1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2022 Christoph Hellwig. 5 */ 6 7 #include <linux/bio.h> 8 #include "bio.h" 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "raid56.h" 12 #include "async-thread.h" 13 #include "dev-replace.h" 14 #include "zoned.h" 15 #include "file-item.h" 16 #include "raid-stripe-tree.h" 17 18 static struct bio_set btrfs_bioset; 19 static struct bio_set btrfs_clone_bioset; 20 static struct bio_set btrfs_repair_bioset; 21 static mempool_t btrfs_failed_bio_pool; 22 23 struct btrfs_failed_bio { 24 struct btrfs_bio *bbio; 25 int num_copies; 26 atomic_t repair_count; 27 }; 28 29 /* Is this a data path I/O that needs storage layer checksum and repair? */ 30 static inline bool is_data_bbio(struct btrfs_bio *bbio) 31 { 32 return bbio->inode && is_data_inode(bbio->inode); 33 } 34 35 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio) 36 { 37 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE; 38 } 39 40 /* 41 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 42 * is already initialized by the block layer. 43 */ 44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info, 45 btrfs_bio_end_io_t end_io, void *private) 46 { 47 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 48 bbio->fs_info = fs_info; 49 bbio->end_io = end_io; 50 bbio->private = private; 51 atomic_set(&bbio->pending_ios, 1); 52 WRITE_ONCE(bbio->status, BLK_STS_OK); 53 } 54 55 /* 56 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 57 * btrfs, and is used for all I/O submitted through btrfs_submit_bbio(). 58 * 59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 60 * a mempool. 61 */ 62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 63 struct btrfs_fs_info *fs_info, 64 btrfs_bio_end_io_t end_io, void *private) 65 { 66 struct btrfs_bio *bbio; 67 struct bio *bio; 68 69 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 70 bbio = btrfs_bio(bio); 71 btrfs_bio_init(bbio, fs_info, end_io, private); 72 return bbio; 73 } 74 75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, 76 struct btrfs_bio *orig_bbio, 77 u64 map_length) 78 { 79 struct btrfs_bio *bbio; 80 struct bio *bio; 81 82 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS, 83 &btrfs_clone_bioset); 84 bbio = btrfs_bio(bio); 85 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio); 86 bbio->inode = orig_bbio->inode; 87 bbio->file_offset = orig_bbio->file_offset; 88 orig_bbio->file_offset += map_length; 89 if (bbio_has_ordered_extent(bbio)) { 90 refcount_inc(&orig_bbio->ordered->refs); 91 bbio->ordered = orig_bbio->ordered; 92 } 93 atomic_inc(&orig_bbio->pending_ios); 94 return bbio; 95 } 96 97 /* Free a bio that was never submitted to the underlying device. */ 98 static void btrfs_cleanup_bio(struct btrfs_bio *bbio) 99 { 100 if (bbio_has_ordered_extent(bbio)) 101 btrfs_put_ordered_extent(bbio->ordered); 102 bio_put(&bbio->bio); 103 } 104 105 static void __btrfs_bio_end_io(struct btrfs_bio *bbio) 106 { 107 if (bbio_has_ordered_extent(bbio)) { 108 struct btrfs_ordered_extent *ordered = bbio->ordered; 109 110 bbio->end_io(bbio); 111 btrfs_put_ordered_extent(ordered); 112 } else { 113 bbio->end_io(bbio); 114 } 115 } 116 117 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status) 118 { 119 bbio->bio.bi_status = status; 120 if (bbio->bio.bi_pool == &btrfs_clone_bioset) { 121 struct btrfs_bio *orig_bbio = bbio->private; 122 123 btrfs_cleanup_bio(bbio); 124 bbio = orig_bbio; 125 } 126 127 /* 128 * At this point, bbio always points to the original btrfs_bio. Save 129 * the first error in it. 130 */ 131 if (status != BLK_STS_OK) 132 cmpxchg(&bbio->status, BLK_STS_OK, status); 133 134 if (atomic_dec_and_test(&bbio->pending_ios)) { 135 /* Load split bio's error which might be set above. */ 136 if (status == BLK_STS_OK) 137 bbio->bio.bi_status = READ_ONCE(bbio->status); 138 __btrfs_bio_end_io(bbio); 139 } 140 } 141 142 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 143 { 144 if (cur_mirror == fbio->num_copies) 145 return cur_mirror + 1 - fbio->num_copies; 146 return cur_mirror + 1; 147 } 148 149 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 150 { 151 if (cur_mirror == 1) 152 return fbio->num_copies; 153 return cur_mirror - 1; 154 } 155 156 static void btrfs_repair_done(struct btrfs_failed_bio *fbio) 157 { 158 if (atomic_dec_and_test(&fbio->repair_count)) { 159 btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status); 160 mempool_free(fbio, &btrfs_failed_bio_pool); 161 } 162 } 163 164 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, 165 struct btrfs_device *dev) 166 { 167 struct btrfs_failed_bio *fbio = repair_bbio->private; 168 struct btrfs_inode *inode = repair_bbio->inode; 169 struct btrfs_fs_info *fs_info = inode->root->fs_info; 170 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); 171 int mirror = repair_bbio->mirror_num; 172 173 /* 174 * We can only trigger this for data bio, which doesn't support larger 175 * folios yet. 176 */ 177 ASSERT(folio_order(page_folio(bv->bv_page)) == 0); 178 179 if (repair_bbio->bio.bi_status || 180 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { 181 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); 182 repair_bbio->bio.bi_iter = repair_bbio->saved_iter; 183 184 mirror = next_repair_mirror(fbio, mirror); 185 if (mirror == fbio->bbio->mirror_num) { 186 btrfs_debug(fs_info, "no mirror left"); 187 fbio->bbio->bio.bi_status = BLK_STS_IOERR; 188 goto done; 189 } 190 191 btrfs_submit_bbio(repair_bbio, mirror); 192 return; 193 } 194 195 do { 196 mirror = prev_repair_mirror(fbio, mirror); 197 btrfs_repair_io_failure(fs_info, btrfs_ino(inode), 198 repair_bbio->file_offset, fs_info->sectorsize, 199 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, 200 page_folio(bv->bv_page), bv->bv_offset, mirror); 201 } while (mirror != fbio->bbio->mirror_num); 202 203 done: 204 btrfs_repair_done(fbio); 205 bio_put(&repair_bbio->bio); 206 } 207 208 /* 209 * Try to kick off a repair read to the next available mirror for a bad sector. 210 * 211 * This primarily tries to recover good data to serve the actual read request, 212 * but also tries to write the good data back to the bad mirror(s) when a 213 * read succeeded to restore the redundancy. 214 */ 215 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, 216 u32 bio_offset, 217 struct bio_vec *bv, 218 struct btrfs_failed_bio *fbio) 219 { 220 struct btrfs_inode *inode = failed_bbio->inode; 221 struct btrfs_fs_info *fs_info = inode->root->fs_info; 222 const u32 sectorsize = fs_info->sectorsize; 223 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); 224 struct btrfs_bio *repair_bbio; 225 struct bio *repair_bio; 226 int num_copies; 227 int mirror; 228 229 btrfs_debug(fs_info, "repair read error: read error at %llu", 230 failed_bbio->file_offset + bio_offset); 231 232 num_copies = btrfs_num_copies(fs_info, logical, sectorsize); 233 if (num_copies == 1) { 234 btrfs_debug(fs_info, "no copy to repair from"); 235 failed_bbio->bio.bi_status = BLK_STS_IOERR; 236 return fbio; 237 } 238 239 if (!fbio) { 240 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); 241 fbio->bbio = failed_bbio; 242 fbio->num_copies = num_copies; 243 atomic_set(&fbio->repair_count, 1); 244 } 245 246 atomic_inc(&fbio->repair_count); 247 248 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, 249 &btrfs_repair_bioset); 250 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; 251 __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); 252 253 repair_bbio = btrfs_bio(repair_bio); 254 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio); 255 repair_bbio->inode = failed_bbio->inode; 256 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; 257 258 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); 259 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); 260 btrfs_submit_bbio(repair_bbio, mirror); 261 return fbio; 262 } 263 264 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) 265 { 266 struct btrfs_inode *inode = bbio->inode; 267 struct btrfs_fs_info *fs_info = inode->root->fs_info; 268 u32 sectorsize = fs_info->sectorsize; 269 struct bvec_iter *iter = &bbio->saved_iter; 270 blk_status_t status = bbio->bio.bi_status; 271 struct btrfs_failed_bio *fbio = NULL; 272 u32 offset = 0; 273 274 /* Read-repair requires the inode field to be set by the submitter. */ 275 ASSERT(inode); 276 277 /* 278 * Hand off repair bios to the repair code as there is no upper level 279 * submitter for them. 280 */ 281 if (bbio->bio.bi_pool == &btrfs_repair_bioset) { 282 btrfs_end_repair_bio(bbio, dev); 283 return; 284 } 285 286 /* Clear the I/O error. A failed repair will reset it. */ 287 bbio->bio.bi_status = BLK_STS_OK; 288 289 while (iter->bi_size) { 290 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); 291 292 bv.bv_len = min(bv.bv_len, sectorsize); 293 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) 294 fbio = repair_one_sector(bbio, offset, &bv, fbio); 295 296 bio_advance_iter_single(&bbio->bio, iter, sectorsize); 297 offset += sectorsize; 298 } 299 300 if (bbio->csum != bbio->csum_inline) 301 kfree(bbio->csum); 302 303 if (fbio) 304 btrfs_repair_done(fbio); 305 else 306 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 307 } 308 309 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) 310 { 311 if (!dev || !dev->bdev) 312 return; 313 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 314 return; 315 316 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 317 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 318 else if (!(bio->bi_opf & REQ_RAHEAD)) 319 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 320 if (bio->bi_opf & REQ_PREFLUSH) 321 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 322 } 323 324 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, 325 struct bio *bio) 326 { 327 if (bio->bi_opf & REQ_META) 328 return fs_info->endio_meta_workers; 329 return fs_info->endio_workers; 330 } 331 332 static void btrfs_end_bio_work(struct work_struct *work) 333 { 334 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); 335 336 /* Metadata reads are checked and repaired by the submitter. */ 337 if (is_data_bbio(bbio)) 338 btrfs_check_read_bio(bbio, bbio->bio.bi_private); 339 else 340 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 341 } 342 343 static void btrfs_simple_end_io(struct bio *bio) 344 { 345 struct btrfs_bio *bbio = btrfs_bio(bio); 346 struct btrfs_device *dev = bio->bi_private; 347 struct btrfs_fs_info *fs_info = bbio->fs_info; 348 349 btrfs_bio_counter_dec(fs_info); 350 351 if (bio->bi_status) 352 btrfs_log_dev_io_error(bio, dev); 353 354 if (bio_op(bio) == REQ_OP_READ) { 355 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 356 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 357 } else { 358 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) 359 btrfs_record_physical_zoned(bbio); 360 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 361 } 362 } 363 364 static void btrfs_raid56_end_io(struct bio *bio) 365 { 366 struct btrfs_io_context *bioc = bio->bi_private; 367 struct btrfs_bio *bbio = btrfs_bio(bio); 368 369 btrfs_bio_counter_dec(bioc->fs_info); 370 bbio->mirror_num = bioc->mirror_num; 371 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) 372 btrfs_check_read_bio(bbio, NULL); 373 else 374 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 375 376 btrfs_put_bioc(bioc); 377 } 378 379 static void btrfs_orig_write_end_io(struct bio *bio) 380 { 381 struct btrfs_io_stripe *stripe = bio->bi_private; 382 struct btrfs_io_context *bioc = stripe->bioc; 383 struct btrfs_bio *bbio = btrfs_bio(bio); 384 385 btrfs_bio_counter_dec(bioc->fs_info); 386 387 if (bio->bi_status) { 388 atomic_inc(&bioc->error); 389 btrfs_log_dev_io_error(bio, stripe->dev); 390 } 391 392 /* 393 * Only send an error to the higher layers if it is beyond the tolerance 394 * threshold. 395 */ 396 if (atomic_read(&bioc->error) > bioc->max_errors) 397 bio->bi_status = BLK_STS_IOERR; 398 else 399 bio->bi_status = BLK_STS_OK; 400 401 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) 402 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 403 404 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 405 btrfs_put_bioc(bioc); 406 } 407 408 static void btrfs_clone_write_end_io(struct bio *bio) 409 { 410 struct btrfs_io_stripe *stripe = bio->bi_private; 411 412 if (bio->bi_status) { 413 atomic_inc(&stripe->bioc->error); 414 btrfs_log_dev_io_error(bio, stripe->dev); 415 } else if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 416 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 417 } 418 419 /* Pass on control to the original bio this one was cloned from */ 420 bio_endio(stripe->bioc->orig_bio); 421 bio_put(bio); 422 } 423 424 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 425 { 426 if (!dev || !dev->bdev || 427 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 428 (btrfs_op(bio) == BTRFS_MAP_WRITE && 429 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 430 bio_io_error(bio); 431 return; 432 } 433 434 bio_set_dev(bio, dev->bdev); 435 436 /* 437 * For zone append writing, bi_sector must point the beginning of the 438 * zone 439 */ 440 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 441 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 442 u64 zone_start = round_down(physical, dev->fs_info->zone_size); 443 444 ASSERT(btrfs_dev_is_sequential(dev, physical)); 445 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 446 } 447 btrfs_debug_in_rcu(dev->fs_info, 448 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 449 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 450 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), 451 dev->devid, bio->bi_iter.bi_size); 452 453 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT) 454 blkcg_punt_bio_submit(bio); 455 else 456 submit_bio(bio); 457 } 458 459 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 460 { 461 struct bio *orig_bio = bioc->orig_bio, *bio; 462 463 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 464 465 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 466 if (dev_nr == bioc->num_stripes - 1) { 467 bio = orig_bio; 468 bio->bi_end_io = btrfs_orig_write_end_io; 469 } else { 470 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 471 bio_inc_remaining(orig_bio); 472 bio->bi_end_io = btrfs_clone_write_end_io; 473 } 474 475 bio->bi_private = &bioc->stripes[dev_nr]; 476 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 477 bioc->stripes[dev_nr].bioc = bioc; 478 bioc->size = bio->bi_iter.bi_size; 479 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 480 } 481 482 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, 483 struct btrfs_io_stripe *smap, int mirror_num) 484 { 485 if (!bioc) { 486 /* Single mirror read/write fast path. */ 487 btrfs_bio(bio)->mirror_num = mirror_num; 488 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; 489 if (bio_op(bio) != REQ_OP_READ) 490 btrfs_bio(bio)->orig_physical = smap->physical; 491 bio->bi_private = smap->dev; 492 bio->bi_end_io = btrfs_simple_end_io; 493 btrfs_submit_dev_bio(smap->dev, bio); 494 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 495 /* Parity RAID write or read recovery. */ 496 bio->bi_private = bioc; 497 bio->bi_end_io = btrfs_raid56_end_io; 498 if (bio_op(bio) == REQ_OP_READ) 499 raid56_parity_recover(bio, bioc, mirror_num); 500 else 501 raid56_parity_write(bio, bioc); 502 } else { 503 /* Write to multiple mirrors. */ 504 int total_devs = bioc->num_stripes; 505 506 bioc->orig_bio = bio; 507 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) 508 btrfs_submit_mirrored_bio(bioc, dev_nr); 509 } 510 } 511 512 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio) 513 { 514 if (bbio->bio.bi_opf & REQ_META) 515 return btree_csum_one_bio(bbio); 516 return btrfs_csum_one_bio(bbio); 517 } 518 519 /* 520 * Async submit bios are used to offload expensive checksumming onto the worker 521 * threads. 522 */ 523 struct async_submit_bio { 524 struct btrfs_bio *bbio; 525 struct btrfs_io_context *bioc; 526 struct btrfs_io_stripe smap; 527 int mirror_num; 528 struct btrfs_work work; 529 }; 530 531 /* 532 * In order to insert checksums into the metadata in large chunks, we wait 533 * until bio submission time. All the pages in the bio are checksummed and 534 * sums are attached onto the ordered extent record. 535 * 536 * At IO completion time the csums attached on the ordered extent record are 537 * inserted into the btree. 538 */ 539 static void run_one_async_start(struct btrfs_work *work) 540 { 541 struct async_submit_bio *async = 542 container_of(work, struct async_submit_bio, work); 543 blk_status_t ret; 544 545 ret = btrfs_bio_csum(async->bbio); 546 if (ret) 547 async->bbio->bio.bi_status = ret; 548 } 549 550 /* 551 * In order to insert checksums into the metadata in large chunks, we wait 552 * until bio submission time. All the pages in the bio are checksummed and 553 * sums are attached onto the ordered extent record. 554 * 555 * At IO completion time the csums attached on the ordered extent record are 556 * inserted into the tree. 557 * 558 * If called with @do_free == true, then it will free the work struct. 559 */ 560 static void run_one_async_done(struct btrfs_work *work, bool do_free) 561 { 562 struct async_submit_bio *async = 563 container_of(work, struct async_submit_bio, work); 564 struct bio *bio = &async->bbio->bio; 565 566 if (do_free) { 567 kfree(container_of(work, struct async_submit_bio, work)); 568 return; 569 } 570 571 /* If an error occurred we just want to clean up the bio and move on. */ 572 if (bio->bi_status) { 573 btrfs_bio_end_io(async->bbio, async->bbio->bio.bi_status); 574 return; 575 } 576 577 /* 578 * All of the bios that pass through here are from async helpers. 579 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's 580 * context. This changes nothing when cgroups aren't in use. 581 */ 582 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT; 583 btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); 584 } 585 586 static bool should_async_write(struct btrfs_bio *bbio) 587 { 588 bool auto_csum_mode = true; 589 590 #ifdef CONFIG_BTRFS_EXPERIMENTAL 591 struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices; 592 enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode); 593 594 if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF) 595 return false; 596 597 auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO); 598 #endif 599 600 /* Submit synchronously if the checksum implementation is fast. */ 601 if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags)) 602 return false; 603 604 /* 605 * Try to defer the submission to a workqueue to parallelize the 606 * checksum calculation unless the I/O is issued synchronously. 607 */ 608 if (op_is_sync(bbio->bio.bi_opf)) 609 return false; 610 611 /* Zoned devices require I/O to be submitted in order. */ 612 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info)) 613 return false; 614 615 return true; 616 } 617 618 /* 619 * Submit bio to an async queue. 620 * 621 * Return true if the work has been successfully submitted, else false. 622 */ 623 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, 624 struct btrfs_io_context *bioc, 625 struct btrfs_io_stripe *smap, int mirror_num) 626 { 627 struct btrfs_fs_info *fs_info = bbio->fs_info; 628 struct async_submit_bio *async; 629 630 async = kmalloc(sizeof(*async), GFP_NOFS); 631 if (!async) 632 return false; 633 634 async->bbio = bbio; 635 async->bioc = bioc; 636 async->smap = *smap; 637 async->mirror_num = mirror_num; 638 639 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done); 640 btrfs_queue_work(fs_info->workers, &async->work); 641 return true; 642 } 643 644 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length) 645 { 646 unsigned int nr_segs; 647 int sector_offset; 648 649 map_length = min(map_length, bbio->fs_info->max_zone_append_size); 650 sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits, 651 &nr_segs, map_length); 652 if (sector_offset) 653 return sector_offset << SECTOR_SHIFT; 654 return map_length; 655 } 656 657 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num) 658 { 659 struct btrfs_inode *inode = bbio->inode; 660 struct btrfs_fs_info *fs_info = bbio->fs_info; 661 struct bio *bio = &bbio->bio; 662 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 663 u64 length = bio->bi_iter.bi_size; 664 u64 map_length = length; 665 bool use_append = btrfs_use_zone_append(bbio); 666 struct btrfs_io_context *bioc = NULL; 667 struct btrfs_io_stripe smap; 668 blk_status_t ret; 669 int error; 670 671 if (!bbio->inode || btrfs_is_data_reloc_root(inode->root)) 672 smap.rst_search_commit_root = true; 673 else 674 smap.rst_search_commit_root = false; 675 676 btrfs_bio_counter_inc_blocked(fs_info); 677 error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 678 &bioc, &smap, &mirror_num); 679 if (error) { 680 ret = errno_to_blk_status(error); 681 goto fail; 682 } 683 684 map_length = min(map_length, length); 685 if (use_append) 686 map_length = btrfs_append_map_length(bbio, map_length); 687 688 if (map_length < length) { 689 bbio = btrfs_split_bio(fs_info, bbio, map_length); 690 bio = &bbio->bio; 691 } 692 693 /* 694 * Save the iter for the end_io handler and preload the checksums for 695 * data reads. 696 */ 697 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) { 698 bbio->saved_iter = bio->bi_iter; 699 ret = btrfs_lookup_bio_sums(bbio); 700 if (ret) 701 goto fail; 702 } 703 704 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 705 if (use_append) { 706 bio->bi_opf &= ~REQ_OP_WRITE; 707 bio->bi_opf |= REQ_OP_ZONE_APPEND; 708 } 709 710 if (is_data_bbio(bbio) && bioc && 711 btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) { 712 /* 713 * No locking for the list update, as we only add to 714 * the list in the I/O submission path, and list 715 * iteration only happens in the completion path, which 716 * can't happen until after the last submission. 717 */ 718 btrfs_get_bioc(bioc); 719 list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list); 720 } 721 722 /* 723 * Csum items for reloc roots have already been cloned at this 724 * point, so they are handled as part of the no-checksum case. 725 */ 726 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) && 727 !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) && 728 !btrfs_is_data_reloc_root(inode->root)) { 729 if (should_async_write(bbio) && 730 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) 731 goto done; 732 733 ret = btrfs_bio_csum(bbio); 734 if (ret) 735 goto fail; 736 } else if (use_append || 737 (btrfs_is_zoned(fs_info) && inode && 738 inode->flags & BTRFS_INODE_NODATASUM)) { 739 ret = btrfs_alloc_dummy_sum(bbio); 740 if (ret) 741 goto fail; 742 } 743 } 744 745 btrfs_submit_bio(bio, bioc, &smap, mirror_num); 746 done: 747 return map_length == length; 748 749 fail: 750 btrfs_bio_counter_dec(fs_info); 751 /* 752 * We have split the original bbio, now we have to end both the current 753 * @bbio and remaining one, as the remaining one will never be submitted. 754 */ 755 if (map_length < length) { 756 struct btrfs_bio *remaining = bbio->private; 757 758 ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset); 759 ASSERT(remaining); 760 761 btrfs_bio_end_io(remaining, ret); 762 } 763 btrfs_bio_end_io(bbio, ret); 764 /* Do not submit another chunk */ 765 return true; 766 } 767 768 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num) 769 { 770 /* If bbio->inode is not populated, its file_offset must be 0. */ 771 ASSERT(bbio->inode || bbio->file_offset == 0); 772 773 while (!btrfs_submit_chunk(bbio, mirror_num)) 774 ; 775 } 776 777 /* 778 * Submit a repair write. 779 * 780 * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a 781 * RAID setup. Here we only want to write the one bad copy, so we do the 782 * mapping ourselves and submit the bio directly. 783 * 784 * The I/O is issued synchronously to block the repair read completion from 785 * freeing the bio. 786 */ 787 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 788 u64 length, u64 logical, struct folio *folio, 789 unsigned int folio_offset, int mirror_num) 790 { 791 struct btrfs_io_stripe smap = { 0 }; 792 struct bio_vec bvec; 793 struct bio bio; 794 int ret = 0; 795 796 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 797 BUG_ON(!mirror_num); 798 799 if (btrfs_repair_one_zone(fs_info, logical)) 800 return 0; 801 802 /* 803 * Avoid races with device replace and make sure our bioc has devices 804 * associated to its stripes that don't go away while we are doing the 805 * read repair operation. 806 */ 807 btrfs_bio_counter_inc_blocked(fs_info); 808 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 809 if (ret < 0) 810 goto out_counter_dec; 811 812 if (!smap.dev->bdev || 813 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) { 814 ret = -EIO; 815 goto out_counter_dec; 816 } 817 818 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 819 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 820 ret = bio_add_folio(&bio, folio, length, folio_offset); 821 ASSERT(ret); 822 ret = submit_bio_wait(&bio); 823 if (ret) { 824 /* try to remap that extent elsewhere? */ 825 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS); 826 goto out_bio_uninit; 827 } 828 829 btrfs_info_rl_in_rcu(fs_info, 830 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 831 ino, start, btrfs_dev_name(smap.dev), 832 smap.physical >> SECTOR_SHIFT); 833 ret = 0; 834 835 out_bio_uninit: 836 bio_uninit(&bio); 837 out_counter_dec: 838 btrfs_bio_counter_dec(fs_info); 839 return ret; 840 } 841 842 /* 843 * Submit a btrfs_bio based repair write. 844 * 845 * If @dev_replace is true, the write would be submitted to dev-replace target. 846 */ 847 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace) 848 { 849 struct btrfs_fs_info *fs_info = bbio->fs_info; 850 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 851 u64 length = bbio->bio.bi_iter.bi_size; 852 struct btrfs_io_stripe smap = { 0 }; 853 int ret; 854 855 ASSERT(fs_info); 856 ASSERT(mirror_num > 0); 857 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE); 858 ASSERT(!bbio->inode); 859 860 btrfs_bio_counter_inc_blocked(fs_info); 861 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 862 if (ret < 0) 863 goto fail; 864 865 if (dev_replace) { 866 ASSERT(smap.dev == fs_info->dev_replace.srcdev); 867 smap.dev = fs_info->dev_replace.tgtdev; 868 } 869 btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num); 870 return; 871 872 fail: 873 btrfs_bio_counter_dec(fs_info); 874 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 875 } 876 877 int __init btrfs_bioset_init(void) 878 { 879 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 880 offsetof(struct btrfs_bio, bio), 881 BIOSET_NEED_BVECS)) 882 return -ENOMEM; 883 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, 884 offsetof(struct btrfs_bio, bio), 0)) 885 goto out_free_bioset; 886 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, 887 offsetof(struct btrfs_bio, bio), 888 BIOSET_NEED_BVECS)) 889 goto out_free_clone_bioset; 890 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, 891 sizeof(struct btrfs_failed_bio))) 892 goto out_free_repair_bioset; 893 return 0; 894 895 out_free_repair_bioset: 896 bioset_exit(&btrfs_repair_bioset); 897 out_free_clone_bioset: 898 bioset_exit(&btrfs_clone_bioset); 899 out_free_bioset: 900 bioset_exit(&btrfs_bioset); 901 return -ENOMEM; 902 } 903 904 void __cold btrfs_bioset_exit(void) 905 { 906 mempool_exit(&btrfs_failed_bio_pool); 907 bioset_exit(&btrfs_repair_bioset); 908 bioset_exit(&btrfs_clone_bioset); 909 bioset_exit(&btrfs_bioset); 910 } 911