs_submit_bio. 47 * 48 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 49 * a mempool. 50 */ 51 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 52 struct btrfs_fs_info *fs_info, 53 btrfs_bio_end_io_t end_io, void *private) 54 { 55 struct btrfs_bio *bbio; 56 struct bio *bio; 57 58 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 59 bbio = btrfs_bio(bio); 60 btrfs_bio_init(bbio, fs_info, end_io, private); 61 return bbio; 62 } 63 64 static blk_status_t btrfs_bio_extract_ordered_extent(struct btrfs_bio *bbio) 65 { 66 struct btrfs_ordered_extent *ordered; 67 int ret; 68 69 ordered = btrfs_lookup_ordered_extent(bbio->inode, bbio->file_offset); 70 if (WARN_ON_ONCE(!ordered)) 71 return BLK_STS_IOERR; 72 ret = btrfs_extract_ordered_extent(bbio, ordered); 73 btrfs_put_ordered_extent(ordered); 74 75 return errno_to_blk_status(ret); 76 } 77 78 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, 79 struct btrfs_bio *orig_bbio, 80 u64 map_length, bool use_append) 81 { 82 struct btrfs_bio *bbio; 83 struct bio *bio; 84 85 if (use_append) { 86 unsigned int nr_segs; 87 88 bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs, 89 &btrfs_clone_bioset, map_length); 90 } else { 91 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, 92 GFP_NOFS, &btrfs_clone_bioset); 93 } 94 bbio = btrfs_bio(bio); 95 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio); 96 bbio->inode = orig_bbio->inode; 97 bbio->file_offset = orig_bbio->file_offset; 98 if (!(orig_bbio->bio.bi_opf & REQ_BTRFS_ONE_ORDERED)) 99 orig_bbio->file_offset += map_length; 100 101 atomic_inc(&orig_bbio->pending_ios); 102 return bbio; 103 } 104 105 static void btrfs_orig_write_end_io(struct bio *bio); 106 107 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio, 108 struct btrfs_bio *orig_bbio) 109 { 110 /* 111 * For writes we tolerate nr_mirrors - 1 write failures, so we can't 112 * just blindly propagate a write failure here. Instead increment the 113 * error count in the original I/O context so that it is guaranteed to 114 * be larger than the error tolerance. 115 */ 116 if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) { 117 struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private; 118 struct btrfs_io_context *orig_bioc = orig_stripe->bioc; 119 120 atomic_add(orig_bioc->max_errors, &orig_bioc->error); 121 } else { 122 orig_bbio->bio.bi_status = bbio->bio.bi_status; 123 } 124 } 125 126 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio) 127 { 128 if (bbio->bio.bi_pool == &btrfs_clone_bioset) { 129 struct btrfs_bio *orig_bbio = bbio->private; 130 131 if (bbio->bio.bi_status) 132 btrfs_bbio_propagate_error(bbio, orig_bbio); 133 bio_put(&bbio->bio); 134 bbio = orig_bbio; 135 } 136 137 if (atomic_dec_and_test(&bbio->pending_ios)) 138 bbio->end_io(bbio); 139 } 140 141 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 142 { 143 if (cur_mirror == fbio->num_copies) 144 return cur_mirror + 1 - fbio->num_copies; 145 return cur_mirror + 1; 146 } 147 148 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 149 { 150 if (cur_mirror == 1) 151 return fbio->num_copies; 152 return cur_mirror - 1; 153 } 154 155 static void btrfs_repair_done(struct btrfs_failed_bio *fbio) 156 { 157 if (atomic_dec_and_test(&fbio->repair_count)) { 158 btrfs_orig_bbio_end_io(fbio->bbio); 159 mempool_free(fbio, &btrfs_failed_bio_pool); 160 } 161 } 162 163 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, 164 struct btrfs_device *dev) 165 { 166 struct btrfs_failed_bio *fbio = repair_bbio->private; 167 struct btrfs_inode *inode = repair_bbio->inode; 168 struct btrfs_fs_info *fs_info = inode->root->fs_info; 169 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); 170 int mirror = repair_bbio->mirror_num; 171 172 if (repair_bbio->bio.bi_status || 173 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { 174 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); 175 repair_bbio->bio.bi_iter = repair_bbio->saved_iter; 176 177 mirror = next_repair_mirror(fbio, mirror); 178 if (mirror == fbio->bbio->mirror_num) { 179 btrfs_debug(fs_info, "no mirror left"); 180 fbio->bbio->bio.bi_status = BLK_STS_IOERR; 181 goto done; 182 } 183 184 btrfs_submit_bio(repair_bbio, mirror); 185 return; 186 } 187 188 do { 189 mirror = prev_repair_mirror(fbio, mirror); 190 btrfs_repair_io_failure(fs_info, btrfs_ino(inode), 191 repair_bbio->file_offset, fs_info->sectorsize, 192 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, 193 bv->bv_page, bv->bv_offset, mirror); 194 } while (mirror != fbio->bbio->mirror_num); 195 196 done: 197 btrfs_repair_done(fbio); 198 bio_put(&repair_bbio->bio); 199 } 200 201 /* 202 * Try to kick off a repair read to the next available mirror for a bad sector. 203 * 204 * This primarily tries to recover good data to serve the actual read request, 205 * but also tries to write the good data back to the bad mirror(s) when a 206 * read succeeded to restore the redundancy. 207 */ 208 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, 209 u32 bio_offset, 210 struct bio_vec *bv, 211 struct btrfs_failed_bio *fbio) 212 { 213 struct btrfs_inode *inode = failed_bbio->inode; 214 struct btrfs_fs_info *fs_info = inode->root->fs_info; 215 const u32 sectorsize = fs_info->sectorsize; 216 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); 217 struct btrfs_bio *repair_bbio; 218 struct bio *repair_bio; 219 int num_copies; 220 int mirror; 221 222 btrfs_debug(fs_info, "repair read error: read error at %llu", 223 failed_bbio->file_offset + bio_offset); 224 225 num_copies = btrfs_num_copies(fs_info, logical, sectorsize); 226 if (num_copies == 1) { 227 btrfs_debug(fs_info, "no copy to repair from"); 228 failed_bbio->bio.bi_status = BLK_STS_IOERR; 229 return fbio; 230 } 231 232 if (!fbio) { 233 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); 234 fbio->bbio = failed_bbio; 235 fbio->num_copies = num_copies; 236 atomic_set(&fbio->repair_count, 1); 237 } 238 239 atomic_inc(&fbio->repair_count); 240 241 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, 242 &btrfs_repair_bioset); 243 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; 244 __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); 245 246 repair_bbio = btrfs_bio(repair_bio); 247 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio); 248 repair_bbio->inode = failed_bbio->inode; 249 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; 250 251 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); 252 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); 253 btrfs_submit_bio(repair_bbio, mirror); 254 return fbio; 255 } 256 257 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) 258 { 259 struct btrfs_inode *inode = bbio->inode; 260 struct btrfs_fs_info *fs_info = inode->root->fs_info; 261 u32 sectorsize = fs_info->sectorsize; 262 struct bvec_iter *iter = &bbio->saved_iter; 263 blk_status_t status = bbio->bio.bi_status; 264 struct btrfs_failed_bio *fbio = NULL; 265 u32 offset = 0; 266 267 /* Read-repair requires the inode field to be set by the submitter. */ 268 ASSERT(inode); 269 270 /* 271 * Hand off repair bios to the repair code as there is no upper level 272 * submitter for them. 273 */ 274 if (bbio->bio.bi_pool == &btrfs_repair_bioset) { 275 btrfs_end_repair_bio(bbio, dev); 276 return; 277 } 278 279 /* Clear the I/O error. A failed repair will reset it. */ 280 bbio->bio.bi_status = BLK_STS_OK; 281 282 while (iter->bi_size) { 283 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); 284 285 bv.bv_len = min(bv.bv_len, sectorsize); 286 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) 287 fbio = repair_one_sector(bbio, offset, &bv, fbio); 288 289 bio_advance_iter_single(&bbio->bio, iter, sectorsize); 290 offset += sectorsize; 291 } 292 293 if (bbio->csum != bbio->csum_inline) 294 kfree(bbio->csum); 295 296 if (fbio) 297 btrfs_repair_done(fbio); 298 else 299 btrfs_orig_bbio_end_io(bbio); 300 } 301 302 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) 303 { 304 if (!dev || !dev->bdev) 305 return; 306 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 307 return; 308 309 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 310 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 311 else if (!(bio->bi_opf & REQ_RAHEAD)) 312 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 313 if (bio->bi_opf & REQ_PREFLUSH) 314 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 315 } 316 317 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, 318 struct bio *bio) 319 { 320 if (bio->bi_opf & REQ_META) 321 return fs_info->endio_meta_workers; 322 return fs_info->endio_workers; 323 } 324 325 static void btrfs_end_bio_work(struct work_struct *work) 326 { 327 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); 328 329 /* Metadata reads are checked and repaired by the submitter. */ 330 if (bbio->inode && !(bbio->bio.bi_opf & REQ_META)) 331 btrfs_check_read_bio(bbio, bbio->bio.bi_private); 332 else 333 btrfs_orig_bbio_end_io(bbio); 334 } 335 336 static void btrfs_simple_end_io(struct bio *bio) 337 { 338 struct btrfs_bio *bbio = btrfs_bio(bio); 339 struct btrfs_device *dev = bio->bi_private; 340 struct btrfs_fs_info *fs_info = bbio->fs_info; 341 342 btrfs_bio_counter_dec(fs_info); 343 344 if (bio->bi_status) 345 btrfs_log_dev_io_error(bio, dev); 346 347 if (bio_op(bio) == REQ_OP_READ) { 348 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 349 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 350 } else { 351 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 352 btrfs_record_physical_zoned(bbio); 353 btrfs_orig_bbio_end_io(bbio); 354 } 355 } 356 357 static void btrfs_raid56_end_io(struct bio *bio) 358 { 359 struct btrfs_io_context *bioc = bio->bi_private; 360 struct btrfs_bio *bbio = btrfs_bio(bio); 361 362 btrfs_bio_counter_dec(bioc->fs_info); 363 bbio->mirror_num = bioc->mirror_num; 364 if (bio_op(bio) == REQ_OP_READ && bbio->inode && 365 !(bbio->bio.bi_opf & REQ_META)) 366 btrfs_check_read_bio(bbio, NULL); 367 else 368 btrfs_orig_bbio_end_io(bbio); 369 370 btrfs_put_bioc(bioc); 371 } 372 373 static void btrfs_orig_write_end_io(struct bio *bio) 374 { 375 struct btrfs_io_stripe *stripe = bio->bi_private; 376 struct btrfs_io_context *bioc = stripe->bioc; 377 struct btrfs_bio *bbio = btrfs_bio(bio); 378 379 btrfs_bio_counter_dec(bioc->fs_info); 380 381 if (bio->bi_status) { 382 atomic_inc(&bioc->error); 383 btrfs_log_dev_io_error(bio, stripe->dev); 384 } 385 386 /* 387 * Only send an error to the higher layers if it is beyond the tolerance 388 * threshold. 389 */ 390 if (atomic_read(&bioc->error) > bioc->max_errors) 391 bio->bi_status = BLK_STS_IOERR; 392 else 393 bio->bi_status = BLK_STS_OK; 394 395 btrfs_orig_bbio_end_io(bbio); 396 btrfs_put_bioc(bioc); 397 } 398 399 static void btrfs_clone_write_end_io(struct bio *bio) 400 { 401 struct btrfs_io_stripe *stripe = bio->bi_private; 402 403 if (bio->bi_status) { 404 atomic_inc(&stripe->bioc->error); 405 btrfs_log_dev_io_error(bio, stripe->dev); 406 } 407 408 /* Pass on control to the original bio this one was cloned from */ 409 bio_endio(stripe->bioc->orig_bio); 410 bio_put(bio); 411 } 412 413 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 414 { 415 if (!dev || !dev->bdev || 416 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 417 (btrfs_op(bio) == BTRFS_MAP_WRITE && 418 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 419 bio_io_error(bio); 420 return; 421 } 422 423 bio_set_dev(bio, dev->bdev); 424 425 /* 426 * For zone append writing, bi_sector must point the beginning of the 427 * zone 428 */ 429 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 430 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 431 u64 zone_start = round_down(physical, dev->fs_info->zone_size); 432 433 ASSERT(btrfs_dev_is_sequential(dev, physical)); 434 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 435 } 436 btrfs_debug_in_rcu(dev->fs_info, 437 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 438 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 439 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), 440 dev->devid, bio->bi_iter.bi_size); 441 442 btrfsic_check_bio(bio); 443 444 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT) 445 blkcg_punt_bio_submit(bio); 446 else 447 submit_bio(bio); 448 } 449 450 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 451 { 452 struct bio *orig_bio = bioc->orig_bio, *bio; 453 454 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 455 456 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 457 if (dev_nr == bioc->num_stripes - 1) { 458 bio = orig_bio; 459 bio->bi_end_io = btrfs_orig_write_end_io; 460 } else { 461 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 462 bio_inc_remaining(orig_bio); 463 bio->bi_end_io = btrfs_clone_write_end_io; 464 } 465 466 bio->bi_private = &bioc->stripes[dev_nr]; 467 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 468 bioc->stripes[dev_nr].bioc = bioc; 469 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 470 } 471 472 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, 473 struct btrfs_io_stripe *smap, int mirror_num) 474 { 475 /* Do not leak our private flag into the block layer. */ 476 bio->bi_opf &= ~REQ_BTRFS_ONE_ORDERED; 477 478 if (!bioc) { 479 /* Single mirror read/write fast path. */ 480 btrfs_bio(bio)->mirror_num = mirror_num; 481 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; 482 bio->bi_private = smap->dev; 483 bio->bi_end_io = btrfs_simple_end_io; 484 btrfs_submit_dev_bio(smap->dev, bio); 485 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 486 /* Parity RAID write or read recovery. */ 487 bio->bi_private = bioc; 488 bio->bi_end_io = btrfs_raid56_end_io; 489 if (bio_op(bio) == REQ_OP_READ) 490 raid56_parity_recover(bio, bioc, mirror_num); 491 else 492 raid56_parity_write(bio, bioc); 493 } else { 494 /* Write to multiple mirrors. */ 495 int total_devs = bioc->num_stripes; 496 497 bioc->orig_bio = bio; 498 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) 499 btrfs_submit_mirrored_bio(bioc, dev_nr); 500 } 501 } 502 503 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio) 504 { 505 if (bbio->bio.bi_opf & REQ_META) 506 return btree_csum_one_bio(bbio); 507 return btrfs_csum_one_bio(bbio); 508 } 509 510 /* 511 * Async submit bios are used to offload expensive checksumming onto the worker 512 * threads. 513 */ 514 struct async_submit_bio { 515 struct btrfs_bio *bbio; 516 struct btrfs_io_context *bioc; 517 struct btrfs_io_stripe smap; 518 int mirror_num; 519 struct btrfs_work work; 520 }; 521 522 /* 523 * In order to insert checksums into the metadata in large chunks, we wait 524 * until bio submission time. All the pages in the bio are checksummed and 525 * sums are attached onto the ordered extent record. 526 * 527 * At IO completion time the csums attached on the ordered extent record are 528 * inserted into the btree. 529 */ 530 static void run_one_async_start(struct btrfs_work *work) 531 { 532 struct async_submit_bio *async = 533 container_of(work, struct async_submit_bio, work); 534 blk_status_t ret; 535 536 ret = btrfs_bio_csum(async->bbio); 537 if (ret) 538 async->bbio->bio.bi_status = ret; 539 } 540 541 /* 542 * In order to insert checksums into the metadata in large chunks, we wait 543 * until bio submission time. All the pages in the bio are checksummed and 544 * sums are attached onto the ordered extent record. 545 * 546 * At IO completion time the csums attached on the ordered extent record are 547 * inserted into the tree. 548 */ 549 static void run_one_async_done(struct btrfs_work *work) 550 { 551 struct async_submit_bio *async = 552 container_of(work, struct async_submit_bio, work); 553 struct bio *bio = &async->bbio->bio; 554 555 /* If an error occurred we just want to clean up the bio and move on. */ 556 if (bio->bi_status) { 557 btrfs_orig_bbio_end_io(async->bbio); 558 return; 559 } 560 561 /* 562 * All of the bios that pass through here are from async helpers. 563 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's 564 * context. This changes nothing when cgroups aren't in use. 565 */ 566 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT; 567 __btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); 568 } 569 570 static void run_one_async_free(struct btrfs_work *work) 571 { 572 kfree(container_of(work, struct async_submit_bio, work)); 573 } 574 575 static bool should_async_write(struct btrfs_bio *bbio) 576 { 577 /* 578 * If the I/O is not issued by fsync and friends, (->sync_writers != 0), 579 * then try to defer the submission to a workqueue to parallelize the 580 * checksum calculation. 581 */ 582 if (atomic_read(&bbio->inode->sync_writers)) 583 return false; 584 585 /* 586 * Submit metadata writes synchronously if the checksum implementation 587 * is fast, or we are on a zoned device that wants I/O to be submitted 588 * in order. 589 */ 590 if (bbio->bio.bi_opf & REQ_META) { 591 struct btrfs_fs_info *fs_info = bbio->fs_info; 592 593 if (btrfs_is_zoned(fs_info)) 594 return false; 595 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 596 return false; 597 } 598 599 return true; 600 } 601 602 /* 603 * Submit bio to an async queue. 604 * 605 * Return true if the work has been succesfuly submitted, else false. 606 */ 607 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, 608 struct btrfs_io_context *bioc, 609 struct btrfs_io_stripe *smap, int mirror_num) 610 { 611 struct btrfs_fs_info *fs_info = bbio->fs_info; 612 struct async_submit_bio *async; 613 614 async = kmalloc(sizeof(*async), GFP_NOFS); 615 if (!async) 616 return false; 617 618 async->bbio = bbio; 619 async->bioc = bioc; 620 async->smap = *smap; 621 async->mirror_num = mirror_num; 622 623 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 624 run_one_async_free); 625 if (op_is_sync(bbio->bio.bi_opf)) 626 btrfs_queue_work(fs_info->hipri_workers, &async->work); 627 else 628 btrfs_queue_work(fs_info->workers, &async->work); 629 return true; 630 } 631 632 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num) 633 { 634 struct btrfs_inode *inode = bbio->inode; 635 struct btrfs_fs_info *fs_info = bbio->fs_info; 636 struct btrfs_bio *orig_bbio = bbio; 637 struct bio *bio = &bbio->bio; 638 u64 logical = bio->bi_iter.bi_sector << 9; 639 u64 length = bio->bi_iter.bi_size; 640 u64 map_length = length; 641 bool use_append = btrfs_use_zone_append(bbio); 642 struct btrfs_io_context *bioc = NULL; 643 struct btrfs_io_stripe smap; 644 blk_status_t ret; 645 int error; 646 647 btrfs_bio_counter_inc_blocked(fs_info); 648 error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 649 &bioc, &smap, &mirror_num, 1); 650 if (error) { 651 ret = errno_to_blk_status(error); 652 goto fail; 653 } 654 655 map_length = min(map_length, length); 656 if (use_append) 657 map_length = min(map_length, fs_info->max_zone_append_size); 658 659 if (map_length < length) { 660 bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append); 661 bio = &bbio->bio; 662 } 663 664 /* 665 * Save the iter for the end_io handler and preload the checksums for 666 * data reads. 667 */ 668 if (bio_op(bio) == REQ_OP_READ && inode && !(bio->bi_opf & REQ_META)) { 669 bbio->saved_iter = bio->bi_iter; 670 ret = btrfs_lookup_bio_sums(bbio); 671 if (ret) 672 goto fail_put_bio; 673 } 674 675 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 676 if (use_append) { 677 bio->bi_opf &= ~REQ_OP_WRITE; 678 bio->bi_opf |= REQ_OP_ZONE_APPEND; 679 ret = btrfs_bio_extract_ordered_extent(bbio); 680 if (ret) 681 goto fail_put_bio; 682 } 683 684 /* 685 * Csum items for reloc roots have already been cloned at this 686 * point, so they are handled as part of the no-checksum case. 687 */ 688 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) && 689 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) && 690 !btrfs_is_data_reloc_root(inode->root)) { 691 if (should_async_write(bbio) && 692 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) 693 goto done; 694 695 ret = btrfs_bio_csum(bbio); 696 if (ret) 697 goto fail_put_bio; 698 } 699 } 700 701 __btrfs_submit_bio(bio, bioc, &smap, mirror_num); 702 done: 703 return map_length == length; 704 705 fail_put_bio: 706 if (map_length < length) 707 bio_put(bio); 708 fail: 709 btrfs_bio_counter_dec(fs_info); 710 btrfs_bio_end_io(orig_bbio, ret); 711 /* Do not submit another chunk */ 712 return true; 713 } 714 715 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num) 716 { 717 /* If bbio->inode is not populated, its file_offset must be 0. */ 718 ASSERT(bbio->inode || bbio->file_offset == 0); 719 720 while (!btrfs_submit_chunk(bbio, mirror_num)) 721 ; 722 } 723 724 /* 725 * Submit a repair write. 726 * 727 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a 728 * RAID setup. Here we only want to write the one bad copy, so we do the 729 * mapping ourselves and submit the bio directly. 730 * 731 * The I/O is issued synchronously to block the repair read completion from 732 * freeing the bio. 733 */ 734 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 735 u64 length, u64 logical, struct page *page, 736 unsigned int pg_offset, int mirror_num) 737 { 738 struct btrfs_io_stripe smap = { 0 }; 739 struct bio_vec bvec; 740 struct bio bio; 741 int ret = 0; 742 743 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 744 BUG_ON(!mirror_num); 745 746 if (btrfs_repair_one_zone(fs_info, logical)) 747 return 0; 748 749 /* 750 * Avoid races with device replace and make sure our bioc has devices 751 * associated to its stripes that don't go away while we are doing the 752 * read repair operation. 753 */ 754 btrfs_bio_counter_inc_blocked(fs_info); 755 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 756 if (ret < 0) 757 goto out_counter_dec; 758 759 if (!smap.dev->bdev || 760 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) { 761 ret = -EIO; 762 goto out_counter_dec; 763 } 764 765 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 766 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 767 __bio_add_page(&bio, page, length, pg_offset); 768 769 btrfsic_check_bio(&bio); 770 ret = submit_bio_wait(&bio); 771 if (ret) { 772 /* try to remap that extent elsewhere? */ 773 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS); 774 goto out_bio_uninit; 775 } 776 777 btrfs_info_rl_in_rcu(fs_info, 778 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 779 ino, start, btrfs_dev_name(smap.dev), 780 smap.physical >> SECTOR_SHIFT); 781 ret = 0; 782 783 out_bio_uninit: 784 bio_uninit(&bio); 785 out_counter_dec: 786 btrfs_bio_counter_dec(fs_info); 787 return ret; 788 } 789 790 /* 791 * Submit a btrfs_bio based repair write. 792 * 793 * If @dev_replace is true, the write would be submitted to dev-replace target. 794 */ 795 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace) 796 { 797 struct btrfs_fs_info *fs_info = bbio->fs_info; 798 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 799 u64 length = bbio->bio.bi_iter.bi_size; 800 struct btrfs_io_stripe smap = { 0 }; 801 int ret; 802 803 ASSERT(fs_info); 804 ASSERT(mirror_num > 0); 805 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE); 806 ASSERT(!bbio->inode); 807 808 btrfs_bio_counter_inc_blocked(fs_info); 809 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 810 if (ret < 0) 811 goto fail; 812 813 if (dev_replace) { 814 ASSERT(smap.dev == fs_info->dev_replace.srcdev); 815 smap.dev = fs_info->dev_replace.tgtdev; 816 } 817 __btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num); 818 return; 819 820 fail: 821 btrfs_bio_counter_dec(fs_info); 822 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 823 } 824 825 int __init btrfs_bioset_init(void) 826 { 827 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 828 offsetof(struct btrfs_bio, bio), 829 BIOSET_NEED_BVECS)) 830 return -ENOMEM; 831 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, 832 offsetof(struct btrfs_bio, bio), 0)) 833 goto out_free_bioset; 834 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, 835 offsetof(struct btrfs_bio, bio), 836 BIOSET_NEED_BVECS)) 837 goto out_free_clone_bioset; 838 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, 839 sizeof(struct btrfs_failed_bio))) 840 goto out_free_repair_bioset; 841 return 0; 842 843 out_free_repair_bioset: 844 bioset_exit(&btrfs_repair_bioset); 845 out_free_clone_bioset: 846 bioset_exit(&btrfs_clone_bioset); 847 out_free_bioset: 848 bioset_exit(&btrfs_bioset); 849 return -ENOMEM; 850 } 851 852 void __cold btrfs_bioset_exit(void) 853 { 854 mempool_exit(&btrfs_failed_bio_pool); 855 bioset_exit(&btrfs_repair_bioset); 856 bioset_exit(&btrfs_clone_bioset); 857 bioset_exit(&btrfs_bioset); 858 } 859