1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2022 Christoph Hellwig. 5 */ 6 7 #include <linux/bio.h> 8 #include "bio.h" 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "raid56.h" 12 #include "async-thread.h" 13 #include "dev-replace.h" 14 #include "zoned.h" 15 #include "file-item.h" 16 #include "raid-stripe-tree.h" 17 18 static struct bio_set btrfs_bioset; 19 static struct bio_set btrfs_clone_bioset; 20 static struct bio_set btrfs_repair_bioset; 21 static mempool_t btrfs_failed_bio_pool; 22 23 struct btrfs_failed_bio { 24 struct btrfs_bio *bbio; 25 int num_copies; 26 atomic_t repair_count; 27 }; 28 29 /* Is this a data path I/O that needs storage layer checksum and repair? */ 30 static inline bool is_data_bbio(struct btrfs_bio *bbio) 31 { 32 return bbio->inode && is_data_inode(bbio->inode); 33 } 34 35 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio) 36 { 37 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE; 38 } 39 40 /* 41 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 42 * is already initialized by the block layer. 43 */ 44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info, 45 btrfs_bio_end_io_t end_io, void *private) 46 { 47 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 48 bbio->fs_info = fs_info; 49 bbio->end_io = end_io; 50 bbio->private = private; 51 atomic_set(&bbio->pending_ios, 1); 52 WRITE_ONCE(bbio->status, BLK_STS_OK); 53 } 54 55 /* 56 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 57 * btrfs, and is used for all I/O submitted through btrfs_submit_bbio(). 58 * 59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 60 * a mempool. 61 */ 62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 63 struct btrfs_fs_info *fs_info, 64 btrfs_bio_end_io_t end_io, void *private) 65 { 66 struct btrfs_bio *bbio; 67 struct bio *bio; 68 69 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 70 bbio = btrfs_bio(bio); 71 btrfs_bio_init(bbio, fs_info, end_io, private); 72 return bbio; 73 } 74 75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, 76 struct btrfs_bio *orig_bbio, 77 u64 map_length) 78 { 79 struct btrfs_bio *bbio; 80 struct bio *bio; 81 82 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS, 83 &btrfs_clone_bioset); 84 if (IS_ERR(bio)) 85 return ERR_CAST(bio); 86 87 bbio = btrfs_bio(bio); 88 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio); 89 bbio->inode = orig_bbio->inode; 90 bbio->file_offset = orig_bbio->file_offset; 91 orig_bbio->file_offset += map_length; 92 if (bbio_has_ordered_extent(bbio)) { 93 refcount_inc(&orig_bbio->ordered->refs); 94 bbio->ordered = orig_bbio->ordered; 95 } 96 atomic_inc(&orig_bbio->pending_ios); 97 return bbio; 98 } 99 100 /* Free a bio that was never submitted to the underlying device. */ 101 static void btrfs_cleanup_bio(struct btrfs_bio *bbio) 102 { 103 if (bbio_has_ordered_extent(bbio)) 104 btrfs_put_ordered_extent(bbio->ordered); 105 bio_put(&bbio->bio); 106 } 107 108 static void __btrfs_bio_end_io(struct btrfs_bio *bbio) 109 { 110 if (bbio_has_ordered_extent(bbio)) { 111 struct btrfs_ordered_extent *ordered = bbio->ordered; 112 113 bbio->end_io(bbio); 114 btrfs_put_ordered_extent(ordered); 115 } else { 116 bbio->end_io(bbio); 117 } 118 } 119 120 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status) 121 { 122 bbio->bio.bi_status = status; 123 if (bbio->bio.bi_pool == &btrfs_clone_bioset) { 124 struct btrfs_bio *orig_bbio = bbio->private; 125 126 btrfs_cleanup_bio(bbio); 127 bbio = orig_bbio; 128 } 129 130 /* 131 * At this point, bbio always points to the original btrfs_bio. Save 132 * the first error in it. 133 */ 134 if (status != BLK_STS_OK) 135 cmpxchg(&bbio->status, BLK_STS_OK, status); 136 137 if (atomic_dec_and_test(&bbio->pending_ios)) { 138 /* Load split bio's error which might be set above. */ 139 if (status == BLK_STS_OK) 140 bbio->bio.bi_status = READ_ONCE(bbio->status); 141 __btrfs_bio_end_io(bbio); 142 } 143 } 144 145 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 146 { 147 if (cur_mirror == fbio->num_copies) 148 return cur_mirror + 1 - fbio->num_copies; 149 return cur_mirror + 1; 150 } 151 152 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 153 { 154 if (cur_mirror == 1) 155 return fbio->num_copies; 156 return cur_mirror - 1; 157 } 158 159 static void btrfs_repair_done(struct btrfs_failed_bio *fbio) 160 { 161 if (atomic_dec_and_test(&fbio->repair_count)) { 162 btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status); 163 mempool_free(fbio, &btrfs_failed_bio_pool); 164 } 165 } 166 167 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, 168 struct btrfs_device *dev) 169 { 170 struct btrfs_failed_bio *fbio = repair_bbio->private; 171 struct btrfs_inode *inode = repair_bbio->inode; 172 struct btrfs_fs_info *fs_info = inode->root->fs_info; 173 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); 174 int mirror = repair_bbio->mirror_num; 175 176 /* 177 * We can only trigger this for data bio, which doesn't support larger 178 * folios yet. 179 */ 180 ASSERT(folio_order(page_folio(bv->bv_page)) == 0); 181 182 if (repair_bbio->bio.bi_status || 183 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { 184 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); 185 repair_bbio->bio.bi_iter = repair_bbio->saved_iter; 186 187 mirror = next_repair_mirror(fbio, mirror); 188 if (mirror == fbio->bbio->mirror_num) { 189 btrfs_debug(fs_info, "no mirror left"); 190 fbio->bbio->bio.bi_status = BLK_STS_IOERR; 191 goto done; 192 } 193 194 btrfs_submit_bbio(repair_bbio, mirror); 195 return; 196 } 197 198 do { 199 mirror = prev_repair_mirror(fbio, mirror); 200 btrfs_repair_io_failure(fs_info, btrfs_ino(inode), 201 repair_bbio->file_offset, fs_info->sectorsize, 202 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, 203 page_folio(bv->bv_page), bv->bv_offset, mirror); 204 } while (mirror != fbio->bbio->mirror_num); 205 206 done: 207 btrfs_repair_done(fbio); 208 bio_put(&repair_bbio->bio); 209 } 210 211 /* 212 * Try to kick off a repair read to the next available mirror for a bad sector. 213 * 214 * This primarily tries to recover good data to serve the actual read request, 215 * but also tries to write the good data back to the bad mirror(s) when a 216 * read succeeded to restore the redundancy. 217 */ 218 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, 219 u32 bio_offset, 220 struct bio_vec *bv, 221 struct btrfs_failed_bio *fbio) 222 { 223 struct btrfs_inode *inode = failed_bbio->inode; 224 struct btrfs_fs_info *fs_info = inode->root->fs_info; 225 const u32 sectorsize = fs_info->sectorsize; 226 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); 227 struct btrfs_bio *repair_bbio; 228 struct bio *repair_bio; 229 int num_copies; 230 int mirror; 231 232 btrfs_debug(fs_info, "repair read error: read error at %llu", 233 failed_bbio->file_offset + bio_offset); 234 235 num_copies = btrfs_num_copies(fs_info, logical, sectorsize); 236 if (num_copies == 1) { 237 btrfs_debug(fs_info, "no copy to repair from"); 238 failed_bbio->bio.bi_status = BLK_STS_IOERR; 239 return fbio; 240 } 241 242 if (!fbio) { 243 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); 244 fbio->bbio = failed_bbio; 245 fbio->num_copies = num_copies; 246 atomic_set(&fbio->repair_count, 1); 247 } 248 249 atomic_inc(&fbio->repair_count); 250 251 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, 252 &btrfs_repair_bioset); 253 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; 254 __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); 255 256 repair_bbio = btrfs_bio(repair_bio); 257 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio); 258 repair_bbio->inode = failed_bbio->inode; 259 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; 260 261 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); 262 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); 263 btrfs_submit_bbio(repair_bbio, mirror); 264 return fbio; 265 } 266 267 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) 268 { 269 struct btrfs_inode *inode = bbio->inode; 270 struct btrfs_fs_info *fs_info = inode->root->fs_info; 271 u32 sectorsize = fs_info->sectorsize; 272 struct bvec_iter *iter = &bbio->saved_iter; 273 blk_status_t status = bbio->bio.bi_status; 274 struct btrfs_failed_bio *fbio = NULL; 275 u32 offset = 0; 276 277 /* Read-repair requires the inode field to be set by the submitter. */ 278 ASSERT(inode); 279 280 /* 281 * Hand off repair bios to the repair code as there is no upper level 282 * submitter for them. 283 */ 284 if (bbio->bio.bi_pool == &btrfs_repair_bioset) { 285 btrfs_end_repair_bio(bbio, dev); 286 return; 287 } 288 289 /* Clear the I/O error. A failed repair will reset it. */ 290 bbio->bio.bi_status = BLK_STS_OK; 291 292 while (iter->bi_size) { 293 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); 294 295 bv.bv_len = min(bv.bv_len, sectorsize); 296 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) 297 fbio = repair_one_sector(bbio, offset, &bv, fbio); 298 299 bio_advance_iter_single(&bbio->bio, iter, sectorsize); 300 offset += sectorsize; 301 } 302 303 if (bbio->csum != bbio->csum_inline) 304 kfree(bbio->csum); 305 306 if (fbio) 307 btrfs_repair_done(fbio); 308 else 309 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 310 } 311 312 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) 313 { 314 if (!dev || !dev->bdev) 315 return; 316 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 317 return; 318 319 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 320 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 321 else if (!(bio->bi_opf & REQ_RAHEAD)) 322 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 323 if (bio->bi_opf & REQ_PREFLUSH) 324 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 325 } 326 327 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, 328 struct bio *bio) 329 { 330 if (bio->bi_opf & REQ_META) 331 return fs_info->endio_meta_workers; 332 return fs_info->endio_workers; 333 } 334 335 static void btrfs_end_bio_work(struct work_struct *work) 336 { 337 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); 338 339 /* Metadata reads are checked and repaired by the submitter. */ 340 if (is_data_bbio(bbio)) 341 btrfs_check_read_bio(bbio, bbio->bio.bi_private); 342 else 343 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 344 } 345 346 static void btrfs_simple_end_io(struct bio *bio) 347 { 348 struct btrfs_bio *bbio = btrfs_bio(bio); 349 struct btrfs_device *dev = bio->bi_private; 350 struct btrfs_fs_info *fs_info = bbio->fs_info; 351 352 btrfs_bio_counter_dec(fs_info); 353 354 if (bio->bi_status) 355 btrfs_log_dev_io_error(bio, dev); 356 357 if (bio_op(bio) == REQ_OP_READ) { 358 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 359 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 360 } else { 361 if (bio_is_zone_append(bio) && !bio->bi_status) 362 btrfs_record_physical_zoned(bbio); 363 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 364 } 365 } 366 367 static void btrfs_raid56_end_io(struct bio *bio) 368 { 369 struct btrfs_io_context *bioc = bio->bi_private; 370 struct btrfs_bio *bbio = btrfs_bio(bio); 371 372 btrfs_bio_counter_dec(bioc->fs_info); 373 bbio->mirror_num = bioc->mirror_num; 374 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) 375 btrfs_check_read_bio(bbio, NULL); 376 else 377 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 378 379 btrfs_put_bioc(bioc); 380 } 381 382 static void btrfs_orig_write_end_io(struct bio *bio) 383 { 384 struct btrfs_io_stripe *stripe = bio->bi_private; 385 struct btrfs_io_context *bioc = stripe->bioc; 386 struct btrfs_bio *bbio = btrfs_bio(bio); 387 388 btrfs_bio_counter_dec(bioc->fs_info); 389 390 if (bio->bi_status) { 391 atomic_inc(&bioc->error); 392 btrfs_log_dev_io_error(bio, stripe->dev); 393 } 394 395 /* 396 * Only send an error to the higher layers if it is beyond the tolerance 397 * threshold. 398 */ 399 if (atomic_read(&bioc->error) > bioc->max_errors) 400 bio->bi_status = BLK_STS_IOERR; 401 else 402 bio->bi_status = BLK_STS_OK; 403 404 if (bio_is_zone_append(bio) && !bio->bi_status) 405 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 406 407 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 408 btrfs_put_bioc(bioc); 409 } 410 411 static void btrfs_clone_write_end_io(struct bio *bio) 412 { 413 struct btrfs_io_stripe *stripe = bio->bi_private; 414 415 if (bio->bi_status) { 416 atomic_inc(&stripe->bioc->error); 417 btrfs_log_dev_io_error(bio, stripe->dev); 418 } else if (bio_is_zone_append(bio)) { 419 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 420 } 421 422 /* Pass on control to the original bio this one was cloned from */ 423 bio_endio(stripe->bioc->orig_bio); 424 bio_put(bio); 425 } 426 427 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 428 { 429 if (!dev || !dev->bdev || 430 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 431 (btrfs_op(bio) == BTRFS_MAP_WRITE && 432 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 433 bio_io_error(bio); 434 return; 435 } 436 437 bio_set_dev(bio, dev->bdev); 438 439 /* 440 * For zone append writing, bi_sector must point the beginning of the 441 * zone 442 */ 443 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 444 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 445 u64 zone_start = round_down(physical, dev->fs_info->zone_size); 446 447 ASSERT(btrfs_dev_is_sequential(dev, physical)); 448 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 449 } 450 btrfs_debug_in_rcu(dev->fs_info, 451 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 452 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 453 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), 454 dev->devid, bio->bi_iter.bi_size); 455 456 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT) 457 blkcg_punt_bio_submit(bio); 458 else 459 submit_bio(bio); 460 } 461 462 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 463 { 464 struct bio *orig_bio = bioc->orig_bio, *bio; 465 466 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 467 468 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 469 if (dev_nr == bioc->num_stripes - 1) { 470 bio = orig_bio; 471 bio->bi_end_io = btrfs_orig_write_end_io; 472 } else { 473 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 474 bio_inc_remaining(orig_bio); 475 bio->bi_end_io = btrfs_clone_write_end_io; 476 } 477 478 bio->bi_private = &bioc->stripes[dev_nr]; 479 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 480 bioc->stripes[dev_nr].bioc = bioc; 481 bioc->size = bio->bi_iter.bi_size; 482 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 483 } 484 485 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, 486 struct btrfs_io_stripe *smap, int mirror_num) 487 { 488 if (!bioc) { 489 /* Single mirror read/write fast path. */ 490 btrfs_bio(bio)->mirror_num = mirror_num; 491 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; 492 if (bio_op(bio) != REQ_OP_READ) 493 btrfs_bio(bio)->orig_physical = smap->physical; 494 bio->bi_private = smap->dev; 495 bio->bi_end_io = btrfs_simple_end_io; 496 btrfs_submit_dev_bio(smap->dev, bio); 497 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 498 /* Parity RAID write or read recovery. */ 499 bio->bi_private = bioc; 500 bio->bi_end_io = btrfs_raid56_end_io; 501 if (bio_op(bio) == REQ_OP_READ) 502 raid56_parity_recover(bio, bioc, mirror_num); 503 else 504 raid56_parity_write(bio, bioc); 505 } else { 506 /* Write to multiple mirrors. */ 507 int total_devs = bioc->num_stripes; 508 509 bioc->orig_bio = bio; 510 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) 511 btrfs_submit_mirrored_bio(bioc, dev_nr); 512 } 513 } 514 515 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio) 516 { 517 if (bbio->bio.bi_opf & REQ_META) 518 return btree_csum_one_bio(bbio); 519 return btrfs_csum_one_bio(bbio); 520 } 521 522 /* 523 * Async submit bios are used to offload expensive checksumming onto the worker 524 * threads. 525 */ 526 struct async_submit_bio { 527 struct btrfs_bio *bbio; 528 struct btrfs_io_context *bioc; 529 struct btrfs_io_stripe smap; 530 int mirror_num; 531 struct btrfs_work work; 532 }; 533 534 /* 535 * In order to insert checksums into the metadata in large chunks, we wait 536 * until bio submission time. All the pages in the bio are checksummed and 537 * sums are attached onto the ordered extent record. 538 * 539 * At IO completion time the csums attached on the ordered extent record are 540 * inserted into the btree. 541 */ 542 static void run_one_async_start(struct btrfs_work *work) 543 { 544 struct async_submit_bio *async = 545 container_of(work, struct async_submit_bio, work); 546 blk_status_t ret; 547 548 ret = btrfs_bio_csum(async->bbio); 549 if (ret) 550 async->bbio->bio.bi_status = ret; 551 } 552 553 /* 554 * In order to insert checksums into the metadata in large chunks, we wait 555 * until bio submission time. All the pages in the bio are checksummed and 556 * sums are attached onto the ordered extent record. 557 * 558 * At IO completion time the csums attached on the ordered extent record are 559 * inserted into the tree. 560 * 561 * If called with @do_free == true, then it will free the work struct. 562 */ 563 static void run_one_async_done(struct btrfs_work *work, bool do_free) 564 { 565 struct async_submit_bio *async = 566 container_of(work, struct async_submit_bio, work); 567 struct bio *bio = &async->bbio->bio; 568 569 if (do_free) { 570 kfree(container_of(work, struct async_submit_bio, work)); 571 return; 572 } 573 574 /* If an error occurred we just want to clean up the bio and move on. */ 575 if (bio->bi_status) { 576 btrfs_bio_end_io(async->bbio, async->bbio->bio.bi_status); 577 return; 578 } 579 580 /* 581 * All of the bios that pass through here are from async helpers. 582 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's 583 * context. This changes nothing when cgroups aren't in use. 584 */ 585 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT; 586 btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); 587 } 588 589 static bool should_async_write(struct btrfs_bio *bbio) 590 { 591 bool auto_csum_mode = true; 592 593 #ifdef CONFIG_BTRFS_EXPERIMENTAL 594 struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices; 595 enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode); 596 597 if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF) 598 return false; 599 600 auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO); 601 #endif 602 603 /* Submit synchronously if the checksum implementation is fast. */ 604 if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags)) 605 return false; 606 607 /* 608 * Try to defer the submission to a workqueue to parallelize the 609 * checksum calculation unless the I/O is issued synchronously. 610 */ 611 if (op_is_sync(bbio->bio.bi_opf)) 612 return false; 613 614 /* Zoned devices require I/O to be submitted in order. */ 615 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info)) 616 return false; 617 618 return true; 619 } 620 621 /* 622 * Submit bio to an async queue. 623 * 624 * Return true if the work has been successfully submitted, else false. 625 */ 626 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, 627 struct btrfs_io_context *bioc, 628 struct btrfs_io_stripe *smap, int mirror_num) 629 { 630 struct btrfs_fs_info *fs_info = bbio->fs_info; 631 struct async_submit_bio *async; 632 633 async = kmalloc(sizeof(*async), GFP_NOFS); 634 if (!async) 635 return false; 636 637 async->bbio = bbio; 638 async->bioc = bioc; 639 async->smap = *smap; 640 async->mirror_num = mirror_num; 641 642 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done); 643 btrfs_queue_work(fs_info->workers, &async->work); 644 return true; 645 } 646 647 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length) 648 { 649 unsigned int nr_segs; 650 int sector_offset; 651 652 map_length = min(map_length, bbio->fs_info->max_zone_append_size); 653 sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits, 654 &nr_segs, map_length); 655 if (sector_offset) { 656 /* 657 * bio_split_rw_at() could split at a size smaller than our 658 * sectorsize and thus cause unaligned I/Os. Fix that by 659 * always rounding down to the nearest boundary. 660 */ 661 return ALIGN_DOWN(sector_offset << SECTOR_SHIFT, bbio->fs_info->sectorsize); 662 } 663 return map_length; 664 } 665 666 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num) 667 { 668 struct btrfs_inode *inode = bbio->inode; 669 struct btrfs_fs_info *fs_info = bbio->fs_info; 670 struct bio *bio = &bbio->bio; 671 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 672 u64 length = bio->bi_iter.bi_size; 673 u64 map_length = length; 674 bool use_append = btrfs_use_zone_append(bbio); 675 struct btrfs_io_context *bioc = NULL; 676 struct btrfs_io_stripe smap; 677 blk_status_t ret; 678 int error; 679 680 if (!bbio->inode || btrfs_is_data_reloc_root(inode->root)) 681 smap.rst_search_commit_root = true; 682 else 683 smap.rst_search_commit_root = false; 684 685 btrfs_bio_counter_inc_blocked(fs_info); 686 error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 687 &bioc, &smap, &mirror_num); 688 if (error) { 689 ret = errno_to_blk_status(error); 690 btrfs_bio_counter_dec(fs_info); 691 goto end_bbio; 692 } 693 694 map_length = min(map_length, length); 695 if (use_append) 696 map_length = btrfs_append_map_length(bbio, map_length); 697 698 if (map_length < length) { 699 struct btrfs_bio *split; 700 701 split = btrfs_split_bio(fs_info, bbio, map_length); 702 if (IS_ERR(split)) { 703 ret = errno_to_blk_status(PTR_ERR(split)); 704 btrfs_bio_counter_dec(fs_info); 705 goto end_bbio; 706 } 707 bbio = split; 708 bio = &bbio->bio; 709 } 710 711 /* 712 * Save the iter for the end_io handler and preload the checksums for 713 * data reads. 714 */ 715 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) { 716 bbio->saved_iter = bio->bi_iter; 717 ret = btrfs_lookup_bio_sums(bbio); 718 if (ret) 719 goto fail; 720 } 721 722 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 723 if (use_append) { 724 bio->bi_opf &= ~REQ_OP_WRITE; 725 bio->bi_opf |= REQ_OP_ZONE_APPEND; 726 } 727 728 if (is_data_bbio(bbio) && bioc && 729 btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) { 730 /* 731 * No locking for the list update, as we only add to 732 * the list in the I/O submission path, and list 733 * iteration only happens in the completion path, which 734 * can't happen until after the last submission. 735 */ 736 btrfs_get_bioc(bioc); 737 list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list); 738 } 739 740 /* 741 * Csum items for reloc roots have already been cloned at this 742 * point, so they are handled as part of the no-checksum case. 743 */ 744 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) && 745 !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) && 746 !btrfs_is_data_reloc_root(inode->root)) { 747 if (should_async_write(bbio) && 748 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) 749 goto done; 750 751 ret = btrfs_bio_csum(bbio); 752 if (ret) 753 goto fail; 754 } else if (use_append || 755 (btrfs_is_zoned(fs_info) && inode && 756 inode->flags & BTRFS_INODE_NODATASUM)) { 757 ret = btrfs_alloc_dummy_sum(bbio); 758 if (ret) 759 goto fail; 760 } 761 } 762 763 btrfs_submit_bio(bio, bioc, &smap, mirror_num); 764 done: 765 return map_length == length; 766 767 fail: 768 btrfs_bio_counter_dec(fs_info); 769 /* 770 * We have split the original bbio, now we have to end both the current 771 * @bbio and remaining one, as the remaining one will never be submitted. 772 */ 773 if (map_length < length) { 774 struct btrfs_bio *remaining = bbio->private; 775 776 ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset); 777 ASSERT(remaining); 778 779 btrfs_bio_end_io(remaining, ret); 780 } 781 end_bbio: 782 btrfs_bio_end_io(bbio, ret); 783 /* Do not submit another chunk */ 784 return true; 785 } 786 787 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num) 788 { 789 /* If bbio->inode is not populated, its file_offset must be 0. */ 790 ASSERT(bbio->inode || bbio->file_offset == 0); 791 792 while (!btrfs_submit_chunk(bbio, mirror_num)) 793 ; 794 } 795 796 /* 797 * Submit a repair write. 798 * 799 * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a 800 * RAID setup. Here we only want to write the one bad copy, so we do the 801 * mapping ourselves and submit the bio directly. 802 * 803 * The I/O is issued synchronously to block the repair read completion from 804 * freeing the bio. 805 */ 806 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 807 u64 length, u64 logical, struct folio *folio, 808 unsigned int folio_offset, int mirror_num) 809 { 810 struct btrfs_io_stripe smap = { 0 }; 811 struct bio_vec bvec; 812 struct bio bio; 813 int ret = 0; 814 815 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 816 BUG_ON(!mirror_num); 817 818 if (btrfs_repair_one_zone(fs_info, logical)) 819 return 0; 820 821 /* 822 * Avoid races with device replace and make sure our bioc has devices 823 * associated to its stripes that don't go away while we are doing the 824 * read repair operation. 825 */ 826 btrfs_bio_counter_inc_blocked(fs_info); 827 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 828 if (ret < 0) 829 goto out_counter_dec; 830 831 if (!smap.dev->bdev || 832 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) { 833 ret = -EIO; 834 goto out_counter_dec; 835 } 836 837 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 838 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 839 ret = bio_add_folio(&bio, folio, length, folio_offset); 840 ASSERT(ret); 841 ret = submit_bio_wait(&bio); 842 if (ret) { 843 /* try to remap that extent elsewhere? */ 844 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS); 845 goto out_bio_uninit; 846 } 847 848 btrfs_info_rl_in_rcu(fs_info, 849 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 850 ino, start, btrfs_dev_name(smap.dev), 851 smap.physical >> SECTOR_SHIFT); 852 ret = 0; 853 854 out_bio_uninit: 855 bio_uninit(&bio); 856 out_counter_dec: 857 btrfs_bio_counter_dec(fs_info); 858 return ret; 859 } 860 861 /* 862 * Submit a btrfs_bio based repair write. 863 * 864 * If @dev_replace is true, the write would be submitted to dev-replace target. 865 */ 866 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace) 867 { 868 struct btrfs_fs_info *fs_info = bbio->fs_info; 869 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 870 u64 length = bbio->bio.bi_iter.bi_size; 871 struct btrfs_io_stripe smap = { 0 }; 872 int ret; 873 874 ASSERT(fs_info); 875 ASSERT(mirror_num > 0); 876 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE); 877 ASSERT(!bbio->inode); 878 879 btrfs_bio_counter_inc_blocked(fs_info); 880 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 881 if (ret < 0) 882 goto fail; 883 884 if (dev_replace) { 885 ASSERT(smap.dev == fs_info->dev_replace.srcdev); 886 smap.dev = fs_info->dev_replace.tgtdev; 887 } 888 btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num); 889 return; 890 891 fail: 892 btrfs_bio_counter_dec(fs_info); 893 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 894 } 895 896 int __init btrfs_bioset_init(void) 897 { 898 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 899 offsetof(struct btrfs_bio, bio), 900 BIOSET_NEED_BVECS)) 901 return -ENOMEM; 902 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, 903 offsetof(struct btrfs_bio, bio), 0)) 904 goto out_free_bioset; 905 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, 906 offsetof(struct btrfs_bio, bio), 907 BIOSET_NEED_BVECS)) 908 goto out_free_clone_bioset; 909 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, 910 sizeof(struct btrfs_failed_bio))) 911 goto out_free_repair_bioset; 912 return 0; 913 914 out_free_repair_bioset: 915 bioset_exit(&btrfs_repair_bioset); 916 out_free_clone_bioset: 917 bioset_exit(&btrfs_clone_bioset); 918 out_free_bioset: 919 bioset_exit(&btrfs_bioset); 920 return -ENOMEM; 921 } 922 923 void __cold btrfs_bioset_exit(void) 924 { 925 mempool_exit(&btrfs_failed_bio_pool); 926 bioset_exit(&btrfs_repair_bioset); 927 bioset_exit(&btrfs_clone_bioset); 928 bioset_exit(&btrfs_bioset); 929 } 930