xref: /linux/fs/btrfs/bio.c (revision 9ad1a29cb0991e3145996cdce691525e8ac65db7)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   * Copyright (C) 2022 Christoph Hellwig.
5   */
6  
7  #include <linux/bio.h>
8  #include "bio.h"
9  #include "ctree.h"
10  #include "volumes.h"
11  #include "raid56.h"
12  #include "async-thread.h"
13  #include "check-integrity.h"
14  #include "dev-replace.h"
15  #include "rcu-string.h"
16  #include "zoned.h"
17  #include "file-item.h"
18  
19  static struct bio_set btrfs_bioset;
20  static struct bio_set btrfs_clone_bioset;
21  static struct bio_set btrfs_repair_bioset;
22  static mempool_t btrfs_failed_bio_pool;
23  
24  struct btrfs_failed_bio {
25  	struct btrfs_bio *bbio;
26  	int num_copies;
27  	atomic_t repair_count;
28  };
29  
30  /* Is this a data path I/O that needs storage layer checksum and repair? */
31  static inline bool is_data_bbio(struct btrfs_bio *bbio)
32  {
33  	return bbio->inode && is_data_inode(&bbio->inode->vfs_inode);
34  }
35  
36  static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
37  {
38  	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
39  }
40  
41  /*
42   * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
43   * is already initialized by the block layer.
44   */
45  void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
46  		    btrfs_bio_end_io_t end_io, void *private)
47  {
48  	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
49  	bbio->fs_info = fs_info;
50  	bbio->end_io = end_io;
51  	bbio->private = private;
52  	atomic_set(&bbio->pending_ios, 1);
53  }
54  
55  /*
56   * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
57   * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
58   *
59   * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60   * a mempool.
61   */
62  struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63  				  struct btrfs_fs_info *fs_info,
64  				  btrfs_bio_end_io_t end_io, void *private)
65  {
66  	struct btrfs_bio *bbio;
67  	struct bio *bio;
68  
69  	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70  	bbio = btrfs_bio(bio);
71  	btrfs_bio_init(bbio, fs_info, end_io, private);
72  	return bbio;
73  }
74  
75  static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76  					 struct btrfs_bio *orig_bbio,
77  					 u64 map_length, bool use_append)
78  {
79  	struct btrfs_bio *bbio;
80  	struct bio *bio;
81  
82  	if (use_append) {
83  		unsigned int nr_segs;
84  
85  		bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
86  				   &btrfs_clone_bioset, map_length);
87  	} else {
88  		bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
89  				GFP_NOFS, &btrfs_clone_bioset);
90  	}
91  	bbio = btrfs_bio(bio);
92  	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
93  	bbio->inode = orig_bbio->inode;
94  	bbio->file_offset = orig_bbio->file_offset;
95  	orig_bbio->file_offset += map_length;
96  	if (bbio_has_ordered_extent(bbio)) {
97  		refcount_inc(&orig_bbio->ordered->refs);
98  		bbio->ordered = orig_bbio->ordered;
99  	}
100  	atomic_inc(&orig_bbio->pending_ios);
101  	return bbio;
102  }
103  
104  /* Free a bio that was never submitted to the underlying device. */
105  static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
106  {
107  	if (bbio_has_ordered_extent(bbio))
108  		btrfs_put_ordered_extent(bbio->ordered);
109  	bio_put(&bbio->bio);
110  }
111  
112  static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
113  {
114  	if (bbio_has_ordered_extent(bbio)) {
115  		struct btrfs_ordered_extent *ordered = bbio->ordered;
116  
117  		bbio->end_io(bbio);
118  		btrfs_put_ordered_extent(ordered);
119  	} else {
120  		bbio->end_io(bbio);
121  	}
122  }
123  
124  void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
125  {
126  	bbio->bio.bi_status = status;
127  	__btrfs_bio_end_io(bbio);
128  }
129  
130  static void btrfs_orig_write_end_io(struct bio *bio);
131  
132  static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
133  				       struct btrfs_bio *orig_bbio)
134  {
135  	/*
136  	 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
137  	 * just blindly propagate a write failure here.  Instead increment the
138  	 * error count in the original I/O context so that it is guaranteed to
139  	 * be larger than the error tolerance.
140  	 */
141  	if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
142  		struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
143  		struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
144  
145  		atomic_add(orig_bioc->max_errors, &orig_bioc->error);
146  	} else {
147  		orig_bbio->bio.bi_status = bbio->bio.bi_status;
148  	}
149  }
150  
151  static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
152  {
153  	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
154  		struct btrfs_bio *orig_bbio = bbio->private;
155  
156  		if (bbio->bio.bi_status)
157  			btrfs_bbio_propagate_error(bbio, orig_bbio);
158  		btrfs_cleanup_bio(bbio);
159  		bbio = orig_bbio;
160  	}
161  
162  	if (atomic_dec_and_test(&bbio->pending_ios))
163  		__btrfs_bio_end_io(bbio);
164  }
165  
166  static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
167  {
168  	if (cur_mirror == fbio->num_copies)
169  		return cur_mirror + 1 - fbio->num_copies;
170  	return cur_mirror + 1;
171  }
172  
173  static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
174  {
175  	if (cur_mirror == 1)
176  		return fbio->num_copies;
177  	return cur_mirror - 1;
178  }
179  
180  static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
181  {
182  	if (atomic_dec_and_test(&fbio->repair_count)) {
183  		btrfs_orig_bbio_end_io(fbio->bbio);
184  		mempool_free(fbio, &btrfs_failed_bio_pool);
185  	}
186  }
187  
188  static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
189  				 struct btrfs_device *dev)
190  {
191  	struct btrfs_failed_bio *fbio = repair_bbio->private;
192  	struct btrfs_inode *inode = repair_bbio->inode;
193  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
194  	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
195  	int mirror = repair_bbio->mirror_num;
196  
197  	if (repair_bbio->bio.bi_status ||
198  	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
199  		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
200  		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
201  
202  		mirror = next_repair_mirror(fbio, mirror);
203  		if (mirror == fbio->bbio->mirror_num) {
204  			btrfs_debug(fs_info, "no mirror left");
205  			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
206  			goto done;
207  		}
208  
209  		btrfs_submit_bio(repair_bbio, mirror);
210  		return;
211  	}
212  
213  	do {
214  		mirror = prev_repair_mirror(fbio, mirror);
215  		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
216  				  repair_bbio->file_offset, fs_info->sectorsize,
217  				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
218  				  bv->bv_page, bv->bv_offset, mirror);
219  	} while (mirror != fbio->bbio->mirror_num);
220  
221  done:
222  	btrfs_repair_done(fbio);
223  	bio_put(&repair_bbio->bio);
224  }
225  
226  /*
227   * Try to kick off a repair read to the next available mirror for a bad sector.
228   *
229   * This primarily tries to recover good data to serve the actual read request,
230   * but also tries to write the good data back to the bad mirror(s) when a
231   * read succeeded to restore the redundancy.
232   */
233  static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
234  						  u32 bio_offset,
235  						  struct bio_vec *bv,
236  						  struct btrfs_failed_bio *fbio)
237  {
238  	struct btrfs_inode *inode = failed_bbio->inode;
239  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
240  	const u32 sectorsize = fs_info->sectorsize;
241  	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
242  	struct btrfs_bio *repair_bbio;
243  	struct bio *repair_bio;
244  	int num_copies;
245  	int mirror;
246  
247  	btrfs_debug(fs_info, "repair read error: read error at %llu",
248  		    failed_bbio->file_offset + bio_offset);
249  
250  	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
251  	if (num_copies == 1) {
252  		btrfs_debug(fs_info, "no copy to repair from");
253  		failed_bbio->bio.bi_status = BLK_STS_IOERR;
254  		return fbio;
255  	}
256  
257  	if (!fbio) {
258  		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
259  		fbio->bbio = failed_bbio;
260  		fbio->num_copies = num_copies;
261  		atomic_set(&fbio->repair_count, 1);
262  	}
263  
264  	atomic_inc(&fbio->repair_count);
265  
266  	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
267  				      &btrfs_repair_bioset);
268  	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
269  	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
270  
271  	repair_bbio = btrfs_bio(repair_bio);
272  	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
273  	repair_bbio->inode = failed_bbio->inode;
274  	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
275  
276  	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
277  	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
278  	btrfs_submit_bio(repair_bbio, mirror);
279  	return fbio;
280  }
281  
282  static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
283  {
284  	struct btrfs_inode *inode = bbio->inode;
285  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
286  	u32 sectorsize = fs_info->sectorsize;
287  	struct bvec_iter *iter = &bbio->saved_iter;
288  	blk_status_t status = bbio->bio.bi_status;
289  	struct btrfs_failed_bio *fbio = NULL;
290  	u32 offset = 0;
291  
292  	/* Read-repair requires the inode field to be set by the submitter. */
293  	ASSERT(inode);
294  
295  	/*
296  	 * Hand off repair bios to the repair code as there is no upper level
297  	 * submitter for them.
298  	 */
299  	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
300  		btrfs_end_repair_bio(bbio, dev);
301  		return;
302  	}
303  
304  	/* Clear the I/O error. A failed repair will reset it. */
305  	bbio->bio.bi_status = BLK_STS_OK;
306  
307  	while (iter->bi_size) {
308  		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
309  
310  		bv.bv_len = min(bv.bv_len, sectorsize);
311  		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
312  			fbio = repair_one_sector(bbio, offset, &bv, fbio);
313  
314  		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
315  		offset += sectorsize;
316  	}
317  
318  	if (bbio->csum != bbio->csum_inline)
319  		kfree(bbio->csum);
320  
321  	if (fbio)
322  		btrfs_repair_done(fbio);
323  	else
324  		btrfs_orig_bbio_end_io(bbio);
325  }
326  
327  static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
328  {
329  	if (!dev || !dev->bdev)
330  		return;
331  	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
332  		return;
333  
334  	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
335  		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
336  	else if (!(bio->bi_opf & REQ_RAHEAD))
337  		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
338  	if (bio->bi_opf & REQ_PREFLUSH)
339  		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
340  }
341  
342  static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
343  						struct bio *bio)
344  {
345  	if (bio->bi_opf & REQ_META)
346  		return fs_info->endio_meta_workers;
347  	return fs_info->endio_workers;
348  }
349  
350  static void btrfs_end_bio_work(struct work_struct *work)
351  {
352  	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
353  
354  	/* Metadata reads are checked and repaired by the submitter. */
355  	if (is_data_bbio(bbio))
356  		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
357  	else
358  		btrfs_orig_bbio_end_io(bbio);
359  }
360  
361  static void btrfs_simple_end_io(struct bio *bio)
362  {
363  	struct btrfs_bio *bbio = btrfs_bio(bio);
364  	struct btrfs_device *dev = bio->bi_private;
365  	struct btrfs_fs_info *fs_info = bbio->fs_info;
366  
367  	btrfs_bio_counter_dec(fs_info);
368  
369  	if (bio->bi_status)
370  		btrfs_log_dev_io_error(bio, dev);
371  
372  	if (bio_op(bio) == REQ_OP_READ) {
373  		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
374  		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
375  	} else {
376  		if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
377  			btrfs_record_physical_zoned(bbio);
378  		btrfs_orig_bbio_end_io(bbio);
379  	}
380  }
381  
382  static void btrfs_raid56_end_io(struct bio *bio)
383  {
384  	struct btrfs_io_context *bioc = bio->bi_private;
385  	struct btrfs_bio *bbio = btrfs_bio(bio);
386  
387  	btrfs_bio_counter_dec(bioc->fs_info);
388  	bbio->mirror_num = bioc->mirror_num;
389  	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
390  		btrfs_check_read_bio(bbio, NULL);
391  	else
392  		btrfs_orig_bbio_end_io(bbio);
393  
394  	btrfs_put_bioc(bioc);
395  }
396  
397  static void btrfs_orig_write_end_io(struct bio *bio)
398  {
399  	struct btrfs_io_stripe *stripe = bio->bi_private;
400  	struct btrfs_io_context *bioc = stripe->bioc;
401  	struct btrfs_bio *bbio = btrfs_bio(bio);
402  
403  	btrfs_bio_counter_dec(bioc->fs_info);
404  
405  	if (bio->bi_status) {
406  		atomic_inc(&bioc->error);
407  		btrfs_log_dev_io_error(bio, stripe->dev);
408  	}
409  
410  	/*
411  	 * Only send an error to the higher layers if it is beyond the tolerance
412  	 * threshold.
413  	 */
414  	if (atomic_read(&bioc->error) > bioc->max_errors)
415  		bio->bi_status = BLK_STS_IOERR;
416  	else
417  		bio->bi_status = BLK_STS_OK;
418  
419  	btrfs_orig_bbio_end_io(bbio);
420  	btrfs_put_bioc(bioc);
421  }
422  
423  static void btrfs_clone_write_end_io(struct bio *bio)
424  {
425  	struct btrfs_io_stripe *stripe = bio->bi_private;
426  
427  	if (bio->bi_status) {
428  		atomic_inc(&stripe->bioc->error);
429  		btrfs_log_dev_io_error(bio, stripe->dev);
430  	}
431  
432  	/* Pass on control to the original bio this one was cloned from */
433  	bio_endio(stripe->bioc->orig_bio);
434  	bio_put(bio);
435  }
436  
437  static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
438  {
439  	if (!dev || !dev->bdev ||
440  	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
441  	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
442  	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
443  		bio_io_error(bio);
444  		return;
445  	}
446  
447  	bio_set_dev(bio, dev->bdev);
448  
449  	/*
450  	 * For zone append writing, bi_sector must point the beginning of the
451  	 * zone
452  	 */
453  	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
454  		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
455  		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
456  
457  		ASSERT(btrfs_dev_is_sequential(dev, physical));
458  		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
459  	}
460  	btrfs_debug_in_rcu(dev->fs_info,
461  	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
462  		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
463  		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
464  		dev->devid, bio->bi_iter.bi_size);
465  
466  	btrfsic_check_bio(bio);
467  
468  	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
469  		blkcg_punt_bio_submit(bio);
470  	else
471  		submit_bio(bio);
472  }
473  
474  static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
475  {
476  	struct bio *orig_bio = bioc->orig_bio, *bio;
477  
478  	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
479  
480  	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
481  	if (dev_nr == bioc->num_stripes - 1) {
482  		bio = orig_bio;
483  		bio->bi_end_io = btrfs_orig_write_end_io;
484  	} else {
485  		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
486  		bio_inc_remaining(orig_bio);
487  		bio->bi_end_io = btrfs_clone_write_end_io;
488  	}
489  
490  	bio->bi_private = &bioc->stripes[dev_nr];
491  	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
492  	bioc->stripes[dev_nr].bioc = bioc;
493  	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
494  }
495  
496  static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
497  			       struct btrfs_io_stripe *smap, int mirror_num)
498  {
499  	if (!bioc) {
500  		/* Single mirror read/write fast path. */
501  		btrfs_bio(bio)->mirror_num = mirror_num;
502  		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
503  		if (bio_op(bio) != REQ_OP_READ)
504  			btrfs_bio(bio)->orig_physical = smap->physical;
505  		bio->bi_private = smap->dev;
506  		bio->bi_end_io = btrfs_simple_end_io;
507  		btrfs_submit_dev_bio(smap->dev, bio);
508  	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
509  		/* Parity RAID write or read recovery. */
510  		bio->bi_private = bioc;
511  		bio->bi_end_io = btrfs_raid56_end_io;
512  		if (bio_op(bio) == REQ_OP_READ)
513  			raid56_parity_recover(bio, bioc, mirror_num);
514  		else
515  			raid56_parity_write(bio, bioc);
516  	} else {
517  		/* Write to multiple mirrors. */
518  		int total_devs = bioc->num_stripes;
519  
520  		bioc->orig_bio = bio;
521  		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
522  			btrfs_submit_mirrored_bio(bioc, dev_nr);
523  	}
524  }
525  
526  static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
527  {
528  	if (bbio->bio.bi_opf & REQ_META)
529  		return btree_csum_one_bio(bbio);
530  	return btrfs_csum_one_bio(bbio);
531  }
532  
533  /*
534   * Async submit bios are used to offload expensive checksumming onto the worker
535   * threads.
536   */
537  struct async_submit_bio {
538  	struct btrfs_bio *bbio;
539  	struct btrfs_io_context *bioc;
540  	struct btrfs_io_stripe smap;
541  	int mirror_num;
542  	struct btrfs_work work;
543  };
544  
545  /*
546   * In order to insert checksums into the metadata in large chunks, we wait
547   * until bio submission time.   All the pages in the bio are checksummed and
548   * sums are attached onto the ordered extent record.
549   *
550   * At IO completion time the csums attached on the ordered extent record are
551   * inserted into the btree.
552   */
553  static void run_one_async_start(struct btrfs_work *work)
554  {
555  	struct async_submit_bio *async =
556  		container_of(work, struct async_submit_bio, work);
557  	blk_status_t ret;
558  
559  	ret = btrfs_bio_csum(async->bbio);
560  	if (ret)
561  		async->bbio->bio.bi_status = ret;
562  }
563  
564  /*
565   * In order to insert checksums into the metadata in large chunks, we wait
566   * until bio submission time.   All the pages in the bio are checksummed and
567   * sums are attached onto the ordered extent record.
568   *
569   * At IO completion time the csums attached on the ordered extent record are
570   * inserted into the tree.
571   */
572  static void run_one_async_done(struct btrfs_work *work)
573  {
574  	struct async_submit_bio *async =
575  		container_of(work, struct async_submit_bio, work);
576  	struct bio *bio = &async->bbio->bio;
577  
578  	/* If an error occurred we just want to clean up the bio and move on. */
579  	if (bio->bi_status) {
580  		btrfs_orig_bbio_end_io(async->bbio);
581  		return;
582  	}
583  
584  	/*
585  	 * All of the bios that pass through here are from async helpers.
586  	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
587  	 * context.  This changes nothing when cgroups aren't in use.
588  	 */
589  	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
590  	__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
591  }
592  
593  static void run_one_async_free(struct btrfs_work *work)
594  {
595  	kfree(container_of(work, struct async_submit_bio, work));
596  }
597  
598  static bool should_async_write(struct btrfs_bio *bbio)
599  {
600  	/* Submit synchronously if the checksum implementation is fast. */
601  	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
602  		return false;
603  
604  	/*
605  	 * Try to defer the submission to a workqueue to parallelize the
606  	 * checksum calculation unless the I/O is issued synchronously.
607  	 */
608  	if (op_is_sync(bbio->bio.bi_opf))
609  		return false;
610  
611  	/* Zoned devices require I/O to be submitted in order. */
612  	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
613  		return false;
614  
615  	return true;
616  }
617  
618  /*
619   * Submit bio to an async queue.
620   *
621   * Return true if the work has been succesfuly submitted, else false.
622   */
623  static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
624  				struct btrfs_io_context *bioc,
625  				struct btrfs_io_stripe *smap, int mirror_num)
626  {
627  	struct btrfs_fs_info *fs_info = bbio->fs_info;
628  	struct async_submit_bio *async;
629  
630  	async = kmalloc(sizeof(*async), GFP_NOFS);
631  	if (!async)
632  		return false;
633  
634  	async->bbio = bbio;
635  	async->bioc = bioc;
636  	async->smap = *smap;
637  	async->mirror_num = mirror_num;
638  
639  	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
640  			run_one_async_free);
641  	btrfs_queue_work(fs_info->workers, &async->work);
642  	return true;
643  }
644  
645  static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
646  {
647  	struct btrfs_inode *inode = bbio->inode;
648  	struct btrfs_fs_info *fs_info = bbio->fs_info;
649  	struct btrfs_bio *orig_bbio = bbio;
650  	struct bio *bio = &bbio->bio;
651  	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
652  	u64 length = bio->bi_iter.bi_size;
653  	u64 map_length = length;
654  	bool use_append = btrfs_use_zone_append(bbio);
655  	struct btrfs_io_context *bioc = NULL;
656  	struct btrfs_io_stripe smap;
657  	blk_status_t ret;
658  	int error;
659  
660  	btrfs_bio_counter_inc_blocked(fs_info);
661  	error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
662  				&bioc, &smap, &mirror_num, 1);
663  	if (error) {
664  		ret = errno_to_blk_status(error);
665  		goto fail;
666  	}
667  
668  	map_length = min(map_length, length);
669  	if (use_append)
670  		map_length = min(map_length, fs_info->max_zone_append_size);
671  
672  	if (map_length < length) {
673  		bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
674  		bio = &bbio->bio;
675  	}
676  
677  	/*
678  	 * Save the iter for the end_io handler and preload the checksums for
679  	 * data reads.
680  	 */
681  	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
682  		bbio->saved_iter = bio->bi_iter;
683  		ret = btrfs_lookup_bio_sums(bbio);
684  		if (ret)
685  			goto fail_put_bio;
686  	}
687  
688  	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
689  		if (use_append) {
690  			bio->bi_opf &= ~REQ_OP_WRITE;
691  			bio->bi_opf |= REQ_OP_ZONE_APPEND;
692  		}
693  
694  		/*
695  		 * Csum items for reloc roots have already been cloned at this
696  		 * point, so they are handled as part of the no-checksum case.
697  		 */
698  		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
699  		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
700  		    !btrfs_is_data_reloc_root(inode->root)) {
701  			if (should_async_write(bbio) &&
702  			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
703  				goto done;
704  
705  			ret = btrfs_bio_csum(bbio);
706  			if (ret)
707  				goto fail_put_bio;
708  		} else if (use_append) {
709  			ret = btrfs_alloc_dummy_sum(bbio);
710  			if (ret)
711  				goto fail_put_bio;
712  		}
713  	}
714  
715  	__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
716  done:
717  	return map_length == length;
718  
719  fail_put_bio:
720  	if (map_length < length)
721  		btrfs_cleanup_bio(bbio);
722  fail:
723  	btrfs_bio_counter_dec(fs_info);
724  	btrfs_bio_end_io(orig_bbio, ret);
725  	/* Do not submit another chunk */
726  	return true;
727  }
728  
729  void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
730  {
731  	/* If bbio->inode is not populated, its file_offset must be 0. */
732  	ASSERT(bbio->inode || bbio->file_offset == 0);
733  
734  	while (!btrfs_submit_chunk(bbio, mirror_num))
735  		;
736  }
737  
738  /*
739   * Submit a repair write.
740   *
741   * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
742   * RAID setup.  Here we only want to write the one bad copy, so we do the
743   * mapping ourselves and submit the bio directly.
744   *
745   * The I/O is issued synchronously to block the repair read completion from
746   * freeing the bio.
747   */
748  int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
749  			    u64 length, u64 logical, struct page *page,
750  			    unsigned int pg_offset, int mirror_num)
751  {
752  	struct btrfs_io_stripe smap = { 0 };
753  	struct bio_vec bvec;
754  	struct bio bio;
755  	int ret = 0;
756  
757  	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
758  	BUG_ON(!mirror_num);
759  
760  	if (btrfs_repair_one_zone(fs_info, logical))
761  		return 0;
762  
763  	/*
764  	 * Avoid races with device replace and make sure our bioc has devices
765  	 * associated to its stripes that don't go away while we are doing the
766  	 * read repair operation.
767  	 */
768  	btrfs_bio_counter_inc_blocked(fs_info);
769  	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
770  	if (ret < 0)
771  		goto out_counter_dec;
772  
773  	if (!smap.dev->bdev ||
774  	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
775  		ret = -EIO;
776  		goto out_counter_dec;
777  	}
778  
779  	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
780  	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
781  	__bio_add_page(&bio, page, length, pg_offset);
782  
783  	btrfsic_check_bio(&bio);
784  	ret = submit_bio_wait(&bio);
785  	if (ret) {
786  		/* try to remap that extent elsewhere? */
787  		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
788  		goto out_bio_uninit;
789  	}
790  
791  	btrfs_info_rl_in_rcu(fs_info,
792  		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
793  			     ino, start, btrfs_dev_name(smap.dev),
794  			     smap.physical >> SECTOR_SHIFT);
795  	ret = 0;
796  
797  out_bio_uninit:
798  	bio_uninit(&bio);
799  out_counter_dec:
800  	btrfs_bio_counter_dec(fs_info);
801  	return ret;
802  }
803  
804  /*
805   * Submit a btrfs_bio based repair write.
806   *
807   * If @dev_replace is true, the write would be submitted to dev-replace target.
808   */
809  void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
810  {
811  	struct btrfs_fs_info *fs_info = bbio->fs_info;
812  	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
813  	u64 length = bbio->bio.bi_iter.bi_size;
814  	struct btrfs_io_stripe smap = { 0 };
815  	int ret;
816  
817  	ASSERT(fs_info);
818  	ASSERT(mirror_num > 0);
819  	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
820  	ASSERT(!bbio->inode);
821  
822  	btrfs_bio_counter_inc_blocked(fs_info);
823  	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
824  	if (ret < 0)
825  		goto fail;
826  
827  	if (dev_replace) {
828  		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
829  		smap.dev = fs_info->dev_replace.tgtdev;
830  	}
831  	__btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
832  	return;
833  
834  fail:
835  	btrfs_bio_counter_dec(fs_info);
836  	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
837  }
838  
839  int __init btrfs_bioset_init(void)
840  {
841  	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
842  			offsetof(struct btrfs_bio, bio),
843  			BIOSET_NEED_BVECS))
844  		return -ENOMEM;
845  	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
846  			offsetof(struct btrfs_bio, bio), 0))
847  		goto out_free_bioset;
848  	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
849  			offsetof(struct btrfs_bio, bio),
850  			BIOSET_NEED_BVECS))
851  		goto out_free_clone_bioset;
852  	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
853  				      sizeof(struct btrfs_failed_bio)))
854  		goto out_free_repair_bioset;
855  	return 0;
856  
857  out_free_repair_bioset:
858  	bioset_exit(&btrfs_repair_bioset);
859  out_free_clone_bioset:
860  	bioset_exit(&btrfs_clone_bioset);
861  out_free_bioset:
862  	bioset_exit(&btrfs_bioset);
863  	return -ENOMEM;
864  }
865  
866  void __cold btrfs_bioset_exit(void)
867  {
868  	mempool_exit(&btrfs_failed_bio_pool);
869  	bioset_exit(&btrfs_repair_bioset);
870  	bioset_exit(&btrfs_clone_bioset);
871  	bioset_exit(&btrfs_bioset);
872  }
873